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Damien Fay 

ABSTRACT

Electric utilities require short-term forecasts of electricity demand (load) in order to 
schedule generating plant up to several days ahead on an hourly basis. Errors in the 
forecasts may lead to generation plant operation that is not required or sub-optimal 
scheduling of generation plants. In addition, with the introduction of the Electricity 
Regulation Act 1999, a deregulated market structure has been introduced, adding 
increased impetus to reducing forecast error and the associated costs.

This thesis presents a strategy for reducing costs from electrical demand forecast 
error using models designed specifically for the Irish system. The differences in 
short-term load forecasting models are examined under three independent 
categories: how the data is segmented prior to modelling, the modelling technique 
and the approach taken to minimise the effect of weather forecast errors present in 
weather inputs to the load forecasting models.

A novel approach is presented to determine whether the data should be segmented 
by hour of the day prior to modelling. Several segmentation strategies are analysed 
and the one appropriate for Irish data identified. Furthermore, both linear and non­
linear techniques are compared with a view to evaluating the optimal model type. 
The effect of weather forecast errors on load forecasting models, though significant, 
has largely been ignored in the literature. Thus, the underlying issues are examined 
and a novel method is presented which minimises the effect of weather forecast 
errors.

A strategy for short-term load forecasting in Ireland.
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Figure 1.1 Typical working day loads.

The weekly cycle consists o f the five working days (Monday to Friday) and the 

weekend days (Saturday and Sunday) (Figure 1.2). The loads on Saturdays and 

Sundays have similar load curves to weekdays. However, the load is lower 

reflecting reduced economic activity.

Figure 1.2 A  typical weekly load (Day l=Sunday)

The yearly cycle in Ireland is shown below in Figure 1.3. The load is lower in 

summer than in winter as there are more heating requirements in winter. 

However, during Christmas the load shows a sharp drop as economic activity is
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reduced. Also, there is a less obvious reduction in load during July and August as 

economic activity is reduced due to people taking holidays.

1997 1998 1999
Year

Figure 1.3 The load for 1997 and 1998.

In addition, there exist special periods such as bank holidays, Easter, etc. which 

result in reduced economic activity and may not occur at the same date each 

year.

Another important factor in the demand for electricity is the weather. On cold 

days for example, people will tend to use more electricity for heating than on a 

day with an average or ‘comfortable’ temperature. Conversely, a very hot day 

will result in more electricity being used for air-conditioning. This is reflected in 

Figure 1.3 as summer days are generally warmer than winter days.

It is important to note that although the factors that effect electricity demand are 

well known, there is no underlying process that can be measured and so black 

box modelling (i.e. constructing a model from recorded inputs and outputs 

without knowledge o f the intervening process) must be used.
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The area o f load forecasting in general and the precise area o f interest in this 

thesis are detailed in Section 3.1.1.

1.2 Motivation for Research.
The motivation for forecasting short-term electrical load is to reduce costs. 

Power plants must be switched on in advance and overestimation of demand 

results in some generators being operational but not being used. The electrical 

production must match the demand in order to guarantee supply. The amount of 

excess electricity production (or spinning reserve) required to guarantee supply 

in the event o f an underestimation is also determined by the accuracy o f load 

forecasts. Different power plants have different production costs and take 

different amounts o f time to start up. Forecasting errors can lead to sub-optimal 

scheduling o f power plants (unit commitment).

Another factor motivating the use o f load forecasts in Ireland came with the 

introduction o f the Electricity Act 1999 which led to a staged deregulation of the 

energy (gas and electricity, although gas is o f no concern here) market in Ireland. 

Currently, the trading arrangements for this market are regulated by the 

Commission for Electricity Regulation (CER) (CER, 2000). The market is made 

up of three types o f operators; generators (who generate electricity), suppliers 

(who supply the customers with electricity purchased from a generator or a 

trader) and traders (who purchase electricity from generators and sell to 

suppliers). In addition, there are separate arrangements for sale and purchase of 

electricity from the Northern Ireland electricity grid.

Although the rules o f the energy market are relatively complicated, it is 

essentially based on a bilateral agreement structure (CER, 2000). In this 

structure, a generator agrees to provide a set amount o f electricity and a supplier 

agrees to purchase that amount at a particular time (hence the term bilateral). 

Twenty-two days after that load period, the amount o f electricity that was 

required by the supplier is calculated and compared to the amount actually 

purchased in the bilateral agreement. In the event that the supplier has purchased 

an excess o f electricity (and this excess was used by the grid), this excess is sold
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at what is called a spill price. In the event that the supplier did not purchase 

enough electricity, he must then purchase the difference at what is called a top-up 

price. The traders then purchase the excess electricity at the spill-price and sell at 

the top-up price in order to balance the bilateral agreements.

The structure o f the market is such that the top-up price is far in excess o f what 

would have been required in the original bilateral agreement, while the spill price 

does not match the price paid in the original agreement (CER, 2000). A similar 

situation also faces the electricity generators. Thus, it is important that all parties 

to a bilateral agreement forecast their expected demand correctly i.e. short-term 

load forecasting is an integral part o f the market.

1.3 Main Thesis Contributions.
The main contributions o f this thesis are in the area o f short-term load 

forecasting o f overall grid demand. These contributions are as follows:

1. A review o f techniques for integrating weather forecast errors into load 

forecasting models (Chapter 3, Section 3.5). This area has, to a large extent, 

been ignored in the literature,

2. Identification o f the different day-types in Irish electrical load data (Chapter

4),

3. Application o f parallel models to load forecasting and determining the 

appropriateness o f these in comparison to sequential models (Chapters 5 and 

6),

4. Further development o f the multi-timescale models proposed by Murray 

(1996) including a technique for optimising the weights used in that 

algorithm (Chapter 6 ), and
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5. A novel approach to dealing with the effect o f weather forecast errors in load 

forecasting models. This also includes a novel approach to modelling weather 

forecast errors (Chapter 7).

Much o f the work in this thesis is an extension on the work presented in the

following publications:

• Fay, D., Ringwood, J.V., Condon, M., Kelly, M., 2003, 24-hour electrical 

load data -  a sequential or partitioned time series?, Journal o f  

Neurocomputing, 55 (3-4), pp 469-498.

• Fay, D., Ringwood, J.V., Condon, M., Kelly, M., 2000, Comparison o f linear 

and neural parallel time series models for short term load forecasting in the 

Republic o f Ireland, in: Proceedings, 3rd Universities Power Electronics 

Conference, September, (not paginated on CD ROM),

• Fay, D., Ringwood, J.V., Condon, M., Kelly, M., 2001, 24-Hour electrical 

load data - a time series or a set o f independent points?, in: Proceedings, 6th 

Conference on European Applications o f  Neural Networks, June, Cagliari, 

Italy, (not paginated on CD ROM).

• Fay, D., Ringwood, J.V., Condon, M., Kelly, M., 2001, A data fusion model 

for Irish electricity load forecasting, in: Proceedings, Irish Signal and 

Systems Conference, Maynooth, Ireland, (not paginated on CD ROM).

• Fay, D., Ringwood, J.V., Condon, M., Kelly, M., 1999, New research 

developments in half-hourly forecasting methodologies and technologies 

applied to the Irish electricity market., in: Proceedings, HR Conference on 

New Energy Trading Arrangements, London, 6  July, pp 301-307.

• Fay, D., Ringwood, J.V., Condon, 2004, On the influence o f weather forecast 

errors in short-term load forecasting models, in: Proceedings, Control 2004, 

University o f Bath, U.K., 6-9 September, (not paginated on CD ROM).
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1.4 Thesis Structure.
This thesis is organised into eight chapters. The approach here is to first present 

some preliminary analysis o f Irish load data in order to familiarise the reader 

with the subject (Chapter 2). A literature review is then presented (Chapter 3) 

followed by analysis and modelling (Chapters 4 to 7). Conclusions are then 

presented in Chapter 8 .

Chapter 2 provides the ‘problem setup’ for this thesis. Initially, the available data 

(used throughout this thesis), and the way in which this data is partitioned into 

sets for model building and testing are documented. The second part o f Chapter 2 

provides some simple preliminary analysis to highlight the characteristics o f Irish 

load data while attempting not to bias the model building process in later 

chapters.

Chapter 3 provides a literature review of the area o f load forecasting. Initially, 

the exact area o f  interest is specified with respect to the wider area o f load 

forecasting. However, the primarily purpose o f this chapter is to present the main 

factors that differentiate the load forecasting approaches found in the literature. 

These main factors are:

1. How the data set is segmented prior to modelling,

2. The technique used to model the data (regardless o f the segmentation 

used), and

3. The approaches taken to deal with weather forecast errors in weather 

inputs.

Chapters 4,5 and 6  investigate point 1, above. Chapters 5, 6  and 7 study point 2. 

Finally, Chapter 7 examines point 3.

Chapter 4 examines the segmentation of Irish load data in to different types of 

days (for example, working days, weekend days etc.) called day-types. The focus
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of this Chapter is to determine i f  different day-types exist and whether there is 

sufficient data within each day-type for consistent model building. The 

segmentation o f the data into the various day-types is then presented.

Chapter 5 constructs the first load forecasting models used in this thesis. These 

models are based on data segmented by hour o f the day (in addition to being 

segmented by day-type) and are called parallel models as there is an array of 

models, one for each hour o f the day. The primary purpose of this chapter is to 

construct parallel models for comparison with the models in Chapter 6  that do 

not use hour o f the day segmentation. In addition, several input selection 

techniques are examined. Finally, linear and non-linear parallel models are 

compared to see if  non-linear modelling techniques are advantageous for STLF.

Chapter 6  develops load forecasting models for data that is segmented by day- 

type only. The models used here are called multi-timescale models as they 

exploit forecasts o f the load made at differing timescales. The multi-timescale 

modelling technique developed by Murray (1996) is developed further. Finally a 

comparison with the parallel models in Chapter 5 is drawn in order to determine 

if  hour o f the day segmentation is advantageous.

Chapter 7 investigates the effect o f weather forecast errors on load forecasting 

models. A novel technique is proposed for producing pseudo-weather forecast 

errors which have the same error statistics as recorded weather forecasts. A 

model is then proposed which minimises the effect o f  these weather forecast 

errors.

Chapter 8  presents the conclusions and assesses the models presented in this 

thesis. Recommendations for practical implementation o f these models are made 

to Eirgrid (thesis sponsor) and future work in this area is discussed.
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Chapter 2

Characteristics of Irish Electrical Load Data

2.1 Introduction
This chapter describes preliminary analysis o f Irish electrical load data, which is 

important for model building. As will be seen, electrical load is a complex time 

series which among other things changes over time and has embedded cycles.

The amount, timescale and type o f data available have obvious importance in 

model building. This information is detailed in Section 2.2.

In the long term, load is an evolving process. With increased economic activity 

over the last few years, electrical demand has increased considerably. It is 

important to quantify the rate of increase, the effect it may have on the shape of 

the load and to ascertain if  these characteristics are deterministic. Such 

characteristics are examined in Section 2.3.1.

The embedded cycles in the load occur at daily, weekly and yearly timescales. 

The shape o f the daily load curve as well as the level o f the load is affected by 

these cycles. Classification o f the shapes is examined in Section 2.3.2. The level 

o f the load is effected mainly by temperature and this relationship is examined in 

Section 2.3.3 to determine if  it is non-linear or can be linearised.

2.2 Data Availability
There are two sources for the data used in this thesis: 

load data is supplied by the national grid (Eirgrid), while the Meteorological 

Office o f Ireland (MOI) provides weather data gathered at their station at Dublin 

airport*. Eirgrid also supplies historical weather data gathered at its station in 

Dublin; however, without an accompanying weather forecasting facility at that 

location, this data is of limited use and is not used in this project.

* Dublin is the largest population centre in Ireland with approx. XA the population.
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The range and timescale o f the available electrical demand data is given in Table 

2 . 1.

2.2.1 Range and Timescale of Data

Table 2.1 Eirgrid data timescale and range.

Range 29th December 1 9 8 6 - 3 1st March 2000
Timescale Hourly
No. o f data points 4842 Days (116208 hours)

Two categories of historical weather data are available from the MOI: readings 

(or actual weather) and forecasts. Both sets o f data are for Dublin airport, the 

closest and most relevant weather station to Dublin. The ranges, timescales and 

types o f data are given in Table 2.2.

Table 2.2 MOI data, time-scales and ranges.

Type Range Time scale

Dry bulb temperature
readings

29th December 1986 - 3 1 st 
March 2000

Hourly

Humidity readings 29m December 1 9 8 6 - 3 1st 
March 2000

Hourly

Wind speed & Direction 
readings

29th December 1986- 3 1 st 
March 2000

Hourly

Cloud cover readings 29th December 1986- 3 1 st 
March 2000

Hourly

Dry bulb temperature 
forecasts

1st February 20 0 0 - 1 st 
March 2000

Hourly

Wind speed & Direction
forecasts

1st February 2 0 0 0 -  1st 
March 2000

Hourly

Cloud cover forecasts 1st February 2 0 0 0 -  1st 
March 2000

Hourly

The data is subdivided into three sets in order to train and test the load 

forecasting models (Table 2.3):

• The training set is used to calculate model parameters,

• The validation set is used to aid in model structure determination and

• The novelty set is used to evaluate model performance. As the validation and

training sets have significantly influenced the model, a novelty set is used to 

evaluate model performance with previously unseen data.
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Table 2.3. Division of data set (ail dates inclusive).

Set Training Validation Novelty
Range 1987-1996 1997-1998 1999-2000

The techniques used for input selection (Section 5.5.2) utilise different training 

and validation sets where the dates vary due to the use o f a bootstrapping 

technique (van Giersbergen and Kiviet, 2002), which allows a statistical 

evaluation o f the different input selections. In this case, eight bootstraps are 

constructed, where the validation set occupies a different range for each set 

(Figure 2.1 and Table 2.4) within data form 1987 to 1998 inclusive.

Table 2.4. Segmentation of data set for input selection (Section 4.5.1).

Set Training Validation
Range Variable Variable

Bootstrap
number

Division o f training and validation sets. 
(V=validation T=Training)

1 V T

2 T V T

3 T V T
111

t 1 1 
i  I T 
t  1 f

8 T V

Figure 2.1. Selection of training and validation sets for input selection (Section 4.5.1).

2.3 Characteristics of Irish Electrical Load Data

2.3.1 Trend and Variability

Figure 2.2 (below) shows the growth in electrical demand in Ireland in recent 

years. To gain initial insight into the nature o f the underlying trend a quadratic 

curve of the form (Equation 2.1) is fitted to the data:

d(t) = a t2 +bt + c + £(t) (2 .1)
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where t is the time in hours since the start of the data (1986), d(t) is the trend at 

time t, £{t) is an error term, and a, b, c are coefficients calculated via least 

squares. Note that a,b,c are positive (Table 2.5).

1986 1988 1990 1992 1994 1996 1998
Y ear

Figure 2.2 Load with approximate trend curve.

Table 2.5 Co-efficients of trend curve (normalised).

Coefficient Value
a 1.1360 x i n  "
h 1.1640 x l0 'b
c 0.3498

In addition to an underlying trend there is also a growing variability, v. The

variability of load for year j ,  Vj, is defined as:

v j  ~  y m a x , /  — J ^ m i n j  (2-2)

where _ymax,/ and y mmj are the maximum and minimum loads in year j ,

respectively. This rising variability is shown in Figure 2.3(b).

13
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Figure 2.3 (a) Hourly load data and (b) its variability

The trend and the variability can be related by the use o f the Box Cox transform 

(Box and Cox, 1964). They proposed a transform for equalising (to make 

constant) the variance o f a time-series where the variance, at a given time t, is 

related to the value of the series, at that time t. This transform can also be applied 

to equalise the variability o f time-series whose variability is a function o f the 

trend (Franses and Koehler, 1998).

The Box-Cox transform has been used in many time-series applications; for 

example, Osula and Adebisi (2001) applied the transform to travel expenditures 

in Nigeria. This time-series exhibited an increasing trend and variability over 

time while the main causal variable (the price o f oil) did not. When the travel 

series had been equalised and de-trended, the correlation between it and the oil 

price could be seen. Pere (2000) in a study o f height and weight o f adolescents 

applied the transform to remove differences due to age.

The data is transformed according to a transform parameter X (Box and Cox, 

1964) as:

, i (y(f)A - l ) / A  i f A * 0= 1)1/1 (2.3)
1  log(j>(0 ) i f  À - 0

14



where y'(t) is the transformed load t hours from the start o f the data (1986) and 

y(t) is the original load.

In the current study electrical load data is transformed using the Box-Cox 

transform with X = 0.3 (Figure 2.4). As the purpose o f this section is merely to 

establish that a relationship between trend and variability exists, X is determined 

empirically (as suggested by Cryer, 1986). The transformed load data exhibits an 

approximately equalised variability (Figure 2.4), showing that a definite 

relationship exists between the trend and variability o f the load.

3 

2.9 

2.8 

2.7 

|  2.6 

2.5

x  10

2 X

1986 1988 1990 1992 1994 1996 1998 2000
Year

Figure 2.4 (a) Transformed load and (b) variability of transformed load

2.3.2 Day-Types

Daily load data can be disaggregated into distinct groups (called day-types) each 

o f which have common characteristics. As can be seen in Figure 2.5 there is, for 

example, an obvious difference between the shape o f the load on a typical 

Sunday and Monday due to decreased economic activity on a Sunday. 

Furthermore, there is a distinct difference between the shape o f a typical winter 

day and summer day (Figure 2.6). A typical winter day exhibits a higher peak at 

6 pm relative to a summer day, due to increased lighting needs in winter, among 

other things.
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Day

Figure 2.5 A typical weekly load (Day l=Sunday)

0 5 10 15 20
H our of th e  day

Figure 2.6 Typical shape of a Winter (18/11/1998) and Summer working day (17/06/1998) 
(The mean load for each day has been subtracted)

Techniques for day-type identification are discussed in the literature review 

chapter (Section 3.2.1) and day-type identification for the current research is the 

topic of Chapter 4.
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2.3.3 Temperature-Load Relationship

This section examines the relationship between load and temperature, the 

dominant causal variable for load (as pointed out by Murray, 1996, Hyde and 

Hodnett, 1997b for Irish load data and Lu et. a i ,  1989, Chen and Kao, 1996, and 

Hara et. al., 1997, for other systems to mention but a few).

As pointed out in Section 2.3.1, Irish load data has an underlying trend and rising 

variability. These characteristics are not present in the temperature readings for 

the same period (1986-2000) (Figure 2.7) and so the relationship between load 

and temperature is obscured. Section's 2 .3 .3 .1 and 2.3.3.2 present the techniques 

used to pre-process the load and temperature so that the relationship between the 

two can be examined (Section 2.3.3.3).
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Figure 2.7 Load and temperature.

2.3.3.1 Pre-Processing of Electrical Data to Remove Trend and Variability

This section details how the growing trend and variability are removed from the 

data, so that the fundamental relationship between the load and temperature is 

revealed. This is achieved in three steps:

1. As pointed out in Section 2.3.1 the Box-Cox transform can be used to remove

the variability o f  a time series if  the variability is related to trend. This is the

case with Irish electric load, so the Box-Cox transform is applied as in
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Section 2.3.1. Franses and Koehler (1998) show that there are however, 

problems with the Box-Cox transform; primarily that a series with increasing 

trend (as is the case with Irish electrical demand) results in a transformed 

series with a trend that is increasing at a decreasing rate. As the transformed 

series in this study is not used for model building this is not an issue,

2. Secondly, the trend o f the transformed load is removed using a quadratic 

curve of the form Equation (2.1). This results in the transformed and de­

trended (the trend is removed) load series shown in Figure 2.8 (note the 

temperature in this figure has not been transformed in any way), and
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Figure 2.8 Temperature and transformed and de-trended load.

3. Finally, the transformed trend value at the end o f year 2000 (the trend value 

of prime importance in future forecasts) is reintroduced to all the data. This is 

known as level shifting. The resultant series now has the equalised variability 

and the trend value of the year 2000 (Figure 2.9).
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Figure 2.9 Temperature and transformed re-trended load.

The inverse Box-Cox transform (Equation 2.4) is then applied to the load series 

in Figure 2.9 to produce an equalised, level shifted and de-trended load series 

(Figure 2.10, below). The inverse Box-Cox transform can be easily derived from 

Equation (2.3) as:

z (t) = J w o + i / *
lexp(z(0)

if  À * 0  
i f  A = 0

(2.4)

where z \ t)  is the inverse-transformed series at time t and z(t) is the transformed 

series which has been further manipulated (de-trended and level shifted).

It should be noted that the pre-processed (equalised and de-trended) load in 

Figure 2.10 has the same value as the original load at the last data point (31st 

March 2000). The pre-processed load is an approximation to Irish load in a 

system without growth. Thus, the relationship between this and temperature is 

not obscured.

19



0 -L I : .
1986 1988 1990 1992 1994 1996 1998 2000

Year

s  o
2 1986 1988 1990 1992 1994 1996 1998 2000

Year

Figure 2.10 Original and equalised de-trended load (normalised).

2.3.3.2 Pre-Processing of Temperature and Load

The temperature at a particular hour is rarely the only temperature input used 

when forecasting the load at that hour (Dash et. a!., 1997, is an example o f one 

exception). The load is typically aggregated in some fashion. Arahal and 

Camacho (1999), for example, use the average temperature for the day in 

question while Hyde and Hodnett (1997b) use several different non-linear 

transformations of the current and previous temperatures, to name but a few. 

Before explaining the reason for using more than one temperature in predicting 

the load, a measure called coherence must be defined.

The coherence (also known as the squared coherency function) between a time 

series *(/) and y(i) is the correlation o f the power in series x  at frequency/w ith 

the power in series y at frequency/(Brockwelt and Davis, 1987):

where Cv,,(/) is the coherence o f x  with y  at frequency f  Px.\(f] and Pyv(f) are the 

power spectral densities o f x  and y  respectively, Pxv(f) is the cross power 

spectrum o fx  and y  and |*| denotes the absolute value operator. The coherence

(2.5)
P ,A f K y ( D
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can be used to indicate if  certain frequencies in one series are related to those 

frequencies in another.

The coherence is approximated in this body o f work using Welch's averaged 

periodogram method (Brockwell and Davis, 1987). First the data is divided into 

non-overlapping segments each o f size Njft. Each segment is then smoothed using 

a Hanning window (Brockwell and Davis, 1987) to avoid spectral leakage. The 

periodogram o f the smoothed segments is used to calculate the spectral densities 

and cross spectrum of x  and y. These are then substituted directly into Equation 

(2.5). In this study Njft was chosen to be 2,000 owing to the large size o f the data 

set and the resolution required at the high frequency end o f the spectrum.

The coherence function (Equation 2.5) o f temperature with pre-processed load 

demonstrates that pre-processed load is only correlated to temperature at daily 

and yearly frequencies (Figure 2.11). The high coherence at a 12-hourly period is 

due to the twin peak shape o f the daily load curve caused by the daily maximum 

and minimum (Figure 2.4) as noted by Moutter et. al. (1986). The high frequency 

(time periods less than 12 Hours) components o f temperature are not correlated 

with high frequency components of load. This indicates that high frequency 

components o f temperature are not particularly useful in forecasting load on any 

(including hourly) basis, and justifies the use o f some form of low-pass filtering 

or aggregation o f temperature data.
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Figure 2.11 Coherence between pre-processed load and temperature.

The pre-processed temperature used in the following analysis is the average 

temperature, tav(k), defined as:

U * ) = 7 r i ' * ( i . * )  (2 .6)

where thAi.k) is the temperature at hour i on day k.

Although the focus o f this research is forecasting the hourly load, the question of 

examining the load-temperature relationship for each hour o f the day is not dealt 

with until Chapter 4. In the current analysis the load is aggregated as:

*„(*) = ^ r £ z ' ( a )  (2.7)
24

where zav(k) is the average load for day k  and z'(i,k) is the pre-processed load for 

hour i on day k.

2.3.3.3 Characterisation of the Temperature-Load Relationship

A scatter plot o f the pre-processed load and average temperature is shown in 

Figure 2.12 below. Typically, for an electrical system, the relationship between 

load and temperature is similar to that shown in Figure 2.12 (Fan and McDonald,
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1994, Lu et. al., 1989). At low temperatures (below 18 degrees for Ireland as 

discovered by Murray, 1996*) the correlation between load and temperature is 

negative due to heating requirements. Above 18 degrees there is a deadband or 

comfort zone in which the load is largely unresponsive to the temperature (Fan 

and McDonald, 1994). Beyond this deadband, as the temperature rises, the load 

again increases due to air-conditioning (Fan and McDonald, 1994). As the 

temperature in Ireland rarely exceeds the mid-twenties, Murray, (1996) did not 

identify any cooling effect.

Average Temperature (degs)

Figure 2.12 Typical and actual scatter plot of temperature-load relationship (Working
days).

It should, however, be noted that the temperature-load relationship is not the 

same for all electrical systems. Murray (1996) pointed out that the relationship 

was significantly different for a regional power board in Northern New Zealand 

where temperature was a non-dominant input.

* Note: Murray used temperature readings from Eirgrid which although very similar to the MOI 
readings do have a bias of +2 degrees.
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2.4 Conclusion
This chapter shows that Irish electrical load data has distinct characteristics, 

which have implications for model building. The following characteristics were 

highlighted:

• Trend and variability. Firstly, the data has a trend that increases at an 

increasing rate. Also, the variability o f the load increases and is related to the 

trend. This indicates that load is a dynamic series which changes over time 

but in a predictable way. Indeed, the simple methods used to remove the 

trend and variability o f the load in Section 2.3.3.1, although not perfect, are 

quite effective. The forecast horizon that is the objective o f this body of 

research is three days. Relative to this, the rate o f change o f the approximated 

trend is very low at 1.13 xlO ' 11 Mw/hour* (Table 2.5) and removing the trend 

and variability (as is required in Chapters 5,6 and 7) can be achieved with a 

high level o f accuracy,

• Day-types. The shape o f the load on different days was examined in Section

2.3.2 and it was found that load can be classified into different day-types. The 

fact that the daily load shape is not consistent is important for modelling as it 

requires that the model must incorporate shape information, and

• Temperature-load relationship. The relationship o f temperature to load is 

examined in Section 2.3.3. The results (Figure 2.12) show that the load is 

very responsive to the load at temperatures below 16 degrees but thereafter a 

deadband exists. This implies that temperature may not be a significant 

variable in forecasting the load for some summer months. This topic is 

further examined in Section 4.2.2.

* This figure is normalised relative to a maximum load o f lMw.



Chapter 3

A Historical Review of Approaches to Electrical 

Load Forecasting.

3.1 Introduction.

This chapter reviews the approaches taken to load forecasting in the literature.

There are many ways in which load forecasting approaches may be categorised.

However, the aim here is to present the significant differences in these

approaches. To this end the chapter is divided into the following five sections:

1. The extent of the load forecasting field (Section 3.1.1). Load forecasting is 

not confined solely to the short-term. Section 3.1.1 describes the wider area 

of load forecasting and the issues that concern electrical utilities with respect 

to forecasting in general. Short-term load forecasting, which is the focus of 

this work, is subsequently defined in more depth,

2. Disaggregation approaches in load forecasting (Section 3.2). Rather than 

using a single model to forecast the load for all day-types and hours of the 

day, many approaches segment or disaggregate the load and model each part 

separately. That is, different models may be used to forecast the load in 

different day-types and even at different hours,

3. Linear load forecasting techniques (Section 3.3). Regardless o f the 

disaggregation approach, load forecasting models are broadly based on two 

techniques; linear and non-linear,

4. Non-linear load forecasting techniques (Section 3.4). There is a wide variety 

of techniques in the forecasting literature and the purpose of Sections 3.3 and 

3.4 is to categorise these techniques and detail the advantages and 

disadvantages o f each, and

25



5. Section 3.5 deals with the treatment of weather forecast errors. Many o f the 

load forecasting techniques discussed in Sections 3.3 and 3.4 use weather 

inputs. Typically load forecasting models are trained with actual weather 

readings but online operation requires weather forecasts. The errors in these 

weather forecasts can however, have a disproportionate influence on the load 

forecast. Section 3.5 discusses the approaches taken to reduce the influence 

of these errors.

3.1.1 Introduction to the Load Forecasting Area.

The thesis is focused on short-term load forecasting. However, this is a subset of 

the larger load forecasting area. This section details the extent o f the wider load 

forecasting area, issues that are common to all load forecasting areas and the 

relevance o f each to STLF. Load forecasting can be broken into three areas, 

long-term (Section 3.1.1.1), medium-term (Section 3.1.1.2) and short-term 

(Section 3.1.1.3) load forecasting.

3.1.1.1 Long-Term  Load Forecasting.

Long-term load forecasts refer to forecasts on a yearly time scale. These are 

typically total yearly electrical consumption, sales or the peak yearly demand. 

These forecasts are required for financial planning, transmission network and 

generation network expansion (Youssef, 2000). As the timescale is yearly, the 

data has no seasonality or cyclical behaviour.

As noted by Youssef (2000) the amount of historical data available for long term 

load forecasting is restricted as there is only one data point per year. The number 

of causal variables for long-term forecasting can be quite large in relation to the 

typical size o f the data set. Youssef and El-Alayly (2000), for example, list 

sixteen causal variables for total yearly consumption with a database of only 

thirty-six years (data points) o f historical consumption. Murray’s (1996) data set 

consists o f twenty-nine years o f data with ten causal variables. A small data set 

also limits the techniques that can be applied and thus non-linear techniques are 

rarely applied (Youssef, 2 0 0 0 ).
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3.1.1.2 Medium-Term Load Forecasting.

Medium term load forecasting refers to forecasting on a timescale less than a 

year but greater than a day. Examples are forecasts o f total weekly electrical 

demand (Murray, 1996 and Cloarec et. al., 1998) and the monthly peak load 

(Barakat and Eissa, 1989, Train et. al., 1984). These are required for fuel 

procurement and to schedule plant maintenance. In the case o f total electrical 

weekly demand this area is quite similar to Short-Term Load Forecasting (STLF) 

in that the data exhibits a yearly cycle and also has special periods such as 

Christmas and summer holiday seasons (Cloarec et. al., 1998). Thus the 

techniques applied in this area must deal with similar issues to those in STLF.

3.1.1.3 Short-Term Load Forecasting.

The term short-term load forecasting typically refers to forecasting overall 

system demand on an hourly basis up to seven days ahead, which has not been 

adjusted by demand side management*. However, the term is sometimes 

interpreted differently. For example, the following topics are considered part of 

the STLF field but are not relevant to this thesis:

• Direct Load Control (DLC), in which the operator may intervene to change 

the level of demand (for examples see Bhattacharyya and Crow, 1996 and 

Yu, 1996),

• Changing customer base, in which the system size changes in the short term 

due to competition from other electricity suppliers (for example Morrissey 

and Van Toai, 1988),

• Bus load forecasting, in which the load in a local region is forecast (for 

examples Kassaei et. al., 1999 and Handschin and Domemann, 1988),

• Residential and industrial load forecasting, which is concerned with 

forecasting the loads o f individual customers (for examples see Morrissey

* For example large industrial customers can be instructed to lower usage by the grid operator.
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and Van Toai, 1988, Ihara et. al., 1994, Capasso et. al., 1994 and Harris and 

Liu, 1993), and

• Very Short-Term Load Forecasting (VSTLF), (also frequently referred to as 

short-term load forecasting) which refers to forecasting the load for horizons 

up to 30 minutes ahead on a minute by minute basis (for example Liu et. al., 

1996).

In contrast, the area o f daily peak forecasting (for example Dash et. al., 1995) is 

relevant as the peak daily load is merely a point in the daily load curve. The 

majority of short-term load forecasting literature is relevant to the current 

research.

The main forecasting accuracy measure used in STLF is the Mean Absolute 

Percentage Error (MAPE), defined as:

MAPE = Y  1_ (3 .i)
m y(0  n  v

where y(i) is the actual load at time i, y(i) is the load forecast and N  is the 

number o f points used. The reason this measure is used is that it allows 

comparison between different electrical systems without revealing the size of the 

system or the variance of the forecasting errors (unlike for example, the mean 

squared error), which are often considered confidential information.

However, electrical utilities, including Eirgrid, consider large forecast errors to 

be proportionately more costly than small errors. Thus, a measure such as the 

Mean Squared Error (MSE) would seem more appropriate as it involves the 

squared error which penalises large errors more heavily than small errors:

MSE = f j (y(i)-y(i))2 (3.2)
t r  n

It is therefore common that models are trained to minimise the MSE but are 

evaluated using the MAPE. Although minimising the MSE of a model does not
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guarantee a minimum MAPE this is the convention in this area and will be 

followed here.

3.2 Disaggregation approaches in Load Forecasting.
Disaggregation o f electrical load data refers to the segmentation o f the data set 

into several distinct disaggregated sets, each of which is modelled separately. 

This approach may be described as a 'divide and conquer' approach. It is 

proposed here that disaggregation is advantageous if  the disaggregated sets are 

sufficiently different. Load data is typically disaggregated at two levels:

1. Day-type (Section 3.2.1), and

2. Hour o f the day (Section 3.2.2).

These disaggregations are not mutually exclusive and the load may be 

disaggregated both by day-type and hour o f the day or at one level only.

3.2.1 Day-Type Disaggregation.

The existence of several different day-types has been shown by several 

researchers (Muller and Schatzel,1999, Muller and Petrisch,1998, Ho et al.,

1990, Bretschneider et al., 1999, Hsu and Yang, 1991, to mention a few). Muller 

and Schatzel (1999) for example, identified five primary classes:

• Summer days,
• Cold, early and late summer days,
• Spring and autumn days,
•  Early and late winter days, and
• Winter days.

Each o f these primary classes contains seven secondary classes:

• Mondays and working days after a holiday,
• Tuesdays, Wednesdays and Thursdays,
• Fridays and working days before a holiday,
• Saturdays,
• Sundays,
• Holidays, and
• Special days.
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The total number o f day-types is thus thirty-five. In an earlier study, Muller and 

Petrisch (1998) identified only summer and winter primary classes for the same 

data. This shows how the level of disaggregation in day-type selection is, to a 

large extent, subjective and dependant on the judgement o f the forecaster.

As pointed out by Hubele and Cheng (1990), the application o f a separate load 

forecasting model for different seasons (i.e. summer, autumn, winter and spring) 

has the advantage that the models need not incorporate seasonal information. 

Further disaggregation of the load by day of the week (for example summer 

Sunday, winter Sunday, summer Monday etc.) reduces further the amount of 

information that a model need incorporate. Such approaches have been 

implemented successfully by Srinivasan el al (1999) and Mastorocostas et al 

(1999), to mention but a few.

Where a single model is used for all the data, the day-type information is often 

incorporated as an additional input (two examples are Chen et al, 1992 and 

Lertpalangsunti and Chan, 1998.). In either case the day-types must be identified.

3.2.1.1 Techniques for Day-Type Identification.

The selection o f day-types can be guided by analytical techniques. Three 

candidate techniques were considered for day-type identification:

1. Interviews with system operators (for example Ho et al., 1990),

2. Clustering algorithms (for example Bretschneider et al., 1999), and

3. Self-organising feature maps (for example Hsu and Yang, 1991 and 

Pelikan et. al., 1996).

Lonergan (1994) presented interviews with Irish system operators. The 

interviews indicate that there were considered to be only two seasons in the year; 

winter and summer. There is no disaggregation by day of the week and so the 

total number of day-types identified is two.
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Clustering algorithms group data together into clusters (sets). Often a cluster can 

be assigned to a single unusual data point while another cluster represents two 

close but distinct groups (Jain and Dubes, 1998). These algorithms are best 

applied when the a-priori existence of the number o f clusters is known.

The self-organising feature map or Kohonen map (Kohonen, 1990) is a technique 

which maps a continuous input space to a discrete output space. The discrete 

output space provides an approximation to the input space (Haykin, 1999). The 

output space is typically organised as a two dimensional grid (Figure 3.1, below) 

in which similar inputs will be mapped onto the same area o f the grid. In terms of 

day-type identification this means that similar days will be mapped to a particular 

area o f the grid. These areas can then be identified as day-types. Unlike cluster 

algorithms, the number o f day-types need not be pre-specified and the proximity 

of the identified day-types is known.

The Kohonen map can be implemented for day-type identification in several 

different ways, (examples are Bretschneider et al., 1999, Muller and Petrisch, 

1998, Hsu and Yang, 1991); however differences in the results are insignificant 

in most cases. The algorithm used by Hsu and Yang (1991) is now presented as 

an example. The Kohonen map structure is diagrammatically shown in Figure

3.1 below.
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Figure 3.1 Kohonen map structure.
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The network consists o f a grid o f output nodes connected to the inputs via a set 

of weights. When presented with the kth input vector £4, e  R lxn, the network 

calculates the activation o f each node by £ 4  as:

* u * = W tJUk (3.3)

where atj and Wij are the activation of, and weight (e Rnxl) connecting £4 to, 

node y  respectively. £ 4  is said to be mapped onto the node with the highest 

activation. After several inputs have been presented, similar inputs are mapped to 

the same or adjacent nodes, i.e. within a small neighbourhood. A neighbourhood 

of size Nc around node i j  is defined as nodes i ± Nc to j  ± Nc.

Hsu and Yang (1991) construct the input, £4, for load forecasting in two steps. 

Initially, the daily load curve is extracted from each day to give a set o f load 

curves that have a minimum value o f zero and a maximum value o f one (Hsu and 

Yang, 1991):

F ( 0 , -  m h,(T ,) , = U 3  2 4  ( 3  4)
max(Fjt) -  m in (it )

where Y'(i)k and Y(i)k are the z'th elements (hour) of the load curve Y \ ,  e  R Ix24, 

and actual load Y  *, e  R 1x24, o f day k  respectively. The load curves are then 

normalised to give them unity length:

U(i)k = W '(!)k\\ = Y '{i)h
f  24 V/2

X F '0 ')*
j = 1

/ = 1,2,3,. ..,24 (3.5)

where U(i)k is the zth element o f Uk, and ||*|| is the normalisation operator. The 

weights are initialised as (Hsu and Yang, 1991):

W,J = || k O ) . A ( 2 ) ...(24)]+ 5A[au(1),<JU(2),...<t1,(24)]|| (3.6)

where and <Ju(i) are the mean and standard deviation o f U(i) over all k, A  is 

a uniformly distributed random number in the range -0.5 to 0.5 and Wq is 

normalised to unit length, in a manner similar to Equation (3.5). The weights are 

not initialised randomly but initialised around the mean o f the inputs so that the
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corresponding outputs are well distributed in the output grid (Hsu and Yang, 

1991).

During training the inputs are presented one by one and the weights o f the 

triggered node (the node to which the inputs is mapped) and nodes in its 

neighbourhood are updated (Hsu and Yang, 1991) via:

Wu  (m + 1) = W. j (m) + a(m)[Uk -  WiJ (m)] (3.7)

Where a  is the adaptation gain, with 0 < a <  1, and m is the iteration number. 

This has the effect o f increasing the activation of the triggered node and it’s 

neighbours. In a single iteration all the inputs are presented and the weights 

adapted. After several iterations, the neighbourhood size is reduced by one and 

so on until zero, i.e. at this point the triggered node only is adapted.

3.2.1.2 Techniques for Determining the Transition between Day-Types.

Cloarec et al. (1998) demonstrated that for Irish weekly demand there is a 

transitional period between winter and Christmas. Analytical techniques, such as 

clustering algorithms (for example Imai et al., 1998) and Kohonen maps (for 

example Muller and Petrisch 1998), have been used to determine the transitions 

between day-types. However, Kohonen maps are not ideal for this task. Consider 

a day lying in the transition between summer and winter. This day will trigger a 

node in between the summer and winter regions o f the output nodes. However, as 

pointed out by Song and Hopke (1996) the relative position o f two nodes in a 

Kohonen Map is not an exact measure o f the proximity between the inputs that 

trigger those nodes.

Cloarec et al. (1998) and Rahman and Bhatnagar (1988) determine the transition 

between the loads in two seasons using model forecast errors. The load in 

question (weekly in Cloarec’s study and hourly in Rahman and Bhatnagar’s) is 

forecast using both seasonal models and the ratio o f model errors is used to 

determine the transition. This technique is desirable for any online system, as it 

tracks the errors o f that system. However, it is dependant on the performance of 

load forecasting models and not the characteristics of the data.
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Cluster analysis methods are used mainly as a first step in designing a fuzzy logic 

system based on the data as opposed to a priori information (Jain and Dubes, 

1998). There are several types o f clustering algorithms such as K-means 

clustering, nearest neighbour, polynomial interpolants and adaptive vector (for 

an overview see Harris et al., 1993). Other algorithms such as the adaptive fuzzy 

classification algorithm suggested by Bretschneider et al. (1998) can be adaptive 

and change with the dynamic behaviour o f the data. By far, the most popular 

clustering algorithm is the Fuzzy C-Means (FCM) algorithm (Dunn, 1974). As 

pointed out by Jain and Dubes (1998), there are no guidelines for a-priori choice 

of the correct algorithm based on the data. As the FCM algorithm is the most 

popular it is now presented.

The FCM algorithm seeks to break the data into N  clusters. Each cluster is 

characterised by a cluster centre Q  e  R Ixe, which represents a point at the centre 

o f the cluster and Q is the dimension o f the inputs. Given an input vector £/*, 

e  R lx0, instead o f assigning it to a single cluster its proximity to all clusters is 

quantified by a potential defined as:

where e  [0,1], is the potential o f Uk to cluster centre Cj, k \ s  a scalar which

The level offuzziness determines the degree o f overlap between clusters. A value 

of one for k  leads to no overlap. As k  is increased above one the overlap is 

increased.

determines the level o f fuzziness (explained below) o f the resulting potentials, 

and L(Uk,Cj) is the distance between 14 and Cj defined as:

(3.9)

thwhere E4(z) and C /i) are the i elements o f £4 and Cj respectively.
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In addition to Equations (3.8) and (3.9), it is required that the sum of potentials 

for Uk equals unity:

N
(3.10)

It should be noted that although fij k has similar characteristics as the probability 

that Uk is a member of cluster Cj (i.e. e [0 , 1] and the sum of the 

memberships equals one), the two measures are not the same (Jain and Dubes,

1998). The potential represents the membership (degree to which an input can be 

classified as a member o f a cluster) o f an input to a cluster. While an input can 

have membership o f two or more clusters, the probability that it is a member of a 

cluster implies that it belongs to one cluster alone. Thus, the potential is an ideal 

measure o f the membership of a day to a certain day-type.

To apply the algorithm, the cluster centres, Ch and level o f fuzziness, K, must be 

determined. The aim is to minimise overall proximity of the data to the cluster 

centres. This is achieved by minimising the cost function:

where J  is the cost function to be minimised and M  is the number of input 

vectors. The algorithm is initialised using random potentials. The cluster centres 

are then calculated via:

The potentials are then updated via Equation (3.8) and the new cluster centres 

and value o f J  are calculated via Equations (3.11) and (3.12). This process 

continues until the value o f J  reaches a pre-specified level or the number of 

iterations reaches a pre-specified maximum.

M N

j = ’L ' L w l <.v „ c ,) (3.11)
/=1 1=1

(3.12)
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3.2.2 Hour of the Day Disaggregation.

STLF forecasting models fall broadly into two categories; sequential models 

(examples o f which can be found in Choueiki et. al., 1997, Papadakis et. al.,

1999) and parallel models (examples of which can be found in Infield and Hill, 

1998 and Gupta, 1985). The sequential approach models short-term (hourly) load 

as a single series while the parallel approach models each hour o f the day as a 

separate series. The difference in approaches is shown diagrammatically in 

Figure 3.2 below. A daily series composed o f the loads at a single hour is called a 

partitioned series. Figure 3.2 shows the construction of, for example, the 

partitioned series for 1 p.m. and 6  p.m.

S e q u e n t i a l  a p p r o a c h :

P a r a l l e l  a p p r o a c h  :

I pra series 6pm series

Figure 3.2 Constructing partitioned data series from electrical load data.

A general equation for the load on hour i o f day k, yi(k) may be expressed as a 

function,/ o f previous loads, current and previous inputs and an error term as:

y t (/c) = f(yi-i (*),-, y t-N (k)>y,~ 1 (* -  i)»-, y t-N (* -  p )>
(*),..., Ut_M (k), (k -1),..., ,..., U,_u (k -  0 ,

i,k) + ei(k) (3.13)

where Uj(k) is a vector o f causal variables on hour i o f day k, £,{k) is an error 

term, N, M  are the orders of the hourly regressors (N,M  <24) and P,Q  are the 

orders o f the daily regressors. Note that k  is included as a factor in Equation

(3.13) to reflect that, due to the long-term trend, load is a non-stationary process. 

Indexing the load by both hour and day, though cumbersome, is useful in 

pointing out the difference between the parallel and sequential approaches to 

load forecasting.
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The sequential approach uses just one function, / ,  relating the current load to 

previous loads and inputs and so Equation (3.13) becomes:

y, (k) = f s (.yM (k),..., y,_N (k), (k - 1),..., ,..., y,_N (k -  P),
U,_, (k),..., U,_M (7c),t/M (k -1),..., ,..., Ut_M (k -  0 )  + e,. (k) (3.14)

However, in the parallel approach, the data is partitioned so that each hour o f the 

day is modelled by a separate function and so Equation (3.13) becomes:

7o(*) = fo U (k - l) , . . . ,y 0( k -  P0) ,U l(k - 1),...,U l(* -  0 O))+ £0 (k)
7 , (k) = / ,  (y{ (k -1),..., y, (k -  Px), Ul (k - 1),..., Ul (k -  Qy))+ el (k)

y 23(k) = / 23(̂ 23 (k - l) ,.. . ,y 23( k -  P23) ,i / 2’3 (k - 1),..., U'22 (k -  Q23)) + f 23(k) (3.15)

where U* (k) is the input vector for hour i o f day k  (which may now include the 

load at previous hours), yi(k) is the load at hour i on day k  (for example y\(k) is 

the load at 1 hrs or 1 a.m. on day k  etc.), /  is the parallel model for hour i. P, and 

Q i  are the orders of the regressors for partitioned series i.

Note that, in the case o f a sequential approach, the order of the regressors for 

each hour o f the day is fixed while in the parallel approach the regressor order is 

variable if  required. Similarly, in the parallel c a s e /  can vary from hour to hour. 

However, for the sequential approach, the same function applies to all hours of 

the day.

To produce a multi-step ahead forecast using a sequential approach requires that 

the forecasts be produced iteratively (Figure 3.3). This is because actual values of 

the time series are not available past the forecasting origin and forecast values 

must be used instead. As pointed out by Bretschneider et. al. (1998) the error in 

the first and subsequent forecasts is propagated and tends to build up. This 

phenomenon is known as propagation error. However, parallel models have the 

advantage that they may exclude the hourly regressors, which are not available at 

the forecast origin and thus 24 hour ahead forecasts can be produced without 

propagation errors.
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Figure 3.3 Producing a multi-step ahead forecast using a sequential model.

The parallel approach may make the modelling task more difficult as:

• Although / 0.. ,,/23  no have the hour o f the day as an input (i.e. i is excluded 

from Equation (3.15)), this may not result i n / , . . .5/23 being any less complex 

than / .  The partitioned series are created by daily sampling of load (Figure

3.1). As shown by Harvey (1981), a sub-sampled (i.e. taking every p th 

sample) AR (Auto-Regressive) process is itself an AR process o f equal or 

higher order. That is, it is likely to be a more complex process. ARMA 

processes, o f which AR processes are a subset, are explained in Section 3.3.1. 

However, at this stage it is sufficient to say that ARMA processes covers a 

large class o f linear processes. Short term load has been modelled by several 

authors as an ARMA process with varying degrees o f success by several 

authors (examples are Vemuri et. al. 1981, Barakat et. al. (1990) and Elkateb 

et. al. (1998)),

• The number o f parameters that need to be estimated in the parallel approach 

(24 sets o f parameters) exceeds that o f the sequential approach, where only 

one set o f parameters needs to be estimated (Lee et. al., 1992),

• The data set is partitioned into 24 separate time-series (Figure 3.2), reducing 

the number o f input-output pairs for training of the model, and

• Training 24 separate models can be overly computationally expensive.

Examples o f a sequential approach can be found in Barakat et. al. (1990),

Connor et. al. (1992), Darbellay and Slama (2000) and Vermuri et. al. (1981) to

mention but a few. As observed by Connor et. al. (1992), this approach can lead
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to excellent results if  the hour o f the day dependence is not a dominant factor for 

the electrical system being modelled. In that study, Connor et. al. (1992) 

observed that sequential approaches which ignored hour o f the day dependence 

were superior to those that did not (in this case two types were examined; a 

recurrent neural network (Section 3A.3.2) and a Multi Layer Perceptron (MLP, 

see Section 3.4.3.1). This was reported as being due to the increased complexity 

of the modelling task. Darbellay and Slama (2000) similarly observed that an 

ARMA model, which ignores hour o f the day dependence, was superior to a 

feedforward neural network (Section 3.4.3.1), which used the hour o f the day as 

an additional input. However, differences in the type o f model employed, prevent 

a genuine evaluation of the effect o f including this time dependence.

The parallel approach has also been used by many authors (Chow and Leung, 

1996 and Ramanthan et. al., 1997 to mention a few). In the study by Connor et. 

al. (1992), it was found that the parallel approach vastly improved the forecasting 

performance, where recurrent neural networks (Section 3.4.3.2) were used as the 

modelling tool. In fact, this was found to be the optimal technique. In contrast, 

Lee et. al. (1992) found the performance of parallel and sequential models which 

used MLPs (Section 3.4.3.1), indistinguishable. Interestingly, although not 

explicitly stated in the paper, the parallel model gave superior results for some 

hours o f the day. In a similar study, also using MLP neural networks, Lu et. al. 

(1993) found that the sequential approach was superior to the parallel approach.

The only consistent conclusion to be drawn from the literature is that the choice 

of sequential or parallel modelling is highly dependent on the particular power 

system being analysed.

A number o f other studies (Gupta, 1985, Khotanzad et. al., 1996, Murray et. al.,

2000) have examined combining the sequential and parallel approaches. This 

combined approach is known as the Multi-TimeScale (MTS) approach and 

adjusts the forecasts o f a sequential model with those o f parallel models. For 

example, Gupta (1985) first forecasts the load curve for the following day using a 

sequential model. A parallel model is then used to forecast the load at 6  p.m. (the 

daily peak load). The difference between the load curve forecast at 6  p.m. and the
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parallel model forecast for 6  p.m. is then used to adjust the whole load curve 

forecast. The topic o f MTS models is further examined in the section on linear 

models (specifically Section 3.3.4).

3.3 Linear Techniques for Load Forecasting.
A linear system is one which satisfies the principal o f superposition (Sinha, 

1991). Superposition is composed o f two concepts, additivity and homogenity 

(Sinha, 1991). Additivity means that the output o f a linear system given the sum 

of two inputs is equal to the sum of the outputs from each input individually:

/(« !  (i) + u2 (0 ) = /(Mj (0 ) + f ( ui (0 ) 0-16)

where /  is a linear function and uia are inputs. Homogenity means that 

multiplying an input by a constant results in the output being multiplied by the 

same constant:

/ ( c « 1) = c /(« 1(i)) (3.17)

where c is a constant. A simple exception to this is an affine (a linear function 

with an offset) function:

/  (u(t)) = au(t) + c (3.18)

where a and c are constants. In this case neither additivity nor homogenity apply, 

though the function still falls into the realm of linear systems (Seber and Wild, 

1989). The definition o f a linear system used in this text is that adopted by Seber 

and Wild (1989), in which a system is linear if  the partial derivatives of the 

system outputs to the input variables are constant in form.

The various linear techniques differ in their form of representation o f a linear 

system. The Box-Jenkins techniques of Section 3.3.1, for example, use difference 

equations, state space form is used in Sections 3.3.2 and 3.3.4, while the 

Bayesian techniques explained in Section 3.3.3 can be applied to both 

representations.
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3.3.1 Box-Jenkins Techniques.

Box and Jenkins (1970) laid many o f the foundations o f classical time-series 

analysis (as noted by Harvey, 1981, among others). Their techniques have been 

used in several load forecasting applications (Di Caprio et. al., 1985, Rajukar and 

Newill, 1985 to mention a few) and are often used as a baseline for comparison 

with other techniques (examples are Ho et. al., 1990, Murray, 1996, Infield and 

Hill, 1998, Di Caprio et. al., 1985, Charytoniuk et. al., 1999 to mention but a few).

Box-Jenkins techniques involve modelling a time-series as a function o f previous 

outputs, output errors and external inputs (three commonly used textbooks on the 

subject are, Bowerman and O ’Connell, 1987, Brockwell and Davis, 1987 and 

Cryer, 1986). However, a stationary time series is required in the later stages o f 

Box-Jenkins techniques (Box and Jenkins, 1970). A stationary time series is one 

for which the statistical properties are invariant to a shift in the origin (Papoulis, 

1991). However, this definition is quite strict as it includes all the statistical 

properties o f the series and the alternative definition o f wide sense stationarity is 

used (Brockwell and Davis, 1987). A series is wide sense stationary if  its mean 

and covariance are invariant to a shift in the origin (Papoulis, 1991).

Box and Jenkins (1970) suggested that prior  to modelling, the time series should 

be transformed into a stationary time series with a stationarity transform, 

explained below.

3.3.1.1 Stationarity Transformations.

A stationarity transform is one which produces a stationary time series from a 

non-stationary time series. As pointed out by Priestly, (1981) any linear time 

series can be transformed into a stationary times series by means of an 

appropriate stationarity transform. Many stationarity transformation techniques 

exist but the appropriate one to use depends on the time series being transformed.

Box and Jenkins (1970) proposed differencing as a stationarity transform. 

Differencing is based upon the delay and differencing operators, q x and V,
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respectively. The general differencing stationarity transform for a seasonal series 

can be composed of both seasonal and non-seasonal differencing (Bowerman and 

O’Connell, 1987) as:

z(k) = v y dx(k) = (1 -  q~* )D (1 -  q~' ) d x(k) (3.19)

where z(k) is the transformed series, x(k) is the original series, V f  is a seasonal 

differencing operator with a season 5 and D  is called the order o f  seasonal 

differencing, V d is a non-seasonal differencing operator o f order d. D  and d are

determined by use o f the Sample Auto Correlation Function (SACF) which is 

explained below.

The SACF of a time series x{k) represents the linear dependence between 

observations separated by a lag and may be expressed (Bowerman and 

O’Connell, 1987) as:

n —T

X  (x(r) -  3c)(jc(£ + t ) — x ) 

rx(^) = — ------ ------------------------- (3-20)
2 > ( o - f )2
T=]

where r r (T)is the SACF value for a lag o f t, n is the number o f observations

used and x  is the average value of x(k). Note that the SACF is an estimate o f the 

auto-correlation function, as sample data is used.

The orders o f differencing, D and d, typically lie in the range zero to two 

(Bowerman and O’Connell, 1987). To determine if  the transformed series is 

stationary Box and Jenkins (1970) suggest repeatedly applying differencing, 

increasing D or d  at each iteration. At each iteration the series is tested to see if  it 

is stationary using the SACF. Box and Jenkins (1970) suggest that a process may 

be considered non-stationary if the SACF dies away slowly, which is determined 

subjectively with experience. Ng and Young (1990), however, point out that 

differencing can only be used with time series that are non-stationary and not, for 

example, with time-series which have non-constant parameters. Another problem 

with differencing is that subtracting one value o f a time-series from another (i.e.
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differencing) results in the noise at both values being present in the differenced 

value.

Other stationarity transforms include the Box-Cox transform (Section 2.3.1), 

removal o f a linear trend (Ljung, 1987), removing a polynomial trend (Brockwell 

and Davis, 1987) and smoothing by means o f a moving average trend (Brockwell 

and Davis, 1987) to mention but a few.

3.3.1.2 M odel Structures.

The second stage o f the Box-Jenkins methodology involves modelling a 

stationary time series. Box and Jenkins suggest several types o f models for this 

purpose. The general form of the Box-Jenkins model is known as the transfer 

function model and can be expressed as a function o f previous values o f the time 

series, external inputs and previous model errors (Box and Jenkins, 1970) as:

x (k) = ^ M u( k - T ) + ^ - E ( k )  (3.21)
' '  F(q) ' '  D ( q ) ' '  V '

where

• x(k) is the stationary time series to be modelled at time k (assuming q < 1 ),

• u(k) is an external input with delay T between input and x(k),

• e(k) is a white noise term at time k, and

• B,F,C,D are polynomials in the delay operator qA such that, for example, B

may be expanded as:

B(q)x(k) = (1 -  bx q _1 -  b2 q~2 -----bna q ~"b )x(k) (3.22)

where are the coefficients o f the polynomial and nb is the order. F,C

and D  can be similarly expanded with coefficients f t c / i , a n d

orders o f n f  nc and nd, respectively. The other models proposed by Box and 

Jenkins (1970) can be derived from Equation (3.21) by letting F  and D  equal 

one and adding a regressor term A(q) which acts on x(k) as shown in Table

3.1 below.
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Table 3.1 Box-Jenkins models and associated polynomials F = \,D = \) .
Model name A B C

AR (Auto Regressive) l-a lq ' , . . . ,a naq"a 0 1

ARX (AR eXogeneous) l-ci]q . . ,anaq b l+b2q \ . . . , b nbq nb 1

MA (Moving Average) 1 0 1+Cltf ■,('>!! U

MAX (MA eXogeneous) 1 b i+b2q',...,b„bq nb l+Ci# ,... cncq

ARMA (A R -M A ) 1 9- " flnatf 0 l~\~C\q ,... cncq

ARMAX (ARMA eXogeneous) \-ci\q ,anaq bi+b2q \ . . . , b nt q nb l+Cl? ) - • - n̂cQ

In addition, if  x(k) has been produced using a differencing transform on an 

original series, then the model is called an Integrated model and the letter ‘I’ 

may be added to the model name. For example, an ARMAX model becomes an 

ARIMAX model, an AR model becomes an ARI model, etc. In this case the time 

series in Equation (3.22), x(k), represents a stationarity transformed series and 

Equations (3.19) and (3.22) may be combined (with F  and D  equal to 1) 

(Bowerman and O ’Connell, 1987) to give:

A ( q ) V y il(x(k)) = B(q)u(k - r )  + C(q)e(k) (3.23)

Box and Jenkins (1970) also examined the case where the series to be forecast is 

seasonal. In order to include the seasonal aspects o f the data, Box and Jenkins 

(1970) used the idea o f seasonal and non-seasonal operators to adjust Equation 

(3.23) (Bowerman and O ’Connell, 1987) as:

As(cl)AJ c{ ) ^ y d (*(*)) = B(q)u(k ~ t)  + Cs (q)Cns (q)e(k) (3.24)

where

• As is the seasonal AR operator defined as:

A (q )  = (1 -  «,,<T  , - - a s,nsaq -"sats) (3.25)

where as7\,...,as>„sa are the seasonal coefficients o f order nsa,

• Ans is the non-seasonal AR operator defined as:

A J q )  = ( l - a lq - \ . . . - a naq -Ba) (3.26)

where a \,...,ana are the non-seasonal coefficients of order na,

• Cs is the seasonal MA operator defined as:
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C/ci) = ( \ - c ^ \ . . . - c snscq ^ )  (3.27)

where cs,u...fis^sc are the seasonal coefficients of order nsc, and

• C„s is the non-seasonal MA operator defined as:

C J q ) = ( \ - c xq -x.... - c ncq Hc) (3.28)

where C ] , . . . , e nc are the non-seasonal coefficients o f order nc.

The model described by Equation (3.24) is called a Seasonal Auto Regressive 

Integrated Moving Average exogenous (SARIMAX) model.

3.3.1.3 Model Identification.

The next step in the Box-Jenkins procedure involves calculating the orders o f the

seasonal and non-seasonal AR and MA operators. Before explaining the

procedure, the Sample Partial Auto Correlation Function (SPACF) must first be 

defined.

The SPACF of a time series is defined (Bowerman and O’Connell, 1987) as:

r /T , t) =

r / V if  T =  I

r-1

** ____________  i f  T =  2,3,.
(3.29)

r-1

y=i

where rx ( t, t )  is the SPACF at a lag o f % rx ( t )  is the SACF at a lag o f % and 

rx( r , j ) ,  forj  *  z, is defined (Bowerman and O’Connell, 1987) as:

r j Tj) = r / T - 1JJ-  r\(t, T ) r j r - \ . T - j )  for j  - 1,2,...,r  -1 (3.30)
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If an AR model is fitted to the data, rx (r, T) can be interpreted as a plot o f the 

coefficients o f the AR model versus the lag, r, associated with that coefficient 

(Harvey, 1981, for example see Figure 3.4 below). For an AR process o f order r, 

an AR model of order r is  sufficient. Thus the PACF of an AR process o f order T 

will theoretically have zero elements after T and the coefficients o f the model up 

to T (Harvey, 1981). Also it can be shown that an MA process (which has no 

roots at zero) has an equivalent AR process which has an infinite order 

(Brockwell and Davis, 1987). Thus for an MA process the SPACF is non-zero 

for all T. However, it does die away with increasing t  (Harvey, 1981).

1 ■
SPACF

0 8 w- ¡JS1?* Cofil Im
QuiakJo bound»

0 6 Imidn bounds
\

0 4

0.2 -w

0 ^ --------—  e - ------ *■ - _ - - —O *  *" 1
0 2

0 6

o a ■

'1 0 1 2 3 4  5 6 7  8 9  10
L ag

Figure 3.4 The SPACF of an AR(2) process.

Conversely, the SACF of an AR process is non-zero for all % while the SACF of 

an MA process o f order r, is zero after t  (Harvey, 1981).

Thus, the SACF and SPACF can be used to identify the orders o f an MA or AR 

model. However, with an ARMA process the AR part o f the data is present in the 

SACF as a component which dies away (Harvey, 1981). This makes detection of 

the order of the MA component o f the model difficult. Conversely the MA 

component o f the model similarly contaminates the SPACF. In addition, as noted 

by Harvey (1981), the SACF and SPACF of an ARMA process with errors can 

be highly distorted.

Calculating the orders of an SARMA model involves identifying, in addition to 

the above, the orders o f the seasonal operators. The approach is similar to that 

above and Bowerman and O ’Connell (1987) give guidelines for their selection.
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For an integrated model (ARI, SARI, SARIMA, ARIMA, etc.) the transformed 

series is assumed to be stationary so the model identification is the same as that 

of a non-integrated model.

For a model with an exogeneous input, nb is determined using the Sample Cross 

Correlation Function (SCCF) defined (Papoulis, 1991) as:

n - t

^  (x(k ) -  x)(u(k + t ) - u)
L ( t)  = --------^ --------------------------------------- (3-31)II h

£ ( x(4)-5Q 2 £ ( « ( t ) - a ) 2
k = 1 k= \V /  V"

Where rxu (t) is the SCCF between x(k) and u(k) at a lag of T and u is the mean

value of u(k). The SCCF is zero up to T=k -1 and non-zero from T= k  to r  = 

k +nb , thus allowing determination of the order o f B and the delay between the 

exogeneous variable and the time series.

It should be noted that if  x(k) represents a stationarity transformed time-series 

then the relationship between the original series and u(k) may be distorted 

(Harvey, 1981). Remedying this situation is dependant on the time series in 

question and may require transforming u(k) also (Harvey, 1981).

3.3.1.4 Model Estimation and Diagnostic Checking.

The next step in the Box-Jenkins technique is to estimate the coefficients of the 

model. There are several techniques used to estimate the parameters o f Box- 

Jenkins models some of which are model dependant. These include maximum 

likelihood estimation (Harvey, 1981) and least squares estimation (Harvey, 

1981) among others. Brockwell and Davis (1987), Cryer (1986) and Bowerman 

and O’Connell (1987) provide a comprehensive list of the methods used.

Due to the distortions in the SPACF and ACF (mentioned in Section 3.3.1.3), the 

correct model orders may not have been identified. Thus the next step is 

diagnostic checking in which the model is validated to ensure that it is a good 

representation of the time-series. The residuals (forecast errors, £(kj) of an
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optimal model are taken from a random population (Papoulis, 1991) and thus the 

first step in diagnostic checking is to examine a plot o f the residuals against time 

(Box and Jenkins, 1970). The second step involves examining the SACF of the 

residuals to ensure that there is no serial correlation (f(/c) is correlated with e(k- 

1), 0[k-2), etc.). The ACF of a random process is 1 for a delay of, T= 0, and zero 

elsewhere. The SACF of the residuals of an ARMA model may, however, be 

misleading as they tend to be underestimated (Harvey, 1981). Alternative 

approaches include that of Box and Pierce (1970), who proposed using a test 

statistic to determine the randomness o f the residuals from an ARMA process. 

Other tests for randomness rely on examination o f the residuals in the frequency 

domain. The power spectrum of a random series is equal at all frequencies. In 

order to test this the periodogram  (Brockwell and Davis, 1987) is often used to 

estimate the power spectrum. The periodogram ordinate (point) for frequency j ,  

7Tj, is defined (Harvey, 1981) as:

7tj = a 2j + b 2 j  = 1 n (3.32)

9 9 • •where a j  and bj are the coefficients o f the Fourier transform of the residuals 

defined (Harvey, 1981) as:
N

bj = ( 2 / N ) V2Y J£(k)sm(27g/N)k j  = \ , . . . ,n - \  (3.33)
k = 1

and
N

aj = (2 /N )V2^e(k)cos(27zj/N )k j  = 1.....n - 1 (3.34)
k = 1

where N  is the number o f points used in the calculation.

However, as the periodogram is not consistent (the variance of the ordinates do 

not go to zero), it is often a bad indicator o f randomness. The cumulative 

periodogram is often used instead used to determine randomness. This is defined 

(Harvey, 1981) as:

ri< = x * ; / i x  i=i ...." <3-35)
j = 1 /  7=1

where 77( is the cumulative periodogram ordinate at frequency i and n is the 

maximum frequency (this is Vi the sampling frequency, Harvey, 1981). A plot of
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77, against i is called the cumulative periodogram and is a better indicator of

randomness than the periodogram as the fluctuations in the periodogram 

ordinates are smoothed in the summation.

Another measure o f the randomness o f the residuals is the Ljung-Box test 

statistic (Bowerman and O'Connell, 1987), defined as:

Where N  is the number o f residuals, Q(N) is the Ljung Box test statistic and 

rx( j )  is the SACF of the residuals at lag 7 . The distribution of the Ljung Box test

np is the complexity o f the model. Given a level o f significance a, the residuals 

may be tested using:

If the model residuals are found to be random then the next step is to check that 

the model is not over-fitting the data. As pointed out by Brockwell and Davis 

(1987) the mean squared forecast error (in the training set) falls monotonically as 

the orders of an ARMA model increase. However, the mean squared forecast 

error outside the training set (i.e. out o f sample) does not follow this pattern, and 

will rise after the complexity o f the model surpasses that o f the process 

generating the time series. This phenomenon is known as over-fitting. A model 

whose complexity matches that o f the data is known as a parsimonious model. 

Several criteria exist for penalising the complexity o f a model relative to the 

errors generated by that model. An example o f one criterion is Akaike’s 

Information Criterion (AIC), which m aybe expressed (Harvey, 1981), as:

where L(y/) is the maximised value o f the likelihood function (see Section 

3.3.2.4) and n is the number o f parameters in the model. Given several candidate 

models, the one with the lowest AIC  is selected. Other criteria are listed in

(3.36)

statistic is approximately Chi-Squared with 4 n  -np degrees o f freedom, where

(3.37)

where %:a (•) is the Chi-squared distribution with a significance level of a.

AIC — -2  log L(y/) + 2 n (3.38)
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Harvey (1981), Brockwell and Davis (1987), Bowerman and O’Connell, (1987) 

and Cryer, (1986).

3.3.1.5 Box-Jenkins Models for Short Term Load Forecasting.

Examples o f Box-Jenkins techniques applied to STLF can be found in 

Kodogiannis and Agnostakis (1999), Mbamalu and El-Hawary (1993), Moghram 

and Rahman (1989), Barakat et. al. (1990) and Elkateb et. al. (1998), to mention 

but a few.

However as pointed out by Mohamad et. al. (1996) Box-Jenkins techniques have 

the disadvantage that they require a large database for training and are 

susceptible to errors in that database because o f differencing. In addition, as Box- 

Jenkins techniques assume that the load curve is static they can give large errors 

when the load curve changes rapidly (Mohamad et. al., 1996, Fan and 

McDonald, 1994). Rajurkar and Newill (1985) present an ARMAX model in 

which the coefficients o f the model are allowed to change dynamically which 

allows the load shape to change more rapidly.

Another problem with the Box-Jenkins approach is the subjective selection o f the 

model orders, which can result in the wrong model structure being chosen (Chen 

and Kao, 1996). Chen and Kao, to overcome this drawback, propose an 

automated approach based on repetitively applying a gentle difference algorithm. 

The gentle differencing algorithm essentially replaces the difference operator 

V (i.e. 1 - q l) with 1 -agqA’ where ag is a coefficient great than 1. This is equivalent 

to fitting a non-stationary AR model as opposed to the use o f differencing. After 

each application the resultant time series is tested for stationarity. The 

performance o f their models is found to be comparable with manually selected 

ARIMAX models. Parzen (1982) proposed a similar approach called the Auto­

Regressive Auto-Regressive Moving Average (ARARMA) model. This differs 

from the ARIMA model as the integrated part o f the model is now created using 

an AR differencing technique.
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In an application o f Box-Jenkins models to the STLF problem in the Czech 

Republic, Darbellay and Slama (2000) apply non-seasonal differencing of 1 hour, 

seasonal differencing o f one day (24 hours) followed by further seasonal 

differencing of one week (168 hours) thus giving a differenced load defined as:

z(k) = V m V 24Vy(k) (3.39)

where z(k) is the differenced load for hour k  and y(k) is the load for hour k. With 

regards to the stationarity o f z(k), Darbellay and Slama (2000) note that it is 

essentially stationary with significant lags in the SACF at one, six, seven and 

eight days. A non-linear auto-correlation function is also used by Darbellay and 

Slama (2000), based on information theory and a method developed previously 

by Darbellay (1999), to show that there is also a non-linear auto-correlation in 

z(k) at a lag o f one hour. From the SACF an ARIMA model is then constructed 

of the form:

(1 -  axq~l)( 1 -  a2q~24)( 1 -  a3q~m )z(k ) = (1 -  c1̂ “1)( 1 -  c2q~u )( 1 -  c3q"m )e(k) (3.40)

where a, are the AR coefficients and c,- are the MA coefficients o f the model. The 

ARIMA model was then compared with several non-linear models utilising 

neural networks (Section 3.4.3). The first o f the neural networks was an MLP 

(see Section 3.4.3.1) using the delayed elements of z(k) on the left hand side of 

Equation (3.40) as inputs. The second is a recurrent neural network (Section 

3.4.3.2) allowing dynamic modelling o f the series. This is perhaps a better choice 

for comparison with the ARIMA model described by Equation (3.40) as delayed 

errors (the MA part or right hand side o f Equation (3.40)) are also modelled. It 

was found that there was little difference in the results. Thus the non-linear 

correlation detected at a lag o f 1 hour was deemed to be of little extra use in 

forecasting the load, in this case.

Darbellay and Slama (2000) also compared an ARIMAX model with a neural 

network. In this case temperature was the exogenous input for both the ARIMAX 

and neural network models. The results show that the ARIMAX model is 

superior to the neural network although it should be noted that the time series to 

be forecast in this case is the total daily load and not the hourly load as in the 

previous case above.
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3.3.2 Linear State Space Techniques.

Linear State Space (SS) techniques formulate the modelling problem in terms of 

states, which represents the underlying process generating a time series. This 

approach differs from difference equation approaches (such as those in Section

3.3.1) although the two forms are interchangeable.

The states are related to the time series via a measurement equation defined (Gelb, 

1984) as:

x(k) = H O (k)+e(k) (3.41)

where x(k) is the time series value at time k  (which can be multi-variate), 6(k) is a 

vector of states (called the state vector) at time k, H  is called the observation matrix 

and e(k) ~ N(0, Rx) is a vector of white noise error terms, known as the measurement

noise, and ~ N(0, Rx) denotes white noise with a normal distribution, mean of zero

and covariance matrix Rx. The states are propagated from time k  to time k+1 via the 

state transition equation (Gelb, 1984) as:

0(k  +1) = 00(h )  + tj(h) (3.42)

where 0  is called the state transition matrix and Tj(k) ~ N(0, Qe) is a vector of white 

noise error terms known as the process noise.

For a time series with exogeneous inputs the SS equation can be expressed (Harvey, 

1981) as:

x(k)  = HO(k) + Gu(k) + e(k) (3.43)

where u(k) is a vector of exogenous inputs at time k  and G is the matrix of 

associated parameters. In many cases the value of G is unknown. However, it can 

augmented into the state vector and calculated recursively (thus G becomes G(kj).
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The measurement equation then becomes (Harvey, 1981):

x(k) = [H u(kj
~0(k)
G(k)

+ e(k) = H  O ' (k) + e(k) (3.44)

where H  is the augmented measurement equation and 0 is the augmented state 

vector. Similarly, the state transition equation (3.42) can be augmented (Harvey, 

1981) as:

0(k + 1) 0  0 0(k) | m
G(k + 1) 0 I G(k) 0

= O \k  + l) = 0 'O \k )  + ti'(k) (3.45)

where 0  is the augmented state transition matrix. As can be seen, the augmented SS 

equations (3.44) and (3.45) are of the same format as Equations (3.41) and (3.42) 

thus the following analysis for univariate (no exogeneous inputs) SS models applies 

also to exogeneous SS models.

3.3.2.1 Kalman Filtering and State Estimation.

An optimal technique (in the least squares sense) exists for estimating the states 

called the Kalman filter (Harvey, 1981). The Kalman filter is a recursive algorithm, 

which is implemented in several steps (a derivation may be found in Gelb, 1984):

1. An estimate of 0(k) at time k+1, is produced using an equation similar to 

Equation (3.42) (Harvey, 1984) as:

0~(k + l) = 0 0 \ k ) (3.46)

where (k + 1) is called the a-priori estimate of the state vector at time k+1 . 

The estimate is an a-priori estimate, as it does not include information about the 

value of jc(A+1). 0 + (k) is the a-posteriori estimate of 0{k) as it includes

information about the value of x(k). As the technique is recursive 0 + (k) is 

generated from step 3 (below) in the previous iteration,
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2. Next an a-priori estimate of the error covariance matrix of the state vector is 

calculated. The error covariance matrix of the state vector is a measure of the 

accuracy of the state vector estimate. This is defined (Gelb, 1984) as:

T denotes the transpose operator. The error covariance matrix of 0 (k +1) is 

generated using P + (k) from the previous iteration (Harvey, 1984) as:

where I  is the identity matrix.

Equations (3.46) and (3.49) from steps 1 and 2 are known as the prediction 

equations as they propagate the state vector and associated error covariance matrix. 

Equations (3.50) and (3.52) are known as the updating equations as they update the 

states and associated error covariance matrix. In terms of electrical load there is 

usually no measurement error as such, but rather an unpredictable part o f the load.

(3.47)

and

(3.48)

where P + (k ) is the a-posteriori error covariance matrix of 0 + ( k ) , P  (k) is the 

a-priori error covariance matrix of 0~{k) , £ [•]  is the expectation operator and

P  (k + \) = 0 P +(k )0 T +Qe (3.49)

3. Once x(k+\) becomes available this is integrated into the estimate of 0 (k + 1) 

(Harvey, 1984) via:

0 + (k +1) = 0 (k) + K(k)[x(k + 1) -  HÔ (k +1)] (3.50)

where K(k) is called the Kalman gain and is calculated (Gelb, 1984) as:

K (k  +1 ) = P~(k + Y)Ht \HP~{k + l) /y T + « ]■ '

4. Finally, P + (k +1) is calculated (Gelb, 1984) using:

(3.51)

P + (k + !) = [ / -  K(k)H]P~ (k  + 1) (3.52)
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A forecast of x(k) is produced from 0~(k) using the measurement equation 

(Equation 3.41). Also the variance of the forecast, cr?(&), can be calculated from 

P~(k) as (Harvey, 1984):

a l ( k )  = H P~ ( k ) H T + R X (3.53)

The Kalman filter is shown diagrammatically in Figure 3.5 below.

Figure 3.5 Block diagram of Kalman filter operation.

The recursive algorithm described above requires initial values for the state vector, 

0 + (0), and the error covariance matrix of the state vector, P + (0). There are several 

ways to achieve this:

Approach 1.

In the event that no a-priori knowledge exists regarding these values, P +(0) is 

typically set to a finite large value to indicate that 0 ~ (0 ) is not a good estimate of

.  A 4-  . . . . .  .0(0) . In addition 0 (0)is set to zero or randomly initialised (Harvey, 1981). With 

these initial conditions several iterations, denoted m$, are required until 6 + (k) is a 

good estimate of 0 ( k ) . Harvey (1994) suggests that mg is equal to the number of 

states in the state vector. However me can also be determined subjectively, by
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examining P + (k ) which has a transient for k<mg (Harvey, 1994). Forecasts for k<me 

should be ignored in any subsequent analysis, however this does not present a 

problem for large data sets (Harvey, 1994),

Approach 2.
For a stationary time series the state estimates reach a steady state (they are 

approximately time invariant) and can be approximated as a random variable with 

0 ( k )~N(0(k ) , P(k ) )  where 0{k)  is the average value of the state vector and 

P(k)  is the average value of the associated error covariance matrix. The initial 

conditions can then be set to 0(0) =0( k ) and P(0)=P(k)  (Harvey, 1984),

Approach 3.
In the case where the state vector has stationary and non-stationary states a mix of 

approaches 1 and 2 may be used (Harvey, 1981). The stationary elements of 

0(0) and P(0) are determined as in approach two while the non-stationary elements 

are determined as in approach 1 (Harvey, 1981). The number of iterations required 

before the state vector transient has dissipated is now equal to the number of non- 

stationary states (Harvey, 1981), and

Approach 4.
For some SS models the states represent physical attributes of the time series, for 

example, the trend. In this case the initial states can be set using estimates of these 

physical attributes, for example a trend may be estimated by the first value of the 

time series.

56



3.3.2.2 Linear State Space Model Structures.

There are an infinite number of state space models; the most commonly used models 

are listed here. The observation and transition matrices fully define a SS model 

structure. The most basic SS model is the Generalised Random Walk (GRW) 

defined (Ng and Young, 1990) as:

0  =
g n v H ,„=\1 0] (3.54)

where 0 grw is the state vector, Hgnv is the observation matrix, a ,¡3 and y  are the 

coefficients of the model. Several variations of the model exist such as the random 

walk model ( t t= l , / ? = 0  and 7 =0 ), the smoothed walk model (o re(0 ,l),/?= l and 

y —1) and the Integrated Random Walk (IRW) model (etr=l,/?=l and 7=1) (Ng and 

Young, 1990).

The IRW is often used to model a trend with only two states (Ng and Young, 1990) 

as:

d(k) '1  l" v A k)
_d(k) 0  1 d ( k - l )

i

where d(k) is the trend at time k, d(k)  is the rate of change of the trend at time k

(this is also called the velocity or slope of the trend), ljd (k ) and Tjj (k ) are white

noise error terms for the trend and slope respectively. This representation of the 

trend has been found useful by Ng and Young for modelling the trend in several 

time series (Ng and Young, 1990) and by Infield and Hill (1998) for removing the 

trend in STLF. It has the advantage that the trend can be modelled using only two 

states, both of which have physical interpretation.
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SS models have also been used to model seasonal time series. Three common 

approaches are:

1. The Periodic Random Walk (PRW) model. This can be expressed (Young, 1988) 

as:

x(k) = x ( k - s )  + rj¥(k) (3.56)

where s is the seasonal length and Tj^k) is a white noise error term. A problem 

with the PRW is that it can be unobservable (the seasonal states cannot be 

distinguished from the trend states) when used in conjunction with the IRW 

model (Young, 1988),

2. The Differenced Periodic Random Walk (DPRW) model. This can be expressed 

(Young, 1988) as:

x(k) = x(k - j )  + rjv(k)
j=i

(3.57)

where s is the seasonal length and Tj^k) is a white noise error term. By taking 

the sum on the right-hand side of Equation (3.57) to the left-hand side gives:

X x ( k ~ j )  = riv(k,)
j=o

(3.58)

Equation (3.58) requires that the sum of the time series, over a season, is equal a 

white noise term. This is an important as it allows the seasonal shape to change 

if required, given that the expected (the expected value of a white noise term is 

zero) sum is zero. The DPRW may be expressed in state space notation (Young, 

1988) as:

0  =dpnv

- 1 ... - 1

1 0 0 0

0
•

0 I
0 0 1 0

» * „ ,= [ !  0 - 0 ] (3.59)
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where @dpnv e Rs'lxs'1 and Hdprw e Rlxs_1 are the state transition matrix and 

observation matrix for the DPRW, respectively. The advantage o f the DPRW 

over the PRW is that it does not have the observability problems of the PRW 

when used in conjunction with the IRW model (Ng and Young, 1990), and

3. The Dynamic Harmonic Regression (DHR) model. This can be expressed as the 

sum of sinusoidal signals at frequencies up to half the seasonal length (Ng and 

Young, 1990) as:

s i  2

X(k) = ^  
j = 1

9{ ■ (k ) cos(2 n —k) + 02 , (k ) sin(2 ;r—k)
s J s

+ %(k) (3.60)

where &\j and Gij are the states. The corresponding SS representation given by 

Ng and Young (1990) calculates 6\j and Gij as the states of the system, each of 

which is assumed to follow a GRW (see Ng and Young, 1990 for more details). 

Note that a GRW model requires three states to be calculated. The sinusoidal 

elements of Equation (3.60) are introduced via the measurement equation (Ng 

and Young, 1990) as:

H dhr = cos(27t—k) 0  sin(2 ;r—k) 0  ••• cos(2 K ^-^-k)  0  sin(2 n ^ -^ -k )  0  
s s s s

(3.61)

Alternative forms exist for the DHR in which the sinusoidal element is 

introduced into the state transition matrix as opposed to the observation matrix 

(Harvey, 1984). Ng and Young (1990) believe that their form is superior to the 

DPRW for time series where the seasonal component is growing over time. 

However, there are significantly more states in the DHR model than the DPRW 

model due to the incorporated GRW models.

In addition to the three models above, Harvey (1984) gives the SS representation for 

SARIMAX models, exponentially weighted moving average models, and others. 

One particular result of interest for this thesis (see Section 5.4.1) is that the gentle
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differencing (Section 3.3.1.5) approach maybe expressed in SS form (Harvey, 1984) 

as an IRW.

3.3.2.3 Linear State Space Models for Short-Term Load Forecasting.

A structural model is a state space model in which the states of the model represent 

physical decompositions of the underlying time series. For example, electrical load 

has been decomposed by many authors into a trend and cyclical component (Chen 

and Kao, 1996, Ramanathan et. al., 1997, Haida and Muto, 1994 and Moutter et. al., 

1986 to mention but a few). The presence of a trend and cyclical component in Irish 

load has also been examined in Chapter 2. This type of structural model is thus ideal 

for electrical load and is called a Basic Structural Model (BSM).

Specifically, the BSM is a state space model which represents a time series as a sum 

of a trend, d(k), a seasonal, y/(k), and a random white noise component, e(/c), 

(Harvey, 1994) as:

The BSM is composed of an IRW model for the trend component used in 

conjunction with a seasonal model, either that described by Equation (3.59) or 

Equation (3.61). It is assumed that the trend states and seasonal states are 

independent and so for example, the SS matrices of a BSM with a DPRW (Harvey, 

1994) may be expressed as:

where &bsm and Hbsm are the state transition matrix and observation matrix for the 

BSM respectively. The BSM with a DHR for the cyclical component is similar; the 

transition and observation matrices for the DPRW replacing &dhr and Hdhr 

respectively.

x(k) = d(k) + y/(k) + e(k) (3.62)

dpnv

(3.63)
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3.3.2.4 Variance Parameter Estimation.

In many cases, the covariances of the measurement and process noise, Rx and Qq, are 

unknown and form part of the parametric description of the state space model. As 

the BSM is the most relevant state space model to STLF, the current discussion is 

limited to estimation of the parameters for this model. The measurement equation 

for the BSM is Equation (3.51) and the state transition equation for a BSM with a 

DPRW can be expressed (Harvey, 1994) as:

" d(k  + 1) ‘ 'rjd(k + 1)
d(k  + X) rjd (k + l)

(* + 1) =
Wi(k + l)
y/2(k + 1) -  ^ b s m ^ b sm  (^) +

% {k + 1) 
0

V s -1  (* + !)_ 0

(3.64)

where are the seasonal states. From Equations (3.64) and (3.41) there are

four white noise components in the model (i.e. Tjd(k), r\d (k), TjyJik) and Tj^k)). The

noise components are assumed to be independent and so Rx and Q& may be 

expressed (Harvey, 1994) as:

Rx = a I and Qg = a ;

0

(3.65)

where o \  is the variance of e(k)  , <Jd is the variance of f j jk),  crj is the variance of

7jd (k ) and <7 ^ is the variance of l]yj[k). o \  is the variance of the unpredictable part 

of the load and a high value will cause the Kalman filter to apply a lower weight to

the measurements, y(k) (see Equations (3.51) and (3.52)). As o d increases, the

Kalman filter allows the trend level to vary more. As o \  increases, the Kalman filter
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2
allows the trend slope to vary more. As o s increases, the Kalman filter allows the 

seasonal component to change shape more rapidly.

Theoretically, the optimal values of Rx and Qe can be calculated by maximum 

likelihood, estimation (explained below) which depends on the one-step ahead 

prediction errors. However, as pointed out by Harvey (1994), the prediction errors in 

turn depend on the way the state vector is initialised (see Section 3.3.2.1). The 

different initialisation procedures lead to different forms of the likelihood function 

(explained below). These forms are, however, equivalent for sufficiently large data 

sets (Harvey, 1994).

Given a process and a set of parameters, the data produced by that process can be 

described by some probability distribution. For example, if the process is Gaussian 

the parameters are the mean and standard deviation. However, it is more typical that 

the data is given, a model class is assumed and the parameters are required. In this 

case the probability distribution may be expressed in terms of the known data with 

the parameters as dependent variables. This is known as the likelihood function and 

expresses the probability* that the data observed came from a process as a function 

of the parameters. Thus, the parameters that maximise the likelihood function are 

those that most likely produced the data (for the assumed process) (Papoulis, 1991). 

In this case, the process is the BSM, the data is the recorded load and the parameters

2 2 2 2are o e , Od ,Gj  and Typically, by taking the log of the likelihood function

(known as the log likelihood function) a more convenient expression is achieved 

(Harvey, 1984). By minimising the log likelihood function, the likelihood function is 

also maximised. This is known as maximum likelihood estimation (see Papoulis,

1991, Harvey, 1981 or Murray, 1996 for more details).

* Strictly speaking a probability interval should be taken.
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In the case where the state vector is initialised to zero and P + (0) is set to a large 

finite number (i.e. approach 1 in Section 3.3.2.1), the log likelihood function is 

(Harvey, 1981):

\o% L[x(\),x(2),...;ol,o2d,o ] ,o l\  =

(N me)l o g i n - ] -  5 > g f f f2( ./) -^  X  log^ ^ ( 3 .6 6 )
j= m s + 1 7= m „ +  l L / J

where L[x;a\ denotes the likelihood func on, N  is number of points in the training 

set, m#is the point past which the initial transient has passed (Section 3.3.2.1), e(k) 

are the errors in estimates of x(k) and o \  (k ) is the estimated variance of those errors. 

As can be seen Equation (3.66) requires a \ ( k )  and e(k) to be estimated, however

9 9 7 2these are dependant on a £ , o~d , o^  and a y . Thus, the log likelihood function must

be maximised with the aid of a function maximisation routine. As this technique 

depends on the prediction errors it is often called Prediction Error Decomposition 

(PED).

As pointed out by Ng and Young (1990) and Harvey (1994), Rx and Qq are directly 

related. Specifically a model with a particular value of Rx and Qe is identical to a 

model with RJB, and Qo%, where £  is any scalar and is called the noise variance 

ratio. Thus, Rx is typically set to unity and removed from the parameters to be 

optimised (Ng and Young, 1990 and Harvey, 1994).

Ng and Young (1990) point out, however, that estimating the optimal parameters by 

PED can be complex and may not lead to optimal parameters. The technique of 

Sequential Spectral Decomposition (SSD) is instead proposed. This technique 

estimates the parameters by relating them to their spectral qualities. Specifically, the 

trend component acts as a low-pass filter while the seasonal component acts as a 

band-pass filter. The steps involved in the technique are:
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* 9 •1. Rx is set to unity. <Jd is set to zero and the trend component allowed to evolve via 

the variance of the slope, (J-,.

2. The periodogram (Section 3.3.1.4) of the time series is examined and the 50% 

cut-offfrequency, fsa, of the low frequency component identified. The 50% cut­

off frequency is that frequency at which the amplitude of the low frequency 

component is a V2 the maximum (Figure 3.6). Alternatively a specific cut-off 

frequency may be specified (for example, the trend component in electrical load 

will act at periods less than a year).

Figure 3.6 Diagram of the 50% cut-off frequency.

■y
3. The value of &d is related to /5 0  (Ng and Young, 1990) via:

a\  = 1605(/50)4 (3.67)

4 2
4. An IRW model with o d calculated as in step 3 is used to de-trend the time series.

9 9 95. Rx, <7 d and crj have now been calculated and the last remaining parameter, cr" , 

is now calculated using PED (Young, 1988).
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3.3.3 Bayesian Techniques

Classical statistical approaches describe modelling a data set using a parameter 

space, £2 , a sample space, E, and family of distributions defined on the sample space, 

P. The parameters are viewed as fixed constants, which must be estimated. In the 

Bayesian approach however, £2 is viewed not as a fixed set but as random with 

associated probability distributions (Geweke, 2001).

Let 0  be a set of unknown parameters, and x  be a set of observed data. In the 

Bayesian approach, any prior knowledge or ignorance about 0  is first expressed as a 

prior distribution, or prior, P(&). A model is then proposed which may be expressed 

as P(jc| 0 ). This model may be an ARIMA, neural network model, etc. but simply 

expresses the probability of observing a set of data given a set of parameters for the 

model. Now, given an observed data set, x, the prior may be updated (Geweke,

2 0 0 1 ), as:

p (x i© )p (e )
P(x)

which is an extension of Baye’s theorem (and thus the name), to give a posterior 

estimate of the distribution of 0 , P(Q ¡jc). Equation (3.68) is often expressed as:

. likelihood x priorposterior = ----------------------- - (3.69)
evidence

The Bayesian approach is similar to the Kalman filter which begins with an estimate 

of the parameters and updates that estimate as new information arrives. Indeed, 

Harvey, (1984) shows that when the Bayesian approach is used to calculate the 

states of a SS model, the resulting algorithm is equivalent to the Kalman filter.

Bayesian techniques can also be applied to structure determination of any type of 

model (Broemling and Shaarawy, 1985). In this case the model structure is 

expressed as a random variable and can be updated if the probability distributions 

above can be expressed in terms of known quantities. However, this may be difficult 

in some cases (Broemling and Shaarawy, 1985).
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Broemling and Shaarawy (1985) for example, use the Bayesian approach instead of 

the Box-Jenkins approach (Section 3.2.1) for selecting the orders and parameters of 

an ARMA model. Kiartzis et. al. (1997) uses the Bayesian approach to weight the 

forecasts of three different candidate STLF models (two AR models and a neural 

network). Interestingly, as the Bayesian approach allows the distribution of the 

forecast errors to be calculated, the weights can become forecast horizon dependant 

(Kiartzis et. al., 1997).

3.3.4 Multi-Timescale Techniques

Sequential approaches model data on an hourly timescale while parallel approaches 

are on a daily timescale (Section 3.2.2). However, Multi TimeScale (MTS) 

techniques differ in that the data is modelled using a combination o f forecasts made 

at different timescales.

There are two types of multi-timescale technique examined in this section the 

adaptive scaling techniques of Khotanzad et. al. (1996) and Gupta (1985), and the 

MTS technique of Murray et. al. (2000).

3.3.4.1 Adaptive Scaling Techniques

Khotanzad et. al., (1996) developed a technique for forecasting hourly temperatures 

for an electricity utility given that only daily minimum and maximum temperature 

forecasts from the meteorological office are available. The first part of the technique 

uses a sequential model to produce an hourly forecast of the temperatures up to 24 

hours ahead. This hourly forecast is then adjusted using temperature forecasts from 

parallel models*.

* Note that forecasting electrical load is not the aim of this technique.
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The Sequential Model (SM), in this case is an MLP (see Section 3.4.3.1). This 

model uses the current and previous temperatures as inputs (Khotanzad et. al.,

1996).

The Parallel Models (PM’s) are those of the Meteorological Office (MO) which 

produce forecasts of the temperature at only two hours in the day (the hours at which 

the maximum and minimum temperature occur). Thus, parallel model forecasts for 

every hour of the day are not required.

The SM forecast is adjusted (Khotanzad et. al., 1996) via:

L  0\ k) = mas (k)ihr (i, k) + bas (k) (3.70)

where thr (i, k) and thr (i, k) are the adjusted and SM temperature forecasts for hour i

of day k. max(k) and bas(k) are the adaptive scaling parameters calculated such that 

the adjusted forecast must agree with the PM forecasts at the appropriate hours 

(Figure 3.7).

bfld>"O

I

C DH

MO max. temp, 
forecast

SM forecast
*  PM forecasts 

Adjusted forecast

/
MO office min. 
temp, forecast

10 15

Hour of the day

Figure 3.7 Adaptive scaling of a 24 hour temperature forecast using mimunum and maximum
temperature forecasts.
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The main advantage of this technique above a SM is that propagation errors in the 

SM forecasts are reduced. Disadvantages of this technique are that:

1. The scaling is linear, which distorts the shape of the SM forecast (for 

example the adjusted forecast shown in Figure 3.7 above),

2. Forcing the MTS forecast to pass through the PM forecasts assumes that 

these forecasts are far more accurate than the SM forecasts which may 

not be true, and

3. The number of PM forecasts that can be used is restricted to two points in 

the day.

Gupta (1985) proposes a similar method, which is applied to load forecasting. In this 

method, a SM forecast of the load (in this case a linear model) is combined with a 

daily peak load forecast (this is the PM forecast in this case). The covariance matrix 

of SM forecast errors, Qsm, and the variance of the PM forecast errors, c?pm, is used 

to form the adjusted forecast (Gupta, 1985), via:

\yPJ k) - y sJ p -k)\ Q J ip )
2
pm

where y mts(i,k) and y sm(i,k) are the adjusted and SM forecasts at hour i of day k

respectively, y  pm (k)is the PM (peak) forecast for day k, p  is the hour at which the

peak occurs and Qsm (/,/) is element i j  of Qsm. With this technique, the adjustment is 

not linear as in the adaptive scaling technique, but rather depends on the covariance 

between the SM errors at different hours and the variance of the PM model 

forecasts. Additionally, the MTS forecast is not forced to pass through the PM 

forecast as in the adaptive scaling technique. Instead, the MTS forecast is a weighted 

combination of both. The disadvantage of this technique is that only a single PM 

forecast (in this case the peak load) may be used.
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The next method proposed by Murray et. al. (2000) again attempts to use the longer 

timescale data for similar reasons but is more flexible in that numerous PM forecasts 

can be used. Maintaining the shape of the SM forecast is also taken into account.

3.3A.2 Murray's Multi-Timescale Technique

The MTS technique proposed by Murray et. al. (2000) combines PM forecasts with 

a SM forecast and, additionally, a forecast of the total daily consumption. The total 

daily consumption is called the daily-sum.

The number of PM forecasts is not restricted although for the STLF problem Murray 

et. al. (2000) suggests the use of PM forecasts at:

• The load at 6 pm,

• The overnight minimum at 5 am,

• The lunchtime peak at 1pm, and

• The load at 2pm.

An additional cardinal point known as the end-point is used. This is a PM forecast 

24 hours ahead of the forecasting origin. Unlike the techniques in Section 3.3.4.3, 

Murray et. al.'s (2000) MTS technique (furthermore known as the MTS technique) 

can combine a SM forecast for several days ahead with PM and multiple end-sum 

forecasts. This technique is shown diagrammatically in Figure 3.8 (notation 

explained below).
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Figure 3.8 Diagram showing MTS technique.

The SM is restricted to a state space model but the PM’s and daily-sum models are 

unrestricted. Let the state vector of the SM at the forecast origin be 6(k). The MTS 

technique partitions the state vector into states which are fixed  at the forecasting 

origin, while allowing others to be varied (adjustable or freed  states) by the PM and 

daily-sum forecasts. Thus, the end result of the MTS technique is a new state vector, 

0* (k) , in which the freed states have been varied. This state vector may then be 

propagated forward to produce load forecasts.

If the dimension of the state vector is n and the number of adjustable states, r, then 

there are n-r fixed states. The state transition equation (Equation 3.42) of a state 

space model may be partitioned in terms of the fixed and adjustable states (Murray 

et. al., 2 0 0 0 ), as:

0(k + 1) =
0 , (/fc + 1) 
02(k + 1)

= 0O(k) - [*,
,(*)
2W

(3.72)

where Q\ (k) and (h{k) are vectors of fixed and adjustable states at the forecasting 

origin, k, respectively and 0 ] and <P2 are the partitions of the state transition matrix
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associated with 0\(k) and &i(k). In addition the observation matrix may also be 

partitioned in terms of the fixed and freed states (see Equation 3.41), as:

x(k) = H 0(k) + s(k) = [Hi (* + 1)' 
2(* + l)

+ e(k) (3.73)

where H is the observation matrix (Section 3.3.2), H\ and H 2 are the partitions of H  

associated with 0\{k) and 02(k). The dimensions of these variables are given below 

in Table 3.2.

Table 3.2 A list of variables used in the MTS technique (Part I).
Variable Dimension Description
n Scalar Length of the state vector 6(k)
r Scalar Number of freed states o f 6(k)
x(k) Scalar Load at time k
m « X  1 State vector at time k
H 1 x« Observation matrix
0 «X« Transition matrix
e m (n-r)* 1 Vector of fixed states at time k

M ) «xl Vector of freed states at time k
0 , (n-r) x( n-r) Partition of & for fixed states

* 2 r x r Partition of 0  for freed states

/ / l 1 x(«-r) Partition of H  for fixed states
h 2 lx r Partition of H  for freed states

The SM may be used to generate forecasts of the state vector /-steps ahead by 

repeated use of Equation (3.72) (Murray et. al., 2000) as:

0(k + i) =
0X (k + i) 
02 (k  + i)

rel(k)
02(k)_

(3.74)

where and are0 2  the partitions of associated with 6\(k) and Q-iik) (note: 0'2 

is not the same as (@2)', which is in general does not exist as &2 is non-square) .
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For the MTS model, an /-step ahead forecast of the state vector is generated by the 

altered state vector, 0*(k), (Murray et. al., 2000) as:

e*(k + i) =
0 , (k + /) 
0*2 (k  + /)

= 0 pO*(k)=[0[ 0 0\ (k) 
0*2{k)

(3.75)

and 0*2(k) is the vector of freed states which have been altered by the PM and end- 

sum forecasts. A corresponding forecast o f the load at k+i may then be made from 

0'2 (k  + /) by use of the observation equation (Equation 3.41), as:

y mts(k + i) = H 0 \ k  + i) (3.76)

whereymls(k + i) is the MTS forecast of the load, y, at time k+i. The MTS technique 

calculates 0 ‘2(k) by means of a solution to an over-determined equation set in 0*2(k) 

(Murray, et. al., 2000) as:

Constraint 1

Constraint 2

Constraint 3

H 0 d { k ) - H x0\O ,{k)

H 0 N0 ( k ) - H l0 ^ 0 l(k) 
y Ci - H & 'O ^ k )

j> - H X0 [ UOX (k)

j=l t 
PS

K -
y=(p-DS

H 20 \2 2
8x

H 20 " -
I I s M

H 20 c2' N
8

=
H ,0 - 02 (k) + •

2 2S 5cmCM
8

n
PS

M fcsi ro $ to S*r_
/=</•-! )S _

(3.77)

where S  is the length of the season (in this case one day or 24 points) and the other 

notation is explained below. This equation is made up of three types of soft 

constraint (Murray et. al., 2000) as:

1. A smoothing constraint in which the MTS forecast from k+1 to k+N (generated 

by Equation 3.76) deviates from the SM estimate by 8\,...,8n (Figure 3.8 shows 

¿40 for example),

72



2. A PM  constraint in which Mparallel model forecasts, y„ y r , of the load atLl mM

times k+Ci, ..., k+cM deviate from the SM forecasts at those times by 8C ,...,SC
1 M

(Figure 3.8 shows Sc for example; the deviation of the 4th cardinal point), and
4

3. A daily-sum constraint in which P  forecasts of the daily-sum, denoted

y  ,..., y  , for days 1 to P  deviate from the sum of the SM forecasts over those

days by Ss Ss .
/ ’ '  p

The matrices in Equation (3.77) may be renamed as:

A{k) = B 02*(k) + A{k) (3.78)

where A(k) is the left hand side of Equation (3.77), B  is the first term on the right 

hand side and A(k) is the last term on the right hand side of Equation (3.77). Murray 

et. al. (2000) then proposes solving Equation (3.78) for 0'2(k) by using weighted 

least squares to give:

0*2 =(b tWb ) 1B t WA (3.79)

where W  is a diagonal matrix of weights which allows Equation (3.77) to recognise 

that, for example, the deviation of the PM from the SM solution may be more 

important than other deviations.. Table 3.3, below, summarises the variables defined 

in the above analysis and their dimensions.
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Table 3.3 A  list of variables used in the M T S  technique (Part II) .
Variable Dimension Description
N Scalar Number of points used in the smoothing constraint
M Scalar Number of cardinal point forecasts used.
P Scalar Number of end-sum forecasts used.

h Scalar iu' cardinal point forecast

Ci Scalar The distance from the forecasting origin to the f '  
cardinal point.

ScI Scalar The deviation of the im cardinal point from the MTS 
forecast.

h Scalar im end-sum forecast.

s Scalar Length of the summations for end-sum model.
Ss1 Scalar The deviation of y s from the summation of the MTS 

forecasts from k = 5(1-1) to Si
8, Scalar The deviation of the state space model forecast at k+i 

from the MTS forecast at k+i.
A(k) (N+M+P)y\ Left hand side of Equation (3.76).
B(k) (N+M+P)*r 1st term on the right hand side of Equation (3.76).
W (N+M+P)* (N+M+P) Diagonal weight matrix.
A(k) (N+M+P)* l Vector of deviations.

The disadvantages of this technique are:

1. A linear state space model is required for the SM,

2. The linear state space model does not include exogeneous inputs,

3. A technique does not exist for optimising the weight matrix, instead Murray et, 

al. (2 0 0 0 ) provide guidelines for the values of the weights, and

4. There are no general guidelines for the selection of freed states.

However the advantages of this technique are:

1. The shape of the SM forecast is preserved via constraint 1 in Equation (3.77),

2. The number of PM forecasts is not restricted,

3. The adjustment of the SM forecast may be controlled via W,

4. A forecast of the daily consumption can be combined with the SM forecast, and

5. An MTS forecast can be produced for horizons greater than one day. This is

important considering that propagation errors in the SM forecast grow over time.
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3.4 Non-Linear Techniques for Load Forecasting

A non-linear system is one for which the principle of superposition (Section 3.3) 

does not apply (Sinha, 1991). There are three factors typically present in short-term 

electrical load which make non-linear forecasting techniques appealing:

1. The non-linear relationship between load and temperature mentioned in Section

2.3.3,

2. The presence of a non-linear auto-regressive relationship in load (as pointed out 

by Fay et. al., 2000, Darbellay and Slama, 2000 and Mori and Kobayashi, 1996), 

and

3. The non-stationarity of the load due to the trend (As examined in Section 2.3.1).

The non-linear techniques examined in this section differ in the means by which 

non-linearities are modelled. Parametric techniques (Section 3.4.1) model a system 

using a combination of linear transforms, multiplications and delays. Fuzzy logic 

techniques (Section 3.4.2) model a system using several models which operate in 

overlapping regions. Neural networks model a system using a combination of 

weighted non-linear mappings (Section 3.4.3).
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3.4.1 Parametric Non-Linear Techniques

Parametric non-linear techniques are based on the Volterra series (Schetzen, 1980) 

which describes a time invariant  (a system which does not alter with time) non­

linear system in terms of the input at time t /\  u(t) and the output x(t) as a sequence 

of integrals (Schetzen, 1980) as:

/•CO foo *DO

x ( t ) = \  \ ( x x)u(t  -  Tj )dxl +  | | h2(Tl ,T2) u ( t - r i)u( t  — T2) d r ldT2
J —DO J —OO J —DO

-I----- 1- f  ■ ■ • P  hn(rx,T2 , . . . ,Tn)u(t — Tl)u(t  — T2) . . . u ( t  — Tn)dTxdT2 ...dTn (3.80)

where //,(•) is called the z'th order Volterra kernel, and n is the order of the non-linear 

system. Note that for a 1st order system Equation (3.80) reduces (Schetzen, 1980) to:

x(t) = L  hl(Tl)u(t  - T x)dTA (3.81)

which is the well known input-output relationship of a linear system and where h\(t) 

is known as the impulse response. Just as the linear system in Equation (3.81) may 

be expressed in terms of the Laplace transform of h\(t),  a Volterra series may be 

expressed in terms of the Laplace transform of the Volterra kernels /?,{•). For 

example (Schetzen, 1980) a 2nd order Volterra system with:

Ai(Ti) = 0
f - (a r .+ ii j )  f o r ( ) < r  < C T 2

h2(xl ,T2) = \ 1 (3.82)
2V 1 2 [ 0  otherwise V '

where a, b and c are constants greater than zero, has the Laplace transform:

H M )  = 0

H 2( S X , s 2) = ---------— -------------- - (3.83)
(b + s2 )(b + a + s , + s2 )

where j \ and S2 are Laplace operators. The block diagram for this system is shown in 

Figure 3.9 below.

Note I is used instead of k for time as it is continuous here.
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As can be seen, the system can be reduced to two linear transforms and a 

multiplication. For a second order system there can be an infinite number of 

multiplications involved in the Laplace representation (Schetzen, 1980). This applies 

equally for higher order systems. Modelling a non-linear system with a Volterra 

series has three disadvantages (Mars et. al., 1996):

1. Evaluating the Volterra kernels can be difficult, even when the order is 

known (Bai, 2002),

2. The series may not converge, i.e. there may an infinite number of 

multiplications as mentioned above, and

3. The Volterra series may only be used to model time invariant processes.

As a result of the last point above, the Wiener and Hammerstein models were 

developed to model non-linear time variant processes.

3.4.1.1 W iener Models

The Wiener model consists of a linear model, with memory, followed by a non­

linear transform with a similar structure to a Volterra series (Figure 3.10).

Linear model Non-linear x(t)
with memory transform r

Figure 3.10 Block diagram of a Wiener model.
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The Wiener model suffers from the same disadvantages as the Volterra model except 

that the linear model allows a large class of time varying processes to be modelled 

(Schetzen, 1980). The Hammerstein model is similar to the Wiener model except 

that the order of the non-linear transform is reversed as shown in the next section.

3.4.1.2 Hammerstein Models

The Hammerstein model consists of a non-linear transform followed by a linear 

model (Figure 3.11).

u(t) Non-linear time Linear model x(t)
invariant model with memoryw r w

Figure 3.11 Block diagram of a Hammerstein model.

This parametric non-linear modelling technique is attractive for short-term load 

forecasting due to the nature of the load-temperature relationship (Section 2.3.3). As 

discussed in Section 2.3.3.3 the load-temperature relationship typically follows a 

curve, as shown in Figure 2.12 (shown below for convenience).

Average Tenperatuie (degs)

Figure 3.12 (2.12) Typical and actual scatter plot of temperature-load relationship (Working
days).
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Several short term load forecasting applications (Haida and Muto, 1994, Rahman 

and Bhatnagar, 1988, Sfoma, 1995, Lu et. al., 1989 and Hyde and Hodnett, 1997a) 

apply a non-linear transform to the temperature prior to modelling. These non-linear 

transforms all have in common that they seek to linearise the relationship between 

load and temperature.

For example, Haida and Muto (1994) linearise the load-temperature relationship (for 

their system) using polynomial transformations. Specifically, Haida and Muto

(1994) first transform the daily maximum temperature, tmax(k), using transforms of 

the form:

= (3.84)
1=0

where tmax(k) is the transformed daily maximum temperature, fi») is the polynomial

transform, n is the order of the polynomial and a, are the associated coefficients. 

Several of these transforms are then used to linearise the load-temperature 

relationship as:

m

y r^(k> = c + 2 f f i ^ „ ( k )  + s(k) (3.85)
f=l

where yPeak(k) is the peak load to be forecast, c is a constant, / ( • )  is polynomial 

transform i (Equation 3.84), m is the number o f polynomial transforms used and e(k) 

is the modelling error. In terms of the Hammerstein technique, Equation (3.84) 

represents the non-linear transform and Equation (3.85) represents the linear model.

The Hammerstein load forecasting models used by Haida and Muto (1994), Rahman

and Bhatnagar (1988), Sfoma (1995), and Lu et. al. (1989) give no procedure for

determining the form of the non-linear transform. In addition the techniques do not 

model any non-linear relationship between the load and autoregressive elements of 

the load (a non-linear factor mentioned in Section 3.4).
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3.4.2 Fuzzy Logic Techniques

Fuzzy logic techniques perform function approximation. This is achieved by first 

partitioning the input and output space into several overlapping regions (Kosko, 

1997). A separate model is then used to approximate the function within each 

region. The final output is a function of these model outputs and the degree to which 

each region is relevant.

As an example, consider a simplistic peak load forecasting model which has a single 

input, the average temperature on day k, tav(k), and a single output, the peak load 

forecast for day k, j)(/c)(Figure 3.13). In this model the input space is divided into 

two regions; one for a hot temperature and the other for a cold temperature. Two 

linear models are used within each region; a model reflecting the heating effect at 

cold temperatures and a model reflecting the cooling effect at hot temperatures 

(Section 2.3.3.3). For a particular input, for instance tav(0) (Figure 3.13), the output 

of the models for the hot and cold regions are y l (k ) and y 2 (k) respectively.

Figure 3.13 A fuzzy approximation for the relationship between load and temperature and the
associated membership function.
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The relationship between the inputs and outputs can be more easily expressed using 

a rule base, for this example the rule base is:

R{. IF ( t j k )  is COLD) THEN f t  (k) = f  ( t jk ) )
R2: IF ( t j k )  is HOT) THEN %  (k) = f 2 (tav(k)) (3.86)

where R\ and R2 are the rules for the cold and hot regions respectively and/[(•) and 

fi(*) are the linear models for the cold and hot regions respectively. As can be seen 

in Figure 3.13, tav(0) lies in both regions and thus it is neither fully cold nor fully 

hot. The degree to which a region is relevant is called the membership* and is 

defined by the membership function (An example is shown in Figure 3.13). In the 

current example tav(0 ) has a membership value of fJ.\ for the cold region and ¡¿2 for 

the hot region. The final output, y (k ) , is a formed by a function of j>, ( k ) , y 2 (k ) ,

jl\ and ¡J.2- This function is known as a defuzzifier. A  centre o f  gravity defuzzifier 

(Kosko, 1997), for example, forms the output as:

y(k)=  -------  (3-87)

X *
1=1

where N  is the number o f regions.

For a fuzzy model with N  regions per input, Q inputs and M  outputs there is A/fW+̂ +1 

rules required (Kosko, 1997). Thus as the number of inputs increases the number of 

rules increases exponentially. Thus the number of inputs that may be used with a 

fuzzy model is restricted. This is the greatest setback of fuzzy models and known as 

the curse o f dimensionality (Kosko, 1997).

* This definition of membership is consistent with that in Section 3.2.1.2 where cluster analysis was 
used to determine membership functions.
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There are several types of Fuzzy logic models which differ in the models used to 

approximate the function within the regions, among the most important are:

• The Fuzzy Inference Engine (FIE), which uses the expected value of the outputs 

for each region (Kosko, 1997),

• The Takagi-Sugueno-Kang (TSK) model which uses a linear regression model 

(Kosko, 1997), and

• The Fuzzy ARMAX (FARMAX) model which uses an ARMAX model (Yang 

and Huang, 1998).

In addition, the shape of the membership functions, the location of the regions, and 

the type of defuzzifier must be decided. The following section details the 

approaches taken in the field of Short-Term Load Forecasting (STLF).

3.4.2.1 Fuzzy Logic Models for Short-Term Load Forecasting

There have been several approaches taken in STLF using fuzzy techniques, these 

can be classed as:

1. Input fuzzification. In this case the membership of the inputs to the fuzzy sets, 

jUi, are calculated and used as inputs for a separate non-fuzzy model. As noted 

by Bitzer and RoBer, (1998) human sensitivity to weather is not exact and is 

based on fuzzy measures like ‘cold’ and ‘warm’. For example, their model 

incorporates five fuzzy regions for the temperature ranging from ‘very cold’ to 

‘hot’. Given a certain temperature there is a corresponding membership assigned 

to each of these regions. These memberships are then used as inputs for a neural 

network. Similar approaches are taken by Elkateb et. al. (1998), Muller and 

Petrisch (1998) and Tamimi and Egbert (2000). There is a trade-off involved in 

this approach; although the membership variables are presumably more
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correlated with the output, there are more of them. This is important as the 

studies mentioned above (Bitzer and Rößer, 1998, Elkateb et. al., 1998, Müller 

and Petrisch, 1998 and Tamimi and Egbert, 2000) use neural networks as the 

non-fuzzy model. As will be seen in Section 3.4.3, training becomes more 

difficult for neural networks as the number of inputs increases.

2. Pattern matching techniques. This is based on the assumption that if  the load 

on day n+ 1 has the same history (or pattern, an example is given below) as the 

load on day n+l-i then these loads will be equal. For example, Otto and Schunk 

(1999) use the rule base:

Rr IFCy„ = y n_l) A N D ( y n_l = y B_f_,)... AND (y n_N = y n_i_N)TUEN y n+l = y n_M (3.88)

where R, is the /th rule, y n is a vector containing the 24 loads on day n, the 

average temperature on day n and the average solar radiation on day n. N  is the 

window size (i.e. the number of days that are compared to each other) and n+ 1 is 

the day to be forecast. In this case y n to y n n is the history or pattern of the day to 

be forecast and y n-i to jVi-w is the pattern that it is being compared to. Similar 

approaches have been used by Dash et. al. (1995b) and Papadakis et. al. (1999). 

This approach is advantageous in that it mirrors the manual approach taken by 

many system operators (Jabbour et. al., 1988, Lonergan and Ringwood, 1995) 

and can thus be understood intuitively by the user.

3. Function approximation techniques. These techniques seek to approximate 

the function between a set of inputs and the load to be forecast. For example, 

Yang and Huang (1998) model load as a function of the previous 24 hours of 

load and weather inputs using a FARMAX model. In this case Yang and Huang 

note that the forecasting accuracy of the FARMAX model is not as sensitive to 

model structure as a traditional ARMAX model (Section 3.3.1.2). Similarly, 

Mastorocostas et. al. (1999) model load as a function of the loads, the average, 

the maximum and the minimum daily temperatures in the previous seven days
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using a TSK type fuzzy model, trained using the gradient descent algorithm. 

Mori and Kobayashi (1996) model load using only auto-regressive terms as:

y(k) =  / (  y{k - 1),y(k  - 1)-  y,nem (k  - 1), y mem (k)-ymenn {k - 1) ) +  e(k) (3.89)

where y(k) is the load at time k, £(k) is the modelling error,/ ( • )  is the function 

to be approximated and ymean(k) is an average defined as:

ymam (k) = X (y(fc -  7 X 24) + y(k  - 14 x 24) + y(k  -  21 x 2 4 )) (3.90)

The function/ ( • )  is approximated by use of an FIE. Interestingly the third term 

in /(•), ymean(k)- ymean(k-\), is found to be highly non-linear and requires ten 

membership functions while the first two terms require only two membership 

functions each. Other studies that have used this approach are Srinivasan et. al. 

(1995), Raanaweera et. al. (1996), Dash et. al. (1997), Dash et. al. (1994), 

Abdelaziz and Gouda, 1998, and Bretschneider et. al. (1999).

4. Residual modelling techniques. This approach first uses a non-fuzzy model to 

produce a forecast of the load. The error in this forecast is then estimated using 

a fuzzy model. An example of this is the method used on Irish data by Lonergan 

and Ringwood (1995) in which the load is first forecast using a standard day. 

The standard day is simply the load curve for the same day on the previous 

week. This load curve is then adjusted using a FIE with temperature, and other 

weather variables as inputs. In a later study Commannond and Ringwood 

(1997) used a similar technique employing a TSK fuzzy model. Similarly Kim 

et. al. (2 0 0 0 ) use a neural network to generate a forecast of a daily load curve 

which is altered using a FIE fuzzy model. Similar approaches are used by Liang 

and Cheng (2000) for a linear regression model and Srinivasan et. al. (1999) 

with a Kohonen map.

5. Fuzzy post-processor. Sharaf and Lie (1995) use a FIE to determine error 

bands and variance of a load forecast produced by a neural network. Thus the
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FIE is not explicitly used to forecast the load but rather to calculate statistics of 

the forecast.

3.4.2.2 Radial Basis Function Neural Networks

Radial Basis Function (RBF) neural networks are a special case of fuz2y  models 

(Kosko, 1997) and are thus included in this section as opposed to the section on 

neural networks (Section 3.4.3). The RBF may be used to approximate the function 

relating an input vector at time k, u(k) e  R 1*2, to an output at time k, x(k), (Mars et. 

al., 1996) as:

= 2 X / y ( « ( * ) - )  (3-91)
j=i

where ccj is a weight, //(•) is a radial basis function (explained below), N  is the 

number of radial basis functions used and Cj e  R lxe is called the centre of.//(•)• The 

radial basis functions may take on several forms, one example (more may be found 

in Mars et. al., 1996) is the Gaussian form  (Mars et. al., 1996), which may be 

expressed as:

f l. ( u ( k ) - C J) = cx p

Q \
- l u i ( k ) - c ij

i=1

Cr;
(3.92)

where Q is the dimension of the input, «,• is the zth element of u(k), cy  is the i01 

element of Cj and Oj is the standard deviation of the Gaussian radial basis function.

In terms of fuzzy logic models, the radial basis functions cover a region of the input 

space centred on Cj and the width of the region is determined by Oj. Thus £{•) 

represent the models and the membership functions. De-fuzzification is 

accomplished by means of a weighted average using oij.
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Mitchell (1992) has questioned the use of radial basis function neural networks as 

time-series models for several reasons:

• As the network performs an interpolation between prior values of the series it is 

assumed that the series is not changing with time,

• As the dimension of the input variables increases (for example, five causal 

variables are used instead of four) the number of prior examples required to 

maintain the density of examples increases geometrically; i.e. the curse o f  

dimensionality (Section 3.4.2). Mitchell (1992), thus notes that more than six 

inputs would seem impractical. Kodogannias and Anagnostakis (1999) similarly 

noted that the number of inputs is restricted in an application of RBF networks to 

short-term load forecasting. However, Gontar and Hatziargyriou (2004) found 

that an RBF with nineteen inputs was superior to a feed forward neural network 

(Section 3.4.3). This was not a valid comparison of the two methods however, as 

the feed forward neural network used only a single layer which is not typically 

the preferred option (Section 3.4.3.1), and

• Small amounts of noise lead to large gaps between the training examples in n- 

dimensional space and thus the network is very sensitive to input noise 

(Mitchell, 1992).

3.4.3 Neural Network Techniques

Neural network techniques are black-box modelling techniques. That is, they require 

no understanding of the physical process underlying the data (Aussem, 1999). The 

techniques are based on approximating a function via a set of basic processing units 

called neurons or nodes (Mars et. al. 1996). The structure of a typical neuron is 

shown in Figure 3.14 below. The inputs u\, ..., un are multiplied by weights w i, ..., 

w,v and the sum of these and a bias, b, is transformed using a non-linear activation 

function/(•)  to form the output x  as (Mars et. a l 1996):
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x = f ( w lui + w2u2 +... + wNuN + b) (3.93)

where N  is the number of inputs to the neuron. Note also that some of the outputs 

may be fed back as inputs.

Figure 3.14 Structure of a neuron.

The neural networks examined in this section differ:

• In the way in which these neurons are arranged (topology),

• The activation functions,

• The means by which the weights are determined (training algorithm), and

• Whether feedback is used.

3.4.3.1 Feed Forward Neural Networks

In a typical feed forward neural network, also known as a Multi Layer Perceptron 

(MLP), the neurons are arranged in layers. An example o f a 3 layer MLP is shown in 

Figure 3.15 (next page). The network has N  inputs, the input layer*, which are first 

fed into a layer of neurons called hidden layer 1. The output of hidden layer 1 is fed 

forward to hidden layer 2  and then to the final layer of neurons called the output 

layer (Figure 3.15). A fully connected MLP is one in which each node is connected 

to every node in the following layer. However, this is not always the case, as will be 

seen in the next section. In this example, there are four and two neurons in the first 

and second hidden layers, respectively, and one in the output layer thus the network 

structure is denoted as a 4><2x 1 network. The output of node j  in layer k, x^k, may be 

expressed in a similar way to Equation (3.93) as (Haykin, 1999):
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/
(3.94)

where fijJi*)is the activation function used, wtĴ  is the weight connecting node i in 

layer k-l to node j  in layer k, is the bias on node j  in layer k  and A .̂i is the 

number nodes in layer k -1 .

The activation functions which m aybe used can be sigmoidal (see Schalkoff, 1997), 

sinusiodal (see Choueiki et. al., 1997) or linear (see Schalkoff, 1997) among others. 

Typically the activation functions in the hidden layers are sigmoidal, while the 

activation functions in the output layer are linear (Hippert et. al., 2001). Choueiki et. 

al. (1997) examined the most important factors in designing neural networks for 

STLF and found that the choice of activation function in the output layer was the 

most important factor followed by the activation function in the hidden layers.

Input Hidden Hidden Output
Layer Layer 1 Layer 2 Layer

Figure 3.15 Feed forward neural network with 4x2x1 structure1.

’ The input layer is typically not counted as a layer as it just presents the inputs to the network. 
+ Some weights and biases have been suppressed for clarity.
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The MLP maps inputs to outputs and has no memory. When the inputs represent 

previous values of a time series and external inputs it can be considered as a non­

linear equivalent of an ARX model (Connor et. al., 1992). Theoretically it has been 

shown that a feed forward neural network is a universal approximator (Funahashi, 

1989), i.e. it can approximate any continuous function to any degree of accuracy, 

given a sufficient number of nodes. Although this result may seem appealing, 

selecting the correct number of nodes and training the network to approximate the 

function is a difficult task (Mars et. al.) due to two problems:

1. The network topology must be determined, and

2. The weights and biases for this topology must be estimated.

Topology Determination

The number of hidden layers and nodes and the connections between these nodes 

form the topology of a network. The ability o f an MLP to model complex functions 

rises with the number of hidden layers, nodes and connections. However, its ability 

to overfit the data also increases. There is no one agreed approach for topology 

determination for MLP’s. Primarily the number of hidden layers must be chosen.

With respect to the field of STLF, studies which use a single hidden layer can be 

found in Chen et. al. (1992), Mohamad et. al. (1996), Drezga and Rahman (1998) 

and Lu and Vemuri (1993). Although a single hidden layer is the most popular 

configuration (Reinschmidt, 1995), Lee et. al. (1992) found that an MLP with a 

single hidden layer required a large number of nodes to model the load. This large 

number of nodes was subsequently difficult to train. Thus two hidden layers where 

used and found to give superior performance. Other examples of authors that use 

two hidden layers have been found in Hsu and Yang (1991b) and Kalaitzakis et. al. 

(2002) to mention but a few. Using three or more hidden layers for STLF is rare. 

Mizukami and Nishimori (1993) specifically studied the merit of using three or more 

hidden layers for STLF and found no benefit.
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The next step is to determine the number of nodes in each hidden layer and the 

number of connections. The most common approach for STLF is trial and error. This 

involves testing several different topologies and selecting the best one (for example, 

Mohammed et. al., 1996, Drezga and Rahman, 1999, Lee et. al., 1992, Gross and 

Wagner, 1996, Kiartzis et. al., 1995, Darbellay and Slama, 2000 and Peng et. al., 

1992). Another method is network pruning (Weigend et. al., 1991, Hassibi et. al., 

1992, Le Cun et. al., 1990). A non-fully connected network is less complex than a 

fully connected network and the method proposed by Weigend et. al. (1991) for 

example, advocates eliminating connections with insignificant weights as a method 

of reducing the network complexity. Additionally, if  all the weights to a node have 

been eliminated then the node itself can be removed from the network. Examples of 

this method of topology determination applied to STLF can be found in Lu et. al.

(1993) and Chen et. al. (1992) among others.

Training Algorithms

The most common training algorithm used for the MLP is called the Back 

Propagation (BP) algorithm (Rumelhart et. al., 1986). This algorithm can be 

implemented in several steps (further details may be found in Chihocki and 

Unbehauen, 1993):

1. The training data (previous inputs and associated known outputs or 

targets) are presented to the network,

2. The error between the network outputs and the targets is calculated,

3. The error is used to estimate the derivatives of the weights and biases 

with respect to the errors,

90



4. The weights are adjusted, using the derivatives, in the direction of fastest 

decent of the errors, and

5. The whole process is repeated until the error has reached a desired level

or the maximum number of epochs (iterations) has been exceeded. Both

the desired error level and maximum number of epochs are user

specified.

This algorithm is a calculus based search algorithm; it attempts to find the optimum 

values of the weights and biases starting in a neighbourhood around an initial 

starting point (Mars et. al., 1996). However, as this type of algorithm is based on a 

local search it is susceptible to converge on a local minimum instead of the global

minimum required (Mars et. al., 1996). Training several networks each with

different initial conditions can help to alleviate this problem (Schalkoff, 1997). 

However, as the search involves a multi-dimensional search, for example a 4 ><2 xl 

network (Figure 3.15) with 3 inputs has 34* weights and biases to estimate, a good 

local minimum is often the best that can be achieved. Global search algorithms such 

as Genetic Algorithms (GA) have been used for training neural networks (Mars et. 

al), however they can be slow to converge as the dimension of search space is so 

large (Mars et. al.). For STLF the BP algorithm is the most popular algorithm used 

(Hippert et. al., 2001, examples are Chiu et. al., 1997, Dash et. al., 1995a) although 

GA have been used by several authors (Srinivasan, 1998 and Yang and Huang, 1996 

to mention a few). Alternatively, Park et. al., (1991a), suggest adaptively training a 

neural network so that the weights can be updated as the network proceeds through 

the data.

* This number is derived from 12 weights and 4 biases from the input to 1st hidden layer, 15 weights 
and biases from 1st to 2nd hidden layers and 3 weights and biases from the 2nd hidden layer to the 
output layer.
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3A.3.2 Recurrent Neural Networks

Unlike feed forward neural networks, recurrent neural networks involve some form 

of feedback in their structure. This means that recurrent neural networks incorporate 

memory into the structure as is also the case with an MA model (Section 3.3.1.2). 

When the inputs represent previous values of a time series and external inputs it is 

often considered as a non-linear equivalent of an ARMAX model (Aussem, 1999, 

Connor et. al., 1992). The Dynamic Recurrent Neural Network (DRNN) presented 

by Aussem (1999) is more general and is the non-linear equivalent of a state space 

model. Figure 3.16 below, shows an MLP in which the output is fed back to the 

input to form an Infinite Impulse Response (HR) recurrent neural network.

Figure 3.16 HR recurrent neural network with 4><2xl structure.

Alternative recurrent neural network representations can be found in Chihocki and 

Unbehauen (1993) and Schalkoff (1997).

Recurrent neural networks can be trained in several ways. The HR network shown 

above may be trained using the same methods as employed with the feed forward 

network (Section 3.4.3.1). In this case the outputs that are fed back to the inputs (x in 

Figure 3.16) are replaced with the target values, i.e. open-loop operation (Schalkoff,

1997). The network can be also be trained in recurrent mode, i.e. feeding the outputs 

back to the inputs.

Although a recurrent neural network has the ability to model processes with memory 

this increased capacity (above an MLP) leads to several disadvantages:
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1. Network behaviour can be difficult to predict due to the feedback in the 

structure (Choueiki et. al., 1997). Specifically the network output is liable to 

oscillate, be unstable or fail to converge to a stable state (Schalkoff, 1997),

2. Training can be more computationally expensive than for an MLP. This is 

because the training forecast errors of a recurrent neural network are dependent 

on the memory in the network which is in turn dependent on the parameters 

(Schalkoff, 1997), and

3. Larger data sets are required than for an MLP as a recurrent neural network can 

model more complex mappings (Choueiki et. al., 1997).

Examples of recurrent neural networks applied to load forecasting can be found in
Vermaak and Botha, (1998) and Hippert et. al. (2001) among others.
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3.5 Techniques for Integrating Weather Forecast Errors 
into Load Forecasts

Miyake (1995) breaks the area of short term load forecasting into the consideration 

of three problems:

1. The load is affected by factors which cannot be included in any model, 

for example the effect of a football match,

2. The relationship between the load and causal factors, that can be 

included, needs to be determined via a load forecasting model, and

3. Some factors are forecasted values, which have their own associated 

forecast errors, for example temperature forecasts.

The first problem is usually considered as a random effect (Miyake, 1995). The 

second problem relates to the forecasting model as discussed in Sections 3.1 to 3.4. 

The third problem refers to the use of weather variables in load forecasting models. 

The load on the day to be forecast is among other things affected by the weather on 

that day. The only source for this weather is via a weather forecast, which has 

associated weather forecast errors. Identifying and minimising the effect of weather 

forecast error is the focus of this section.

However, Miyake (1995) states that the third problem has not been addressed in the 

literature. Although this is not strictly true, many authors have to a large extent 

ignored weather forecast error. For example, Lu et. al. (1989), Haida and Muto

(1994), Gupta (1985), Park et. al. (1991b) and Tamimi and Egbert (2000) remark 

that weather forecasts are required to produce load forecasts in their models, 

however the effect of the weather forecast error is not considered. Alternatively, 

Kodogannis and Anagnostakis (1999), Park et. al. (1991c), Mohammed et. al.

(1995) and Rahman and Bhatnagar (1988) remark that weather forecast error
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degrades the performance of a load forecasting model significantly but do not 

attempt to limit this effect or quantify it.

Although the effect of weather forecast error on a load forecast is highly dependent 

on the electrical system, the accuracy of the weather forecast and the load 

forecasting model, several sources have indicated that the effect is significant. An 

IEEE committee report (1985) indicates that between 60-70% of online load 

forecasting errors may be attributed to weather forecast error. Douglas et. al. 

(1998b) calculate that 30-50% of load forecast errors for their model may be 

attributed to weather forecast error during the summer months but the effect is 

negligible in the winter.

Typically a load forecasting model is trained using actual weather readings (for 

example Rahman and Bhatnagar, 1988, Lu et. al., 1989, Haida and Muto, 1994, 

Gupta, 1985, Chen et. al., 1992 to mention but a few) rather than with historical 

weather forecasts (exceptions are Feng et. al., 1998 and Papalexopolous and 

Hesterburg, 1990). There are several reasons for this:

1. Using weather forecasts in place of actual weather readings effectively 

introduces noise (i.e. weather forecast error) into the training set making 

parameter estimation more difficult. Additionally, it has been shown that 

there is no improvement in load forecasting accuracy by using weather 

forecasts during training (Papalexopolous and Hesterburg, 1990),

2. Historical weather forecasts are often not available for the whole training 

set (for example, Lu et. al. 1989, Gupta, 1985, Tamimi and Egbert, 

2 0 0 0 ), and

3. The accuracy of weather forecasts is improving over time due to the 

introduction of better meteorological modelling techniques (Fuller and 

Harris, 1999). Therefore the weather forecast errors present in the earlier
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part of the training set do not represent the level of error expected in 

current weather forecasts.

However, weather forecast errors not present in the training set can have a 

disproportionate influence on the load in models as illustrated by Yoo and Pimmel, 

(1999) and Dash et. al., (1997 ). Changing the load model parameters to account for 

this can be impossible in many conventional models once training is completed. As 

the effect of weather forecast error cannot be reduced during model training the 

following question arises as to how to quantify this effect on load forecasting 

accuracy (Section 3.5.1) and strategies for minimising it (Section 3.5.2).

3.5.1 Techniques for Quantifying the Effect of Weather Forecast 
Error

The increased load forecast error variance due to weather forecast errors can be 

calculated by two approaches, either:

Approach 1. Observing the load forecasts with and without weather 

forecast error and calculating the variance o f the resultant errors (for 

example

Park et. al., 1993a and Chen et. al., 1992), or

Approach 2. Explicitly calculating the increase in load forecast error 

statistics from weather forecast error statistics (Douglas et. al., 1998b, 

Ranaweera et. al., 1995).

In the first case both Park et. al., (1993a) and Chen et. al., (1992) are restricted by a 

lack of historical weather forecasts. In order to overcome this, Gaussian noise is 

added to the actual weather readings to produce pseudo-weather forecasts. Park et. 

al., (1993a) uses Gaussian noise with zero mean and a standard deviation of 5% of 

the actual temperature. The MAPE for the test set, using actual weather, was 1.41%. 

When the pseudo-weather forecasts where used this rose to 1.70%, or a rise in the 

MAPE of 20%. However these results are based on two assumptions:
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1. The weather forecast error has a Gaussian distribution, and

2. The standard deviation of the Gaussian distribution is 5% of the 

temperature.

Chen et. al., (1992) does not detail the Gaussian noise and so the results are difficult 

to evaluate.

Douglas et. al. (1998b) approach the problem by relating the variance of the load 

forecast error to the variance of the temperature forecast error (temperature is the 

only variable examined in this study). The load forecasting model used is a BSM 

(Section 3.3.2.3) which is trained using a Bayesian approach (Section 3.3.3). The 

effect of the temperature forecast may be calculated (Douglas et. a l 1998b) with the 

aid of the following relationship:

E\ y2] = E [ ( y - E [ y \ x  = x f \ + E [ E 2\y\x]] (3.95)

Where x  and y  are random variables, X  is a realisation of x  and £ [•] denotes the 

expectation operator. In terms of the current discussion Equation (3.95) may be 

expressed (Douglas et. al., 1998b) as:

JE[e(^))2] = i t [ ( ^ ) - £ k A :) U ; , .W  = ^(A:)])2] + e [e 2 [e(k) | £„.(£)]] (3.96)

Where e(k) is the load forecasting model error, thr (k) is the temperature forecast and

thr(k) is the actual temperature at hour k. The first term on the right hand side of 

Equation (3.96) represents the error in the load forecast due to modelling error and 

the random component of the load, given that the actual temperature is used. The

second term, £'[£'2 [£(A:) | thr (&)]] , represents the increase in load forecasting error

due to inaccuracies in the temperature forecast. The disadvantage of this technique is 

that in order to evaluate Equation (3.96) the variance of the temperature forecasts 

must be known.
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Ranaweera et. al. (1995) again relates the variance of the load forecasting error to 

the variance of the weather forecast errors. This method differs from that of Douglas 

et. al. ( 1998b) however, in that a Taylor series expansion is used. Consider a 

function of several variables:

x = f(u v u2,...,u„) (3.97)

Where _/(•) is the function, x  is the output and are the inputs and n is the

number of inputs. Given the variance in one or more of the inputs, the variance in 

the output may be calculated via a Taylor series expansion o f/  (Ranaweera et. al., 

1995)as%:

n

/=1

'M .
du.

K  (3-98)

7 2Where is the variance of the output and <Tu is the variance of input i. In terms of

2  , 
load forecast error variance, o x represents the load forecast error variance and

o~ the variances of the weather inputs.
U;

Ranaweera et. al. (1995) apply this method to two types of model; an MLP (Section

3.4.3.1) and an RBF neural network (Section 3.4.3.3). The forecasted weather 

variables used are the daily maximum and daily minimum temperatures. As the 

standard deviation (and thus variance) of the weather forecast errors are unknown a 

series of values ranging from 5% to 20% of the actual temperature values are used. 

With the standard deviation of both the weather variables set at 5% the load forecast 

error standard deviation is increased by .65%. Given that the MAPE of the load 

forecasts produced using the MLP and RBF networks is 2.05% and 2.08% 

respectively this represents approximately a 17% increase in the load forecast error 

MAPE which is significant*.

% This equation is only valid around the operating point at which the partial derivatives are taken.
* This figure assumes that a 0.65% increase in the standard deviation of the load forecast error results 
in a 0.65% increase in the MAPE of the load forecast error which is not strictly true.
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This technique has several disadvantages however:

1. Equation (3.98) is valid only if the errors in the inputs are independent. 

Thus in the study presented by Ranaweera et. al. (1995) it is assumed that 

the error in the forecast of maximum daily temperature is independent of 

the error in the minimum forecast,

2. The variances of the inputs must be known or approximated,

3. The error in the load forecast due to factors other than weather forecast 

error are not considered, and

4. Both MLP and RBF neural networks have no memory (see Sections

3.4.3.3 and 3.4.3.3). There is no indication how this technique may be 

extended to a load forecasting technique with memory.

Having explored the techniques for quantifying the increase in load forecast error 

due to weather forecast error the next section investigates techniques for limiting 

that error.

3.5.2 Techniques for Minimising the Effect of Weather Forecast 
Error

Four techniques have been identified in the literature for minimising the effect of 

weather forecast errors:

1. The first technique involves fuzzifying the inputs (Section 3.4.2.1). According to 

Bitzer and Rofier (1998) fuzzification of forecasted temperature inputs reduces 

the effect of the temperature forecast error on the load forecast. However, the 

reduction is not quantified,
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2. The second technique is implemented by Rahman and Hazim (1993). In this case 

confidence limits for the weather forecast are made available by the weather 

service used. The load forecasting model uses a pattern matching technique 

similar to the one used by Otto and Schunk (1999) (discussed in Section 3.4.2.1). 

In this case the load forecast is produced using historical data of days with a 

similar temperature and load profile history. As explained by Rahman and 

Hazim (1993) a load forecasting model is vulnerable to weather forecast error. 

To overcome this Rahman and Hazim (1993) select days with not only 

temperatures similar to the expected temperature of the forecast day but also 

days in which the temperature is within the confidence limits o f  the weather 

forecast. Unfortunately the improvement in forecasting accuracy using this 

technique is not investigated,

3. Taylor and Buizza (2003) propose a technique which employs weather forecasts 

which are given as probability density functions as opposed to a normal weather 

forecast which is just a single figure. These weather forecasts are then used to 

produce ensemble predictions of the load. Each prediction has an associated 

probability and it is left to the system operator to choose the best course of 

action,

4. The fourth technique is based on the principle that the optimum load forecasting 

model is, among other things, dependent on the weather forecast error inherent in 

some inputs (Miyake et. al., 1995). That is, the advantages of including a 

weather variable that is correlated to the load may be eroded when weather 

forecast error is introduced. In order to determine the best model Miyake et. al.,

(1995) constructs a set of candidate models for each forecast day and the best 

model is selected. The load forecasting models are similar to the Hammerstein 

models described in Section 3.4.1.2, specifically the form of the models (Miyake 

et. al., 1995) is:

N M

y(k + i) = a0J + X  X  aw  {x ‘(k  + $
/=i j=i
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Where y(k) is the load at time k, i is the forecast horizon, aijj are the model 

parameters, N  and M  are the orders of the model and xi(k) is input / at time &. To 

construct the candidate models the orders and inputs for the models are varied.

In order to select the optimum model, an adjustment to a model selection

criterion known as the Final Prediction Error (FPE) (Brockwell and Davis,

1987) is used. The FPE is defined (Brockwell and Davis, 1987) as:

J fpr= — 6 l  (3-100)
n - q

Where J/pe is the final prediction error, n is the number of data points used, q is 

the number of parameters in the model and <72c is the variance of the errors in the 

training set. The FPE reflects the fact that as the complexity of the model 

(represented by q in Equation 3.100) increases, the in-sample (forecasts made 

on the training set) forecasts improve, while the out o f  sample (validation set) 

forecasts may deteriorate due to over fitting. Thus the inclusion of q in Equation 

(3.100) effectively penalises increased complexity in the model. Miyake et. al.,

(1995) adjusts the FPE to include for errors in the weather forecast variables as:

. . , e .  (3101)
n - q  n

Where Jfpeev is the adjusted final prediction error or Final Prediction Error in 

Explanatory Variables (FPEEV), V  is a vector of inputs, W  is a set of weights 

used to calculate the parameters of the model, a , and Qu is the error covariance 

matrix of the inputs (i.e. the covariance matrix of the weather forecast errors). 

Jfpeev is then calculated for each candidate model and the model with the lowest 

Jfpeev is then chosen. Further details on the construction of U,W, a ,  and Qu may 

be found in Miyake et. al., (1995). However, it is sufficient to note here that 

Equation (3.101) is specific to the models described by Equation (3.99).
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The advantages of this technique are:

1. Unlike the technique used by Ranaweera et. al. (1995) the covariance 

matrix of the weather forecast errors is used, thus recognising that the 

errors in one forecast weather variable may be correlated to the errors in 

another, and

2. The error in the load forecast due to factors other than weather forecast 

error is considered via the FPE.

However the technique is restricted by two factors:

1. The FPEEV in Equation (3.101) is model specific and calculating an 

FPEEV for a different model type may be difficult, and

2. Calculating the covariance matrix of weather forecast errors may be 

difficult.

3.6 Conclusion

The literature reviewed in this chapter demonstrates that the area of STLF has been 

tackled using many different approaches. The reason for the multitude of approaches 

lies with the fact that each electricity system has different characteristics. 

Additionally, it is impossible to attempt all of the approaches in order to ascertain 

the optimum one. Also in many cases the differences in performance may be 

insignificant (Hippert et. al. 2001). However, there remain several topics of 

discussion in this area which require investigation:

1. A parallel approach versus a sequential approach. The advantages and 

disadvantages of both approaches have been examined in Section 3.2, however 

there are no guidelines for determining which approach may be superior for a 

given electricity system,
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2. Choosing the optimum forecasting technique. The techniques explained in 

Section 3.2 and 3.3 differ in their ability to model complex behaviour. As the 

complexity of the technique increases however, determining the optimum 

parameters of the model becomes more difficult. Additionally, different 

techniques may be more appropriate at different times, or a combination of 

techniques may be superior. There have been several studies to investigate if 

certain characteristics of a time series can be used to determine what the 

optimum model for that time series may be (Arinze et. al., 1997). However the 

results are inconclusive at this stage and the choice of technique remains a 

subjective choice to be made by the forecaster, and

3. Integrating the effect of weather forecast error into a load-forecasting model. In 

Section 3.5 it was pointed out that a significant percentage of load forecasting 

error may be due to weather forecast error. This topic has however been largely 

ignored in the literature.
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Chapter 4 

Day-Type Identification

4.1 Introduction
This chapter describes the techniques used to identify day-types in Irish load data 

(as discussed in Sections 2.3.2 and 3.2.1). The primary purpose o f day-type 

identification is to disaggregate the data prior to modelling (Section 4.2). Once 

the data has been disaggregated into the respective day-types, it is then important 

to know if  there is sufficient data within each day-type to allow consistent model 

building (Section 4.2.1). In addition, the relationship between the load and the 

dominant exogenous variable, temperature, within each day-type is important for 

model building and is examined in Section 4.2.2. Finally, the transitions between 

the day-types (see Section 3.2.1.2) are identified in Section 4.3.

4.2 Day-Type Identification

In Section 3.2.1.1 several techniques for day-type identification were discussed. 

O f the three candidate techniques proposed in Section 3.2.1.1, the Kohonen map 

is best suited to this task, as operator interviews can be subjective and cluster 

algorithms require a-priori knowledge o f the day-types (for example, see Section 

4.3).

The parameters used in the Kohonen map are:

• Initial neighbourhood size: 4,

• Adaptation gain: .002,

• Number of iterations after which Nc is reduced: 10, and

• Number of output nodes: 18x18 (324 in total).

These values are similar to those used by Hsu and Yang (1991a). The value of 

a  affects the rate at which the network adapts to each input; if  the value is too 

large, the network over-reacts to each input, while the network will not converge 

if  the value is too small. The value of a  may be adapted from iteration to
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iteration, however in simulations conducted by the author little difference was 

found; this was also the case reported by Hsu and Yang (1991a). As was found 

by Hsu and Yang (1991a), a wide range o f values from .001 to .007 was found to 

give satisfactory results.

For the present study, the trials used all o f the last 2 full years o f data, 1998 and 

1999. Figures 4.1 to 4.6 below show which nodes are triggered and the number 

of inputs that mapped to that node.

Although the weights are initialised to aid in spreading the activation across the 

complete output grid, after a single iteration the inputs map to several nodes in 

close proximity to each other (Figure 4.1). This is because the neighbourhood is 

large and the adaptation is acting globally (the weights o f many of the output 

nodes are adapted by each input).

After fifteen iterations the outputs have segregated into four groups, the groups 

with the lower number o f mappings representing mostly Sundays and Saturdays 

and the other groups representing mainly weekdays (Figure 4.2). At this point the 

neighbourhood size has reduced to three.

After thirty iterations the data has been spread across the grid o f output nodes 

with different day-types occupying different parts of this grid (Figure 4.3). The 

neighbourhood size is now two and the weights are being adapted locally (only 

the weights associated with nodes a distance o f two away from the mapped node 

are being adapted). This causes similar day-types in the four groups to subdivide 

and trigger adjacent nodes. Graphically, this means that new parts o f the grid are 

being triggered in Figure 4.3 relative to Figure 4.2. An example is indicated in 

Figure 4.2 and Figure 4.3 of the subdivision o f the winter weekday group.

Iteration fifty is the last iteration as the neighbourhood size has now reduced to 

zero. The final iterations from thirty to fifty refine the day-types already 

identified (Figure 4.4).
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Ite ra tion  :1

Figure 4.1 Number of inputs that map to each node (iterations:!, Nc: 4).

Iteration :15
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Subdivision o f the winter
w eekday  group  Iteration ;30

Figure 4.3 Number of inputs that map to each node (iterations:30, Nc: 2),

Iteration :50

Figure 4.4 Number of inputs that map to each node (iterations:50, Nc: 0).

From the above analysis, it can be seen that the algorithm has operated as 

expected. Initially, the inputs are spread across the output grid according to large 

differences in the inputs. Subsequently each o f the large groups is refined locally 

into any sub-groups that may exist.
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The next step is to assign day-types to the triggered nodes in Figure 4.4. Figure 

4.5 shows the nodes that are triggered from Monday to Friday. As can be seen 

the nodes that are triggered for these days occupy the same parts o f the grid. Note 

the only exception, that several Monday loads trigger nodes around (¿=13,7=13). 

This is explained later in this section.

Monday Tuesday

nodej 0 0 nodei 

Wednesday

20

A 0 node i 

Friday

20

0 0 node i

20

0 0 node i 

Thursday

30

1  20

nodej 0 0 nodei

Figure 4.5 Nodes triggered by Monday-Friday loads (iterations:50, Nc: 0).

Sunday, Saturday and Monday loads trigger different parts o f the grid showing 

the difference between these days (Figure 4.6). The one exception as pointed out
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previously is that several Monday inputs trigger the nodes around (i=\2>j=\7>). 

The inputs responsible for this are Monday bank holidays and it is interesting to 

note that they are mapped to the same nodes as some o f the Sunday loads (Figure 

4.6).

On closer inspection, it is seen that the summer months (May to September) are 

mapped to the right-hand side of the grid while the winter months (excluding 

Christmas) are mapped to the left-hand side. Christmas loads with the exception 

of Saturdays occupy a separate node indicating that Christmas loads are different 

to others (Figure 4.6). It is by co-incidence that the triggered nodes are aligned 

on the grid such that loads on different days o f the week changes with the _y-axis 

and the time of year with the x-axis (Figure 4.6). Other tests, performed by this 

author, have shown similar results with the triggered nodes aligned in other 

directions e.g. diagonally. Finally, with the exception o f Summer bank holidays, 

the spikes in Figure 4.5 for working day loads can be assigned similar day-types 

to those for Mondays (Figure 4.6).
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Monday Summer Ban k

Saturday

Octobcr-March*

Chris tmas

node i
Sunday

April-September

10 

node i * Excluding Christmas

Figure 4.6 Nodes triggered by Monday, Saturday and Sunday loads. (iterations:50, Nc: 0).

The day-types identified are collated in Table 4.1. The October to March day- 

types are split into two groups (early and late winter) to reflect the fact that 

Christmas lies at the centre o f this range.
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Table 4.1 Day-types identified for Irish  load.

Day-type Num ber Range
Early winter Sundays 1 October-Christmas
Summer Sundays & bank holidays 2 April-September & bank holidays
Late winter Sundays 3 January-March
Early winter working days 4 October-Christmas
Summer working days 5 April-September
Late winter workings days 6 January-March
Early winter Saturdays 7 October-Christmas
Summer Saturdays 8 April-September
Late winter Saturdays 9 January-March
Christmas days 1 0 Christmas

The bank holidays in the Irish calendar are:

• St. Patrick’s day March 17 ‘ (or closest Monday),
• Good Friday (Lunar calendar),
• Easter Monday (Lunar calendar),
• May day, 1st Monday in May,
• 1st Monday in June,
• 1st Monday in August and
• Last Monday in October.

The transitions between these day-types are considered in Section 4.3 after the 

relationship o f temperature to the load in each day-type has been examined.

4.2.1 Segmentation of Data for Model Building

This section lays out the blueprint for a load-forecasting package (a set o f models 

that can be used to forecast all day-types) in light o f the analysis in Section 4.2.

As pointed out in Section 3.2.1, by modelling each day-type separately the

information that each model must incorporate is reduced. This aids in the 

modelling task. There is however a trade-off. As pointed out by Hippert et al. 

(2 0 0 1 ) in a study of neural networks applied to the load-forecasting problem, if 

the data is subdivided into too many day-types then the resulting data sets are too 

small to permit adequate model training.

The segmentation o f the data set (by the day-types chosen in Section 4.1) is 

shown in Figure 4.7 with the number o f days in each set shown (note: some days 

are not classified as they occur at the boundary between day-types).
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The amount o f data required to allow modelling is difficult to quantify as it is 

influenced by the type o f model used and the amount o f noise in the data, among 

other things. To determine if  the amount o f data in each subset is sufficient to 

allow modelling, comparisons are drawn with other studies. Hippert et al. (2001) 

gives a list o f the data set sizes used in twenty-two studies by various authors. 

The size o f the total data sets used in each study varies from thirty-four days to 

four years. The total size o f the data set in the current study is thirteen years, 

which is relatively large. This allows a greater level o f segmentation, if  desired.

The amount o f data in each day-type, for the current study, is given in Figure 4.7 

and shows that for the day-types chosen, the amount o f data is similar to that 

used by Sharaf and Lie (1995), Srinivasan et al.(1999) to mention but a few. 

Sharaf and Lie (1995) used three months o f data for each o f their day-types and 

Srinivasan et al. (1999) used two years o f data broken into 3 day-types with 

approximately three hundred days in the working and Saturday day-type and fifty 

days in the Sunday day-type.

Figure 4.7 Segmentation of data set with approximate number of days in each subset.

4.2.2 Temperature-Load Relationship within Day-Types

The following analysis uses the pre-processed average load, zav(k), and average 

temperature, tav(k) as defined in Section 2.3.3.2. Figure 4.8 shows the load- 

temperature relationship for working days with data points for each month of the
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year highlighted. The data points for each month group into clusters with a few 

exceptions due to Christmas, bank holidays and exceptional days (Figure 4.8).

In order to compare the load-temperature relationship at different times o f the 

year regression lines are employed (Figure 4.8). As pointed out by Murray

(1996), Hyde and Hodnett (1997b) and Fan and McDonald (1994), among others, 

the temperature-load relationship is non-linear and so it should be noted that the 

use of regression lines is an approximation. However, the approximation is 

considered sufficient to identify significant differences in the load-temperature 

relationship for different months o f the year.

In calculating the regression lines, Christmas, bank holidays and exceptional 

days are excluded to avoid them influencing the line parameters. Several 

algorithms exist for selecting which points to include and exclude for calculating 

regression lines (Wisnowski et. al., 2001, lists several techniques). The points to 

be excluded in the current analysis are easily identified (as can be seen in Figure 

4.8) and so the selection o f the exclusion technique is not critical. The BACON 

(Blocked Adaptive Computationally efficient Outlier Nominators) method 

proposed by Billor et. al (2000) was chosen for its fast convergence. This 

technique may be broken down into several steps:

1. The technique first requires that a subset o f the data, safely assumed to be 

free o f outliers, be chosen. This subset is called the basic set, and is formed 

from chosen loads, Z&, and corresponding temperatures, 7*. In this analysis, 

the basic set is determined by first calculating a regression line using all the 

data:

*■,(*) = A'», (*) + &+ *(*) (4-1)

where /?[, /% are parameters o f the regression line calculated via least squares

(i.e. minimum ^  e 2 (/c)) and e(k) is an error term. The basic set then
k

contains the top ten percent o f points with the lowest e(k),
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2. Next, each point is tested to see if  it is significantly different from the line. 

The test statistic, called the discrepancy, is calculated (Billor et. al, 2000) as:

where %(k) is the discrepancy for day k, and Ò is the standard deviation o f 

the errors in the basic set,

3. The basic set is then increased to include points for which (Billor et. al,

where r is the number o f points in the basic set, a* is the significance level 

and t^a r_^ is the l-o^ percentile o f the ¿-distribution with r- 1 degrees o f

freedom,

4. Following the expansion of the basic set, the regression line parameters are 

recalculated (Equation 4.1) using only the data points in the basic set. Steps 2 

and 3 are then repeated, and

5. The process continues until the basic set no longer increases in size. The 

points excluded from the basic set are then designated as outliers. Finally, the 

points in the basic set are used to calculate the parameters o f the regression 

line.

The value o f a* has to be adjusted so that only true outliers are identified. The 

outliers o f interest in this study are Christmas, bank holidays and exceptional 

days. There may however, be little correlation between the load and temperature 

in the remaining points. An example o f this can be seen for August working days 

(Figure 4.8). Thus the discrepancy values calculated by Equation (4.2) are 

relatively high. Choosing a small value for a  would thus result in many o f the 

non-exceptional points being excluded. A significance level o f 0.4 was found to

e(k)

i f  day k€ .Th
y b (4.2) 

if  day k<£ Tb
^ + < ^ X T bTTi y ' t „ ( k )

2000):

%(k) < ¿(ai/2(r+l),;-!) (4.3)

114



be sufficient in this study to identify all the outliers while retaining most o f the 

other points.

January February March

%
: '■*

i1’
♦

0 « April 0 M 10May
0 , 10 

June
20

Avg Temp Avg Temp Avg Temp

Figure 4.8 Scatter plot with regression lines for temperature-load relationship by month 
(working days, selected points in black, complete data set in grey).

The load-temperature relationship is different for each month o f the year (Table

2.5). For January to April, the slopes o f the regression lines are negative and 

similar. From May to June the slopes approach zero. The low correlation co­

efficients for July to October indicate very little correlation between temperature 

and load in those months. The regression lines and correlation co-efficents for
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November and December are similar to those in January. With respect to the day- 

types identified in Section 2.3.2, this indicates that there is no significant 

difference in the temperature-load relationship within the periods spanned by the 

late winter working day day-type (October to March). The summer working day 

day-type (spanning April to September), however, has a significantly different 

temperature-load sensitivity (defined as the slope of the regression line) in April 

and May than in the period June-September. The early winter working day day- 

type (spanning October to December, excluding Christmas) also has a different 

sensitivity in October than in November-December.

The load-temperature sensitivities for Saturday and Sunday day-types show a 

similar result to that of working days (Table 4.2).

Table 4.2 Temperature-load regression line co-efficients and correlations.

Jan. Feb. Mar. Apr, May June July Aug. Sept. Oct. Nov. Dec.

Working
Days

Slope (P,)* -5.42

E-03

-6.20

E-03

-5.72

E-03

-5.69

E-03

-2.19

E-03

0.559

E-03

1.81

E-03

-10.9

E-03

-0.823

E-03

1.15

E-03

-3.60

E-03

-6.13

E-03

Intercept (P2)' 9.63

E-01

9.55

E-01

9.39

E-01

9.00

E-01

8.29

E-01

7.75

E-01

7.43

E-01

9.23

E-01

8.13

E-01

8.31

E-01

9.26

E-01

9.72

E-01

Correlation 
between 
temperature 
and load

-0.53 -0.49 -0.65 -0.48 -0.14 0.25 -0.20 0.02 -0.11 -0.07 -0.63 -0.49

Sundays Slope (P,)* -5.94

E-03

-4.39

E-03

-6.77

E-03

-5.02

E-03

-2.40

E-03

5.94

E-03

1.87

E-03

-1.33

E-03

1.18

E-03

-2.29

E-03

-4.37

E-03

-3.78

E-03

Intercept (P2) ’ 8.00

E-01

7.67

E-01

7.70

E-01

7.30

E-01

6.87

E-01

5.56

E-01

5.86

E-01

6.47

E-01

6.34

E-01

7.02

E-01

7.80

E-01

8.05

E-01

Correlation 
between 
temperature 
and load

-0.28 -0.65 -0.37 -0.04 -0.56 -0.38 0.26 -0.18 -0.35 -0.15 -0.42 -0.39

Saturdays Slope (P i)’ -2.74

E-03

-4.40

E-03

-4.86

E-03

-3.04

E-03

-2.71

E-03

-1.55

E-03

1.95

E-03

-1.69

E-03

5.34

E-04

-1.36

E-03

-2.06

E-03

-2.83

E-03

Intercept (P2) * 8.47

E-01

8.48

E-01

8.32

E-01

7.59

E-01

7.58

E-01

7.25

E-01

6.56

E-01

7.18

E-01

7.07

E-01

7.68

E-01

8.31

E-01

8.66

E-01

Correlation 
between 
temperature 
and load

-0.32 -0.38 -0.45 -0.61 -0.83 -0.19 -0.64 0.20 0.46 -0.18 -0.73 -0.68

* For normalised data.
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4.3 Transitions between Day-Types

Two candidate techniques for identifying day-type transitions were examined in 

Section 3.2.1.2; cluster algorithms and Kohonen neural networks. The FCM 

cluster algorithm is chosen as Kohonen neural networks are not suited to this task 

(Section 3.2.1.2). In the current study, the inputs, I/*, are composed of the 

twenty-four hours o f data, normalised as described in Section 3.2.1.2 (Equation

3.6). For the current analysis, only data from the years 1999 and 2000 are used. 

This is to avoid the clustering algorithm identifying the differences between 

years as opposed to day-types. The desired level o f fuzziness depends on the 

accuracy of load-forecasting models. However, at this stage, a value o f 2.0 for k  

was found to give a good indication o f the transitions between the day-types.

As pointed out in Section 3.2.1.2, clustering algorithms Eire best used when the 

existence of clusters is known a-priori and it is the transitions that are desired. 

As an example o f this, working day data was analysed to determine if  FCM 

could allocate the clusters and transitions between the five day-types for working 

days. As can be seen, the algorithm identified five clusters which do not 

correspond to the day-types identified in Section 4.2 and the Christmas period is 

not assigned to a cluster at all (Figure 4.9). For example, two clusters are 

identified for summer while a single cluster was desired.
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Figure 4.9 Segmentation of data set using FCM with five clusters.

However, as the data has already been segmented in Section 4.2 (Table 4.1), the 

existence o f the clusters is already known. The data was segmented into pairs of 

known clusters, as only two day-types overlap at a time. FCM was then used to 

determine the transition between the two. These segmented pairs are:

• Early winter working day and Christmas day-types,

• Christmas and late winter working day day-types,

• Late winter and summer working day day-types and

• Summer and early Winter working day day-types.

The transition between early winter working day day-type and Christmas day- 

types occurs over the period o f several days, however the two periods are distinct 

(Figure 4.10).

118



— V " V '
------  Early W inter
------C h ris tm a s  -

V
>

r •
'

i ' 1

t

V V

i _ .

1'
\#

i !< V ,

— «1 *N A /

11 11.2 11.4 11.6 11.8 12 12.2 12.4 12.6 12.8 1
Month (January=1)

Figure 4.10 Early winter (working day) day-type to Christmas day-type transition.

Recall that a winter day-type is identified in Section 4.2. However, as the winter 

day-type is disjoint due to the Christmas period, the early and late winter day- 

types were created. Figure 4.11 shows the transitions between winter day-type 

data and Christmas. It is interesting to note, as expected, that the transition into 

Christmas corresponds to that in Figure 4.10. The transition between Christmas 

and late winter working day day-types also occurs over several days (Figure 

4.11).

M onth (J a n u a ry  =1)

Figure 4.11 Christmas day-type to late winter (working day) day-type transition.
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The transition from late winter to summer occurs over the hourly changes for 

daylight savings. Figure 4.12 shows the load for Friday 25 March 1999 (before 

the change) and Tuesday the 30th March (after the change). The load profiles for 

these days are significantly different, due to the fact that there is a lower lighting 

requirement on Tuesday 30th March.

Hour

Figure 4.12 Differing load profiles due to day-light savings changes.
As a consequence o f the changes for day-light savings, the transition between

late winter working day day-types and summer working day day-types is hard

(Figure 4.13).
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Figure 4.13 Late winter to summer (working day) day-type transition.
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Finally the transition between summer and early winter working day day-types is 

shown in Figure 4.14. This transition is fuzzy demonstrating that there is a 

significant overlap between the two periods. The day-light savings change does 

not have the same effect here as lighting requirements are not influential in 

summer.
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Figure 4.14 Summer to early winter (working day) day-type transition.

4.4 Conclusion
This chapter investigated the disaggregation o f Irish electrical load data by day- 

type. The blueprint for a load-forecasting package is laid out in consideration of 

these characteristics without biasing the choice o f load forecasting models used.

It was found in Section 4.2 that the day-types correspond well with the expected 

segmentation by working days, weekend days and by summer and winter. 

Exceptional days, such as bank holidays, are found to have a similar shape to 

Sundays while the Christmas period is treated separately. The fact that the daily 

load shape is not consistent is important for modelling as it requires that the 

model must incorporate shape information.
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Section 4.2.1 outlines the consequences (in terms o f reduced data sets) of 

applying a different model to each day-type. While this reduces complexity, in 

that the shape o f the load in each day-type is consistent, the data is more 

segmented, resulting in several smaller data sets. In this respect, it is the only 

modelling decision made in this chapter. However, similar studies (see Section

4.2.1) have shown that the segmented data set sizes are not too small to restrict 

the type o f model.

The relationship o f temperature (the dominant causal variable to load) to load is 

examined in Section 4.2.2. The results (Table 4.2) show that the load- 

temperature relationship for early winter day-types is constant within the range 

of those day-types. Thus, when forecasting the load, the operating point on the 

load-temperature curve is not significant. In contrast, this is not true for the other 

day-types. For these other day-types, the operating point on the load-temperature 

curve is significant and must be considered when modelling these loads.

Finally, the transitions between the different day-types is highlighted in Section

4.3. For some day-types there is a significant overlap indicating that some days 

are members o f two day-types. As the data has already been segmented and the 

number of models decided, the load forecast in these overlapping days is 

required to be composed o f the output o f the two corresponding models.
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Chapter 5

Parallel Models for Short Term Load Forecasting

5.1 Introduction
The relative performance o f parallel and sequential models is unclear (Section 

3.2.2), thus both are examined in this thesis. Parallel models are presented in this 

chapter and are compared with sequential models which are presented in Chapter

6 . As discussed in Section 3.2.2, parallel models model the load at each hour of 

the day separately. In addition, for reasons discussed in Chapter 4 (Section

4.2.1), the data is disaggregated by day-type, with separate models being 

employed for each different day-type.

This chapter begins by demonstrating how the data sets are constructed prior to 

modelling (Section 5.2). A novel technique is then presented which examines the 

data to determine whether parallel models could be an appropriate approach 

(Section 5.3).

As mentioned in Section 2.3.1, Irish load has a trend and (yearly) seasonal 

component which varies little from day to day and so can be easily predicted. 

The approach taken here is to first remove the trend and seasonal component 

(Section 5.4) and then model the residual (Sections 5.5, 5.6 and 5.7). An 

important step in model building is to determine the appropriate inputs to use. 

This topic is examined in depth in Section 5.5, where several methods are 

compared. Using the inputs determined in Section 5.5, Sections 5.6 and 5.7 

present linear and non-linear parallel models which are compared (Section 5.8), 

to determine whether the use o f non-linear models in STLF is justified.

Practical note: As there are nine day-types (excluding Christmas), and the 

results o f the analysis for each day-type are similar, only one day-type is 

presented in detail. The results for the other day-types are presented in 

summarised form, except where large differences in results are present. The late 

winter working day-type is used as the indicator as it represents a greater
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forecasting challenge since the late winter load has a greater variability than the 

other day-types.

5.2 Construction of Partitioned Series for Parallel Model 

Building.

In Section 4.2.1, ten day-types were identified in Irish electrical load data. Thus 

the first step in constructing the partitioned series (Section 3.2.2) is to divide the 

data into these day-types (Note: these data sets are used for the models in 

Chapter 6 ). Within each day-type, the data is then partitioned by hour o f the day 

to form the partitioned series. Let y tj  denote the load at hour i in day-type j .  Then, 

Figure 5.1 below shows an example o f how the partitioned series for OOhrs in the 

late winter working day-type (day-type 6 ), y 00,6, is constructed.

All loads

Early winter 
working day 

loads
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Figure S .l Construction of the partitioned series >»oo,6 from complete data set. 

yoo,6 is shown without the intermediate gaps in Figure 5.2, below.
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Figure 5.2 Partitioned series j 0o,6 (Intermediate gaps removed).

Partitioning the load data by day-type, as above, is not the only alternative that is 

considered. In Section 5.4.2.3 two alternative partitions (this term will be used 

strictly to distinguish the alternative partitioned series from the partitioned 

series) are examined.

5.3 Examining Partitioned Series for Independence.
This section examines whether Irish electrical data has the characteristics o f a 

sequential time series (defined in Section 3.2.2). This is achieved by examining 

the partitioned series within each day-type, to see whether they are independent 

from each other.

Consider the partitioned series y0J,...,y2y  which are the partitioned series for 

hours 00:00 hrs to 23:00 hrs in day-type j .  If  electricity demand is hour o f the day 

independent (which is the underlying assumption of the sequential approach), 

then the cross-correlation between any two adjacent partitioned series should be 

independent of which two hours are chosen. For example, the correlation 

between y XJ and y 2J should equal the correlation between yAj and y5J. If  the parallel 

models for hours i =0,.. .,23 on day-type j , f 0j(),.. ., /2V(), (Section 3.2.2) are linear 

functions then this hypothesis can be tested using the linear cross-correlation 

coefficient ru between parallel series i and I (the day-type j  has been suppressed 

for clarity). Even if  fojO,-.-, fn j§  are non linear, the linearising assumption of

* As defined in Section 3.2.2
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using linear cross-correlation analysis is sufficient to either confirm or reject the 

hypothesis.

The cross-correlation coefficient is defined (Papoulis, 1991) as:

r - y u ) ]  ^  ^

where y i . is the average o f ytj  and £[•] denotes the expectation operator. An

example of the cross-correlation matrix between the 1pm, 2pm and 3pm series is 

shown in Table 5.1 below.

Table 5.1. Cross-correlation matrix of VivnnmJ'i.-kim-i. and .vî on*.
Hour 1 p.m. (13 hrs) 2 p.m. (14 hrs) 3 p.m. (15 hrs)
1 p.m. (13 hrs) 1 .9958 .9924
2 p.m. (14 hrs) .9958 1 .9934
3 p.m. (15 hrs) .9924 .9934 1

As can be seen, the cross-correlations are very high (Table 5.1). This is not 

surprising; the load curves within any day-type are very similar, thus a large 

component o f the data is highly correlated (Section 2.3.2). Also note that the 

correlation between the load at 1 p.m. and 3 p.m. is less than that between the 

load at 1 p.m. and 2 p.m. This is to be expected, as a larger gap between the 

times leads to a lower correlation. However, the main point is that rU2 is not equal 

to r2,3, suggesting that load is hour o f  the day dependent. The cross-correlation 

matrix between all the partitioned series is calculated and the contour for ru 

=0.99 is shown in Figure 5.3 . An example of the expected contour for the case 

where the load is hour of the day independent, is also shown for comparison 

(Figure 5.3).
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Series i
Figure 5.3 Actual and expected contour plot of i';;,=0.99 for partitioned s e r ie s ^  w ith j/)6.

Inside the contour, the cross-correlation is higher than 0.99 and outside it is 

lower. The contour changes with each hour and so the assumption that load is 

hour o f the day independent does not appear to hold. The narrowness o f the 

contour at 8  a.m. and 5-8 p.m. show that at these hours especially, the load may 

have an independent component. This suggests that it may be best to model the 

load at 8  a.m. and 5 p.m. to 8  p.m. separately rather than try to incorporate them 

into a sequential model.

5.4 Preliminary Modelling of Partitioned Series.
As pointed out in Section 2.3.1, electrical load has a rising trend and a (yearly) 

seasonal component. The non-stationarity in load is as a result o f the rising trend 

and variability (Section 2.3.1), which changes very slowly from day to day. 

Thus, for the forecasting horizon required in the current research (i.e. up to seven 

days ahead), removing this non-stationarity is not a difficult task. The purpose of 

this section is to present this model, called the preliminary parallel model (PPM).

This model is used to remove the trend for hour i on day k  in day-type j ,  d (k),
i j

and the seasonal component for hour i on day k  in day-type /, Uf (k) (Figure 5.4).
ij

The PPM for hour i on day-type j  is denoted PPM,V. Modelling the error or 

residuals, x  (k), is the subject o f later sections (Sections 5.5, 5.6 and 5.7).
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Actual Load y tJ (k)

Trend and 
,  Seasonal component

PPM,V --------------- ------
______________ dij (k) + y/ij (k)

Figure 5.4. Preliminary parallel model overview

5.4.1 Choice of Preliminary Model.

Several techniques are described in Chapter 3 which can model the non- 

stationarity of a time series, namely:

1. Recurrent neural networks (Section 3.4.3.2),

2. Differencing or another stationarity transform as laid out in Section 3.3.1.1, 

and

3. State space models as laid out in Sections 3.3.2 and 3.3.4.

As explained in Section 3.4.3.2, the behaviour o f recurrent neural networks can 

be difficult to predict, training can be computationally expensive and large data 

sets are generally required. In addition, the application of such a complex 

technique to this problem would seem inappropriate.

As explained in Section 3.3.1.1, differencing can lead to excessive inclusion of 

high frequency noise in the resulting stationary time series. The gentle 

differencing transform examined in Section 3.3.1.5 however, does not have this 

drawback and would seem to be a better choice. One problem with the gentle 

differencing technique is that the coefficients o f the filter are not calculated 

recursively. This is a disadvantage, as electrical load is a non-stationary time 

series and allowing the coefficients to vary over the data may be advantageous.

Linear state space models (Section 3.3.2) have the ability to adjust the 

coefficients o f the model as the model proceeds over the data. In fact an optimal 

algorithm (in the linear least squares sense), the Kalman filter (Section 3.3.2.1)

jT Residual xixj (k)

o ---------►
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exists for recursively calculating these coefficients. As mentioned by Harvey 

(1984, Section 3.3.2.2), the state space equivalent o f the gentle differencing 

algorithm is the Integrated Random Walk (IRW) (Section 3.3.2.2). In addition, 

all difference equation filters have a state space representation. Thus, a state 

space model appears to be the best choice.

Although there are an infinite number o f state space models, the Basic Structural 

Model (BSM) (Section 3.3.2.3) is the most popular model for load forecasting 

(the reasons are laid out in Section 3.3.2.3). The IRW (Section 3.3.2.2) is used to 

model the trend in a BSM. As Irish load has a trend which rises at an increasing 

rate (Section 2.3.1) an IRW is particularly useful as the rate o f increase o f the

trend is free to vary via the derivative term, d(k) (Section 3.3.2.2, Equation 

(3.55) ). The seasonal component in a BSM may be modelled using a Periodic 

Random Walk (PRW), a Differenced PRW (DPRW) or a Dynamic Harmonic 

Regression (DHR) model (Section 3.3.2.2). The amplitude o f the seasonal 

component of Irish load data is increasing (Section 2.3.1). Thus, the PRW is not 

suitable as the seasonal component in this model is assumed to be constant 

(Section 3.3.2.2). The DPRW and DHR however, allow the seasonal component 

to increase or decrease over time (Section 3.3.2.2). In contrast to the DPRW, the 

DHR has twice the number o f coefficients to be calculated. Thus, the DPRW is 

chosen to model the seasonal component o f the load data.

5.4.2 Application of the Basic Structural Model.

The BSM chosen consists o f an IRW to model the trend and a DPRW to model 

the seasonal component. From Sections 3.3.2.2 and 3.3.2.3 the form o f the model 

m aybe specified as:

1 1 ' 0
0 0 | - 1  . . -1

H r„ . j =  |l 1 0 -  0] (5.2)
1 . 0

0 0 i 0 0
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where &ppm e  R(s' 1)x(s_1) and Hppm e  R lx(s_l) are the state transition matrix and
i j  U

observation matrix for the PPM for partitioned series i in day-type j  and 5  is the 

seasonal length (Section 3.3.2.2). Additionally, the states o f the PPM and the 

associated process noise m aybe expressed as:

" d . (* + 1) ' (k + l)

d
i. i (* + 1) (k + 1)

II+1

¥ 2 ,

.(k  + 1) 

.(k  + 1)
= 0  0¡j PPmj%.(* ) + 

J
%Y ij

(k + l )  

0

Vs-1 j  k+ l)_ 0

where 6ppm is the state vector o f P P M ;fo r partitioned series i in day-type j  on
i j

day k, 1//1 (k) , . .., ws.\ (k) are the seasonal states, d  (k) is the trend and d  (k) is
' i j '  ' i j  i j  ' j

the slope o f the trend. 7jd (k), rj^ (A) and rj ,̂ (k) are white noise components
‘•J hj hj

with variances <72d. . ,  <j] and cr2/; . respectively. In addition, there is a

measurement error term (Section 3.3.2.4), x  (k), (equivalent to the residual) with
i j

a variance o f <y2r . In order to use this model there are several issues which needxiJ

to be addressed:

• Treatment of the boundary between years in the partitioned series (Section

5.4.2.1),

• Tuning o f the PPM which may be done using Predictive Error 

Decomposition (PED) or Sequential Spectral Decomposition (SSD) (Section

5.4.2.2), and

• Whether the partition o f the data by day-type is better than either o f the 

alternative partitions (Section 5.4.2.3).
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5.4.2.1 Treatment of Day-Type Boundary Conditions

Figure 5.2 (Section 5.2) shows the partitioned load series for 00 hrs for the late 

winter day-type. However, as can be seen from Figure 5.1 (Section 5.2), this 

series is formed of slices of data from several different years. Thus, for example, 

the last data point taken in 1996 is followed by the first data point taken in 1997. 

However, between these points there is a gap of approximately 9 months. The 

growth in the trend component o f load data over this period is significant. For 

this reason the boundaries between the years in all day-types must be given 

special treatment.

In order to estimate the trend states (Equation (5.3)) at the boundaries o f the day- 

types, an IRW model was employed. The entire load data set is first divided into 

24 partitioned series, one for each hour o f the day. An IRW model is then tuned 

using PED (Section 3.3.2.4), on each o f the 24 partitioned data series. During this 

process, the states of the IRW models at each point are recorded. The appropriate 

states at the day-type boundaries are then extracted and used as the estimates of 

the trend and slope components in the PPMs. The results are found to be quite 

robust to the parameters of the IRW and so the details are not provided.

As an example consider the PPM for 00 hrs in day-type 6 , PPM00,6. A Kalman 

filter is used to predict the states o f this model (further details o f the PPM are 

explained in the next section, the boundary conditions are the only concern here). 

At the last data point in 1996, the Kalman filter gives an estimate o f the states o f 

PPM00,6 for the first data point in 1997. This estimate is, however, as mentioned 

above, a 9-month ahead forecast and is thus discarded. Instead, the trend and 

slope states recorded by the IRW model for 00 hrs are used as the estimates of

the trend, d00>6 (k0), and slope, d 006 (Ar0) ,  states in 0ppm (k0) , where k0 is the 1st
’ 00,6

point in 1997.
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5A.2.2 Tuning the Preliminary Parallel Models.

The PPM are tuned via selection of o 1, , o \  , a i  and <72 as explained in
i, j  ’ d j j  ’ Vi.j  *i , j  r

Section 3.3.2.4. Two methods are examined for tuning o f the PPMs; PED and 

SSD (Section 3.3.2.4).

Tuning via PED

The PED algorithm is implemented in the following steps:

1. The state vector is initialised by setting the trend component to the first value 

of the time series and all the other states to zero (Table 5.2 below),

Table 5.2. Initialisation values for the state vector using PED.

State Value
d  (0)i.i 7 (0)ij
d  (0)IJ

0

y /i . . ( 0 ) v ,  V s a . .(0) u u
0

2. <JX is set to one (for reasons given in Section 3.3.2.4). The other parameters 

of the PPM ’s, o l  and ol, , are free to vary in order to minimise the
"¡J di J  V‘,j  ’ j

log likelihood function, and

3. The log likelihood function to be minimised (Section 3.3.2.4) is:

log (1 ),j>,, (2 ) a2diJ, a], j  ,a j # y =

m g)l ° g 2 ^ - ^  J  log*?.j ( k ) - ~  ^  log^7 -7 7 7  (5-4>
^  k= m Q + \ ^  k=m Q +\ ^  y j  j  \  J

where y f J (k) is the estimated load for hour i in day-type j  on day k  and

a-, (k) is the estimated variance of y (. y. (k ) at day k. mg is the number of

data points in the transient in the covariance matrix o f state vectors (Section

3.3.2.1). mg is set to 20 (the choice o f 20 is explained below). Equation (5.4)
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is minimised by used o f the FMINSEARCH algorithm in Matlab which uses 

the Nelder Mead direct search algorithm (Box et. al., 1969).

Table 5.3 below shows the parameters calculated for the PPM for the 13 hrs late 

winter working day partitioned series.

Table 5.3. Parameters of PPMi3i# using PED.

Parameter Value
1

0.0590

a]d\ 3.6
3.43X10-4

<T2Y'13.6
2.79*10^

As <yju 6 is an order o f 2 greater than <7?j} g and <J2U 6 (Table 5.3) it can be seen

that this PPM allows the load estimates to vary mainly through the trend level 

state.

The forecasts produced by PPM ^e are shown in Figure 5.5 below, by way of 

example. As can be seen, the forecasts give a MAPE in the training set o f 2.25% 

and in the validation set 1.92%. The forecasts o f  this partitioned series in the first 

few days are quite poor. This is due to the transient in the covariance matrix of 

the state vector estimates, as mentioned in Section 3.3.2.1. Note that the training 

set MAPE o f 2.25% excludes the forecasts made within this transient.
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Figure 5.5. A plot of y u  6 (k ) and j)13 6 (k ) using PPM 13,6 trained with PED.

Figure 5.6 (note the different j^-axis scales) below, shows how the variance of the 

estimates, <7 ? (k ) , varies as the Kalman filter runs through the data. As can be

seen, after approximately 10 data points, the filter has locked on to the data. That 

is, the initial transient has subsided. In order to ensure that the transient has 

passed mg  is set to 20 for all the PPMs.
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1.6
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Day

Figure 5.6. A plot of <7? (k ) at each point in the data, note the y-axis has 3 different

scales (PPM trained using PED).
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The Sample Auto Correlation Function (SACF) (Section 3.3.1.4) o f the residuals,

x  (k), are shown in Figure 5.7 below. The confidence bounds represent the level
13,6

past which a lag is said to be statistically significant 95% of the time (Harvey, 

1989). Specifically, if  the absolute value o f the SACF at a certain lag is greater 

than the 95% confidence bounds, then the SACF at that lag is statistically 

different from zero. If the SACF is statistically different from zero, then a 

correlation exists between the residuals at that lag. As can be seen, the SACF is 

within the intervals at all lags, except at a lag o f 1 and 7. The SACF at a lag o f 7 

has a value o f -0.095 while the lower bound is -0.072. Thus the SACF at this lag 

is just beyond the lower bound and does not represent a strong correlation. 

Similarly, the correlation at a lag o f 1, although statistically significant, is not 

very strong with a value of only 1.6. Thus, the residuals are deemed to be 

sufficiently random to state that no linear autoregressive information remains in 

the residuals. Finally, the SACFs for other hours and day-types are similar.

-0.4

- 0.6

- 0.8

-1 -----------------------------------------------------------------------------
0 5 10 15 20

Lag

Figure 5.7. A plot of the SACF of x  (k) with 95% confidence intervals (PPM trained
13,6

using PED).
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Tuning via SSD.

1. The state vector is again initialised by setting the trend component to the first 

value o f the time series and all the other states to zero (Table 5.4 below),

SSD (Section 3.3.2.4) is implemented in the following steps:

Table 5.4. Initialisation values for the state vector with SSD.

State Value
d ..{  0) V 0)
V ° >

0

.(0)v>  Vs-1 (0) »U u
0

2. a* is set to one (as explained in Section 3.3.2.4).<rj_ is set to zero

(Section 3.3.2.4). a ]  is not calculated via the periodogram as suggested in

Section 3.3.2.4, as it may easily be specified as occurring at a frequency less 

than the yearly frequency. There are 53 load points per year in the late winter 

working day partitioned series for 13 hrs. The cut-off frequency,/50, (Section 

3.3.2.4) lies at a point lower than the corresponding yearly period. That is:

/ 50 < 1 /53 (5.5)

Taking /5 0  to be half the yearly frequency and substituting this value into 

Equation (3.67) gives:

a] = 1605(1/(53 x  2))4 = 1.25x1 O'5 (5.6)

The value o f a ]  may be calculated similarly for the other PPMs, noting thatai.j

the number o f data points per year varies depending on the day-type.

3. (Xy. is free to vary in order to minimise the log likelihood function, and

4. The log likelihood function to be minimised is (Section 3.3.2.4):

136



where the number o f data points in the transient in the covariance matrix 

o f state vectors (Section 3.3.2.1). This is again set to 20 (the choice o f 20 is 

explained below). Equation (5.7) is minimised by used o f the FMINSEARCH 

algorithm in Matlab which uses the Nelder Mead direct search algorithm (Box 

et. al., 1969).

Table 5.5 below shows the parameters calculated for PPM 13,6.

Table 5.5. Parameters of PPM i3i6 (trained using SSD).

Parameter Value
1

°rfl3,6 0

a X »
1.25x10°

.0044

This PPM allows the load estimates to vary mainly through the trend derivative 

state, as can be seen in the relative amplitudes o f 0^ and (jfm  6 (Table 5.5).

Similar component values were found for the other PPMs.

The forecasts produced by this PPM, for the 13 hrs late winter workings days 

partitioned series, are shown in Figure 5.8 below. The forecasts o f this 

partitioned series in the first few days are again quite poor, due to the transient in 

the covariance matrix o f the state vector estimates, as mentioned in Section
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Figure 5.8. A plot of y U6 (k ) and y n 6 (k) using PPM116 (trained with SSD).

Figure 5.9 (note the different j-axis scales) shows how the variance o f the 

estimates, <7? 3 6 (k ) ,  varies as the Kalman filter runs through the data. As can be

seen, after approximately 10 data points, the filter has locked on to the data, i.e. 

the initial transient has subsided. In order to ensure that the transient has passed, 

mei is set to 20 for all the PPMs.
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Figure 5.9. A plot of (k) at each point in the data, note the y-axis has 3 different

scales (Model trained using SSD).
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The SACF (Section 3.3.1.4) o f the residuals produced by PPMi3>6, x ^ k ) ,  using 

SSD, are shown in Figure 5.10 below. As can be seen, the SACF is very similar 

to the SACF of the residuals for the PPM trained with PED (Figure 5.7).

Figure 5.10. A plot of the SACF of * 116(£) with 95% confidence intervals (trained with
SSD).

A Com parison of PED and SSD.

Figure 5.11 shows the MAPE achieved by all the PPMs for late winter working 

day loads, tuned using PED and SSD. As can be seen, the results are very similar 

at all hours and the daily MAPE (i.e. the average MAPE over all hours of the 

day) is 2.79% for PED and 2.83% for SSD.

Hour o f  the day

Figure 5.11. A comparison of PED and SSD. (late winter working days, validation set)
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Tables 5.6 (validation set) and 5.7 (training set) show the daily MAPEs achieved 

using the two tuning algorithms for all day-types. As can be seen, PED is the 

superior tuning method for most day-types. However, the differences between 

the two tuning algorithms are insufficient to recommend one above the other. 

PED was chosen as the tuning algorithm.

Table 5.6. Daily MAPE for PPMs using different tuning algorithms (Validation set).

Day-type PED 
MAPE (%)

SSD 
MAPE (%)

Early winter Sundays 3.53 3.51
Summer Sundays 3.07 3.12
Late winter Sundays 2.57 2.57
Early winter working days 2.65 2.65
Summer working days 2.60 2.51
Late winter working davs 2.79 2.83
Early winter Saturdays 2.76 2.80
Summer Saturdays 2.20 2.27
Late winter Saturdays 2.54 2.54

Table 5.7. Daily MAPE for PPMs using different tuning algorithms (Training set).
Day-type PED 

MAPE (%)
SSD 

MAPE (%)
Early winter Sundays 3.58 3.58
Summer Sundays 3.99 4.02
Late winter Sundays 3.00 3.00
Early winter working days 2.98 2.99
Summer working days 3.05 2.88
Late winter working days 2.98 2.93
Early winter Saturdays 3.23 3.23
Summer Saturdays 2.95 3.01
Late winter Saturdays 2.86 2.85

140



5.4.2.3 Tuning the Preliminary Parallel Models Using Alternative Data 
Partitions.

In Section 4.2 ten different day-types were identified. In addition, the reasons for 

treating each o f these day-types with a separate model were explained. In order 

to test the validity o f those assumptions, two alternative partitions o f the data are 

modelled using a BSM:

Alternative partition 1: The entire data set with the exception o f Christmas days 

is partitioned by hour o f the day only, resulting in 24 partitioned series. As there 

are seven data points per week, the seasonal length used in the BSMs reflects 

the weekly seasonal length and is seven, and

Alternative partition 2: The entire data set with the exception o f Christmas days 

is partitioned by hour o f the day and in the following three categories:

• Sundays (including bank holidays),

• Saturdays, and

• working days.

This results in 24x3 alternative partitioned series. The seasonal lengths used in 

the BSMs, which model each alternative partitioned series, depend on the series 

in question. The working day series have a seasonal length of five to reflect the 

five working days per week (Monday-Friday) that are used. The Sunday and 

Saturday series have a season o f one to reflect that only one day per week is 

used.

Tables 5.8 and 5.9 compare the daily MAPEs achieved by the PPMs trained with 

the partitioned series and the alternative partitioned series. Although the 

alternative partitions do not use the day-type partitions, the daily MAPE for the 

forecasts made on the day-types is used to allow comparisons.

The PPMs trained using the first alternative partition have a poor performance 

compared to the other partitions (Tables 5.8 ,5.9). This implies that trying to 

model Sundays, Saturdays and working days together does not work well with 

BSMs.
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Table 5.8. D aily  M A P E  for PPMs using alternative data partitions (Validation set).

Day-type Alternative 
Partition 1 
MAPE (%)

Alternative 
Partition 2 
MAPE (%)

Original Day- 
type Partition 
MAPE (%)

Early winter Sundays 14.28 2.65 3.53
Summer Sundays 17.95 3.20 3.07
Late winter Sundays 15.81 3.21 2.57
Early winter working days 4.94 2.36 2.65
Summer working days 6.15 3.04 2.60
Late winter working days 5.29 2.94 2.79
Early winter Saturdays 5.11 2.19 2.76
Summer Saturdays 5.60 2.83 2.20
Late winter Saturdays 7.92 3.06 2.54

Table 5.9. Daily MAPE for PPMs using different data partitions (Training set).

Day-type Alternative Alternative Original Day-
Partition 1 Partition 2 type Partition
MAPE (%) MAPE (%) MAPE (%)

Early winter Sundays 16.69 2.95 3.58
Summer Sundays 19.93 3.91 3.99
Late winter Sundays 19.50 3.31 3.00
Early winter working days 5.31 2.87 2.98
Summer working days 6.75 3.29 3.05
Late winter working days 5.70 2.86 2.98
Early winter Saturdays 7.07 2.62 3.23
Summer Saturdays 7.00 3.37 2.95
Late winter Saturdays 9.10 3.07 2.86

The PPMs trained using the second alternative partition compare favourably to 

those trained with the day-type partition. In the validation set, a pattern emerges 

in which the second alternative partition appears to be superior for early winter 

day-types (Table 5.8). Table 5.10, below, shows the number of days in each day- 

type partition. As can be seen the early winter Sunday day-type has the lowest 

number of days of any Sunday day-type. Similarly, the early winter working day- 

type has the lowest number o f days for any working day day-type. The same 

situation applies with the early winter Saturday day-types. This would seem to 

suggest that the early winter day-types can be modelled better by the inclusion of 

days from the other day-types into the training set. This benefit o f including more
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data has outweighed the disadvantage that other day-types have a different load 

curve shape (Section 2.3.2).

Table 5.10. The number of clays per day-type (Christmas excluded).
Day-type Number o f days
1. Early winter Sundays 158
2. Summer Sundays 378
3. Late winter Sundays 164
4. Early winter working days 692
5. Summer working days 1382
6. Late winter working days 740
7. Early winter Saturdays 141
8. Summer Saturdays 284
9. Late winter Saturdays 150

In conclusion, the second alternative partition is superior for modelling early 

winter day-types and so is chosen as the PPM for these day-types (Table 5.11). It 

should be noted that in order to use this PPM the model must be applied to all the 

load data in the second alternative partition. However, only the forecasts for the 

early winter day-types are retained.

Table 5.11. Data partitimi used by each day-type.
Day-type Partition
Early winter Sundays 2
Summer Sundays Day-type
Late winter Sundays Day-type
Early winter working days 2
Summer working days Day-type
Late Winter working days Day-type
Early winter Saturdays 2
Summer Saturdays Day-type
Late winter Saturdays Day-type

5.4.3 De-Seasonalisation of Weather Inputs.

There is a high degree of correlation between weather and load (Section 4.2.2). 

As the residuals, x, (k ) ,  have had the trend and seasonal components of the load

extracted, this distorts the relationship between the weather variables and the 

residual. The seasonal component o f the weather is related to y/ (k), but not to

x i , (k ) and so cannot be used to forecast x, , (k ) .  Thus, the seasonal component
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in the weather variables must be removed. As pointed out by Harvey (1994) (in 

the general case), this may be achieved by filtering the causal variable with the 

same model used to produce the residual (Section 3.3.1.3). That is, the trend, 

dw. (k), and seasonal components, y/w. (ft), o f the weather variable, wLJ(k), areIJ hj

removed using a PPM with the same coefficients as the PPM that produced 

Xj j ( k ) . In this case, the autoregressive variable is Wjj{k), in place o f >>,•/&). This

results in a weather residual x wjJ(k) (Figure 5.12). The weather residuals

x w. j (k ) are also called thepre-whitened weather variables.

Actual weather variable w,- (k)

Trend and
PPM,V Seasonal component

dw..(k )+  y/w..{k)
O

Pre-whitened 
weather xw. . (k)

-------^  '•>

Figure 5.12. Pre-whitening a weather variable.

5.5 Input Selection.

Input selection forms perhaps the most important step in model building (Long 

et. al., 2000, Abraham and Ledholter, 1983 and Hocking, 1976). Inclusion of 

non-causal variables leads to poor model generalisation. Hocking (1976) 

specifically identified two difficulties in linear regression models which 

incorporate non-causal inputs:

1. The error variance of the estimates is equal to or higher than linear regression 

models that do not include the non-causal variables, and

2. The non-causal variable may lead to a bias in the forecasts.

In addition, reducing the dimensionality o f the inputs aids in model training 

(Long et. ah, 2000).
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Another factor in input selection is multi-colinearity. Multi-colinearity refers to 

inputs which share the same or similar information. A good example, given by 

Abraham and Ledolter (1983), is a model which uses the number o f miles 

travelled, x\(k), and the number o f kilometers travelled, x2 (k), at time k, as inputs. 

If the dependant variable is y(k), then a linear regression model relating y(k) to 

x\(K) and x2(k) m aybe expressed as:

y(k)  = axxx(k) + a2x 2(k) + e(k)  (5.8)

where a\ and a2 are the coefficients relating to x\(k) and x2(k), £(k) is an error 

term and k is the time. In matrix notation this may be expressed as:

y  = ax + e (5.9)

where y  is a vector of dependant variables, a  is a column vector o f coefficients, x  

is a matrix of the inputs called the design matrix and e  is vector o f error terms. 

The least squares solution to Equation (5.9) is

a =  [ jc t jc ]  1 jr (5.10)

As x\(k) and x2 (k) contain the same information, xTx  is not o f full rank and cannot 

be inverted. Even if  x\(k) and x2(k) contain similar information, [jc'jc]-1 will have 

a very small determinant and the variance o f a will thus be very high.

However, consider the situation in which both x\(k) and X2(k) have added 

uncorrelated measurement noises with equal variance. In this situation, a new 

input variable, xi(k), may be formed by pre-processing the inputs as:

„» x l(k) + x 2(k) /C11,
*3  (k) = —— —  (5-n )

The variance o f the measurement noise on x-i(k) is half that of x\(k) (McCabe, 

1991) and it is thus a better input than either x\(k) or X2(k). Thus, multi - 

collinearity can be advantageous if  dealt with properly.

The type o f weather input variables available are listed in Table 2.2 (Section

2.2.1). For the load at any given hour, the previous 72 hours o f weather are

considered as inputs. Thus, the variables that are considered are:

145



• t j j ( k ) ,  a vector of pre-whitened temperatures from hour i to hour i-12 on day k  

of day-type j,

•  h i j ( k ) ,  a vector of pre-whitened humidities from hour i to hour i-12 on day k  

of day-type j ,

• a vector o f pre-whitened wind speeds from hour i to hour i-72 on day k  

of day-type j,

• O j / k ) ,  a vector o f pre-whitened wind directions from hour i to hour i-12 on 

day k  of day-type j .  As the wind direction is a circular measurement, i.e. 0° is 

equiavalent to 360° the cosine and sine o f this variable is used, and

• C i / k ) ,  a vector o f pre-whitened cloud covers from hour i to hour i-12 on day k  

of day-type j .

The set o f all possible inputs [ t i / k )  h i j ( k ) q i j ( k )  cos( o i j ( k ) )  sin( o j k ) )  C i / k ) ]  

contains 6x72 (432) inputs which, in many cases, is larger than the number of 

days in a partitioned series (Table 5.10). This means that not all o f the inputs can 

be used in a linear regression model, as the coefficients cannot be estimated. For 

this reason, it is necessary to reduce the number o f inputs, prior to any pre­

processing.

The input selection procedure is performed in two stages:

1. Input reduction in order to reduce the number o f inputs to a number less than 

the number of days in the partitioned series (Section 5.5.1), and

2. Input pre-processing and selection in order to take advantage of multi­

colinearity and choose the optimal number o f inputs (Section 5.5.2).
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5.5.1 Input Reduction.

There are many methods that can be used to determine which inputs to retain and 

which to eliminate. A survey o f methods is given by Hocking (1976) and with 

some exceptions (Castellano and Fanelli, 2000), these methods are still in 

common use today. Ideally, load forecasting models with all possible 

combinations o f the reduced inputs should be constructed and the best selected. 

However, this is not possible, as the number o f possible combinations o f 432 

inputs choosing 80 at a time is too large to implement, even with the simplest 

model.

The procedure used in the current research is called stepwise regression. 

Stepwise regression falls into 2 classes; forward selection and backward 

elimination (Abraham and Ledolter, 1983).

In forward selection, the response variable (output) is first estimated using the 

causal variables individually. For example, i f  there are 432 inputs this results in 

432 models each with one input variable and 432 sets o f response variable 

estimates. The causal variable that leads to the "best" model (the definition o f 

best is discussed below) is then retained. The next step then uses the retained 

variable paired with all the un-retained variables individually. Using the example 

quoted above, this would lead to 431 models with two inputs and 431 sets o f 

response variable estimates (as the retained variable is not paired with itself). The 

"best" pair o f variables are then retained and this process then continues until the 

required number o f input variables has been chosen or some stopping condition 

has been met. There are several types o f forward selection algorithms which 

differ in their definition o f the "best" model. The most popular measure o f “best” 

estimate is the F-statistic o f the model errors (Abraham and Ledolter, 1983 and 

Roecker, 1991). This has several problems, as shown by Grechanovsky and 

Pinsker (1995). Other measures, such as the mean squared error o f the model 

forecasts on a validation set, have been proposed and found to work well 

(Roecker, 1991). It should be noted that forward selection is not guaranteed to 

give an optimal set o f inputs. However, as stated by Hocking (1976), many sets
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of inputs often exist which are close to optimal and forward selection usually 

finds one of these sets.

Backward elimination is the reverse o f forward selection; a model with all the 

inputs is first trained and then the "worst" input is removed from the model at 

each iteration. As mentioned above, the number o f inputs exceeds the number of 

data points in many partitioned series, and so calculating the coefficients o f a 

model with all the inputs (i.e. step 1) is not possible. Thus, backward elimination 

cannot be considered as an option here and forward selection is used.

In the current research, forward selection is required, not to determine the 

optimal inputs, but rather to reduce the number o f inputs to a level were input 

selection (Section 5.5.2) can be used. The number of inputs to be retained is set 

at 80. This number is considered sufficiently large to retain all the important 

inputs, while allowing a large degree o f freedom in the data.

For input selection, a linear Regression Model (RM) (Harvey, 1994), which is 

computationally inexpensive, is used. Though this model is not representative of 

the full complexity o f the system, it is more than sufficient to determine the 

relative importance of the inputs. The RM model for hour i on day-type j  with n 

inputs, RM„ V, has the form:

xi j ( k) = au j ui,ij(k ) + a2j ju2jj  (k) + -  + an,ju„jj(k)  + e i j ( k ) ( 5 -1 2 )

where xij(k) is the residual to be forecast for hour i on day-type j  at day k , uaj is 

the Ith input for RM,W, auj is the coefficient applied to that input (calculated by 

least squares) and n is the number o f inputs retained which increases by one at 

each step in the forward selection procedure (as mentioned above).

For each RM the sum squared error of the forecasts in the validation set is used 

as the indicator o f the "best" model. Table 5.12 shows the delays in each o f the 

input variables which were retained for the late winter working days, 13 hrs 

partitioned series.
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Table 5.12. Delays in input variables retained (late winter working days, 13 hrs partitioned 
_____________________________________series)"7*._____________________________________

Variable Retained delays.
Temperature 2, 3, 4, 15, 19, 20, 23, 42, 44, 45, 46, 48, 49
Humidity 0, 1, 6, 7, 8, 9, 10, 11, 12, 24, 25, 26, 27, 29, 32, 33, 34, 37, 40, 42, 

43,44
Cloud Cover 1 ,3 ,4 , 8 ,9, 14, 15, 16, 18
Wind speed 1, 5, 6, 7, 8, 11, 12, 13, 14, 15, 19, 21, 23
Cos(wind direction) 2 ,3 ,7 , 12, 14, 15, 16, 17, 19, 20,21
Sin(wind direction) 3 ,4 , 6, 7, 8, 11, 15, 16, 17, 19,21,23

These results need to be interpreted carefully. The fact that more humidity 

variables are retained does not necessarily mean that humidity is a more 

important weather variable than temperature. Rather, the temperature at one hour 

may be highly correlated to the temperature at other hours and so only a few 

temperatures are required to include all the temperature information. What is 

significant is that only one variable from a delay greater than 2 days is chosen 

(the temperature with a delay of 49 hours). This implies that only the previous 2 

days of weather have a significant effect on the load.

5.5.2 Input Pre-Processing and Selection.

At this point there are 80 variables in the set o f reduced inputs. The purpose of 

input pre-processing is to retain the optimal number of inputs as opposed to input 

reduction which seeks to reduce the number o f inputs to a manageable size. In 

addition, multi-colinearity in the reduced input sets is used to advantage. The 

ideal approach would be to construct load forecasting models with all possible

combinations of the reduced inputs and select the best. This is not possible, as the
• • • 118 • number of possible combinations of the inputs (80! = 7.1x10'' ) is too large to

implement even with the simplest model.

Thus, the same form of linear regression model is utilised as that in Equation 

5.12. However, for input pre-processing and selection, the inputs, uuj, are 

selected from the reduced inputs in different ways and may represent the reduced 

inputs after pre-processing (details are given in Sections 5.5.2.1 to 5.5.2.4).

% Note that the current hour has a delay o f 0; a delay o f 1 implies that the variable at 12 hrs (i.e.
13 hrs -1) on the current day is retained etc.
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In order to allow a statistical evaluation o f the different input selections a 

bootstrapping technique (van Giersbergen and Kiviet, 2002) is used. 

Bootstrapping refers to the use o f alternate parts of the data set as training and 

validation sets (as mentioned in Section 2.2). In this case, eight bootstraps are 

constructed, where the validation set occupies a different range for each set 

(Figure 5.13, Table 5.13).

Table 5.13. Segmentation of data set for input selection (late winter working days, 13 hrs

Set Training Validation
Range Variable Variable
Size (Days) 624 78

Bootstrap
number

Division o f training and validation sets. 
(V=validation T=Training)

1 V T

2 T V T

3 T V T
111

■ 1 1 1 1 1 1 1 1 1 1 1

8 T V

Figure 5.13. Selection of training and validation sets for input selection.

Four methods are now evaluated for input selection.

5.5.2.1 Method 1

Method 1 performs input selection using the following algorithm:

For all inputs:

Train a linear regression model.

Calculate the T-ratio (Kazmier and Pohl, 1987) of all the 

coefficients. This is the ratio of the variance of a^-to the amplitude 

of a,,,,/. A high T-ratio for aiiU implies that uUtj is of little use in 

forecasting xu.

* Note that the days for 1999 and 2000 are excluded as they are part of the test set which is only 
used after models have been trained and validated.
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Order the inputs with increasing value of T-ratio.

For number of inputs NINP = 1 to 80:

Select the first NINP inputs.

Train a linear regression model for these inputs, for each  

training bootstrap (see  Table 5.13 and Figure 5.13).

Calculate each of the Minimum Absolute Errors (MAEs)*, on 

each of the bootstrap validation sets.

Next NINP

In summary, the technique uses the T-Ratio to order the inputs so that 80 

combinations of the inputs can be evaluated (Figure 5.14).

Figure 5.14. A block diagram of Method 1 for input selection for hour i day-type j  model.

* Although the Mean Absolute Percentage Error (MAPE) is the preferred error measure in the 
field of short-term electrical load forecasting, the data trend changes over time and thus so does 
the MAPE. This means that the MAPE cannot be used as an error measurement in a bootstrap.
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5.5.2.2 M ethod 2

One disadvantage o f Method 1 is that it is susceptible to colinearity in the inputs 

(Rencher, 1995). If two inputs are highly correlated, then the likelihood is that 

neither variable will attain the same significance. This, in turn, can mistakenly 

push these inputs down the priority list. One means o f reducing the colinearity in 

the input data is to use Principal Component Analysis (PCA) (Rencher, 1995).

PCA is a technique used for input dimension reduction (Moral and Valderamma, 

1997). Consider, for example, the case where just two highly correlated input 

variables are available, u\(t) and U2(t) (Figure 5.15). PCA transforms these 

variables into a set o f orthogonal variables u'\(t) and 1/ 2(0 , such that each 

variable represents the coefficient along a basis vector in characteristic directions 

of the original data set (Rencher, 1995) (Figure 5.15). Thus, the transformed 

variables are not colinear.

Additionally, the transformed variables (u\(t) and 1/ 2 ( 0  in this example), or 

components, are ordered in descending order o f variance explained in the original 

data set (errand in Figure 5.15), with the first component containing the

highest amount of information (Rencher, 1995). As can be seen from Figure 

5.15,1/ 2 ( 0  accounts for very little information and could be discarded.

u2
Figure 5.15. An example of two variables transformed using PCA.
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Method 2 performs input selection using the following algorithm:

For all inputs:

Transform the inputs using PCA.

Order the transformed components in descending order of 

variance explained.

For number of components NCOMP = 1 to 80 

Select first NCOMP components.

Train a linear regression model for these components, for each 

training bootstrap (see Table 5.13 and Figure 5.13).

Calculate each of the Minimum Absolute Errors (MAEs), on 

each of the bootstrap validation sets.

Next NCOMP

Figure 5.16 below gives an overview o f Method 2.

All reduced inputs

Figure 5.16. A block diagram of Method 2 for input selection for hour i, day-type j , model.
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5.S.2.3 Method 3

One difficulty in Method 2 is that components are ordered by variance explained 

in the input data, which may not reflect the significance of these inputs with 

respect to the output data. For example, the first component may have the highest 

level of variance explained with respect to the input data, whilst still having no 

correlation with the output data. Method 3 attempts to circumvent this problem 

by removing the inputs least correlated with the output prior to transformation 

with PCA using the following algorithm:

For all inputs:

Train a linear regression model.

Calculate the T-ratio (Kazmier and Pohl, 1987) of all the

coefficients.

Choose the inputs with the lowest 50 T-ratio scores.

Transform the inputs using PCA.

Order the transformed components in descending order of

variance explained.

For number of inputs NCOMP = 1 to 50:

Select first NCOMP components.

Train a linear regression model for these components, for each 

training bootstrap (see  Table 5.13 and Figure 5.13).

Calculate each of the Minimum Absolute Errors (MAE’s), on 

each of the bootstrap validation sets.

Next NCOMP 

Figure 5.17 below gives an overview o f Method 3.
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Figure 5.17. A block diagram of Method 3 for input selection for hour i, day-tpye j ,  model.

5.5.2.4 M ethod 4

Method 4 is similar to Method 3 in that a combination o f PCA and multiple 

regression models is used. However, the order o f application is reversed and the 

transformed components are ordered exclusively using the T-ratio scores, so that 

the correlation between the components and the output is emphasised, rather than 

the variance explained in the input. Method 4 performs input selection using the 

following algorithm:

For all inputs:

Transform the inputs using PCA.

Train a linear regression model with the transformed 

components.

Calculate the T-ratio (Kazmier and Pohl, 1987) of all the 

coefficients.

Order the transformed components with increasing value of T- 

ratio.

For number of inputs NCOMP = 1 to 80:
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Select first NCOMP components.

Train a linear regression model for these components, for each 

training bootstrap (see Table 5.13 and Figure 5.13).

Calculate each of the Minimum Absolute Errors (MAEs), on 

each of the bootstrap validation sets.

Next NCOMP

Figure 5.18 below gives an overview o f Method 4.

Figure 5.18. A block diagram of method 4 for input selection for hour i, day-type j ,  model. 

5.5.2.5 A Com parison of M ethods 1-4.

For each method and each hour o f the day, the optimum selection o f inputs 

(Method 1) or components (Methods 2-4) is that which gives the minimum MAE 

in the validation set (Figure 5.19). Plots o f the MAE as a function o f the number 

o f inputs used (or components used in the case o f Methods 2-4) are shown in 

Figure's 5.19 to 5.22 below, for the four methods.
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Figure 5.19. Bootstrapped MAE for Method 1 (late winter working days, 13 hrs partitioned

series).
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Figure 5.20. Bootstrapped MAE for Method 2 (late winter working days, 13 hrs partitioned
series).
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Figure 5.21. Bootstrapped MAE for Method 3 (late winter working days, 13 hrs partitioned
series).
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Figure 5.22. Bootstrapped MAE for Method 4 (late winter working days, 13 hrs partitioned
series).

As can be seen from Figures 5.19 to 5.22 there is good agreement between the 

MAEs for the training and validation sets, although the standard deviations o f the 

MAEs in the validation sets is larger. This is expected, as the validation set is not
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used in training. However, as the number o f inputs or components used 

increases, the MAE in the validation set starts to deviate from the MAE in the 

training set. An example o f this may be shown by extending the number of 

components plotted to 50 (Figure 5.23). The deviation occurs as complexity of 

the model increases past the complexity of the data (this concept is discussed in 

Section 3.3.1.4).

Number of Coefficients used 
Figure 5.23. Bootstrapped MAE for Method 2 (late winter working days, 13 hrs partitioned

series).

Table 5.14 (next page) shows the minimum MAE in the validation set and the 

corresponding number o f components for each method. As can be seen, Method 

2 has the lowest MAE at 0.0112 with 50 components. However, Method 3 has an 

MAE o f 0.0114 and uses only 17 components. Closer inspection o f Figure 5.20 

shows that with 8 components, the MAE for Method 2 is 0.0115. Thus the 

improvement in Method 2 by the inclusion o f the last 42 inputs is not significant. 

Subjectively, therefore; applying Method 2 and using 8 components would seem 

to be the best choice for input selection.
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Table 5.14. Minimum MAE, corresponding number of components and standard deviations 
(normalised, late winter working days, 13 hrs partitioned series).

Method MAE Number of 
components

Standard
deviation

1 0.0115 46 0.0020
2 0.0112 50 0.0022
3 0.0114 17 0.0019
4 0.0125 48 0.0016

An objective measure o f the performance o f a model which penalises the 

complexity o f  the model is the AIC criterion (discussed in Section 3.3.1.4). The 

AIC for each method, as a function o f the number o f components, is shown in 

Figure 5.24 below. As can be seen, the intuitive selection of Method 2 (with 8 

components) made above yields the minimum AIC .

Number o f components used 
Figure 5.24. AIC for Methods 1 to 4 (late winter working days, 13 hrs partitioned series).

The optimum method and number o f components, as selected by the AIC, for 

each hour of the day in the late winter working day day-type are tabulated in 

Table 5.15 below.
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Table 5.15. Optimum method for input selection and associated statistics (AIC, MAE and 
standard deviation of MAE have been normalised, late winter working days, validation 

______________________________________ set)._______________________________________
Hour of 
the day

Method AIC (xlO-5) Number of  
components

MAE Standard deviation 
of MAE

00:00 2 0.3378 3 0.0188 0.0034
01:00 2 0.2328 7 0.0156 0.0029
02:00 2 0.2204 1 0.0152 0.0026
03:00 2 0.2130 9 0.0150 0.0024
04:00 2 0.2035 1 0.0146 0.0024
05:00 2 0.2030 7 0.0146 0.0028
06:00 2 0.1786 2 0.0136 0.0023
07:00 2 0.1902 7 0.0140 0.0020
08:00 2 0.2070 2 0.0147 0.0013
09:00 2 0.1485 7 0.0121 0.0011
10:00 2 0.1421 15 0.0115 0.0016
11:00 2 0.1434 9 0.0115 0.0013
12:00 2 0.1658 7 0.0126 0.0014
13:00 2 0.1428 8 0.0115 0.0014
14:00 2 0.1503 8 0.0119 0.0013
15:00 2 0.1713 17 0.0123 0.0020
16:00 2 0.2931 19 0.0175 0.0026
17:00 2 0.3691 15 0.0197 0.0037
18:00 2 0.2107 7 0.0145 0.0029
19:00 2 0.1262 7 0.0110 0.0023
20:00 2 0.1441 7 0.0123 0.0026
21:00 2 0.1257 6 0.0113 0.0018
22:00 2 0.1605 6 0.0130 0.0021
23:00 2 0.0906 10 0.0092 0.0013

As can be seen, Method 2 performs the best in all cases and the number of 

components chosen ranges from 1 to 19. The average number o f components 

used is 7.79, while the mode is 10. The histogram o f the optimum number o f 

components for all hours in the late winter working day day-type is shown in 

Figure 5.25 below and shows that 7 to 8 components appears to be the most 

popular choice. However, the conclusion here is that the optimum number o f 

components is hour o f the day dependent and does not follow any discernible 

pattern.
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Figure 5.25. A histogram of the number of components chosen by Method 2 over all hours
of the day (late winter working days).

5.6 Linear Modelling of Partitioned Series.
This section examines linear modelling o f the partitioned series. Section 5.5 used 

linear models to determine the best inputs and these linear models are used to 

form the linear parallel models. However, while the same linear model structure 

is used in this section, the models are no longer trained using the bootstrapped 

data sets used in Section 5.5. An overview of the linear parallel models is shown 

in Figure 5.26 below. Figure 5.26 can also be viewed as a summary of the best 

preliminary models and input selection techniques selected in Sections 5.4 and
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Pre-whilened

Figure 5.26* Linear parallel model overview

The modelling process may be split into 4 stages:

1. Input Selection and Pre-processing (Section 5.6.1),

2. Structure Determination (Section 5.6.2),

3. Parameter Evaluation (Section 5.6.3), and

4. Model Validation (Section 5.6.4).

Although stages 1-3 have been covered in previous sections they are summarised 

here for clarity and to allow easy comparison with the non-linear parallel models 

(Section 5.7).
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5.6.1 Input Selection and Pre-Processing.

The inputs and pre-processing are discussed in Section 5.5.

5.6.2 Structure Determination.

The structure o f the PPMs has been discussed in Section 5.4 while the structure 

of the RMs is determined uniquely by the number o f inputs as discussed in 

Section 5.5.

5.6.3 Parameter Evaluation.

The parameters o f the PPMs are discussed in Section 5.4. The RMs are trained 

using least squares. The data set is divided into a training set a validation set and 

a novelty set as explained in Section 2.2 (Table 2.3, recreated below in Table 

5.16)

Table 5.16. Division of data set.

Set Training Validation Novelty
Range 1987-1996 1997-1998 1999-2000

5.6.4 Model Validation.

The coefficients applied to the eight components in the RM applied to the

13:00hrs late winter working day partitioned series are shown in Table 5.17
1_i_

below. As can be seen each input has a high T-ratio except for the 5'" input which 

may not be required. The sum of the variance explained in the reduced input set 

by the eight components is 52% and so approximately half the information in the 

set of reduced inputs has not been used in this model.

Table 5.17. Coefficients applied to the components, the T-ratio of the co-efficients and the 
% of variance explained in the reduced input set by that component.

Component 1 2 3 4 5 6 7 8
Coefficient -3.42 4.41 4.64 11.5 -0.74 -10.25 -5.35 -1.35
% Variance Explained 13.5 9.89 8.99 5.70 4.64 4.01 3.17 2.86
T-ratio 4.34 4.84 4.86 9.59 0.54 7.31 3.22 2.45
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The Ljung-Box test statistic for the errors in the validation set is 0.017 (Equation 

3.36). The number o f points in the validation set for the 13:00hrs late winter 

working day is 104 and so the critical level with a 95% confidence level

is 2 '25(Vl04 -  8 = 2) = 5.991. As the test statistic is less than the critical level this

model is deemed to have been validated.

The SACF of the errors in the validation set are shown in Figure 5.27 below. As 

can be seen, the SACF at a lag o f 5 is statistically different from zero. However, 

the SACF at this lag is -.23 and is not a strong correlation.

----- SACF
---- +/- 95% Conf. Int.

* Inside bounds
1 O Outside bounds

- 0.6

- 0.8

-1
0 5 10 15 20 25

Lag

Figure 5.27. The SACF for the errors in the linear parallel model for 13 hrs late winter
working day partitioned series.

The MAPE for all hours o f the day in the late winter working day-type is shown 

in Figure 5.28 on the next page (novelty set). As can be seen there is an 

improvement o f 0.4% in the forecast by inclusion of the weather variables.
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Figure 5.28. The SACF for the errors in the linear parallel model for the 13 hrs late winter 
working day partitioned series (Novelty Set).

Table 5.18, below, shows the average daily MAPE for all da>-types in the 

Novelty set for both the PPM and Linear Parallel models.

Tabic 5.18. Daily average MAPE for Linear Parallel models and PPMs (Christmas days 
_____________________________ excluded, novelty set).______________ ______________
Day-type MAPE 

PPM's (%)
MAPE Linear 

Parallel Models 
(%)

Improvement
(%)

1. Early winter Sundays 2.75 2.70 0.04

2. Summer Sundays 3.22 3.14 0.08

3. Late winter Sundays 2.78 2.75 0.02

4. Early winter Working days 2.36 2.25 0.10

5. Summer working days 3.04 2.99 0.05

6. Late winter working days 2.94 2.55 0.38

7. Early winter Saturdays 2.19 2.20 -0.01

8. Summer Saturdays 2.83 2.81 0.01

9. Late winter Saturdays 3.06 2.86 0.20
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5.7 Non-Linear Modelling of Partitioned Series.

This section examines non-linear modelling o f the partitioned series. Non-linear 

models have been found to provide excellent results in Short Term Load 

Forecasting (STLF), as discussed in Section 3.4. An overview o f the non-linear 

parallel models is shown in Figure 5.29, below. In contrast to the linear parallel 

models (Figure 5.26), the linear Regression Models (RM) are replaced with 

Neural Networks (NN) and several additional inputs are considered. The 

motivations for using neural networks and including additional inputs are 

discussed in Sections 5.7.1 and 5.7.2, respectively. Similar to the linear parallel 

models, the modelling process is again split into 4 stages:

1. Input Selection and Pre-processing (Section 5.7.2),

2. Structure Determination (Section 5.7.3),

3. Parameter Evaluation (Section 5.7.4), and

4. Model Validation (Section 5.7.5).

Pre-whitened

Figure 5.29. Non-linear parallel model overview
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5.7.1 Choice of Non-Linear Model.

In Section 3.4 several non-linear modelling techniques are reviewed:

1. Volterra models (Section 3.4.1),

2. Wiener models (Section 3.4.1.1),

3. Hammerstein models (Section 3.4.1.2),

4. Fuzzy logic models (Section 3.4.2.1),

5. Radial Basis Function (RBF) neural networks (Section 3.4.2.2),

6. Feed forward neural networks (Section 3.4.3.1), and

7. Recurrent neural networks (Section 3.4.3.2).

The Wiener model and the Hammerstein model are based on the Volterra model. 

As pointed out in Section 3.4.1, calculating the Volterra kernels in a Volterra 

model can be difficult and in addition, they may not converge (Section 3.4.1). 

Thus a parametric non-linear technique (i.e. techniques one to three above) is not 

considered.

The fuzzy logic and RBF models suffer from "the curse o f dimensionality" as 

mentioned in Sections 3.4.2, 3.4.2.1 and 3.4.2. Specifically, Mitchell (1992) 

notes that the use o f RBF networks is impractical for more than six inputs. As the 

optimum number o f input variables (for forecasting the load residuals in the 

current research) determined in Section 5.5 exceeds six in many cases, RBF 

networks and fuzzy logic techniques are eliminated from the choice o f non-linear 

modelling technique.

In choosing between the two remaining techniques (feed forward neural 

networks and recurrent neural networks) the following factors must be 

considered:

1. The partitioning of the data has produced partitioned sets which vary in size 

from 141 to 1382 (Table 5.10),

2. The residual to be modelled (produced by the PPM) is stationary, and
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3. There are 216 partitioned series (24 partitioned series per day-type and nine 

day-types) and thus 216 non-linear parallel models are required. This is a 

large number o f models and thus the computational expense o f the non-linear 

modelling technique must be considered.

With regard to the first point above, the number o f data points in each partitioned 

series cannot be considered abundant. While both a recurrent neural network and 

a feed forward neural network would require large data sets for training, 

recurrent neural networks generally require larger data sets than feed forward 

neural networks (Section 3.4.3.2).

A recurrent neural network has the ability to model non-stationary time-series. 

However the second point above means that this ability is not required by the 

non-linear technique to be chosen. This is a disadvantage for reasons explained 

in Section 3.4.3.2.

With respect to point three above, recurrent neural networks generally require 

more computation time than feed forward neural networks (Section 3.4.3.2).

Thus the feed forward neural network appears to be the best choice o f non-linear 

modelling technique in this case, and so is chosen. Although a feed forward 

neural network is computationally less expensive than a recurrent neural 

network, it is still quite time consuming to train. Thus there are restrictions on the 

number o f variations in the non-linear parallel models that can be attempted.

5.7.2 Input Selection and Pre-Processing.

Ideally, neural networks with all possible combinations o f the weather inputs 

should be constructed and the best selected. However, this is not possible, as the 

computational expense o f a neural network prohibits more than a few 

combinations being tested. However, the input selection techniques used in 

Section 5.5 identified the optimum number o f weather components for a linear
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parallel model. Though this analysis is not representative o f the full complexity 

of the system (specifically non-linear effects), it is more than sufficient to 

determine the relative importance o f the weather inputs. To summarise the 

selection input procedure used in Section 5.5, the pre-whitened weather inputs 

are reduced to 80 inputs, transformed using PCA and this produces 80 pre­

whitened weather components. The components are then ordered by variance 

explained.

The computational expense o f training 216 neural networks will be seen in the 

next section (Section 5.7.3) to constrict the structure o f the neural networks in 

the non-linear parallel models to be the same. This in turn requires that the 

number o f pre-whitened weather component inputs for each neural network is the 

same. From Figure 5.25 the most popular number o f pre-whitened weather 

components used as inputs is 7-8. Thus the number o f pre-whitened weather 

components used in each non-linear model is thus chosen to be seven.

In addition to the pre-whitened weather components, the following additional 

inputs are considered:

1. Auto-regressive inputs (i.e. previous residuals). As mentioned in Section 3.4, 

there is evidence to show that a non-linear auto-regressive relationship exists 

in load data in other utilities. As there is no linear auto-regressive 

information left in the data, there is no way o f choosing which auto­

regressive residuals to include. The input reduction procedure used with the 

weather variables suggests however, that only the previous two days of 

weather variables are significant (Section 5.5.1). By extension, it is assumed 

that the previous two days of residuals are significant and so these are used as 

additional inputs,

2. Temperature at the hour to be forecast%. In Section 4.2.2 it was shown that 

the temperature-load sensitivity in April and May is significantly different 

than in the period June-September. This means that the relationship between

% This should not be confused with pre-whitened temperature.
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load and temperature is dependant on the level o f  the temperature during 

summer (and possibly other periods of the year). As the pre-whitened 

temperatures contain information regarding the change of temperature, as 

opposed to the level o f the temperature, they are o f  no use in this case. Thus 

the temperature at the hour to be forecast is included as operating point 

information, and

3. A schedule variable. A plot of the residual for the 00 hrs late winter working 

day day-type, x 00 6 (k),  versus the 1st pre-whitened weather component is

shown in Figure 5.30 below. As can be seen there appear to be two clusters 

of data. The second cluster o f data was identified as occurring on Mondays. 

Specifically, the effect is more pronounced during the morning and evening 

hours.

0.08 

0.06 

0.04 

0.02 

0

„ -0.02
><

-0.04 

-0.06 

-0.08 

- 0.1 

- 0.12
-10 -8  -6  -4 -2 0 2 4 6 8  10

Pre-whitened weather component 1.

Figure 5.30. A plot o f the residual versus the 1st pre-whitened weather variable showing two 
clusters of data. (00 hrs Late Winter Working Day day-type).

This implies that the relationship between the residual and the pre-whitened 

weather inputs is different on Mondays. To provide this information to the 

non-linear parallel models, a scheduling variable is provided for the working 

day day-types (as this effect is not present in the weekend day-types). This 

variable has a value o f 1 for Mondays and a value o f 0 elsewhere.
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Several types o f non-linear parallel models are trained, each differing by the 

types o f inputs they use. In order to distinguish between these models, they are 

given the names shown in Table 5.19, below, where i j  denotes the model for 

hour i on day-type j .

Table 5.19. Non-linear parallel model naming convention.
Model Name Inputs used.
NNj / 7 Pre-whitened weather components.

NNAR,-./ 7 Pre-whitened weather components, 1) x,j(k-2)
NNART/j 7 Pre-whitened weather components, x,j(k-\) xw{k-2), T ^ k)

NNS/j 7 Pre-whitened weather components, Scheduling variable.

NNARS/., 7 Pre-whitened weather components, X j/k -1) xL,(k-2) , Scheduling variable.

NNARTS/j 7 Pre-whitened weather components, x ,/k - \)  x,j(k-2), T¡¿(k), Scheduling
variable.

5.7.3 Structure Determination.

Determining the structure o f a neural network may be broken down into 3 stages:

1. The number of hidden layers and the activation functions must be chosen 

(Section 5.7.3.1),

2. The training algorithm must be chosen (Section 5.7.3.2), and

3. The number o f nodes in each layer must be determined (Section 5.7.3.3).

5.7.3.1 Choice of network architecture.

The number o f layers used in the field o f STLF was reviewed in Section 3.4.3.1. 

As three hidden layers are seldom used (Section 3.4.3.1), the choice lies between 

a single hidden layer or two hidden layers. The latter is chosen as Lee et. al. 

(1992) found that two hidden layers gave better performance for STLF (Section

3.4.3.1).

The activation functions chosen are tan sigmoidal for the hidden layers, and 

linear for the output layers, as they are the most common activation functions 

used in feed forward neural networks applied to STLF (Section 3.4.3.1). The 

input data is normalised between ± 1 so that the tan sigmoid activation functions 

are not driven into saturation (Chihocki and Unbehauen,1993), with a resulting

* This is the neural network for hour i on day-type j .
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speed up in training, since the high gain (gradient) o f the neuron characteristic is 

used.

5.7.3.2 Choice of Training Algorithm.

The training algorithm used is the back propagation algorithm, as a genetic 

algorithm is too slow to converge (Section 3.4.3.1). Ten neural networks were 

trained for each topology, with random initial weights to assist in achieving a 

global (or at least a good local) minimum (Section 3.4.3.1).

Each model is trained using early stopping (Haykin, 1999), in which training 

ceases when the sum squared error of predictions in the validation set reaches a 

minimum (an example is shown in Figure 5.31, Section 5.7.3.3). If a minimum is 

not found, the training stops after ten thousand epochs. Cessation o f training at 

the validation set minimum prevents over-training of the neural network 

(Haykin, 1999) and assists, in conjunction with topology determination and input 

selection, in achieving a parsimonious network.

5.7.3.3 Network Topology Determination.

In order to determine the correct topology, 49 neural network architectures were 

examined, using 1-7 nodes in both the first and second hidden layers, 

respectively. To perform this for each partitioned series would require training 

105,840 (49 architectures x24 hours/day x9 day-types xlO) neural networks, 

which is too computationally expensive. Thus the network topologies are refined 

for the 13 hrs and 07 hrs late winter working day partitioned series (as 

representative models) and applied to the others. In addition the NNART and 

NNARTS models network topologies are refined for the 13 hrs and 07 hrs 

summer working day partitioned series (as representative models) and applied to 

the others. This is because the operating point input (i.e. the temperature) in these 

models (Section 5.7.2) is included, as is thought to be especially relevant in 

modelling the load during summer months (Section 4.2.2). Table 5.20 (next 

page) shows the results for the model NNo7,6*.

* (i.e. the 07 hrs Late Winter Working Day partitioned series)
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Table 5.20 M A P E s for N N 07j6 using differing numbers of nodes in hidden layers. (M A P E  trn,val and nov are the M A P Es in the training, validation and novelty sets
respectively.)
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Nodi» :

1 2 3 4 5 7

Layer 1 
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Majx:
Val

Mapc
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Index Mapc
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Val
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Val
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Mapc
Nvjv

Index Mop«
frn

M*rr
VjV

Mar*
ÎNOV

Imla Mupc
Trn

Mapc
Val

Mapc
Nu»

Inde*

1 3.45 2.94 336 9982 3.44 2 94 3.38 5629 3 45 195 3.3« 9967 3.43 3.00 3.44 4595 3.58 3.1 ï 3.6(1 9976 3.70 3.23 3.65 2196 3.51 3.00 3.52 9997
3.44 2.94 .3.36 9556 3.43 2,94 3.36 4730 '44 2.95 3.36 7364 3.44 2.96 3.38 4409 3.44 3.00 3.51 2338 3.70 3.23 3.65 6993 3.47 2.96 3.38 9989

3 3.44 2.94 .1.37 1487 3.43 2.94 3.36 WIK 3.45 2.94 3.38 9993 3.45 2.95 3.38 9997 3.42 2.97 3.42 981 3.70 3.23 3.65 5549 3.44 2.95 3.37 9939
4 3.43 2.93 3.36 9696 3.44 2,94 3.35 3712 3 44 194 -1.38 9968 3.43 2 95 3.38 3067 3.43 2.97 3.40 8826 3.64 3.18 3.64 3486 3.44 2.94 3.38 761
« 3.43 2.93 3.36 9977 3.43 2.93 .3.36 MIS 3 44 2.94 3.36 3476 3.44 2.94 3.36 6325 3.42 2.97 3.43 1485 3.47 2.98 3.41 2613 3.43 2.94 3.36 5368
« 3.44 2.93 3,35 3755 3.43 2,93 3.36 9SOX .1.44 2.94 3.36 9924 3.45 2.94 3.40 2782 3.44 2.95 3,36 9822 3.49 2.97 3.39 3461 3.44 2.94 336 9872
7 3.43 2.9} 3.36 9868 3.43 191 3.36 1627 1.44 294 JJ7 9968 3.43 2.93 3.35 7378 3.46 2.94 3.37 4373 3.46 195 337 4786 3.43 2.94 336 968S

3.43 2.93 3.35 65(1« 3.44 193 3.38 72* 3 44 193 335 2136 3.43 2.93 3.36 9406 7.44 2.94 3.37 9949 .1.44 141 3.36 4822 3.43 2.93 3.35 3745
9 3.46 1 9 ) 3,40 966 3.43 1 9 ) 3.35 Ì123 144 19) 335 2573 3.4) 2.93 335 1470 3.4? 2.93 336 9963 3 43 194 33b 9640 3,44 2.93 3.34 5806

,. 1 «  . 2.U1 i X6I LO__ ■> yft . . i i r  . 3.43 192 3 3* J X & 3 .« 191 3 « .!< 3.44 191 338 343 2.93 336 9*67 3.45 V f t 3.40 2492
3 44 y v i 144 1 92 3-3-7— 544 191 3 16 1 U 193 144 3.44 193 3 37 194 336 253 336
3..« 2.9Ï 142 9955 3.44 1% 3 45 625 3.69 3.22 3.63 9904 3.40 196 339 9*97 3.39 3.02 3.46 9893 1.50 197 3.41 9950 3.66 314 3.62 9960
33* 295 .1.36 9975 3.47 2.95 3.37 1481 1 19 197 3 45 9639 3.43 195 3.36 6233 3.47 3.01 3.49 9959 3.4Î1 2.96 3.45 9963 3.70 3.23 3.68 9934
3.41 2.95 3,39 4628 3,43 2.94 3.36 9833 3.42 2.96 3.40 6915 3J9 195 3.42 9946 3.42 3.01 3.43 9974 3.4.1 2.95 3.39 4909 3.43 2.99 3.43 9896

4 3,43 2.94 3-16 6086 3.43 2.93 3.35 2922 3.43 2.95 3.38 1.375 3.43 19J 3.37 7573 1,36 2 97 3.46 9933 3.43 2.95 3 34 8044 332 2.98 3.46 995)
5 3,44 2.94 3,3i 2411 3.43 2.93 3.35 5729 3.43 2.94 3.37 9978 3,40 193 335 6011 3 46 2.95 3.38 2958 3 39 2.95 3.46 3491 .13* 2.98 3.44 W S

3.41 2.93 3.4X1 9924 3.4(1 2.92 3.35 3.43 19) 3.35 9964 3,41 19) 1.34 9S54 3.4J 33K 1.42 3,4ft
3.46

9992
v44 2-93 5.31 585 3.39 2.92 3 42 9938 3.43 193 1^6 7140 3J* 2.93 3.46 9994 343 2.94 337 9983 3.46 194 3.14 2725 195 337 inooti
3.44 2.93 33? 58S2 3.41 2.92 3.40 4915 3.43 2.92 1.36 9S6Î 3.40 192 .1.41 9970 3,41 191 3.40 3735 3.44 194 3.40 310 3.44 194 33) 2347

9 3.40 191 3.40 972S 3,43 29J 3.40 USQ 3.40 191 3.40 9607 3-43 192 3JS 25<T7 3.40 190 3.38 *224 3.4.1 193 336 W i 3 44 193 3.45 1085
- H i _____ 1.46.. _ Ì J Ì 14Q M l . . . 3.34 1 H -3  38 -  - 3.4^ _19 0 . . . l  %« S ___143 ____Ì5S 143 3.41 1W 33* 7961 1 m 290 142 Ü44.1

Aittmc 3 41 * 15 _ 3 41 1 9 L . 3 37 3.40 1 91 141 3 42 191 1.40 191 1 17 1 43 193 1.4(1
1 3 33 2.96 3.45 3.3* ’ 99 1.44 .3 39 3 41 195 9929 33* 3.92 3.42 9966

3.4] 2 94 3.38 35-45 3,37 197 3.41 9(KW 3.43 2.98 3.35 3610 3.40 2.95 339 9992 3 44 2.97 3.35 494 3.70 3.24 3.66 9S98 3,44 2.96 3.37 371S
3.42 2.94 3.37 2623 3,40 l¥ S 3.4(1 9270 3.45 2.95 ? 34 3492 3.42 2,95 3.34 1594 338 2,95 3.40 4550 3.37 3.01 3.51 9952 3-36 2.96 3.50 9914

4 3,41 2.94 3.38 5475 3.44 2.93 3.40 ] 428 3.44 2.94 3.37 9877 3.43 2.94 3.37 4118 3.4) 2.95 3.37 5918 3.46 2,99 3.38 621 3.38 2.95 3.41 2292
5 3.43 2.93 3.33 2239 3.4| 2.93 3.3* 4377 3.40 2.94 3.42 9960 3.40 194 337 5470 3.42 2.94 3.40 7697 3.44 2,97 3.39 1192 3.37 2.95 3,41 34S5
£ 1 4.1 193 3.36 4*4< 3.43 2.92 3-19 1268 3.33 2,93 1.40 9**4» 3.45 1 9 i 3.36 62** 3.4? 2.94 .137 35)9 337 195 3.41 996<J .1.40 193 339 4J27
7 3.37 192 3.39 VtQW 3.44 192 3.31 833 3.42 193 338 2557 7.43 193 339 I9W 335 2.91 3.48 6465 3,36 195 3.42 9968 3.46 192 339 114

3 43 191 3.34 295* 3.4fl 191 3.4<J 6957 3.44 192 333 l*M2 ?3K 190 339 9*61 336 3.90 3.3* 4451 1.44 195 ).)K 464$ 3.42 ’ 91 337 9922
9 M l 191 336 3720 339 2.90 3,37 4757 3 15 192 T44 lOOOG 3J9 1*S 335 35M 339 190 3.45 9956 3.37 194 3.35 9933 3-45 190 3.42 541

_ U J ___ . 190 . 337  .. I ' * '  . 3  4fl. 1 VO 3-39 ..4344 ... 3.55 1*7 3.2* *3 3J6 1*6 3.42 6345 l i * 1A5 360 1.45 .140 7774 1.19 2 « 3 41 999*
• ■ ><«! 3.H 191 3 17 2.91 1 16 3 39 * -- 1 Ï9 - 2.90 M L 1.4 1 194 .139 _ 19U 3.40

i 1 3.39 19« 3.42 999(i 3.39 197 1 15 9970 3.47 2.98
t  QA

3.42 739 3 45 3.QI 335 9986 336 199 355 9902 3<S 3.D* 3.41 9969 - •• 2.99 3.44 U015
3,43 2 95 3,37 9999 3,33 196 3 JO 9917 1 41 1 111 “5(173 3J5 198 3.47 9911 3.42 196 3.38 31*3 337 3.01 3.41 9942 3.43 19* 337 4938

3.35 *>96 196
4 3.41 2.94 3,36 3441 3.38 2.93 3.38 9928 3.44 2.96 338 17*6 .3.36 2.96 3.35 9968 3,36 196 3,46 9967 3.39 3.00 339 9252 1.44 197 .1.42 306

3.43 2.94 3,34 4257 3.36 194 3.41 9917 3.41 2.96 3.38 9988 3.35 2.95 338 9990 .118 195 3.41 9949 3.43 2,95 339 1463 337 197 3.40 73 D7
£ 3.41 193 3.37 33(13 3.46 2.94 342 735 3.50 195 3.29 117 .Ml 2.95 339 1)19 3 43 194 335 10» 3.41 2.91 ?.4? 3631 3.44 194 3.45 9961

1 4 ) 193 13ft ita! 3.4} 194 135 1631 3.32 194 3.43 VHA V40 193 3.40 H52U 337 193 343 47/10 3.41 192 336 3ft90 V40 2.93 13<J 9 7 «
3.43 193 334 4SI« 341 2.92 333 1767 3.33 193 ).3S 51*4 3JI 2.5W 336 47B4 3,43 193 3.43 519 3.45 1*9 3 411 979 3.43 193 344 523
3 .« 192 3,4(1 471 3,46 192 IJ  5 9 tt 3.43 193 3.34 2011 3.42 194 331 24fW 3-46 192 336 450 335 189 3 411 9610 339 193 3 17 4146

1(1 . 1.41 2.91 3.35 45RÏ U 4 131 3.41 1*16 3 44 192 VI« ! * ”1 3 J5 194 3 44 9943 ).14 192 1.49 99*7 335 1*9 134 r 3 41 1 5 2  _ _. 335 42in
.’ 43 ' Ü t Î T 79* 1 \6 3.3* ? 91 3-3* 3 19 _ 3 19 1411 141 3 44 190 33* 193 1 10

« 1 3.40 3.00 3.40 9920 3.70 3 73 365 9991 >.71 3.23 3.65 1000(1 3.44 3,05 3.44 9996 332 3.02 3.55 9944 3.57 2.97 3 44 99 3.40 798 .1.43 2254
7 .139 199 3.37 9943 3,44 197 339 9915 3.34 2.99 3.46 9899 3.45 3.00 3.41 9947 3.30 2.99 3.30 9944 3.36 195 3.40 9916 3.38 2.97 3.47 3S39
1 3 44 2.97 3-39 703 3.38 2.95 3.44 9884 3,35 2.99 3.41 7232 335 199 3 49 9999 3.38 2.97 338 9975 334 2.93 3.47 9956 3.37 2.96 3.41 871
4 3,42 2 94 3.37 1629 3 41 195 3.40 3006 3.37 295 3.43 9961 336 196 339 9369 3.31 2.96 342 9933 3.44 2.93 3.37 1487 3.40 2,95 3.43 1786
5 3..36 194 3.41 9879 3,34 2.95 3.43 9971 3.35 194 339 3118 3.38 195 3.40 6234 334 2.95 1 44 8322 3.49 2.93 3.40 891 3.46 2.94 3.32 728
6 1.4 j 194 3,33 m s 3.36 194 3.42 9989 3.37 2.94 3.47 4075 3.42 194 336 1491 3.43 191 3,3« 766 3.41 192 330 S55 3.47 10) 333 9992
7 33* 193 3,31 W*2 3.41 192 3.35 3998 3.44 2.93 3.38 2157 3 JK 193 3.43 3251 3 1« 2.94 334 331 336 2.92 3.4J *765 3.42 193 3.42 11K4

3.4? 2.92 3.37 w e 3.40 191 3.35 3459 339 2.91 337 1187 3.3* 192 338 23X1 33* 193 3.40 1472 332 192 3.54 997* 311 2  93 1 41 9071
«Ï 3 44 191 3.42 \V . 1.4S 190 1.39 495 3.39 2.90 3.4! 7140 3 40 192 3.41 1621 3.43 2.92 336 9717 1.40 2.91 1.41 99*1 3.37 192 1.46 3361
IQ. .  . J J Ì  _ 1 91 3.46___ ¿963 ‘ . 2119 3 IS. SStff 33*> 1*7 3 34 5921 y v 100 3.42 S49* 3 41 y a 338 1*» 317 2.S7 3.41 3*71 1.54 191 3 15 31-

1 41 "> *o 3.41 *•*. 1 U 3-40 __ .ISO 3.38 31* 2.91 3.42 3.41 192 3 17 3 ifi. 2.91 1 45 3.41 I K 3 42
fi i 3 35 2.97 3.44 6413 3.4(1 198 3.41 ' ■ 3.4] 1 OU 17 198 117 I7HA 335 3.01 342 145 331 199

.3.39 2.96 3.38 7443 3.31 2.97 352 9543 345 2.98 3.37 1481 3_19 2.96 3.42 9991 3+6 2.96 3.35 1347 336 2.99 3.40 5021 336 2,99 3.52 9906
3.36 2 94 3.47 9923 3.41 2 .« 3.39 5364 3.42 2 97 3.38 9999 3.34 2.95 3.45 98X1! 3.42 2.95 3.40 2745 3.42 298 337 9907 3.46 2.99 3.43 587
3.36 2.94 3.37 7049 3.43 193 3.34 2283 3.37 197 3.41 9938 336 194 33« 4414 3.38 2,94 3.42 9976 3 39 2.9* 3,40 2246 3.35 2.99 3.44 9912
3,45 2.94 3.36 880 3-39 192 3.40 5903 3 44 196 3.35 3209 3.42 2.9) 3 38 962 3.40 2.9« 338 3226 33* 2.** 29K

6 3.46 2.9? 3.37 866 3-44 191 3.35 3776 3.42 3,37
336

6517 2.9' 195
193

336
3.41

2.97
19S

339
3.4*7 3 45 193 3.39 40« 3-53 2.90 3.40 74 3 36 191 36)0 1.3* 293 3-41 999C1 3.43 2.92 3.46 9997 3.43 1619 332 5-3S9

3 32 192 3.49 7356 334 190 3 .« 3531 339 2.91 3.39 5626 3.42 2.91 337 1221 3 33 191 3.44 33.VÎ 332 190 3.46 6290 339 2.94 337 13*2
1.40 192 339 7 4 « J3S ÎH9 335 a a « 144 1K8 3.41 3070 3.47 2.91 335 I0Ü 3.41 191 337 3fll5 333 2.90 3.46 5713 .339 2.92 3.40 3459

10 ..' - _ . . . 1 3 1 - - . 3 U tVK * ' o .1 2 6 . . __ T41 1*6 _ 137_ ?7 .. __ _ 187 33* 107 1 17 190 3.43 4642 3.2* 1*9 V4A 6152 1.3* 29U 3.44 *444
• ■ , ■ 1B9 --38 189 133 3.44 2.91 .117 .143 334 190 3.45 .. ._ L93 3.42

. _ 33* 194 3J? 3475 3.43 199 3,47 21 IS 3 40 « «0 7211 133 337
332

199 3.43
3.37

3.13 331
3.46 2.94 3.44 732 3.43 19* 3.41 2140 3.27 ’ 97 3.49 9973 332 197 3.46 5390 3.39 33.1 Ì9** 999*

1 3_11 2.9J 3.51 72 U5 3.34 197 3.39 9883 3.35 194 3.43 4357 337 196 337 74| 3.36 198 3.41 7002 19* 1 «
3.40 293 332 4422 3.39 196 3.36 1966 3.39 193 3.43 5483 337 2.95 3.45 9893 3.32 197 3.45 4793 331 ? 4K

< 3.43 19? 3.33 932 3.45 194 3.39 740 3.37 192 3.4] 3545 3.36 193 3.42 321C .131 2.96 3.55 9979 3.42
h 3.41 2.93 3-33 ÎS0B 3.44 137 3*7 3.37

J.13
2641 19b 3.42

141
1231 332 193 .139 «490 114

137
195 33? SJ7Ü

7 Ï.45 192 M A 4V. 1 1? 1 9 ) Ì M 2158 \ M 192 1.34 1913 3.43 191 3.19
1 3.4* 2.91 337 *S3 3.39 1*9 336 4460 3.41 191 3.33 9970 3.W 192 33*

336
71*7 1.43 192 3.4* 331 2 $ )

192
3477

3.4? 190 3.37 1447 3.72 ’ *7 3.12 59 3.73 2.K4Ì 3.34 Rl 3.3K 191 2239 191 333 122 337 
3 1*

3.43 
1 36  ..J ji ............„ x J L . . . 2JÜ 1 i l __ 133 I * * - 187 . i  3 9__L1J_ T r ¿ 8 5 . . . . XZ7 . . 4 2  .. U 2 . . . . . .1 S 9 . ZXL- \Iìl . 331 . 56SÎ 2.Ü 1 4? 5141

—..... ----- .. l ? i —US_

174



Table 5.20 may be explained as follows. 'Layer 1 nodes' and 'Layer 2 nodes' 

refers to the number o f nodes in hidden layers 1 and 2 respectively. Network 

number refers to the 10 networks that are trained for each topology. The MAPE 

in the training, validation and novelty sets is recorded for each network, as is the 

epoch number at which the training was stopped (called Index in Table 5.20). 

The 10 networks trained for each topology are sorted in descending order, with 

the network that achieved the lowest MAPE in the validation set last. The four 

networks with the lowest MAPEs in the validation set are then retained (these are 

lightly shaded in Table 5.20). The other six networks are discarded as networks 

that failed to reach a good local minimum, due to their random initial conditions. 

The MAPEs o f the retained networks are averaged to give the Averaged MAPEs 

(AMAPEs). This term is used to distinguish the AMAPE from the MAPE  which 

is the MAPE achieved by an individual network. The AMAPE represents the 

performance o f each topology.

To aid the explanation of Table 5.20, the MAPEs for the third network trained 

with a 4x3x1 topology are shaded diagonally in Table 5.20. The validation 

MAPE for this network is 2.96% which does not compare well with the best 

validation MAPE achieved with this topology (2.92%).

Figure 5.31 below shows an example o f early stopping using the 4x4x1 

topology.

’ Note there is only one output and so the all the neural networks have a topology ** *x 1.
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Figure 5.31 An example of early stopping (Topology: 4x4x1, Model: NN07,6). 

Method for Choosing the Best Topology

Ideally, the optimum topology is that with the lowest AMAPE in the validation 

set (Table 5.20). However, this approach is only valid if  the validation set 

AMAPEs are exact. However, they are estimates o f the AMAPE in the validation 

set. Thus some caution must be exercised in interpreting the results in Table 5.20. 

The following factors are useful to consider prior to determining the topology:

1. As the complexity (number o f nodes) o f the networks increase, their ability to 

over-fit the data increases (this general point is discussed in Section 3.3.1.4) 

and so the AMAPEs become less reliable estimates. Although there are only 

four MAPEs used to calculate the AMAPEs this point can still be readily 

demonstrated by plotting the variance o f the AMAPEs against the complexity 

of the networks (Figure 5.32, below).
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Figure 5.32 The variance of the validation set AMAPEs versus the number of nodes in each
topology (Model: NN07j6).

As can be seen the variance o f the validation set AMAPEs rises with 

complexity and thus their reliability decreases , and

2. Although the differences between two AMAPEs may appear small this is 

misleading. Table 5.20 for example, shows the AMAPEs achieved by two 

topologies, l x l x l  and 3x4x1. The differences between the validation set 

AMAPEs for each topology in Table 5.20 appear small. However, each neural 

network is estimating the same residual, xo7,6(£), which is produced by 

PPMo7,6 (Figure 5.29). That is, the forecast o f the load produced by PPMo7,6 

has a MAPE of 3.51% (Figure 5.11) and the validation set AMAPEs in Table 

5.20 are improvements on this figure. As can be seen, the variance o f the 

AMAPEs (Table 5.21) is quite small compared to the difference between the 

AMAPEs. Thus in this example topology 3x4x1 is considered superior to 

l x l x i  although it is more complex and thus it's AMAPE is less reliable.

* This does not mean that topology l x l x l  is necessarily the best topology; just that the estimated 
AMAPE for this topology is the most reliable.
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Table 5.21 Validation set A M  APEs for N N 07.6 using 2 different topologies.
Topology Validation set AMAPE

(%)
Variance o f validation 

set AMAPE
l x l x l 2.9320 4.85x10 '

3 x 4 x 1 2.8926 l.O lxlO -4

Considering the above factors, the method for choosing the optimum topology is:

1. Topologies with AMAPEs close to the lowest validation set AMAPE are first 

identified,

2. Topologies which are more complex than the topology with the minimum 

validation set AMAPE are eliminated,

3. A preference is shown towards simpler topologies, especially if  the 

difference between topologies is large, and

4. Additionally, the AMAPEs in the training set are used to indicate whether the 

validation set AMAPEs are a random occurrence or are consistent with a 

network which has generalised well.

As an example, the AMAPEs for NN07,6 in the training and validation sets are

shown in Tables 5.22 and 5.23 below (extracted from Table 5.20).

Table 5.22 AMAPEs for NN07.t (Training set, best in bold italic font)
Number
ofNodes

Layer 2: 1 2 3 4 5 6 7

Layer 1: 1 
2
3
4
5
6 
7

3.439
3.434
3.412
3.432
3.411
3.399
3.436

3.436
3.407 
3.409 
3.439 
3.412
3.408 
3.474

3.436
3.429
3.440
3.379
3.401
3.405
3.493

3.545
3.403
3.389
3.394
3.385
3.440
3.460

3.442
3.424
3.402
3.399
3.426
3.383
3.419

3.441 
3.435 
3.405
3.441 
3.361 
3.341 
3.340

3.441
3.428
3.429 
3.407 
3.414 
3.371 
3.382

Table 5.23 AMAPEs for NNB7.6 (Validation set, best in bold italic font)
Number
ofNodes

Layer 2: 1 2 3 4 5 6 7

Layer 1: 1 
2
3
4
5
6 
7

2.9320
2.9192
2.9117
2.9227
2.9199
2.9173
2.9083

2.9213
2.9162
2.9075
2.9249
2.9041
2.8939
2.8879

2.9314
2.9147
2.9092
2.9306
2.9031
2.8921
2.8952

2.9267
2.9187
2.8926
2.9419
2.9181
2.9050
2.9036

2.9331
2.9095
2.8953
2.9266
2.9172
2.9126
2.9148

2.9437
2.9343
2.9384
2.8979
2.9063
2.9043
2.9112

2.9266
2.9303
2.9039
2.9264
2.9231
2.9302
2.9109

178



The optimum topology is selected as follows:

1. As can be seen in Table 5.22, the minimum MAPE in the validation set is 

2.88% using topology 7x2x1. Topologies 6x2x1, 6x3xl and 7x2x1 have 

similar AMAPEs. These are indicated in bold in Tables 5.22 and 5.23,

2. There are other topologies with similar AMAPEs however they are more 

complex than 7x2x1 and are thus eliminated,

3. It is noted that topology 3x4x1 is simpler than 7x2x1 and that the difference 

between the validation set AMAPEs is only 0.0005%, and

4. The training set AMAPE for topology 3x4x1 is 0.016% better (a large figure 

in the current context) than that for topology 7x2x1. Thus topology 3x4x1 is 

chosen.

Table 5.24 below shows the topologies selected at the representative hours, for 

each of the models trained for topology determination.

Table 5.24 Selected topologies refined for each mode) at different hours and day-tvpes.
Model Hour Day-type Topology MAPE

draining set)
MAPE  

(validation set)
N N 07.6 07 Late winter 3x4x1 3.408 2.8939

N N l3 .6 13 Late winter 4 x 7 x 1 1.842 1.503
N N S q7 6 07 Late winter 2x3x1 2.369 2.060
NN Sn.fi 13 Late winter 6x3x1 1.808 1.502
N N A R ( i 7  6 07 Late winter 5x3x1 3.293 2.788
NNAR,3.6 13 Late winter 3x1x1 1.894 1.552
NNARSo7.fi 07 Late winter 3x4x1 2.216 1.983
NNARSn.6 13 Late winter 6x1x1 1.827 1.501
NNART07.6 07 Late winter 7x5x1 3.109 2.690
NNART13.fi 13 Late winter 3x6x1 1.844 1.517
N N A R T m . s 07 Summer 6x3x1 4.104 3.511
n n a r t 13.5 13 Summer 6 x l x l 1.583 1.417
N N A R T S o 7 . f i 07 Late winter 6x3x1 2.182 1.861
NN ARTSu .6 13 Late winter 5x7x1 1.800 1.477
N N A R T S 07.5 07 Summer 6x6x1 2.734 2.424
NNARTS,3.s 13 Summer 5 x l x l 1.573 1.401
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5.7.4 Parameter Evaluation.

The model parameters are evaluated using the back-propagation algorithm as 

discussed in Section 5.7.3.2.

5.7.5 Model Validation.

Table 5.24 shows 16 topologies calculated at representative hours for the six 

types o f non-linear parallel model (Table 5.19). The next step is to train neural 

networks for all hours o f all day-types (excluding Christmas as usual) using the 

16 topologies listed in Table 5.24 and the appropriate model type.

Tables 5.25 and 5.26 shows the daily AMAPE achieved using the topologies 

calculated in Section 5.7.3.3 (Table 5.24) for all day-types in the validation and 

novelty sets respectively.

Table 5.25 Daily AMAPE (%) for each model using selected topologies (validation set, the 
best model in each day-type is shown in bold italic font. Note: the scheduling variable is 

___________________________only applicable to working days).___________________________

Model T opology
Early
winter

Sundays

Summer
Sundays

Late
winter

Sundays

Early
winter

working
days

Summer
working

days

Latt
winter

working
days

Early
winter

Saturdays
Summer
Saturdays

Late
winter

Sftlurdnys

NN 3x4x1 2.54 3.02 2.69 2.69 3.02 2.47 2.62 2.91 2.37

NN 4x7x1 2.55 3.08 2.73 2.69 3.02 2.45 2.62 2.92 2.42

NNS 2x3xl - - - 2.00 2.31 2.00 - - -
NNS 6x3x1 - - - 1.96 2.28 1.95 - - -

NNAR 5x3x1 2.53 3.01 2.50 2.60 2.98 2.44 2.58 2.91 2.32

NNAR 3xlxl 2.51 2.98 2.49 2.61 2.99 2.44 2.60 2.90 2.35

NNARS 3x4x1 - - - 1.97 2.37 1.92 - - -

NNARS 6 x1x 1 - - - 1.93 2.24 1.91 - - -

NNART 7x5x1 2.47 3.05 2.35 2.62 2.99 2.42 2.62 2.95 2.29

NNART 3x6x1 2.51 3.07 2.41 2.62 2.99 2.45 2.61 2.98 2.44

NNART 6x3x1 2.41 3.03 2.32 2.59 2.97 2.43 2.52 2.90 2.33

NNART 6 x1x 1 2.41 2.99 2.33 2.61 2.99 2.41 2.53 2.91 2.28

NNARTS 6x3x1 - - - 1.92 2.29 1.89 - - -

NNARTS 5x7x1 - - - 1.96 2.28 1.89 - - -

NNARTS 6 x6 x 1 - - - 1.95 2.23 1.90 - - -
NNARTS 5x1x1 - - - 1.94 2.23 1.90 - - -
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Table 5.26 Daily AMAPE (%) for each model using selected topologies (Novelty set, the best 
model in each day-type is shown in bold italic font. Note: the scheduling variable is only 

_________ _________ _________ applicable to working days). _________ _________ _________

Model Topology
Early
winter

Sundays

Summer
Sundays

Late
winter

Sundays

Early
winter

working
days

Summer
working

days

Late
winter

working
days

Early
winter

Saturdays

Summer
Saturday*

Late
winter

Saturdays

NN 3x4x1 2.73 3.19 2.75 2.31 2.99 2.69 2.19 2.71 2.76
NN 4x7x] 2.69 3.20 2.73 2.31 3.00 2.68 2.28 2.77 2.73

NNS 2x3x1 - - - 1.74 2.20 2.16 - - -
NNS 6x3x1 - - - 1.72 2.18 2.10 - - -

NNAR 5x3x1 2.71 3.15 2.70 2.30 2.93 2.66 2.12 2.60 2.69
NNAR 3x1x1 2.57 3.13 2.66 2.25 2.95 2.63 2.17 2.62 2.60

NNARS 3 x4 x 1 - - - 1.72 2.25 2.02 - - -

NNARS 6 x1x 1 - - - 1.71 2.09 2.01 - - -

NNART 7x5x1 2.63 3.19 2.57 2.29 2.93 2.61 2.26 2.63 2.67
NNART 3x6x1 2.62 3.15 2.60 2.30 2.96 2.64 2.21 2.70 2.64
NNART 6x3x] 2.56 3.14 2.44 2.31 2.95 2.60 2.08 2.61 2.65
NNART 6 x1x 1 2.55 3.13 2.44 2.26 2.94 2.59 2.07 2.64 2.55

NNARTS 6x3x] - - - 1.70 2.15 1.98 - - -

NNARTS 5x7x1 - - - 1.73 2.16 2.01 - - -

NNARTS 6 x6 x1 - - - 1.72 2.09 1.99 - - -
NNARTS 5x1x1 - - - 1.72 2.08 1.98 - - -

The first thing to note is that the scheduling variable is applicable only to 

working day-types. Thus there are no entries in the weekend day-types for the 

NNS, NNARS and NNARTS models.

For the working day day-types, the scheduling variable is beneficial in all cases. 

For example, the NNS models are superior to the NN models for late and early 

winter working days (Table 5.25), the NNARS models are superior to the NNAR 

models etc.

Figure 5.33 indicates the benefit o f the scheduling variable at each hour of the 

day (as opposed to daily averages in Table 5.25). There is little difference 

between 10 hrs and 16 hrs. This implies that the scheduling variable is also of no 

benefit during normal working hours o f the day.
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Figure 5.33 The AMAPE for non-linear models with and without the scheduling variable 
(Validation set, Models: differing types shown in legends).

For a given model type (NN, NNS etc.) the simpler topologies tend to give 

superior results (Table 5.25). Figure 5.34 shows the AMAPE achieved by using 

NNo7,6 with topologies 4x7x1 and 3x4x1 when applied to all hours of the day. 

Topology 4x7x1 is superior at 13 hrs and 3x4x1 is superior at 07 hrs, as these 

are the topologies optimised at these hours, respectively (Section 5.7.3.3, Table

5.24). However, there is not a consistent difference between their performances 

at other hours of the day. The conclusion here is that the best topology for one 

hour of the day is not an indicator o f  the best topology for other hours of the day. 

A similar situation applies to the topologies calculated for the other models listed 

in Table 5.25.
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Hour of the day

Figure 5.34 The AMAPE for topologies 3><4xl and 4x7x1 versus the hour of the day 
(Validation set, Models: NN00,6 to NN23,6).

Comparing models with and without the AR inputs (e.g. NN and NNAR or NNS 

and NNARS), shows that the AR variables are beneficial in most cases (Table

5.25). Similarly, the operating point inputs are beneficial in most cases except 

summer Saturdays and Sundays (Table 5.25). This is a surprising result as the 

operating point input was thought to be especially useful for predicting summer 

loads (Section 4.2.2). The temperature-load relationship in summer is operating 

point dependant but the correlation between temperature and load is low (Section

4.2.2). This low correlation may override the advantage o f using an operating 

point input for summer Saturdays and Sundays.

In summary, the analysis above proposes:

1. Simpler topologies are selected within each model type,

2. The scheduling variable is used (where applicable), but not at working hours

(i.e. 10 hrs to 16 hrs) or during summer, and

3. The operating point input is beneficial except for summer Saturdays and

summer Sundays.
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5.8 Comparison of Linear and Non-linear parallel models
Table 5.27, below, shows the daily MAPEs achieved by the PPMs and linear 

parallel models in the novelty set. In addition the AMAPEs o f the best non-linear 

parallel models chosen in Section 5.7.5 (Table 5.26) are shown. As can be seen, 

the parallel models are superior to the PPMs in all cases. The non-linear parallel 

models also give better forecasts in all cases, although the gap is small in the case 

of summer Sundays. It can therefore be concluded that there is a non-linear 

relationship between the load and the inputs chosen, justifying the use o f a non­

linear forecasting technique.

Table 5.27. Daily MAPEs for PPMs, Linear and non-linear parallel models (Christmas days
excluded, novelty set 1.

Day-type
MAPE 

PPM's (%)
MAPE Linear 

Parallel Models 
(%)

MAPE Non­
linear Parallel 
Models (%)

1. Early winter Sundays 2.75 2.70 2.55

2. Summer Sundays 3.22 3.14 3.13

3. Late winter Sundays 2.78 2.75 2.44

4. Early winter working days 2.36 2.25 1.70

5. Summer working days 3.04 2.99 2.08

6. Late winter working days 2.94 2.55 1.98

7. Early winter Saturdays 2.19 2.20 2.08

8. Summer Saturdays 2.83 2.81 2.61

9. Late winter Saturdays 3.06 2.86 2.55

5.9 Conclusion.
The linear and non-linear parallel models were presented in this chapter. In 

Section 5.3, a technique was presented to determine whether the parallel 

approach was justified based on the data alone. From this analysis, there is some 

evidence to support the view that some hours o f the day have independent 

components, thus justifying the parallel approach. However, this evidence is not 

conclusive and requires comparison with a sequential approach for confirmation 

(Chapter 6).

The preliminary parallel models were constructed in Section 5.4. These models 

are based on the day-types identified in Chapter 4. However, in order to check 

that the day-types determined in Chapter 4 are the optimum means of partitioning 

the data, two other alternative partitions achieved through amalgamation were
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examined (Section 5.4.2.3). It was found that the day-type partitions are superior 

in most cases, and significantly improved on partitioning the data by hour o f the 

day alone (alternative partition 1, Section 5.4.2.3). However, alternative partition

2 (partitioning the data as Saturdays, Sundays and working days and by hour of 

the day) was found to give superior forecasts over the early winter periods. Thus, 

the optimum partition of the data is a mix between the day-type partition and 

alternative partition 2.

Section 5.4.2.2 examined two techniques for tuning the parameters in the PPMs, 

PED and SSD. It was found that there were negligible differences between the 

PPMs trained with both techniques. However, the main difference between SSD 

and PED is that the parameters may be chosen explicitly with SSD, making this 

technique more appealing in a practical sense.

Input selection was examined in Section 5.5. The first finding was that only up to 

two days o f past (pre-whitened) weather was significant in forecasting load 

(Section 5.5.1). Four techniques were then examined for pre-processing, and 

selecting which o f these weather inputs should be used. It was found that the 

techniques which used PCA (Methods 2, 3 and 4, Section 5.5.2) provided the 

best results. PCA uses the colinearity between the weather inputs to produce 

transformed inputs or components (Section 5.5.2.2). It can therefore be 

concluded that reducing the colinearity in model inputs aids in the modelling 

process. In addition, the techniques which order the components by variance 

explained (Methods 2 and 3) were superior to Method 4 which ordered the 

components via the T-ratio. The reason that variance explained is a good 

indicator o f which components are important in load forecasting is explained 

below.

High frequency information in the original weather variables will tend to have a 

low cross-correlation. For example, the high frequency information in the 

temperature at 5 p.m. will be uncorrelated with the temperature at 4 p.m. (as this 

information changes at a high frequency). The variance explained orders the 

components by the amount o f information in the original weather inputs that is 

present in the components. Thus, high frequency information will appear in
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components ordered lower down the list. From the coherence plot in Section

2.3.3.2 (Figure 2.11) it can be seen that high frequency information in 

temperature has a low correlation with high frequency information in load. Thus 

there is a correspondence between the variance explained in each component and 

the correlation of each component with the load.

Section 5.6 presented the linear parallel models. It was seen that these models 

were superior to the PPMs and so it can be concluded that inclusion of external 

variables can improve load forecasts.

Section 5.7 presented the non-linear parallel models. The inclusion of three types 

o f inputs, not present in the linear parallel models, was investigated: auto­

regressive inputs, temperature (note: not the pre-whitened temperature) and a 

scheduling variable. The AR input was found to be beneficial in almost all cases 

and was present in all the best models selected in Table 5.25. Thus, the presence 

o f a non-linear autoregressive component in Irish load (as suggested in Section

5.1) is confirmed. The inclusion o f the other two inputs is dependent on the hour 

o f the day and day-type.

Finally Section 5.8 compares the results for the linear and non-linear parallel 

models (Sections 5.6 and 5.7, respectively). It is found that the non-linear parallel 

models are superior to the linear parallel models in all cases, justifying the use of 

a non-linear technique in load forecasting.
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Chapter 6

Multi-Timescale Modelling for Short-Term Load

Forecasting

6.1 Introduction

This chapter outlines and extends the application o f the Multi-TimeScale (MTS) 

technique used by Murray (1996, Section 3.3.4.2 and henceforth referred to as 

the MTS technique for clarity) to the problem of short term load forecasting.

The MTS approach is based on combining parallel models with sequential 

models, as discussed in Sections 3.2.2 and 3.3.4.2. The advantages o f this 

approach are discussed in Section 3.3.4.2. As discussed in Section 3.2.2, there is 

no consensus in the literature regarding a choice between the parallel and 

sequential approaches. Thus, another motivation for using this approach is to 

draw a comparison with the parallel approach used in Chapter 5.

As pointed out by Murray (1996), the MTS technique may be applied in three 

steps:

1. Develop a lower-timescale model or Sequential load forecasting Model (SM) 

(Section 6.2),

2. Generate forecasts of the cardinal points and end-sum points (Section 6.3) 

and

3. Combine the SM with the cardinal point and end-sum forecasts using the 

MTS technique. The MTS technique requires choosing the freed states and 

the appropriate weight matrices (see Section 3.3.4.2). The freed states are 

chosen using a method proposed by Murray. Two new methods are proposed 

here for determining the weight matrices; a numerical approach (Section

6.4.1) and a deterministic approach (Section 6.4.2).
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As in Chapter 5, the late winter working day-type is again used as an indicator of 

other day-types. Differences between the results for day-types will be mentioned 

as appropriate.

Note: It is not practical to index the models in this chapter in the same manner as 

the parallel models in Chapter 5. Specifically, the variables in the models used in 

this chapter are indexed with the number o f hours from the start o f the data, k, as 

opposed to indexing by hour i on day k as in the case o f  the parallel models 

(Chapter 5). For example, the notation for the load is now >>/k), for the load k 

hours form the start o f the data for day-type j .  In Chapter 5 the notation for the 

load was yi,j{k), where i was the hour o f the day,y was the day-type and k  was the 

kA day in partitioned series j .  Note: that this is because the MTS approach only 

disaggregates the load by day-type.

Finally; note that the load data used in this chapter is disaggregated by day-type, 

but not by hour o f  the day.
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6.2 The Sequential Model.

As a linear state space model structure is required for the SM (Section 3.3.4.2), a 

BSM using a DPRW (Section 3.3.4.2) is selected. As explained in Section

3.3.2.3 a BSM is ideal for modelling short-term load. The BSM may be 

expressed as:

y /k )  = dj (k) + y/j(k) + £j(k) (6 .1)

where dj{k) is the trend component, i//j(k) is the seasonal component and £/(k) is 

the SM error (or residual, although error is used here to distinguish that the 

residual will not be forecast as in the parallel models) k  hours from the start of 

the sequential time-series, for day-type j .  Also, the SM for day-type j  is referred 

to as SM/.

As with the preliminary linear parallel model (also a BSM) in Section 4.1, the 

trend component is modelled using an Integrated Random Walk (IRW) (Section

3.3.2.2), with the seasonal component modelled using a Differenced Periodic 

Random Walk (DPRW) (Section 3.3.2.2) as:

Oj(k) =

dj (k) "1 1 0 0 . .  0 ' dj  (k  - 1) 0

dj  (k) 0 1 0 0 . .  0 d j ( k - l ) n d ( k - \ )

Vj  (k) 0 0 - 1 -1  . .  -1 ¥ j ( k ~  1)
+ % ( k ~  1)

y / j ( k - 1) 0 0 1 0 . .  0 Wj ( k ~  2) 0

• ■ ' * • .  0 • •

¥ j ( k - (  24 -2 ))_ 0 0 0 0 .
1  0 .

y / j  (k - ( 2 4 - 1 ) ) 0

(6.2)

where 0 {(k) is the state vector, dj(k)  is the rate o f change o f the trend, k  hours

from the start of the sequential time series for day-type j ,  and the other notation is 

explained below. The seasonal length in this case is 24, since there are 24 hours 

in each day. ljd (k) and J j j k )  are white noise components with
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variances a j  and cr2v ., respectively. In addition there is a measurement error 

term efk) (Section 3.3.2.4) with a variance of a] .

Figure 6.1 below summarises the application o f the BSM to the sequential model.

£ M . X /

ilCJ!

S e a s o n a l  c o m p o n e n t

o
O

T r e n d  c o m p o n e n t

o

Er r or

Figure 6.1 Overview of how the SM decomposes the load into seasonal and trend
components.

As with the other models presented in this thesis, the modelling process for the 

SM may be split into four stages:

1. Input Selection and Pre-processing (Section 6.2.1),

2. Structure Determination (Section 6.2.2),

3. Parameter Evaluation (Section 6.2.3), and

4. Model Validation (Section 6.2.4).

6.2.1 Input Selection and Pre-processing.

The SM is an Auto-Regressive (AR) model and has no external inputs.
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6.2.2 Structure Determination.

The structure of the SM is given by the state transition matrix in Equation (6.2), 

above. This is a fixed structure and so no structure determination is required.

6.2.3 Parameter Evaluation.

As with the PPM (Section 5.4.2), the SM also uses a BSM. Again, the variances 

of the noise components in the BSM, a j  and cr^ and o \  are the parameters that

must be determined. The SSD (Section 5.4.2.2) method is used and is 

summarised below.

The initial values o f the state vector are shown in Table 6.1, below.

Table 6.1. Initialisation values for the state vector with SSD.

State Value
d (0) y  (0)/
d  (0)

j 0

0

As in Section 5.4.2.2, a 2r is set to one and a 1, is set to zero, a ] is again not
J a j  a j

calculated via the periodogram as suggested in Section 3.3.2.4, as it may easily 

be specified as occurring at a frequency less than the yearly frequency. For 

example, there are 1272 (53x24) load points per year in the late winter working 

day day-type (i.e. for j  = 6). The cut-off frequency,/o, (Section 3.3.2.4) lies at a 

point lower than the corresponding yearly period. That is:

/so <1/1272 (6.3)

Taking f 50 to be half the yearly frequency and substituting this value into 

Equation (3.54) gives:

a) =1605(1/(1272x2))4 = 3.83x10 11 (6.4)



The value o f <j] may be calculated similarly for the other SMs (i.e. for j  =

1,_,9), noting that the number o f data points per year varies depending on the

day-type.

a]  is free to vary in order to minimise the log likelihood function as in Section
j

5.4.2.2. Table 6.2 below shows the parameters calculated for SM6.

Table 6.2. Parameters of SM6 (trained using SSD).

Parameter Value

< 1

< 0

< 3.83X10'11

< 6.61 xlO'6

6.2.4 Model Validation.

Figure 6.2 below shows the MAPE for each hour of the day made using a 1-hour 

ahead forecast, i.e. the 4 a.m. forecasts were made at 3 a.m., the 10 p.m. forecasts 

were made at 9 p.m. etc. The daily MAPE (i.e. the mean value o f the graph in 

Figure 6.2) is 2.92%.

Figure 6.2. The MAPE as a function of hour of the day for SM6. (1-hour ahead forecasts,
training set)
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Figure 6.3, below, shows the MAPE as a function o f the hour o f  the day, for 

forecasts again made 1-step ahead and also 10-steps ahead. As can be seen, the 

forecast MAPEs are similar, but the 10-step ahead forecasts are slightly less 

accurate due to propagation error (Section 3.2.2). The daily MAPEs for the 1 and 

10-step ahead forecasts are 2.92% and 3.04%, respectively.

Hour of the day

Figure 6.3. The MAPE as a function of hour of the day for SM6. (1-hour and 10-hour ahead
forecasts, training set)

Figure 6.4 below shows how the daily MAPE changes, with the forecast horizon 

from 1 to 24-steps ahead. As can be seen, the propagation error in this model 

accumulates. The minimum occurs at 1-step ahead (2.92%) and the maximum 

occurs at 24-steps ahead (3.19%).
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Figure 6.4. The MAPE as a function of forecast horizon for SM6. (training set)

Tables 6.3 (training set) and 6.4 (validation set) show the daily MAPEs achieved 

for all day-types at four different forecast horizons. The daily MAPEs for each 

SM are high compared to the performance of the PPMs (see Tables 5.8 and 5.9, 

Section 5.4.2.3). For example, the daily MAPE achieved by the (best) PPMs for 

the summer working days day-type is 3.05% (Table 5.8), compared with 4.65% 

using the SM on the same day-type. The cause of this relatively bad performance 

is discussed below.

Table 6.3. Mean absolute percentage daily errors of SMs at differing forecast horizons
(Training set).

Day-type Daily MAPE (%)
1-step
ahead

8-steps
ahead

16-steps 
ahead

24-steps
ahead

Early winter Sundays 4.75 5.54 5.07 5.33
Summer Sundays 7.30 7.29 7.29 7.27
Late winter Sundays 5.89 6.72 5.54 5.25
Early winter working days 3.66 3.91 3.99 4.11
Summer working days 4.40 4.40 4.40 4.46
Late winter working days 2.92 3.02 3.10 3.19
Early winter Saturdays 3.63 4.22 4.19 4.63
Summer Saturdays 3.82 3.91 3.96 4.12
Late winter Saturdays 3.48 3.86 3.81 4.25
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Table 6.4. M ean absolute percentage daily errors of SMs at differing forecast horizons
(Validation set).

Day-type Daily MAPE (%)
1-step
ahead

8-steps
ahead

16-steps 
ahead

24-steps
ahead

Early winter Sundays 4.73 5.18 4.31 5.17
Summer Sundays 5.35 5.38 5.39 5.74
Late winter Sundays 5.24 6.00 4.66 4.82
Early winter working days 3.99 4.33 4.30 4.36
Summer working days 4.58 4.66 4.59 4.65
Late winter working days 3.37 3.56 3.64 3.75
Early winter Saturdays 4.02 5.12 5.00 5.03
Summer Saturdays 3.73 4.37 4.01 3.97
Late winter Saturdays 3.38 3.21 3.28 3.88

Figure 6.5, below, shows a plot o f six days o f load taken from the late winter 

working days day-type. The six days shown are Wednesday, Thursday, Friday, 

(Saturday and Sunday are not working days) Monday, Tuesday and Wednesday. 

As can be seen, there is a shift in the level of the load in the centre o f the plot 

caused by the removal o f Saturday and Sunday during construction o f the late 

winter working days series (Section 5.2).

Day

Figure 6.5. Loads in the late winter working day day-type from 03/02/1999 to 10/02/1999 
(Note: Day 3 = Friday, Day 4 = Monday)

The SM attempts to model the load as a trend and seasonal component (Equation

6.1). As already stated (Section 3.3.2.4), the trend component acts as a low pass­

filter and so is unable to adjust to the shift (which occurs at a single point and is
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thus at a high frequency). Therefore, the shift must be accounted for by the 

seasonal component. However, the seasonal component requires the expected 

sum of the load (minus the trend) over the season (24-hours) to be zero (Equation 

3.58, Section 3.3.2.2). As the shift violates this condition, it introduces a large 

error into the seasonal component forecast. It should be noted that this effect is 

more pronounced with weekend day-types, as they have a shift after every day. It 

was also found that the MTS model using these SMs performed badly compared 

to the parallel models. Thus a different approach is required, in which the trend 

component accounts for the shift.

The seasonal component, as stated above, requires the expected sum of the load 

(minus the trend) over the season to be zero. The solution proposed here is to 

remove the (forecasted) average value of the load for each day from each day. 

That is, the trend component is now modelled as fixed over the duration o f a day

i.e. as a daily trend. As the change in the trend component over the course o f a 

day is negligible, this approximation may be justified. The remaining load is then 

zero-mean as required and may be modelled as a seasonal process. Figure 6.6 

below, contrasts this approach with the previous one. This approach is called the 

Adjusted Sequential Model (ASM).
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Figure 6.6 Comparison of the SM and Adjusted SM approach (trend component
exaggerated for clarity).

In order to model the average load per day, a series is constructed by taking the 

average value of each day. This series has one point per day and thus has similar 

characteristics to a partitioned series (which is composed o f loads from one hour 

per day). Thus the average load is modelled using a model similar to a PPM 

(Section 5.4). This model will be referred to as a Trend Model (TM), and TM/ 

will be used to denote the trend model for day-type j .

The trend model forecasts are then removed from the actual load leaving a 

seasonal component (see Figure 6.6 above). This seasonal component is then 

forecast using a DPRW (Section 3.3.2.2) as before. Figure 6.7, below, again 

contrasts the SM and ASM approach, but from a model building perspective. It 

should be noted that the SM models the trend and seasonal component jointly, 

while the ASM models the trend and seasonal component separately.
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SM Load forecast 
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Figure 6.7 Comparison of the SM and Adjusted SM approach from a model building 
perspective (trend component exaggerated for clarity).

Table 6.5 shows the parameters calculated for ASM6 (i.e. the late-winter working 

day day-types model). Comparing Tables 6.2, above, and 6.5 below it can be 

seen that the parameters calculated for the ASM and SM models differ greatly.

<j] for the SM has a far smaller value than that of the ASM. However, as the«6

trends in both models are calculated differently (Figure 6.7), they cannot be 

directly compared. In contrast, the seasonal component in both models is trying 

to forecast the same component of the load (Figure 6.6). Comparing o v for both

models shows that the ASM has a seasonal component with a greater variance 

than the SM; 1.33xl0'2 and 6.61><10~6, respectively. Thus the SM reacts to a 

change in the seasonal component far slower than the ASM. This may be caused 

by the effect of the shift in the load between weeks (Figure 6.5) for the SM.

Table 6.5. Parameters of ASM6 using SSD.
Parameter Value

< 1

< 0

< 1.25x1 O'5

< 0.0133
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Figure 6.8, below shows the daily MAPE as a function o f forecast horizon for 

ASM6. In contrast to SM6 (Figure 6.3) the MAPE remains relatively constant 

despite the increase in forecast horizon.

Forecast Horizon (Hours)

Figure 6.8. The MAPE as a function of forecast horizon for ASM6. (training set)

Tables 6.6 and 6.7, below, show the daily MAPE achieved at four different 

forecast horizons for all the day-types in the training and validation sets. 

Comparing these results with those for the SMs (Tables 6.3 and 6.4) it can be 

seen that the daily MAPEs for the ASMs are lower. They are also broadly in line 

with the results for the PPMs used in the parallel models (Tables 5.6 and 5.7, 

Section 5.4.2.3 ).
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Table 6.6. Mean absolute percentage daily errors of ASMs at differing forecast horizons
(Training set).

Day-type Daily MAPE (%)
1-step
ahead

8-steps
ahead

16-steps
ahead

24-steps
ahead

Early winter Sundays 4.15 4.15 4.15 4.15
Summer Sundays 4.70 4.63 4.63 4.61
Late winter Sundays 3.65 3.65 3.65 3.65
Early winter working days 3.18 3.04 3.04 3.03
Summer working days 3.14 2.93 2.93 2.94
Late winter working days 3.04 2.97 2.97 2.97
Early winter Saturdays 3.67 3.67 3.67 3.67
Summer Saturdays 3.07 3.02 3.02 2.99
Late winter Saturdays 3.14 3.05 3.05 3.05

Table 6.7. Mean absolute percentage daily errors of ASMs at differing forecast horizons
(Validation set).

Day-type Daily MAPE (%)
1 -step 
ahead

8-steps
ahead

16-steps 
ahead

24-steps
ahead

Early winter Sundays 4.20 4.20 4.20 4.20
Summer Sundays 3.57 3.48 3.49 3.45
Late winter Sundays 3.70 3.70 3.71 3.70
Early winter working days 3.18 3.03 3.03 3.02
Summer working days 3.07 2.85 2.85 2.88
Late winter working days 2.95 2.89 2.89 2.90
Early winter Saturdays 4.06 4.06 4.07 4.06
Summer Saturdays 3.04 2.98 2.98 2.94
Late winter Saturdays 2.87 2.75 2.75 2.75
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6.3 The Cardinal Point and End-Sum Models.
The cardinal point models generate forecasts for the load at specific hours o f the 

day. The end-point model generates forecasts for the load at the end-point which 

is the last hour o f the day. The parallel models generate forecasts at specific 

hours o f the day and so these are used as the cardinal and end-point models. The 

specific parallel models used are the non-linear models selected in Section 5.7.5 

and presented in Table 5.25 which are summarised below (Table 6.8).

Table 6.8 Daily AMAPE (%) for non-linear parallel models using selected topologies
(validation set).

Early
winter

Sundays

Summer
Sundays

Late
winter

Sundays

Early
winter

working
days

Summer
working

days

Late
winter

working
days

Early
winter

Saturdays

Summer
Saturday»

Late
winter

Saturdays

Model NNART NNAR NNART NNARTS NNARTS NNARTS NNART NNART NNART

Topology 6 x 1x 1 3xlx] 6x3x1 6x3x1 5xlx] 6x3x1 6x3x1 6x3x1 6 x 1x1

AMAPE 2.41 2.98 2.32 1.92 2.23 1.89 2.52 2.90 2.28

The end-sum model forecasts the sum of the load over the period o f a day. The 

first part of constructing this model was to form a series made up o f the daily 

sums. This series was then modelled in a manner similar to the partitioned series. 

That is; a preliminary linear model is first used to remove the trend and seasonal 

component, and then the residual is modelled using a neural network. The 

preliminary linear model has been described in Section 6.2 and is in fact the 

trend model (TM). This is because the sum of the load over the period o f a day is 

simply the average load for that day multiplied by twenty-four.

Table 6.9 below summarises the end-sum model performance, type and topology 

used for each of the day-types. It should be noted that the AMAPEs for the end- 

sum models are lower than for the parallel models as it is easier to forecast the 

sum of load over a day rather than at particular hours.

Table 6.9 AMAPE (%) for non-linear end-sum models using selected topologies (validation
set).

Early
winter

Sundays

Summer
Sundays

Late
winter

Sundays

Early
winter

working
days

Summer
working

days

Late
winter

working
days

Early
winter

Saturdays
Summer
Saturdays

l.atc
winter

Saturday»

Model NNART NNAR NNART NNARTS NNARTS NNARTS NNART NNART NNART

Topology 3xlxl 2 xlxl 2 x2 x1 2 x 1x 1 2 x2 x1 2x3x1 2x3x1 3x3x1 2 x2 x1

AMAPE 1.95 2.17 1.67 1.25 1.43 1.45 2.61 2.01 1.81
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6.4 The Multi-Timescale Model.
The sequential model (Section 6.2), cardinal point, end-point and end-sum 

forecasts are now combined by using the MTS technique (Section 3.3.4). 

Specifically, the following are combined:

• Sequential model forecasts from a forecast horizon o f 1 to N  (see Section

3.3.4.2), where N  = 72, i.e. a three day ahead SM forecast. Note: the 

adjusted SM forecasts (Section 6.2.4) are used in this section,

• Cardinal point forecasts at the hours o f 5 a.m., 1 p.m., 2 p.m., 6  p.m. and 11 

p.m. for one day ahead only. These hours are chosen as they have been 

identified by Eirgrid as the most important hours o f the day (Murray, 2000),

• End-sum forecasts for the first, second and third day ahead.

The first state in the SM is fixed and the other states are allowed to vary in the 

MTS technique in order to combine the forecasts above. It was found by Murray, 

(1996) that fixing the first state (the trend component, see Equation 6.2) and 

freeing the other states in a DPRW (as is used in the SM here) gave the best 

results.

In addition, all o f the forecast origins are chosen to be at 12 a.m. (00:00 hrs) as 

this is the first hour o f each day. The parameters o f the multi-time scale model 

are summarised in Table 6.10 below.

Table 6.10 Parameters for the MTS model (see Section 3.3.4.2 for definitions).
Variable Values/Dimension Description

n 25 Dimension o f the state vector Q(k)
r 24 Number o f freed states o f 6{k)
N 72 Number o f points used in the smoothing constraint
M 5 Number o f cardinal point forecasts used.
P 3 Number o f end-sum forecasts used.

Ci [5 13 14 18 23]
The distance from the forecasting origin to the iw 
cardinal point.

S 24 Length o f the summations for end-sum model.
1x80 Weight vector.

w 80x80 Diagonal weight matrix.
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The weight matrix, W, must now be determined. This is examined in Sections

6.4.1 and 6.4.2.

6.4.1 Weight determination: A numerical approach

The diagonal elements o f the weight matrix, w,-, may be expressed in terms of the 

weights applied to the five cardinal point deviations, w j,..., W5, three end-sum 

deviations, w^,..., and 72 sequential model deviations, wy,.. wso, as:

diag(W ) = [w, ••• w5 w6 w7 w8 w9 ■■■ w32 w33 ••• w56 w57 ••• w80]

------ v------  '----------V----------,v--------- V--------- ---------- V--------- "--------- ---------
Cardinal points End-Sum SMdayl SMday2 SMday3

where ‘SM day 1’ refers to the SM deviations from the MTS forecasts for day 1, 

etc. In order to reduce the dimension o f the weight matrix above, it is assumed 

that the weights applied to the sequential model deviations are the same for each 

day:

[w9 ■■■ W32] = [w33 ••• w56] = [w57 ••• w80] (6.6)

Three types o f technique are now examined for determining the weight matrix:

1. A random approach (Section 6.4.1.1), where wi,...,W 32 are assigned 

randomly, with no regard to the differing accuracies o f the models. This is 

included to demonstrate the importance o f calculating the weights properly,

2. Weight profiles (Section 6.4.1.2). Murray (2000) suggests the use o f profiles 

based on experience, and

3. An optimised weight matrix (Section 6.4.1.3), calculated by use o f a non­

linear search routine.

(6.5)
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Three random weight matrices are constructed using a uniform pseudo-random 

number generator. These weights are shown below in Figure 6.9.

Cardinal End-sum

6.4.1.1 Random Weight Selection.

Weight
Figure 6.9. A plot of the diagonal of the three random weight matrices (Note: elements 33

to 56 and 57 to 80 are the same as elements 9 to 32 and so are not shown (see Equation 6.6)).

6.4.1.2 Weight Profile Selection.

The weight profiles constructed by Murray (1996) were developed from

empirical evidence. They are constructed using the following procedure:

• The weights applied to the cardinal point and end-sum deviations are given 

values o f 1 0 0 ,

• The weights applied to the first sequential model deviation, w% are given 

values approximately 1 / 1 0 th o f the weight applied to the cardinal and end- 

sum deviations. This recognises that the end-sum and cardinal point forecasts 

have a greater accuracy than the sequential model forecasts,

• Weights wio to w32 may then be constructed using three different approaches, 

resulting in three different profiles:
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1. SM deviations closer to the forecasting origin are penalised more, 

allowing the MTS forecast more freedom to meet the cardinal and end- 

sum forecasts away from the forecasting origin. This is achieved by 

decrementing the weights by a constant amount:

w i = w g - ( i - 9 ) —  i =  10,. ..,32 (6.7)

2. Alternatively, the SM deviations closer to the end o f the day are given a 

greater weight (for example, W32 is the weight applied to the SM deviation 

for 23:00 hrs and is given a greater weight than w% which is at the 

forecasting origin). This is achieved by incrementing the weights by a 

constant amount:

w i = w 9 + ( i - 9 ) ^ -  i —10,...,32 (6.8)

3. SM deviations close to the forecasting origin and the end of the day are 

given equal weights, so as to obtain more agreement (between the SM 

and MTS forecasts) at both the forecasting origin and at the boundaries 

between the days. The intervening weights are then assigned lower values 

using a quadratic curve as:

w, = 0 .3 8 i2 -1 .5 5 /  + 20.89 i =  9,...,32 (6.9)

• Weights W33 to wg0 are again constructed by repeating weights W9 to W32 (see

Equation 6 .6 ).

These three profiles are shown below in Figure 6.10.
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Figure 6.10. A plot of the diagonal of the three profile weight matrices (Note: elements 33 

to 56 and 57 to 80 are the same as elements 9 to 32 and so are not shown).

6.4.1.3 Optimised Weight Selection.

Given a particular weight matrix (and the various components required for the 

MTS technique, which are described in Section 6.4), the MTS technique may be 

used to produce load forecasts. The load forecasts that are produced over the 

validation set may then be compared to the actual load, to give a MAPE over the 

validation set. By allowing elements w i,...,w 32 o f the weight matrix to vary 

(elements w33,...,wg0 are again calculated using equation (6.6)), a cost function, 

J, may be constructed as:

jf \ ^ ( O - j ^ C O l 100 
•/(w„...,w32) = 2 ,

j=1 y(i) K
(6.10)

where y(k) is the load at time k, y mts(k) is the MTS load forecast at time k  and K  is 

the number o f points in the validation set. The optimised weight selection 

technique consists o f optimising Equation (6.10) via a non-linear optimisation 

routine. The routine used is the FMINSEARCH algorithm in Matlab which uses 

the Nelder Mead direct search algorithm (Box et. al., 1969).
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To start the optimisation, w \,...,w ^2 are initialised randomly using the same 

technique used in Section 6 .4.1.2. The optimisation routine is stopped after five 

thousand iterations. To help avoid local minima or at least find a good local 

minimum, the optimisation is carried out using three different initial conditions. 

Finally, unlike in Sections 6.4.1.2 and 6.4.1.3, different weight matrices are 

optimised for each day-type (i.e. 9x3 optimisations).

Figure 6.11, below, shows three optimised weight matrices for the late winter 

day-type. The optimised values are quite similar, though there are some 

important differences.

Cardinal End-sum Sequential model

W eigh t

Figure 6.11. A plot of the diagonal of the three optimised weight matrices (Note: elements 
33 to 56 and 57 to 80 are the same as elements 9 to 32 and so are not shown).

The amplitudes o f the weights applied to the cardinal and end-point deviations 

are approximately 10 times larger than those applied to the SM deviations 

(Figure 6.11, above). This is in agreement with the weight profiles (Section

6.4.1.2). However, some o f the weights have much lower amplitudes. For 

example, the first optimised weight matrix has a value o f 0.5 for W4 ; the weight 

applied to the 6  p.m. cardinal point deviation. The second optimised weight 

matrix has a value o f 1.75 for W5; the weight applied to the 11 p.m. cardinal point 

deviation. From experience it has been found that applying a large weight to W4
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requires a low weight to be applied to W5, in order to reach a good minimum in 

Equation (6.10) and vice versa.

In the third optimised weight matrix, the value for W28 (the weight applied to the 

5 p.m. SM deviation) has a lower value than the other SM deviation weights, 

implying that the SM forecast for 5 p.m. may have a lower accuracy than the 

other SM forecasts. The cause o f these low weights will be further examined in 

Section 6.5.

Although the optimised weight matrices are similar, the differences between 

them imply that local minimums have been found to Equation (6.10), and that the 

weights are dependent on the initial conditions.

6.4.1.4 Results and Analysis.

Figure 6.12 below, shows the MAPE as a function o f the hour o f the day using 

the SM and the MTS technique, with the three random weight matrices (Section

6 .4.1.1) over the novelty set (late winter day-type). As can be seen, the MTS 

forecast MAPEs are better than the SM model forecast MAPEs at some hours but 

the results are inconsistent.

Figure 6.12. MAPE as a function of the hour of the day for the SM and the MTS technique 
with three random weight matrices (late winter working days, novelty set).
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In addition, the accuracy of the forecasts made using the random weight matrices 

at some hours are very poor (for example, at 13 hrs for random weight matrix 1, 

and at 20 hrs for random matrix 2, in Figure 6.12).

The cardinal point forecasts and end-sum forecasts are superior to the SM 

forecasts. Yet, the forecasts produced by combining the SM, cardinal point and 

end-sum forecasts (via the MTS technique) using the first random weight matrix 

(2.93%) are inferior to the SM forecasts (2.79%). This shows that if  the weights 

in the MTS technique are not estimated correctly, the technique may result in 

very poor forecasts.

Figure 6.13, next page, shows the MAPE as a function o f the hour o f the day, 

using the SM and the MTS technique, with the three profile weight matrices 

(Section 6.4.1.2) over the novelty set (late winter day-type). The MTS MAPEs 

are superior to the SM MAPEs at most hours o f the day and the daily MAPEs for 

the profiles (2.30%, 2.52% and 2.36%) are significantly better than the SM daily 

MAPE. Thus the use o f weight profiles in the MTS technique can generally be 

said to provide increased accuracy.

Figure 6.13. MAPE as a function of the hour of the day using three weight profiles (late
winter working days, novelty set).
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As can be seen, Profile 1 and Profile 3 result in superior forecasts to Profile 2 at 

00:00 hrs (Figure 6.13). 00:00 hrs is the forecasting origin and the weights given 

to the SM deviations at the forecasting origin are given greater weights in Profile 

1 and Profile 3, than in Profile 2. Conversely, Profiles 2 and 3 result in superior 

forecasts to Profile 1 at 23:00 hrs (Figure 6.13). This is because the weight given 

to the SM forecast at this point has a greater weight in Profiles 2 and 3.

At the cardinal points (05:00 hrs, 13:00 hrs, 14:00 hrs, 18:00 hrs and 23:00 hrs) 

the MTS forecasts are all significantly better than the SM forecasts. However at 

the other hours, the results are mixed. This implies that the weight profiles may 

be weighting the cardinal point deviations too heavily, at the expense o f the 

forecasts at other hours o f the day (Figure 6.13).

Figure 6.14, below shows the MAPE as a function o f the hour o f the day, using 

the SM and the MTS technique with the three optimised weight matrices (Section

6.4.1.3) over the novelty set (late winter day-type). As can be seen, the optimised 

weight matrices lead to similar MAPEs for each hour o f the day and are 

significantly better at all hours than the SM forecasts. The first and third 

optimised weight matrices have very similar performance. The second optimised 

weight matrix leads to poorer results and the optimisation procedure in this case 

may have found a poor local minimum.
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H our o f  the day

Figure 6.14. MAPE as a function of the hour of the day using three optimised weight 
matrices (Late winter working days, Novelty set).

Tables 6.11 and 6.12, below, summarise the MTS forecast daily MAPEs 

produced over all day-types using the weight matrices defined in Sections 6.4.1.1 

to 6.4.1.3. The first thing of note is that the optimised weight matrices give 

superior results, in almost all cases, to both the weight profiles and random 

weight matrices. However, there are some exceptions; for example, weight 

profile 3 gives the best results in the validation set during late winter Saturdays 

(Table 6.11). This result may just be a random occurrence as it does not carry 

over to the novelty set (Table 6.12).

The random weight matrices in many cases give inferior results when compared 

to the SM. Thus, the MTS technique requires appropriate estimation of weight 

matrices in order to improve on SM forecasts (as noted in earlier in this section).
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Table 6.11 D aily M A P Es for the S M  and the M T S  model using different types of weight
_______________________________ m atrix (Validation set)._______________________________

Weight type
Early
winter

Sundays

Summer
Sundays

Late
winter

Sundays

Early
winter

working
days

Summer
working

days

Late
winter

working
days

Early
winter

Saturdays

Summer
Saturdays

Late
winter

Saturdays

Random 1. 5.15 4.27 4.41 3.12 2.76 2.75 5.14 4.43 3.97
Random 2. 5.25 4.02 4.31 2.86 2.82 2.29 4.98 4.31 3.46
Random 3. 5.02 4.15 4.12 2.95 2.69 2.39 4.64 4.07 3.35
Profile 1. 4.81 3.69 3.96 2.53 2.46 2.39 4.47 4.04 2.97
Profile 2. 4.77 3.77 3.79 2.34 2.35 2.08 4.56 3.85 2.76
Profile 3. 4.86 3.74 3.82 2.42 2.53 2.24 4.62 3.95 2.65
Optimised 1 3.86 3.32 3.22 2.23 2.13 2.08 3.78 2.79 2.72
Optimised 2 3.84 3.34 3.21 2.23 2.24 2.15 3.69 2.85 2.83
Optimised 3 3.85 3.32 3.24 2.25 2.14 2.09 3.80 2.81 2.83

SM 4.20 3.49 3.70 3.04 2.88 2.90 4.06 2.98 2.75

Table 6.12 Daily MAPEs for the SM and the MTS model using different types of weight 
________________________________matrix (Novelty set).________________________________

Weight type
Early
winter

Sundays

Summer
Sundays

Late
winter

Sundays

Early
winter

working
days

Summer
working

days

Late
winter

working
days

Early
winter

Saturdays

Summer
Saturdays

Late
winter

Saturdays

Random 1. 5.12 4.23 4.36 2.64 2.55 2.93 5.01 3.74 3.45
Random 2. 5.23 3.98 4.23 2.56 2.58 2.46 4.87 3.89 3.01
Random 3. 5.04 4.12 4.10 2.76 2.46 2.62 4.55 3.67 2.98
Profile 1. 4.83 3.67 3.97 2.14 2.23 2.36 4.36 3.42 2.54
Profile 2. 4.75 3.76 3.78 2.12 2.13 2.52 4.45 3.24 2.39
Profile 3. 4.87 3.73 3.85 2.22 2.19 2.30 4.62 3.95 2.65
Optimised 1 4.03 3.10 3.27 1.85 1.93 2.01 3.64 2.15 2.31
Optimised 2 4.01 3.13 3.27 1.85 1.98 2.19 3.60 2.16 2.36
Optimised 3 4.01 3.10 3.29 1.87 1.95 2.01 3.63 2.15 2.35

SM 4.23 3.46 3.59 2.67 2.63 2.79 4.19 2.36 2.30

6.4.2 Weight determination: A deterministic approach

The following derivation seeks to find an analytic solution for the weight vector 

in the MTS technique. The aim is to minimise (in some sense) the error between 

the MTS forecasts o f load and the actual load. However, this aim is in conflict 

with the MTS technique which minimises the deviations between the MTS 

forecast and the SM, PM and end-sum forecasts. The reason for this conflict is 

shown diagrammatically in Figure 6.15 below, which shows a plot o f a MTS 

forecast, a SM forecast and the actual load (note: the end-sum, and PM forecasts 

are excluded for clarity). As can be seen from Figure 6.15; if  the deviation o f the
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MTS forecast from the SM forecast at &+40, ¿40 (see Section 3.3.4.2), is forced to 

zero (i.e. the MTS forecast at this point is forced to be equal to the SM forecast), 

then the forecast error at this point, say £40 ( note: £45 is shown in Figure 6.15 for 

clarity), will be non-zero. Alternatively if  £40 is forced to zero (i.e. the MTS load 

forecast at this point is forced to be equal to the actual load), then the deviation 

will be non-zero and hence the conflict.

Figure 6.15 Diagram showing the conflict between minimising <$ and e, together.

The final aim o f all forecasting models is to minimise the forecasting error in 

some sense. The MTS technique is based on the assumption that by maintaining 

the shape of the SM forecast with adjustments from the PM and end-sum models, 

the forecasting error will be reduced. In this sense the MTS technique is similar 

to a regularising term (see Haykin, 1999); i.e. a term added to the cost function 

which places a penalty on some geometric quality o f the model, so as to aid its 

ability to generalise. The approach presented below constructs an error cost 

function based on the standard sum of squared errors plus a régularisation term 

based on the MTS technique.

Define a vector w as the diagonal of the weight matrix, W, as:

w,
Wr.

w =

wN+M + P

= diagiW ) (6 .11)
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where N  is the number o f points used in the smoothing constraint, M  is number 

of cardinal point forecasts used, P  is the number o f end-sum forecasts used and 

Wi is the i'th element o f w. The aim of this derivation is to find the optimal value o f 

w.

Define a vector, y , o f actual loads in the training set as:

y  = [y(l)  y (  2 )  -  y(K)} (6.12)

where K  is the number of points in the training set and y(k) is the load at time k. 

In addition, define a vector of forecasts made by the eventual model, v , as:
’ J  ’ — mis

£„=1y.JV y,JV -  («13)
where y mts(k) is a one-step ahead forecast for time k. A standard sum of squared 

errors cost function may now be defined as:

• / w - k - j ( 614)

where J(w) is the sum of squared forecast errors (Note: this is not the only cost 

function that could be used). Note that J  is a function o f w, which is the unknown 

parameter. However, it is desired to maintain the shape o f the forecast by use of 

the MTS technique, i.e. Equation (6.14) is constrained by Equation (3.79) 

(Section 3.3.4.2) evaluated at k =1,.. .,K:

C(w) =

0 *2 (1, w ) - ( b t WB)~X B  t  WA (1) 
e l (2, w ) - { b t Wb)~X B t WA(2)

=  0 (6.15)

Q\(K , w )- (Br WB)~lB tWA(K)_

where C(w) is the constraint, 0\ ( k , h>) is the vector o f freed states which is now 

indexed by k  to show that the altered state vector changes as a function o f time 

and is also a function o f the weight vector, w. W  is a diagonal weight matrix, B  

and A(k) are matrices as defined in Section 3.3.4.2 and A(k) is also now indexed 

by k  as it is different at each k. Thus Equation (6.14) is to be solved subject to the 

constraint in Equation (6.15). This problem may be classified as constrained
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optimisation and may be solved with the use o f Lagrange multipliers (Apostol, 

1974).

Given a cost function J(w) and an equality constraint C(w) the objective is to find 

a value wq o f w  (Apostol, 1974) such that:

w{] = argm inJ(w ’) (6.16)
{tv:C(M>)=0}

The Langrangian may be defined as:

G (w ,A) = J (w )-C (w )A  (6.17)

where G(w,A) is the Langrangian and vl is a column vector o f  Lagrange 

multipliers, A= [A\ fa . It is well known that under regularity conditions,

wo in Equation (6.16) can be equivalently solved as the solution (Apostol, 1974) 

to the following extremal problem:

(w0, A 0 ) = arg min arg max G(w, A) (6.18)
w A

Taking the partial derivatives o f Equation (6.18) with respect to w  and A  and 

setting equal to zero gives:

BG(w, A) _ dJ(w) dC(w) A  = Q (6 ̂  9)

and

Defining:

^ ^  = C(w) = 0 (6.20)
oA

(6.2 I ,
d w  V

and substituting into Equation (6.19) gives:

^ ^ - 0 / 1  = 0 (6.22)
dw

In solving Equations (6.20) and (6.22) one could eliminate w and then solve for

A  or eliminate A  and then solve for w. If  Q is o f full rank then the easiest

approach is to eliminate A  and then solve for w.
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Pre-multiplying Equation (6.22) by Q T gives (Apostol, 1974):

(6.23)
d w

As the determinant of £2QT ^  0 Equation (6.23) can be solved for A  as:

d w

Substituting back into Equation (6.23) gives (Apostol, 1974):

A = (Q Tn Y n T ^ ^ - (6.24)

( / - Q ( a 7i2 ) ''Q r ) ^ ^  = 0
d w

(6.25)

The matrix Q(i2rQ) '£}r has well known properties and is idempotent (Apostol,

1974) i.e.:

(6.26)

In addition, the rank o f C^Q7̂ )  is the same as the rank of Q. If £2 is of full

rank then there is a unique solution for to = w using Equations (6.26) and 

(6.20) (Apostol, 1974).

Returning to the MTS problem considered here, the first thing to consider is 

whether £2 is o f full rank. Examining Equation (6.21) it can be seen that Q is of 

full rank i f  each of the partial differentials o f C(w) with respect to w are 

independent. The only term in C(w) (Equation 6.15) that differs between the 

rows o f C(w) is A(k), k= \,...JC . Thus we require that:

otherwise one row will be equal to another and C(w) will not be full rank. A(k) is 

a function o f the SM states, cardinal point forecasts and end-sum forecasts (see 

Equations 3.77 and 3.78). Thus it is likely that Equation (6.27) holds', as the SM 

states, the cardinal point forecasts and the end-sum forecasts vary over time (due 

among other things to a rising trend in load). Thus a unique minimum of w 

probably exists.

The gradient of Equation (6.15) with respect to w now needs to be calculated. 

However, the mathematics soon became intractable and a closed form solution 

could not be found (details are given in Appendix B). Another solution would be

A (k )^ A ( j)  k,j = l,...,^Tand k ^ j (6.27)
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to solve Equations (6.25) and Equation (6.20) numerically. Details o f this 

approach can be found in Apostol (1974).

6.5 A Comparison of Parallel and Multi-Timescale Models.

Figure 6.16 below, shows the MAPE as a function o f the hour o f the day for the 

SM, PMs and MTS model during the late winter working day day-type (novelty 

set). As can be seen, the MTS model and PMs perform significantly better than 

the SM at all hours. In addition, the M TS’ and PM ’s performance is similar at 

most hours of the day. The MTS model gives better results over the hours o f 09 

hrs to 14 hrs. It is interesting to note that within these hours, there are two 

cardinal points (1 p.m. and 2 p.m.). Conversely, the MTS forecasts at 17 hrs (5 

p.m.) are significantly inferior to the PM forecasts, despite the presence of a 

cardinal point at 18 hrs (6 p.m.).

Figure 6.16. MAPE as a function of the hour of the day using for the SM, PMs and MTS 
model (optimised weight matrix 3, late winter working days, novelty set).

Figures 6.17, below, features the same graphs as Figure 6.16, above, except that 

the data used is the summer working day day-type (novelty set). As can be seen, 

the MTS and PMs forecasts again have similar accuracy at most hours of the day. 

However, it can be seen that at 5 p.m. and 6 p.m., the MTS forecasts are again 

inferior to the PM forecasts. In addition, the forecasts o f load at 8 p.m. for the
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summer working days, using the MTS model, are significantly inferior to those 

of the PMs.

Figure 6.17. MAPE as a function of the hour of the day using for the SM, PMs and MTS 
model (optimised weight matrix 1, Summer working days, novelty set).

Figures 6.18, below, features the same graphs as Figure 6.17 above, except that 

the data used is the early winter working day day-type (novelty set). Again it can 

be seen that at 5 p.m. and 6 p.m. the MTS forecasts are inferior to the PM 

forecasts. In addition, the MTS forecasts o f load at 7 p.m. are significantly 

inferior to those o f the PMs.

UJ
o .<5

0.5— ---------  ‘ ——  *0 5 10 15 20
Hour of the day

Figure 6.18. MAPE as a function of the hour of the day using for the SM, PM s and MTS 
model (optimised weight matrix 1, early winter working days, novelty set).
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In Section 5.3 the partitioned series were examined for independence and it was 

found that at the hours o f 8 a.m. and 5 to 8 p.m., the load may have independent 

components. This implied that a parallel approach would be superior to a 

sequential approach at these hours (see Section 3.2.2). The MTS model, which is 

a mix o f parallel and SMs, performs well compared to the PMs at all hours 

except between 5 p.m. and 8 p.m. as seen above. Thus there is more evidence to 

support the view that the load at these hours may have independent components. 

However, there appeared to be no significant differences between the MTS and 

PM performance at 8 a.m. and so the presence o f an independent component at 

this hour o f the day is questionable.

Tables 6.13 and 6.14 below, summarise the performance of the SMs, PMs and 

MTS models in all day-types. The MTS models used the three optimised weight 

matrices and the average o f the MAPE is taken.

As can be seen, the MTS technique does not perform well for some weekend 

day-types compared to the PM forecasts (specifically in the early winter 

Sundays, late winter Sundays and early winter Saturday day-types). This is 

because the MTS technique attempts to maintain the shape o f the SM forecast up 

to three days into the future (Section 6.4). However, as discussed in Section 

6.2.4, there is a ‘shift’ in the load after every day in the weekend day-types. The 

MTS forecasts do not have this shift and so have the same problem encountered 

with the sequential models in Section 6.2.4. In the case o f the SM, the state 

vector, 0 {k), could be changed to account for the ‘shift’ in the load by 

estimating the trend and seasonal states separately (Section 6.2.4). However, the 

MTS technique estimates an altered state vector, 0*(k) (see Section 3.3.4.2), via 

a weighted least squares solution and so estimating the trend and seasonal 

component separately may not be possible. The working day day-types also 

have a ‘shift’ in the load (Section 6.2.4). However, in this case it occurs after 

every five days and does not affect performance dramatically.
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The MTS forecasts perform well compared to the PM forecasts during summer 

Saturdays and summer Sundays. A possible reason for this, despite the effect of 

the ‘shift’ described above, is that load is relatively uncorrelated to weather 

during the summer months (Section 4.2.2). Thus the ‘shifts’ are not as 

pronounced in summer as they are in winter.

Table 6.13 Daily MAPEs for PMs, SM and MTS model (validation set).
Model
Type

Early
winter

Sundays

Summer
Sundays

Late
winter

Sundays

Early 
winter 

working 
da vs

Summer
working

days

Late
winter

working
days

Early
winter

Saturdays

Summer
Saturdays

Late
winter

Saturdays

SM 4.20 3.49 3.70 3.04 2.88 2.90 4.06 2.98 2.75
PM 2.41 2.98 2.32 1.92 2.23 1.89 2.52 2.90 2.28
MTS' 3.85 3.33 3.22 2.24 2.17 2.11 3.76 2.82 2.79

Table 6.14 Daily MAPEs for PMs, SM and MTS model (novelty set).
Model
Type

Early
winter

Sundays

Summer
Sundays

Late
winter

Sundays

Early
winter

working
days

Summer
working

days

Late
winter

working
days

Early
winter

Saturdays

Summer
Saturdays

Late
winter

Saturdays

SM 4.23 3.46 3.59 2.67 2.63 2.79 4.19 2.36 2.30
PM 2.67 3.21 2.39 1.69 2.10 1.98 2.23 2.68 2.23
MTS 4.02 3.11 3.28 1.86 1.95 2.07 3.62 2.15 2.34

6.6 Conclusion.
The multi-timescale technique consists o f combining the forecasts o f several 

different models. The models combined (the sequential models, parallel models 

and end-sum models) were presented, and methods for determining the weight 

matrix used in the technique were examined in depth. Finally, a comparison of 

the MTS and parallel models was performed.

The sequential models were examined in Section 6.2, but it was found that they 

performed inadequately. Partitioning the data into day-types results in several 

intervening days being removed (Section 5.2). This in turn resulted in a shift in 

the load at the point were the days were removed (Section 6.2.4, Figure 6.5). The 

underlying requirement o f a sequential approach is that a data set is hour of the 

day independent. However, the shift mentioned above occurs only at 23 hrs and 0
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hrs, i.e. between days. Thus, partitioning the data by day-type produces data sets 

that are not hour o f the day independent.

For a working-day day-type, a shift occurs once every 5 days, which may appear 

negligible. However, as was seen in Section 6.2.4, this has an adverse effect on 

estimation of the seasonal component in the SM. The solution involved 

modelling the trend component as constant at all hours o f a day (Section 6.2.4). 

This is equivalent to modelling the trend using a parallel approach, as there is 

only one value that needs to be estimated per day.

The multi-timescale technique was examined in Section 6.4. An essential part of 

this technique is determining appropriate values for the weight matrix. A novel 

technique was examined in which the weights are determined by means of 

numerical optimisation. It was found that the weights determined improved the 

performance o f the MTS technique above previous procedures (i.e. weight 

profiles, Section 6.4.1.2).

Three optimised weight matrices were trained for each day-type (Section

6.4.1.3). It was found that each optimised weight matrix led to good results when 

used in the MTS technique. This is important as the optimisation procedure is 

computationally expensive, and is impractical to perform numerous times.

Section 6.4.2 examined the theory behind the MTS technique. It was proposed 

that the MTS technique should be viewed as a régularisation term, as the 

estimation o f the altered state vector, 0*2 (k, w ) , is not related to forecasting error, 

but rather to the shape o f the multi-step ahead forecasts. A technique based on 

constrained optimisation was then proposed for altering the MTS technique to 

include a measure o f the forecast error. This is achieved by optimising the weight 

matrix as a function o f forecast error. However, due to the complexity of the 

equations involved, a closed form solution cannot be found and a numerical 

solution is instead proposed.

* Three optimised weight matrices are used and an average MAPE taken.
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In Section 6.5 the MTS technique was compared to the parallel models. The 

results showed that overall the MTS and parallel models provide similar forecast 

accuracy. At some hours o f the day, the MTS forecasts are marginally superior to 

the parallel model forecasts. However, at other hours o f the day (5 p.m. to 8 

p.m.) the parallel model forecasts are significantly better than the MTS forecasts.

Finally, due to the problems with a shift in the load between day-types, the MTS 

technique was found not to perform well during weekend days in winter (Section 

6.5). In summer the shift is less significant and the MTS technique was found to 

compare well to the PMs during weekend days.
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Chapter 7

7.1 Introduction.

Model fusion  consists o f taking the forecasts from several models (which forecast 

the same variable) and combining them into one forecast known as a fused  

forecast. The concept o f model fusion is well known in the general field of 

forecasting and was pioneered mainly by Bates and Granger (1969) and Reid 

(1968). Fused forecasts are often more accurate than any of the individual model 

forecasts (Palit and Popovic, 2000, Xiong et. al., 2001, Shamseldin et. al., 1997 

and Perrone and Cooper, 1993, among others). This is because different models 

are often better at modelling different aspects o f an underlying process and thus 

combining the models appropriately gives a better forecast. In addition, a single 

model incorporating all aspects o f an underlying process may be more complex 

and difficult to train than the individual models (Palit and Popovic, 2000). The 

concept o f model fusion therefore agrees with the 'divide and conquer' strategy 

discussed in Section 4.2.1 (in that case segmentation o f the data set was 

discussed).

Model fusion has been applied to many fields. Examples are rainfall run-off 

models (Shamseldin et. al., 1997, Xiong et. al., 2001), wine analysis (Rong et. 

al., 2000) and chemical processes (Sridhar et. al., 1999). However, at the time o f 

this author’s publication in the area, model fusion was new to the field o f short - 

term load forecasting (Fay et. al., 2000). Model fusion is particularly suited to 

short term load forecasting, due to the problems encountered when using weather 

forecasts in STLF models (Section 3.5). In Section 3.5 it was pointed out that 

STLF models should be trained with actual weather inputs, even though they are 

used with weather forecasts. However, i f  information is available on weather 

forecast errors, and this can be incorporated into the STLF model, then models 

using forecasted inputs can be substantially improved.

Fusion of Models for Load Forecasting.
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Model fusion offers the following solution procedure:

1. Several models (called sub-models) are first trained. The models differ in the 

inputs presented, e.g. the weather and non-weather inputs are presented to 

different models, and

2. The sub-model forecasts are fused together. At this point the errors in the 

weather forecasts may be taken into account.

This solution methodology allows the problem of weather forecast errors to be 

dealt separately from the parameter evaluation stage o f the model.

In general terms, model fusion may be expressed as a function approximation 

problem of the form:

/fi.se(/i(*)/2(*),. --M x))  = fix) + £ (7.1)

where J(x) is the function to be approximated, x  is a vector o f inputs,/fuSe is the 

model fusion algorithm, f ( x )  is sub-model i, N  is the number of sub-models used 

and e  is an associated error term. Note that each sub-model also attempts to 

approximate the function^*) i-e.:

f i x )  = f ix )  + Vi (7.2)

where f ( x )  is the function implemented by sub-model i and vt is the error 

associated with that sub-model.

As with STLF techniques, model fusion techniques may be categorised as either 

linear or non-linear. In the linear case, Equation (7.1) may be expressed as a 

weighted sum of the sub-model forecasts (McCabe, 1991), as:

fix )  = w\f\(x) + w2f2(x)+ .. .+wNfy (x ) ...+ £  (7.3)

where w, is the weight applied to sub-model forecast i. There are several linear 

fusion algorithms available but they all share the advantage that the weights may 

be determined uniquely and optimally (in some sense, see below) from the data 

set. For example, McCabe's fusion algorithm minimises the trace o f the 

covariance matrix o f fused forecast errors (see Section 7.4.2) while the weighted 

average method (Shamseldin et. al., 1997) minimises the sum of squared errors.
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Thus linear combination methods will give an optimal result (in the linear least 

variance sense in the case o f McCabe's algorithm (1991) and the best linear f i t  

sense in the case of the weighted average method).

As pointed out by Fiordoliso, (1998), the function approximation performed by 

Equation (7.3) is not a universal approximator. That is; linear fusion models do 

not have the ability to approximate an arbitrary function with an arbitrarily small 

error. This is because linear fusion models can only express f ix )  as a (weighted) 

sum of several other functions (i.e. Equation 7.3). In the opinion o f Palit and 

Popovic (2000) it is unlikely that an underlying process f ix )  can be expressed as 

such. Thus they conclude that the use o f linear fu_ on models is questionable.

Non-linear fusion models use a non-linear function to implement /fuse(#) in 

Equation (7.1). Several techniques may be used, such as fuzzy logic (Section

3.4.2) or neural networks (Section 3.4.3). Although fuzzy logic and neural 

network techniques are themselves universal approximators, the function 

approximation implemented by the overall non-linear model fusion  is not 

(contrary to the view expressed by Fiordoliso, 1998). This is because information 

may be lost by the sub-models which cannot be recovered by /fusc(«) (Palit and 

Popovic, 2000).

In contrast to the linear fusion model, non-linear fusion modelling techniques do 

not have a unique structure or solution for the parameters. As discussed in 

Sections (3.4.2) and (3.4.3) it may be difficult to obtain an optimal or near 

optimal model.

In conclusion, linear and non-linear fusion models both have disadvantages 

which are dependent on the underlying process and so the choice between them 

is application specific.

In practical terms, the first factor to be noted is the availability of the weather 

forecast data. From Table 2.2 (Section 2.2) weather forecasts are available for the 

period of 1st February 2000 to 1st March 2000. These forecasts are available only 

for temperature, cloud cover, wind speed and wind direction; thus humidity
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forecasts are not available. In addition, the weather forecasts that are available 

are for days in the late winter day-types and so these are the only day-types 

analysed. Also note that statistics on the weather forecasts such as confidence 

intervals etc. are not available.

7.2 Modelling Weather Forecast Errors.

Due to the sparseness o f weather forecasts and the fact that weather forecast 

errors change over time (see Section 3.5), it is necessary to model the error on 

the weather forecasts to produce what are termed pseudo-weather forecasts. The 

approach here is to first model the temperature forecast errors as temperature is 

the dominant input variable. The other weather forecast errors are then analysed.

7.2.1 Modelling Temperature Forecast Errors.

Figure 7.1 below shows a plot o f the actual and forecast temperatures for 1st 

February 2000 to 1st March 2000. As can be seen, the temperature forecasts are 

reasonably accurate.

Hours from start of data 

Figure 7.1. Actual and forecast temperature (1st February 2000 to 1st March 2000).

However, the errors in the forecasts do not seem to follow a Gaussian 

distribution but rather are either above or below the actual for prolonged periods 

(Figure 7.2). The weather in Ireland is dominated by Atlantic weather systems.
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When a weather system or front reaches Ireland, there is a shift in the level o f the 

temperature and other weather variables. This shift is also a factor that the Irish 

Meteorological Office must forecast. In Figure 7.2 it can be seen that the sign of 

the weather forecast error typically changes when there is a large change in the 

temperature.

Figure 7.2. Actual and forecast temperature (6th to 15th February 2000).

The points at which there is a shift in the temperature are called turning points. 

Several different procedures were attempted to find the turning points. However, 

the following procedure was found to give excellent results:

1. The temperature is first smoothed to provide an easier means of detecting the 

turning points. To this end the temperature is filtered using an IRW (Section

3.2.2.2). The states of the filter are estimated using a Kalman filter (Section

3.3.2.1). In contrast to previous state space approaches in the current

research, the a posteriori state estimate, 0 + (k ) ,  (as opposed to the a priori 

state estimate) is used to estimate the temperature. The smoothed temperature 

at time k, T (k ) is then:
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T(k) = H j r ( k ) (7.4)

Where is the observation matrix o f an IRW (Section 3.3.2.2). The a 

posteriori state estimate is used, because the aim is to smooth the 

temperature and not to forecast it. The noise-variance ratio, (Section

3.3.2.4) o f the filter was set to .03. This algorithm was found to be robust to 

a wide range o f values for £ , and

2. A window, with a width of eleven hours, is then passed over the smoothed 

temperature. If the smoothed temperature at the centre o f the window is the 

maximum within that window:

and it is greater than half the average value o f the other smoothed 

temperatures in the window:

Then point k is designated a high turning point. The procedure for finding a 

low turning point is equivalent except that the minimum is used in Equation 

(7.5). Figure 7.3 below shows the actual weather, the weather forecasts and 

the high and low turning points.

T(k) = ma\ [ f ( k  -  5), f ( k  + 5)] (7.5)

i £  5 (7.6)
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Figure 7.3. Detected turning points in temperature (1st February 2000 to 1st March 2000,
second graph is a close-up).

Had the Irish Meteorological Office known the level o f the temperature in 

advance then it is the assumption o f this analysis that they would have no 

forecast errors. To test this assumption the mean (called the level here) and 

standard deviation (called the shape here) o f the actual and forecast temperatures 

between the turning points is calculated. An adjusted forecast is then produced 

by removing the level and shape of the temperature forecast and introducing the 

actual level and shape as:

T(k)  =
T( k ) ~Tk k

'  '  t o . • 'i l l

a f.
r. +7; , k e [ k IB,kID (7.7)

Where T (k ) is the adjusted temperature forecast k  hours from the start o f the 

forecast data (1st February 2000), T(fc) is the forecast temperature and kv is the

ith turning points. The following statistics are calculated between the im and ¿+1■th I th

turning points klp. and k tp̂  ; Tk>pì+i ' kin •**.,+1is the average forecast temperature or
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level, <7- is the forecast temperature standard deviation or shape, Tk k is
K‘Pi 'K*Pi+\

the average (or level) o f the actual temperature and <JT is the standardk<pi ■*'«+1

deviation (or shape) o f the actual temperature. Figure 7.4 below shows the 

adjusted temperature forecast and the actual temperature.

Hours from start of data 
Figure 7.4. Adjusted temperature forecast and actual temperature (1st February 2000 to 1st

M arch 2000).

As can be seen, there is good agreement between the adjusted and actual 

temperatures. The temperature forecast errors can now be divided into the 

following components:

• The difference between the adjusted and actual temperature, T ( k ) - T ( k ), 

called the random error,

• The difference between the forecast temperature level and the actual level

(between the turning points), Tk̂   ̂ ~Tk[p ktp  ̂ , called the level error, and

• The difference between the forecast temperature shape and the actual shape,

i7 - — <7r, , , called the shape error.



Figure 7.5 below, shows the histograms o f the three errors listed above with 

Gaussian distributions which have been fitted to the data. In addition the SACF 

of the random temperature forecast errors is shown. Although the SACF o f the 

random forecast errors is statistically significant for some lags the auto­

correlation is still quite small and thus it can be assumed that the random forecast 

error are indeed taken from a random population. Similarly, the level and shape 

errors are found to be taken from a random population.
150

100

oÖ
3  50 
CT <D 
JhUi

•10

12

Random error Level error

-----  SACF
■••• +/• 95% Conf. Int.

■ Outside bounds
O  inside bounds

Shape error Lag

Figure 7.5. Various statistics of temperature forecast errors.

Histogram 

, Fitted Gaussian

As can be seen, the Gaussian distributions fit the histograms well. Thus, it is 

assumed that the temperature forecast shape, level and random errors are 

normally distributed.

The values o f the fitted normal distributions in Figure 7.5 are shown in Table 7.1 

below.
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Table 7.1 Fitted normal distribution values for the difference between weather forecast 
statistics and actual weather statistics. ___

Distribution Mean Standard Deviation

T (k) - T (k)  (Random) -.5312 1.4902

Tk k - Tk k (Level)h<Pi ’*</>(+] K,Pi' <Pi+\
0.0292 1.3131

<7- - O', (Shape)
tPI+PM

0.9407 0.8008

Reversing the previous analysis gives a mechanism by which pseudo­

temperature forecast errors can be produced. This process involves the following 

algorithm called the pseudo-weather forecast generation algorithm :

1. The turning points in the actual temperature are identified,

2. A Gaussian random number generator is used to generate pseudo values for 

the random temperature forecast errors (using the values in Table 7.1). These 

are then subtracted from the actual temperature to produce a pseudo adjusted 

weather forecast, T  (k ),

3. A Gaussian random number generator (using the distribution values in Table

7.1) is used to generate pseudo values for f .  , and <J- denotedypir tpi+i 1 k, k.*tpi >ktpi+1

TV , and o , respectively, and
***** V w

4. Equation (7.7) is inverted as:

T \k )  =
f  T \ k ) - T k k% '  ktr, •*»,. I

o T>vi *Vi»i
^  . + K , o x t"•PI •*&i>|

Where f  (k) is the pseudo weather forecast required.

Figure 7.6 below shows the pseudo-temperature forecasts produced for the 

period 1st February 2000 to 1st March 2000.
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Figure 7.6. Actual and pscudo-forecast temperature (I1' February 2000 to 1st March 2000).

Figure 7.7 shows the SACFs o f the temperature forecast errors and the pseudo­

temperature forecast errors. As can be seen, they are in good agreement, showing 

that the pseudo-temperature forecast errors have similar statistics to the 

temperature forecast errors. Finally, the sum squared error o f the weather 

forecast errors (3.32x103) compares well with that o f the pseudo-weather 

forecast errors (3.02* 103).
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Figure 7.7. SACF of forecast and pseudo-forecast temperature errors.

7.2.2 Modelling Cloud Cover, Wind Speed and Wind Direction 
Forecast Errors.

The cloud cover, wind speed, and wind direction weather forecast errors are 

modelled in a similar way to the temperature forecast errors. Note that the 

turning points are assumed to be the same for all weather variables. Figures 7.8 

to 7.10 show the distributions and SACFs o f these weather variables.

Figure 7.8. Histograms for cloud cover forecast errors and the SACF of the cloud cover 
forecast errors and the pseudo forecast errors.
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Figure 7.9. Histograms for wind direction forecast errors and the SACF of the wind direction 
forecast errors and the pseudo forecast errors.
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Figure 7.10. Histograms for wind speed forecast errors and the SACF of the wind speed 
forecast errors and the pseudo forecast errors.

235



The cross-correlation (co-efficients) o f the three types o f weather forecast errors 

in temperature, cloud cover, wind speed, and wind direction weather forecast 

errors shown in Tables 7.2 and 7.3 below*.

7.2.3 Joint Modelling of Weather Forecast Errors.

Table 7.2 The cross-correlation matrix of random forecast errors of temperature, cloud 
______________________ cover, wind speed and wind direction.______________________

Random error type Temperature Cloud Cover Wind Direction Wind Speed
Temperature 1.00 0.06 0.02 0.21
Cloud Cover 0.06 1.00 0.02 0.00
Wind Direction 0.02 0.02 1.00 0.06
Wind Speed 0.21 0.00 0.06 1.00

Table 7.3 The cross-correlation matrix of shape and level forecast errors of temperature,
cloud cover, wind speed and wind direction.

Error type Temperature
Level

Temperature
Shape

Cloud
Cover
Level

Cloud
Cover
Shape

Wind
Direction
Level

Wind
Direction
Shape

Wind
Speed
Level

Wind
Speed
Shape

Temperature
Level

1.00 -0.26 0.17 0.16 0.26 -0.02 0.32 0.16

Temperature
Shape

-0.26 1.00 -0.37 0.16 0.00 -0.02 -0.01 0.04

Cloud Cover 
Level

0.17 -0.37 1.00 -0.09 0.08 0.08 0.02 0.14

Cloud Cover 
Shape

0.16 0.16 -0.09 1.00 0.08 0.19 0.04 0.17

Wind Direction 
Level

0.26 0.00 0.08 0.08 1.00 -0.37 0.07 0.19

Wind Direction 
Shape

-0.02 -0.02 0.08 0.19 -0.37 1.00 -0.22 0.26

Wind Speed 
Level

0.32 -0.01 0.02 0.04 0.07 -0.22 1.00 -0.19

Wind Speed 
Shape

0.16 0.04 0.14 0.17 0.19 0.26 -0.19 1.00

As some o f the cross-correlations are quite large this implies that some o f the 

errors are jointly distributed. For example, as the cross-correlation coefficient 

between the wind speed level error and temperature level error has a correlation 

coefficient of 0.32 (highlighted in Table 7.3), these errors are most likely 

correlated.

It is assumed that as the distributions o f the all the weather forecast errors (i.e. 

the random, level and shape errors) are normally distributed, they are also jointly  

normally distributed.

* As the random weather forecast errors are not serially correlated (Figure 7.5) they are assumed 
to be uncorrelated to the level and shape forecasts and so are shown separately.
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In order to take account o f the fact that the weather forecast errors are jointly 

normally distributed the pseudo-weather forecast generation algorithm laid out in 

Section 7.2.1 must be adapted. This is achieved by changing step 3 o f the 

algorithm to:

3. A multivariate Gaussian random number generator (using the distribution 

values in Table 7.2) is used to generate pseudo values for the random errors 

in temperature, cloud cover, wind speed and wind direction simultaneously. 

A multivariate Gaussian random number generator (using the distribution 

values in Table 7.3) is then used is used to generate pseudo values for the 

level and shape errors in temperature, cloud cover, wind speed and wind 

direction simultaneously.

The multivariate Gaussian random number generator used is based on the 

Cholesky decomposition and details may be found in Dagpunar (1988). The 

jointly generated pseudo-weather forecasts are those used in the remainder o f this 

chapter.

7.3 Choice of Load Forecasting Model.

Four models were identified in Section 3.5.2. for minimising the effect of 

weather forecast error on load forecasts:

1. The fuzzy logic model o f Bitzer and Rofler (1998),

2. The fuzzy logic model of Rahman and Hazim (1993),

3. The ensemble models o f Taylor and Buizza (2003), and

4. The Hammerstein model o f Miyake et. al., (1995).

The first approach seeks to reduce the effect o f weather forecast error by 

fuzzification of the inputs. This is equivalent to using a qualitative rather than 

quantitative measure of the inputs (e.g. temperature is high). It is presumed
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however that the magnitude o f  the weather forecast error is not sufficient to 

change the classification o f the inputs (e.g. temperature may be classed as high 

when in fact it is low). The approach here however is to deal with the weather 

forecast errors in a quantitative way.

The second and third approaches uses statistics o f the weather forecasts as inputs 

These are provided for each weather forecast by the weather forecast service 

used by Rahman and Hazim (1993) and by Taylor and Buizza (2003). As 

confidence intervals or any other statistics regarding individual weather forecasts 

are not available in the current research this approach cannot be used.

The third approach (Miyake et. al., 1995) constructs a set o f N  candidate models 

(or sub-models) each with differing inputs and selects the best model (Section

3.5.2). Each sub-model is evaluated using the FPEEV (Section 3.5.2) which is a 

function o f the error covariance matrix o f the weather forecast errors. This 

approach has the advantage that the effect o f weather forecast error can be 

separated by sub-model. This circumvents the problems created when weather 

forecast errors are not present in the training set (Section 3.5) as the sub-model 

which performs best with weather forecast errors is chosen.

However, the FPEEV is specific to the Hammerstein sub-models used. As the 

load forecasting models used in the current research (Chapters 5 and 6) are not 

Hammerstein models (for reasons given in Section 5.7.2), the Miyake et. al., 

(1995) approach is not used in the current research. Nevertheless, the principles 

used in this approach may be generalised.

The approach of Miyake et. a l,  (1995) may be viewed as a gating network 

(Haykin, 1999). That is, a weighted sum approach in which the model with the 

best FPEEV is given a weight o f 1 and all others a weight o f 0 (Figure 7.11).

238



Figure 7.11. A weighted sum view of the approach of Miyake et. al., (1995).

The binary weights used by Miyake et. al., (1995) may be generalised by 

combining the output o f the models i.e. model fusion.

As the FPEEV is model specific, it can only be used to weight the output of 

Hammerstein models. In the approach proposed here however, the data fusion 

algorithm of McCabe (1991) (explained in Section 7.4.2) was chosen as it is not 

model specific. This algorithm depends on the covariance matrix o f  sub-model 

forecast errors (explained in more detail in Section 7.4.2). In addition, the 

distribution o f the sub-model forecast errors is required only to be un-biased and 

symmetric i.e. normality is not required. This is an advantage as the weather 

forecast inputs to the sub-models are not Gaussian as discussed in Section 7.2. 

Also, the weights can be easily changed to cater for perceived shifts in the 

relative significance o f the various forecasts used to form the composite output. 

The entire model is called the data fusion model and is shown in Figure 7.12 

below.
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Figure 7.12. The data fusion model overview.

7.4 Sub-Modelling of Partitioned Series.
As shown in Figure 7.12 the Data Fusion Model consists o f several sub-models 

which have their outputs combined to form a final forecast. The sub-models used 

are similar to the best non-linear parallel models, which are described in Section 

5.7.5 (Figure 7.13, notation explained below).

The following variables are re-defined (from Chapter 5) for clarity*:

• d (k) and y/ (k) are the trend and seasonal components, respectively, for hour
ij ij

i on day k in day-type j  in the Preliminary Parallel Model (PPM),

• NN^ denotes a neural network for hour i on day k  in day-type j ,

• x (k) is the load residual from the PPM and x, Ak) is the estimated load
ti

residual given by NNy

• y  (k) and y tJ (k ) are the actual and estimated load respectively,

* Note that humidity is not included as forecasts o f  humidity are not available for this study.
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tij(k), is a vector o f pre-whitened temperatures from hour i to hour i- 1 2  on 

day k  of day-type j  with pseudo-weather forecast errors,

is a vector of pre-whitened wind speeds from hour i to hour i- 1 2  on 

day k  of day-type j  with pseudo-weather forecast errors,

Oij(k), is a vector o f pre-whitened wind directions from hour i to hour i- 1 2  on 

day k  of day-type j  with pseudo-weather forecast errors. As the wind 

direction is a circular measurement, i.e. 0° is equivalent to 360° the cosine 

and sine of this variable is used, and

Cij{k), is a vector o f pre-whitened cloud covers from hour i to hour i- 1 2  on 

day k of day-type j  with pseudo-weather forecast errors.

Pre-whitened

Tjj (k) the temperature,

Figure 7.13. Sub-model overview (note: the inputs to NNV- vary depending on the sub­
model)
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Three types o f sub-models were chosen which have different types o f inputs. 

These are chosen so that forecast errors can be attributed to particular inputs. A 

fourth sub-model type is included using all the available inputs to capture any 

non-linear relationships between the inputs and the residual. These sub-models 

are:

1. A model with AR inputs only; Sub Model 1,

2. A model with temperature inputs only; Sub Model 2,

3. A model with cloud cover, wind speed and wind direction inputs; Sub Model

3, and

4. A model with AR, temperature, cloud cover, wind speed and wind direction 

inputs; Sub Model 4.

As the sub-models are parallel models, there are 24x4 (one for each hour o f the 

day and four sub-model types) sub-models per day-type .

7.4.1 Input Selection and Pre-processing.

All o f the sub-models use the operating point input, as they all forecast the load 

for the late winter day-types (see Section 5.7.5). The scheduling variable is used 

with all late winter weekday sub-models (see Section 5.7.5). Sub-model 1 uses 

the AR inputs selected in Section 5.2.

The external input selection and processing for sub-models 2 to 4 is similar to 

that used for the non-linear parallel models (Section 5.7.2).

7.4.2 Structure Determination.

The structure determination for the neural networks uses the same approach as 

for the non-linear parallel models (Section 5.7.3).

’ Note that only the load forecasts o f  the sub-models for hour i on day-type j  are combined 
together and not with the forecasts at any other hour or day-type.
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7.4.3 Parameter Evaluation.

The parameter evaluation for the neural networks uses the same approach as for 

the non-linear parallel models (Section 5.7.4).

7.4.4 Model Validation.

Tables 7.4 and 7.5 below, show the AMAPEs achieved by each o f the four 

models in the novelty, validation and training sets. Table 7.4 is for the case 

where actual weather inputs are used. Table 7.5 is for the case where pseudo­

weather forecasts are used. As can be seen the performance o f sub-models 2 to 4 

deteriorates with the inclusion o f pseudo-weather forecasts (Table 7.6). Sub­

model 1 has no external inputs and so it's performance is unaffected by pseudo­

weather forecast error (Table 7.6).

Sub-model 4 performs best in most day-types when using actual weather inputs 

(Table 7.4). However, with the inclusion o f pseudo-weather forecast errors sub­

model 4's performance deteriorates and the best model is now dependent on the 

day-type (Table 7.5).

Table 7.4 The AMAPEs of the sub-models using actual weather inputs.
Training Set Validation Set Novelty Set

Sub­
model Topology

Lute
Winter

Sundays

Late
Winter

Working
days

Late
Winter

Sflturduys

Laic
Winter

Sundays

Late
Winter

Working
days

Late
Winter

Saturday«

Late
Winter

Sundays

Late
Winter

Working
days

Late
Winter

Saturdays

1 3x4x1 3.13 2.3 2.96 2.6 2.17 2.65 2.69 2.31 2.83
2 4x7x1 2.85 2.31 2.86 2.58 2.15 2 .4 8 2 .51 2.32 2 .6 9

3 2x3x1 3.06 2.39 2.98 2.65 2.22 2.68 2.79 2.44 2.88
4 6x3x1 2 .7 4 2 .21 2 .8 3 2 .4 6 2 .0 8 2.52 2.55 2 .2 2.81

Table 7.5 The AMAPEs of the sub-models using pseudo weather forecast inputs.
Training bet Validation Set Novelty Set

Sub­
model Topology

Late
W inter

Sundays

Late
W inter

Working
davs

Late
W inter

Smurduvi

Lute
W inter

Sundays

Late
W inter

Working
days

Late
W inter

Saturdays

Late
W inter

Sundays

Late
W inter

W orking
days

Late
W inter

Saturduys

1 3x4x1 3.13 2.3 2.96 2 .6 2.17 2.65 2.69 2.31 2.83
2 4x7x1 2 .9 9 2.36 3.07 2.69 2.2 2.56 2 .4 9 2.35 2.81

3 2x3x1 3.52 2.4 3.11 2.92 2.24 2.74 2.86 2.44 2.92
4 6x3x1 3.04 2 .2 5 2 .9 6 2.68 2 .1 2 2 .5 2 2.69 2 .2 1 2 .7 5
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Table 7.6 The difference between the AMAPEs of the sub-models with and without pseudo 
______ weather forecast inputs (i.e. the values in Table 7.5 minus those in Table 7.4).______

Training Set Validation Set Novelty Set

Sub­
model Topology

Laic
W inter

Sundays

Late
Winter

W orking
days

Late
W inter

Saturday»

Late
W lnler

Sundays

Lale
W inter

W orking
days

Late
W inter

Saturdays

Late
W inter

Sundays

Late
W inter

W orking
days

Lnte
W inter

Saturdays

1 3x4x1 0 0 0 0 0 0 0 0 0
2 4*7x1 0.14 0.05 0.21 0.11 0.05 0.08 -0.02 0.03 0.12
3 2x3̂ 1 0.46 0.01 0.13 0.27 0.02 0.06 0.07 0 0.04
4 6x3x1 0.3 0.04 0.13 0.22 0.04 0 0.14 0.01 -0.06

7.5 The Linear Model Fusion Algorithm.

The model fu on algorithm described by McCabe, (1991) seeks to minimize the 

variance o f a fused forecast based on the covariance error matrix o f sub-model 

forecasts. The cross-covariance error matrix o f the sub-model forecasts is 

considered and the distribution o f the forecast error noise is not restricted to 

Gaussian but merely required to be unbiased and symmetric.

In this case a combined forecast o f the load on day k  at hour i o f day-type j ,  

y t j (k) , is created using a weighted average o f the four sub-model forecasts

P u jV )  (McCabe, 1991), as:

(7.9)

where wmtj. is the weight applied to the mth sub-model forecast, y m. j (k ) , and is 

derived from the error covariance matrices o f y U j ( k ) ... y 4l J( k ) . As this

analysis is similar for each parallel model, the hour and day-type indices, i and j ,  

are at this point suppressed for clarity. The weights may be derived (McCabe, 

1991), as:

[w, w2 W-
"  c ., < 2 Cu~

-1

^4.2 Q.3 . c;., q .2 (7.10)

Q.2 c ; .
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where C ^ m (for w ^  4) is an auxiliary variable defined as:

C = C - C4,m  4,4 4,m 4 (7.11)

and C W)„ (for m,n ï  4 ) is another auxiliary variable defined as:

Cm.n ~ Cm n CA n Cm 4 + C4_4 m * 4 ,n * 4  (7.12)

where Cm>H (or C«,«^) is the (sample) cross covariance o f the forecast errors from

sub-model m with sub-model n, defined (Papoulis, 1991), as:

1 M
cm „ = Eb(/t)-j)„,{k))(y(k)-y„(*))] = CK*)' ( W ^ H , (k )) (7-13)

where E denotes the expectation operator and M  is the number o f samples used. 

The final weight W4 is determined using the constraint that y , j ( k )is  unbiased

(McCabe, 1991), as:

w4 = Ï ~ X vv. (7.14)
m=1

In addition an estimate of the error variance o f y i} (k ) , , may be calculated

(McCabe, 1991), as:

à h = CAA-[wx
Q,1

"4,2

■"4,3

(7.15)

7.5.1 Fusing Sub-Model Outputs.

Fusing sub-model outputs consists o f calculating the weights in Equations (7.10) 

and (7.14) using covariance matrices calculated with all the sub-model output 

errors in the training set.
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The following algorithm, describes the approach in more detail:

For partitioned series day-type j =3,6 and 9*

For partitioned series hour i = 0 to 23 

For Sub-Model = 1 to 4 

Train Sub-Model

Record the model errors in the training set 

Next Sub-Model

Estimate the cross-covariance matrix of sub-model load forecast 

errors (Equation 7.13)

Calculate the weights using Equations (7.10) and (7.14)

Calculate a fused forecast using a weighted average of the sub­

model forecasts ( Equation 7.9)

Next hour 

Next day-type.

The results for j>6,13.00 are now presented as a sample of the wider results. 

Aggregated results are presented in Sections 7.4.3.1 and 7.4.3.2.

Table 7.7 below shows the cross-covariance matrix o f sub-model load forecast 

errors (using the partitioned series for hour 13:00hrs in the late winter day-type 

and without weather forecast error). Note that the matrix is symmetric, as are all 

covariance matrices. The diagonal elements of the matrix are the variance's o f the 

individual sub-model forecast errors. As can be seen sub-models 2 and 3 have the 

lowest and highest variances respectively. Also note the large degree of cross­

correlation between the load forecast errors indicated by the high off-diagonal 

elements. This shows that the forecasts made by each model are highly 

correlated. In this situation the improvement gained by use o f data fusion may 

not be substantial (see Section 7.1).

’ These are the Late Winter Day-types, see Table 5.10
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Table 7.7 The cross-covariance matrix of sub-model load forecast errors (normalised, day­
________________________type 6 , 13:00hrs, actual weather inputs).________________________
Sub-model 1 2 3 4
1 1.18 1.12 1.18 1.16
2 1.12 1.16 1.13 1.12
3 1.18 1.13 1.20 1.18
4 1.16 1.12 1.18 1.18

The weights calculated for this fusion model are shown in Table 7.8 below. As 

can be seen, the models have roughly equal (absolute) weights reflecting that 

their performances are similar.

Table 7.8 The weights applied to each sub-model forecast (day-type 6 , 13:00hrs, actual 
_________________________________ weather inputs)._________________________________

Sub-model 1 2 3 4
Weight 0.54 0.59 -0.60 0.47

The estimated error variance o f the fused estimate (calculated using Equation 

(7.15)) is 1.14*. This figure is lower than any o f the individual sub-model error 

variances (i.e. the diagonal elements o f Table 7.7), demonstrating that the fused 

load forecast is superior (in the least error variance sense).

The MAPEs (or AMAPEs in the case o f  the sub-models) o f the load forecasts 

from the fusion and sub-models for ^ 6,13:00 are presented in Table 7.9 below. As 

can be seen, the fusion model has the lowest MAPE and variance in the training 

and novelty sets. However, in the validation set, the MAPE for the fusion model 

is not the lowest. This is because the fusion model is trained to minimise the 

error variance and not the MAPE.

Table 7.9 The MAPEs and sample error variances of the load forecasts from the fusion and 
sub models (Notes: day-type 6 , 13:00hrs, actual weather inputs, sample error variances 

_______________________________ have been normalised)._______________________________
Training Set Validation Set Novelty Set

Model MAPE
Sample
Error

Variance
MAPE

Sample
Error

Variance
MAPE

Sample
Error

Variance
Sub-model 1 2.28 1.18 1.97 1.31 1.99 1.74

Sub-model 2 2.30 1.16 2.02 1.34 2.03 1.68

Sub-model 3 2.30 1.20 1.97 1.34 2.05 1.83

Sub-model 4 2.27 1.18 1.96 1.33 2.01 1.76
Fusion 2.25 1.14 1.97 1.30 1.97 1.64

* This figure has been normalised by the same normalisation factor used throughout this thesis.
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Note that the previous example is for the situation in which no weather forecast 

errors are included in the sub-model inputs. When pseudo-weather forecast errors 

are added to the weather inputs, the covariance matrices, Cmn. . (for m,n =1,...,4, 

i= l , . . . ,9 andj  = 0,...,23), will be different. As a consequence the weights, 

m'4 , will be different.

7.5.1.1 Results without Pseudo-Weather Forecast Errors.

Figure 7.14 below, shows the MAPE o f the load forecasts produced by the fusion 

and sub models for all hours o f the late winter working day-type over the period 

of the novelty set. As can be seen, the fus i>n model achieves the best MAPE at 

most hours, or is close to the best. The daily MAPE is shown in the key of Figure 

7.14 and again the Fusion model has the lowest MAPE with a value of 2.17%.
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Figure 7.14. MAPE as a function of hour of the day for fusion and sub-models (notes: late 

linter working day-type, novelty set, actual weather inputs used)

Tables 7.10, 7.11 and 7.12, below, summarise the daily MAPEs achieved by all 

o f the models in all the day-types used in this chapter (i.e. the late winter day- 

types). Similar to results presented in Section 7.4.3, the fusion model load 

forecasts have the best MAPEs and lowest variances o f most o f the models in the
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training and validation sets (Tables 7.10 and 7.11). In addition, the fusion model 

is also the best in all data sets for the working days (Tables 7.10, 7.11 and 7.12). 

This is important, as the working day series have more data than the Sunday or 

Saturday day-type series and thus are more reliable estimates of the performance 

of the fusion model relative to the sub-models.

Table 7.10 The daily MAPEs of the load forecasts from the fusion and sub-models (Notes: 
__________________________________Training set)*.__________________________________

Model Late winter 
Sundays

Late winter 
working days

Late winter 
Saturdays

MAPE
Sample
Error

Variance
MAPE

Sample
Error

Variance
MAPE

Sample
Error

Variance
Sub-model 1 3.13 1.10 2.30 0.93 2.96 1.24

Sub-model 2 2.85 0.96 2.31 0.91 2.86 1.15

Sub-model 3 3.06 1.07 2.39 0.98 2.98 1.23
Sub-model 4 2.74 0.87 2.21 0.86 2.83 1.11

Fusion 2.54 0.72 2.19 0.83 2.60 0.91

Table 7.11 The daily MAPEs of the load forecasts from the fusion and sub-models (Notes: 
_________________________________Validation set)*._________________________________

Model Late winter 
Sundays

Late winter 
working days

Late winter 
Saturdays

MAPE
Sample
Error

Variance
MAPE

Sample
Error

Variance
MAPE

Sample
Error

Variance
Sub-model 1 2.60 1.19 2.17 1.31 2.65 1.52

Sub-model 2 2.58 1.23 2.15 1.28 2.48 1.36

Sub-model 3 2.65 1.33 2.22 1.37 2.68 1.60

Sub-model 4 2.46 1.07 2.08 1.22 2.52 1.35
Fusion 2.38 1.01 2.07 1.20 2.48 1.36

Table 7.12 The daily MAPEs of the load forecasts from the fusion and sub-models (Notes: 
__________________________________ Novelty set) *.__________________________________

Model Late winter 
Sundays

Late winter 
working days

Late winter 
Saturdays

MAPE
Sample
Error

Variance
MAPE

Sample
Error

Variance
MAPE

Sample
Error

Variance
Sub-model 1 2.69 1.61 2.31 1.73 2.83 2.13

Sub-model 2 2.51 1.37 2.32 1.74 2.69 1.91
Sub-model 3 2.79 1.75 2.44 1.91 2.88 2.20

Sub-model 4 2.55 1.46 2.20 1.59 2.81 2.10

Fusion 2.54 1.51 2.17 1.56 2.69 1.96

’ Variances have been normalised.
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7.5.1.2 Results with Pseudo-Weather Forecast inputs.

Figure 7.15, below, shows the MAPE of the load forecasts produced by the 

fusion and sub-models for all hours o f the late winter working day-type over the 

period o f the novelty set (with pseudo-weather forecast errors on the weather 

inputs). As can be seen the fusion model again achieves the best MAPE at most 

hours or is close to the best. The daily MAPE is shown in the key of Figure 7.14 

and again the fusion model has the lowest MAPE with a value o f 2.22%. Note 

that the performance o f sub-models 2 to 4 deteriorates relative to the 

performance without pseudo weather forecast error (Figures 7.14 and 7.15).
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Figure 7.15. MAPE as a function of hour of the day for fusion and sub-models (notes: late 

winter working day-type, novelty set, pseudo weather forecasts used)

The results in Tables 7.13, 7.14 and 7.15 below are similar to those in the last 

section (Section 7.4.3.1). The fusion model is the best model, except in the 

novelty set for late winter Sundays (Table 7.15) and the validation set for late 

winter Saturdays (Table 7.14). However, the fusion model has again the best 

performance in all sets for the late winter working days which, as mentioned in 

Section 7.4.3.1, is the most reliable estimate o f the relative performance o f the 

models.
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Table 7.13 The daily MAPEs of the load forecasts from the fusion and sub-models (Notes: 
___________________ Training set, pseudo weather forecasts used) .___________________

Model Late winter 
Sundays

Late winter 
working days

Late winter 
Saturdays

MAPE
Sample
Error

Variance
MAPE

Sample
Error

Variance
MAPE

Sample
Error

Variance
Sub-model 1 3.13 1.10 2.30 0.93 2.96 1.24

Sub-model 2 2.99 1.03 2.36 0.95 3.07 1.32

Sub-model 3 3.52 1.99 2.40 0.99 3.11 1.40

Sub-model 4 3.04 1.04 2.25 0.89 2.96 1.25

Fusion 2.79 0.88 2.22 0.87 2.82 1.12

Table 7.14 The daily MAPEs of the load forecasts from the fusion and sub-models (Notes: 
___________________Validation set, pseudo weather forecasts used) .___________________

Model Late winter 
Sundays

Late winter 
working days

Late winter 
Saturdays

MAPE
Sample
Error

Variance
MAPE

Sample
Error

Variance
MAPE

Sample
Error

Variance
Sub-model 1 2.60 1.19 2.17 1.31 2.65 1.52
Sub-model 2 2.69 1.28 2.20 1.35 2.56 1.45

Sub-model 3 2.92 1.64 2.24 1.39 2.74 1.64

Sub-model 4 2.68 1.28 2.12 1.27 2.52 1.37
Fusion 2.52 1.10 2.10 1.25 2.56 1.40

Table 7.15 The daily MAPEs of the load forecasts from the fusion and sub-models (Notes: 
____________________ Novelty set, pseudo weather forecasts used)*.____________________

Model Late winter 
Sundays

Late winter 
working days

Late winter 
Saturdays

MAPE
Sample
Error

Variance
MAPE

Sample
Error

Variance
MAPE

Sample
Error

Variance
Sub-model 1 2.69 1.61 2.31 1.73 2.83 2.13

Sub-model 2 2.49 1.34 2.35 1.78 2.81 2.05

Sub-model 3 2.86 1.88 2.44 1.91 2.92 2.26

Sub-model 4 2.69 1.61 2.21 1.62 2.75 2.00

Fusion 2.50 1.38 2.20 1.59 2.73 1.98

Next, the situation in which the fusion model weights are trained using actual 

weather inputs, but the model is operated using pseudo-weather forecasts is 

considered. This situation is used as an example of how a load model’s 

performance (in this case the fusion model’s) can degenerate if  weather forecast 

errors are not taken into account (this point is discussed in Section 3.5).

* variances have been normalised
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Table 7.16 below shows the results achieved in the novelty set for this situation. 

It can be seen that the fusion model in Table 7.16 has higher MAPEs than any 

other model. However, the performance o f the fusion model has not deteriorated 

significantly.

Table 7.16 The daily MAPEs of the load forecasts from the fusion and sub-models (Notes: 
__________________________________ Novelty set)*.__________________________________

Type of input 
used to calculate 

weights

Type of input 
used to generate 

forecasts

Late winter 
Sundays

Late winter 
working days

Late winter 
Saturdays

MAPE
Sample

Error
Variance

MAPE
S am ple

Errar
Variance

MAPE
Sample

Error
Variance

Pseudo-wealher
forecasts.

Pseudo-weather 
forecasts. 2.50 1.38 2.20 1.59 2.73 1.98

Actual weather Pseudo-weather
forecasts. 2.65 1.61 2.21 1.61 2.75 2.01

7.6 The Non-Linear Model Fusion Algorithm.

The non-linear model fusion algorithm uses an MLP (Section 3.4.3) to 

implement the model fusion. The overall forecast produced by the non-linear 

model fusion algorithm may be expressed as:

y , j  (*) = f i j  (pi u (k), y 2 u  ¿3 tJ (k), h  tJ (*)) (7-16)

where f j  represents the function implemented by the MLP for hour i on day-type 

j ,  y t .(k) is the non-linear fusion model estimate and y x (k) j)4 (A:) are the

forecasts from the four sub-models. Note that a different MLP is trained for each 

hour o f the day and for each day-type.

The details o f the MLPs are similar to those used in Section 5.7 and are now 

summarised. There are four inputs given by the four sub-model forecasts (which 

have been normalised). As there are only four inputs, no input pre-processing is 

performed. The MLPs have two hidden layers with sigmoidal activation 

functions and a linear output layer. The structure o f the MLPs is determined by 

training 64 different structures (from 1 to 8 nodes in hidden layer 1, and 1 to 8 

nodes in hidden layer 2) and choosing the structure which performed best (in 

terms of the AMAPE, see below) in the validation set. Each network is initialised
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using random starting conditions and 10 networks are trained for each structure, 

the top four being retained. These four networks are then used to give an 

AMAPE (as in Section 5.7.3.3). The back-propagation training algorithm is used 

with early stopping and cross-validation.

The results o f the non-linear model fusion algorithm are now compared to those 

using the linear model fusion algorithm.

7.6.1 Results without Pseudo-Weather Forecast Errors.

Figure 7.16 below, shows the MAPE of the load forecasts produced by the linear 

and non-linear fusion models for all hours o f  the late winter working day-type 

over the period o f the novelty set. As can be seen the non-linear fusion model 

achieves the best MAPE at most hours or is close to the best. The daily MAPE is 

shown in the key of Figure 7.16, as can be seen there is a minor improvement by 

use of a non-linear fusion algorithm.
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Figure 7.16. MAPE as a function of hour of the day for linear and non-linear fusion models 
(notes: late winter working day-type, novelty set, actual weather inputs used)

* variances have been normalised
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Tables 7.17, 7.18 and 7.19 compare the performance o f the linear and non-linear 

fusion models in the training, validation and novelty data sets for all day-types. 

As can be seen, the non-linear fusion model has the best performance in the 

training and validation sets. However, in the novelty set the non-linear fusion 

model has the lowest daily MAPE only for the late winter working days day-type 

(Table 7.19). Even in this case the non-linear fusion model has a higher variance 

than the linear fusion model (1.58 compared to 1.56 respectively). In conclusion, 

there seems to be no advantage in using this type of non-linear fusion model in 

this case.

Table 7.17 The daily MAPEs of the load forecasts from the fusion and sub-models (Notes: 
__________________  [mining set, actual weather inputs used)*. _____________________

Model
Late winter 

Sundays
Late winter 

working days
Laie winter 
Saturdays

MAPE
Sample
Error

Variance
MAPE

Sample
Error

Variance
MAPE

Sample
Error

Variance
Non-linear 2.21 0.57 2.15 0.81 2.24 0.70

Linear 2.54 0.72 2.19 0.83 2.60 0.91

Table 7.18 The daily MAPEs of the load forecasts from the fusion and sub-models (Notes: 
______________________validation set actual weather inputs used)*.______________________

Model
Late winter 

Sundays
Late winter 

working days
Late winter 
Saturdavs

MAPE
Sample
Error

Variance
MAPE

Sample
Error

Variance
MAPE

Sample
Error

Variance
Non-linear 2.27 0.936 2.03 1.16 2.34 1.20

Linear 2.38 1.01 2.07 1.20 2.48 1.36

Table 7.19 The daily MAPEs of the load forecasts from the fusion and sub-models (Notes: 
__________________  novelty set actual weather inputs used) *. _____________________

Model Late winter 
Sundays

Late winter 
working days

Late winter 
Saturdavs

MAPE
Sample
Error

Variance
MAPE

Sample
Error

Variance
MAPE

Sample
Error

Variance
Non-linear 2.74 1.77 2.16 1.58 2.79 2.09

Linear 2.54 1.51 2.17 1.56 2.69 1.96

7.6.2 Results with Pseudo-Weather Forecast inputs.

The MLPs in the non-linear fusion algorithm are again trained for this 

simulation. However, in this case the forecasts from the sub-models produced 

with pseudo weather forecasts are used (Section 7.5.1.2). Figure 7.17 below,

'  Variances have been normalised.
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compares the linear and non-linear fusion model MAPEs for all hours o f the day 

for the late winter working day day-type. As can be seen, the non-linear fusion 

model has a lower daily MAPE (2.16% compared with 2.20%). However, the 

non-linear fusion model is not the best at all hours o f the day. Thus no clear 

difference between these models can be discerned.

Hour

Figure 7.17. MAPE as a function of hour of the day for Unear and non-linear fusion models 
(notes: late winter working day-type, novelty set, pseudo weather forecasts used)

Tables 7.20, 7.21 and 7.22 compare the performance o f the linear and non-linear 

fusion models in the training, validation and novelty data sets for all day-types. 

As can be seen, the non-linear fusion model again has the best performance in 

the training and validation sets. However, in the novelty set the non-linear fusion 

model has the lowest daily MAPE only for the late winter working days day-type 

(Table 7.19 and Figure 7.17 above). In conclusion; the non-linear fusion models 

do not appear to be generalising well and a non-linear combiner may be too 

complex for this situation.
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Table 7.20 The daily MAPEs of the load forecasts from the Fusion and sub models (Notes: 
____________________ Training set, pseudo weather forecasts u sed )._____________________

Model
Late winter 

Sundays
Late winter 

working days
Late winter 
Saturdays

MAPE
Sample
Error

Variance
MAPE

Sample
Error

Variance
MAPE

Sample
Error

Variance
Non-linear 2.21 0.57 2.16 0.82 2.25 0.71

Linear 2.79 0.88 2.22 0.87 2.82 1.12

Table 7.21 The daily MAPEs of the load forecasts from the Fusion and sub models (Notes: 
____________________Validation set, pseudo weather forecasts used) ■____________________

Model Late winter 
Sundays

Late winter 
working days

Late winter 
Saturdays

MAPE
Sample
Error

Variance
MAPE

Sample
Error

Variance
MAPE

Sample
Error

Variance
Non-linear 2.28 0.98 2.04 1.17 2.40 1.25

Linear 2.52 1.10 2.10 1.25 2.56 1.40

Table 7.22 The daily MAPEs of the load forecasts from the Fusion and sub models (Notes: 
_____________________ Novelty set, pseudo weather forecasts used) ._____________________

Model Late winter 
Sundays

Late wiuter 
working days

Late winter 
Saturdays

MAPE
Sample
Error

Variance
MAPE

Sample
Error

Variance
MAPE

Sample
Error

Variance
Non-linear 2.73 1.78 2.16 1.55 2.84 2.19

Linear 2.50 1.38 2.20 1.59 2.73 1.98

7.7 Conclusion.
This chapter examined the use o f fusion models with a view to minimising the 

effect of weather forecast errors on load forecasts.

Section 7.2 modelled and examined the statistics o f weather forecast errors. 

Previous approaches in STLF have modelled the weather forecast error as an 

independent Gaussian random variable (Park et. al., 1993a and Chen and Yu, 

1992). However, it was found that this assumption does not apply to Irish 

weather forecasts in two respects; the weather forecast errors have serial 

correlation (Figure 7.2) and they are cross-correlated (Tables 7.2 and 7.3). 

Typically, some form of aggregate weather variables are used in STLF models 

(e.g. average daily temperature). In the sub-models used here, the transformation 

of the weather inputs by PCA results in a similarly aggregated variable. The error

* variances have been normalised
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in an aggregate weather variable will have a non-zero mean (Figure 7.2) and a 

Gaussian approximation would underestimate this. For example, independent 

Gaussian random noise added to hourly temperature would tend to cancel itself 

out when the average is taken. Thus the effect o f weather forecast errors on load 

forecasting models would be underestimated.

The structure o f the weather forecast errors was then used to produce pseudo­

weather forecast errors from 1986 to 2000 which have the accuracy o f current 

weather forecasts. This is important as, for example, weather forecasts from 1986 

are less accurate than current weather forecasts and would thus be o f no 

relevance in predicting future loads.

A model fusion technique was then proposed for minimising the effect o f 

weather forecast errors. In general, weather forecast error causes approximately 

1% deterioration in load forecasts o f all models used here. This figure, though 

important, is not as high as suggested by Douglas et. al. (1998b) and the IEEE 

Committee report (1985), for their systems. However, the fusion model was 

capable of adjusting the weighting o f the sub-models to reflect that the weather 

based sub-models deteriorated relative to the AR model. The fusion model was 

shown to successfully separate the tasks o f model training and rejecting weather 

forecast errors.

Finally, a comparison o f linear and non-linear fusion models found little 

difference between them. Considering that the novelty set results for the non­

linear fusion model were generally worse than for the linear fusion model, it 

would appear that the non-linear fusion models used are over-complex for this 

problem.
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Chapter 8 

Conclusions

8.1 Broad Conclusions.
This thesis examined a strategy for short-term load forecasting in Ireland. As 

seen in Chapter 3, short-term load forecasting is a popular area of research and 

there are a multitude o f modelling approaches which have been proposed. In 

addition, no single benchmark exists that would allow a comparison of these 

approaches. Indeed, differences between electrical grid systems mean that the 

choice o f modelling approach is application specific. Thus, the overall tactic 

taken in this thesis has been to identify the major choices facing a short-term load 

forecaster, and identify the correct choice for Irish load data.

The first choice to be made was the level o f disaggregation o f the data (Section 

3.2). Overall, it was found that the amount o f data contained in each day-type 

was sufficient to allow modelling o f that day-type (Chapters 5, 6 and 7). With 

some exceptions, the day-type partition was found to give the best results, while 

alternative partition 1 (which partitioned the data by hour o f the day only, i.e. no 

day-types at all) led to significantly inferior model performance (Section 5.4.2.3). 

Alternative partition 2 (which partitioned the data by hour o f the day and 

Saturday, Sunday and working day) removed the winter and summer part o f the 

day-type partition and led to good model performance in all day-types (Section

5.4.2.3). In addition, this partition was found to be superior when forecasting the 

load in early winter.

Disaggregation o f the data by hour o f the day depends on whether there are 

independent components in load at some hours o f the day (Section 5.3). 

Empirical evidence suggests that there is a case for modelling the hours of 5 p.m. 

to 8 p.m. separately from other hours o f the day as they have independent 

components (Section 6.5). As these hours are the hours at which many people 

return from work and use electrical appliances at home, it would seem that 

electricity consumption at home is influenced by different factors than those for 

other hours o f the day. In general though, it was found that neither the parallel
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nor the sequential approach was best for all day-types or even for all hours o f the 

day. Rather, each day-type and each hour o f the day have separate characteristics 

which need to be taken into account when constructing models (more detail is 

given in Section 8.3 below).

Linear and non-linear models were examined in Chapter 5. Empirical evidence 

suggests that there is a non-linear relationship between Irish load and weather 

variables and also a non-linear auto-regressive component (Section 5.8). This 

suggests the use o f non-linear models in short-term load forecasting can provide 

considerable improvement on linear models.

Chapter 6 examined and extended the multi-timescale technique o f Murray 

(2000). This technique was found to work well during most hours o f the day and 

methods for estimating the weight matrix, used in the technique, were examined 

(Section 6.4.1). A novel approach was proposed in which the weights could be 

determined numerically and it was found that this approach gave excellent results 

(Section 6.4.1). However, the MTS technique was susceptible to the way in 

which the data was partitioned (Section 6.5) and perhaps a different means of 

partitioning the data or adjustments to the technique could be examined. This is 

an area of future research.

A novel view o f the MTS technique was then presented in which the technique 

was viewed as a régularisation term as opposed to a model combination 

technique. It was seen that attempting to optimise the weight matrix estimates to 

minimise the forecast error, while simultaneously attempting to minimise the 

deviations (of the SM, cardinal point and end-sum forecasts from the MTS 

forecasts), were conflicting objectives. A numerical approach solving this 

conflicting objective was suggested and is left for future research. In addition, a 

route is given for a derivation o f a closed form solution.

Chapter 7 presented a fusion model which used a novel approach to minimise the 

effect o f weather forecast errors. This model is a generalisation o f the model 

proposed by Miyake et. al., (1995) but it not restricted in terms o f the type o f 

model or the distributions o f the weather forecast errors. The fusion model was

259



found to give excellent load forecasts even in the presence o f weather forecast 

errors. The statistics o f weather forecast errors in Ireland were also examined. It 

was found, contrary to previous research in this area (Section 3.5), that weather 

forecast error is not independently normally distributed, but has a structure. A 

novel algorithm was presented which allows pseudo-weather forecasts to be 

produced based on this structure.

8.2 Analysis of Models.

The parallel models are based on disaggregation o f the load by hour o f the day 

and are found to give very good results in all day-types. This is partly due to the 

nature o f the partitioned series, which are constructed by taking a single hour 

from each day-type. By taking a single hour from each day, the ‘shift’ in the 

load, which gave rise to problems in the sequential and MTS models was avoided 

(see Section 6.2.4). This is because the load at 3 p.m., for example, on a Friday is 

similar to the load at 3 p.m. on the following Monday (the data point that would 

come after the Friday load in a working data partitioned series). Also, the rise in 

the trend component from Friday to Monday is negligible.

The input selection procedures for the parallel models were examined in Section 

5.5.2. It was concluded that Method 2 was the best method. As explained in 

Section 5.8, this is because there is correspondence between the frequency 

information in the pre-whitened weather variables, the variance explained by 

each transformed pre-whitened weather component and the correlation o f the 

weather inputs to the load. However, this correspondence is application specific 

and so this technique may not work well in other situations.

The feed forward neural networks used in Section 5.7 were found to work well. 

The following suggestions were noted during their construction:

• The topology determination technique used was very computationally 

expensive and did not allow for non-fully connected architectures. This is an 

area for future research,
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• Cross validation and early stopping improved network performance 

considerably and should always be used,

• The multi-step ahead performance o f the networks was found in most cases 

to be stable, but this should be checked,

• Training several networks with different initial conditions is recommended, 

as it allowed those that did not generalise well to be identified and discarded,

• Weighting the network errors during training to discount older data did not 

bring about much improvement. This is also an area for future research,

• Using a single hidden layer resulted in relatively bad model performance and

• No discemable improvement resulted from the use o f different activation 

functions, contrary to the findings o f Choueiki et. al. (1997).

The MTS models performed well in the working day day-types, but did not 

compare well to the parallel models in the winter weekend day-types. The reason 

for this poor performance lay with the way in which the data was partitioned, 

which resulted in a ‘shift’ in the load (Section 6.5). It was found that the 

sequential model had to be adjusted to account for this shift and that even then, 

the MTS models performed badly in some day-types (Section 6.5).

The sequential model was found not to be very robust to ‘bad data’, or outliers in 

the data set. During operation, an outlier tended to persist in the sequential model 

forecasts for several days. Additionally, a ‘few’ outliers in the training set result 

in underestimates o f the seasonal component parameters. For these reasons, it is 

proposed that research into a different model for the seasonal component be 

pursued or that any application o f this model should verify the data prior to using 

it. In addition, the SSD algorithm for BSM parameter estimation (Section 

3.3.2.4) should be used, as it allows the trend component parameters to be 

estimated independent o f any outliers in the data.
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The fusion models were presented in Chapter 7. These were designed to 

minimise the effect of weather forecast errors. The construction o f each sub­

model is similar to that o f a parallel model. However, the fusion approach may 

be applied to other model types and requires only that the weather inputs be 

separated from the auto-regressive inputs, at the sub-model stage. The non-linear 

fusion algorithm was found to give no improvement over the linear fusion 

algorithm. However, feed forward neural networks may not be the ideal 

modelling technique for non-linear fusion. Fuzzy logic techniques combine the 

output o f several models and may thus be superior in this case. These are 

suggested as an avenue o f future research.

8.3 Recommendations and Caveats.
Figure 8.1 below, summarises the best models found for each day-type and hour 

of the day.
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Figure 8.1 An overview of the best model to use for each hour of the day in each day-type.

The following are recommendations for Eirgrid (project sponsors) regarding 

construction of a load forecasting computer application and more generally 

characteristics of Irish electrical load data:
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• The MTS and parallel models should both be used but at different times, as 

indicated in Figure 8.1,

• The MTS technique combines the output o f several models and thus requires 

more development and maintenance costs. The use of the parallel models 

alone will reduce load forecast accuracy slightly, but will be cheaper, less 

time consuming and more robust to outliers/missing data,

• The loads between 5 p.m. and 8 p.m. have independent components, but are 

still highly correlated with the load at other hours o f the day. This means that 

approaches which depend on forecasting the load using load curves are not 

obsolete but need to have their forecasts at these hours adjusted,

• The non-linear parallel models are quite robust, but it is recommended that 

they are retrained every year,

• The fusion model shows promise, but requires more research and weather 

forecast data,

• There is no discemable cooling effect in Irish load although this situation 

may change in the future, and

• Bank holidays and Sundays have similar load curves and should be modelled 

together.

8.4 Future Research.

The following areas require further attention and are suggested as topics for

future research:

1. The level of day-type disaggregation. Disaggregation by day-type was 

found, in general, to be advantageous. However, alternative partition 2 

was found to be the best partition for early winter working days, but not 

for summer working days or late winter working days (Section 5.4.2.3). 

The day-type partitions and alternative partition 2 are overlapping sets 

(Figure 8.2), yet empirical evidence suggests the use o f both for different
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situations. The day-types were identified by dividing the output grid o f a 

Kohonen map (Section 4.2) into several non-overlapping sets (i.e. the 

day-types) in Section 4.2. It may however, be fruitful to divide the output 

grid into overlapping sets; this is an area for future research.

Figure 8.2 The overlap of alternative partition 2 and the working day day-types.

2. The non-linear parallel modelling technique. The feed forward neural 

networks used to model the residual component in the parallel models 

gave results superior to a linear model. In addition, these models provided 

an appropriate tool to investigate a strategy for load forecasting in 

Ireland. However, feed forward neural networks are just one type o f non­

linear model, and there exist many others (as seen in Chapter 3),

3. A non-linear input selection and pre-processing procedure. The input 

selection procedure relied on identifying those elements of the data that 

were linearly correlated with the load. This procedure may have excluded 

inputs which had a non-linear relationship with the load. Specifically, 

non-linear PCA and Independent Component Analysis (ICA) are two 

techniques which may provide better input selection. However, the 

computational expense o f any non-linear technique would have to be 

taken into account,

4. Calculation of the weight matrix in the MTS technique. In Section 

6.4.1 the importance o f calculating W  was demonstrated. A numerical 

approach is given, but this approach is computationally expensive and 

may not give an optimum result. In Section 6.4.2 a deterministic approach 

was attempted and the route for a solution was given. This approach

Late winter working days Summer working days

alternative partition 2-working days

Range o f data sets
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appears promising, but the equations became intractable quite early in the 

derivation. It is suggested that a statistical approach based on the 

expected value o f the cost function would result in an easier formulation. 

In addition, any solution from a statistical approach could lend itself 

easily to a recursive solution.

5. Development of the fusion models. The fusion models attempt to 

minimise the effect o f  weather forecast errors on load forecasts and are 

also valid load forecasting models in their own right. Only two fusion 

algorithms were examined for combining the sub-model forecasts and 

more could be examined in future research. It was found during 

development o f the fusion models that when the weather based sub-model 

forecasts deviated significantly from the auto-regressive sub-model 

forecasts, the former were more accurate. However, this effect was not 

consistent and requires more research,

6. Christmas and exceptional days. The Christmas period was not 

examined in this thesis and a model for this period is required. Christmas 

is distinct from all other day-types as each day in the period is 

significantly different (i.e. the load on Christmas day is different from the 

load on 2nd January, etc.). In addition the amount o f data in the Christmas 

day-type is limited and may benefit from inclusion o f data outside the 

day-type in a similar manner to the early winter day-types (Section

5.4.2.3), and

7. Multi-step ahead performance. The performance o f models for a 

forecast horizon of several days ahead was not examined in this thesis. It 

is possible that different models may be superior for different forecast 

horizons and also that weather forecasts for several days ahead will be 

less accurate than twenty-four hour ahead weather forecasts.
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A ppendix A

Table of variables used in the multi-time scale technique.

Variable Dimension Description
n l x l Length o f the state vector 6(k)
r l x l Number o f freed states o f (Kk)

x(k) l x l Load at time k

m nx 1 State vector at time k
H I x « Observation matrix

0 n*n Transition matrix

e r n (n-r)x 1 Fixed states at time k

w ) rx 1 Freed states at time k

*! (n-r x  (n-r) Partition of 0  for fixed states

0 2 r  x  r Partition of 0  for freed states
H\ 1 x(n-r) Partition of H  for fixed states
h 2 \ x r Partition o f H  for treed states
N l x l Number o f points used in the smoothing constraint
M l x l Number o f cardinal point forecasts used.
P l x l Number o f end-sum forecasts used.

9c. l x l /“* cardinal point forecast
Ci l x l The distance from the forecasting origin to the

Sc l x l The deviation o f the cardinal point from the MTS
A l x l /l" end-sum forecast.
s l x l Length o f the summations for end-sum model.

Ss l x l The deviation o f ys from the summation o f the MTS
Si l x l The deviation o f the state space model forecast at k+i

A(k) (N+M+P)x 1 Left hand side o f Equation 3.74.
B (N+M+P)xr 1st term on the right hand side of Equation 3.74.
w (N+M+P) x l Diagonal o f weight vector.
W (N+M+P) x (N+M+P) Diagonal weight matrix.

A{k) (N+M+P)x\ Vector o f deviations.
A (N+M+P)xK [¿(1) A (  2) A{K)\

n-(rx K) [»,(%) 0, (2)  e,(K>]

0.2 r x K e ; o )  e \ ( i i  a i m

y \ x K Vector o f actual loads

y.
l x ^ Vector o f 1-step MTS load forecasts
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A ppendix B

Suggested derivation route for gradients used in the multi-time scale
technique.

From Section 6.4.2 the derivative o f the MTS constraint with respect to the 

weights may be expressed as:

f  dC(n>) x

dC( TP) 
dw

=  Q  =

dw, 
dC(w ) 

dw2

dC(w)
ydWN+M+p ^

(B l)

The following gradient is now considered which is required in evaluating 

Equation (Bl):

3 |? W B Y r w £ m ^ ' B V ) B r W A (k)+ {B r W B r  j f r 'H ? )  (B2)
3 W; d w ,  d w .

Using the following matrix gradient:

a k l ) = _ x - ' a x x - ‘
dz dz

where X is a matrix and z is a scalar, Equation (B2) becomes:

d ^ B TWB\ [B TWA(k) )_

(B3)

dw.

{BTW B Y  d(B-  (B TW B Y  B 7 WA(k) + {BTW B Y  ^  (B4)
dw; 3w,.

Considering the partial derivative term in Equation (B4):

^ W B )  = B T ^ ) B = B B r
d w, dw:

(B5)

where B, is the ith row o f B. The result above is obtained by noting that the result 

o f taking the partial derivative is a sparse matrix with an entry equal to one on 

the z'th diagonal element:

I I



d { w ) _
dw,

3w,
00 0 0

0 0 0
•

dwj 0 0
0 0

dw,

dw,

0 0 0 *•. 0 0 0

0 0 0 0 = 0 0 1 0 0

0 0 0 * „ 0 0 0 0 0

0 0 0 0 ^WN+M+P 0 0 0 0 0
dw,

(B6)

Substituting Equation (B5) into Equation (B4) gives:

d ^ B TW B Y  B TWA(k)) _
dwj

(B TW B Y  B iB tT{BTW B Y  B TWA{k) + [BTW B Y  B fB T (B7) 

This may be rearranged to give:

B ^ W b X  B rW A (k )+ l)  (B8)
dw,

Equation (B l) is now reconsidered and expanding C(w) using Equation (6.13) 

gives:

Q =

dC(w)
dwx

3C(>v)
dw2

dC(w)

^ W N + M + P  j

dw,

dw

[e'l (i, w ) - ( b t w b Y  B  t W A (\))

- [b*2 (1, w ) - ( b t wbY B t WA(l))
N + M + P

dw.
0*(1 , w ) - ( b t wbY B 7 WA(2))

dw
- —  (o*2 (i, w) -  (b twbY b twa(2))

N + M + P  

d
9w

(fl2* (1, w) -  ( b t  wbY B t WA(K))

dw
-----(el (1, w) -  (b  twbY B  t WA(K ))

(B9)

N + M + P

The partial differential o f the constraint for time k  with respect to weight i is now 

considered:

—  [el(k, w) - [ b tw b Y B TWA(k))= d° 2 ( — ~ ( { b tWb )~1 B tWA(k )) (B 10)
dw, ' dw dw, '

Equation (B.8) is then substituted into Equation (BIO) to give:

I I I



—  f e  (kt w) -  (b t Wb Y  B TWA(k))=
dwt

de2( k ,w) _ ( p i WBy  B 'B jT((BTW B y  B TW A (k)+ l)  (B ll)
dWj

Finally the differential o f the weight matrix with respect to the weights may be 

expressed as:

Q, =

ag;( l ' W) - { B tWB) ' B iBj7 ((BTWB)~l B TWA(\) + l )  
ow, 

d02( 1, _ { p T WBy  B tB rT((BTW B y  B TWA(\)+l)
d W N + M + P

d 0 2 (2,W) _ ^ 7 W B y  B B ^ B TW B y  b t WA(2 )  + i )
dw,

de2( i , _^B rWB y  B  B r BrWBy  b t w a ( 2 ) + i )
3wN + M + P

d 0 2 (K , w) _(B TWBy  b ^ B ' ^ W b Y  B t WA(K) + i )
dw.

d̂ -(K w ) _(b t WBY B.B7\ B TWBY B t WA(K) + I )
U W N + M + P

(B12)

The gradient o f J(w) with respect to w is now considered. From Equation (6.12), 

J(w) may be expressed as:

= ’t ( y ( . k ) - y „ A k ) Y  (Bi3)
*=l

where the individual elements o f y  and y  have been expanded in the 

summation above. Differentiating J(w) with respect to and noting that y  is 

fixed gives:

~AT(MA r)v
(B14)- ( m ) = 2 y « k W w t ) l r - (t ) )

dw, k=x dw,

From Equation (3.76) the MTS forecast may be expressed in terms o f the altered 

state vector as:
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ymu(k) = HO‘(k) = [Hx H2 A W
0 ‘2( k \

(B15)

Taking the partial derivative o f Equation (B15) with respect to w ,  gives:

dw, dw.
Ur, h 2J A W

[e '2(k)
= \h , hr2

M t (k)
dw,

de{ (k)
dw,

(B16)

Noting that 0\(k) is not a function o f w, gives:

^ ( * )
dw.

= [//, H 2 M[ ( k)
dw,

= H
dw,

Substituting Equation (B17) and into Equation (B 14) gives:

(B17)

dJ{w)
dw.

( k d 0 ' ( k )
2 ^ H 2 - ^ - ( y { k ) - H ^ k ) - H 2e ] { k ) )

*=l OW;
K dO’ (k)

2 £  / / ,  — — (.y(k )-H t0 , ( k ) - H  0\(k))
*=i ows

k 7)0' (k \
2t . H >k=\ dw,

(B18)

At this point the mathematics was found to be intractable and a numerical 

solution is proposed as mentioned in Section 6.4.2.
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