
 

 

 
A Decentralized Multi-Agent Based Network Management 

System for ICT4D Networks 

A dissertation submitted in fulfillment of the requirements for the degree of 

Masters of Science 

In 

Computer Science 

By 

Matebese Sithembiso 

Supervisors: M. Thinyane and N. Moroosi 

 



 

 

i 

Declaration 

I, Matebese Sithembiso, declare that this dissertation was composed by myself, that the work 

contained herein is my own except where explicitly stated otherwise in the text, and that this 

work has not been submitted for any other degree or professional qualification. 

 

 

 

 

 

 

 

 

Signed: _____________________ 

Matebese Sithembiso 

Date: January 2014 



 

 

ii 

Acknowledgements 

Although responsibility for the final product was mine, I could not have done this work without 

key contributions from several individuals to whom I am deeply indebted. First, I would to thank 

God for all the wisdom, courage and understanding during the period of my studies. If it was not 

for Him, it could not have been possible. Secondly, I would like to thank the Department of 

Computer Science, and the Head of Department, Mr. S.M. Scott, for accepting as one of the 

2012-2013 Master’s Students in the first place. 

To my supervisors, Professor M Thinynae and Miss N Moroosi, thanks for your technical 

guidance, constructive criticism and your support in all the time of this research and writing this 

thesis. 

To my colleagues, I thank you for valuable criticism and hint you shared with me and you know 

without your support, I would not have got this far. 

I would like also to thank Telkom SA for making this dream come through by sponsoring me 

through the Telkom Centre of Excellence in University of Fort Hare. 

A special thanks to my family, thank you for tolerating and understanding the stress I gave you 

throughout my education. 



 

 

iii 

Abstract 

Network management is fundamental for assuring high quality services required by each user for 

the effective utilization of network resources. In this research, we propose the use of a 

decentralized, flexible and scalable Multi-Agent based system to monitor and manage rural 

broadband networks adaptively and efficiently. This mechanism is not novel as it has been used 

for high-speed, large-scale and distributed networks. This research investigates how software 

agents could collaborate in the process of managing rural broadband networks and developing an 

autonomous decentralized network management mechanism. In rural networks, network 

management is a challenging task because of lack of a reliable power supply, greater 

geographical distances, topographical barriers, and lack of technical support as well as computer 

repair facilities. This renders the network monitoring function complex and difficult. Since 

software agents are goal-driven, this research aims at developing a distributed management 

system that efficiently diagnoses errors on a given network and autonomously invokes effective 

changes to the network based on the goals defined on system agents. To make this possible, the 

Siyakhula Living Lab network was used as the research case study and existing network 

management system was reviewed and used as the basis for the proposed network management 

system. The proposed network management system uses JADE framework, Hyperic-Sigar API, 

Java networking programming and JESS scripting language to implement reasoning software 

agents. JADE and Java were used to develop the system agents with FIPA specifications. 

Hyperic-Sigar was used to collect the device information, Jpcap was used for collecting device 

network information and JESS for developing a rule engine for agents to reason about the device 

and network state. Even though the system is developed with Siyakhula Living Lab 

considerations, technically it can be used in any small-medium network because it is adaptable 

and scalable to various network infrastructure requirements. The proposed system consists of 

two types of agents, the MasterAgent and the NodeAgent. The MasterAgent resides on the device 

that has the agent platform and NodeAgent resides on devices connected to the network. The 

MasterAgent provides the network administrator with graphical and web user interfaces so that 



 

 

iv 

they can view network analysis and statistics. The agent platform provides agents with the 

executing environment and every agent, when started, is added to this platform. This system is 

platform independent as it has been tested on Linux, Mac and Windows platforms. The 

implemented system has been found to provide a suitable network management function to rural 

broadband networks that is: scalable in that more node agents can be added to the system to 

accommodate more devices in the network; autonomous in the ability to reason and execute 

actions based on the defined rules; fault-tolerant through being designed as a decentralized 

platform thereby reducing the Single Point of Failure (SPOF) in the system. 



 

 

v 

Publications 

Matebese S. and Thinyane M. 2013, Architecting a Decentralized Multi-Agent System Based 

Network Management System for Rural Broadband Networks (RBNs). Proceedings of the 

15
th

 ZAWWW Conference, Cape Peninsula University of Technology, South Africa 

Matebese S., Moroosi N and Thinyane M., 2013 Implementation of Monitoring Function for 

MAS based Management System for RBNs. Proceedings of SATNAC 2013 Conference, Spier 

Wine Estate, South Africa. 



 

 

vi 

Table of Content 

Declaration ....................................................................................................................................... i 

Acknowledgements ......................................................................................................................... ii 

Abstract .......................................................................................................................................... iii 

Publications ..................................................................................................................................... v 

Table of Figures ............................................................................................................................. xi 

List of Tables ............................................................................................................................... xvi 

Table of Acronyms ..................................................................................................................... xvii 

1. Introduction ............................................................................................................................. 1 

1.1. Background ...................................................................................................................... 1 

1.2. Network Management ...................................................................................................... 3 

1.3. Premise of Research ......................................................................................................... 6 

1.4. Research Problem ............................................................................................................. 8 

1.5. Motivation ........................................................................................................................ 9 

1.6. Technical Objectives ........................................................................................................ 9 

1.7. Dissertation organization................................................................................................ 10 

1.8. Conclusion ...................................................................................................................... 10 

2. Literature Review .................................................................................................................. 11 

2.1. Introduction .................................................................................................................... 11 

2.2. Software Agents ............................................................................................................. 11 

2.3. Network Management Systems ...................................................................................... 14 

2.3.1. Comparison of Static Network Management Systems ........................................... 17 



 

 

vii 

2.3.1.1. OpenNMS ........................................................................................................ 18 

2.3.1.2. OpManager ...................................................................................................... 18 

2.3.1.3. Nagios .............................................................................................................. 19 

2.3.1.4. Hyperic HQ...................................................................................................... 20 

2.3.1.5. GroundWork Monitor ...................................................................................... 20 

2.3.1.6. Argus ............................................................................................................... 21 

2.3.1.7. Cacti ................................................................................................................. 22 

2.3.1.8. SNMPc............................................................................................................. 23 

2.3.1.9. NetXMS ........................................................................................................... 23 

2.3.2. NMS Comparison ................................................................................................... 24 

2.4. Multi-Agent based Network Management Systems....................................................... 28 

2.5. Approaches Based on Mobile Code ............................................................................... 30 

2.5.1. Use of Code on Demand ......................................................................................... 31 

2.5.2. Use of Remote Evaluation ...................................................................................... 31 

2.5.3. Use of Mobile Agents ............................................................................................. 31 

2.6. Benefits of Multi-Agents in Network Management ....................................................... 32 

2.7. Application Domain of Multi-Agents ............................................................................ 34 

2.8. Artificial Intelligence Rule Engines ............................................................................... 35 

2.8.1. OpenRules ............................................................................................................... 37 



 

 

viii 

2.8.2. Jess .......................................................................................................................... 37 

2.8.3. Prolog’s Inference Engine ....................................................................................... 38 

2.8.4. Drools JBoss Rules ................................................................................................. 39 

2.9. Elements of an Agent Platform ...................................................................................... 39 

2.10.1 Elements of JADE Agent Platform ......................................................................... 40 

2.10. Multi-Agent Programming Languages and Platforms ................................................ 41 

2.11. Conclusion .................................................................................................................. 43 

3. Requirements Analysis and Design ....................................................................................... 44 

3.1. Introduction .................................................................................................................... 44 

3.2. Research Methodology ................................................................................................... 44 

3.3. Agent Development Methodologies............................................................................... 46 

3.3.1. Object-Oriented Methodology ................................................................................ 47 

3.3.2. Knowledge Engineering Methodology ................................................................... 51 

3.4. Requirements Specification............................................................................................ 52 

3.4.1. Functional Requirements ........................................................................................ 52 

3.4.2. Non-Functional Requirements ................................................................................ 54 

3.5. System Architecture ....................................................................................................... 55 

3.5.1. Multi-Service Agent Model .................................................................................... 56 

3.5.2. System Design ........................................................................................................ 57 

3.5.3. Agent Description ................................................................................................... 61 

3.5.3.1. Recognition Operation ..................................................................................... 61 

3.5.3.2. Diagnostic Operation ....................................................................................... 63 



 

 

ix 

3.5.3.3. Recovery Operation ......................................................................................... 64 

3.5.3.4. System Management Operation....................................................................... 65 

3.5.4. System Operation ....................................................................................................... 65 

3.5.4.1. Use Case Diagram ........................................................................................... 65 

3.5.4.2. Sequence Diagram ........................................................................................... 66 

3.6. Conclusion ...................................................................................................................... 69 

4. Implementation ...................................................................................................................... 70 

4.1. Introduction .................................................................................................................... 70 

4.2. MasterAgent ................................................................................................................... 70 

4.2.1. Bandwidth Meter Behaviour ................................................................................... 71 

4.2.2. System and User Info Behaviour ............................................................................ 73 

4.2.3. Packet Capture Behaviour ....................................................................................... 75 

4.2.4. Network Statistics Behaviour ................................................................................. 78 

4.3. NodeAgent ...................................................................................................................... 80 

4.3.1. System and User Info Behaviour ............................................................................ 80 

4.3.2. Network Statistics Behaviour ................................................................................. 82 

4.3.3. Network and Internet Connection Behaviours ........................................................ 83 

4.4. Inference Engine ............................................................................................................ 87 

4.5. Starting the Agent Platform............................................................................................ 90 

4.5.1. Agent Communication Language ........................................................................... 93 

4.5.2. Creation of a Distributed System ............................................................................ 98 



 

 

x 

4.6. Conclusion ...................................................................................................................... 99 

5. Testing and Evaluation ........................................................................................................ 100 

5.1. Introduction .................................................................................................................. 100 

5.2. Performance Management Test .................................................................................... 100 

5.3. Agent Communication Test ......................................................................................... 103 

5.4. Rule Engine Test .......................................................................................................... 106 

5.5. Data Storage and Analysis ........................................................................................... 108 

5.6. Network and Internet Connection Test ........................................................................ 112 

5.7. Discussion .................................................................................................................... 114 

5.8. Conclusion .................................................................................................................... 116 

6. Conclusion and Future Work ............................................................................................... 117 

6.1. Introduction .................................................................................................................. 117 

6.2. Dissertation Discussion ................................................................................................ 117 

6.3. Discussion on Research Objectives.............................................................................. 118 

6.4. Future Work ................................................................................................................. 120 

6.5. Overall Conclusion ....................................................................................................... 120 

7. References ........................................................................................................................... 121 

 



 

 

xi 

Table of Figures 

Figure 1: Geographical Network of SLL. ....................................................................................... 2 

Figure 2: Logical Network Diagram in SLL [12]. .......................................................................... 7 

Figure 3: Agent Characteristics (adapted from [5]). ..................................................................... 12 

Figure 4: Agent System Architecture (adapted from [5]). ............................................................ 13 

Figure 5: Architecture of a Static Centralized Monitoring Mechanism. ...................................... 15 

Figure 6: Architecture of a Static Decentralized Monitoring Mechanism. ................................... 16 

Figure 7: General Architecture of a Decentralized Monitoring Mechanism. ............................... 17 

Figure 8: Probe-Central Architecture of OpManager [20]. .......................................................... 19 

Figure 9: Provisioning HQ Server in OpenNMS [18]. ................................................................. 20 

Figure 10: Three-Tiered Architecture of GroundWork Monitor Enterprise Server [24]. ............. 21 

Figure 11: Argus Design [25]. ...................................................................................................... 22 

Figure 12: NetXMS Management Console [28]. .......................................................................... 24 

Figure 13: Reduced Agent communication [41]. .......................................................................... 34 

Figure 14: MASs with other disciplines [43]. ............................................................................... 35 



 

 

xii 

Figure 15: High-Level Architecture of an Inference Engine. ....................................................... 36 

Figure 16: General Agent Platform Architecture [43]. ................................................................. 40 

Figure 17: Iterative Development Model for the System Development. ...................................... 46 

Figure 18: Models of Gaia Methodology [64]. ............................................................................. 49 

Figure 19: Stages of Knowledge Acquisition (adapted from [69]). ............................................. 52 

Figure 20: Multi-Service Agent Model (adapted from [71]). ....................................................... 57 

Figure 21: Low-Level Agent Architecture. .................................................................................. 58 

Figure 22: High-Level Agent Operation. ...................................................................................... 59 

Figure 23: System Architecture. ................................................................................................... 60 

Figure 24: Separation Process (adapted from  [71]). .................................................................... 62 

Figure 25: Use case Diagram. ....................................................................................................... 66 

Figure 26: Sequence Diagram. ...................................................................................................... 67 

Figure 27: Method to List Network Interfaces. ............................................................................ 71 

Figure 28: Method to Create Line Chart (KB/S). ......................................................................... 72 

Figure 29: Bandwidth Monitor Interface. ..................................................................................... 72 

Figure 30: Method to Show Data Capturing Thread. ................................................................... 73 



 

 

xiii 

Figure 31: NodeInfo Table Fields. ................................................................................................ 74 

Figure 32: Web Interface to Show System and User Info. ........................................................... 75 

Figure 33: Method to Show Network Interface Details. ............................................................... 76 

Figure 34: Method to Capture Network Packets........................................................................... 77 

Figure 35: Packet Capture Interface. ............................................................................................ 78 

Figure 36: Fields of Netstats Database Table. .............................................................................. 79 

Figure 37: Data Consumed and Packets Captured in a Period of System Uptime. ...................... 80 

Figure 38: Method That Shows the Process of Killing a Running Process. ................................. 81 

Figure 39: Method to Show the Collection Network Statistics. ................................................... 83 

Figure 40: Getting Network Interface. .......................................................................................... 84 

Figure 41: Testing NIC. ................................................................................................................ 84 

Figure 42: Ping Local Device and Gateway Implementation. ...................................................... 86 

Figure 43: Internet Connectivity Test Implementation. ................................................................ 86 

Figure 44: System Inference Engine. ............................................................................................ 87 

Figure 45: Implementation of a Jess file that contains Rules. ...................................................... 88 

Figure 46: Method that Asserts facts to Rete Object. ................................................................... 89 



 

 

xiv 

Figure 47: Starting the Agent Platform. ........................................................................................ 91 

Figure 48: Method to Show Registration of an Agent to DF. ....................................................... 92 

Figure 49: Behaviour to Refresh the Agent DF. ........................................................................... 93 

Figure 50: Definition of ACL Message Structure......................................................................... 94 

Figure 51: Structure of the NetworkOntology. .............................................................................. 95 

Figure 52: Language and Ontology Registration. ......................................................................... 95 

Figure 53: Agent Communication Implementation. ..................................................................... 96 

Figure 54: Starting the NodeAgent on Managed Device Terminal. .............................................. 98 

Figure 55: Creation of a Distributed System. ............................................................................... 99 

Figure 56: Test for a Bandwidth Meter....................................................................................... 101 

Figure 57: Data Consumed (data in MB) in Days Comparisons. ............................................... 102 

Figure 58: Data Consumed (Packets in numbers) in Days Comparisons. .................................. 103 

Figure 59: SnifferAgent Shows Message Exchange in the Agent Platform. ............................... 104 

Figure 60: Message Contents between Agents. .......................................................................... 105 

Figure 61: Conversion and Translation Performed by JADE (adapted from [43]). ................... 105 

Figure 62: System Uptime Rule Test. ......................................................................................... 107 



 

 

xv 

Figure 63: GUI Showing When System-Uptime Rule Becomes True. ...................................... 107 

Figure 64: Terminal Report for an Administrator....................................................................... 108 

Figure 65: Fields of Week Days Table. ...................................................................................... 109 

Figure 66: Packet Capture GUI Listing Network Interfaces. ..................................................... 110 

Figure 67: Packet Capturing Process on Selected Interface. ...................................................... 111 

Figure 68: Success on Saving Packets. ....................................................................................... 111 

Figure 69: Test Error for Network Cable or Wireless Adaptor. ................................................. 112 

Figure 70: Test for NIC............................................................................................................... 112 

Figure 71: Testing Local IP Address Connectivity to the Network............................................ 113 

Figure 72: Internet Connection Test. .......................................................................................... 113 

Figure 73: Starting the Main-Container. ..................................................................................... 115 

 



 

 

xvi 

List of Tables 

Table 1: NMS Comparison. .......................................................................................................... 26 

Table 2: The Major Models of Prometheus Methodology [70]. ................................................... 50 

Table 3: Message Envelope Parameters. ...................................................................................... 97 



 

 

xvii 

Table of Acronyms 

2APL: A Practical Agent Programming Language  

3APL: Abstract Agent Programming Language  

ACC: Agent Communication Channel  

ACL: Agent Communication Language  

AI: Artifical Intelligence  

AID: Agent Identifier  

AMAS: Adaptive Multi-Agent System  

AMS: Agent Management System  

API: Application Programming Interface  

ARCOL: ARMITIS COmmunication Language  

AWT: Abstract Window Toolkit  

CIM: Common Infromation Model  

CLAIM: Computational Language for Autonomous Intelligent and Mobile Agents  

CLOS: Common Lisp Object System  



 

 

xviii 

CMIP: Communication Management information Protocol  

COOL: Domain independent COOrodination Language  

CORBA: Common Object Request Broker Architecture  

CPU: Central Processing Unit  

DF: Directory Facilitator  

DNS: Domain Name System  

FIPA: Foundation for Intelligent Physical Agents  

FSM: Finite State Machine  

GUI: Graphical User Interface  

I/O: Input/Output  

ICT: Information and Communication Technology  

ICT4D: Information and Communication Technology for Development  

IngreSQL: Ingres Structured Query Language  

IP: Internet Protocol  

IPMT: Internal Platform Message Transport  

IPv4: Internet Protocol version 4  



 

 

xix 

IPv6: Internet Protocol version 6  

JADE: Java Agent Development Framework  

Jess: Java Expert System Shell  

JessML: Java Expert System Shell Markup Language  

JMX: Java Management Extension  

KE: Knowledge Engineering  

KIF: Knowledge Interchange Format  

KQML: Knowledge Query Manipulation Language  

LHS: Left Hand Side  

MAC: Media Access Control  

MAS: Multi-Agent System  

MB: Megabytes  

MIB: Management Information Base  

MS SQL: Microsoft Structured Query Language  

MTP: Message Transport Protocol  

MVEL: MVFLEX Expression language  



 

 

xx 

MySQL: My Structured Query Language  

NETCONF: Network Configuration Protocol  

NIC: Network Interface Card  

NMAP: Network Mapper  

NMS: Network Management System  

OOM: Object Oriented Methodology  

OS: Operating System  

PHP: Hypertext Preprocessor  

PL/SQL: Procedural Language/Structural Query Language  

QoS: Quality of Service  

RAM: Random-Access Memory  

RMA: Remote Monitoring Agent  

RMI: remote Method Invocation  

RRD: Round Robin Database  

RRDtool: Round Robin Database tool  

SL: Semantic Language  



 

 

xxi 

SLL: Siyakhula Living Lab  

SNMP: Simple Network Management Protocol  

SNMPc: simple Network Managment Protocol console  

SNMPv3: Simple Network Management Protocol version 3  

SQLite: Structured Query Lite  

TCP/IP: Transimission Control Protocol/Internet Protocol  

TCP: Transmission Control Protocol  

TL1: Transaction Language 1  

UDP: User Datagram Protocol  

UML: Unified Modeling Language  

UNIX: Uniplexed Operating and Computing System  

URL: Uniform Resource Locator  

VoIP: Voice over Internet Protocol  

VSAT: Very Small Aperture Terminal  

WAN: Wide Area Network  

WBEM: Web-Based Enteprise Management  



 

 

xxii 

WiMAX: Worldwide Interoperability for Microwave Access  

XML: Extensible Markup Language  



 

 

1 

1. Introduction 

This chapter introduces the research scope, its significance, objectives and the motivation behind 

this work. It presents the research background on software agents and network management. 

Further, the chapter introduces the premise of this research and concludes with an outline of the 

dissertation structure. 

1.1. Background 

Telecommunication networks have emerged as an infrastructure of great significance in both 

developed and developing countries. As the amount of broadband network service users in rural 

areas significantly increases as well as the complexity of their services, network operators need 

to ensure high Quality of Service (QoS) required by each user. Broadband networks carry 

integrated traffic consisting, but not limited to voice, video and data. Rural communities are 

becoming more electronically oriented every year, largely due to a growth in the use of e-

services (e.g. e-commerce, m-commerce and social networking technologies) in such 

communities. Electronic communication is becoming increasingly significant in rural areas as 

there is a large number of technologies being deployed for Information and Communication 

Technologies for Development (ICT4D) [1] [2].  Personal computing facilitates easy access, 

manipulation, storage and exchange of information. These processes require reliable 

transmission of data information between client and server for an efficient packet delivery 

without re-transmissions. This can be achieved by reducing network failures in the network, 

thereby reducing traffic congestions. 

In order to achieve the goal of high QoS and efficient network provisioning, there is a need for a 

real time and efficient network management mechanism. Intelligent network management would 

play a significant role in ensuring that people in rural areas get high QoS with no interruptions. 

In rural networks, network management is a demanding process because of: lack of reliable 

power supply; greater geographical distances; topographical barriers; relatively low population 



 

 

2 

density thereby reducing economies of scale; lack of technical support and computer repair 

facilities; and complex operational environment due to multiple role-players in ICT 

infrastructure implementation in these communities [3]. This makes the complexity of network 

monitoring function to be extremely high [4]. As a result, these networks are susceptible to 

network congestion resulting in delays, poor performance and inability to react without delays. 

For this reason, in the analysis of the exponential growth in size, distribution and complexity of 

communication networks, existing management mechanisms present an opportunity for 

improvement as far as network performance; scalability and flexibility are concerned [5]. 

This research is undertaken within the Siyakhula Living Lab (SLL), an ICT4D intervention that 

consist of 17 schools that are located in the Dwesa rural area of the Mbashe Municipality which 

is in the Eastern Cape province, as the research field-site. 

 

Figure 1: Geographical Network of SLL. 



 

 

3 

Figure 1 shows the geographical expanded network of the SLL situated in Dwesa rural area. 

Dwesa area is characteristic and typical of marginalized rural areas in South Africa: it is faced 

with many challenges including lack of reliable power supply, poor road conditions, 

telecommunication infrastructure and socio-economic challenges such as poverty and poor 

development. The villages targeted by the SLL are the ones surrounding the schools. The aim of 

the SLL is to bring ICT services to Dwesa community so that they can have access to services 

such as e-mail, the Internet, Voice over Internet Protocol (VoIP), e-commerce and Teleweaver 

multi-service platform. 

1.2. Network Management 

Network management encompasses the execution of a set of tasks required for access control, 

network planning; resource allocation, deploying, coordinating and monitoring network 

resources [6]. Network management tasks include: security, configuration, reliability, 

accounting, performance management and network inventory maintenance. These tasks are often 

automated during the course of monitoring and reporting services. Security management refers to 

protection of a network from unauthorized use; this includes external and internal unauthorized 

use.  Security management is concerned with the right of entry to network nodes and sensitive 

data through using devices such as passwords. This type of management also controls the form 

of sensitive data using techniques such as encryption [7]. Configuration management refers to 

the management of security features in a network by controlling changes made to the software, 

hardware, firmware, documentation and test features in a system.  These changes may be 

deliberate and may relate to the addition of a new server to the network, or related path, such as a 

fiber cut between two nodes resulting in a re-routed path [7]. The process of configuration 

management involves identifying network components and their connections, collecting each 

device's configuration information and defining the relationship between network components. 

In order to perform these tasks, the network manager needs the topological information about the 

network, device configuration information, and control of the network component. Accounting 

management is more concerned with the collection of resource consumptions data for purposes 



 

 

4 

of billing, auditing, cost allocation, capacity and trend analysis [8]. This type of management 

information helps network administrators to give out the precise kind of resources to users, as 

well as plan for network growth. 

Network reliability is about making sure that network resources are available to the users and 

responding to any malfunctions. An ideal reliable network is one that is able to quickly identify 

an error or failure and help initiate a quick recovery process before users experience service 

degradation [9]. For this, a network management system has to have three qualities: first to 

identify the fault, isolate the cause of the fault, and then, if possible correct the fault [9]. 

Performance management is about making sure that there are no bottlenecks in a network. This 

type of management involves measuring network resources in terms of throughput, error rates, 

response times and network utilization [7]. This helps network administrators to reduce or 

prevent network bottlenecks and/or traffic jam and also helps in providing a high quality of 

service to users on the network, without straining the capacity of devices and links. This type of 

management looks at the proportion of usage of devices and error rates to assist in improving and 

balancing the throughput of traffic in all components of a network. Typically, some devices are 

used more than others. Performance monitoring gives qualitative and up-to-date information on 

the health and performance of devices. This facilitates for the full utilization of underutilized 

devices and rebalancing of over utilized devices. In a well-consumed network with healthy 

mechanisms, the losses of packets on the network are few and the response times are reduced 

[7].  

Network Inventory Management is a process that allows network administrators to retain current 

records about the number, type and status of network nodes [10]. An ideal process for network 

inventory management is one that collects inventory data on network infrastructure, regardless of 

vendor or technology, in one database, in which data can be updated automatically from the 

network. This type of management helps network administrators to collect user’s information 

such as the type of processes being run and establishing if the use of the devices is for legitimate 

reasons. This type of management can also be used to monitor external devices for threats and 



 

 

5 

unauthorized content. 

Network management consists of two steps, monitoring and management. Network monitoring 

refers to the practice of constantly gathering, storing data and reporting any faults to a network 

operator in the network state. Network monitoring also includes optimizing data flow and access 

in a complex and dynamic environment. Network management is all about reacting to any faults 

reported to Network Management System (NMS). Management functions centers on maintaining 

the network working efficiently at all times. Mainly, this requires network monitoring and 

examining its information for indication of possible problems.  

There are protocols, standards and technologies that are used for network monitoring and 

management, which include: Simple Network Management Protocol (SNMP), Communication 

Management Information Protocol (CMIP), Web-Based Enterprise Management (WBEM), 

Common Information Model (CIM), Java Management Extension (JMX), Transaction Language 

1 (TL1), and Network Configuration Protocol (NETCONF) among others. And these protocols 

and technologies can be classified as the following management mechanisms: 

1. Static centralized monitoring mechanism, 

2. Static decentralized monitoring mechanism, 

3. Decentralized monitoring mechanism. 

In recent years there has been a focus on the use of Artificial Intelligence (AI) in the 

management of networks, and in these instances the autonomy, collaborative operation, and 

robustness characteristics of intelligent agents has been leveraged to provide increased efficiency 

in the management of networks. This is the domain of network management that forms the basis 

of this research and is further discussed and elaborated in later sections. 



 

 

6 

1.3. Premise of Research 

This research is conceptualized in the context of rural network management, specifically the SLL 

in Dwesa. Technically the deployment context of the resultant network management system 

could be any small to medium size network. Dwesa has poor telecommunication coverage like 

most other rural areas in South Africa. The network management system used in SLL is the 

client/server model. Figure 4 depicts the logical network diagram at SLL. The SLL network 

consists of two base stations located at Badi School and Ngwane School that peer together for 

communication and act as a redundant link to the Internet. Ngwane School uses mobile WiMAX 

802.16e technology and Badi School uses fixed WiMAX 802.16d technology. These schools 

have the core router that is accountable for routing traffic from the connected schools to one 

another or the Internet; also each school has a Very Small Aperture Terminal (VSAT) connection 

to the Internet. Each school is equipped with a computer lab that has 5-30 thin clients running 

EduBuntu Linux and a few running Windows operating system. 

Accurate data on the growth of Internet penetration in rural areas is hard to find, but studies 

around South Africa, show that by the end of 2011, 8.5 million people had access to the Internet 

[11].  However, out of that, 7.9 million people accessed the Internet via mobile phones. 

According to World Wide Worx, who conducted this research, by the end of 2013, Internet 

growth will be around 20% and this will result in the falling of data prices [11]. With these 

figures, it makes ICT4D in rural areas to be extremely challenging. One of the main objectives of 

SLL is to offer ICT services to the community of Dwesa. To bring socio-economic development 

to the community of Dwesa, SLL has to provide reliable services through the network 

infrastructure that is deployed. Figure 2 shows the logical network diagram currently installed in 

SLL [12].  



 

 

7 

 

Figure 2: Logical Network Diagram in SLL [12]. 



 

 

8 

1.4. Research Problem 

The existing network management mechanisms are generally performing well, however there are 

a lot of challenges faced by these systems and also an opportunity for improvement. As the 

infrastructure of rural networks scales up, managing network resources becomes extremely 

difficult due to the factors mentioned in Section 1.1. This results in an increased traffic and 

service degradation because of increased bandwidth demand on the network. Also the 

requirement of human intervention and interpretation of system events demands a regular 

presence of a network administrator, something that is not always possible in marginalized rural 

settings. This can be mitigated through the use of intelligent and autonomous systems for 

managing these networks. Rural networks also require increase levels of robustness and fault-

tolerance, which the current client-server, centralized network management systems is not 

always able to provide. The Single Point of Failure in these systems can be eliminated through 

the decentralization of the network management nodes and through the use of an intrinsically 

distributed and fault-tolerant platform such as is provided by Multi-Agent Systems. 

1.5. Research Questions 

The challenge of how to develop a multi-agent based network management system for rural 

broadband networks will be scrutinized thoroughly. The following questions will be addressed: 

 Can an intelligent system be able to monitor and manage rural broadband networks? 

 What type of agent system architecture will be suitable to manage rural broadband 

networks?  

 What type of a Rule Engine will be able to reason with the rural broadband networks and 

its challenges? 



 

 

9 

The research questions above highlight the research agenda of this project. 

1.6. Motivation 

The proposed research of multi-agents in the application of rural network management is 

motivated by many factors. As the number of Internet users increases yearly, there is a need of 

managing available network resources effectively. Managing a network requires monitoring each 

node in a network. This challenge is the key force motivating this research on software agents 

because they can operate in environments that are dynamic, open and scalable, such as rural 

networks. Agents exhibit the intelligent capabilities such as reasoning, communication and 

learning. Agents can work collaboratively to achieve a certain task; they are goal-driven and are 

adaptive. Because of these properties, the use of software agents to manage rural networks would 

meet network management challenges (discussed in Section 1.1) of rural areas and provide 

dynamic, flexible, fast error detection and scalable management system.  

1.7. Technical Objectives 

Having introduced the problem statement of the proposed research and discussed the potential 

advantages of software agents in network management, the following are the specific objectives 

of this research: 

1. Investigate how agents can be used to manage rural networks; 

2. Determine the suitable agent based network architecture; 

3. Develop an autonomous decentralized network management mechanism; and 

4. Test if the system functions as desired to be. 



 

 

10 

1.8. Dissertation organization 

With the idea of a network management system based on software agents for SLL proposed, the 

remaining chapters of this dissertation will give a detailed outline on how the proposed system 

could be achieved. In Chapter 2, the technology used; related work on multi-agents for network 

management and the case study area will be reviewed. Chapter 3 explains how the objectives of 

this research are to be achieved, through an explanation of how the technologies will be 

combined to achieve the implementation of the system. Chapter 4 reviews the implementation 

of the system. An outline of how the system will be tested to establish whether or not it is 

suitable for use in SLL will be presented in Chapter 5. Chapter 6 offers a discussion on the 

findings to the study, observations and discuss about tentative future directions regarding this 

field. 

1.9. Conclusion        

The nature of network management, in particular in rural areas, is increasingly presenting 

challenges and opportunities that require a rethinking of the current network management 

operations and network management systems design. Further, it must be acknowledged that the 

decentralized approaches were built for either large-scale networks, high-speed networks or 

distributed networks without concerns about the challenges faced by rural networks in mind. 

Therefore, in this research, a dynamic decentralized management mechanism will be proposed. 

In this mechanism, management functions will be introduced at a node level where Node Agents 

will collaboratively and autonomously operate to manage the network based on the defined 

network goals and operational targets. 



 

 

11 

2. Literature Review 

The idea of software agents monitoring and managing computer networks is not novel. This 

chapter reviews how other researchers have used software agents to monitor and manage 

computer networks. This chapter also reviews the advantages and/or benefits of using intelligent 

agents for network management. 

2.1. Introduction 

This chapter introduces software agents, network management and software agents in network 

management. It discusses the languages, platforms used to implement agent systems and 

introduces the types of artificial rule engines. Further, the chapter reviews traditional methods of 

network management and discusses their advantages/disadvantages as compared to other 

technologies. Existing network management systems based on software agents are extensively 

discussed in this chapter.  

2.2. Software Agents 

There are numerous definitions for the word ‘Agent’. In telecommunications, an agent refers to 

any program that acts on behalf of a network administrator and is capable of migrating 

autonomously from node to node in a network to perform some computation on behalf of an 

administrator [13]. The basic necessity for this autonomy derives from the fact that an agent must 

be able to carry out functions in a flexible and intelligent manner that is quick to react on 

changes in the environment without requiring constant human supervision or involvement. 

Ideally when multiple agents reside within an environment, they are able to communicate and 

cooperate to achieve a specific goal [14]. 

Software agents have the ability to migrate from node to node, learn about their environment, 

communicate with one another and possess some level of intelligence about their environment 



 

 

12 

of execution. Therefore, they suit an environment of computer devices connected over a network. 

This dissertation presents a research on multi-agent technology as a substituting paradigm over 

an existing client/server technique used predominantly for current network management.   

Agent

 Collaborative 
 Knowledgeable 

 Adaptability 

 Persistence 
 Autonomy 

 Mobility 

 

Figure 3: Agent Characteristics (adapted from [5]). 

Figure 3 describes the agent characteristics. The characteristics are described as follows [5]: 

1. Knowledgeable - Agents are capable of interpreting their goals and knowledge. 

2. Adaptability – An agent’s behavior may be altered after it has been deployed. 

3. Autonomy – An agent is responsible for its own thread of control and can pursue its own 

goal largely independent of messages sent from other agents. 

4. Mobility – Agents have the ability to move from one executing context to another, either 

by moving the agent’s code and starting the agent fresh, or by serializing code and state, 



 

 

13 

allowing the agent to continue execution in a new context, retaining its state to continue 

its work. 

5. Persistence – Refers to the level to which the infrastructure allows agents to keep 

information and start over a comprehensive time, counting robustness in the face of likely 

run-time failures. 

6. Collaboration – Agents are capable of communicating and work cooperatively with other 

agents to form multi-agent systems working together on some task. 

Figure 4 shows the Agency Position Representation. The phrase Agency specifies the abstract 

and physical position in which agents reside and execute [5].  

 
Other Agent 

Systems 

 Component 

Infrastructure 

 Component-Model 

Infrastructure 

 Agency 

 Internal Platform Message Transport 

 

 Agent Platform 

 Internal Platform Message Transport 

 ACC 

  

 Directory 

Facilitator 

 Agent 

Management 

System 

 
Service Agent 

 
Service Agent 

 Agent  Agent 

 

 

 

 Software 
 People 

 

 

 

 

 

 

 

 

Figure 4: Agent System Architecture (adapted from [5]). 



 

 

14 

An agent platform is a model structure that offers confined services for agents and means for 

them to access remote services [5]. An agent system can offer intrinsic services by making use of 

Service Agents which form the Component Infrastructure. These services include 

communication, security, naming, persistence, agent management and agent mobility in the case 

of mobile agents. 

Within the Agent System Architecture [5]: 

1. Agent Communication Channel (ACC)-routes messages between local and remote 

Foundation for Intelligent Physical Agents (FIPA) agents, realizing messages using an agent 

communication language. 

2. Internal Platform Message Protocol (IPMT)-provides communication infrastructure. 

3. Directory Facilitator (DF) – provides “yellow pages” services for FIPA agents that register 

agent’s capabilities so that an appropriate task-specific agent to handle the task can be found. 

4. Agent Management System (AMS) – controls creation, deletion, suspension, resumption, 

authentication, persistence and migration of agents. Provides “white pages” to name and 

locate agents. 

2.3. Network Management Systems 

This section discusses the types of network management systems, namely: static centralized, 

static decentralized and lastly decentralized management system.  

Static centralized, Figure 5, monitoring mechanism is a mechanism whereby the monitored 

nodes communicate directly with one single monitoring station. This monitoring station is in 

charge of collecting, aggregating and processing raw network data. This model is widely used 

especially by small networks using SNMP [4]. But this mechanism results in processing and 

communication bottlenecks thereby limiting the number of elements that can be monitored and 

the rate at which information can be processed. In addition, SNMP favors a polling approach 



 

 

15 

that limits the ability to track problems in a timely manner while requiring management traffic 

even if no significant change has occurred [4]. 

Internet

Monitoring Station

 

Figure 5: Architecture of a Static Centralized Monitoring Mechanism. 

Static decentralized monitoring mechanism adopts a hierarchical management architecture where 

there are multiple area monitors with one system acting as a main monitoring station. This 

mechanism can cope with the scalability problem, but still inherits other problems of centralized 

management and cannot easily cope with frequently changing, dynamic environments. In 

addition, another type of decentralization found on distributed object technologies such as 

Common Object Request Broker Architecture (CORBA) and Java Remote Method Invocation 

(RMI) turned out to be accepted in network management [4]. Figure 6 shows an overview of 

static decentralized monitoring system. 

 



 

 

16 

Internet

Monitoring Station

Sub Area

Sub Area

Area Monitor

Area Monitor

 

Figure 6: Architecture of a Static Decentralized Monitoring Mechanism. 

Thus, in this research project, the use of decentralized and flexible multi-agent based network 

architecture to monitor and manage rural broadband networks adaptively and efficiently is 

proposed. A decentralized monitoring mechanism is whereby monitoring functions are 

dynamically introduced at the node level when and where they are required. This research 

proposes a system that implements a multi-agent system functionality/idea by deploying agents 

on network devices and performs network management goals based on the network rules and 

agent goals specified. In the proposed research, each mobile agent will be generally designed to 

reside on agent-executable nodes in a network, sense the state of a network device, process the 

received management information and therefore execute the predefined goals to the network 

device. 

The decentralized monitoring mechanism has been widely used for large scale, high-speed and 

distributed networks [15]. The use of agents to monitor and manage these systems has proved to 



 

 

17 

be reliable over traditional management mechanisms.  

 

Figure 7: General Architecture of a Decentralized Monitoring Mechanism.    

The key advantage of a decentralized management approach, Figure 7, is that it runs as a 

distributed process instead of a centralized process. As such, it has the potential to satisfy most of 

the above-mentioned challenges facing rural networks. This system will be fully based on multi-

agents, as they have proved to be efficient and effective due to their ability to be autonomous and 

goal driven [16]. 

2.3.1. Comparison of Static Network Management Systems 

 To date, there are a large number of traditional network management systems. This section will 

compare some of the common systems that exist and discuss their core features and capabilities. 

This section will conclude by discussing the major features that the proposed system desires to 

include as its features. 



 

 

18 

2.3.1.1. OpenNMS 

OpenNMS is one of the oldest open source network management systems. It is a Linux package 

built on Java, Tomcat, PostgreSQL and RRD Tool [17]. OpenNMS is a platform independent 

NMS that has the ability to manage thousands of devices and show the network statistics in a 

web-interface. This system provides support for IPv6 throughout, automatic network/node 

discovery, and event management and notification features [17]. OpenNMS offers integration 

features such as integration with HypericHQ NMS and JBoss Drools Expert for event correlation 

and SNMP protocol and JMX technology [18].  

2.3.1.2. OpManager 

This is a commercial NMS that is managed via a Web Graphical User Interface (GUI) that runs 

on Windows machine. OpManager is a full NMS that offers advanced combination of Wide Are 

Network (WAN), Server, Application monitoring with integrated help desk, asset management 

and WAN traffic analysis functionality [19]. Further, OpManager offers an easy-to-use interface 

that lets a network administrator to specify network policies across multiple devices efficiently. 

This NMS presents an advanced performance management for critical network resources such as 

WAN links, firewalls, routers, switches, VoIP call paths and other network infrastructure devices 

[20]. Figure 8 shows a static decentralized approach of monitoring whereby the probes gather 

information and send it to the central server for processing and decision-making [20]. These 

probes are dedicated managers located in sub-networks. 



 

 

19 

 

Figure 8: Probe-Central Architecture of OpManager [20]. 

2.3.1.3. Nagios 

Nagios is one of the most widely implemented open source NMS and allows to gather network 

performance and availability information from any platform. Even though its GUI is carelessly 

designed, the installation of Nagios is straightforward and it complements Linux proven 

standards. One identified drawback of Nagios is that, it requires someone who is familiar with 

Linux operating system because when adding a new device in the network it needs one to 

manually edit configuration files from Linux operating system [21]. This makes it difficult for 

real world Internet Technology (IT) organization to use it for their network management task. 

Nagios agents help to spot problems before they occur; they immediately know when problem 

occurs and easily detect security breaches [22].  

 



 

 

20 

2.3.1.4. Hyperic HQ 

Hyperic HQ is a NMS completely written in Java and is deployed on JBoss Application Server. 

This NMS is mostly used for discovery purposes, such as device vendors, Central Processing 

Unit (CPU) states, hard disk memory and running application as well as network states [23]. 

Hyperic HQ can easily be integrated with OpenNMS; it is used as discovery application that 

views alerts and notifications through a configurable web portal.  This NMS comes in two 

editions, Enterprise Edition and Open Source Edition. The enterprise edition is developed for 

large-scale companies who run critical web applications and systems. And the open source 

edition is developed to provide all basic management facilities for web applications and IT 

infrastructures. 

 

Figure 9: Provisioning HQ Server in OpenNMS [18]. 

Figure 9 shows a sample of integration of Hyperic HQ in OpenNMS and it also supports the 

monitoring service of HQ itself and its called HypericHQ [18].  

2.3.1.5. GroundWork Monitor 

GroundWork Monitor is a NMS used to monitor enterprise business applications on premises or 

in the cloud [24]. This NMS can easily be integrated with some management tools, such as Cacti 

and Nagios, and Network Mapper (NMAP). GroundWork Monitor has two editions, the 

enterprise edition and the open source edition. Both these editions have Web GUI that does not 



 

 

21 

conform to marketing claims in terms of usability. 

 

Figure 10: Three-Tiered Architecture of GroundWork Monitor Enterprise Server [24]. 

Figure 10 depicts a three-tiered architecture of GroundWork offered in the enterprise edition. 

The Instrumental tier is responsible for data gathering that is basically done by Cacti and Nagios. 

The Normalization tier is in charge of storing the data gathered in a normalized structure and 

present it to the Portal tier through web services. The tier that is used for visualization of graphs, 

network performance data, network status and real-time display of events is the Portal tier [24].  

2.3.1.6. Argus 

Argus monitoring system, Figure 11, is entirely developed in Perl and is a platform independent 

NMS [25]. Argus is developed to monitor network status and hardware devices on a network 

through a web-based interface. Argus is an open source NMS and its web interface is easy to 



 

 

22 

use, it provides a basic alerting interface whereby, red color points to an error and yellow color 

refers to good functionality of a network. Argus provides support for both IPv4 and IPv6 and can 

manage thousands of network devices. This NMS handles MySQL requests easily and presents 

the results in a graphical user interface [25]. 

 

Figure 11: Argus Design [25]. 

2.3.1.7. Cacti 

Cacti is a cross platform NMS that is written PHP and PL/SQL and uses RRDtool for the 

network graphing solutions [26]. Cacti software provides a usable web interface that graphs 

network resource utilization, CPU states and network traffic. Cacti software supports the ability 

to retrieve network data using SNMP through PHP scripts that are used to update RRD files. 

This software allows an executive administrator to create different levels of user permissions for 

other administrators through its interface [26]. 



 

 

23 

 

2.3.1.8. SNMPc 

SNMPc is the first Windows based NMS that has a support for IPv6 and secure SNMPv3. This 

NMS has device limit of 25000 and provides both local and remote access using a remote 

console application from any Windows machine using a local and remote TCP/IP connection 

[27]. SNMPc is a commercial, secure distributed NMS that allows real-time network monitoring. 

SNMPc software supports the automatic layout of a network map in a hierarchal form and each 

map object (network device) can be selected to view the object current state. This graphical 

network map is called Map Navigation Tool Window and allows users to zoom in/out to view a 

set of devices [27]. 

2.3.1.9. NetXMS 

NetXMS is an open source network management and monitoring system with the core server 

running on Windows or Linux. Compared with other NMS servers, NetXMS has the largest 

database server that embeds MS SQL, IngreSQL, MySQL, Oracle and SQLite. NetXMS offers 

complete network management and monitoring with graphing of network infrastructure [28]. 

NetXMS has a separate web interface that helps the network administrator to easily add new 

devices and configure network changes and a different web interface for basic web browsing. 

This NMS has dedicated agents for node discovery, alerting and reporting network errors. With 

the support of large database, it would make it easy for a network administrator to grow a 

network if need be [28]. 



 

 

24 

 

Figure 12: NetXMS Management Console [28]. 

Figure 12 shows a graphical user interface of NetXMS with graph representation of average CPU 

times and network statistics.  

2.3.2. NMS Comparison 

Table 1 depicts the comparisons of the traditional NMSs based on the following features and 

capabilities: 

 Auto-discovery: ability for the system to automatically determine added network devices 

 Trends: ability for the system to show network statistics over time 

 Distributed monitoring: system that offers multiple servers to distribute the load of 

network monitoring 



 

 

25 

 Inventory: ability for the system to keep records about network device hardware and 

software information and network user’s information 

 Platform: a necessary requirement for the system to be installed on 

 Data storage method: method used to store network and user information it monitors 

 Triggers or alerts: ability for the system to detect when thresholds are reached thereby 

alerting network operator  

 Agentless: the reliability of the system on agents to monitor network nodes and sending 

back and forth to the central server   

 Maps: graphical representation of the network devices and the links between them 

 Access control: an administrator should be able to define access to certain parts of the 

system as per-user or per-role basis 

 Web application: a system that offers network statistics in web-based front end, allows 

the viewing of notifications and also allowing a full control of notification maintenance 

through the web-based front end 

 

 



 

 

26 

Table 1: NMS Comparison. 

Feature Open 

NMS 

Op 

Manager 

Nagios Hyperic 

HQ 

Argus Cacti NetXMS SNMPc 

Auto 

Discovery 

X X  X   X X 

Trends X X X X X X X  

Distributed 

Monitoring 

X X X  X X X X 

Inventory X   X  X   

Platform Java Java C, 

PHP 

Java Perl PHP C++ Java 

Data 

Storage 

Method 

JRobin, 

Postgre 

SQL 

MS SQL, 

MySQL 

Flat 

File, 

SQL 

Oracle, 

MySQL, 

Postgre 

SQL 

Flat File, 

Berkeley 

DB 

MySQL, 

RRDTool 

MySQL, 

MS 

SQL, 

Oracle 

MIB 



 

 

27 

Triggers/ 

Alerts 

X X X X X X X X 

Agentless    X X X  X 

Maps X X X X   X X 

Access 

Control 

X  X X X X X X 

Web App X X X X X X X X 

Trending is the ability of the NMS to provide network data over a period of time. Distributed 

monitoring refers to the ability of an NMS to distribute the load of network monitoring to one or 

more servers. Agentless states that the NMS does not have an agent that resides on managed 

devices to send the monitoring data to the central server. From the comparison in Table 1 all the 

NMSs support web based interface and a system that send alerts to the administrator. According 

to Table 1, few NMSs support the inventory of storing hardware and software information of 

managed devices and some support the auto-discovery of network devices. 

From the analysis of the features and capabilities of the NMSs profiled above, the following 

common NMS functions were extracted: 

 Data storage and analysis of network statistics; 



 

 

28 

 Inventory of managed network devices to store their hardware and software information; 

 Web or graphical user interface to view network statistics; 

 Event management and alert notification tool; and 

 NMS that can operate in any network device regardless of the underlying platform. 

2.4. Multi-Agent based Network Management Systems 

The technology of MAS in managing networks has in recent years drawn many researchers’ 

attention. There is a significant number of noteworthy research carried out on software agents for 

network management [29]. Most of these projects have focused on large-scale networks, 

distributed networks, complex modern technology systems such as WANs and heterogeneous 

networks. For example, ExperNet is a multi-agent based network management system that was 

developed to manage a WAN in Ukraine [30]. ExperNet assisted network administrators to 

quickly identify errors and suggest solutions through a Web GUI. The implementation of this 

system was based on SNMPv2, which made it easily applicable to any network. This system is 

made of software agents that are capable of both local problem solving and social 

communication among them for synchronizing problem analysis and repair. For the 

implementation of the agents, distributed Prolog Ⅱ  system enhanced with networking 

capabilities was used. ExperNet has been developed, installed and tested successfully in an 

experimental network in Ukraine [30]. The hierarchical architecture of ExperNet shows that the 

system was developed with many networking modules to provide robustness and adequate 

performance.  It used DEVICE which is a knowledge base system, Big Brother a host-

monitoring tool, HNMS+ a network-monitoring tool with many user interfaces between them 

[30]. 

 In 2000 Marcus assessed the significance of mobile agents by developing simple prototype 

applications, from design to implementation and testing, using both a ‘Traditional’ 



 

 

29 

client/server based approach and by utilizing a mobile agent architecture [31]. He used Java to 

develop a mobile agent oriented application that is similar to the prototype application. 

In 2003 Maj et al. developed a system that dynamically reconfigured a network using software 

agents [32]. Network Reconfiguration includes routing changes as well as constructing new and 

removing inactive links between network nodes. In 1998 Kim et al. investigated the use of 

Artificial Intelligence techniques to manage large-scale high-speed networks [16]. They 

developed a network management system that efficiently and effectively monitored and 

controlled network resources in a large network. The system was called ExNet and provided a 

web interface to view network statistics and expert systems’ recommended actions. Kim et al 

implemented a rule-based prototype of ExNet and the incorporated ExNet modules with IBM 

NetView network management system. NetView is the program offers real time monitoring and 

active testing on servers supported by SNMP [33]. [34] Kim et al proposed a network monitoring 

mechanism that is based on flow management to efficiently manage a large network in real time. 

They argued that the mechanism can efficiently detect Denial of Service (DoS) attacks, port 

scans and worm propagation based on simulation with the network traffic. In 2003, Lefebvre et 

al presented a framework based on mobile agents that managed heterogeneous networks [35]. 

Even though their project focused on the framework, they also presented an example of mobile 

agents that are able to locate a fixed set of network failures and detect the possible cause of the 

failure accurately. Their experimental results showed that mobile agents could easily execute 

some network management tasks. 

In 2010, Mitrovic et al investigated a solution to improve multi-agent systems to be fault tolerant 

by introducing types of mobile agents, ConnectionAgent and RemnantAgent. RemnantAgent was 

built to track the path of agents and ConnectionAgent was developed to build and maintain 

reliable networks of dispersed multi-agent systems with both these agents being capable of an 

easy integration with any multi-agent system [36]. Every network administrator would want to 

experience a management system that is self-healing and easily monitor a newly configured 

device according to organizational policies and standards. In 2004, Tripathi et al. presented a 



 

 

30 

multi-agent based NMS that simply detects any malfunction of a network and provides 

mechanisms for self-recovery should there be failing network components [37]. This multi-agent 

based NMS was developed for large-scale network and was named as the Konark monitoring 

system. The Konark NMS was implemented using Ajanta framework that provides three main 

components; Agent, Agent Server and Agent Registry. One of the most important features of 

network management system is to be able to manage available network resource effectively. 

Marzo et al have presented a distributed design for managing network resources effectively. The 

architecture of bandwidth management task showed how the bandwidth re-allocation and re-

routing of logical paths from logical work path to a backup path happened [38]. This system used 

fixed and distributed software agents over the managed network devices; they argued that their 

system was meant for backbone and core networks and did not find a reason to use mobile 

agents. They also argued that backbone and core networks have high bandwidth and are more 

reliable hence it was not valuable to add the complexity of mobile agents [38]. 

The most significant issue about these dynamic management systems is that, they all focus on 

large-scale networks with minor differences in the language used to develop a system or rule 

engines used for knowledge processing and decision making and types of the Agent framework 

used. Their intention is courageous and has proven to be reliable, but the service these systems 

provide to large-scale networks and the challenges faced by the rural networks, leads to the view 

that it makes perfect sense that the dynamic management and monitoring mechanism be used in 

SLL. The next section discusses the agent development approaches based on mobile code. 

2.5. Approaches Based on Mobile Code 

There are three types of Mobile Code for network management namely: Code on Demand, 

Remote Evaluation and Mobile Agents. These approaches have existed for a long time and 

provide advantages over the client/server architectures, thereby eliminating limitations that come 

the with client/server approach [39].  The advantages and limitations of each of these approaches 

are as follows: 



 

 

31 

2.5.1. Use of Code on Demand 

This approach implies that agents be developed in a manner that they only have 

minimal/necessary functions. It is based on a theory that, not every network node requires the 

same management functions. Therefore, when a node requires some special functions that are not 

provided by an agent code, this function will be downloaded from a central server/code server 

and be dynamically introduced to an appropriate node. This approach claims that it is not 

necessary to statically include all the management functions on an agent because it leads to a 

waste of resources[39]. 

2.5.2. Use of Remote Evaluation 

Remote Evaluation is different from the Code on Demand approach in the sense that it does not 

use agents as managing entities although the NMS has a dedicated piece of codes to perform 

management functions when needed. When a network node has a request, the NMS sends a piece 

of code/develops it, and then sends it to the node to perform the requested task. This issue 

addresses the problem of bandwidth wastage that comes with the central NMS, because it only 

sends a piece of code that has the management function when needed. In a centralized NMS, the 

management functions are done on site by transferring variables involved to a specified node. In 

this system, the NMS uses a polling approach to constantly check on a network performance on a 

specified time interval. Therefore, the higher the number of requests of variables involved, the 

larger the amount of bandwidth occupied on the network. This approach proposes that the 

network management function should be operated directly on the device, only when needed [39].   

2.5.3. Use of Mobile Agents   

In the above-mentioned approaches, the central server is always involved one way or another 

where the execution of management functions is required. With mobile agents, the network 

management function is different and adds a level of autonomous and intelligence approach to 

managing network resources. In this approach, the network monitoring and management tasks 



 

 

32 

and network policies are explicitly specified to an agent. This allows network management to be 

a delegated process because these agents have knowledge of what to do when an error/failure 

occurs. Mobile agents support asynchronous communication and this is beneficial to rural 

networks where there are unreliable links between the managed nodes and the central server. The 

following section describes the benefits of mobile agents in network monitoring and 

management [39].  

2.6. Benefits of Multi-Agents in Network Management 

This section discusses the main benefits of software agents for network management as 

compared to client/server model. Client/server model has been around for a very long time and 

there are network infrastructures where this model suits the management function. However, 

when the network infrastructure faces challenges such as experience on rural networks (e.g. 

having intermittent energy supply and power problems, distributed over a geographical area, and 

growing and expanding increasingly) this model needs to be reconfigured manually. When one 

failure occurs on the central device, all the managed devices experience a disruption. The MAS 

paradigm supports the decentralized management functions at a node level to ensure high QoS 

and self-recovery. MASs have their own requirements for execution and these include: 

 Agent Execution Support - platform that allows agents to operate and provide basic agent 

services; 

 Management Support - means to manage agents in the agent platform for example 

start/stop agents, pause/resume agents tasks, kill/create new agents; 

 Security Support - agent platform must secure agent communications and system agents 

from external intruders; 

 Mobility Support - if agents are to migrate around their environment, the agent platform 



 

 

33 

must provide methods for their movement; 

 Unique Identification (UID) of Agents - in an agent society there is a need to uniquely 

identify agents of the same type; and  

 Communication Support - if agents are to collaborate or compete, they have to know how 

to communicate so they achieve their main goal. 

MASs have the ability to reduce latency because they lower delay times by processing node 

requests efficiently. MASs are capable of having asynchronous communication and operation 

with their master agent/server computer. Software agents need not communicate with the server 

side computer after deployment. Therefore, even if the server is shut down or the network 

between them is disconnected, they will still carry on with their computation. One of the aims of 

utilizing MASs is to reduce bandwidth utilization. This can be achieved by installing agents 

directly on network devices, rather than constantly sending requests back and forth over the 

network. This is based on the theory that these requests would use more bandwidth than placing 

an agent on a node plus the communication amongst them. To provide maximum throughput and 

minimize response times, MASs provide a mechanism for load balancing. This is achieved by 

the idea that agents are able to track their path of execution and their ability not only to learn 

about their environment but can repeat the steps that would avoid overload [40]. Dynamic 

deployment of software agents is useful so that they can take their own decision when they arrive 

at a destination of execution [41].  



 

 

34 

 

Figure 13: Reduced Agent communication [41]. 

Figure 13 shows the difference between the client/server agent-based architecture and how 

agents reside on the network thereby having minimal communication with the agent platform. 

2.7. Application Domain of Multi-Agents 

                                                                                                                                                                                                                               

Multi-agent systems have been of great interest since the early 1980s and increasingly cover a 

wide range of domains [42]. MASs are mostly used for data collection, searching, filtering, 

monitoring and negotiating, entertainment and information dissemination, among other 

applications differing by domain services. 



 

 

35 

 

 

Figure 14: MASs with other disciplines [43]. 

MASs encompasses a wide range of fields. From Figure 14, agents assist in e-Learning in which 

they act as a peer-learning tool in giving advice and participate in simulation.  MASs can also act 

as a negotiating tool in trade markets through the facilitation of the sell-and-buy method, taking 

decisions based on a wide range of variables, and making and cancelling orders. These systems 

are used in real world systems such as electricity distribution systems, transportation systems, e-

commerce, Human-Computer Interaction (HCI) and game theory [44].  

2.8.   Artificial Intelligence Rule Engines 

A Rule Engine or Inference Engine is a program that has a capability to make expert systems to 

reason about the information in the knowledge-base for decision making [45]. A rule engine has 

three main components[45]: 



 

 

36 

 Ontology-presentation framework of concepts in the world and their relationships; 

 Rules-to perform the reasoning and facilitate the decision making process; and 

 Data-working memory that consists of facts about the environment of execution. 

The basic function of a rule engine is to match facts and data with the rules provided by a system 

developer to perform conclusions consequently taking actions. For example: 

 

The rule engine is responsible for matching existing or new facts against the rules and this 

process is called pattern matching. Figure 15 shows a high level view of processes that occur in a 

system that uses the rule engine. 

 

Figure 15: High-Level Architecture of an Inference Engine. 



 

 

37 

The rules are stored in the production memory and the facts are stored in the working memory, 

and these facts can change. When there is a large number of rules and facts, there is a need for 

Agenda. An Agenda is used to solve any conflicting rules using a Conflict Resolution strategy. 

In the next sections I discuss some of rule engines used to develop reasoning expert systems. 

2.8.1. OpenRules 

OpenRules is an open source rule-based development AI engine that has Java & .Net integration. 

It supports collaborative rules management. OpenRules offer the following functions [46]: 

 Rule Repository – for management of enterprise-level decision rules; 

 Rule Engine – for rule execution; 

 Rule Learner – for rule discovery and predictive analytics; 

 Rule Solver – for solving constant satisfaction and optimization problems; 

 Finite State Machine (FSM) – for event processing and collecting the dots; and 

 Rules Dialog – for building rule-based web questionnaire. 

OpenRules consist of decisions, decision table (i.e. if-then condition); glossary for decision 

variables; data that specifies concrete test instances; method specification that is on Microsoft 

(MS) Excel or Java based and environmental variables (i.e. imports). 

2.8.2. Jess 

Java Expert System Shell (Jess) is a rule engine that is both an open source for academics and the 

license is also available as commercial software for enterprise companies or individual purposes 

[47]. Jess uses a forward-chain method with enhanced version of the Rete algorithm to process 



 

 

38 

the rules. Rete algorithm is a mechanism for solving difficult many-to-many matching problems 

[47]. Jess is a scripting language that allows users to develop expert systems that have the 

capability to reason using the knowledge supplied in the declarative form and gives developers 

full access to all Java Application Programming Interfaces (APIs). Jess has its own declarative 

language called Jess Markup Language (JessML). JessML allows users to define the rules as 

well as defining and calling methods. This support of an Extensible Markup Language (XML)-

based rule language makes it easier to transform other XML languages to Jess and vice versa.  

2.8.3. Prolog’s Inference Engine 

Prolog has a built-in backward chaining rule engine that can be used to partially implement some 

expert systems [48]. Prolog inference is used to derive conclusions from the knowledge provided 

as rules in prolog language. Prolog’s Inference Engine format [48]: 

 

Using the normal IF THEN format, this rule is [49]: 

 

Prolog’s rule engine starts from the conclusions that will be drawn to the rule, meaning it uses a 

backward-chain method. The advantage of a backward-chain method is that, it easily solves the 

structured selection type problems. The shutdown system example is based on information that 

might be absolutely false or true, therefore, the rule engine has to be certain and only trigger the 

shutdown command of the system only when the user has exceeded 8 hours [49].  



 

 

39 

2.8.4. Drools JBoss Rules 

Drools JBoss Rule is a declarative, rule-based engine that is based on Drools; it uses a forward 

chaining method enhanced with Rete algorithm. JBoss Rule allows developers to focus on stating 

only the goals of an expert system and not on how to achieve them. JBoss Rule is a declarative 

rule engine that is easily written in Java, MVFLEX Expression Language (MVEL), Python and 

Groovy. JBoss Rule is a declarative rule engine that is easily written in Java, MVEL, Python and 

Groovy, for: 

 

 

2.9. Elements of an Agent Platform 

The main element of a mobile agent platform is an agent execution environment that provides 

the fundamental platform-level services and must always be active on the system before agents 

can be executed. The aim of an agent execution environment is to facilitate the instantiation, 

retrieval and dispatch of agents [50]. It also acts as an interface between incoming multi-agents 

and the fundamental system resources and offers a set of services required by the multi-agents to 

perform their distributed functions. Multi-agents consist of three basic parts: the code that 

defines the functionality of a multi-agent system; data that is the constant state of an agent and 

the thread of execution. Agents are generally designed to reside on devices or move within their 

environment of execution so they can directly invoke changes on the network devices they are 

installed on. The agent platform provides two forms of migration for each agent, the strong 

mobility and weak mobility [51]. Strong mobility enables the transfer of all three parts on every 



 

 

40 

agent migration and weak mobility is whereby there is a transfer of only the code plus the state 

of information [51].  

2.10.1 Elements of JADE Agent Platform 

This section briefly discusses the elements of Java Agent DEvelopment framework (JADE) and 

Figure 16 shows the general JADE agent platform architecture. The JADE agent platform offers 

fault tolerant service, agent directory and location service, security service, AMS and 

communication service. Fault tolerant service ensures that agents are able to move around their 

environment reliably and their state of information is not lost when there is a system or network 

failure [50]. 

Agent Platform

Directory 

Service

Location 

Service

Agent 

Management 

Service

Agent Communication Service

Agent

 

Figure 16: General Agent Platform Architecture [43]. 

Agent directory allows agents to know the existence of other agents and their services. Agent 

location service allows agents to track their coordinates and to track the location of information 

to update or perform certain tasks. In a system that is connected via the network, there is need for 

providing solutions for security issues such as authentication and authorization. JADE agent 



 

 

41 

platform offers a service to ensure integrity, confidentiality, authentication and access control of 

the system hosts and users. AMS is an agent (master agent) that has control over all agents’ 

access to and use of the agents in the platform. All agents are registered to the AMS and are 

assigned unique Agent Identifier (AID). This platform also offers communication service for 

agents inside the platform and platform agents with external agent platforms. This 

communication service is facilitated by exchanging messages via the Message Transport 

Protocol (MTP) and uses FIPA Agent Communication Language (ACL). 

2.10. Multi-Agent Programming Languages and Platforms 

There are a number of languages that agents use to communicate with one another, namely: 

Knowledge and Query Manipulation Language (KQML), FIPA-ACL, ARMITIS 

COmmunication Language (ARCOL), Knowledge Interchange Format (KIF) and Domain 

independent COOrdination Language (COOL) [52]. KQML is a language and a protocol that 

enables agent application to communicate together. KQML uses speech-act which defines a set 

of communication actions such as reply, tell, un-still, sorry and deny [52]. FIPA-ACL is a 

standard language for agent communication; it also relies on speech-act performative. FIPA 

standards set how these agents should communicate together [43]. ARCOL is an agent 

communication language used in ARTIMIS agent technology developed by France Telecom 

[53]. COOL is an agent communication language that uses speech-act performative. COOL 

allows system developers to identify agents and manage the communication between agents [54]. 

The emergence of MAS has led to the development of programming languages and platforms 

that are suitable for the implementation of these expert systems. For every relevant programming 

language of MASs, here are the few basic requirements that each language must possess [55]: 

 Support of delegation at the level of goals-agents is designed in such a manner that does 

not define what to do but they are given specific goals and not providing a method on 

how to reach those goals; 



 

 

42 

  The language should provide support for goal-directed problem solving. Agents should 

be able to act to achieve the delegated goals; 

 The language should lend itself to the production of systems that are responsive to their 

environment; 

 The language should cleanly integrate goal-directed and responsive behavior; and 

 The language should support knowledge-level communication and cooperation. 

 MAS programming languages are classified into three categories [55]: 

 Declarative Style Agent-Oriented Programming Languages is a programming paradigm 

that describes what requires to be done, rather than describing how to achieve it. 

Computational Language for Autonomous Intelligent and Mobile Agents (CLAIM), 

FLUX, MINERVA, DALI and ReSpecT are declarative languages that are reviewed in 

this section. CLAIM is high-level programming language for mobile agents that uses 

Himalaya framework [56]. CLAIM allows the development of mobile agents distributed 

over a network because it supports the migration of agents in an encrypted and persistent 

state to their destination [57]. FLUX is a programming language for agents that reason 

logically about their actions on the basis of Fluent Calculus [58]. FLUX has a method of 

sensing incomplete knowledge base information. MINERVA is a logic programming 

language that consists of several specialized agents, performing various functions while 

using and manipulating a common knowledge base [56].  

 Imperative Style Agent-Oriented Programming Languages is a programming paradigm 

that explicitly describes implementation algorithm commands to a program to perform. 

JADE is imperative [55]. 



 

 

43 

 Hybrid Style Agent-Oriented Programming Languages is a programming paradigm that 

specifies dependencies in a declaratives manner but includes an imperative list of actions 

to take as well. Practical Agent Programming Language (3APL) and Abstract Agent 

Programming Language (2APL) are the two examples of Hybrid Style programming 

languages [55].  

2.11. Conclusion 

This chapter reviewed network management by making use of MASs, and in all the related work 

reviewed, none of them shows the use MASs in rural networks. With all the advantages of MASs 

for networking monitoring and management, there is little work that has been done in rural areas. 

There is a decent motive that MASs can address a lot of rural network challenges mentioned in 

this chapter. In the next Chapter, the system design of the next MAS based network management 

tool for SLL will be presented. 



 

 

44 

3. Requirements Analysis and Design 

This chapter describes the different types of agent development methodologies and an analysis of 

the identified research methodologies. It also takes advantage of the literature review in Chapter 

2 and specifies the system requirements. Before the chapter concludes, it outlines the system 

architecture and discusses the system operation.  

3.1. Introduction  

Developing a Multi-Agent based system requires many technologies to be combined effectively 

to produce one working system. This chapter discusses how these technologies are used to 

design the system. It also specifies the requirements of the system (user, system and project 

requirements) and reveals the low level architecture of the system. Each agent will generally be 

designed to reside on a network node; this agent will monitor the healthiness of a node and 

perform management functions and recovery tasks. If an agent finds unexpected operation 

situations, it is allowed to communicate with adjacent agents, which will activate the appropriate 

recovery strategies. But most management and recovery decisions will be performed locally to 

prevent the transmission of a large amount of data to the master agent. The next section discusses 

the researcher’s preferred methodology with the developmental model of the system. 

3.2. Research Methodology 

This research integrates two fields of study namely computer network management and artificial 

intelligence. There is a great need to investigate how they are used together to achieve network 

management goal based on intelligent agents. The proposed research follows the Knowledge 

Engineering (KE) methodology and iterative development model for system implementation. To 

develop a knowledge-based system, this research follows the methodology described below: 



 

 

45 

 Literature Survey - to acquire and get better understanding of software agents in 

network management, a detailed literature about the related research was done. This was 

done through the review of published work, related books and articles; site visits to the 

SLL were conducted and observations undertaken in an attempt to identify the research 

problems, motivation, customize the idea and to scale the scope of this research. Detailed 

literature review on how tradition network management system work and operate was 

done. The agent languages, platforms and rule engines were reviewed thoroughly to 

inform the choice of the implementation technologies. A thorough investigation on MAS 

based network management systems with their methodologies was done as well.  

 Requirements Elicitation - the system requirements were specified after critically 

reviewing related research topics and undertaking observations at the SLL site. These 

requirements include functional and non-functional requirements and are discussed in 

later sections. 

 Analysis and Design - the system design was done after analyzing the required 

technologies and how they will be used together. The literature provided strategies on 

how to plan and develop a network management tool based software agents.  

 Implementation - the system was implemented in prototypes with the technologies 

specified in the literature survey. The technologies used in the implementation of this 

system are: Java, JADE framework, JESS scripting language, Jpcap library, Hyperic-

Sigar library to build an OS independent system. Figure 17 shows the incremental 

development model followed in the system implementation. 



 

 

46 

 

Figure 17: Iterative Development Model for the System Development. 

 Testing and Evaluation – the implemented system was tested and validated for 

compliance to the system requirements and for suitability of providing a network 

management function in marginalized rural areas. 

3.3. Agent Development Methodologies 

 To develop a multi-agent based system, there are standards that have to be followed. This 

section reviews the current methodologies for the development of an agent-based system. While 

there are many methods of agent development, they differ in terms of agent theory, language 

used, suitable rule engine, knowledge acquisition and agent architectures. Another factor that 

distinguishes these methods is the domain of applicability of the methods. Most researchers no 

longer develop these methods from the point of inception but find ways to extend the existing 



 

 

47 

methods [59]. The two methodologies that this section will cover are: Extensions of Object-

Oriented and Knowledge Engineering Methodologies. 

3.3.1. Object-Oriented Methodology 

The Object-Oriented Methodology (OOM) is a proven methodology for high-quality object-

oriented systems. It involves three stages: 1) specification of system requirements such as 

functional and non- functional requirements; 2) conversion of the system design into interfaces, 

classes and method description; and 3) the implementation of a system using object-oriented 

programming languages such as C++, Java, Eiffel, Python, and Common Lisp Object System  

(CLOS). The adoption of this methodology would typically end-up in mismatches due to the fact 

that it uses classes, objects and the client-servers paradigm. One example of OOM is the Agent-

Oriented methodology which is the process of explicitly specifying system requirements without 

any reference to implementation details and a thorough explanation of how the system will 

achieve the specified requirements [60]. This methodology consists of two stages: 1) The 

Analysis stage, in which the system developer collects and integrates the system requirements 

which include, but are not limited to functional requirements, non-function requirements, data 

requirements, system interface requirements and physical requirements; and 2) the Design phase, 

in which the system developer designs the system to satisfy the specified system requirements.  

Agent-Oriented paradigm employs message passing for communication and can use inheritance 

and aggregation for defining its design. The advantage of the Agent-Oriented method is the 

constrained type of messages and the classification of a state in the agent based on its beliefs, 

desires and intentions [59]. Agent-Oriented methodology introduces the organization of system 

process like roles, organization, responsibilities, beliefs, desires and intentions. The Agent-Based 

analysis aims at establishing what the main actors interacting with the system are and how the 

system interacts with other actors. Further, the analysis seeks to identify what the system is 

supposed to do. This method associates agents with the system entities according to roles, 

responsibilities and capabilities with the interactions between them. With the analysis of Agent-

Oriented Programming, the system developer has to choose which agents to use and how they 



 

 

48 

interact. There are few Agent-Oriented methodologies and techniques to develop MASs to date 

and they differ in how they intend to develop the MAS and sometimes they are complementary 

[61]. Agent-Oriented Methodologies include Gaia, TROPOS, Prometheus, ADELFE, 

MESSAGE and PASSI methods. 

The Gaia methodology allows system developers to easily design a system directly from the 

defined system requirements. This is the first complete methodology for the analysis and design 

of MASs and supports the specification of models of the system that are derived from the 

analysis and design process [62]. The Gaia methodology supports the structure of an agent and 

the agent environment of execution in the MAS development process. It views the MASs as a 

system that is made-up of interactive autonomous agents that operate in an organized 

environment whereby each agent has one or more specific goals. The models defined from the 

analysis and design process are used to identify roles that agents have to play within the system 

and the communication protocol between the different roles [63]. Figure 18 shows the 

relationships between models of Gaia methodology [64]. The Gaia analysis stage consists of role 

definition that identifies the key roles in the system and interaction model that consists of 

protocol definition. And the design stage consists of an agent model to identify agent types that 

will be used in the system under development, service model (input, output, and pre and post 

condition) to identify services associated with each agent role and acquaintance model for the 

specification of communication links that exist between agent types [64]. For this reason, Gaia 

methodology does not deal with the system requirement stage; requirement-capturing stage is 

considered as an independent of the paradigm used for analysis [61]. 



 

 

49 

 

Figure 18: Models of Gaia Methodology [64]. 

TROPOS is an Agent-Oriented methodology that encompasses the entire software development 

life cycle. TROPOS is a model-driven methodology that supports belief, desire and intension 

reasoning mechanism to develop agents. TROPOS, unlike the Gaia methodology, uses a top-

down development perspective and supports verification and validation of the development of 

models and specifications. TROPOS defines two main levels; first, it uses belief, plans and goals 

reasoning approach throughout the system development life cycle. Second, TROPOS supports 

the analysis of system requirements in the early stages of the development life cycle, to allow for 

a thorough understanding of the execution environment of the system. One of the limitations of 

TROPOS is that it has been fully adopted to develop MASs and lacked the technology that 

supports the transition between different system development life cycle stages [65]. 

ADELFE is an Agent-Oriented methodology that uses a top-down development perspective to 

create adaptive agent architecture. ADELFE guides a system developer in creating adaptive 

agents through an AMAS theory [66]. The AMAS theory offers a solution to build agents that 

are going to adapt to their environment of execution. This theory does not support the solution 



 

 

50 

offered by traditional methodologies [66]. ADELFE methodology is not a general methodology 

like Gaia and TROPOS; it supports systems that are open and complex [67]. 

Prometheus is an Agent-Oriented methodology that supports iterative development lifecycle 

through analysis, design and implementation stages. It uses a bottom-up development 

perspective across system development stages. This methodology supports design of agents that 

are based on beliefs, intention and require reasoning techniques [68]. System Specification is a 

stage where the system requirements are explicitly explained using goals (sub-goals) and use 

case scenarios, Table 2 [68]. 

Table 2: The Major Models of Prometheus Methodology [68]. 

Development Stage Dynamic Models Structural Overview 

Models 

Entity Descriptors 

System Specification Scenarios Goals Functionalities, 

Actions and percepts 

Architectural Design (Interaction diagrams) 

Interaction protocols 

(Coupling diagrams) 

(Agent acquaintance) 

System Overview 

Agent Overview 



 

 

51 

Detailed Design Process Diagrams Agent overview 

Capability overview 

Capabilities 

Plans, Data, Events 

Architectural Design is a stage where the system developer states the agent types and captures 

the overall structure of the system. Thereafter, the system developer defines each agent’s role to 

the overall system by defining its capabilities, data, events and plans in process diagrams [68]. 

3.3.2. Knowledge Engineering Methodology 

The KE Methodology uses an art to acquire knowledge from experts of a specific field to design 

and develop expert systems [69]. This methodology uses a fundamental technique of 

interviewing experts, or observing a human/group of experts and study what the experts know 

and how they reason with their knowledge. The KE methodology includes three key actions 

through its iterative development life cycle: 

 Knowledge Acquisition-allows the expert to enter their knowledge into expert system and 

allows them to refine later when required [69]. This processed is made of three key 

stages: knowledge specification, intermediate representation and executable form 

whereby the intermediate knowledge is presented as rules to the inference engine. Figure 

19 shows these stages in system development lifecycle. This is the most challenging stage 

of KE methodology because a developer has to interview the relevant experts for the 

proposed system [69].  

Knowledge Analysis and Modeling-before the raw data and information that have been captured 

can be usable; it needs to be transformed to knowledge and this stage deals with that [70].  



 

 

52 

Identify 

Problem 

Characteris

tics

Knowledge 

Representation

Knowledge 

Organization

Formulate 

Rule

Validate 

Rules

R
eq

u
ir

em
en

ts

C
o

n
ce

p
ts

S
tr

u
ct

u
re

R
u

le
s

Identification

Conceptualization

Formalization

Implementation

Testing

Refinements

Redesigns

Reformulations

 

Figure 19: Stages of Knowledge Acquisition (adapted from [69]). 

 Knowledge Verification-this is the stage at which the developer verifies if the acquired 

knowledge is for the intended system. 

3.4. Requirements Specification 

This section elaborates on mandatory and optional requirements of a multi-agent based NMS for 

rural networks. Some of the general-purpose NMS requirements, such as mapping, auto-

discovery, and access control, have been left out of this system, to allow for the development of a 

lightweight, scalable and flexible system for rural networks. 

3.4.1. Functional Requirements 

It is universally agreed that these are mandatory functional requirements of a NMS. In this 

research they have been enhanced to conform to the challenges of rural networks. 



 

 

53 

 Fault Management-the system should be able to detect, analyze and log network 

problems through monitoring and isolating the problem. 

 Performance Management- the system has to be built to measure network performance; 

it has to analyze the normal levels and set/determine appropriate threshold values to 

ensure high QoS for each service. 

 Configuration of functionality-NMS should provide support for automatic detection of 

network nodes (on/off), audit and track interactions with users. This MA based system 

should support the automatic configuration of new and recovered nodes from fault state. 

It should support role-based user rights and authenticates against the conventional server. 

The system should have a database to store all the information of managed devices. 

 Network analysis-NMS should easily analyze the network data efficiently to avoid any 

delays, thereby maintaining up-to-date network service.  

 Support of ‘disconnected’ operation- the architecture of this NMS should be designed 

in such a way that management operations are mostly independent of network resources. 

This eliminates vulnerability when performing network management functions due to 

link failure or high traffic conditions. This process can be achieved by developing 

autonomous agent entities, which are capable of performing their decentralized 

management functions without requiring constant communication with a central manager 

station. These multiple agent entities should be able to continue their execution even 

when the communication link with the current agent platform is disrupted or fails by 

providing a redundant agent platform that will take over when disruption and failures 

happen on the running agent platform. 

 Interface for State Information-the design of this system should provide an interface 

for an administrator. This interface will also allow the administrator to have rights to 

manually perform management functions. The user interface should be able to show the 



 

 

54 

network topology and show network state information by accessing a specific table/log in 

the data storage. The NMS should be able to show any alerts when there is a change in 

the network state and the agents should be able to efficiently react to the changes by 

providing the required services. This interface will also allow an administrator to easily 

introduce new services at runtime. 

 Integration with other NMSs-this system should be easily integrated with other 

management systems; after all, no management system operates in isolation.  

3.4.2. Non-Functional Requirements 

 Usability - the administrator should be able to use the interface of the NMS without any 

difficulty, otherwise the quality of service will be degraded in case there is a management 

function that requires an administrator.  

 Self-recovery-the autonomous agent entities should be able to self-recover after an 

unexpected failure of the main-container by using a redundant main-container on another 

platform. When an agent dies unexpectedly, the adjacent agents, with the same 

responsibilities, should clone themselves to provide the same management tasks. These 

MA entities should provide support for persistent so that they will not lose the state of 

execution when they migrate from node to node. 

 Robust architecture- the NMS should be able to perform under high abnormal 

circumstances such as large databases to process and analyze, managing large number of 

devices, and in case of conflicting rules. It should be able to analyze network data, 

process it and provide network services. 

 Fault tolerant-NMS should be able to deal with situations where link or node failures 

interrupt the normal migration process of roaming MA entities. Fault tolerance features 



 

 

55 

should deal with cases where the node is the manager node itself and ensure that the 

valuable management information collected by the MA entities is not lost. 

 High performance system - NMS should be able to foresee possible congestions or 

failures and take prevention measures before any errors occur. Therefore, it is very 

important to develop a system infrastructure that guarantees to perform in time 

demanding factors and provide a sensing tool to prevent any network errors at the same 

time. 

 Reliable system-this MA based system should always be reliable to perform network 

management function like configuration and event management among others. 

 Lightweight footprint - the system’s agents should be designed to be lightweight to the 

greatest extents possible and provide execution environments that can be installed on any 

network device, regardless of the node’s storage capacity and processing capabilities. 

 Scalable architecture-scalability is the foremost concern of designing a distributed 

dynamic system that is going to be deployed in an expanding network. Therefore, the 

system architecture should be able to provide support for intelligent collectors and 

processing engines to store aggregated data for a long period. The processing engine 

should be flexible enough to quickly analyze the collected data to prevent overload and 

outdated services. 

3.5. System Architecture 

This section discusses in detail how various software components are to be organized and how 

they should interact. Section 3.2 explained a methodology this research follows and this section 

uses that approach to organize the system architecture. The organization of a distributed system 

is mostly about the software components that constitute the system. This section looks at a 



 

 

56 

decentralized architecture whereby agents are deployed over the network residing on network 

nodes. 

3.5.1. Multi-Service Agent Model 

The network management system by delegation is purely based on Multi-Service Agent Model, 

whereby every agent acts as an active object and has the ability to cooperate and is relatively 

independent from each other’s execution process. Each agent will be designed in a way that it 

has its own goals and also be capable of coordinating with other agents to reach a global 

common goal. The agent performance depends on the control and information links between it 

and other agents. The cooperative performance will be a feature of the system as a whole and the 

system will be application-independent. This system will not provide high-level cooperation 

functions; it will only include the cooperative agents according to goals and duties of each 

application. There are four types of knowledge inside the knowledge base of an agent, which are 

[71]:  

 Environment knowledge-partially the agent does not have all the knowledge about its 

environment, it is only aware of other agents and their purpose. Therefore, it 

communicates with its adjacent agents to gather information about its environment.  

 Knowledge about itself- this information consists of skills it possesses, its functions, 

goals it has to achieve and whether or not it has to collaborate with other agents. In this 

state, it needs to know what operation it should take when messages arrive at it. 

 Knowledge about problems to be solved- each agent requires knowing about the 

general/global problem to be solved. 

 Knowledge about its state- each agent has to know the processes running in it and 

whether or not they are working on offered goals or services. 



 

 

57 

Figure 20 shows the general operation of the Multi-Service Agent Model. This knowledge may 

be given to the agent upon on startup or it may acquire it dynamically during the course of 

problem solving. Because agents will be designed on top of JADE platform, the communication 

amongst them will be facilitated by message passing. JADE platform is a FIPA compliant for the 

development of agents in Java language. 

Local 

Action

Service 

Request

Answers

Messages 

Management

Process 

Management

Update

Update

Received 

Messages 

Knowledge Base
Problem Model Environment ModelSelf Model

Goals

Data

Results

Cooperation 

strategies
Services List

Agent 

services

Communications 

Media

Status

Requested 

Data
Processes

Messages Messages

Functions Library

 

Figure 20: Multi-Service Agent Model (adapted from [71]). 

3.5.2.  System Design 

This system is designed as a Multi-Agent environment where each agent performs specific tasks 

and interacts with other agents. This system consists of MasterAgent and NodeAgent. These 

agents are created according to their functions and roles in order to achieve their goals. 

MasterAgent is responsible for visualization of the network state through a web-interface and an 



 

 

58 

agent-platform visualization tool (provided by JADE framework). The NodeAgent is responsible 

for performing the network monitoring and management tasks. This system is designed to have 

at least two MasterAgents that will reside in two separate agent-platforms and a number of 

NodeAgents that will reside in each network node. The creation of two MasterAgents is to form a 

self-recovering and redundant system in case of an agent-platform failure. These agent-platforms 

are created in such a manner that they possess knowledge about each other’s services through 

their main-container DF. Figure 21 depicts low-level agent architecture; it shows the main 

functions the NodeAgent.   

 

Figure 21: Low-Level Agent Architecture. 

The NodeAgent main task is to diagnose any network node failures; network anomalies and user 

operations (access and operation of devices) then execute specified network goals in case of any 

arising failures/errors. The network goals, rules and policies are specified to the NodeAgent 

through the JESS inference engine. The NodeAgent is responsible for the collection of network 

data and processes it to a usable format then stores it in a database. For the inference engine to 



 

 

59 

perform network diagnosis and fire specified rules, it uses this information stored in a 

configuration database. The NodeAgent ensures the healthiness of network nodes thereby 

providing high QoS each use requires. The inference engine stores this information as facts in its 

memory.  

Figure 22 below shows a high-level agent operation. Knowledge-base refers to user facts and 

device status (user data, hypothesis, initial problem data and results) and memory refers to 

network rules and policies written in Jess, network device is the agents’ environment of 

execution and inference engine is the rule interpreter. The main purpose of an inference engine is 

to search and select the correct rule to be applied in the agent reasoning process. 

Knowledge 
Base

Inference Engine

Memory

Network DeviceNetwork Device

Agent

Agent Execution Environment

Sensors/

Effectors

 

Figure 22: High-Level Agent Operation. 

The MasterAgent provides a GUI to view the agent-platform and agents registered to it. This 



 

 

60 

option allows the human administrator to start, kill, pause agents, and communicate with other 

agents as well as communicating with other agent-platforms when required to. Agents 

communicate with each other using JADE ACL protocol. The overall multi-agent system 

architecture is presented in Figure 23. Each agent-platform has a main-container that provides 

AMS, DF, Remote Monitoring Agent (RMA) and our MasterAgent. AMS is an agent that has 

control of the agent-platform and life cycle of agents registered to it. Every agent that is in the 

agent-platform has to register to the AMS in order to get a valid AID and there can only be one 

instance of an AMS in one agent-platform. RMA is an agent in the agent-platform that provides 

support to check agents and agent containers states. DF is an agent that provides services 

possessed by agents registered to an agent-platform.  

 

Figure 23: System Architecture. 

It is usually called “yellow pages” because it provides visiting agents an opportunity to search 

the agent-platform for agent’s services and allows agents in the agent-platform to advertise 



 

 

61 

their services. Main-container is a JADE environment that contains agents and containers, there 

can only be one instance of a main-container in the agent-platform and all other containers must 

register with it as soon as they start. Platform 2 in Figure 23 is created for redundant and self-

recovery system purposes and NA is NodeAgent deployed in each network node. Platform 2 has 

its own main-container as Platform 1 has its main-container. 

3.5.3. Agent Description 

The system agents are designed in such a way that each agent performs its specific tasks on 

given network goals. This section gives a detailed view about the operations and functions of the 

MasterAgent and NodeAgent involved in the system.  

3.5.3.1. Recognition Operation 

The recognition operation consists of two key functions, data storage and analysis. The task of 

data storage is to keep all the data about the possible network breakdown, when it was produced, 

which agents participate in it, the failure case state, the associated diagnostic operation. The 

other function is to separate the coming events into different failure cases. The aim of this 

separation process is to set aside events in sets of events according to problems that caused them. 

This helps to increase agreement level and reduce computation costs. The computation cost will 

be reduced if the events are separated into minor groups and associate them separately. The 

agreement level will be bigger if the resultant set of events is going to diagnostic operation and 

diagnosis is made as a similar manner. The structure of the separation process is shown in Figure 

24. 



 

 

62 

Arrived 

Events

Separation

Failure Cases Calculation

Failure Cases

Orthogonalisation

Diagnostic Operation
 

Figure 24: Separation Process (adapted from  [71]). 

When the events arrive at the maintenance system, it is allocated to a set of failure cases or a new 

one is created. There are four components associated to the network problem; a failure in the 

network, a set of events caused by it, a set of managed objects affected by the problem and the 

operations that should be invoked to solve it. Then it makes the separation process to have these 

steps [71]: 

 Separation- An event reaches the configuration database and it is allocated to failure 

case and sent to a diagnostic operation.  

 Calculation- After the event has been assigned; it is incorporated into one (and only one) 

failure case. The failure case and structural knowledge on the managed node is used to 

recalculate the problem scope for the problem. Problem scopes are dynamic and grow as 

the problem’s events are received in the configuration database. 



 

 

63 

 Orthogonalisation- because one event is allocated to one failure case, it is essential that 

problem possibilities do not intercept, that is, a managed node can only fit to one problem 

possibility at the same time. 

3.5.3.2. Diagnostic Operation 

The diagnostic operation is responsible for creating hypotheses concerning the reasons of the 

network breakdown and then produces a failure reason. The failure cause is received after the 

symptoms obtained through the recognition operation. These symptoms are collected to structure 

a failure case. Once the agent has received a list of possible hypotheses, it should prove them 

using the recovery operation services, thereby generating a single failure cause, which clearly 

has to be solved. The diagnostic operation has the following elements: the Failure Knowledge 

which refers to information about the feasible network based on received events; Failure Cases 

which is the set of events that arrive at the diagnostic operation from the managed node; 

Structural Knowledge which refers to information about the network node and their operation on 

the network and Behaviour Knowledge is the information about the production rules. These four 

components form diagnosis, which is just a set of facts with a high confidence value that are 

considered a failure/error in the managed node. Before the diagnosis is obtained, while the 

hypothesis is available, there are four repeated tasks in the diagnosis process [71]. 

 Generation of Hypothesis-this is the step where events and structural knowledge are 

connected against failure knowledge. In so doing, a set of hypotheses to be validated is 

obtained. 

 Generation of Questions-hypotheses and structural knowledge are used to execute 

backward chaining over production rules to form a set of questions that will be used to 

validate the hypotheses, through asking the managed node. 

 Network Examination-after generating questions, the diagnostic operation sends them to 

recovery operation which will be the one to calculate proof plans on the network and 



 

 

64 

return results to the diagnostic operation. The results are facts with high confidence 

value. 

 Discrimination-the results from the examination of the network are used for the forward 

chaining on the production rules to form difference in confidence values of hypotheses to 

reach the status of diagnosis. 

3.5.3.3. Recovery Operation 

The primary aim of this function is to determine the operations required for the agents in 

different stages of management process and order their execution. Recover operation is 

responsible for the set of strategies explaining the modifications that must be provoked in the 

state of the managed node and can request agents to change attribute values of managed node. 

Here are the key set of services that need to be carried out, the generation of plans and execution 

and retrieving results [71]: 

 Repair Plans-once the diagnostic operation has found any failures through recognition 

operation, recovery operation is notified about the legitimate failure cause. This operation 

will make a repair plan in order to resolve the failure. The recovery operation will try to 

find the best possible solution and the actions that lead to this failure. After making a 

solution, it will run the solution and notify the recognition operation about the results. 

 Reporting and Notification Plans-when there is a network failure cause, the recovery 

operation keeps log about the failures and report them to a MasterAgent. These logs 

should be presented in the NMS interface and be kept for future purposes, for example; 

agents should know about the frequent failures, in so doing, it will make it easier for the 

recovery operation to know what to do when the same problem arises without even going 

through the process of generating a new solution. 



 

 

65 

 Validation Plans-this plan is used to make sure that the network breakdown has been 

suitably fixed. It uses logs of saved by the recovery operation to the MasterAgent to 

acquire knowledge about the state of knowledge about the managed node, the agents 

running on the system and if a solution state has been achieved. 

3.5.3.4. System Management Operation 

The network administrator uses this operation to get the full control of the network management. 

The administrator uses the system management operation to monitor any function of the system, 

such as, incoming alarms, diagnosis processes, repairing processes that define the overall state of 

the system and can also interact with any of the agents in the system. 

3.5.4. System Operation 

This section models the dynamic aspect of the system when it is operating. This section will 

present use case, sequence diagram and activity diagram. The use case diagram will exhibit the 

system functionality using system requirements information. The activity diagram shows 

message flow from one activity to another in the system and the sequence diagram captures the 

time sequence of message flow from one object to another. 

3.5.4.1. Use Case Diagram 

Figure 25 shows the interaction of the system with the administrator and the device user. The 

device user is only allowed to utilize the network node while the network administrator monitors 

and manages the system agents and their operation.  



 

 

66 

 

Figure 25: Use case Diagram. 

3.5.4.2. Sequence Diagram 

Figure 26 shows the objects (Administrator, MasterAgent, NodeAgent and managed Device) 

taking part in the interaction, message flow amongst objects, the sequence in which messages are 

flowing and the object organization. 



 

 

67 

Administrator Master Agent Node Agent Device

Message1

Message3

Message2

Message4

Message5

Message6

Message9

Message11

Message7

Message12

Message13

Message14

Message8

Message10

Message16

Message15

 

Figure 26: Sequence Diagram. 

Message 1: the administrator starts the MasterAgent thereby starting the AMS main-container. 

Message 2: the MasterAgent registers its services to the AMS and creates the agent-platform 



 

 

68 

environment. 

Message 3: the administrator starts the NodeAgent. 

Message 4: the NodeAgent starts its container and registers its services to the AMS. 

Message 5: once the NodeAgent is started, the MasterAgent monitors its state and keeps on 

sending ‘still alive’ messages. 

Message 6: when the NodeAgent is instantiated it first gets the state of the executing 

environment, the NodeAgent retrieves the user, hardware and network state. 

Message 7: the managed device responds with the required information. 

Message 8: the NodeAgent sends the device state to the MasterAgent. 

Message 9: the NodeAgent consistently monitors the device. 

Message 10: the MasterAgent updates the administrator database thereby updating the 

visualization web interface with the network statistics and user information. 

Message 11: the NodeAgent performs basic network management with its database as a 

knowledge base and current events as an agent agenda.  

Message 12: the NodeAgent waits for the triggers and alarm should there be network rules fired. 

Message 13: should there be thresholds reached and rules fired NodeAgent receives alarms. 

Message 14: the NodeAgent notifies the MasterAgent about the occurred events. 



 

 

69 

Message 15: then the MasterAgent notifies the administrator and this is also shown on the web 

interface. 

Message 16: the administrator is able to perform management functions based on the received 

alarms. 

3.6. Conclusion 

This chapter presented the design of a network management based on multi-agents architecture. 

This system has agents that will perform network management by delegation; each agent is 

designed to perform its specific task when required to and also to collaborate with other agents 

when the situation demands, in order to achieve a common goal. The next chapter discusses the 

implementation of the proposed design. 



 

 

70 

4. Implementation 

This chapter describes the development process of a multi-agent based network management 

system using Java, JESS and MySQL as programming languages. The development process of 

this system follows the system design and requirements specified in Chapter 3. 

4.1. Introduction 

This chapter summarizes the implementation details of the NodeAgent, MasterAgent, database 

storage and the web interface. Where applicable, source code or interfaces are used to show how 

the modules are implemented. Section 4.2 and 4.3 present the implementation of the 

MasterAgent and the NodeAgent, respectively. Section 4.4 describes the implementation of an 

inference engine and Section 4.5 shows how to start the agent platform with the specification of 

system agents’ communication method implementation and the creation a decentralized system 

to form a Multi-Agent System 

The system is implemented on Microsoft Windows, Linux Ubuntu and Mac OS to ensure 

platform independence.  

4.2. MasterAgent 

The MasterAgent is responsible for creating an agent-execution environment and the agent-

platform, and for starting the AMS. MasterAgent consists of: a bandwidth meter; a network 

statistics module (that monitors the bandwidth utilization); the AMS interface, simple web 

interface developed in Java Servlets; as well as data storage to store all the information about the 

managed devices. All the data presented in these interfaces is received from the NodeAgent in set 

time periods to help the administrator to understand the behaviour of the managed devices. This 

section discusses the Java classes and agent behaviours used to implement the agent components.  



 

 

71 

The process of network management starts with monitoring network resources such as 

bandwidth usage, sites visited and applications running on user machines. This section describes 

how the network statistics are collected, analyzed and presented. Following is a step-by-step 

implementation of the MasterAgent. 

4.2.1. Bandwidth Meter Behaviour 

This behavior is responsible for the presentation of bandwidth utilization, it uses Jpcap library to 

get all the network interfaces of a machine and the JFreeChart library to draw a dynamic chart 

that present bandwidth (KB/S) usage.  The GUI lists the network interfaces and the administrator 

is allowed to select the one they want and start to monitor. We use the getDevice() method to 

retrieve the network interface and this method is implemented as follows: 

 

Figure 27: Method to List Network Interfaces. 

Figure 27 shows a code extract that retrieves the physical network interfaces and adds them to a 

grouped radio button array (to allow an administrator to choose only one option at a time) and 

then lists them in a GUI. The GUI has a start button that implements an action listener that starts 

the process of capturing real-time bandwidth usage. The real-time bandwidth capturing is 

facilitated by swing worker method that allows for the execution of a long-running GUI task. 

Figure 28 shows a code extract that implements a line chart. 



 

 

72 

 

Figure 28: Method to Create Line Chart (KB/S). 

JFreeChart Time Series method allows us to plot set of consumed data values over a time period, 

the third argument of this method, line 157, is a set of values (data/time) captured in real-time 

network traffic. The bandwidth meter behaviour implements the JADE simple behaviour that 

allows it to run once when the agent starts. This helps an administrator to watch network traffic 

whenever they want by just starting the GUI thread.  Figure 29 shows the bandwidth monitor 

interface. The interface has the Start Monitor button, list of active network interfaces and the line 

graph view that shows consumed data in kilobytes over time in seconds. 

 

Figure 29: Bandwidth Monitor Interface. 



 

 

73 

Figure 30 shows the implementation of a swing worker thread that runs forever with a break of 

500 milliseconds (0.5 seconds). The capturing method makes use of the selected network 

interface, line 108 & 109, and when the thread timer starts, line 114, it captures the network 

traffic, line 115, indefinitely and loop the data to the PacketPrinter() class. PacketPrinter() class 

is responsible for printing the network traffic contents to the bandwidth meter GUI. 

 

Figure 30: Method to Show Data Capturing Thread. 

4.2.2. System and User Info Behaviour 

The user information is used to associate the consumed network resources with the current user 

of a network device. And the system information is used to gather hardware and software 

information of the devices in the network. The NodeAgent sends this data to the MasterAgent for 

the administrator to learn about running OSs, softwares installed on managed devices and 

applications running on managed devices, thereby allowing the administrator to perform 

management functions. The managed device network information helps to plot the network 

topography for example IP addresses can be used to learn about devices connected to the Internet 

and detect if there is a problem with the network interface or the specific router. Figure 31 shows 

the important aspects of the system and the user information. The system acquires from a 



 

 

74 

managed device to a database table NodeInfo. 

 

Figure 31: NodeInfo Table Fields. 

The information stored in table NodeInfo is presented to a web interface implemented on Java 

servlets. The information is updated in the data storage using the JADE simple behaviour and an 

administrator has an option to choose from the web GUI which device they want to check system 

specs. Figure 32 shows the information of stheAVO device; the web-interface shows the CPU 

states, network, system and user information. 



 

 

75 

 

Figure 32: Web Interface to Show System and User Info. 

4.2.3. Packet Capture Behaviour 

This behavior is responsible for capturing network packets in real time for the selected network 

interface and this process makes use of Jpcap library. The network capturing interface allows a 

user to list all network interfaces, filter network packets according to their Transmission Control 

Protocol (TCP) and User Datagram Protocol (UDP) port numbers, save and load network packets 

to a file for packet analysis. On Figure 33 the ListNetworkInterfaces() method lists device 

network interfaces and their details. These details include broadcast, MAC and IP address, 



 

 

76 

interface number and description, data link name and subnet mask. 

 

Figure 33: Method to Show Network Interface Details. 

The MAC address is retrieved as a byte, line 394, and converted to a hexadecimal string. 

Counter++, line 399, ensures that all the network interfaces are written on the text area in the 

order of their details. Figure 34 shows the CapturePackets() method that takes the selected 

network interface and capture network packets in real time.  



 

 

77 

 

Figure 34: Method to Capture Network Packets. 

The CapturePackets() method first initializes  the CaptureThread() class, line 441, that facilitates 

the real time capturing process. This thread ensures that a user can easily start and stop the 

capturing process without the process freezing. The CapturePackets() method overrides the 

construct() and finish()abstract methods. The construct() method implements the Runnable() 

interface to run the thread indefinitely till the capturing process is stopped. Line 447 opens the 

selected network interface (index) and line 448 captures packets as long as the thread state is true 

(running). Figure 35 shows the packet capture interface with radio buttons used to filter network 

packets according to their TCP and UDP ports, the interface also has an option to save packets 

and load them later for analysis. 



 

 

78 

 

Figure 35: Packet Capture Interface. 

At start the interface shows inactive Capture, Stop, Select, Save, Load, and Filter buttons; 

because at start a user has to choose which interface they want to sniff by listing (List button) the 

active network interface. When a user clicks on Exit button the GUI will close but not stopping 

the MasterAgent. 

For management purposes, this behaviour sniffs network packets to check who is communicating 

with whom, type of communication, packet contents and TCP/IP protocols used. This 

information helps the administrator to block the untrusted device and easily detect network 

intrusion (this is beyond the scope of this research) by learning the source and destination IP 

addresses. An administrator has an option to either analyze network packets in real-time or in an 

offline mode (where packets are loaded from a file log). 

4.2.4. Network Statistics Behaviour 

The MasterAgent collects this data from NodeAgents in the network to graph network statistics 

and compare the data usage of managed devices. This behaviour is also responsible for archiving 

the consumed data and network packets of a week period of time of the whole network as the 

NodeAgent is doing the same for the each device. Figure 36 describes the device network statistic 



 

 

79 

information of interest. This information is stored in Netstats table and is used to manage the 

data usage. The nodeID field is the name of the user logged-in in the managed device. The 

nodeID field is used to associate the data consumed with current user of the device. The packet 

error fields (ReceivedPacketsErrors and SentPacketsErrors) are used to check the number of 

packet errors the user experiences.  

 

Figure 36: Fields of Netstats Database Table. 

Figure 37 shows a dynamic JFreeChart bar chart for the comparison of data consumed and 

network packets over the system uptime of the managed device. The MasterAgent retrieves the 

data from its database and presents it graphically. 



 

 

80 

 

Figure 37: Data Consumed and Packets Captured in a Period of System Uptime. 

4.3. NodeAgent 

The role of the NodeAgent is to fully reside on a network device and perform network 

monitoring and basic management functions and send user and device information to the 

MasterAgent. This agent, like the MasterAgent, has a built-in inference engine developed in Jess 

(explained later in this chapter). When the NodeAgent is started it registers services it can offer 

and publishes them to the DF. When NodeAgent dies, it deregisters from the DF. This section 

discusses different behaviours of the NodeAgent, which include data collection, analysis and 

basic management. 

4.3.1.  System and User Info Behaviour 

This behaviour uses Hyperic-Sigar library to gather the user and system information to the 

MySQL database table NodeInfo. The information of interest includes but is not limited to 



 

 

81 

system uptime, CPU time, used network interface, device vendor and model, device IP and MAC 

address, network gateway, device operating system and device memory among others. This 

behaviour is also responsible for the collection of device running applications (task manager) to 

sniff which applications the user is running that might be not acceptable to the network. The 

agent’s inference engine uses this information to apply the given rules. For example, if a user is 

running a torrent download manager, the agent can detect that the user is trying to download a 

big file and kill that process. 

Figure 38 shows a snippet of a killProcess() method that kills a detected process, the method first 

checks the running OS and analyzes it accordingly. The agent keeps on reading the system 

runtime applications into an input buffer reader and analyzes them line-by-line. 

 

Figure 38: Method That Shows the Process of Killing a Running Process. 

Line 214 shows and initializes the class Process to runtime processes of UNIX system files and 

reads the applications into a string, line 216. The method loops the string line by line to check 

any unwanted running application, processName, and close the application once the IF statement 

becomes true, line 220. 

 



 

 

82 

4.3.2. Network Statistics Behaviour 

Device network statistics is essential for any NMS to collect so it can be used to manage network 

resources effectively. This behaviour collects the number of packets sent/received, packet errors 

and the data consumption downloaded/uploaded and stores it in data storage so it can be 

associated with the user of a device. The network statistics is associated with the user according 

to the time the user has been using the device. Because the system is tested on different vendor 

machines, it first checks the underlying operating system then collects the information according 

to the different system files. The NodeAgent’s inference engine uses this data to reason about the 

network policies. This data is sent to the database of the MasterAgent periodically thereby 

implementing a JADE Cyclic Behaviour. 

Figure 39 shows a snippet of a NodeStats() method that retrieves network statistics of the 

managed device. The method first learns the device hostname, line 131, and reads the UNIX file 

(proc/net/dev) that has a network statistics to an input buffer reader, line 132. The code jumps the 

headers of the text file to the actual values, lines 134, 135 and 135, then manipulates the values 

and assigns them accordingly. 



 

 

83 

 

Figure 39: Method to Show the Collection Network Statistics. 

Immediately after this method, the NodeAgent sends and updates the values to a local database, 

and then after a period of time it updates the database in the MasterAgent.  

4.3.3. Network and Internet Connection Behaviours 

This section discusses how the NodeAgent checks if the network device is able to connect to the 

network and the Internet, it is implemented by first detecting available Network Interface Cards 

(NICs); testing the connection between the device and the Gateway and then testing the Internet 

availability. The NodeAgent has a checkInterface() method that detects if the physical NIC is up 

or down and a checkInternet() method that tests the network and Internet connection. The 

checkInterface() method detects the NIC and if it is not working, it pops up a message on the 

screen of the user reporting the problem so they can have knowledge about this hardware or 



 

 

84 

network cable problem before the user tries to access the Internet. Figure 40 shows the snippet of 

the checkInterface() method.  

 

Figure 40: Getting Network Interface. 

The checkInterface() method uses the Java Network API to enumerate the device network 

interfaces, line 461 and manipulate the interfaces according to the underlying operating system, 

line 467. The method assigns the names of the interfaces based on either the device uses a 

Wireless or Ethernet connection, line 468-473. After getting the used interface, the method 

gathers the information about the interface, Figure 41.  

 

Figure 41: Testing NIC. 



 

 

85 

The checkInterface() method detects if the wireless or Ethernet NIC is not up with the Java 

isUp() Boolean method, line 481 and displays a message on the screen for the user with the 

details about the problem, line 482. The method handles the exceptions by troubleshooting the 

kind of a resulted exception; the socket exception is thrown to indicate that the invoked interface 

in not active, line 484-486. And the null pointer exception is thrown when the interface is not 

available at all, line 486-488, this indicates that a user should check if the Ethernet cable is 

plugged or not or to check if the Wireless connection mode is On/Off. 

The network and Internet behaviour has a checkInternet() method that tests for the network and 

Internet connectivity. This method gets the IP and Gateway address to test the network 

connectivity and uses known site to test Internet connection. This kind of troubleshooting helps 

users to identify the specific location of a problem. This method retrieves the IP and Gateway 

address from the device data storage and uses a specific URL (in this case 

http://www.google.com) to test for the Internet connection. There are three options of results 

from this method, namely: if the NodeAgent cannot ping the IP address, that means the device is 

not connected to local network; if the NodeAgent cannot ping the server gateway, that means 

there is a communication failure between the device and the gateway and lastly if the device 

cannot connect to the external IP address, that means there is no Internet connection for whole 

network. 

 



 

 

86 

Figure 42: Ping Local Device and Gateway Implementation. 

Figure 42 shows a snippet code of checkInternet() method that retrieves the network IP addresses 

of the device and the gateway, line 506-509 and converts the strings from the database to 32-bit 

unsigned IP numbers by using Java InetAddress class, line 510-511. After resolving the retrieved 

strings, the method checks if the IP addresses are not reachable by using Java isReachable() 

method and displays a message to the user about the discovered problem, line 513-518. This 

gives the user a specific indication of connectivity and where the problem is, if the user cannot 

connect to gateway IP address that explains a link failure between their devices and the gateway. 

When the NodeAgent does not find any internal network failures and problems, its behaviour 

periodically checks if the network device is able to connect to the Internet. Figure 43 shows how 

the agent tests the network connectivity. 

 

Figure 43: Internet Connectivity Test Implementation. 

The checkInternet() method takes the URL of the declared site as a test case, line 517 and uses 

HttpURLConnection instance to make a request on Internet connection, line 518. The method 

sets the connection timeout of five seconds, line 519 and then connects to the URL given, line 

520. The method checks if the connection returned false and shows the message to the user about 

the Internet connectivity failure, line 521-523. The method handles the I/O exception of the 

given URL by displaying same message of HttpURLConnection instance to the user. 



 

 

87 

4.4. Inference Engine 

The system uses Jess rule engine to specify the basic rules, policies and goals of the network, 

each rule expresses if some statement(s) are true, thereby forming a knowledge base system. A 

rule engine consists of three parts: facts, rules and actions. The knowledge data sources are the 

facts captured by the agents; the system administrator specifies rules and actions are executed 

when the current network error/state meets the rules. This rule engine helps to separate the 

management code with the business logic of the system and adds the dynamic process of 

management task since a network is an environment that changes every now and then. This 

system uses forward chaining method; for it to take actions, it starts with facts/data (current state) 

then draws conclusions. The following diagram describes this phenomenon, Figure 44. 

 

Figure 44: System Inference Engine. 

The implementation of our rule engine uses an integration of Java and Jess, Java is used to define 



 

 

88 

facts about the managed device and Jess is used to specify the network rules and execute actions. 

The rule engine consists of Jess file that contains system rules and actions; and a Java class that 

collects facts about the current state of the device from a database. The rule engine performs 

basic check-ups about the device state and executes actions if required to. Jess library has a full 

access to the Java API and this makes it easy to call Java methods and to write Java code inside a 

Jess file to perform complicated tasks. The Java class creates an instance of Rete object that 

allows the manipulation of Jess and then load the rules at runtime. The Rete object has four basic 

functions: reset the engine back to its initial state, load the device data (facts), execute rules and 

extract results. The RuleEngine class extends JADEs cyclic behavior to meet the four functions 

of the Rete objects and to ensure that the rule engine runs indefinitely to catch any failures/errors 

on the device. 

Figure 45 shows an implementation of data consumption monitor rule that checks if the user has 

reached a two gigabytes threshold and displays a warning on their screen.  

 

Figure 45: Implementation of a Jess file that contains Rules. 



 

 

89 

The object first initializes the Rete engine, line 2, and then instructs the engine to print all the 

useful diagnostics of the object with the (watch all) method on line 3. This diagnostic 

information is helpful to check if the LHS conditions of a specific rule have been met by the 

given list of facts. The object accesses the Java AWT and Swing API and instantiate a JFrame 

called “Rule Fired” with a message dialog that prints a message for the user. Each rule has its 

specific name called Template that is used to associate each rule with its facts and actions. The 

name of data consumption rule is declared on line 14 (bandwidth-usage), this name is also used 

by the Java class when inserting the current state of the device to the Rete engine. The LHS of 

the rule, line 19 Figure 45, checks on the knowledge in hand if the data consumption has reached 

two gigabytes threshold and if so it displays a message dialog on the user screen telling them that 

they have reached their data limit. A similar mechanism can also be used to automatically 

disconnect users from the network when they reached specified usage thresholds. 

 

Figure 46: Method that Asserts facts to Rete Object. 

Figure 46 shows the Java class that loads a file with rules (rules.clp), keeps on retrieving the 

facts from a database and then asserts facts to the Rete object. The ExecuteCommands() method 

loads Jess file on a running instance of Rete engine, line 50, and declares a bandwidth-usage 

template, line 51, that has the same name as in Jess file with rules. The method on line 55 



 

 

90 

inserts the retrieved value (fact) on the bandwidth-usage template and asserts the fact on the Rete 

engine, line 57. Since the RuleEngine class extends the JADEs cyclic behavior, it periodically 

accesses the database to track any device changes thereby providing resource management 

function and allowing the Rete engine to perform its four main functions. 

4.5. Starting the Agent Platform 

The agent platform provides the runtime environment for agents to operate on the network 

devices and this requires Java and JADE platform enabled devices. The agent platform contains 

and runs the main-container that has the AMS, MasterAgent, DF and the Remote Monitoring 

Agent to create the agent platform. The agent platform resides in a network device and consists 

of containers to form a distributed system. These containers consist of running agents and each 

container resides on a separate network device thereby forming a MAS. The MasterAgent has a 

GUI that lists all the operating containers and IP addresses of devices they are operating on. Each 

agent operating on the agent platform has its own specific AID. When the agent platform starts, 

it starts the MasterAgent and registers the services it offers to the agent platform DF. Then every 

agent (NodeAgent) that is started on each network devices is added to one running instance of an 

agent platform and also registers with the agent platform’s DF. Figure 47 shows instantiation of 

the MasterAgent class that extends jade.core.Agent thereby starting the agent platform GUI that 

resides on host 172.20.56.49; every agent (NodeAgent) that is started on the agent platform will 

use this IP address as a host of a main-container. The agent platform also comes with useful 

agents for example Sniffer, Dummy and DF agent. Sniffer agent is the agent in the agent 

platform that shows the main tasks of the MasterAgent class in its GUI. DummyAgent is used to 

send, receive and inspect ACL messages from/to agents and save/read messages from/to file. The 

DF agent provides a centralized registry of agents associated with their service description. The 

DF GUI allows a user to register, deregister, modify and search agent descriptions in the agent 

platform. The DF also provides “yellow pages” services to all agents in the agent platform and 

only one instance of a DF can exist in an agent platform and a DF can register with other DF’s 



 

 

91 

on different agent platforms to form a federation of DF’s thereby providing a redundant system. 

 

Figure 47: Starting the Agent Platform. 

Figure 48 shows an implementation of agent registration with the DF, the first snippet (line 35-

41) of the code in the setup method creates an agent service description Monitoring and registers 

this service using the register() method. On Figure 48, line 106-115 shows the register() method 

that declares a DF agent description and adds the agent identifier to the agent service description. 

Line 119-124 overrides an jade.core.Agent class takedown() method that removes the agent 

services in the DF when the agent dies/stop. An agent only performs the task of registering its 

service to the DF once when it is started. The MasterAgent has a duty to refresh the DF every 10 

minutes in case a new agent has been started or died. This agent implements JADEs Ticker 

behaviour to facilitate the refreshment of the agent’s DF. 



 

 

92 

 

Figure 48: Method to Show Registration of an Agent to DF. 

Figure 49 shows the MasterAgent ticker behaviour method that refreshes the list of NodeAgents 

in the DF. Line 31 declares a ticker behaviour that refreshes at 600000 milliseconds and at line 

31 the method searches the service in the DF using the MasterAgent template “Master-Agent”. 

And then it inserts all the NodeAgent services found in the DF to a vector array monitorAgents, 

line 38-42.  



 

 

93 

 

Figure 49: Behaviour to Refresh the Agent DF. 

Once the agent platform is started it is ready to accept remote containers to be added on it 

(forming a distributed system) and to send/receive messages from other agent platforms or 

agents. The following subsection describes the implementation of communication method 

between MasterAgent and NodeAgents in the agent platform.  

4.5.1. Agent Communication Language 

For agents to communicate something that makes sense, there is a need to create a certain degree 

of commonality in terms of communication language, vocabulary and protocols. The system 

defines an ontology, NetworkOntology, for the system agents to exchange messages using a 

standard FIPA format. The FIPA ACL message format is characterized as follows: 

 Intention: REQUEST, INFORM and QUERY_REF etc. 

 Attendees: Sender and set of receivers. 

 Content: Information exchanged. 



 

 

94 

 Content Description: Description of (i) the content language to express the content and 

(ii) the ontology by means of which the agents ascribe a proper meaning to the terms used 

in the content. 

 Conversation control: Interaction protocol and conversation identification. 

The implementation of agent ontology also allows JADE agents to interoperate with other agent 

systems. The information exchanged between our system agents is encoded with the help of the 

SL and decoded upon arrival by the intended receiver(s). FIPA  Semantic Language (SL) 

language is a human readable string-encoded content language used by software agents. 

In this model, communication happens through the exchange of asynchronous messages between 

agents corresponding to communicative acts, for example SUSCRIBE, INFORM, PROPOSE, 

and REQUEST_WHEN etc. The following shows an implementation of an ACL message sent 

by the one NodeAgent to all the agents in the agent platform to inform them about its existence: 

The system first defines an application-specific ontology NetworkOntology that extends 

BasicOntology and implements ConceptSchema, AgentActionSchema and PredicateSchema 

interfaces provided by JADE. These three interfaces describe the structure of concepts, actions 

and predicates that are allowed for an agent to create a message. 

 

Figure 50: Definition of ACL Message Structure. 

Figure 50 shows the instantiation of the ontology name and the structure of the message that 

consists of agent vocabulary, action and predicate. Then the ontology adds the vocabulary to the 



 

 

95 

MasterAgent and NodeAgent class, line 26-27 Figure 51. On line 29, the ontology inserts the 

Alive item to a ConceptSchema and adds an action to it, line 30-31.    

 

Figure 51: Structure of the NetworkOntology. 

Then the NodeAgent registers the defined ontology and language to its content manager before it 

can create the message, line 47-48 Figure 52. To encode and decode messages, system agents use 

the JADE SL codec. 

 

Figure 52: Language and Ontology Registration. 

The NodeAgent informs the agents with the message “Alive” by first searching the AMS for 

agents that are in the agent platform. On Figure 53 line 49 declares an array of AMS agent 

description and models a search constraint that has negative value to add all the agents in the 

agent platform, line 51-53. The agent composes an inform message and adds all the receivers to 

the AMS agent description array then sends the messages using the JADE SEND method, line 



 

 

96 

59-63.  

 

Figure 53: Agent Communication Implementation. 

The agent implements a cyclic behaviour method to prepare it to handle the incoming messages 

anytime any other agent sends it a message. The method receives the content of the message and 

the message sender name, line 70-71. The block() method tells an agent to only call the action() 

method again if a message is received. These messages are transported between agents in the 

agent platform or in different platform using FIPA MTP that is provided by an ACC. An ACC is 

responsible for sending and receiving messages in the agent platform according to the transport 

instructions contained in the message envelope. The message envelope has ten parameters and 

the ACC can only read these parameters but not the message content. Table 3 describes the 

message envelope parameters [43]. 

 



 

 

97 

Table 3: Message Envelope Parameters. 

Envelope Parameter Description 

To Message recipient(s) name 

From Message sender name 

Comments Message comments 

ACL-Representation Syntax representation of the message payload 

Payload-length Number of bytes for the message payload 

Payload-encoding Language encoding of the message payload 

Date Message envelope creation date and time 

Intended-receiver AID of the agent(s) to whom the message is to be delivered 

Received Stamp to indicate the receipt of a message by an ACC 

Transport-behaviour Transport requirements of the message 



 

 

98 

4.5.2. Creation of a Distributed System 

This section shows how system agents are started and then added to the agent platform to form 

MAS. The NodeAgents are added to the agent platform from the network devices thereby 

forming a fully distributed system. The NodeAgent is started on the managed device’s terminal; 

we first compile all the necessary classes including the technologies that are required, Figure 54. 

 

Figure 54: Starting the NodeAgent on Managed Device Terminal. 

Figure 54 shows how the NodeAgent is started on host 172.20.56.52 and added to agent platform 

on host 172.20.56.49. On the host that is running the agent platform with AMS GUI, a new 

container Container-1 is added with the agent that is on active state, Figure 55.With the 

implementation of the agent communication (show in the previous section), these agents can now 



 

 

99 

send each other messages directly using the common language defined. 

 

Figure 55: Creation of a Distributed System. 

To add more agents and devices to the agent platform, one follows the operation presented in 

Figure 54 and performs the commands on every network device.  

4.6. Conclusion 

This chapter followed the design method on Chapter 3 to implement a distributed network 

management system. The implementation process was explained with the use of some extract 

codes to highlight the major components of a network management system. This chapter showed 

how the technologies were used and integrated to form decentralized and flexible MAS. The 

following chapter shows the process of system testing by using test case and experiments thereby 

evaluating the system. 



 

 

100 

5. Testing and Evaluation 

This chapter presents an end-to-end testing of functional requirements of this system. This 

section considers the functional, usability and performance testing of our system. This chapter 

presents test cases that relate back to functional requirement components discussed in Chapter 

3. The main idea of this chapter is to test the code integration of the whole system from the 

MasterAgent to the NodeAgent. 

5.1. Introduction 

The purpose of this chapter is to check if the system conforms to the functional requirements 

specified. The system test will specifically consider performance management, agent 

communication, rule engine, data storage and analysis, and the overall system functionality. The 

performance test plan checks for data consumption and user system uptime threshold values; 

network interface detection, file system detection, CPU times and alerts when threshold are 

exceeded. The agent communication test plan will test if the agents in the agent platform are able 

to send/receive messages using the language and the ontology defined. The rule engine is tested 

to check if it is able to execute the given rules when the facts about the current state are true. 

What makes network management possible is a good monitoring tool; therefore the data storage 

must be able to collect and store the necessary information. This data storage must be accessible 

from all the managed devices in the network so they can be able to update the database. The 

system functionality test will check if the MasterAgent and NodeAgent are able to work together 

to achieve the network management goal. 

5.2. Performance Management Test 

This section evaluates the management of network resources and system hardware of the 

managed devices. First we test if the system is able to monitor the system bandwidth of a 

selected interface from the Bandwidth Meter GUI. The system is supposed, when the network 



 

 

101 

interface is selected, to calculate the consumed data in Kilobytes over time in seconds of that 

interface and dynamically show it in the GUI. The bandwidth meter measures the achieved 

throughput, which is the average rate of successful data handover over a communication path 

[72]. Figure 56 shows the Bandwidth Meter GUI that runs on the MasterAgent, a user chose to 

monitor the Ethernet network interface option and clicked the Start button on the GUI. Then the 

GUI starts capturing network packets information on that interface using a multi-platform library 

Hyperic-Sigar. 

 

Figure 56: Test for a Bandwidth Meter. 

Figure 56 shows that the operation of real-time bandwidth monitoring is possible and successful. 

There is a need to check the hardware state of the managed devices. This part test, if the system 

is able to detect the opened system files, retrieves CPU times, shows network interfaces and 

system uptime. The first phase of monitoring the system health is to retrieve the information of 

interest from the managed device and the second phase is to analyze and present it to an 

administrator. The information of interest is stored to database tables Figure 31 and Figure 36; 

and then an administrator checks the managed device hardware and user information in a web-

interface and views working network interface statistics in a GUI. The command to retrieve the 



 

 

102 

hardware and user information is executed inside a Java servlet connecting to a JDBC database 

when an administrator chooses which device they want to monitor. The web interface refreshes 

the information every 30 seconds and Figure 32 shows an administrator viewing the device 

information of user stheAVO. Figure 32 shows the system uptime, and lists the entire available 

network interfaces on the device. It also shows that the user currently uses the Ethernet cable to 

connect to the Internet. Figure 32 also shows the folders that are opened by the user, CPU times 

and the device memory with RAM size. The system keeps the inventory of device hardware 

information; it collects the managed device hardware information and stores it in the database as 

indicated on Figure 32. The web-interface also shows the device network information that 

includes the device MAC and IP address, network mask, gateway and Domain Name System 

(DNS) server address. 

The system has a responsibility to archive data consumption for every day of the week for data 

usage comparison. Figure 57 and Figure 58 shows the data consumed (sent/received in MB) and 

network packets (sent/received) over weekdays. 

 

Figure 57: Data Consumed (data in MB) in Days Comparisons. 



 

 

103 

 

Figure 58: Data Consumed (Packets in numbers) in Days Comparisons. 

The reason for data archiving is to check how much data the users consume over a period of time 

so we can optimize the network performance as time goes by and to check on which days users 

require most utilization of network resources.  

5.3. Agent Communication Test 

This section reviews the communication among the agents in the system; agents inform each 

other about their existence, ping each other to check if they are still alive or requesting agent 

information and services. The ontology and SL codec defined on the agent platform helps agents 

to ‘speak’ a common language. This communication test will show an exchange of messages 

among the MasterAgent, NodeAgent and the AMS through the SnifferAgent. The MasterAgent 

searches for all NodeAgents in the agent platform, adds them as recipients, composes a message 

that queries for their actual names and username of the device they are operating on and sends it. 



 

 

104 

Figure 59 shows success of message exchange in SnifferAgent between the AMS, MasterAgent, 

and the NodeAgent. 

 

Figure 59: SnifferAgent Shows Message Exchange in the Agent Platform. 

The SnifferAgent allows the administrator to track exchanged messages in the agent platform 

using a structure similar to Unified Modeling Language (UML) Sequence Diagrams. On Figure 

59 the MasterAgent sends a REQUEST message to the AMS that requests for a list of all the 

NodeAgents registered to the platform. The AMS replies with the list requested. The 

MasterAgent takes all the agents given by the AMS and adds them as message receivers, 

composes a request message for the recipients and then sends it. The NodeAgent receives a 

message from the MasterAgent and processes it appropriately and then responds with the 

required information. The NodeAgent implements a cyclic behaviour that waits for incoming 

messages and processes them accordingly. Figure 60 describes the message contents with the 

recipients, language and ontology used. The MasterAgent sends a REQUEST type of 

communicative act and the NodeAgent replies with the INFORM message type. 



 

 

105 

 

Figure 60: Message Contents between Agents. 

The language and ontology defined eases the handling of ACL message contents between agents 

and helps system agents to perform content semantic checks thereby providing support for 

meaningful conversations. Basically the ontology authenticates the information to be converted 

from the semantic point of view and the language codecs translates the ACL message strings into 

Java objects. Figure 61 describes this phenomenon, the message is easy to transfer as strings or 

sequence of bytes and easy for the agent to manipulate as Java objects.  

JADE support for 

Languages and 

Ontologies

 Info Represented as 

Java objects 

 Info Represented as 

Strings 

Inside of 

an Agent

Content slot of 

an ACL Message

 

Figure 61: Conversion and Translation Performed by JADE (adapted from [43]). 

Any agent that is registered to the agent platform can search for recipients in the AMS and sends 

applicable messages/requests using the Agent.send() method.  Any agent willing to receive a 

message calls the Agent.receive() and block() methods in its cyclic behaviour. The block() 



 

 

106 

method tells the agent behaviour to wait for incoming messages and to process them when they 

arrive. The process of sending and receiving messages is scheduled as independent agent 

activities through the ticker behaviour and cyclic behaviour. The system agents share messages 

based on specific topics thereby allowing only agents interested in that topic to process the 

message. This review shows a fully functional distributed system with full system agents’ 

negotiation support.  

5.4. Rule Engine Test 

This section reviews the rule engine that is embedded in the system agents. The rule engine 

offers the reasoning capabilities about the device state to the agents and performs basic 

management functions. The rules engine is supposed to check the data storage for the facts about 

the applications running, data consumption and system uptime and then when facts are true, the 

rule engine has to execute the rules. Figure 62 shows the system uptime rule and Figure 46 

shows how to retrieve facts from the database. The rule engine retrieves the system uptime 

information from the NodeInfo table and compares it to the machine-uptime rule, and then when 

the user has reached three hours of usage a JFrame GUI is popped to the user monitor. 



 

 

107 

 

Figure 62: System Uptime Rule Test. 

Figure 63 shows a GUI that displays to a user monitor when they reach 3 hours of system usage, 

the system uses Hyperic-Sigar library to get this information.  

 

Figure 63: GUI Showing When System-Uptime Rule Becomes True. 

When the rule fires an administrator gets their report notifying them about machine-uptime rule, 

Figure 64. 



 

 

108 

 

Figure 64: Terminal Report for an Administrator. 

This shows that our rule engine is able to reason about the managed device state and executes the 

given rules when thresholds are reached.  

5.5. Data Storage and Analysis 

The MasterAgent consists of nine tables and the NodeAgent is made up of two tables only. These 

tables store network statistics and device information. The NodeAgent sends the network 

statistics and the device information that it resides on the MasterAgent for archiving and 

analysis. The NodeInfo table (Figure 31) stores the device information, the Netstats table stores 

network statistics information, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday and 

Sunday tables stores the archived data consumption over a week. Figure 37 shows the 

information of interest acquired from a device that is: sent/received bytes in MB, sent/received 

packets and sent/received packet errors. The weekdays tables are described as in Figure 65, the 

table archives network data consumption for a day and is viewed in the MasterAgent by the GUI 

shown at Figure 57 and Figure 58. 



 

 

109 

 

Figure 65: Fields of Week Days Table. 

The NodeAgents logs in to the MasterAgent database using the IP address of the device where 

the MasterAgent resides, database name DeviceInfo and the database password. The NodeAgents 

on the network update the MasterAgent database with the device user and network information 

periodically. The week days tables are updated after each day, the user information table is 

updated when there is a new user on a network device, the hardware info is static so there is no 

need to update it every time and the network information is also updated with the new user on 

the device because the IP addresses change as most networks use Dynamic Host Configuration 

Protocol (DHCP) address leasing. The NodeAgent uses the ticker behaviour to facilitate the 

periodic database updates. 

An administrator uses the user interface on the MasterAgent to view the network analysis. These 

interfaces provide a detailed device, network and user information for an administrator and they 

are started and reside on the device that has an agent platform. An administrator also has a GUI 

that shows network packets in real-time, the packet user interface lists the available network 

interfaces and an administrator chooses from the list which interface they want to sniff and they 

start the capturing process. The network packet shows the device communications information 

because every packet has source/destination MAC and IP addresses, IP Protocol and packet 

length. At first the packet capture GUI, Figure 35, shows disabled buttons except for List and 

Exit, because at first a user can only list network interface before starting the capture process or 

exit the whole idea. Figure 66 shows the list of network interface available on the device after a 

user has clicked on List button. 



 

 

110 

 

 

Figure 66: Packet Capture GUI Listing Network Interfaces. 

After listing device network interfaces, the Select button becomes enabled and the cursor is 

focused on Interface text box for a user to type in the interface number inside the text box. When 

a user types the interface number and clicks the Select button the Capture, Save, Stop and Load 

buttons become enabled. When a user decides to capture packet on Interface 1 which is an 

Ethernet interface, the GUI appends the network packets on GUI as in Figure 67. 



 

 

111 

 

Figure 67: Packet Capturing Process on Selected Interface. 

When a user decides to save or load the packets to or from a file for analysis, they click on the 

Save and Load buttons and are presented with the following message when saving to file is 

successful, Figure 68. 

 

Figure 68: Success on Saving Packets. 

All this information is collected so the system agents and the administrator can analyze the 

network statistics and user operations on the network. 

 



 

 

112 

5.6. Network and Internet Connection Test 

This section reviews how the checkInternet() and checkInterface() methods deal with the NIC 

and network and Internet failures. The test plan for the checkInterface() method is to observe 

how the NodeAgent reacts when the network cable is not connected or when the network 

adaptors are disabled or when the NIC is totally not working. When the network cable is 

unplugged or when the adaptors are disconnected, the following message is displayed on the user 

screen by the NodeAgent behaviour, Figure 69. 

 

Figure 69: Test Error for Network Cable or Wireless Adaptor. 

When the NodeAgent detects that the available NIC is not working, it displays the following 

message, Figure 70. 

 

Figure 70: Test for NIC. 

The NodeAgent tests the network connection by retrieving the IP address of the device and tests 

if it is not reachable by using the Java isReachable() method, Figure 42. When the agent cannot 



 

 

113 

reach the local IP address, it displays a message informing the user that they are no longer 

connected to network and this could only arise if the network server is down, Figure 71.  

 

Figure 71: Testing Local IP Address Connectivity to the Network. 

The user cannot have Internet access when the network device IP address is not connected to the 

network and/or when the server is temporally down. When the user is connected to the network, 

the NodeAgent sends a request to an external known site to check if the whole network has 

Internet access. When the connection refuses, the NodeAgent generates a message about the 

failure, Figure 72. 

 

Figure 72: Internet Connection Test. 

These messages help the user to know where the problem is before they could call for assistance 

from the administrator. The NodeAgent performs this troubleshooting to identify what kind of an 

error is there, thereby eliminating the hustle from the users and ensuring high QoS by finding the 

failure before the users experience the problem. 

 



 

 

114 

5.7. Discussion 

This chapter reviewed an end-to-end functionality of the system based on the detailed functional 

specifications.  The purpose for this was to show how the system functions and to show that 

every module of the system, when integrated, functions correctly as whole. The system consists 

of the NodeAgent and MasterAgent agents, the NodeAgent is made of five modules which are: 

 System and User information collector; 

 Inference Engine; 

 Network statistics collector; 

 Network and Internet Connection; and 

 Ontology module. 

NodeAgent is also characterized by a number of behaviours that automate the modules and 

communication computations, while the MasterAgent consists of five modules that are: 

 Bandwidth meter; 

 Packet capture; 

 Consumed Data comparison; 

 Web-interface; and 

 Inference Engine. 



 

 

115 

It also has agent behaviours that facilitate the agent communication and module computations. 

Further, the MasterAgent has a database that stores the entire network and managed device 

information while the NodeAgent has a data storage that stores the information of the device it 

resides on. The NodeAgent resides on the managed devices and the MasterAgent resides on the 

agent platform, therefore making a distributed system. The number of NodeAgents that can be 

added to the agent platform is limitless thereby making the system to be flexible and cope with 

the scalability as the number of managed devices is increased. 

The system has only one running instance of the main-container in an agent platform that is 

started by running the MasterAgent class and a limitless number of containers (that run 

NodeAgents) can be added to the main-container. Figure 47 shows the initialization of the main-

container that consists of the MasterAgent, DF, AMS, RMA and tools to manipulate agents in the 

agent platform for example the SnifferAgent and DummyAgent with options to start new agents, 

kill running agents, clone/migrate agents, pause/resume agents. Figure 54 shows how the 

NodeAgent is started in a network device and added to the running agent platform. The 

NodeAgent is started without the –gui option on the terminal so that it would not start the RMA 

GUI or any other GUI (Figure 54), as it would inconvenience the device user and have a negative 

impact on the system performance [43]. The behaviours defined inside the agent start to perform 

their duties as soon as the NodeAgent and MasterAgent are initiated. For the system agents to 

operate there should be at least one main-container instance running in the agent platform at all 

times. Figure 73 shows how the main-container of the agent platform is started on the command 

line through the MasterAgent class. 

 

Figure 73: Starting the Main-Container. 



 

 

116 

The command includes the -gui option to start the RMA GUI with all the libraries and classes 

required by the MasterAgent. 

This system provides lightweight footprint agents that can be installed in any platform regardless 

of the machine OS that supports JVM, storage capacity (as the agents are very small in size), 

power capacity and processing capability as the agents do not use much of the CPU. The system 

provides ad hoc alerting service to the administrator and system users and a web interface that 

provides network and node statistics. This improves the quality of service and helps the network 

users with specific knowledge about the network and node failures should they arise. The system 

also provides system agents management GUI, this allows network administrator to start new or 

clone and kill agents, view system agents communications and requests, and view system agents 

operations and function on the network. 

5.8. Conclusion 

This chapter served to test the system components functionality and showed that when 

integrated, they work as one. The main aim of this chapter was to show that the system agents 

can perform as described and can operate in any operating system. The tests that were done 

include performance management, agent communication, inference engine and data storage and 

analysis tests. The next chapter provides the study conclusion and discusses the future work. 



 

 

117 

6. Conclusion and Future Work 

This is the last chapter of this dissertation; it provides an overall discussion on research findings 

and discusses how the research objectives were addressed. 

6.1. Introduction 

Chapter 5 provided the different system functionality tests to show how the system works and to 

address the requirements specified in Chapter 3. This dissertation has discussed the design and 

implementation details of the system and this chapter gives an overall summary of the 

dissertation. This chapter highlights how the research objectives were met and discusses the 

proposed future extensions of the system. The last section of this chapter gives an overall 

conclusion to the dissertation. 

6.2. Dissertation Discussion 

This dissertation presented an experimental study of a network management system using 

intelligent agents that can be used in small to medium sized networks. The use of intelligent 

agents in network management has been proven to be better than the traditional static 

management methods. This research discussed the main advantages and benefits of intelligent 

agents for network management. The basic motivation of this research was to develop a 

decentralized and flexible management system for SLL network thereby improving the QoS 

required by the users and ICTs deployed in the community. Developing this knowledge-based 

system required a lot of technologies to be integrated together and this was achieved through a 

thorough literature survey on network management systems based on intelligent agents. The 

research methodology followed the process of KE methodology to acquire knowledge about the 

implementation of the system and used the iterative development model as a life cycle for the 

system implementation. The iterative development model ensured that the system requirements 



 

 

118 

were conformed through unit testing of the system prototypes.   

The system was implemented using Java, JESS and MySQL languages on Windows and Ubuntu 

platforms; and it was tested on Windows and on UNIX systems. This was to ensure that it is 

platform independent as SLL mostly uses EduBuntu/Ubuntu and few devices run on Windows 

OS. The system package uses a number of libraries to make its operations successful for example 

JADE framework is used to implement the agent platform that complies with FIPA 

specifications; Jpcap is used to capture network data and packets; Hyperic-Sigar is used to 

collect the system and user information, JFreeChart is used to draw a dynamic chart for the 

presentation of network data; MySQL is used to facilitate the storage of network, system and 

user information in database and JESS is used to implement the inference engine. The system 

consists of two types of agents: the MasterAgent that resides on the agent platform and the 

NodeAgent that is designed to reside on the network devices. The system is designed to have as 

many instances of the NodeAgent as the network devices and only one or two instances of the 

MasterAgent. The second MasterAgent would be installed so the system can have a redundant 

agent platform in case the main agent platform dies unexpectedly. In this case, for the second 

agent platform to know about the system agents operations it would require to be linked to the 

DF of the main agent platform. This will ensure that it knows the agents operating on the 

network and the services they offer on the network management goal. 

6.3. Discussion on Research Objectives 

To develop this system a detailed literature survey was conducted so the system requirements 

can be specified and identify the technologies that will be required to achieve the main goals of 

this study. The basic aim of this study was to develop an intelligent and flexible network 

management system. The research objectives were answered as follows: 

Objective 1: a thorough survey was performed on traditional network management systems and  

 on agent-based management systems with their advantages and disadvantages. 



 

 

119 

Objective 2: the JADE platform integrated with JESS rule engine were chosen to develop 

decentralized system agents. 

Objective 3: a decentralized network management system with the following features was 

developed: 

 Network monitoring user interfaces that provide network statistics; these interfaces show 

the data consumed by the users on the network; 

 Data storage for the inventory of network devices, users on the network and network 

statistics; 

 Web interface that shows network users and device hardware information; 

 Agent platform that creates agent execution environment and also facilitates the 

decentralization of agents in the network; 

 Asynchronous system agent’s communication and agents that reside on network devices. 

This minimizes the bandwidth utilization when there are management functions to be 

carried on the managed device, now these operations can happen without the concern of 

the central server/controller; and 

 Knowledge-based system that uses the information in hand (facts) and the goals to take 

decisions about user operations on the network. 

 Objective 4: experimental lab tests were done on the system to test if the system 

complies with the functional requirements described in Section 3.4.1. 

This shows the success of developing a decentralized network management based on intelligent 



 

 

120 

agents because the system conforms to the system requirements specified and to the objectives of 

this research.  

6.4. Limitations and Future Work 

Even though the system functions positively (based on the functional tests), to install the system 

agents there is a need of an above average computer literacy. This can be improved by creating 

an executable file of system agents. This will also allow the agents to be started easily when the 

network nodes starts. All the tests performed on the system implemented we done in the lab 

environment, a need to deploy this autonomous system in a computer network system is 

necessary.  A possible extension to the system will be to develop a mobile application for a 

network manager to view network statistics and be able to interact with the agents. The current 

system is a stand-alone application. In future, the system can be integrated with other intelligent 

systems hence there will be a need to find a mechanism for that integration. 

6.5. Overall Conclusion 

This chapter described the overall discussion on the dissertation and discussed the functionality 

offered by the system with the suggested extensions to the research. This dissertation presented 

the development of a distributed network management using software agents. Most importantly, 

it highlighted the advantages and the benefits of using software agents in management systems 

with their drawbacks as compared to other competing technologies. Various mechanisms for 

network management were discussed in this study with their advantages and limitations. The 

study adopted used several tests for the technical system operation and showed how the agent 

platform and the system agents are started on the network devices. The tests showed that the 

system is capable of monitoring and performing basic management on network devices. Further, 

it proved that the system is platform independent and meets the system requirements.  



 

 

121 

7. References 

[1] E. B. Parker, “Closing the digital divide in Rural America,” Telecommunications Policy, 

vol. 24, no. 4, pp. 281–290, 2000. 

[2] A. Goldstein and D. O. Connor, “e-Commerce for Development: Procpects and Policy 

Issues,” Paris: OECD Development Centre, vol. Vol. 2001, 2000. 

[3] A. Dhananjay, M. Tierney, J. Li, and L. Subramanian, “WiRE : A New Rural Connectivity 

Paradigm,” ACM SIGCOMM Computer Communication Review, vol. 41, no. 4, pp. 462–

463, 2011. 

[4] J. Ahn, “Fault-tolerant Mobile Agent-based Monitoring Mechanism for Highly Dynamic 

Distributed Networks,” IJCSI International Journal of Computer Science, vol. 7, no. 3, 

pp. 1–7, 2010. 

[5] M. L. Griss, “Software Agents as Next Generation Software Components,” Components-

Based Software Engineering: Putting the Pieces Together., pp. 1–11, 2001. 

[6] H. Kim and N. Feamster, “Improving Network Management with Software Defined 

Networking,” IEEE Communications Magazine, vol. 51, no. 2, pp. 114–119, 2013. 

[7] I. Cisco Systems, Network Management Basics, Fourth Edition. Cisco press, 2004, pp. 

87–89. 

[8] B. Aboba, J. Arkho, and D. Harrington, “RFC 2975: Introduction to Accounting 

Management,” The Internet Society, no. October, 2000. 

[9] L. E. Miller, J. J. Kelleher, and L. Wong, “Evaluation Of Network Reliability,” White 

Paper, no. Report, December 2004, 2004. 

[10] M. Kundan, OSS for Telecom Networks: An Introduction to Networks Management. 

Springer, 2004, pp. 133–135. 

[11] A. Goldstuck, “Internet Matters : The Quiet Engine of the South African Economy,” 

World Wide Worx, 2012. 

[12] I. Siebörger and A. Terzoli, “Network Provision for Rural Development: The Case of the 

Siyakhula Living Lab,” Unpublished Manuscript, pp. 1–6, 2012. 

[13] A. M. Elmahalawy, “Intelligent Agents and Multi-Agent Systems,” Journal of 



 

 

122 

Engineering and Technology, vol. 2, no. 1, 2009. 

[14] J. M. Bradshaw, “An Introduction to Software Agents,” MIT Press, 1997. 

[15] R. Sugar and S. Imre, “Dynamic Agent Domains in Mobile Agent Based Network 

Management,” Networking—ICN 2001. Springer Berlin Heidelberg, pp. 468–477, 2001. 

[16] Y. Kim and S. Hariri, “ExNet : An Intelligent Network Management System,” WebNet, 

pp. 0–5, 1998. 

[17] OpenNMS, “Online: http://www.opennms.org/,” 2013. 

[18] D. Hustace, “End To End Monitoring: Hyperic HQ Intergration with OpenNMs,” White 

Paper, The OpenNMS Group Inc., 2013. 

[19] H. Wang and Y. Chen., “Network topology description and visualization,” Advanced 

Computer Theory and Engineering (ICACTE), 2010 3rd International Conference, vol. 6, 

IEEE 20, no. February, 2010. 

[20] OpManager, “Online: http://www.manageengine.com/network-performance-

management.html/,” 2013. 

[21] S. M. Magda, A. B. Rus, and V. Dobrota, “Nagios-based network management for 

Android, Windows and Fedora Core terminals using Net-SNMP agents,” in Roedunet 

International Conference (RoEduNet), 2013 11th, 2013, pp. 1–6. 

[22] Nagios, “Online: http://www. nagios.org,” 2013. 

[23] Hyperic HQ, “Hyperic HQ: Online http://www.hyperic.com/,” vol. Accessed J, 2013. 

[24] C. Thomas, “GroundWork Monitor Architecture Overview,” GroundWork Open Source, 

Online: http://www.groundworkopensource.com/, 2013. 

[25] Argus, “Online: http://www.argussoftware.com/en/,” 2013. 

[26] Cacti, “Online: http://www.cacti.net/,” 2013. 

[27] SNMPc, “Online: http://www.snmpc.ca/,” 2013. 

[28] NetXMS, “Online: http://www.netxms.org,” 2013. 

[29] G. Goldszmidt, Y. Yemini, and S. Yemini, “Network Management by Delegation: The 

MAD Approach,” Communications Magazine, IEEE, vol. 38, no. 3, pp. 66–70, 1998. 



 

 

123 

[30] V. Ioannis, B. Nick, S. Ilias, M. Martin, O. Sascha, F. Ivan, P. Zoltán, S. Janos, V. Igor, Y. 

Sergey, and N. Igor, “ExperNet : An Intelligent Multi-Agent System for WAN 

Management ∗,” Intelligent Systems, IEEE., vol. 17, no. 1, pp. 62–72, 2002. 

[31] M. Naylor, “The Use of Mobile Agents in Network Management Applications,” Submitted 

in partial fulfilment of the requirements of Napier University, for the degree of MSc 

Information Technology (Systems Integration). School of Computing (2000)., no. January, 

2000. 

[32] A. Maj, J. Jurowicz, J. Koźlak, and K. Cetnarowicz, “A Multi-Agent System for Dynamic 

Network Reconfiguration,” Multi-Agent Systems and Applications III. Springer Berlin 

Heidelberg, pp. 511–521, 2003. 

[33] Netview, “Online: http://www.netview.com/,” 2013. 

[34] C.-M. Chen and C.-P. Wei, “Efficient Network Monitoring for Large Networks,” Journal 

of Computers, Proceeding of 2007, vol. 18, no. 4, 2008. 

[35] J. Lefebvre, S. Chamberland, and P. Samuel, “A Network Management Framework Using 

Mobile Agents,” Electrical and Computer Engineering, IEEE CCECE 2003., vol. 2, pp. 

737–740, 2003. 

[36] D. Mitrovic, Z. Budimac, M. Ivanovic, and M. Vidakovic, “Improving Fault-Tolerance of 

Distributed Multi-Agent Systems with Mobile Network-Management Agents.,” Computer 

Science and Information Technology (IMCSIT), Proceedings of the 2010 International 

Multiconference on, vol. 5, pp. 217–222, 2010. 

[37] A. Tripathi, M. Koka, S. Karanth, I. Osipkov, H. Talkad, T. Ahmed, D. Johnson, and S. 

Dier, “Robustness and security in a mobile-agent based network monitoring system,” 

International Conference on Autonomic Computing, 2004. Proceedings., pp. 320–321, 

2004. 

[38] V. Pere, M. Jose L., A. Bueno, E. Calle, and F. Lluis, “Distributed Network Resource 

Management using a Multi-Agent System: Scalability Evaluation.,” International 

Symposium on Performance Evaluation of Computer and Telecommunication Systems., 

vol. SPECTS'04, pp. 355–362, 2004. 

[39] S. Papavassiliou, A. Puliafito, T. Orazio, and J. Ye, “Mobile Agent Based Approach for 

Efficient Network Management and Resource Allocation : Framework and Applications.,” 

Selected Areas in Communications, IEEE JOurnal., vol. 20, no. 4, 2002. 

[40] R. Schoonderwoerd, O. Holland, and J. Bruten, “Ant-like agents fschor load balancing in 

telecommunications networks,” Proceedings of the first international conference on 



 

 

124 

Autonomous agents - AGENTS  ’97, pp. 209–216, 1997. 

[41] I. Satoh, “Building Reusable Mobile Agents for Network Management,” Systems, Man, 

and Cybernetics, Part C: Applications and Reviews, IEEE Transactions., vol. 33, no. 3, 

pp. 350–357, 2003. 

[42] N. R. Jennings and M. J. Wooldridge, Agent Technology: Foundations, Applications and 

Markets. London, UK: Springer Berlin / Heidelberg, 1998, pp. 3–49. 

[43] F. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-Agent Systems with JADE. 

John Wiley & Sons, Ltd, 2007. 

[44] S. Kraus, “Negotiation and Cooperation in Multi-Agent Environments *,” Aritificial 

Intelligence, vol. 94, no. 1, pp. 79–97, 1997. 

[45] B. Hu, J. Hidders, and P. Cimiano, “A rule engine for relevance assessment in a 

contextualized information delivery system,” Proceedings of the 15th international 

conference on Intelligent user interfaces - IUI  ’11, pp. 343–346, 2011. 

[46] OpenRules, “Online: http://www.open.com/,” 2013. 

[47] E. J. Friedman-Hill, “Jess , The Expert System Shell for the Java Platform,” Sandia 

National Laboratories, no. November 2008, 2008. 

[48] Prolog, “Online: 

http://http://www.amzi.com/ExpertSystemsInProlog/02usingprolog.htm/,” 2013. 

[49] D. Merritt, Building Expert Systems in Prolog. New York, NY: Springer New York, 2001, 

pp. 9–11. 

[50] D. Gavalas, G. E. Tsekouras, and C. Anagnostopoulos, “A mobile agent platform for 

distributed network and systems management,” Journal of Systems and Software, vol. 82, 

no. 2, pp. 355–371, Feb. 2009. 

[51] G. Cabri, L. Leonardi, and F. Zambonelli, “Weak and Strong Mobility in Mobile Agent 

Applications,” Proceedings of the 2nd International Conference and Exhibition on The 

Practical Application of Java, Manchester, UK, 2001. 

[52] C. Bădică, Z. Budimac, H.-D. Burkhard, and M. Ivanovic, “Software agents: Languages, 

tools, platforms,” Computer Science and Information Systems/ComSIS, vol. 8, no. 2, pp. 

255–298, 2011. 

[53] M. T. Kone, A. Shimazu, and T. Nakajima, “The State of the Art in Agent 



 

 

125 

Communication,” Knowledge and Information Systems, vol. 2, pp. 259–284, 2000. 

[54] M. Barbuceanu and M. S. Fox, “COOL : A Language for Describing Coordination in 

Multi Agent Systems,” ICMAS, pp. 17–24, 1995. 

[55] M. Dastani, A. El Fallah-seghrouchni, A. Ricci, and M. Winikoff, Programming Multi-

Agent Systems. Springer, 2008, 2007. 

[56] R. H. Bordini, L. Braubach, J. J. Gomez-sanz, G. O. Hare, A. Pokahr, and A. Ricci, “A 

Survey of Programming Languages and Platforms for Multi-Agent Systems,” Informatica 

(Slovenia), vol. 30, no. 1, pp. 33–44, 2006. 

[57] M. Dastani, M. B. Van Riemsdijk, and J. Meyer, “Programming Multi-Agent Systems in 

3APl,” Multi-agent programming. Springer US, pp. 39–67, 2005. 

[58] M. Thielscher, “FLUX : A Logic Programming Method for Reasoning Agents,” Theory 

and Practice of Logic Programming, vol. 5., no. 4–5, pp. 533–565, 2005. 

[59] C. A. Iglesias, M. Garijo, and J. C. Gonzalez, “A Survey of Agent-Oriented 

Methodologies,” Framework 2, vol. 34, 1999. 

[60] O. Arazy and C. C. Woo, “Analysis and Design of Agent-Oriented Information Systems,” 

The knowledge engineering review, vol. 17, no. 3, pp. 215–260, 2002. 

[61] F. Bergenti and P. Turci, Agent-Oriented Software Engineering, Vol. 11. Springer1, 2004, 

pp. 65–147. 

[62] L. Cernuzzi, T. Juan, L. Sterling, and F. Zambonelli, “The Gaia Methodology- Basic 

Concepts and Extensions,” Methodologies and Software Engineering for Agent Systems., 

pp. 69–87, 2004. 

[63] P. Moraïtis, E. Petraki, and N. I. Spanoudakis, “Engineering JADE Agents with the Gaia 

Methodology,” Agent Technologies, Infrastructures, Tools, and Applications for e-

Services., pp. 77–91, 2003. 

[64] M. Wooldridge, N. R. Jennings, and D. Kinny, “A Methodology for Agent-Oriented 

Analysis and Design,” Autonomous Agents and Multi-Agent Systems, vol. 3, no. 3, pp. 85–

312, 2000. 

[65] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos, “Tropos: An 

Agent-Oriented Software Development Methodology,” Autonomous Agents and Multi-

Agent Systems, vol. 8, no. 3, pp. 203–236., 2004. 



 

 

126 

[66] G. Picard and M. Gleizes, “The Adelfe Methodology: Designing Adaptive Cooperative 

Multi-Agent Systems,” Methodologies and Software Engineering for Agent Systems., pp. 

157–176, 2004. 

[67] C. Bernon, M. Gleizes, S. Peyruqueou, and G. Picard, “ADELFE , a Methodology for 

Adaptive Multi-Agent Systems Engineering,” In Engineering Societies in the Agents 

World III, pp. 156–169, 2003. 

[68] L. Padgham and M. Winikoff, “Prometheus : A Methodology for Developing Intelligent 

Agents,” Agent-oriented software engineering III, pp. 174–185, 2003. 

[69] T. S. Vaquero, J. R. Silva, and J. C. Beck, “A brief review of tools and methods for 

knowledge engineering for planning & scheduling.,” Proceedings of the Workshop on 

Knowledge Engineering for Planning and Scheduling, Germany, pp. 7–14, 2011. 

[70] N. Perry and S. Ammar-Khodja, “A Knowledge Engineering Method for New Product 

Development,” Journal of Decision Systems, vol. 19, no. 1, pp. 117–133, Jan. 2010. 

[71] M. Garijo, A. Cancer, and J. J. Sánchez, “A Multiagent System for Cooperative Network-

Fault Management,” Proceedings of the First International Conference on the Practical 

Applications of Intelligent Agents and Multi-agent Technology, PAAM96., no. 1, pp. 279–

294, 1996. 

[72] W. Lau, G. F. Rosenbaum, and S. Jha, “Comments on ‘Dynamic Routing of Restorable 

Bandwidth-Guaranteed Tunnels Using Aggregated Network Resource Usage 

Information’,” IEEE/ACM Transactions on Networking, vol. 16, no. 1, pp. 244–245, 2008.  

 


