4,334 research outputs found

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements

    Highly accurate model for prediction of lung nodule malignancy with CT scans

    Get PDF
    Computed tomography (CT) examinations are commonly used to predict lung nodule malignancy in patients, which are shown to improve noninvasive early diagnosis of lung cancer. It remains challenging for computational approaches to achieve performance comparable to experienced radiologists. Here we present NoduleX, a systematic approach to predict lung nodule malignancy from CT data, based on deep learning convolutional neural networks (CNN). For training and validation, we analyze >1000 lung nodules in images from the LIDC/IDRI cohort. All nodules were identified and classified by four experienced thoracic radiologists who participated in the LIDC project. NoduleX achieves high accuracy for nodule malignancy classification, with an AUC of ~0.99. This is commensurate with the analysis of the dataset by experienced radiologists. Our approach, NoduleX, provides an effective framework for highly accurate nodule malignancy prediction with the model trained on a large patient population. Our results are replicable with software available at http://bioinformatics.astate.edu/NoduleX

    AI-Enabled Lung Cancer Prognosis

    Full text link
    Lung cancer is the primary cause of cancer-related mortality, claiming approximately 1.79 million lives globally in 2020, with an estimated 2.21 million new cases diagnosed within the same period. Among these, Non-Small Cell Lung Cancer (NSCLC) is the predominant subtype, characterized by a notably bleak prognosis and low overall survival rate of approximately 25% over five years across all disease stages. However, survival outcomes vary considerably based on the stage at diagnosis and the therapeutic interventions administered. Recent advancements in artificial intelligence (AI) have revolutionized the landscape of lung cancer prognosis. AI-driven methodologies, including machine learning and deep learning algorithms, have shown promise in enhancing survival prediction accuracy by efficiently analyzing complex multi-omics data and integrating diverse clinical variables. By leveraging AI techniques, clinicians can harness comprehensive prognostic insights to tailor personalized treatment strategies, ultimately improving patient outcomes in NSCLC. Overviewing AI-driven data processing can significantly help bolster the understanding and provide better directions for using such systems.Comment: This is the author's version of a book chapter entitled: "Cancer Research: An Interdisciplinary Approach", Springe

    Artificial intelligence in cancer imaging: Clinical challenges and applications

    Get PDF
    Judgement, as one of the core tenets of medicine, relies upon the integration of multilayered data with nuanced decision making. Cancer offers a unique context for medical decisions given not only its variegated forms with evolution of disease but also the need to take into account the individual condition of patients, their ability to receive treatment, and their responses to treatment. Challenges remain in the accurate detection, characterization, and monitoring of cancers despite improved technologies. Radiographic assessment of disease most commonly relies upon visual evaluations, the interpretations of which may be augmented by advanced computational analyses. In particular, artificial intelligence (AI) promises to make great strides in the qualitative interpretation of cancer imaging by expert clinicians, including volumetric delineation of tumors over time, extrapolation of the tumor genotype and biological course from its radiographic phenotype, prediction of clinical outcome, and assessment of the impact of disease and treatment on adjacent organs. AI may automate processes in the initial interpretation of images and shift the clinical workflow of radiographic detection, management decisions on whether or not to administer an intervention, and subsequent observation to a yet to be envisioned paradigm. Here, the authors review the current state of AI as applied to medical imaging of cancer and describe advances in 4 tumor types (lung, brain, breast, and prostate) to illustrate how common clinical problems are being addressed. Although most studies evaluating AI applications in oncology to date have not been vigorously validated for reproducibility and generalizability, the results do highlight increasingly concerted efforts in pushing AI technology to clinical use and to impact future directions in cancer care

    Cancer Outcome Prediction with Multiform Medical Data using Deep Learning

    Get PDF
    This thesis illustrated the work done for my PhD project, which aims to develop personalised cancer outcome prediction models using various types of medical data. A predictive modelling workflow that can analyse data with different forms and generate comprehensive outcome prediction was designed and implemented on a variety of datasets. The model development was accompanied by applying deep learning techniques for multivariate survival analysis, medical image analysis and sequential data processing. The modelling workflow was applied to three different tasks: 1. Deep learning models were developed for estimating the progression probability of patients with colorectal cancer after resection and after different lines of chemotherapy, which got significantly better predictive performance than the Cox regression models. Besides, CT-based models were developed for predicting the tumour local response after chemotherapy of patients with lung metastasis, which got an AUC of 0. 769 on disease progression detection and 0.794 on treatment response classification. 2. Deep learning models were developed for predicting the survival state of patients with non-small cell lung cancer after radiotherapy using CT scans, dose distribution and disease and treatment variables. The eventual model obtained by ensemble voting got an AUC of 0.678, which is significantly higher than the score achieved by the radiomics model (0.633). 3. Deep-learning-aided approaches were used for estimating the progression risk for patients with solitary fibrous tumours using digital pathology slides. The deep learning architecture was able to optimise the WHO risk assessment model using automatically identified levels of mitotic activity. Compared to manual counting given by pathologists, deep-learning-aided mitosis counting can re-grade the patients whose risks were underestimated. The applications proved that the predictive models based on hybrid neural networks were able to analyse multiform medical data for generating data-based cancer outcome prediction. The results can be used for realising personalised treatment planning, evaluating treatment quality, and aiding clinical decision-making
    corecore