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Abstract: In the current paper we study an evolutionary framework for the optimization of 

various types of Neural Networks structures and parameters. Three different evolutionary 

algorithms, named as Genetic Algorithms (GA) Differential Evolution (DE) and Particle 

Swarm Optimizer (PSO) are developed to optimize the structure and the parameters of three 

different types of Neural Networks: a Multilayer Perceptron (MLP) Recurrent Neural Network 

(RNN) and Radial Basis Function Neural Network (RBF). The motivation of this project is to 

present novel methodologies for the task of forecasting and trading financial indices. More 

specifically, the trading and statistical performance of all models is investigated in a forecast 

simulation of the SPY and the QQQ exchange-traded funds (ETFs) time series over the period 

January 2006 to December 2015 using the last 3 years as out-of-sample testing. As it turns out, 

the RBF-PSO, RBF- DE and RBF-GA ensemble methodologies do remarkably well and 

outperform all the other models. 
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1. Introduction 

Artificial neural networks have been popularly used for time series predictions since the 1980s. 

As Crone and Nikolopoulos (2007) mentioned in their recent research, till 2007 there have been 

around 5,000 publications in forecasting with neural networks applications. The most popular 

and well-known neural networks can be listed in 3 categories: multi-layer perceptron (MLP), 

recurrent neural networks (RNN) and radial basis function networks (RBF). The most popular 

learning algorithm that has been used for the training of the neural networks as Rumelhart et 

al. (1986) mentioned is the “back-propagation error” algorithm (BP) which can be described 

as "a milestone” in the field of forecasting with neural networks. However, there are still 

problems with neural networks when they are applied to real-world data such as 1) selection of 

the best inputs, 2) optimization of the weights of the neural network, 3) selection of the best 

fitness functions and 4) optimization in maximizing the forecasted output. In terms of 

overcoming the previous limitations, we are introducing novel ensemble neural network 

architectures of Particle Swarm, Genetic Algorithms, and Differential Evolution. More 

specifically, we propose fully adaptive architectures that decrease the number of parameters 

that practitioners need to set while on the other hand, this increases the forecasting ability of 

the neural network. In our paper, our proposed methodology comes in nine different versions 

where the three neural networks are combined with the three optimizers separately each time. 

Therefore we have an MLP combined with DE, GA and PSO optimizers secondly an RNN 

combined with DE, GA, and PSO optimizers and finally, an RBF combined with DE, GA and 

PSO optimizers in a forecasting and trading simulation of the  SPY and the QQQ exchange-

traded funds (ETFs) time series.  

The rest of the paper is organized as follows: Section 2 presents the literature review which is 

focused on forecasting methodologies and, in particular, on ensemble neural networks. Section 

3 describes the dataset used for the experiments and the descriptive statistics. Section 4 

describes the models in this paper. Section 5 is the penultimate chapter which presents the 

empirical results and an overview of the benchmark models and in the final section, we present 

the conclusion.  

2. Literature review 

In the last decade, significant research on neural networks has been conducted, showing their 

superiority against other linear methodologies. Zhang and Berardi (2001), Hansen and Nelson 

(2003), Dunis et al. (2011), (2014) Karathanasopoulos et al. (2015a) (2016), Sermpinis et al 

(2012) and (2013), have published a number of papers, forecasting different stock markets, 

stating that multilayer perceptrons, higher order, and radial basis function neural networks 

outperform linear models such as the autoregressive moving average model, a naïve strategy, 

and a random walk model. Further, a new technique of combining linear with nonlinear or 

nonlinear with nonlinear models brought stronger performance in the area of forecasting.  Nag 

and Mitra (2005) used a hybrid artificial intelligence method, based on a neural network and 



genetic algorithm for modelling daily foreign exchange rates Sermpinis et al (2013) and 

Karathanasopoulos et al (2015b) have created ensemble models combining support vector 

machines with genetic algorithms in terms of forecasting the Greek stock market.   

Being more specific in this paper among the various neural network techniques, we will use 

the Radial Basis Function (RBF) Neural Networks, Multilayer Perceptron (MLP) Neural 

Networks and Recurrent Neural Networks (RNN). The novelty of this project is the 

combination of all the previous neural networks with Particle Swarm Optimizers (PSO), 

Genetic Algorithms (GA) and Differential Evolution (DE).  Kennedy and Eberhart (1995) 

mention that these types of combined algorithms optimize the neural network parameters, 

structure and training procedure. Because there is quite poor research comparing only ensemble 

models, we took the opportunity to test them and compare them for the task of forecasting two 

exchange-traded funds (ETFs).  Karathanasopoulos et al (2010) and Irani and Nasimi, (2011) 

were the first to use the genetic algorithms combined with neural networks for stock indices 

predictions. Moreover, Zhang et al. (2007) and Sermpinis et al. (2013)  combined the particle 

swarm optimizer with radial basis functions in the task of forecasting exchange currencies. 

Differential evolution optimizers (DE) have been used by Onwubolu and Davendra, (2006), 

Qu et al., (2012) and  Wang et al., (2012)   to select the initial connection weights and thresholds 

of neural networks. Vesterstrom and Thomsen (2004) mentioned that the differential evolution 

algorithm (DE) performs better than other popular intelligent algorithms, such as GA and PSO, 

based on 34 widely used benchmark functions. Compared with popular intelligent algorithms, 

the DE has less complex genetic operations because of its simple mutation operation and a one-

to-one competition survival strategy. Furthermore, Wang et al. (2012) and Cai and Wang (2013) 

noticed that DE can also use individual local information and population to search for the 

optimal solution. However, even if DE is an easy to implement algorithm only a few 

researchers have used the DE to select suitable initial connection weights and thresholds in 

time series forecasting.  

3. Data and Methods 

3.1. Dataset 

The study is based on exchange-traded funds, abbreviated ETFs. These investment vehicles are 

designed to replicate major stock indices, commodities, or other financial series, providing 

investors and easy access to various asset classes. Also, they offer to investors the opportunity 

to trade at very low transaction costs. The advantages of ETFs over “conventional trading” are 

well documented by Dolvin (2010) and Marshall at al. (2013). 

In this research, nine ensemble adaptive neural networks are applied to the task of forecasting 

and trading two popular ETFs: SPDR S&P 500 ETF Trust (SPY) and the Invesco QQQ Trust.  

SPY is the oldest and best-recognized ETF with one of the largest assets under management 

and the highest trading volume. It tracks the well-established S&P500 index representing the 

large-cap universe of US equities. It offers investors an easily-attainable exposure to a 

diversified portfolio of US stocks. 



QQQ is also one of the most actively traded and best established ETFs. In contrary to SPY, it 

focuses solely on nonfinancial companies listed on NASDAQ. QQQ provides investors and 

exposure to – predominantly – US large-cap high-tech companies.  

Both funds are listed in US dollars. We collect the source data from XXX. In particular, all 

ensemble models under the study forecast the one day ahead logarithmic returns of the two 

ETFs in two separated forecasting exercises. The relevant datasets are presented in Table 1. 

Name of Period 
Number of 

Trading Days 
Beginning End 

Full Sample 3250 01/01/2005 31/12/2017 

Training Period 2000 01/01/2005 02/01/2013 

Validation Period 1250 03/01/2013 31/12/2017 

Table 1. Total dataset 



3.2. Methodology 

In this study, three different evolutionary optimization techniques (GA, PSO, and DE) are 

applied to the task of optimizing the architecture of three neural networks (MLP, RNN, and 

RBF). More specifically, the three techniques optimize the number of hidden nodes and the 

center of the Gaussian Function for the RBF. The resultant nine hybrid neural network models 

are applied for the task of forecasting and trading the SPY and the QQQ ETF. Further to that 

in terms of feeding our ensemble neural networks, we are using an input selection based on the 

Model Confidence Set (MCS) test.  An overview of the methodologies applied in this study is 

provided below.  

3.2.1 MCS  

The MCS test is a procedure that constructs a confidence interval which will contain the best 

model with a given level of confidence. It is a random data-dependent set of best forecasting 

models. More informative data can lead to only one best model while less-informative datasets 

will lead to multiple models.  The MCS test is based on an equivalence test and an elimination 

rule. For a full description see Hansen et. al. (2010, 2011). In this study, the MCS procedure is 

applied to the task of selecting the NN inputs. More specifically it is applied in the in-sample 

test setting to the first ten lags of the ETF series presented in Table 2 below. The MCS 

confidence level is set to 95% while the criterion is the Mean Squared Error (MSE). This pool 

of ETFs consists of the two ETFs under study and 16 more ETFs that replicate indices, 

commodities, exchange rates and financial instruments possibly relevant to the series under 

study. 

SPY (S&P 500) AGG (US Bond) 

QQQ (Nasdaq 100) BND (Total Bond Market) 

GDX (Gold) VCSH (Short Term Corporate Bond) 

EEM (Emerging Markets) SHY (1-3 year US Bond) 

IWM (Russell 2000) SLV (Silver) 

USO (Oil fund) DBC (commodity Index) 

EFA (EAFE) SGOL (Swiss Gold Shares) 

FXE (Euro/Dollar) YCS (Yen/Dollar) 

FXB (Pound/Dollar) UUP (USDX futures index) 

Table 2. MCS dataset 

Note: The values in the table represent the relevant ETF symbol while in the parenthesis are 

the assets that the ETFs are replicating. 

The MCS realizations (see Table 3 below) constitute the NNs inputs. 

SPY In-Sample 

Period 

NN Inputs 

3/1/2013- 

31/12/2017 

SPY(1), SPY (2), SPY 

(5), SPY(7), VTI(1), 

GDX(5), USO (3) 



3/1/2013-

31/12/2017 

SPY(1), SPY(2), SPY(3) 

SPY(8), GDX(3) 

QQQ 3/1/2011- 

31/12/2017 

QQQ(1), 

QQQ(3),QQQ(5), 

QQQ(6), EEM 

(3),GDX(5), USO (5) 

3/1/2013-

31/12/2017 

QQQ(1),QQQ(2),QQQ(5), 

GDX(3) 

Table 3. MCS dataset 

Note: The values in the table represent the relevant ETF symbols and the values to the 

parenthesis the lag. 

We note from Table 3 that the lags of the forecasted series contain the relevant MCS 

realizations. In other words, the best forecasters for the SPY and the QQQ series are their own 

respective lags.  

3.2.2 Neural Networks 

Neural Networks are nonlinear models inspired by the work and function of biological neurons. 

They are used to approximate solutions in problems where the underlying function is unknown 

and nonlinear. The standard neural network has at least three layers. The first layer is called 

the input layer (the number of its nodes corresponds to the number of explanatory variables). 

The last layer is called the output layer (the number of its nodes corresponds to the number of 

response variables). An intermediate layer of nodes, the hidden layer, separates the input from 

the output layer. Its number of nodes defines the amount of complexity the model is capable of 

fitting. In addition, the input and hidden layer contain an extra node, called the bias node. This 

node has a fixed value of one and has the same function as the intercept in traditional regression 

models. Normally, each node of one layer has connections to all the other nodes of the next 

layer. The network processes information as follows: the input nodes contain the values of the 

explanatory variables. Since each node connection represents a weight factor, the information 

reaches a single hidden layer node as the weighted sum of its inputs. Each node of the hidden 

layer passes the information through a nonlinear activation function and passes it on to the 

output layer if the calculated value is above a threshold.  

Because of the stochastic nature of the proposed methodology, a simple run is not enough to 

measure its performance. This is the reason why 100 runs were executed and the average results 

are retained for evaluation. 

MLP 

The most popular and simple NN is the Multi-Layer Perceptron (MLP). A standard MLP neural 

network has three layers and this setting is adopted in the present paper. In general, its design 

follows the structure described in section 4.2. The training of the network (which is the 

adjustment of its weights in the way that the network maps the input value of the training data 

to the corresponding output value) starts with randomly initialized weights and proceeds by 



applying a learning algorithm called backpropagation of errors1 (Shapiro, 2000). The learning 

algorithm simply tries to find those weights which minimize an error function. Since networks 

with a sufficient number of hidden nodes are able to learn the training data (as well as their 

outliers and their noise), it is crucial to stop the training procedure at the right time to prevent 

overfitting (this is called ‘early stopping'). This is usually achieved in the literature by dividing 

the in-sample dataset into two subsets respectively called the training and test sets used for 

simulating the data currently available to fit and tune the model. The network parameters are 

then estimated by fitting the training data using the above mentioned iterative procedure 

(backpropagation of errors). The iteration length is optimized by maximizing a fitness function 

in the test dataset. Finally, the predictive value of the model is evaluated by applying it to the 

validation dataset (out-of-sample dataset). 

RNN 

Our next model is the recurrent neural network.  While a complete explanation of RNN models 

is beyond the scope of this paper, we present below a brief explanation of the significant 

differences between RNN and MLP architectures. For an exact specification of the recurrent 

network, see Elman (1990, 1991). A recurrent network uses feedback from one or more of its units 

as input in choosing the next output. This means that values generated by units at time step t -1, y(t- 

1), are part of the inputs x(t) used in the selecting the next set of values y(t) A simple recurrent 

network has activation feedback, which embodies short-term memory. The advantages of using 

recurrent networks over feedforward networks, for modeling non-linear time series, has been 

well documented in the past. However as described in Tenti (1996) “the main disadvantage of 

RNNs is that they require substantially more connections, and more memory in simulation, 

than standard backpropagation networks”, thus resulting in a substantial increase in 

computational time. However having said this, RNNs can yield better results in comparison to 

simple MLPs due to the additional memory inputs. 

RBF 

A radial basis function neural network (RBF) is a feedforward neural network where hidden 

units do not implement an activation function, but a radial basis function. In other words, they 

have the same structure as MLPs but the hidden nodes are based on the Gaussian function 

(instead of the sigmoid): 
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where Ci is a vector indicating the center of the Gaussian function and σi is a value indicating 

its width. Compared with MLPs and RNNs the number of the weights between the input and 

the hidden layer is fixed to 1. Moreover, only the weights between the hidden layer and the 

output layer are adjusted during the training. This leads to a substantially decreased 

computational time. RBF approximates a desired function by superposition of nonorthogonal, 

                                                           
1  Backpropagation networks are the most common multi-layer networks and are the most 

commonly used type in financial time series forecasting (Kaastra and Boyd (1996)). 



radially symmetric functions. They have been proposed by Broomhead and Lowe (1988) as an 

approach to improve the accuracy of artificial neural networks while decreasing the training 

time complexity. 

3.2.3 Evolutionary Optimization 

All the 3 neural networks described in the previous section have strong capabilities for 

processing nonlinear problems. However, substantial time is required for calculation, and the 

results obtained can easily fall into local optima. To improve these deficiencies we are 

combining the main neural network with three optimizers such as a Genetic algorithm, Particle 

swarm optimizer, and a differential evolutionary algorithm. In the next sections, there is a brief 

description of the three optimization techniques under study. For a complete discussion of GA, 

see Holland (1995), for PSO, see Eberhart and Kennedy (1995)(1997) and for DE, see Das and 

Suganthan (2011). The fitness function for the three techniques is the mean squared error.  

GA 

A genetic algorithm is an optimization algorithm inspired by the principle of natural selection 

(Holland (1995)). They have provided promising results in problems where the search space is 

big, complicated and there is no mathematical analysis available. Initially, a population of 

candidate solutions is generated. These solutions (called chromosomes) are optimized through 

a number of generations and two genetic operators (crossover and mutation). The chromosomes 

are consisting of genes that are the optimizing parameters.  In each generation, all 

chromosomes are evaluated through a fitness function. The more fit chromosomes are selected 

to survive. Then, a sub-sample of the survivors is selected to evolve through one-point 

crossover or mutation.  

One-point crossover creates two offsprings from every two parents. The probability of an 

individual to be selected as a parent is called crossover probability. A crossover point cx is then 

selected randomly. The two offsprings are made by both concatenating the genes that precede 

cx in the first parent with those that follow (and include) cx in the second parent. The two 

offsprings replace their parents in the population. Mutation places random values in randomly 

selected genes with a certain probability (mutation probability). The mutation operator helps 

to avoid local optima and exploring a larger surface of the search space. In this study, the 

crossover and mutation probabilities are set to 0.9 and 0.1, respectively. Crossover is used with 

the aim that new chromosomes will have good parts of old chromosomes and maybe the new 

chromosomes will be better. However, it is often a fine technique to leave some parts of a 

population to survive to the next generation. This is the reason a high but not equal to one 

crossover probability was used. The selection step is based on the Holland (1995) guidelines.  

The initial population is set to 30 while the termination criteria are that either the algorithm 

reaches the 200th generation or the average fitness across the current population is less than 5% 

away from the best fitness in the last five generations.  

PSO 



Particle swarm optimization (PSO) is a stochastic optimization technique introduced by 

Eberhart and Kennedy (1995), and (1997). It is based on the social behaviour of birds within a 

flock. In the first stage, a random population of individuals (birds) is generated. Each individual 

in the population is called a particle. All particles are evaluated through a fitness function and 

have an initial fitness value. Each particle flies through the problem space with a specific 

velocity that directs the flight. The aim of all particles is to find the optimal solution.  This is 

achieved through a number of iterations. In every iteration, all particles are evaluated and 

updated based on two values. The first value is the best value the particle has achieved so far 

(ibest). The second value is the best value of any particle that exists within the generation 

(gbest). Based on these two values, the particle updates its position based on equations: 

𝑥(𝑡) = 𝑥(𝑡 − 1) + 𝑣(𝑡)    (2) 

where x(t) is the position of the particle and v(t) is its velocity at generation t. The velocity is 

updated through : 

𝑣(𝑡) = 𝑤𝑣(𝑡 − 1) + 𝑐1𝑟1(𝑖𝑏𝑒𝑠𝑡(𝑡) − 𝑥(𝑡 − 1)) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑥(𝑡 − 1)) (3) 

where c1 and c2 are the acceleration coefficients,  r1 and r2 are random numbers between 0 and 

1 that are used to drive the stochastic nature of the algorithm and w is a positive-valued 

parameter showing the ability of each particle to maintain its own velocity. The coefficients c1 

and c2 represent the learning rates for the individual ability and the social influence respectively. 

Following the relevant literature, we set these values to 2. The initial population of particles is 

set to 30. The algorithm is stopped when the maximum number of iterations (set to 200) has 

been reached or the algorithm seems to have converged to an optimal solution. More 

specifically, the population of particles is deemed converged when the average fitness across 

the current population is less than 5% away from the best fitness of the current population 

fitness for more than five consecutive iterations. In this case, the diversity of the population is 

very low and evolving it for more generations is unlikely to produce different and better 

individuals than the existing ones or the ones already examined by the algorithm in previous 

generations. 

DE 

The differential evolution (DE) algorithm is a stochastic real parameter optimization algorithm 

(Das and Suganthan (2011)) Similarly to the GA it is an evolutionary algorithm based on a 

sequence of iterations (generations) where individuals are updated through selection, mutation 

and crossover operators.  The mutation operator perturbs population individuals with the scaled 

differences of randomly selected and distinct population members. In DE the potential 

solutions are represented as strings of continuous variables comprising feature and parameter 

variables. Discrete values are generated by rounding the continuous values. At the start, a 

random population is generated. The algorithm for every individual chromosome (Xi) of the 

population, selects three other random distinct individuals ((X1,i , X2,i , X3,i ). Then a donor 

vector is produced: 

Vi = X1,i + F *(X2,i –X3,i)       (4) 



where F  is the mutation scale factor. A binomial crossover operator is applied which combines 

every member of the population Xi with its corresponding donor vector Vi and produces a trial 

vector Ui: 
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At the next stage, all trial vectors are evaluated. If the value of the fitness function is lower than 

the one of the population Xi then the trial vector takes its position in the population. Thus the 

population is only getting better through the iterations. The parameter F controls the size of the 

differentiation quantity which is going to be applied to a candidate solution from the mutation 

operator while Cr determines the number of genes that are expected to change in a population. 

In this study, we follow the guidelines of Qin et. al. (2009): F is selected from a uniform 

distribution with mean value 0.5 and standard deviation 0.3 and Cr is selected from the same 

distribution with a mean 0.5 and standard deviation 0.1. The size of the initial population is 30. 

Similarly to GA and PSO, the termination criterion is a combination of the maximum number 

of iterations (which is set to 200) and a convergence criterion. The convergence criterion is 

satisfied when the mean population fitness is less than 5% away from the best population fitness 

for more than five consecutive iterations 

 

4. Empirical results 

4.1 Statistical Performance 

In terms of checking the statistical performance of our combined models, we have used the 

below statistical measures. In tables 4 and 5 the statistical performance in the out-of-sample 

period of all models is presented. We utilize three measures of forecasting accuracy: the Mean 

Absolute Error (MAE), the mean absolute percentage error (MAPE), and the Root Mean 

Squared Error (RMSE). These three metrics are measures of the difference between the 

predicted and actual ETF returns. MAE averages the vertical distance between the two 

variables, MAPE is based on the mean absolute percentage difference, and RMSE focuses on 

the root of the squared differences between individual forecast and actual realizations. All the 

three measures are defined in such way that the lower the output, the better the forecasting 

accuracy of the model is. For further discussion on the alternative measures, see, e.g., Hyndman 

and Koehler (2006).  

The Diebold-Mariano (1995) (DM) statistic for predictive accuracy statistic tests the null 

hypothesis of equal predictive accuracy between two models. In this exercise, the second model 

is always a buy and hold strategy. A statistically significant difference between the predictive 

accuracies indicates that the forecasts of the first model (NN-evolutionary optimizer) are better 

than a buy and hold strategy. The Pesaran-Timmermann (1992) (PT) test examines whether the 

directional movements of the real and forecast values are moving close one to another. 

Furthermore, it checks how well rises and falls in the forecasted value follow the actual rises 



and falls of the time series. The null hypothesis is such that the model under study has ‘no 

predictive power’ when forecasting the ETF return series.  

Forecast 
MLP-

PSO 
MLP-DE MLP-GA 

RNN-

PSO 
RNN-DE RNN-GA RBF-PSO 

RBF-DE RBF-GA 

MAE 0.0300 0.0290 0.0280 0.0221 0.0211 0.0190 0.0150 0.0130 0.0160 

MAPE 200.17% 198.12% 196.60% 189.33% 183.22% 181.22% 160.91% 150.19% 162.11% 

RMSE 0.0354 0.0327 0.0287 0.0167 0.0205 0.0184 0.0153 0.0145 0.0162 

PT-

Statistic 
10.22 10.76 10.81 11.13  11.44 11.81 

14.12 14.80  14.34 

DM -3.45 -3.21 -2.94 -2.44 -2.31 -2.14 -1.67 -1.14 -1.45 

Table 4: Statistical performance of  SPY (out of sample period) 

Forecast 
MLP-

PSO 
MLP-DE MLP-GA 

RNN-

PSO 
RNN-DE RNN-GA RBF-PSO 

RBF-DE RBF-GA 

MAE 0.0382 0.0360 0.0321 0.0290 0.0287 0.0265 0.0231 0.0223 0.0254 

MAPE 311.11% 310.13% 302.72% 291.77% 290.26% 270.33% 222.91% 210.01% 233.54% 

RMSE 0.0455 0.0412 0.0401 0.0380 0.0350 0.0312 0.0240 0.0230 0.0260 

PT-

Statistic 
12.55 12.67 12.90 13.22 13.40 14.30 

15.00 15.39 14.89 

DM -5.02 -4.12 -4.01 -3.89 -3.45 -3.25 -2.89 -2.56 -2.91 

Table 5: Statistical performance of QQQ (out of sample period) 

From the table above we note that the RBF DE outperforms all benchmarks for all of the 

statistical measures. The RBF-PSO model presents the second best performance while the 

RBF-GA algorithm produces the third most statistically accurate forecasts. The PT statistics 

indicate that all non-linear models under study are able to forecast accurately the directional 

movements of the three return indices while the DM statistics confirm the statistical superiority 

of the RBF-DE. 

4.2 Empirical Trading Results 

In this section, we present the results of the proposed methodology applied to trade the S&P 

500 and Nasdaq 100 exchange trade funds in the relevant out-of-sample period.  The trading 

rule that we follow is simple. We go or stay long when the forecast return is above zero and go 



or stay short when the forecast return is below zero. Transaction costs are estimated as 16 basis 

points or 0.16% per position for both ETFs (see, www.interactivebrokers.com)  

 

MLP-PSO MLP-DE MLP-GA RNN-PSO RNN-DE RNN-GA RBF-PSO RBF-DE RBF-GA 

Annualiz

ed 

Return 

(includin

g costs) 

9.44% 10.00% 

11.00% 

12.03% 12.66% 13.42% 17.91% 

18.03% 16.46% 

Sharpe 

ratio 
0.70 0.67 0.78 0.95 0.98 0.97 1,39 1,45 1,23 

Table 6: Out of sample trading performance results for the SPY (including cost) 

Table 7: Out of sample trading performance results for the  QQQ (including cost) 

We can see that the RBF-DE performs significantly better than all the other benchmark 

methods in terms of Sharpe ratio and annualized return. The RNN combinations come second 

while the MLP models present the worst trading performance. It is noticeable that all models 

present a positive trading performance for both ETFs. In addition to this, the output of the 

empirical analysis proves the advantage of combining neural networks with optimizers by 

minimalizing the time of the calculation and at the same time by reducing the square error 

significantly.  

5. Conclusion 

In this study, three different evolutionary algorithms, namely a GA, a DE and a PSO are applied 

to the task of optimizing the structure and the parameters of three different types of Neural 

Networks: Multilayer perceptron (MLP) Recurrent Neural Network (RNN) and Radial Basis 

Function (RBF). The generated models are applied to the task of forecasting and trading the 

daily closing prices of SPY and QQQ ETF. These data series are representing the exchange 

traded funds of NASDAQ 100  and S&P 500 general American indices.  

By converting all our input candidates from table 2 to autoregressive returns we start 

backtesting the ensemble structures. Finding the best data optimised inputs from the backtest 

 

MLP-PSO MLP-DE MLP-GA RNN-PSO RNN-DE RNN-GA RBF-PSO RBF-DE RBF-GA 

Annualize

d Return 

(ixcluding 

costs) 
13.33% 14.00% 

14.22% 

16.17% 16.55% 16.59% 20.01% 

20.81% 19.01% 

Sharpe 

ratio 
0.92 0.95 0.96 0.99 1.01 1.00 1.22 1.33 1.11 



we start feeding and testing our ensemble models. All nine ensemble NN-evolutionary models 

have been managed to trade successfully the two ETFs. The RBF hybrid combination models 

present the best performance, the second performance its coming from the RNN combinations 

while the MLP architectures provide the third lowest performance. All the combinations show 

a remarkable performance proving that hybrid combinations are improving the final 

performance of the model and in continuation, they are making good profit returns. In the 

meantime, we have to add that running ensemble model we need less time than running simple 

NNs. 

In conclusion, it’s worth saying that these results demonstrate the utility of evolutionary 

algorithms in NNs parametrization. They also reveal the performance of hybrid NN and 

Heuristics models in financial trading. These results should go forward on convincing academic 

and practitioners to further experiment with NNs and evolutionary optimizers in the search for 

abnormal profits. 
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