762 research outputs found

    A machine learning approach to Structural Health Monitoring with a view towards wind turbines

    Get PDF
    The work of this thesis is centred around Structural Health Monitoring (SHM) and is divided into three main parts. The thesis starts by exploring di�erent architectures of auto-association. These are evaluated in order to demonstrate the ability of nonlinear auto-association of neural networks with one nonlinear hidden layer as it is of great interest in terms of reduced computational complexity. It is shown that linear PCA lacks performance for novelty detection. The novel key study which is revealed ampli�es that single hidden layer auto-associators are not performing in a similar fashion to PCA. The second part of this study concerns formulating pattern recognition algorithms for SHM purposes which could be used in the wind energy sector as SHM regarding this research �eld is still in an embryonic level compared to civil and aerospace engineering. The purpose of this part is to investigate the e�ectiveness and performance of such methods in structural damage detection. Experimental measurements such as high frequency responses functions (FRFs) were extracted from a 9m WT blade throughout a full-scale continuous fatigue test. A preliminary analysis of a model regression of virtual SCADA data from an o�shore wind farm is also proposed using Gaussian processes and neural network regression techniques. The third part of this work introduces robust multivariate statistical methods into SHM by inclusively revealing how the in uence of environmental and operational variation a�ects features that are sensitive to damage. The algorithms that are described are the Minimum Covariance Determinant Estimator (MCD) and the Minimum Volume Enclosing Ellipsoid (MVEE). These robust outlier methods are inclusive and in turn there is no need to pre-determine an undamaged condition data set, o�ering an important advantage over other multivariate methodologies. Two real life experimental applications to the Z24 bridge and to an aircraft wing are analysed. Furthermore, with the usage of the robust measures, the data variable correlation reveals linear or nonlinear connections

    Ensemble Models in Forecasting Financial Markets

    Get PDF

    Machine learning and deep learning based methods toward Industry 4.0 predictive maintenance in induction motors: Α state of the art survey

    Get PDF
    Purpose: Developments in Industry 4.0 technologies and Artificial Intelligence (AI) have enabled data-driven manufacturing. Predictive maintenance (PdM) has therefore become the prominent approach for fault detection and diagnosis (FD/D) of induction motors (IMs). The maintenance and early FD/D of IMs are critical processes, considering that they constitute the main power source in the industrial production environment. Machine learning (ML) methods have enhanced the performance and reliability of PdM. Various deep learning (DL) based FD/D methods have emerged in recent years, providing automatic feature engineering and learning and thereby alleviating drawbacks of traditional ML based methods. This paper presents a comprehensive survey of ML and DL based FD/D methods of IMs that have emerged since 2015. An overview of the main DL architectures used for this purpose is also presented. A discussion of the recent trends is given as well as future directions for research. Design/methodology/approach: A comprehensive survey has been carried out through all available publication databases using related keywords. Classification of the reviewed works has been done according to the main ML and DL techniques and algorithms Findings: DL based PdM methods have been mainly introduced and implemented for IM fault diagnosis in recent years. Novel DL FD/D methods are based on single DL techniques as well as hybrid techniques. DL methods have also been used for signal preprocessing and moreover, have been combined with traditional ML algorithms to enhance the FD/D performance in feature engineering. Publicly available datasets have been mostly used to test the performance of the developed methods, however industrial datasets should become available as well. Multi-agent system (MAS) based PdM employing ML classifiers has been explored. Several methods have investigated multiple IM faults, however, the presence of multiple faults occurring simultaneously has rarely been investigated. Originality/value: The paper presents a comprehensive review of the recent advances in PdM of IMs based on ML and DL methods that have emerged since 2015Peer Reviewe

    Kernel-Based Framework for Multitemporal and Multisource Remote Sensing Data Classification and Change Detection

    Get PDF
    The multitemporal classification of remote sensing images is a challenging problem, in which the efficient combination of different sources of information (e.g., temporal, contextual, or multisensor) can improve the results. In this paper, we present a general framework based on kernel methods for the integration of heterogeneous sources of information. Using the theoretical principles in this framework, three main contributions are presented. First, a novel family of kernel-based methods for multitemporal classification of remote sensing images is presented. The second contribution is the development of nonlinear kernel classifiers for the well-known difference and ratioing change detection methods by formulating them in an adequate high-dimensional feature space. Finally, the presented methodology allows the integration of contextual information and multisensor images with different levels of nonlinear sophistication. The binary support vector (SV) classifier and the one-class SV domain description classifier are evaluated by using both linear and nonlinear kernel functions. Good performance on synthetic and real multitemporal classification scenarios illustrates the generalization of the framework and the capabilities of the proposed algorithms.Publicad

    Validating a neural network-based online adaptive system

    Get PDF
    Neural networks are popular models used for online adaptation to accommodate system faults and recuperate against environmental changes in real-time automation and control applications. However, the adaptivity limits the applicability of conventional verification and validation (V&V) techniques to such systems. We investigated the V&V of neural network-based online adaptive systems and developed a novel validation approach consisting of two important methods. (1) An independent novelty detector at the system input layer detects failure conditions and tracks abnormal events/data that may cause unstable learning behavior. (2) At the system output layer, we perform a validity check on the network predictions to validate its accommodation performance.;Our research focuses on the Intelligent Flight Control System (IFCS) for NASA F-15 aircraft as an example of online adaptive control application. We utilized Support Vector Data Description (SVDD), a one-class classifier to examine the data entering the adaptive component and detect potential failures. We developed a decompose and combine strategy to drastically reduce its computational cost, from O(n 3) down to O( n32 log n) such that the novelty detector becomes feasible in real-time.;We define a confidence measure, the validity index, to validate the predictions of the Dynamic Cell Structure (DCS) network in IFCS. The statistical information is collected during adaptation. The validity index is computed to reflect the trustworthiness associated with each neural network output. The computation of validity index in DCS is straightforward and efficient.;Through experimentation with IFCS, we demonstrate that: (1) the SVDD tool detects system failures accurately and provides validation inferences in a real-time manner; (2) the validity index effectively indicates poor fitting within regions characterized by sparse data and/or inadequate learning. The developed methods can be integrated with available online monitoring tools and further generalized to complete a promising validation framework for neural network based online adaptive systems

    Towards a multipurpose neural network approach to novelty detection

    Get PDF
    Novelty detection, the identification of data that is unusual or different in some way, is relevant in a wide number of real-world scenarios, ranging from identifying unusual weather conditions to detecting evidence of damage in mechanical systems. However, utilising novelty detection approaches in a particular scenario presents significant challenges to the non-expert user. They must first select an appropriate approach from the novelty detection literature for their scenario. Then, suitable values must be determined for any parameters of the chosen approach. These challenges are at best time consuming and at worst prohibitively difficult for the user. Worse still, if no suitable approach can be found from the literature, then the user is left with the impossible task of designing a novelty detector themselves. In order to make novelty detection more accessible, an approach is required which does not pose the above challenges. This thesis presents such an approach, which aims to automatically construct novelty detectors for specific applications. The approach combines a neural network model, recently proposed to explain a phenomenon observed in the neural pathways of the retina, with an evolutionary algorithm that is capable of simultaneously evolving the structure and weights of a neural network in order to optimise its performance in a particular task. The proposed approach was evaluated over a number of very different novelty detection tasks. It was found that, in each task, the approach successfully evolved novelty detectors which outperformed a number of existing techniques from the literature. A number of drawbacks with the approach were also identified, and suggestions were given on ways in which these may potentially be overcome

    A strategy for short-term load forecasting in Ireland

    Get PDF
    Electric utilities require short-term forecasts of electricity demand (load) in order to schedule generating plant up to several days ahead on an hourly basis. Errors in the forecasts may lead to generation plant operation that is not required or sub-optimal scheduling of generation plants. In addition, with the introduction of the Electricity Regulation Act 1999, a deregulated market structure has been introduced, adding increased impetus to reducing forecast error and the associated costs. This thesis presents a strategy for reducing costs from electrical demand forecast error using models designed specifically for the Irish system. The differences in short-term load forecasting models are examined under three independent categories: how the data is segmented prior to modelling, the modelling technique and the approach taken to minimise the effect of weather forecast errors present in weather inputs to the load forecasting models. A novel approach is presented to determine whether the data should be segmented by hour of the day prior to modelling. Several segmentation strategies are analysed and the one appropriate for Irish data identified. Furthermore, both linear and nonlinear techniques are compared with a view to evaluating the optimal model type. The effect of weather forecast errors on load forecasting models, though significant, has largely been ignored in the literature. Thus, the underlying issues are examined and a novel method is presented which minimises the effect of weather forecast errors

    Dynamic non-linear system modelling using wavelet-based soft computing techniques

    Get PDF
    The enormous number of complex systems results in the necessity of high-level and cost-efficient modelling structures for the operators and system designers. Model-based approaches offer a very challenging way to integrate a priori knowledge into the procedure. Soft computing based models in particular, can successfully be applied in cases of highly nonlinear problems. A further reason for dealing with so called soft computational model based techniques is that in real-world cases, many times only partial, uncertain and/or inaccurate data is available. Wavelet-Based soft computing techniques are considered, as one of the latest trends in system identification/modelling. This thesis provides a comprehensive synopsis of the main wavelet-based approaches to model the non-linear dynamical systems in real world problems in conjunction with possible twists and novelties aiming for more accurate and less complex modelling structure. Initially, an on-line structure and parameter design has been considered in an adaptive Neuro- Fuzzy (NF) scheme. The problem of redundant membership functions and consequently fuzzy rules is circumvented by applying an adaptive structure. The growth of a special type of Fungus (Monascus ruber van Tieghem) is examined against several other approaches for further justification of the proposed methodology. By extending the line of research, two Morlet Wavelet Neural Network (WNN) structures have been introduced. Increasing the accuracy and decreasing the computational cost are both the primary targets of proposed novelties. Modifying the synoptic weights by replacing them with Linear Combination Weights (LCW) and also imposing a Hybrid Learning Algorithm (HLA) comprising of Gradient Descent (GD) and Recursive Least Square (RLS), are the tools utilised for the above challenges. These two models differ from the point of view of structure while they share the same HLA scheme. The second approach contains an additional Multiplication layer, plus its hidden layer contains several sub-WNNs for each input dimension. The practical superiority of these extensions is demonstrated by simulation and experimental results on real non-linear dynamic system; Listeria Monocytogenes survival curves in Ultra-High Temperature (UHT) whole milk, and consolidated with comprehensive comparison with other suggested schemes. At the next stage, the extended clustering-based fuzzy version of the proposed WNN schemes, is presented as the ultimate structure in this thesis. The proposed Fuzzy Wavelet Neural network (FWNN) benefitted from Gaussian Mixture Models (GMMs) clustering feature, updated by a modified Expectation-Maximization (EM) algorithm. One of the main aims of this thesis is to illustrate how the GMM-EM scheme could be used not only for detecting useful knowledge from the data by building accurate regression, but also for the identification of complex systems. The structure of FWNN is based on the basis of fuzzy rules including wavelet functions in the consequent parts of rules. In order to improve the function approximation accuracy and general capability of the FWNN system, an efficient hybrid learning approach is used to adjust the parameters of dilation, translation, weights, and membership. Extended Kalman Filter (EKF) is employed for wavelet parameters adjustment together with Weighted Least Square (WLS) which is dedicated for the Linear Combination Weights fine-tuning. The results of a real-world application of Short Time Load Forecasting (STLF) further re-enforced the plausibility of the above technique

    Winner Take All Experts Network for Sensor Validation

    Get PDF
    The proposed Winner Take All Experts (WTAE) network is based on 'divide and conquer'. It employs growing fuzzy clustering methods to di vide a complicated problem into a series of simple sub-problems and assign an expert to each of them. It also allocates every new case to one of the experts, and, if the output is incorrect, the weight adaptation is localized to the local expert. As a result, it is a fast learning algorithm without knowing a priori information. After the sensor approximation, the outputs from the estimator and the rea] sensor readings are compared both in time domain and in frequency domain. Three fault indicators are used to detect the sensor failure. In the decision stage, the intersection of three fuzzy sets accomplishes a decision level fusion, which indicates the confidence level of the sensor health. Two data sets, the Spectra Quest (SQ) Machinery Fault Simulator data set and the Westland vibration data set were used in simulation experiments to demonstrate the perfonnance of the WTAE network. Comparisons of tracking performance among the proposed network and MLP, RBF network were performed. The WTAE was found competiti ve with or even superior to the others. Comparisons for decision making processes between WTAE network and traditional time domain indicators were also performed. The WTAE achieved 100% correct detection for both testing data set without knowing a priori information. Using the same testing sets, the traditional indicators only detected Jess than 87.5% failure states depending on knowledge of characteristics of both the sensors and the environments
    corecore