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A strategy for short-term load forecasting in Ireland.
Damien Fay

ABSTRACT

Electric utilities require short-term forecasts of electricity demand (load) in order to
schedule generating plant up to several days ahead on an hourly basis. Errors in the
forecasts may lead to generation plant operation that is not required or sub-optimal
scheduling of generation plants. In addition, with the introduction of the Electricity
Regulation Act 1999, a deregulated market structure has been introduced, adding
increased impetus to reducing forecast error and the associated costs.

This thesis presents a strategy for reducing costs from electrical demand forecast
error using models designed specifically for the Irish system. The differences in
short-term load forecasting models are examined under three independent
categories: how the data is segmented prior to modelling, the modelling technique
and the approach taken to minimise the effect of weather forecast errors present in
weather inputs to the load forecasting models.

A novel approach is presented to determine whether the data should be segmented
by hour of the day prior to modelling. Several segmentation strategies are analysed
and the one appropriate for Irish data identified. Furthermore, both linear and non-
linear techniques are compared with a view to evaluating the optimal model type.
The effect of weather forecast errors on load forecasting models, though significant,
has largely been ignored in the literature. Thus, the underlying issues are examined
and a novel method is presented which minimises the effect of weather forecast
errors.
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Figure 1.1 Typical working day loads.

The weekly cycle consists of the five working days (Monday to Friday) and the
weekend days (Saturday and Sunday) (Figure 1.2). The loads on Saturdays and
Sundays have similar load curves to weekdays. However, the load is lower

reflecting reduced economic activity.

Figure 1.2 A typical weekly load (Day I=Sunday)

The yearly cycle in Ireland is shown below in Figure 1.3. The load is lower in
summer than in winter as there are more heating requirements in winter.

However, during Christmas the load shows a sharp drop as economic activity is



reduced. Also, there is a less obvious reduction in load during July and August as

economic activity is reduced due to people taking holidays.

1997 1998 1999
Year
Figure 1.3 The load for 1997 and 1998.

In addition, there exist special periods such as bank holidays, Easter, etc. which
result in reduced economic activity and may not occur at the same date each

year.

Another important factor in the demand for electricity is the weather. On cold
days for example, people will tend to use more electricity for heating than on a
day with an average or ‘comfortable’ temperature. Conversely, a very hot day
will result in more electricity being used for air-conditioning. This is reflected in

Figure 1.3 as summer days are generally warmer than winter days.

It is important to note that although the factors that effect electricity demand are
well known, there is no underlying process that can be measured and so black
box modelling (i.e. constructing a model from recorded inputs and outputs

without knowledge of the intervening process) must be used.



The area of load forecasting in general and the precise area of interest in this

thesis are detailed in Section 3.1.1.

1.2 Motivation for Research.

The motivation for forecasting short-term electrical load is to reduce costs.
Power plants must be switched on in advance and overestimation of demand
results in some generators being operational but not being used. The electrical
production must match the demand in order to guarantee supply. The amount of
excess electricity production (or spinning reserve) required to guarantee supply
in the event of an underestimation is also determined by the accuracy of load
forecasts. Different power plants have different production costs and take
different amounts of time to start up. Forecasting errors can lead to sub-optimal

scheduling ofpower plants (unit commitment).

Another factor motivating the use of load forecasts in Ireland came with the
introduction of the Electricity Act 1999 which led to a staged deregulation of the
energy (gas and electricity, although gas is of no concern here) market in Ireland.
Currently, the trading arrangements for this market are regulated by the
Commission for Electricity Regulation (CER) (CER, 2000). The market is made
up of three types of operators; generators (who generate electricity), suppliers
(who supply the customers with electricity purchased from a generator or a
trader) and traders (who purchase electricity from generators and sell to
suppliers). In addition, there are separate arrangements for sale and purchase of

electricity from the Northern Ireland electricity grid.

Although the rules of the energy market are relatively complicated, it is
essentially based on a bilateral agreement structure (CER, 2000). In this
structure, a generator agrees to provide a set amount of electricity and a supplier
agrees to purchase that amount at a particular time (hence the term bilateral).
Twenty-two days after that load period, the amount of electricity that was
required by the supplier is calculated and compared to the amount actually
purchased in the bilateral agreement. In the event that the supplier has purchased

an excess of electricity (and this excess was used by the grid), this excess is sold



at what is called a spill price. In the event that the supplier did not purchase
enough electricity, he must then purchase the difference at what is called a top-up
price. The traders then purchase the excess electricity at the spill-price and sell at

the top-up price in order to balance the bilateral agreements.

The structure of the market is such that the top-up price is far in excess of what
would have been required in the original bilateral agreement, while the spill price
does not match the price paid in the original agreement (CER, 2000). A similar
situation also faces the electricity generators. Thus, it is important that all parties
to a bilateral agreement forecast their expected demand correctly i.e. short-term

load forecasting is an integral part of the market.

1.3Main Thesis Contributions.

The main contributions of this thesis are in the area of short-term load

forecasting of overall grid demand. These contributions are as follows:

1. A review of techniques for integrating weather forecast errors into load
forecasting models (Chapter 3, Section 3.5). This area has, to a large extent,

been ignored in the literature,

2. ldentification of the different day-types in Irish electrical load data (Chapter
4),

3. Application of parallel models to load forecasting and determining the

appropriateness of these in comparison to sequential models (Chapters 5 and

6),

4. Further development of the multi-timescale models proposed by Murray
(1996) including a technique for optimising the weights used in that
algorithm (Chapter ¢), and



5. A novel approach to dealing with the effect of weather forecast errors in load

forecasting models. This also includes a novel approach to modelling weather

forecast errors (Chapter 7).

Much of the work in this thesis is an extension on the work presented in the

following publications:

Fay, D., Ringwood, J.V., Condon, M., Kelly, M., 2003, 24-hour electrical
load data - a sequential or partitioned time series?, Journal of
Neurocomputing, 55 (3-4), pp 469-498.

Fay, D., Ringwood, J.V., Condon, M., Kelly, M., 2000, Comparison of linear
and neural parallel time series models for short term load forecasting in the
Republic of Ireland, in: Proceedings, 3rd Universities Power Electronics

Conference, September, (not paginated on CD ROM),

Fay, D., Ringwood, J.V., Condon, M., Kelly, M., 2001, 24-Hour electrical
load data - a time series or a set of independent points?, in: Proceedings, 6t
Conference on European Applications of Neural Networks, June, Cagliari,

Italy, (not paginated on CD ROM).

Fay, D., Ringwood, J.V., Condon, M., Kelly, M., 2001, A data fusion model
for Irish electricity load forecasting, in: Proceedings, Irish Signal and

Systems Conference, Maynooth, Ireland, (not paginated on CD ROM).

Fay, D., Ringwood, J.V., Condon, M., Kelly, M., 1999, New research
developments in half-hourly forecasting methodologies and technologies
applied to the Irish electricity market., in: Proceedings, HR Conference on

New Energy Trading Arrangements, London, s July, pp 301-307.

Fay, D., Ringwood, J.V., Condon, 2004, On the influence of weather forecast
errors in short-term load forecasting models, in: Proceedings, Control 2004,

University of Bath, U.K., 6-9 September, (not paginated on CD ROM).



1.4 Thesis Structure.

This thesis is organised into eight chapters. The approach here is to first present
some preliminary analysis of Irish load data in order to familiarise the reader
with the subject (Chapter 2). A literature review is then presented (Chapter 3)
followed by analysis and modelling (Chapters 4 to 7). Conclusions are then

presented in Chapter s.

Chapter 2 provides the ‘problem setup’ for this thesis. Initially, the available data
(used throughout this thesis), and the way in which this data is partitioned into
sets for model building and testing are documented. The second part of Chapter 2
provides some simple preliminary analysis to highlight the characteristics of Irish
load data while attempting not to bias the model building process in later

chapters.

Chapter 3 provides a literature review of the area of load forecasting. Initially,
the exact area of interest is specified with respect to the wider area of load
forecasting. However, the primarily purpose of this chapter is to present the main
factors that differentiate the load forecasting approaches found in the literature.

These main factors are:
1. How the data set is segmented prior to modelling,

2. The technique used to model the data (regardless of the segmentation

used), and
3. The approaches taken to deal with weather forecast errors in weather
inputs.
Chapters 4,5 and s investigate point 1, above. Chapters 5, ¢ and 7 study point 2.

Finally, Chapter 7 examines point 3.

Chapter 4 examines the segmentation of Irish load data in to different types of

days (for example, working days, weekend days etc.) called day-types. The focus



of this Chapter is to determine if different day-types exist and whether there is
sufficient data within each day-type for consistent model building. The

segmentation of the data into the various day-types is then presented.

Chapter 5 constructs the first load forecasting models used in this thesis. These
models are based on data segmented by hour of the day (in addition to being
segmented by day-type) and are called parallel models as there is an array of
models, one for each hour of the day. The primary purpose of this chapter is to
construct parallel models for comparison with the models in Chapter s that do
not use hour of the day segmentation. In addition, several input selection
techniques are examined. Finally, linear and non-linear parallel models are

compared to see if non-linear modelling techniques are advantageous for STLF.

Chapter 6 develops load forecasting models for data that is segmented by day-
type only. The models used here are called multi-timescale models as they
exploit forecasts of the load made at differing timescales. The multi-timescale
modelling technique developed by Murray (1996) is developed further. Finally a
comparison with the parallel models in Chapter 5 is drawn in order to determine

if hour of the day segmentation is advantageous.

Chapter 7 investigates the effect of weather forecast errors on load forecasting
models. A novel technique is proposed for producing pseudo-weather forecast
errors which have the same error statistics as recorded weather forecasts. A
model is then proposed which minimises the effect of these weather forecast

errors.

Chapter & presents the conclusions and assesses the models presented in this
thesis. Recommendations for practical implementation of these models are made

to Eirgrid (thesis sponsor) and future work in this area is discussed.



Chapter 2

Characteristics of Irish Electrical Load Data

2.1 Introduction

This chapter describes preliminary analysis of Irish electrical load data, which is
important for model building. As will be seen, electrical load is a complex time

series which among other things changes over time and has embedded cycles.

The amount, timescale and type of data available have obvious importance in

model building. This information is detailed in Section 2.2.

In the long term, load is an evolving process. With increased economic activity
over the last few years, electrical demand has increased considerably. It is
important to quantify the rate of increase, the effect it may have on the shape of
the load and to ascertain if these characteristics are deterministic. Such

characteristics are examined in Section 2.3.1.

The embedded cycles in the load occur at daily, weekly and yearly timescales.
The shape of the daily load curve as well as the level of the load is affected by
these cycles. Classification of the shapes is examined in Section 2.3.2. The level
ofthe load is effected mainly by temperature and this relationship is examined in

Section 2.3.3 to determine if it is non-linear or can be linearised.

2.2 Data Availability

There are two sources for the data used in this thesis:
load data is supplied by the national grid (Eirgrid), while the Meteorological
Office of Ireland (MOI) provides weather data gathered at their station at Dublin
airport*. Eirgrid also supplies historical weather data gathered at its station in
Dublin; however, without an accompanying weather forecasting facility at that

location, this data is of limited use and is not used in this project.

*Dublin is the largest population centre in Ireland with approx. X the population.

10



2.2.1 Range and Timescale of Data

The range and timescale of the available electrical demand data is given in Table

2.1

Table 2.1 Eirgrid data timescale and range.

Range 29thDecember 1986 -3 1stMarch 2000
Timescale Hourly
No. of data points 4842 Days (116208 hours)

Two categories of historical weather data are available from the MOI: readings
(or actual weather) andforecasts. Both sets of data are for Dublin airport, the
closest and most relevant weather station to Dublin. The ranges, timescales and

types of data are given in Table 2.2.

Table 2.2 MOI data, time-scales and ranges.

Type Range Time scale

Dry bulb temperature 29thDecember 1986 -3 1 & Hourly

readings March 2000

Humidity readings 29mDecember 1986-3 1% Hourly
March 2000

Wind speed & Direction 29thDecember 1986-3 1« Hourly

readings March 2000

Cloud cover readings 29thDecember 1986-3 14 Hourly
March 2000

Dry bulb temperature 1st February 2000- 1 & Hourly

forecasts March 2000

Wind speed & Direction 1st February 2000- 1« Hourly

forecasts March 2000

Cloud coverforecasts 1s February 2000- 1¢ Hourly
March 2000

The data is subdivided into three sets in order to train and test the load

forecasting models (Table 2.3):

» The training set is used to calculate model parameters,

e The validation set is used to aid in model structure determination and

* The novelty set is used to evaluate model performance. As the validation and
training sets have significantly influenced the model, a novelty set is used to

evaluate model performance with previously unseen data.

11



Table 2.3. Division of data set (ail dates inclusive).

Set Training Validation Novelty
Range 1987-1996 1997-1998 1999-2000

The techniques used for input selection (Section 5.5.2) utilise different training
and validation sets where the dates vary due to the use of a bootstrapping
technique (van Giersbergen and Kiviet, 2002), which allows a statistical
evaluation of the different input selections. In this case, eight bootstraps are
constructed, where the validation set occupies a different range for each set
(Figure 2.1 and Table 2.4) within data form 1987 to 1998 inclusive.

Table 2.4. Segmentation of data set for input selection (Section 4.5.1).

Set Training Validation
Range Variable Variable
Bootstrap Division oftraining and validation sets.
number (V=validation T=Training)
1 \% T
2 T \Y% T
3 T Vv T
1 t 1 1
| il !
8 T \%

Figure 2.1. Selection of training and validation sets for input selection (Section 4.5.1).

2.3 Characteristics of Irish Electrical Load Data
2.3.1Trend and Variability

Figure 2.2 (below) shows the growth in electrical demand in Ireland in recent
years. To gain initial insight into the nature of the underlying trend a quadratic

curve of the form (Equation 2.1) is fitted to the data:

d(t) =at2 +bt +c +£(t) @ .1)

12



where t is the time in hours since the start of the data (1986), d(t) is the trend at
time t £{t) is an error term, and a, b, ¢ are coefficients calculated via least

squares. Note that a,b,c are positive (Table 2.5).

1986 1988 1990 1992 1994 1996 1998

Year

Figure 2.2 Load with approximate trend curve.

Table 2.5 Co-efficients of trend curve (normalised).

Coefficient Value
a 1.1360 xin "
h 1.1640 x10'b
c 0.3498

In addition to an underlying trend there is also a growing variability, v.The

variability of load for yearj, Vj, is defined as:
Vj ~ Ymax,/ —J minj (2-2)

where yrax/ and ynmmj are the maximum and minimum loads in year j,

respectively. This rising variability is shown in Figure 2.3(b).

13
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Figure 2.3 (a) Hourly load data and (b) its variability

The trend and the variability can be related by the use of the Box Cox transform
(Box and Cox, 1964). They proposed a transform for equalising (to make
constant) the variance of a time-series where the variance, at a given time t, is
related to the value of the series, at that time t. This transform can also be applied
to equalise the variability of time-series whose variability is a function of the

trend (Franses and Koehler, 1998).

The Box-Cox transform has been used in many time-series applications; for
example, Osula and Adebisi (2001) applied the transform to travel expenditures
in Nigeria. This time-series exhibited an increasing trend and variability over
time while the main causal variable (the price of oil) did not. When the travel
series had been equalised and de-trended, the correlation between it and the oil
price could be seen. Pere (2000) in a study of height and weight of adolescents

applied the transform to remove differences due to age.

The data is transformed according to a transform parameter X (Box and Cox,

1964) as:

o IOMAYA ifAXO 2.3)
110g(j>(0 ) if A-0

14



where y'(t) is the transformed load t hours from the start of the data (1986) and
y(t) is the original load.

In the current study electrical load data is transformed using the Box-Cox
transform with X = 0.3 (Figure 2.4). As the purpose of this section is merely to
establish that a relationship between trend and variability exists, X is determined
empirically (as suggested by Cryer, 1986). The transformed load data exhibits an
approximately equalised variability (Figure 2.4), showing that a definite

relationship exists between the trend and variability of the load.

3

2.9
2.8

2 2.7

2.6

2.5
1986 1988 1990 1992 1994 1996 1998 2000
Year

Figure 2.4 (a) Transformed load and (b) variability of transformed load

2.3.2 Day-Types

Daily load data can be disaggregated into distinct groups (called day-types) each
of which have common characteristics. As can be seen in Figure 2.5 there is, for
example, an obvious difference between the shape of the load on a typical
Sunday and Monday due to decreased economic activity on a Sunday.
Furthermore, there is a distinct difference between the shape of a typical winter
day and summer day (Figure 2.6). A typical winter day exhibits a higher peak at
spm relative to a summer day, due to increased lighting needs in winter, among

other things.

15



Day

Figure 2.5 A typical weekly load (Day I=Sunday)

0 5 10 15 20
Hour of the day

Figure 2.6 Typical shape of a Winter (18/11/1998) and Summer working day (17/06/1998)
(The mean load for each day has been subtracted)

Techniques for day-type identification are discussed in the literature review
chapter (Section 3.2.1) and day-type identification for the current research is the

topic of Chapter 4.

16



2.3.3 Temperature-Load Relationship

This section examines the relationship between load and temperature, the
dominant causal variable for load (as pointed out by Murray, 1996, Hyde and
Hodnett, 1997b for Irish load data and Lu et. ai, 1989, Chen and Kao, 1996, and

Hara et. al., 1997, for other systems to mention but a few).

As pointed out in Section 2.3.1, Irish load data has an underlying trend and rising
variability. These characteristics are not present in the temperature readings for
the same period (1986-2000) (Figure 2.7) and so the relationship between load
and temperature is obscured. Section's 2.3.3.1and 2.3.3.2 present the techniques
used to pre-process the load and temperature so that the relationship between the

two can be examined (Section 2.3.3.3).

1

Ve
0.8 M ..
l 06 1 Kt - L1V
* wored!
304’ roML1 s, > m V
glc.ae e A/ mx ]
0.2
1986 1988 199019921994199619982000
Year
1986 1988 1£ 1992 1994 1996 1998 2000
Year

Figure 2.7 Load and temperature.

2.3.3.1Pre-Processing of Electrical Data to Remove Trend and Variability

This section details how the growing trend and variability are removed from the
data, so that the fundamental relationship between the load and temperature is

revealed. This is achieved in three steps:
1. As pointed out in Section 2.3.1 the Box-Cox transform can be used to remove
the variability of a time series if the variability is related to trend. This is the

case with Irish electric load, so the Box-Cox transform is applied as in

17



Section 2.3.1. Franses and Koehler (1998) show that there are however,
problems with the Box-Cox transform; primarily that a series with increasing
trend (as is the case with Irish electrical demand) results in a transformed
series with a trend that is increasing at a decreasing rate. As the transformed

series in this study is not used for model building this is not an issue,

Secondly, the trend of the transformed load is removed using a quadratic
curve of the form Equation (2.1). This results in the transformed and de-
trended (the trend is removed) load series shown in Figure 2.8 (note the

temperature in this figure has not been transformed in any way), and
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Figure 2.8 Temperature and transformed and de-trended load.

Finally, the transformed trend value at the end of year 2000 (the trend value
of prime importance in future forecasts) is reintroduced to all the data. This is
known as level shifting. The resultant series now has the equalised variability

and the trend value of the year 2000 (Figure 2.9).
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Figure 2.9 Temperature and transformed re-trended load.

The inverse Box-Cox transform (Equation 2.4) is then applied to the load series
in Figure 2.9 to produce an equalised, level shifted and de-trended load series
(Figure 2.10, below). The inverse Box-Cox transform can be easily derived from

Equation (2.3) as:

_ if A*0
z(t)=Jwo+il* _ (2.4)
lexp(z(0) ifA=0

where z\t) is the inverse-transformed series at time t and z(t) is the transformed

series which has been further manipulated (de-trended and level shifted).

It should be noted that the pre-processed (equalised and de-trended) load in
Figure 2.10 has the same value as the original load at the last data point (31g
March 2000). The pre-processed load is an approximation to Irish load in a
system without growth. Thus, the relationship between this and temperature is

not obscured.
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Figure 2.10 Original and equalised de-trended load (normalised).
2.3.3.2 Pre-Processing of Temperature and Load

The temperature at a particular hour is rarely the only temperature input used
when forecasting the load at that hour (Dash et. al., 1997, is an example of one
exception). The load is typically aggregated in some fashion. Arahal and
Camacho (1999), for example, use the average temperature for the day in
question while Hyde and Hodnett (1997b) use several different non-linear
transformations of the current and previous temperatures, to name but a few.
Before explaining the reason for using more than one temperature in predicting

the load, a measure called coherence must be defined.

The coherence (also known as the squared coherency function) between a time
series *(/) and y(i) is the correlation of the power in series x at frequency/with

the power in seriesy at frequency/(Brockwelt and Davis, 1987):

(2.5)
P,AfKy(D

where Cy,(/) is the coherence of x withy at frequencyf Px\(f] and Pyv(f) are the
power spectral densities of x and y respectively, Px«(f) is the cross power

spectrum ofx and y and |*| denotes the absolute value operator. The coherence
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can be used to indicate if certain frequencies in one series are related to those

frequencies in another.

The coherence is approximated in this body of work using Welch's averaged
periodogram method (Brockwell and Davis, 1987). First the data is divided into
non-overlapping segments each of size Njft. Each segment is then smoothed using
a Hanning window (Brockwell and Davis, 1987) to avoid spectral leakage. The
periodogram of the smoothed segments is used to calculate the spectral densities
and cross spectrum ofx andy. These are then substituted directly into Equation
(2.5). In this study Njft was chosen to be 2,000 owing to the large size of the data

set and the resolution required at the high frequency end of the spectrum.

The coherence function (Equation 2.5) of temperature with pre-processed load
demonstrates that pre-processed load is only correlated to temperature at daily
and yearly frequencies (Figure 2.11). The high coherence at a 12-hourly period is
due to the twin peak shape of the daily load curve caused by the daily maximum
and minimum (Figure 2.4) as noted by Moutter et. al. (1986). The highfrequency
(time periods less than 12 Hours) components of temperature are not correlated
with high frequency components of load. This indicates that high frequency
components of temperature are not particularly useful in forecasting load on any
(including hourly) basis, and justifies the use of some form of low-pass filtering

or aggregation of temperature data.
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The pre-processed temperature used in the following analysis is the average

temperature, tavk), defined as:

U*)=7ri"*(i.*) (2.6)
where thAi.K) is the temperature at hour i on day k.

Although the focus of this research is forecasting the hourly load, the question of
examining the load-temperature relationship for each hour of the day is not dealt

with until Chapter 4. In the current analysis the load is aggregated as:
*(*)=2r£z'(a 2.7
)=1jEz'(a) (27)
where zav(k) is the average load for day k and z'(i,k) is the pre-processed load for

hour i on day k.

2.3.3.3 Characterisation of the Temperature-Load Relationship

A scatter plot of the pre-processed load and average temperature is shown in
Figure 2.12 below. Typically, for an electrical system, the relationship between

load and temperature is similar to that shown in Figure 2.12 (Fan and McDonald,
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1994, Lu et. al., 1989). At low temperatures (below 18 degrees for Ireland as
discovered by Murray, 1996*) the correlation between load and temperature is
negative due to heating requirements. Above 18 degrees there is a deadband or
comfort zone in which the load is largely unresponsive to the temperature (Fan
and McDonald, 1994). Beyond this deadband, as the temperature rises, the load
again increases due to air-conditioning (Fan and McDonald, 1994). As the
temperature in Ireland rarely exceeds the mid-twenties, Murray, (1996) did not

identify any cooling effect.

Average Temperature (degs)

Figure 2.12 Typical and actual scatter plot of temperature-load relationship (Working
days).
It should, however, be noted that the temperature-load relationship is not the

same for all electrical systems. Murray (1996) pointed out that the relationship

was significantly different for a regional power board in Northern New Zealand

where temperature was a non-dominant input.

*Note: Murray used temperature readings from Eirgrid which although very similar to the MOI
readings do have a bias of +2 degrees.
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2.4 Conclusion

This chapter shows that Irish electrical load data has distinct characteristics,
which have implications for model building. The following characteristics were
highlighted:

« Trend and variability. Firstly, the data has a trend that increases at an
increasing rate. Also, the variability of the load increases and is related to the
trend. This indicates that load is a dynamic series which changes over time
but in a predictable way. Indeed, the simple methods used to remove the
trend and variability of the load in Section 2.3.3.1, although not perfect, are
quite effective. The forecast horizon that is the objective of this body of
research is three days. Relative to this, the rate of change of the approximated
trend is very low at 1.13 xIO'u Mw/hour* (Table 2.5) and removing the trend
and variability (as is required in Chapters 5,6 and 7) can be achieved with a

high level of accuracy,

» Day-types. The shape of the load on different days was examined in Section
2.3.2 and it was found that load can be classified into different day-types. The
fact that the daily load shape is not consistent is important for modelling as it

requires that the model must incorporate shape information, and

» Temperature-load relationship. The relationship of temperature to load is
examined in Section 2.3.3. The results (Figure 2.12) show that the load is
very responsive to the load at temperatures below 16 degrees but thereafter a
deadband exists. This implies that temperature may not be a significant
variable in forecasting the load for some summer months. This topic is

further examined in Section 4.2.2.

*This figure is normalised relative to a maximum load of IMw.



Chapter 3
A Historical Review of Approaches to Electrical

Load Forecasting.

3.1Introduction.

This chapter reviews the approaches taken to load forecasting in the literature.
There are many ways in which load forecasting approaches may be categorised.
However, the aim here is to present the significant differences in these

approaches. To this end the chapter is divided into the following five sections:

1. The extent of the load forecasting field (Section 3.1.1). Load forecasting is
not confined solely to the short-term. Section 3.1.1 describes the wider area
of load forecasting and the issues that concern electrical utilities with respect
to forecasting in general. Short-term load forecasting, which is the focus of

this work, is subsequently defined in more depth,

2. Disaggregation approaches in load forecasting (Section 3.2). Rather than
using a single model to forecast the load for all day-types and hours of the
day, many approaches segment or disaggregate the load and model each part
separately. That is, different models may be used to forecast the load in

different day-types and even at different hours,

3. Linear load forecasting techniques (Section 3.3). Regardless of the
disaggregation approach, load forecasting models are broadly based on two

techniques; linear and non-linear,

4. Non-linear load forecasting techniques (Section 3.4). There is a wide variety
of techniques in the forecasting literature and the purpose of Sections 3.3 and
3.4 is to categorise these techniques and detail the advantages and

disadvantages of each, and
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5. Section 3.5 deals with the treatment of weather forecast errors. Many of the
load forecasting techniques discussed in Sections 3.3 and 3.4 use weather
inputs. Typically load forecasting models are trained with actual weather
readings but online operation requires weatherforecasts. The errors in these
weather forecasts can however, have a disproportionate influence on the load
forecast. Section 3.5 discusses the approaches taken to reduce the influence

ofthese errors.

3.1.1 Introduction to the Load Forecasting Area.

The thesis is focused on short-term load forecasting. However, this is a subset of
the larger load forecasting area. This section details the extent of the wider load
forecasting area, issues that are common to all load forecasting areas and the
relevance of each to STLF. Load forecasting can be broken into three areas,
long-term (Section 3.1.1.1), medium-term (Section 3.1.1.2) and short-term

(Section 3.1.1.3) load forecasting.

3.1.1.1 Long-Term Load Forecasting.

Long-term load forecasts refer to forecasts on a yearly time scale. These are
typically total yearly electrical consumption, sales or the peak yearly demand.
These forecasts are required for financial planning, transmission network and
generation network expansion (Youssef, 2000). As the timescale is yearly, the

data has no seasonality or cyclical behaviour.

As noted by Youssef (2000) the amount of historical data available for long term
load forecasting is restricted as there is only one data point per year. The number
of causal variables for long-term forecasting can be quite large in relation to the
typical size of the data set. Youssef and El-Alayly (2000), for example, list
sixteen causal variables for total yearly consumption with a database of only
thirty-six years (data points) of historical consumption. Murray’s (1996) data set
consists of twenty-nine years of data with ten causal variables. A small data set
also limits the techniques that can be applied and thus non-linear techniques are

rarely applied (Youssef, 2000).
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3.1.1.2 Medium-Term Load Forecasting.

Medium term load forecasting refers to forecasting on a timescale less than a
year but greater than a day. Examples are forecasts of total weekly electrical
demand (Murray, 1996 and Cloarec et. al., 1998) and the monthly peak load
(Barakat and Eissa, 1989, Train et. al., 1984). These are required for fuel
procurement and to schedule plant maintenance. In the case of total electrical
weekly demand this area is quite similar to Short-Term Load Forecasting (STLF)
in that the data exhibits a yearly cycle and also has special periods such as
Christmas and summer holiday seasons (Cloarec et. al.,, 1998). Thus the

techniques applied in this area must deal with similar issues to those in STLF.

3.1.1.3 Short-Term Load Forecasting.

The term short-term load forecasting typically refers to forecasting overall
system demand on an hourly basis up to seven days ahead, which has not been
adjusted by demand side management*. However, the term is sometimes
interpreted differently. For example, the following topics are considered part of

the STLF field but are not relevant to this thesis:

» Direct Load Control (DLC), in which the operator may intervene to change
the level of demand (for examples see Bhattacharyya and Crow, 1996 and
Yu, 1996),

» Changing customer base, in which the system size changes in the short term
due to competition from other electricity suppliers (for example Morrissey

and Van Toai, 1988),

* Bus load forecasting, in which the load in a local region is forecast (for

examples Kassaei et. al., 1999 and Handschin and Domemann, 1988),

* Residential and industrial load forecasting, which is concerned with

forecasting the loads of individual customers (for examples see Morrissey

*For example large industrial customers can be instructed to lower usage by the grid operator.
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and Van Toai, 1988, lhara et. al., 1994, Capasso et. al., 1994 and Harris and
Liu, 1993), and

* Very Short-Term Load Forecasting (VSTLF), (also frequently referred to as
short-term load forecasting) which refers to forecasting the load for horizons
up to 30 minutes ahead on a minute by minute basis (for example Liu et. al.,

1996).

In contrast, the area of daily peak forecasting (for example Dash et. al., 1995) is
relevant as the peak daily load is merely a point in the daily load curve. The
majority of short-term load forecasting literature is relevant to the current

research.

The main forecasting accuracy measure used in STLF is the Mean Absolute

Percentage Error (MAPE), defined as:

MAPE =Y 1_ (3.1)
m y(0 n Y

where y(i) is the actual load at time i, y(i)is the load forecast and N is the
number of points used. The reason this measure is used is that it allows
comparison between different electrical systems without revealing the size of the
system or the variance of the forecasting errors (unlike for example, the mean

squared error), which are often considered confidential information.

However, electrical utilities, including Eirgrid, consider large forecast errors to
be proportionately more costly than small errors. Thus, a measure such as the
Mean Squared Error (MSE) would seem more appropriate as it involves the

squared error which penalises large errors more heavily than small errors:

MSE = 1; rj (y(0)-y(1))2 (3.2)

n

It is therefore common that models are trained to minimise the MSE but are

evaluated using the MAPE. Although minimising the MSE of a model does not
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guarantee a minimum MAPE this is the convention in this area and will be

followed here.

3.2Disaggregation approaches in Load Forecasting.

Disaggregation of electrical load data refers to the segmentation of the data set
into several distinct disaggregated sets, each of which is modelled separately.
This approach may be described as a 'divide and conquer' approach. It is
proposed here that disaggregation is advantageous if the disaggregated sets are

sufficiently different. Load data is typically disaggregated at two levels:
1. Day-type (Section 3.2.1), and
2. Hour ofthe day (Section 3.2.2).

These disaggregations are not mutually exclusive and the load may be

disaggregated both by day-type and hour ofthe day or at one level only.

3.2.1 Day-Type Disaggregation.

The existence of several different day-types has been shown by several
researchers (Muller and Schatzel,1999, Muller and Petrisch,1998, Ho et al.,,
1990, Bretschneider et al., 1999, Hsu and Yang, 1991, to mention a few). Muller
and Schatzel (1999) for example, identified five primary classes:

e Summer days,

» Cold, early and late summer days,
e Spring and autumn days,

» Early and late winter days, and

* Winter days.

Each ofthese primary classes contains seven secondary classes:

» Mondays and working days after a holiday,
» Tuesdays, Wednesdays and Thursdays,

» Fridays and working days before a holiday,
e Saturdays,

* Sundays,

* Holidays, and

« Special days.
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The total number of day-types is thus thirty-five. In an earlier study, Muller and
Petrisch (1998) identified only summer and winter primary classes for the same
data. This shows how the level of disaggregation in day-type selection is, to a

large extent, subjective and dependant on the judgement of the forecaster.

As pointed out by Hubele and Cheng (1990), the application of a separate load
forecasting model for different seasons (i.e. summer, autumn, winter and spring)
has the advantage that the models need not incorporate seasonal information.
Further disaggregation of the load by day of the week (for example summer
Sunday, winter Sunday, summer Monday etc.) reduces further the amount of
information that a model need incorporate. Such approaches have been
implemented successfully by Srinivasan el al (1999) and Mastorocostas et al

(1999), to mention but a few.

Where a single model is used for all the data, the day-type information is often
incorporated as an additional input (two examples are Chen et al, 1992 and

Lertpalangsunti and Chan, 1998.). In either case the day-types must be identified.

3.2.1.1 Techniques for Day-Type Identification.

The selection of day-types can be guided by analytical techniques. Three

candidate techniques were considered for day-type identification:

1 Interviews with system operators (for example Ho et al., 1990),
2. Clustering algorithms (for example Bretschneider et al., 1999), and
3. Self-organising feature maps (for example Hsu and Yang, 1991 and

Pelikan et. al., 1996).

Lonergan (1994) presented interviews with Irish system operators. The
interviews indicate that there were considered to be only two seasons in the year;
winter and summer. There is no disaggregation by day of the week and so the

total number of day-types identified is two.
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Clustering algorithms group data together into clusters (sets). Often a cluster can
be assigned to a single unusual data point while another cluster represents two
close but distinct groups (Jain and Dubes, 1998). These algorithms are best

applied when the a-priori existence of the number of clusters is known.

The self-organising feature map or Kohonen map (Kohonen, 1990) is a technique
which maps a continuous input space to a discrete output space. The discrete
output space provides an approximation to the input space (Haykin, 1999). The
output space is typically organised as a two dimensional grid (Figure 3.1, below)
in which similar inputs will be mapped onto the same area ofthe grid. In terms of
day-type identification this means that similar days will be mapped to a particular
area of the grid. These areas can then be identified as day-types. Unlike cluster
algorithms, the number of day-types need not be pre-specified and the proximity

of the identified day-types is known.

The Kohonen map can be implemented for day-type identification in several
different ways, (examples are Bretschneider et al., 1999, Muller and Petrisch,
1998, Hsu and Yang, 1991); however differences in the results are insignificant
in most cases. The algorithm used by Hsu and Yang (1991) is now presented as
an example. The Kohonen map structure is diagrammatically shown in Figure

3.1 below.

J
Node 3,3.
0 IMgos e gt
Output Layer ( ) < >_\<>
R ] ighbourhood
grld C m t of size 1
around Node
3,3.
@) o
Input Layer

Figure 3.1 Kohonen map structure.
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The network consists of a grid of output nodes connected to the inputs via a set
of weights. When presented with the kth input vector £4, e RIxn, the network

calculates the activation of each node by ¢4 as:
*u*=W tJUk (3.3)

where aff and Wij are the activation of, and weight (e Rnd) connecting £4 to,
node y respectively. £4 is said to be mapped onto the node with the highest
activation. After several inputs have been presented, similar inputs are mapped to
the same or adjacent nodes, i.e. within a small neighbourhood. A neighbourhood

of size Nc around node ij is defined as nodes i £ Nc toj + Nc.

Hsu and Yang (1991) construct the input, £4, for load forecasting in two steps.
Initially, the daily load curve is extracted from each day to give a set of load
curves that have a minimum value of zero and a maximum value of one (Hsu and

Yang, 1991):

F(0,-mh,(T),) ,=U3 24 3 4)

max(Fjt) - min(it)
where Y'(i)k and Y(i)k are the #h elements (hour) of the load curve Y\, e R4
and actual load Y * e R of day k respectively. The load curves are then

normalised to give them unity length:

24 V/2
U[k =W (DKA=Y {Dh 5 pop o /=123,..,24 (3.5)

j=1
where U(i)k is the zh element of Uk, and |*|| is the normalisation operator. The

weights are initialised as (Hsu and Yang, 1991):

W,J =|| kO ).A (2)..(24)]+ 5A[au(L),<U2),...<t1(24)]| (3.6)

where and <(i) are the mean and standard deviation of U(i) over all k, A is
a uniformly distributed random number in the range -0.5 to 0.5 and Wq is
normalised to unit length, in a manner similar to Equation (3.5). The weights are

not initialised randomly but initialised around the mean of the inputs so that the
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corresponding outputs are well distributed in the output grid (Hsu and Yang,

1991).

During training the inputs are presented one by one and the weights of the
triggered node (the node to which the inputs is mapped) and nodes in its

neighbourhood are updated (Hsu and Yang, 1991) via:
Wu (m+21)=W.j(m)+a(m)[Uk- WiJ(m)] (3.7)

Where a is the adaptation gain, with 0 < a< 1, and m is the iteration number.
This has the effect of increasing the activation of the triggered node and it’s
neighbours. In a single iteration all the inputs are presented and the weights
adapted. After several iterations, the neighbourhood size is reduced by one and

so on until zero, i.e. at this point the triggered node only is adapted.

3.2.1.2 Techniques for Determining the Transition between Day-Types.

Cloarec et al. (1998) demonstrated that for Irish weekly demand there is a
transitional period between winter and Christmas. Analytical techniques, such as
clustering algorithms (for example Imai et al., 1998) and Kohonen maps (for
example Muller and Petrisch 1998), have been used to determine the transitions
between day-types. However, Kohonen maps are not ideal for this task. Consider
a day lying in the transition between summer and winter. This day will trigger a
node in between the summer and winter regions of the output nodes. However, as
pointed out by Song and Hopke (1996) the relative position of two nodes in a
Kohonen Map is not an exact measure of the proximity between the inputs that

trigger those nodes.

Cloarec et al. (1998) and Rahman and Bhatnagar (1988) determine the transition
between the loads in two seasons using model forecast errors. The load in
question (weekly in Cloarec’s study and hourly in Rahman and Bhatnagar’s) is
forecast using both seasonal models and the ratio of model errors is used to
determine the transition. This technique is desirable for any online system, as it
tracks the errors of that system. However, it is dependant on the performance of

load forecasting models and not the characteristics of the data.
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Cluster analysis methods are used mainly as a first step in designing a fuzzy logic
system based on the data as opposed to a priori information (Jain and Dubes,
1998). There are several types of clustering algorithms such as K-means
clustering, nearest neighbour, polynomial interpolants and adaptive vector (for
an overview see Harris et al., 1993). Other algorithms such as the adaptive fuzzy
classification algorithm suggested by Bretschneider et al. (1998) can be adaptive
and change with the dynamic behaviour of the data. By far, the most popular
clustering algorithm is the Fuzzy C-Means (FCM) algorithm (Dunn, 1974). As
pointed out by Jain and Dubes (1998), there are no guidelines for a-priori choice
of the correct algorithm based on the data. As the FCM algorithm is the most

popular it is now presented.

The FCM algorithm seeks to break the data into N clusters. Each cluster is
characterised by a cluster centre Q e R Ixe, which represents a point at the centre
of the cluster and Q is the dimension of the inputs. Given an input vector £
e RIXO, instead of assigning it to a single cluster its proximity to all clusters is

quantified by apotential defined as:

where e [0,1], is the potential of Ukto cluster centre Cj, k \s a scalar which

determines the level offuzziness (explained below) of the resulting potentials,

and L(UKk,Cj) is the distance between 14 and Cj defined as:

(3.9)

th

where E4(z) and C/i) are the i elements of £4 and Cj respectively.

The level offuzziness determines the degree of overlap between clusters. A value

of one for « leads to no overlap. As « is increased above one the overlap is

increased.
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In addition to Equations (3.8) and (3.9), it is required that the sum of potentials
for Ukequals unity:

(3.10)

It should be noted that although fijk has similar characteristics as the probability
that Uk is a member of cluster Cj (i.e. e [o,1] and the sum of the
memberships equals one), the two measures are not the same (Jain and Dubes,
1998). The potential represents the membership (degree to which an input can be
classified as a member of a cluster) of an input to a cluster. While an input can
have membership of two or more clusters, the probability that it is a member of a
cluster implies that it belongs to one cluster alone. Thus, the potential is an ideal

measure of the membership of a day to a certain day-type.

To apply the algorithm, the cluster centres, Ch and level of fuzziness, k, must be
determined. The aim is to minimise overall proximity of the data to the cluster
centres. This is achieved by minimising the cost function:

M N

i=L'Lw 1<v,.C,) (3.11)
-1 A

where J is the cost function to be minimised and M is the number of input
vectors. The algorithm is initialised using random potentials. The cluster centres

are then calculated via:

(3.12)

The potentials are then updated via Equation (3.8) and the new cluster centres
and value of J are calculated via Equations (3.11) and (3.12). This process
continues until the value of J reaches a pre-specified level or the number of

iterations reaches a pre-specified maximum.
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3.2.2 Hour of the Day Disaggregation.

STLF forecasting models fall broadly into two categories; sequential models
(examples of which can be found in Choueiki et. al., 1997, Papadakis et. al.,
1999) and parallel models (examples of which can be found in Infield and Hill,
1998 and Gupta, 1985). The sequential approach models short-term (hourly) load
as a single series while the parallel approach models each hour of the day as a
separate series. The difference in approaches is shown diagrammatically in
Figure 3.2 below. A daily series composed of the loads at a single hour is called a
partitioned series. Figure 3.2 shows the construction of, for example, the

partitioned series for 1 p.m. and s p.m.

Sequential approach:

Parallel approach :

I pra series 6pm series

Figure 3.2 Constructing partitioned data series from electrical load data.

A general equation for the load on hour i of day k, yi(k) may be expressed as a

function,/ of previous loads, current and previous inputs and an error term as:

yt(l =f(yi-i (*),-, yEN(K>,~1(*- i)»-,  yeN(*- pp
*),, UULMK),  (k-1),0; U, u(k- 0,

i,k) +ei(k) (3.13)
where Uj(k) is a vector of causal variables on hour i of day k, £{k) is an error
term, N, M are the orders of the hourly regressors (N,M <24) and P,Q are the
orders of the daily regressors. Note that k is included as a factor in Equation
(3.13) to reflect that, due to the long-term trend, load is a hon-stationary process.
Indexing the load by both hour and day, though cumbersome, is useful in
pointing out the difference between the parallel and sequential approaches to

load forecasting.
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The sequential approach uses just one function, /, relating the current load to

previous loads and inputs and so Equation (3.13) becomes:

Y, (K) =fs(yM(K),...,y,_N(K), (k- 1),.., ,...V,_N(k- P),
U_, K),....,U_M(7c),t/M(k -1),..., ,..,UtM(kk-0) +e.(k) (3.14)
However, in the parallel approach, the data is partitioned so that each hour of the

day is modelled by a separate function and so Equation (3.13) becomes:

70(*)=foU (k-1),....,y0(k- PO),UI(k - 1),...Ul(* - 0 Q)+ £0(K)
7,(K) =1, (Y{(k -1),..., y, (k - P, Ul (k - 1),..., Ul (k - Qy))+ el(k)

y23(k) =/ BB (k-1),...,y2(k - P23),isza(k - 1),... U2(k - Q2)+F23(k) (3.15)

where U* (k) is the input vector for hour i of day k (which may now include the
load at previous hours), yi(k) is the load at hour i on day k (for example y\(k) is
the load at 1 hrs or 1 a.m. on day k etc.),/ is the parallel model for hour i. P, and

o i are the orders of the regressors forpartitioned series i.

Note that, in the case of a sequential approach, the order of the regressors for
each hour of the day is fixed while in the parallel approach the regressor order is
variable if required. Similarly, in the parallel case/ can vary from hour to hour.
However, for the sequential approach, the same function applies to all hours of

the day.

To produce a multi-step ahead forecast using a sequential approach requires that
the forecasts be produced iteratively (Figure 3.3). This is because actual values of
the time series are not available past the forecasting origin and forecast values
must be used instead. As pointed out by Bretschneider et. al. (1998) the error in
the first and subsequent forecasts is propagated and tends to build up. This
phenomenon is known as propagation error. However, parallel models have the
advantage that they may exclude the hourly regressors, which are not available at
the forecast origin and thus 24 hour ahead forecasts can be produced without

propagation errors.
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Figure 3.3 Producing a multi-step ahead forecast using a sequential model.

The parallel approach may make the modelling task more difficult as:

Although /0..,/23 no have the hour of the day as an input (i.e. i is excluded
from Equation (3.15)), this may not resultin/,...523 being any less complex
than/. The partitioned series are created by daily sampling of load (Figure
3.1). As shown by Harvey (1981), a sub-sampled (i.e. taking every pth
sample) AR (Auto-Regressive) process is itself an AR process of equal or
higher order. That is, it is likely to be a more complex process. ARMA
processes, of which AR processes are a subset, are explained in Section 3.3.1.
However, at this stage it is sufficient to say that ARMA processes covers a
large class of linear processes. Short term load has been modelled by several
authors as an ARMA process with varying degrees of success by several
authors (examples are Vemuri et. al. 1981, Barakat et. al. (1990) and Elkateb
et. al. (1998)),

The number of parameters that need to be estimated in the parallel approach
(24 sets of parameters) exceeds that of the sequential approach, where only

one set of parameters needs to be estimated (Lee et. al., 1992),

The data set is partitioned into 24 separate time-series (Figure 3.2), reducing

the number of input-output pairs for training ofthe model, and

Training 24 separate models can be overly computationally expensive.

Examples of a sequential approach can be found in Barakat et. al. (1990),

Connor et. al. (1992), Darbellay and Slama (2000) and Vermuri et. al. (1981) to

mention but a few. As observed by Connor et. al. (1992), this approach can lead
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to excellent results if the hour of the day dependence is not a dominant factor for
the electrical system being modelled. In that study, Connor et. al. (1992)
observed that sequential approaches which ignored hour of the day dependence
were superior to those that did not (in this case two types were examined; a
recurrent neural network (Section 3A.3.2) and a Multi Layer Perceptron (MLP,
see Section 3.4.3.1). This was reported as being due to the increased complexity
of the modelling task. Darbellay and Slama (2000) similarly observed that an
ARMA model, which ignores hour of the day dependence, was superior to a
feedforward neural network (Section 3.4.3.1), which used the hour of the day as
an additional input. However, differences in the type of model employed, prevent

a genuine evaluation of the effect of including this time dependence.

The parallel approach has also been used by many authors (Chow and Leung,
1996 and Ramanthan et. al., 1997 to mention a few). In the study by Connor et.
al. (1992), it was found that the parallel approach vastly improved the forecasting
performance, where recurrent neural networks (Section 3.4.3.2) were used as the
modelling tool. In fact, this was found to be the optimal technique. In contrast,
Lee et. al. (1992) found the performance of parallel and sequential models which
used MLPs (Section 3.4.3.1), indistinguishable. Interestingly, although not
explicitly stated in the paper, the parallel model gave superior results for some
hours of the day. In a similar study, also using MLP neural networks, Lu et. al.

(1993) found that the sequential approach was superior to the parallel approach.

The only consistent conclusion to be drawn from the literature is that the choice
of sequential or parallel modelling is highly dependent on the particular power

system being analysed.

A number of other studies (Gupta, 1985, Khotanzad et. al., 1996, Murray et. al.,
2000) have examined combining the sequential and parallel approaches. This
combined approach is known as the Multi-TimeScale (MTS) approach and
adjusts the forecasts of a sequential model with those of parallel models. For
example, Gupta (1985) first forecasts the load curve for the following day using a
sequential model. A parallel model is then used to forecast the load at e p.m. (the

daily peak load). The difference between the load curve forecast at 6 p.m. and the
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parallel model forecast for 6 p.m. is then used to adjust the whole load curve
forecast. The topic of MTS models is further examined in the section on linear

models (specifically Section 3.3.4).

3.3 Linear Techniques for Load Forecasting.

A linear system is one which satisfies the principal of superposition (Sinha,
1991). Superposition is composed of two concepts, additivity and homogenity
(Sinha, 1991). Additivity means that the output of a linear system given the sum

oftwo inputs is equal to the sum of the outputs from each input individually:

J(«) (i) +u2(0) = /(Mj (o) +F(ui(o) 0-16)

where / is a linear function and uia are inputs. Homogenity means that
multiplying an input by a constant results in the output being multiplied by the

same constant:

/(c«1) = c/(«1(i)) (3.17)

where ¢ is a constant. A simple exception to this is an affine (a linear function

with an offset) function:

/ (u(t)) = au(t) +c (3.18)

where a and c are constants. In this case neither additivity nor homogenity apply,
though the function still falls into the realm of linear systems (Seber and Wild,
1989). The definition of a linear system used in this text is that adopted by Seber
and Wild (1989), in which a system is linear if the partial derivatives of the

system outputs to the input variables are constant in form.

The various linear techniques differ in their form of representation of a linear
system. The Box-Jenkins techniques of Section 3.3.1, for example, use difference
equations, state space form is used in Sections 3.3.2 and 3.3.4, while the
Bayesian techniques explained in Section 3.3.3 can be applied to both

representations.
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3.3.1 Box-Jenkins Techniques.

Box and Jenkins (1970) laid many of the foundations of classical time-series
analysis (as noted by Harvey, 1981, among others). Their techniques have been
used in several load forecasting applications (Di Caprio et. al., 1985, Rajukar and
Newill, 1985 to mention a few) and are often used as a baseline for comparison
with other techniques (examples are Ho et. al., 1990, Murray, 1996, Infield and
Hill, 1998, Di Caprio et. al., 1985, Charytoniuk et. al.,1999 to mention but a few).

Box-Jenkins techniques involve modelling a time-series as a function of previous
outputs, output errors and external inputs (three commonly used textbooks on the
subject are, Bowerman and O’Connell, 1987, Brockwell and Davis, 1987 and
Cryer, 1986). However, a stationary time series is required in the later stages of
Box-Jenkins techniques (Box and Jenkins, 1970). A stationary time series is one
for which the statistical properties are invariant to a shift in the origin (Papoulis,
1991). However, this definition is quite strict as it includes all the statistical
properties of the series and the alternative definition of wide sense stationarity is
used (Brockwell and Davis, 1987). A series is wide sense stationary if its mean

and covariance are invariant to a shift in the origin (Papoulis, 1991).

Box and Jenkins (1970) suggested thatprior to modelling, the time series should
be transformed into a stationary time series with a stationarity transform,

explained below.

3.3.1.1 Stationarity Transformations.

A stationarity transform is one which produces a stationary time series from a
non-stationary time series. As pointed out by Priestly, (1981) any linear time
series can be transformed into a stationary times series by means of an
appropriate stationarity transform. Many stationarity transformation techniques

exist but the appropriate one to use depends on the time series being transformed.

Box and Jenkins (1970) proposed differencing as a stationarity transform.

Differencing is based upon the delay and differencing operators, g x and V,
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respectively. The general differencing stationarity transform for a seasonal series
can be composed of both seasonal and non-seasonal differencing (Bowerman and

O’Connell, 1987) as:
z(k) =v y dx(k) = (1- g*)D(1- g~")dx(k) (3.19)

where z(k) is the transformed series, x(k) is the original series, V f is a seasonal
differencing operator with a season s and D is called the order of seasonal

differencing, Vdis a non-seasonal differencing operator of order d. D and d are

determined by use of the Sample Auto Correlation Function (SACF) which is

explained below.

The SACF of a time series x{k) represents the linear dependence between
observations separated by a lag and may be expressed (Bowerman and
O’Connell, 1987) as:

n—T

X (x(r) - 3c)(je(E+t) —x)
(") =— (3-20)
2> (0 -T)
T

where rr(T)is the SACF value for a lag of t, n is the number of observations

used and x is the average value of x(k). Note that the SACF is an estimate of the

auto-correlation function, as sample data is used.

The orders of differencing, D and d, typically lie in the range zero to two
(Bowerman and O’Connell, 1987). To determine if the transformed series is
stationary Box and Jenkins (1970) suggest repeatedly applying differencing,
increasing D or d at each iteration. At each iteration the series is tested to see if it
is stationary using the SACF. Box and Jenkins (1970) suggest that a process may
be considered non-stationary if the SACF dies away slowly, which is determined
subjectively with experience. Ng and Young (1990), however, point out that
differencing can only be used with time series that are non-stationary and not, for
example, with time-series which have non-constant parameters. Another problem

with differencing is that subtracting one value of a time-series from another (i.e.
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differencing) results in the noise at both values being present in the differenced

value.

Other stationarity transforms include the Box-Cox transform (Section 2.3.1),
removal of a linear trend (Ljung, 1987), removing a polynomial trend (Brockwell
and Davis, 1987) and smoothing by means of a moving average trend (Brockwell

and Davis, 1987) to mention but a few.

3.3.1.2 Model Structures.

The second stage of the Box-Jenkins methodology involves modelling a
stationary time series. Box and Jenkins suggest several types of models for this
purpose. The general form of the Box-Jenkins model is known as the transfer
function model and can be expressed as a function of previous values of the time

series, external inputs and previous model errors (Box and Jenkins, 1970) as:

X ="M

k-T NE (k 3.21
& T GG Nalal

)

where

*  x(k) is the stationary time series to be modelled at time k (assuming gq< 1),
e u(k) is an external input with delay Thetween input and x(k),

e e(k) is awhite noise term at time k, and

« B,F,C,D are polynomials in the delay operator gA such that, forexample, B

may be expanded as:

B(q)x(k) = (1- bxq_1 - b29~2 ----- brag ~"b)x (k) (3.22)
where are the coefficients of the polynomial and nb istheorder. F,C
and D can be similarly expanded with coefficientsf t c/i,and

orders of nf nc and nd, respectively. The other models proposed by Box and
Jenkins (1970) can be derived from Equation (3.21) by letting F and D equal
one and adding a regressor term A(gq) which acts on x(k) as shown in Table

3.1 below.
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Table 3.1 Box-Jenkins models and associated polynomials F=\,D=\).

Model name A B C

AR (Auto Regressive) I-algq',...,areq"a 0 1

ARX (AR eXogeneous) I-cil]qg ..,armg bl+b2g\...,brgrb 1

MA (Moving Average) 1 0 1+CItf L e l1U]
MAX (MA eXogeneous) 1 bi+b2q',...,.b,.bgrb HCi# ... cnyg

ARMA (AR-MA) 1 9" finatf 0 M~Qq ... croy

ARMAX (ARMA eXogeneous) \-ci\q ,aneq bi+b2g\....brtqrb  HCI? )-e-MQ

In addition, if x(k) has been produced using a differencing transform on an
original series, then the model is called an Integrated model and the letter ‘I’
may be added to the model name. For example, an ARMAX model becomes an
ARIMAX model, an AR model becomes an ARI model, etc. In this case the time
series in Equation (3.22), x(k), represents a stationarity transformed series and
Equations (3.19) and (3.22) may be combined (with F and D equal to 1)

(Bowerman and O’Connell, 1987) to give:

A (q)Vyil(x(k)) =B(q)u(k -r) +C(a)e(k) (3.23)

Box and Jenkins (1970) also examined the case where the series to be forecast is
seasonal. In order to include the seasonal aspects of the data, Box and Jenkins
(1970) used the idea of seasonal and non-seasonal operators to adjust Equation

(3.23) (Bowerman and O’Connell, 1987) as:

As()AJI € )"y d(*(*)) =B(a)u(k ~ v +Cs(q)Crs(q)e(k) (3.24)
where

» Asis the seasonal AR operator defined as:

A(g) =(1- «,,<T,--a smsay-"sats) (3.25)

where asA,...,asssa are the seasonal coefficients of order nsa,
e Arsis the non-seasonal AR operator defined as:

AJqg) =(l-alg-\...-anag-B) (3.26)

where a\,...,amare the non-seasonal coefficients of order na,

» Csis the seasonal MA operator defined as:
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Clei)=(\-c”™\...-csmscg ") (3.27)

where cs,u...fis”\sc are the seasonal coefficients of order nsc, and
* C,sis the non-seasonal MA operator defined as:
CJdg)=(\-cxg-X...-cmy H) (3.28)

where cq,..., enc are the non-seasonal coefficients of order nc.

The model described by Equation (3.24) is called a Seasonal Auto Regressive

Integrated Moving Average exogenous (SARIMAX) model.
3.3.1.3 Model Identification.

The next step inthe Box-Jenkins procedure involves calculating the orders of the
seasonal andnon-seasonal AR and MA operators. Before explaining the
procedure, the Sample Partial Auto Correlation Function (SPACF) must first be
defined.

The SPACF of a time series is defined (Bowerman and O’Connell, 1987) as:

r-1
M, = (3.29)
w* ifT=23,

where rx(t,t) is the SPACF at a lag of % rx(t)is the SACF at a lag of % and

rx(r,j), forj * z, is defined (Bowerman and O’Connell, 1987) as:

riTp=r/T-DJ- \(t, T)rjr-\.T-j) forj - 1,2,...,r-1 (3.30)
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If an AR model is fitted to the data, rx(r, T)can be interpreted as a plot of the

coefficients of the AR model versus the lag, r, associated with that coefficient
(Harvey, 1981, for example see Figure 3.4 below). For an AR process of order r,
an AR model of order ris sufficient. Thus the PACF of an AR process of order T
will theoretically have zero elements after Tand the coefficients of the model up
to T (Harvey, 1981). Also it can be shown that an MA process (which has no
roots at zero) has an equivalent AR process which has an infinite order
(Brockwell and Davis, 1987). Thus for an MA process the SPACF is non-zero

for all T However, it does die away with increasing t (Harvey, 1981).

im
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Figure 3.4 The SPACF of an AR(2) process.

Conversely, the SACF of an AR process is non-zero for all %while the SACF of

an MA process of order r, is zero after t (Harvey, 1981).

Thus, the SACF and SPACF can be used to identify the orders of an MA or AR
model. However, with an ARMA process the AR part of the data is present in the
SACF as a component which dies away (Harvey, 1981). This makes detection of
the order of the MA component of the model difficult. Conversely the MA
component of the model similarly contaminates the SPACF. In addition, as noted
by Harvey (1981), the SACF and SPACF of an ARMA process with errors can
be highly distorted.

Calculating the orders of an SARMA model involves identifying, in addition to

the above, the orders of the seasonal operators. The approach is similar to that

above and Bowerman and O’Connell (1987) give guidelines for their selection.
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For an integrated model (ARI, SARI, SARIMA, ARIMA, etc.) the transformed
series is assumed to be stationary so the model identification is the same as that

ofanon-integrated model.

For a model with an exogeneous input, nb is determined using the Sample Cross

Correlation Function (SCCF) defined (Papoulis, 1991) as:

n-t

mox(k) - x)(u(k +1) - u)

L (1) = Ii n h T (3'31)
£ (x(4)-5Q2 £(«(t)-a)2
Wl /A Vo

Where nu(t)is the SCCF between x(k) and u(k) at a lag of Tand u is the mean

value of u(k). The SCCF is zero up to T=k -1 and non-zero from T=k to r =
k +nb , thus allowing determination of the order of B and the delay between the

exogeneous variable and the time series.

It should be noted that if x(k) represents a stationarity transformed time-series
then the relationship between the original series and u(k) may be distorted
(Harvey, 1981). Remedying this situation is dependant on the time series in

question and may require transforming u(k) also (Harvey, 1981).

3.3.1.4 Model Estimation and Diagnostic Checking.

The next step in the Box-Jenkins technique is to estimate the coefficients of the
model. There are several techniques used to estimate the parameters of Box-
Jenkins models some of which are model dependant. These include maximum
likelihood estimation (Harvey, 1981) and least squares estimation (Harvey,
1981) among others. Brockwell and Davis (1987), Cryer (1986) and Bowerman

and O’Connell (1987) provide a comprehensive list of the methods used.

Due to the distortions in the SPACF and ACF (mentioned in Section 3.3.1.3), the
correct model orders may not have been identified. Thus the next step is
diagnostic checking in which the model is validated to ensure that it is a good

representation of the time-series. The residuals (forecast errors, £(kj) of an
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optimal model are taken from a random population (Papoulis, 1991) and thus the
first step in diagnostic checking is to examine a plot of the residuals against time
(Box and Jenkins, 1970). The second step involves examining the SACF of the
residuals to ensure that there is no serial correlation (f(/c) is correlated with e(k-
1), O[k-2), etc.). The ACF of arandom process is 1 for a delay of, T= 0, and zero
elsewhere. The SACF of the residuals of an ARMA model may, however, be
misleading as they tend to be underestimated (Harvey, 1981). Alternative
approaches include that of Box and Pierce (1970), who proposed using a test
statistic to determine the randomness of the residuals from an ARMA process.
Other tests for randomness rely on examination of the residuals in the frequency
domain. The power spectrum of a random series is equal at all frequencies. In
order to test this the periodogram (Brockwell and Davis, 1987) is often used to

estimate the power spectrum. The periodogram ordinate (point) for frequencyj,

7Tj, is defined (Harvey, 1981) as:
7tj =ap+b2 j =1 n(3.32)

where ajg and bjg are the coefficients of the Fourier transform of the residuals

defined (Harvey, 1981) as:

N
bj =(2/N)V2Y JE(K)sm(27g/N)k i =\,....n-\ (3.33)

k=1
and

N
aj =(2/N)V2~re(k)cos(27zj/N)k j=1l.n-1 (3.34)

k=1

where N is the number of points used in the calculation.

However, as the periodogram is not consistent (the variance of the ordinates do
not go to zero), it is often a bad indicator of randomness. The cumulative
periodogram is often used instead used to determine randomness. This is defined
(Harvey, 1981) as:

n<=x*;/ix I=i.." <3-35)

j=1 /7=t

where 77(is the cumulative periodogram ordinate at frequency i and n is the

maximum frequency (this is Vi the sampling frequency, Harvey, 1981). A plot of
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77,against i is called the cumulative periodogram and is a better indicator of

randomness than the periodogram as the fluctuations in the periodogram

ordinates are smoothed in the summation.

Another measure of the randomness of the residuals is the Ljung-Box test

statistic (Bowerman and O'Connell, 1987), defined as:

(3.36)

Where N is the number of residuals, Q(N) is the Ljung Box test statistic and
rx(j) is the SACF of the residuals at lag7 . The distribution of the Ljung Box test

statistic is approximately Chi-Squared with 4 n -np degrees of freedom, where
np is the complexity of the model. Given a level of significance a, the residuals

may be tested using:

(3.37)

where %a(e) is the Chi-squared distribution with a significance level of a.

If the model residuals are found to be random then the next step is to check that
the model is not over-fitting the data. As pointed out by Brockwell and Davis
(1987) the mean squared forecast error (in the training set) falls monotonically as
the orders of an ARMA model increase. However, the mean squared forecast
error outside the training set (i.e. out of sample) does not follow this pattern, and
will rise after the complexity of the model surpasses that of the process
generating the time series. This phenomenon is known as over-fitting. A model
whose complexity matches that of the data is known as a parsimonious model.
Several criteria exist for penalising the complexity of a model relative to the
errors generated by that model. An example of one criterion is Akaike’

Information Criterion (AIC), which maybe expressed (Harvey, 1981), as:

AIC —-2 log L(y/) + 2n (3.38)

where L(y/) is the maximised value of the likelihood function (see Section
3.3.2.4) and n is the number of parameters in the model. Given several candidate

models, the one with the lowest AIC is selected. Other criteria are listed in
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Harvey (1981), Brockwell and Davis (1987), Bowerman and O’Connell, (1987)
and Cryer, (1986).

3.3.1.5 Box-Jenkins Models for Short Term Load Forecasting.

Examples of Box-Jenkins techniques applied to STLF can be found in
Kodogiannis and Agnostakis (1999), Mbamalu and El-Hawary (1993), Moghram
and Rahman (1989), Barakat et. al. (1990) and Elkateb et. al. (1998), to mention

but a few.

However as pointed out by Mohamad et. al. (1996) Box-Jenkins techniques have
the disadvantage that they require a large database for training and are
susceptible to errors in that database because of differencing. In addition, as Box-
Jenkins techniques assume that the load curve is static they can give large errors
when the load curve changes rapidly (Mohamad et. al., 1996, Fan and
McDonald, 1994). Rajurkar and Newill (1985) present an ARMAX model in
which the coefficients of the model are allowed to change dynamically which

allows the load shape to change more rapidly.

Another problem with the Box-Jenkins approach is the subjective selection of the
model orders, which can result in the wrong model structure being chosen (Chen
and Kao, 1996). Chen and Kao, to overcome this drawback, propose an
automated approach based on repetitively applying a gentle difference algorithm.
The gentle differencing algorithm essentially replaces the difference operator
V (i.e. 1-ql) with 1-aggA’where agis a coefficient great than 1. This is equivalent
to fitting a non-stationary AR model as opposed to the use of differencing. After
each application the resultant time series is tested for stationarity. The
performance of their models is found to be comparable with manually selected
ARIMAX models. Parzen (1982) proposed a similar approach called the Auto-
Regressive Auto-Regressive Moving Average (ARARMA) model. This differs
from the ARIMA model as the integrated part of the model is now created using

an AR differencing technique.
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In an application of Box-Jenkins models to the STLF problem in the Czech
Republic, Darbellay and Slama (2000) apply non-seasonal differencing of 1 hour,
seasonal differencing of one day (24 hours) followed by further seasonal

differencing of one week (168 hours) thus giving a differenced load defined as:

2(k) =V m V 2vy(k) (3.39)

where z(k) is the differenced load for hour k and y(k) is the load for hour k. With
regards to the stationarity of z(k), Darbellay and Slama (2000) note that it is
essentially stationary with significant lags in the SACF at one, six, seven and
eight days. A non-linear auto-correlation function is also used by Darbellay and
Slama (2000), based on information theory and a method developed previously
by Darbellay (1999), to show that there is also a non-linear auto-correlation in
z(k) at a lag of one hour. From the SACF an ARIMA model is then constructed

of the form:

@- axg~N)(1- a2g~24)(1- a3g~m )z(k) = (1- c1“D(1- c2g~u )(1- c3g"m)e(k) (3.40)

where a, are the AR coefficients and c-are the MA coefficients of the model. The
ARIMA model was then compared with several non-linear models utilising
neural networks (Section 3.4.3). The first of the neural networks was an MLP
(see Section 3.4.3.1) using the delayed elements of z(k) on the left hand side of
Equation (3.40) as inputs. The second is a recurrent neural network (Section
3.4.3.2) allowing dynamic modelling ofthe series. This is perhaps a better choice
for comparison with the ARIMA model described by Equation (3.40) as delayed
errors (the MA part or right hand side of Equation (3.40)) are also modelled. It
was found that there was little difference in the results. Thus the non-linear
correlation detected at a lag of 1 hour was deemed to be of little extra use in

forecasting the load, in this case.

Darbellay and Slama (2000) also compared an ARIMAX model with a neural
network. In this case temperature was the exogenous input for both the ARIMAX
and neural network models. The results show that the ARIMAX model is
superior to the neural network although it should be noted that the time series to
be forecast in this case is the total daily load and not the hourly load as in the

previous case above.
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3.3.2 Linear State Space Techniques.

Linear State Space (SS) techniques formulate the modelling problem in terms of
states, which represents the underlying process generating a time series. This
approach differs from difference equation approaches (such as those in Section

3.3.1) although the two forms are interchangeable.

The states are related to the time series via a measurement equation defined (Gelb,
1984) as:

x(k) =HO (k)+e(K) (3.41)

where x(k) is the time series value at time k (which can be multi-variate), 6(k) is a
vector of states (called the state vector) at time k, H is called the observation matrix
and e(k) ~ N(0O,Rx) isa vector of white noise error terms, known as the measurement
noise, and ~N(0,Rx) denotes white noise with a normaldistribution, mean of zero
and covariance matrix Rx. The states are propagated from time k to time k+1via the

state transition equation (Gelb, 1984) as:
0(k +1) = 00(h) + tj(h) (3.42)

where 0 is called the state transition matrix and Tj(k) ~ N(O, Qe) is a vector of white

noise error terms known as the process noise.

For a time series with exogeneous inputs the SS equation can be expressed (Harvey,
1981) as:
x(k) =HO(k) + Gu(k) + e(k) (3.43)

where u(k) is a vector of exogenous inputs at time k and G is the matrix of
associated parameters. In many cases the value of G is unknown. However, it can

augmented into the state vector and calculated recursively (thus G becomes G(kj).
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The measurement equation then becomes (Harvey, 1981):

X(k) =[H u(kj ~GO((E)) +ek) =H O'(k)+e(K) (3.44)

where H is the augmented measurement equation and0 is the augmented state
vector. Similarly, the state transition equation (3.42) can be augmented (Harvey,

1981) as:

Ok+) 0 o 0K | m

Gk+D 0 1 o) o oW =E0ONgwe) (349

where 0 is the augmented state transition matrix. As can be seen, the augmented SS
equations (3.44) and (3.45) are of the same format as Equations (3.41) and (3.42)
thus the following analysis for univariate (no exogeneous inputs) SS models applies

also to exogeneous SS models.

3.3.2.1 Kalman Filtering and State Estimation.

An optimal technique (in the least squares sense) exists for estimating the states
called the Kalmanfilter (Harvey, 1981). The Kalman filter is a recursive algorithm,

which is implemented in several steps (a derivation may be found in Gelb, 1984):

1 An estimate of 0O(k) at time k+1, is produced using an equation similar to

Equation (3.42) (Harvey, 1984) as:
0~(k+1)=00\k) (3.46)

where  (k + 1) is called the a-priori estimate of the state vector at time k+1.
The estimate is an a-priori estimate, as it does not include information about the
value of jc(A+1). O0HK) is the a-posteriori estimate of 0{k)as it includes
information about the value of x(k). As the technique is recursive 0-+Kk) is

generated from step 3 (below) in the previous iteration,
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2. Next an a-priori estimate of the error covariance matrix of the state vector is
calculated. The error covariance matrix of the state vector is a measure of the

accuracy of the state vector estimate. This is defined (Gelb, 1984) as:

(3.47)

and

(3.48)

where P +Hk) is the a-posteriori error covariance matrix of 0+Hk), P (k) is the
a-priori error covariance matrix of 0~{k), £[¢] is the expectation operator and
T denotes the transpose operator. The error covariance matrix of 0 (k +1) is

generated using P +Hk) from the previous iteration (Harvey, 1984) as:
P (k+\)=0PHk)0OT+Qe (3.49)

3. Once x(k+\) becomes available this is integrated into the estimate of 0 (k +1)

(Harvey, 1984) via:
0+(k+1) =0 (k) +K(k)[x(k+1)- HO (k+1)] (3.50)

where K(k) is called the Kalman gain and is calculated (Gelb, 1984) as:

K (k +1) =P~(k + Y)Ht\HP~{k + )/y T+ «]m" (3.51)

4. Finally, P Hk +1)is calculated (Gelb, 1984) using:

PHk+1)=[/-K(KH]P~ (k + 1) (3.52)

where | is the identity matrix.

Equations (3.46) and (3.49) from steps 1 and 2 are known as the prediction
equations as they propagate the state vector and associated error covariance matrix.
Equations (3.50) and (3.52) are known as the updating equations as they update the
states and associated error covariance matrix. In terms of electrical load there is

usually no measurement error as such, but rather an unpredictable part of the load.
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A forecast of x(k) is produced from O0~(k) using the measurement equation
(Equation 3.41). Also the variance of the forecast, cr?(&), can be calculated from

P~(k) as (Harvey, 1984):

al(k) =HP~(k)HT+RX (3.53)

The Kalman filter is shown diagrammatically in Figure 3.5 below.

Figure 3.5 Block diagram of Kalman filter operation.

The recursive algorithm described above requires initial values for the state vector,

0+(0), and the error covariance matrix of the state vector, P +(0). There are several

ways to achieve this:

Approach 1.

In the event that no a-priori knowledge exists regarding these values, P +(0)is
typically set to a finite large value to indicate that 0~(o)is not a good estimate of
0(0). In addition 0" (0)is set to zero or randomly initialised (Harvey, 1981). With
these initial conditions several iterations, denoted m$, are required until 6+HK) is a

good estimate of 0(k). Harvey (1994) suggests that mg is equal to the number of

states in the state vector. However me can also be determined subjectively, by
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examining P +(k)which has a transient for k<mg (Harvey, 1994). Forecasts for k<me

should be ignored in any subsequent analysis, however this does not present a

problem for large data sets (Harvey, 1994),

Approach 2.
For a stationary time series the state estimates reach a steady state (they are

approximately time invariant) and can be approximated as a random variable with

0(k)~N(O0(k),P(k)) where 0{k)is the average value of the state vector and
P(k) is the average value of the associated error covariance matrix. The initial

conditions can then be setto 0(0) =0(k)and P(0)=P(k) (Harvey, 1984),

Approach 3.
In the case where the state vector has stationary and non-stationary states a mix of

approaches 1 and 2 may be used (Harvey, 1981). The stationary elements of
0(0) and P(0) are determined as in approach two while the non-stationary elements
are determined as in approach 1 (Harvey, 1981). The number of iterations required
before the state vector transient has dissipated is now equal to the number of non-

stationary states (Harvey, 1981), and

Approach 4.
For some SS models the states represent physical attributes of the time series, for

example, the trend. In this case the initial states can be set using estimates of these
physical attributes, for example a trend may be estimated by the first value of the

time series.
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3.3.2.2 Linear State Space Model Structures.

There are an infinite number of state space models; the most commonly used models
are listed here. The observation and transition matrices fully define a SS model
structure. The most basic SS model is the Generalised Random Walk (GRW)
defined (Ng and Young, 1990) as:

0w = H,,,=\1 (] (3.54)

where 0gw is the state vector, Hgnv is the observation matrix, a,j3and y are the
coefficients of the model. Several variations of the model exist such as the random
walk model (tt=1/2=0 and 7=o0), the smoothed walk model (ore(o,l),/?=1 and
y—1) and the Integrated Random Walk (IRW) model (etr=1,/?=1 and 7=1) (Ng and
Young, 1990).

The IRW is often used to model a trend with only two states (Ng and Young, 1990)
as:

d(k) 1o . VAK)

_d(k) 0 1 d(k-1I)
where d(k) is the trend at time k, d(k) is the rate of change of the trend at time k
(this is also called the velocity or slope of the trend), ljd(k)and Tjj (k) are white

noise error terms for the trend and slope respectively. This representation of the
trend has been found useful by Ng and Young for modelling the trend in several
time series (Ng and Young, 1990) and by Infield and Hill (1998) for removing the
trend in STLF. It has the advantage that the trend can be modelled using only two

states, both of which have physical interpretation.
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SS models have also been used to model seasonal time series. Three common

approaches are:

1 The Periodic Random Walk (PRW) model. This can be expressed (Young, 1988)
as:

x(K) =x(K-s) + ¥ (k) (3.56)

where s is the seasonal length and Tj”k) is a white noise error term. A problem
with the PRW is that it can be unobservable (the seasonal states cannot be
distinguished from the trend states) when used in conjunction with the IRW

model (Young, 1988),

2. The Differenced Periodic Random Walk (DPRW) model. This can be expressed
(Young, 1988) as:

x(k) = x(k-j) +nv(k) (3.57)
j3
where s is the seasonal length and Tj"k) is a white noise error term. By taking

the sum on the right-hand side of Equation (3.57) to the left-hand side gives:

x(k~j) =riv() (3.58)
j
Equation (3.58) requires that the sum of the time series, over a season, is equal a
white noise term. This is an important as it allows the seasonal shape to change
if required, given that the expected (the expected value of a white noise term is
zero) sum is zero. The DPRW may be expressed in state space notation (Young,

1988) as:

Om: . »*”,:[! 0 - 0] (359)
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where @nv e RsIxs'l and Hdpw e RDbs 1 are the state transition matrix and
observation matrix for the DPRW, respectively. The advantage of the DPRW
over the PRW is that it does not have the observability problems of the PRW
when used in conjunction with the IRW model (Ng and Young, 1990), and

3. The Dynamic Harmonic Regression (DHR) model. This can be expressed as the
sum of sinusoidal signals at frequencies up to half the seasonal length (Ng and
Young, 1990) as:

si 2

X(k) =~  9{mwk)cos(2n s_k) +02

j=1

J(k)sin(z ;rs—k) +9% (k) (3.60)

where &)\j and Gij are the states. The corresponding SS representation given by
Ng and Young (1990) calculates 6\j and Gij as the states of the system, each of
which is assumed to follow a GRW (see Ng and Young, 1990 for more details).
Note that a GRW model requires three states to be calculated. The sinusoidal
elements of Equation (3.60) are introduced via the measurement equation (Ng
and Young, 1990) as:

Hdr= cos(27t—k) o sin(2;r—k) o e cos(2K”-*-k) o sin(2n”-"-k) o (3.61)
S S S S

Alternative forms exist for the DHR in which the sinusoidal element is
introduced into the state transition matrix as opposed to the observation matrix
(Harvey, 1984). Ng and Young (1990) believe that their form is superior to the
DPRW for time series where the seasonal component is growing over time.
However, there are significantly more states in the DHR model than the DPRW

model due to the incorporated GRW models.
In addition to the three models above, Harvey (1984) gives the SS representation for

SARIMAX models, exponentially weighted moving average models, and others.

One particular result of interest for this thesis (see Section 5.4.1) is that the gentle
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differencing (Section 3.3.1.5) approach maybe expressed in SS form (Harvey, 1984)
as an IRW.

3.3.2.3 Linear State Space Models for Short-Term Load Forecasting.

A structural model is a state space model in which the states of the model represent
physical decompositions of the underlying time series. For example, electrical load
has been decomposed by many authors into a trend and cyclical component (Chen
and Kao, 1996, Ramanathan et. al., 1997, Haida and Muto, 1994 and Moutter et. al.,
1986 to mention but a few). The presence of a trend and cyclical component in Irish
load has also been examined in Chapter 2. This type of structural model is thus ideal

for electrical load and is called a Basic Structural Model (BSM).

Specifically, the BSM is a state space model which represents a time series as a sum
of a trend, d(k), a seasonal, y/(k), and a random white noise component, e(/c),

(Harvey, 1994) as:
x(k) = d(k) + y/(K) +e(k) (3.62)

The BSM is composed of an IRW model for the trend component used in
conjunction with a seasonal model, either that described by Equation (3.59) or
Equation (3.61). It is assumed that the trend states and seasonal states are
independent and so for example, the SS matrices of a BSM with a DPRW (Harvey,
1994) may be expressed as:

(3.63)

dpnv

where &bsm and Hbsm are the state transition matrix and observation matrix for the
BSM respectively. The BSM with a DHR for the cyclical component is similar; the
transition and observation matrices for the DPRW replacing &dhr and Hdhr

respectively.
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3.3.2.4 Variance Parameter Estimation.

In many cases, the covariances of the measurement and process noise, Rxand Qq, are
unknown and form part of the parametric description of the state space model. As
the BSM is the most relevant state space model to STLF, the current discussion is
limited to estimation of the parameters for this model. The measurement equation
for the BSM is Equation (3.51) and the state transition equation for a BSM with a
DPRW can be expressed (Harvey, 1994) as:

td(k+a) ! md(k+1)
d(k +X rjd(k +1)
ver (M) 0
where are the seasonal states. From Equations (3.64) and (3.41) there are

four white noise components in the model (i.e. Td(k), nd (k), Tjydik) and Tj*k)). The

noise components are assumed to be independent and so Rx and Q& may be

expressed (Harvey, 1994) as:

Rx=al and Qg= a, (3.65)

where o\ is the variance of e(k) , <M is the variance of fjjk), crj is the variance of

7d(k)and <« is the variance of I]yj[k). o\ is the variance of the unpredictable part
of the load and a high value will cause the Kalman filter to apply a lower weight to

the measurements, y(k) (see Equations (3.51) and (3.52)). As od increases, the

Kalman filter allows the trend level to vary more. As o\ increases, the Kalman filter
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2
allows the trend slope to vary more. As 0s increases, the Kalman filter allows the

seasonal component to change shape more rapidly.

Theoretically, the optimal values of Rx and Qecan be calculated by maximum
likelihood, estimation (explained below) which depends on the one-step ahead
prediction errors. However, as pointed out by Harvey (1994), the prediction errors in
turn depend on the way the state vector is initialised (see Section 3.3.2.1). The
different initialisation procedures lead to different forms of the likelihood function
(explained below). These forms are, however, equivalent for sufficiently large data

sets (Harvey, 1994).

Given a process and a set of parameters, the data produced by that process can be
described by some probability distribution. For example, if the process is Gaussian
the parameters are the mean and standard deviation. However, it is more typical that
the data is given, a model class is assumed and the parameters are required. In this
case the probability distribution may be expressed in terms of the known data with
the parameters as dependent variables. This is known as the likelihoodfunction and
expresses the probability* that the data observed came from a process as a function
of the parameters. Thus, the parameters that maximise the likelihood function are
those that most likely produced the data (for the assumed process) (Papoulis, 1991).

In this case, the process is the BSM, the data is the recorded load and the parameters
are 0é, 04,6f and 2 Typically, by taking the log of the likelihood function

(known as the log likelihood function) a more convenient expression is achieved
(Harvey, 1984). By minimising the log likelihood function, the likelihood function is
also maximised. This is known as maximum likelihood estimation (see Papoulis,

1991, Harvey, 1981 or Murray, 1996 for more details).

* Strictly speaking a probability interval should be taken.
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In the case where the state vector is initialised to zero and P +(0) is set to a large

finite number (i.e. approach 1 in Section 3.3.2.1), the log likelihood function is

(Harvey, 1981):

\o%L[x(\),x(2),...;0l,08,0],01\=

(N me)login-]1- 5>¢gffe(./)-~ X log""™(3.66)

j=ms+1 7=m, +I| L/

where L[x;a\ denotes the likelihood func on, N is number of points in the training
set, m#is the point past which the initial transient has passed (Section 3.3.2.1), e(k)

are the errors in estimates of x(k) and o\ (k) is the estimated variance of those errors.

As can be seen Equation (3.66) requires a\(k) and e(k) to be estimated, however

these are dependant on aB, 0~8 ,o'7 and af/ . Thus, the log likelihood function must

be maximised with the aid of a function maximisation routine. As this technique
depends on the prediction errors it is often called Prediction Error Decomposition

(PED).

As pointed out by Ng and Young (1990) and Harvey (1994), Rx and Qq are directly
related. Specifically a model with a particular value of Rx and Qe is identical to a
model with RJB, and Q0% where £ is any scalar and is called the noise variance
ratio. Thus, Rx is typically set to unity and removed from the parameters to be

optimised (Ng and Young, 1990 and Harvey, 1994).

Ng and Young (1990) point out, however, that estimating the optimal parameters by
PED can be complex and may not lead to optimal parameters. The technique of
Sequential Spectral Decomposition (SSD) is instead proposed. This technique
estimates the parameters by relating them to their spectral qualities. Specifically, the
trend component acts as a low-pass filter while the seasonal component acts as a

band-pass filter. The steps involved in the technique are:
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1. Rxis set to unity. <i is set to zero and the trend component allowed to evolve via

the variance of the slope, (J-,.

2. The periodogram (Section 3.3.1.4) of the time series is examined and the 50%
cut-offfrequency, fsa, of the low frequency component identified. The 50% cut-
off frequency is that frequency at which the amplitude of the low frequency
component is a \ the maximum (Figure 3.6). Alternatively a specific cut-off
frequency may be specified (for example, the trend component in electrical load

will act at periods less than a year).

Figure 3.6 Diagram of the 50% cut-off frequency.

3. The value of &ais related to/so (Ng and Young, 1990) via:
a\ =1605(/50)4 (3.67)

4 2
4. An IRW model with odcalculated as in step 3 is used to de-trend the time series.

5. Rx, <dand cr“] have now been calculated and the last remaining parameter, o,

is now calculated using PED (Young, 1988).
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3.3.3 Bayesian Techniques

Classical statistical approaches describe modelling a data set using a parameter
space, £2, a sample space, E, and family of distributions defined on the sample space,
P. The parameters are viewed as fixed constants, which must be estimated. In the
Bayesian approach however, £2 is viewed not as a fixed set but as random with

associated probability distributions (Geweke, 2001).

Let O be a set of unknown parameters, and x be a set of observed data. In the
Bayesian approach, any prior knowledge or ignorance about 0 is first expressed as a
prior distribution, orprior, P(&). A model is then proposed which may be expressed
as P(jc|] 0). This model may be an ARIMA, neural network model, etc. but simply
expresses the probability of observing a set of data given a set of parameters for the
model. Now, given an observed data set, x, the prior may be updated (Geweke,
2001), as:

p(xi©)p(e)
P(x)

which is an extension of Baye’s theorem (and thus the name), to give a posterior

estimate of the distribution of 0, P(Q jjc). Equation (3.68) is often expressed as:

posterior = _IEI_(EI_I_EI_QE)EI__)E_P_[I_?! (3.69)

evidence
The Bayesian approach is similar to the Kalman filter which begins with an estimate
of the parameters and updates that estimate as new information arrives. Indeed,
Harvey, (1984) shows that when the Bayesian approach is used to calculate the

states of a SS model, the resulting algorithm is equivalent to the Kalman filter.

Bayesian techniques can also be applied to structure determination of any type of
model (Broemling and Shaarawy, 1985). In this case the model structure is
expressed as a random variable and can be updated if the probability distributions
above can be expressed in terms of known quantities. However, this may be difficult

in some cases (Broemling and Shaarawy, 1985).
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Broemling and Shaarawy (1985) for example, use the Bayesian approach instead of
the Box-Jenkins approach (Section 3.2.1) for selecting the orders and parameters of
an ARMA model. Kiartzis et. al. (1997) uses the Bayesian approach to weight the
forecasts of three different candidate STLF models (two AR models and a neural
network). Interestingly, as the Bayesian approach allows the distribution of the
forecast errors to be calculated, the weights can become forecast horizon dependant

(Kiartzis et. al., 1997).

3.3.4 Multi-Timescale Techniques

Sequential approaches model data on an hourly timescale while parallel approaches
are on a daily timescale (Section 3.2.2). However, Multi TimeScale (MTS)
techniques differ in that the data is modelled using a combination of forecasts made

at different timescales.

There are two types of multi-timescale technique examined in this section the
adaptive scaling techniques of Khotanzad et. al. (1996) and Gupta (1985), and the
MTS technique of Murray et. al. (2000).

3.3.4.1 Adaptive Scaling Techniques

Khotanzad et. al., (1996) developed a technique for forecasting hourly temperatures
for an electricity utility given that only daily minimum and maximum temperature
forecasts from the meteorological office are available. The first part of the technique
uses a sequential model to produce an hourly forecast of the temperatures up to 24
hours ahead. This hourly forecast is then adjusted using temperature forecasts from

parallel models*.

*Note that forecasting electrical load is not the aim of this technique.
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The Sequential Model (SM), in this case is an MLP (see Section 3.4.3.1). This
model uses the current and previous temperatures as inputs (Khotanzad et. al.,

1996).

The Parallel Models (PM’s) are those of the Meteorological Office (MO) which
produce forecasts of the temperature at only two hours in the day (the hours at which
the maximum and minimum temperature occur). Thus, parallel model forecasts for

every hour of the day are not required.

The SM forecast is adjusted (Khotanzad et. al., 1996) via:
L 0\k) =mas(k)ihr(i, k) + bas(k) (3.70)

where thr(i, k) and thr (i, k) are the adjusted and SM temperature forecasts for hour i

of day k. maxk) and bas(k) are the adaptive scaling parameters calculated such that
the adjusted forecast must agree with the PM forecasts at the appropriate hours

(Figure 3.7).

% MO max. temp,
' forecast
I
i SM forecast /
*
PM. forecasts MO office min.
Adjusted forecast temp, forecast

10 15
Hour of the day

Figure 3.7 Adaptive scaling of a 24 hour temperature forecast using mimunum and maximum
temperature forecasts.

67



The main advantage of this technique above a SM is that propagation errors in the

SM forecasts are reduced. Disadvantages of this technique are that:

1. The scaling is linear, which distorts the shape of the SM forecast (for

example the adjusted forecast shown in Figure 3.7 above),

2. Forcing the MTS forecast to pass through the PM forecasts assumes that
these forecasts are far more accurate than the SM forecasts which may

not be true, and

3. The number of PM forecasts that can be used is restricted to two points in

the day.

Gupta (1985) proposes a similar method, which is applied to load forecasting. In this
method, a SM forecast of the load (in this case a linear model) is combined with a
daily peak load forecast (this is the PM forecast in this case). The covariance matrix
of SM forecast errors, Qsm and the variance of the PM forecast errors, c?pm, is used

to form the adjusted forecast (Gupta, 1985), via:

\yR k) -y sIp-kK\ QJip)
2

pm

where ymits(i,k) and ysm(i,k) are the adjusted and SM forecasts at hour i of day k
respectively, ypm(k)is the PM (peak) forecast for day k, p is the hour at which the

peak occurs and Qsn(/,/) is element ij of Qsm With this technique, the adjustment is
not linear as in the adaptive scaling technique, but rather depends on the covariance
between the SM errors at different hours and the variance of the PM model
forecasts. Additionally, the MTS forecast is not forced to pass through the PM
forecast as in the adaptive scaling technique. Instead, the MTS forecast is a weighted
combination of both. The disadvantage of this technique is that only a single PM

forecast (in this case the peak load) may be used.
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The next method proposed by Murray et. al. (2000) again attempts to use the longer
timescale data for similar reasons but is more flexible in that numerous PM forecasts

can be used. Maintaining the shape ofthe SM forecast is also taken into account.

3.3A.2 Murray's Multi-Timescale Technique

The MTS technique proposed by Murray et. al. (2000) combines PM forecasts with
a SM forecast and, additionally, a forecast of the total daily consumption. The total

daily consumption is called the daily-sum.

The number of PM forecasts is not restricted although for the STLF problem Murray
et. al. (2000) suggests the use of PM forecasts at:

e The load at spm,
» The overnight minimum at 5am,
* The lunchtime peak at 1pm, and

* The load at 2pm.

An additional cardinal point known as the end-point is used. This is a PM forecast
24 hours ahead of the forecasting origin. Unlike the techniques in Section 3.3.4.3,
Murray et. al.'s (2000) MTS technique (furthermore known as the MTS technique)
can combine a SM forecast for several days ahead with PM and multiple end-sum
forecasts. This technique is shown diagrammatically in Figure 3.8 (notation

explained below).
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Figure 3.8 Diagram showing MTS technique.

The SM is restricted to a state space model but the PM’s and daily-sum models are
unrestricted. Let the state vector of the SM at the forecast origin be 6(k). The MTS
technique partitions the state vector into states which are fixed at the forecasting
origin, while allowing others to be varied (adjustable orfreed states) by the PM and
daily-sum forecasts. Thus, the end result of the MTS technique is a new state vector,

0* (k) , in which the freed states have been varied. This state vector may then be

propagated forward to produce load forecasts.

If the dimension of the state vector is n and the number of adjustable states, r, then
there are n-r fixed states. The state transition equation (Equation 3.42) of a state
space model may be partitioned in terms of the fixed and adjustable states (Murray
et. al., 2000), as:

(fc+ 1) (%)

ok +1)= o =00(k) - [*, >

02(k +1) (3.72)

where Q(k) and (h{k) are vectors of fixed and adjustable states at the forecasting

origin, k, respectively and O ] and <Rare the partitions of the state transition matrix
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associated with O\(k) and &i(k). In addition the observation matrix may also be

partitioned in terms of the fixed and freed states (see Equation 3.41), as:

- —THi (*+9)
x(k) =HO(k) +s(k) =[Hi + e(k) (3.73)
2(* +1)
where H is the observation matrix (Section 3.3.2), H\ and H2are the partitions of H

associated with 0\{k) and 02(k). The dimensions of these variables are given below
in Table 3.2.

Table 3.2 A list of variables used in the MTS technique (Part I).

Variable Dimension Description

n Scalar Length ofthe state vector 6(k)
r Scalar Number of freed states of 6(k)
x(K) Scalar Load at time k

m wx 1 State vector at time k

H 1 X« Observation matrix

0 «X« Transition matrix

em (n-r)*1 Vector of fixed states at time k
M ) «x| Vector of freed states at time k
0, (n-r) x( n-r) Partition of & for fixed states
- rxr Partition of 0 for freed states
0 1X(«-T) Partition ofH for fixed states
h 2 Ixr Partition of H for freed states

The SM may be used to generate forecasts of the state vector /-steps ahead by
repeated use of Equation (3.72) (Murray et. al., 2000) as:

OXk +i rel(k
ok +i)= X _) (k) (3.74)
02(k +i) 02(k)_
where and areo2 the partitions of associated with 6\(k) and Q-iik) (note: 0'2

is not the same as (@2)', which is in general does not exist as &2 is non-square) .
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For the MTS model, an /-step ahead forecast of the state vector is generated by the

altered state vector, 0*(k), (Murray et. al., 2000) as:

ex(k +i) = ;2((‘;://)) =0 pO*(K)=[0[ O g;({"k)) (3.75)

and 02(k) is the vector of freed states which have been altered by the PM and end-
sum forecasts. A corresponding forecast of the load at k+i may then be made from

02(k + /) by use ofthe observation equation (Equation 3.41), as:
yms(k +i) =H 0\k +1i) (3.76)

whereyms(k +i) is the MTS forecast of the load, y, at time k+i. The MTS technique
calculates 02(k) by means of a solution to an over-determined equation set in 02(k)

(Murray, et. al., 2000) as:

HO0d{k)-H\O,{k) H 20\
Constraint 1 8X
H ONO (k)-H 1070 I(k) Hp )
yG-H & "0 "k) H e SN
Constraint 2 8
B> -H X [UOXK) Ty 0, 02(K)+ (3.77)
S SM
. 8
At n
Constraint 3 bs =S
] By S*r
K y=(p-DS /=</§.)S _ -

where S is the length of the season (in this case one day or 24 points) and the other
notation is explained below. This equation is made up of three types of soft

constraint (Murray et. al., 2000) as:

1 A smoothing constraint in which the MTS forecast from k+1 to k+N (generated

by Equation 3.76) deviates from the SM estimate by 8\,...,8n (Figure 3.8 shows

40 for example),
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2. A PM constraint in which Mparallel model forecasts, Yoo Yhwr of the load at
times k+Ci, ..., k+cMdeviate from the SM forecasts at those times by 8C159\/|

(Figure 3.8 shows Sc for example; the deviation of the 4thcardinal point), and

3. A daily-sum constraint in which P forecasts of the daily-sum, denoted

y ..,y fordays Xo P deviate from the sumofthe SM forecasts over those

days by Ss/, S5
p

The matrices in Equation (3.77) may be renamed as:

A{k) =B 02*(K) + A{K) (3.78)
where A(K) is the left hand side of Equation (3.77), B is the first term on the right
hand side and A(k) is the last term on the right hand side of Equation (3.77). Murray
et. al. (2000) then proposes solving Equation (3.78) for 02(k) by using weighted

least squares to give:

02=(b tWb ) 1B t WA (3.79)

where W is a diagonal matrix of weights which allows Equation (3.77) to recognise
that, for example, the deviation of the PM from the SM solution may be more
important than other deviations.. Table 3.3, below, summarises the variables defined

in the above analysis and their dimensions.

73



Variable
N
M
P

h

Ci

8,

A(k)
B(k)
W

A(K)

Table 3.3 A list of variables used in the MTS technique (Part I1).

Dimension
Scalar
Scalar
Scalar
Scalar

Scalar
Scalar

Scalar

Scalar
Scalar

Scalar

(N+M+P)y\
(N+M+P)*r
(N+M+P)* (N+M+P)
(N+M+P)* |

Description

Number of points used in the smoothing constraint
Number of cardinal point forecasts used.

Number of end-sum forecasts used.

iu' cardinal point forecast

The distance from the forecasting origin to the f'
cardinal point.

The deviation of the imcardinal point from the MTS
forecast.

imend-sum forecast.

Length of the summations for end-sum model.
The deviation of ys from the summation ofthe MTS

forecasts from k = 5(1-1) to Si

The deviation of the state space model forecast at k+i
from the MTS forecast at k+i.

Left hand side of Equation (3.76).

1stterm on the right hand side of Equation (3.76).
Diagonal weight matrix.

Vector of deviations.

The disadvantages of this technique are:

1. A linear state space model is required for the SM,

2. The linear state space model does not include exogeneous inputs,

w

A technique does not exist for optimising the weight matrix, instead Murray et,

al. (2000) provide guidelines for the values of the weights, and

4. There are no general guidelines for the selection of freed states.

However the advantages of this technique are:

The shape ofthe SM forecast is preserved via constraint 1in Equation (3.77),

The number of PM forecasts is not restricted,

A forecast of the daily consumption can be combined with the SMforecast, and

1
2
3. The adjustment ofthe SM forecast may be controlled via W,
4
)

An MTS forecast can be produced for horizons greater than oneday. This is

important considering that propagation errors in the SM forecast grow over time.
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3.4 Non-Linear Techniques for Load Forecasting

A non-linear system is one for which the principle of superposition (Section 3.3)
does not apply (Sinha, 1991). There are three factors typically present in short-term

electrical load which make non-linear forecasting techniques appealing:

1 The non-linear relationship between load and temperature mentioned in Section

2.3.3,

2. The presence of a non-linear auto-regressive relationship in load (as pointed out
by Fay et. al., 2000, Darbellay and Slama, 2000 and Mori and Kobayashi, 1996),

and
3. The non-stationarity of the load due to the trend (As examined in Section 2.3.1).

The non-linear techniques examined in this section differ in the means by which
non-linearities are modelled. Parametric techniques (Section 3.4.1) model a system
using a combination of linear transforms, multiplications and delays. Fuzzy logic
techniques (Section 3.4.2) model a system using several models which operate in
overlapping regions. Neural networks model a system using a combination of

weighted non-linear mappings (Section 3.4.3).
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3.4.1 Parametric Non-Linear Techniques

Parametric non-linear techniques are based on the Volterra series (Schetzen, 1980)
which describes a time invariant (a system which does not alter with time) non-
linear system in terms of the input at time tA u(t) and the output x(t) as a sequence

of integrals (Schetzen, 1980) as:

foo *O

X()=\ \(Qu(t- 5)dxl+ || ha(T,T2)u (t-ri)u(t —T2)dridT2

+-—t f wwer hn(rxT2,...,TN)u(t —THu(t —T2)...u(t —Tn)dT>dT2...dTn (3.80)

where //,(*) is called the zh order Volterra kernel, and n is the order of the non-linear

system. Note that for a 1st order system Equation (3.80) reduces (Schetzen, 1980) to:

x() =L hi(Tu(t -T YdTA (3.81)

which is the well known input-output relationship of a linear system and where h\(t)
is known as the impulse response. Just as the linear system in Equation (3.81) may
be expressed in terms of the Laplace transform of h\(t), a Volterra series may be
expressed in terms of the Laplace transform of the Volterra kernels /?{s). For

example (Schetzen, 1980) a 2nd order Volterra system with:

Ai(Ti)=o
f -(ar.+iij) for()<r <CT2
h2(xI,T2) =\ 1 \53.82)
N1 2 [ o otherwise ‘
where a, b and c are constants greater than zero, has the Laplace transform:
HM) =o
H2(sx s 2) = - - - (3.83)
(b+s2)(b+a+s,+s2)

where j\ and Sz are Laplace operators. The block diagram for this system is shown in

Figure 3.9 below.

Note | is used instead of k for time as it is continuous here.
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As can be seen, the system can be reduced to two linear transforms and a
multiplication. For a second order system there can be an infinite number of
multiplications involved in the Laplace representation (Schetzen, 1980). This applies
equally for higher order systems. Modelling a non-linear system with a Volterra

series has three disadvantages (Mars et. al., 1996):

1. Evaluating the Volterra kernels can be difficult, even when the order is
known (Bai, 2002),

2. The series may not converge, i.e. there may an infinite number of

multiplications as mentioned above, and

3. The Volterra series may only be used to model time invariant processes.

As a result of the last point above, the Wiener and Hammerstein models were

developed to model non-linear time variant processes.

3.4.1.1 Wiener Models

The Wiener model consists of a linear model, with memory, followed by a non-

linear transform with a similar structure to a VVolterra series (Figure 3.10).
Linear model Non-linear x(t)

with memory transform r

Figure 3.10 Block diagram of a Wiener model.
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The Wiener model suffers from the same disadvantages as the Volterra model except
that the linear model allows a large class of time varying processes to be modelled
(Schetzen, 1980). The Hammerstein model is similar to the Wiener model except

that the order of the non-linear transform is reversed as shown in the next section.

3.4.1.2 Hammerstein Models

The Hammerstein model consists of a non-linear transform followed by a linear

model (Figure 3.11).

u(t) Non-linear time Linear model X(t)
w invariant model r Wwith memory w

Figure 3.11 Block diagram of a Hammerstein model.

This parametric non-linear modelling technique is attractive for short-term load
forecasting due to the nature of the load-temperature relationship (Section 2.3.3). As
discussed in Section 2.3.3.3 the load-temperature relationship typically follows a

curve, as shown in Figure 2.12 (shown below for convenience).

Average Tenperatuie (degs)

Figure 3.12 (2.12) Typical and actual scatter plot of temperature-load relationship (Working
days).
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Several short term load forecasting applications (Haida and Muto, 1994, Rahman
and Bhatnagar, 1988, Sfoma, 1995, Lu et. al., 1989 and Hyde and Hodnett, 1997a)
apply a non-linear transform to the temperature prior to modelling. These non-linear
transforms all have in common that they seek to linearise the relationship between

load and temperature.

For example, Haida and Muto (1994) linearise the load-temperature relationship (for
their system) using polynomial transformations. Specifically, Haida and Muto
(1994) first transform the daily maximum temperature, tmex(k), using transforms of

the form:

- (3.84)

1=0

where tmex(k) is the transformed daily maximum temperature, fi») is the polynomial
transform, n is the order of the polynomial and a, are the associated coefficients.
Several of these transforms are then used to linearise the load-temperature

relationship as:

yrr(ks =c +2 ffin, (k) +s(K) (3.85)
f=l

where yPeak(k) is the peak load to be forecast, ¢ is a constant, /(¢) is polynomial
transform i (Equation 3.84), m is the number of polynomial transforms used and e(k)

is the modelling error. In terms of the Hammerstein technique, Equation (3.84)

represents the non-linear transform and Equation (3.85) represents the linear model.

The Hammerstein load forecasting models used by Haida andMuto (1994), Rahman

and Bhatnagar (1988), Sfoma (1995), and Lu et. al.(1989) give no procedure for
determining the form of the non-linear transform. In addition the techniques do not
model any non-linear relationship between the load and autoregressive elements of

the load (a non-linear factor mentioned in Section 3.4).
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3.4.2 Fuzzy Logic Techniques

Fuzzy logic techniques perform function approximation. This is achieved by first
partitioning the input and output space into several overlapping regions (Kosko,
1997). A separate model is then used to approximate the function within each
region. The final output is a function of these model outputs and the degree to which

each region is relevant.

As an example, consider a simplistic peak load forecasting model which has a single
input, the average temperature on day k, tavk), and a single output, the peak load
forecast for day k, j)(/c)(Figure 3.13). In this model the input space is divided into
two regions; one for a hot temperature and the other for a cold temperature. Two
linear models are used within each region; a model reflecting the heating effect at
cold temperatures and a model reflecting the cooling effect at hot temperatures
(Section 2.3.3.3). For a particular input, for instance ta(0) (Figure 3.13), the output
of the models for the hot and cold regions are y (k) and y 2(k) respectively.

Figure 3.13 A fuzzy approximation for the relationship between load and temperature and the
associated membership function.
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The relationship between the inputs and outputs can be more easily expressed using

arule base, for this example the rule base is:

R{ [IF(tjk)is COLD) THEN ft (k) =f (tjk))

R2 IF(tjk) isHOT) THEN % (k) =f 2(ta(k)) (3.86)
where R\ and Rz are the rules for the cold and hot regions respectively and/[(¢) and
fi(*) are the linear models for the cold and hot regions respectively. As can be seen
in Figure 3.13, ta(0) lies in both regions and thus it is neither fully cold nor fully
hot. The degree to which a region is relevant is called the membership* and is
defined by the membership function (An example is shown in Figure 3.13). In the
current example tavo) has a membership value of fJ\ for the cold region and ;2 for
the hot region. The final output, y(k), is a formed by a function of j> (k),y2(k),
jI\ and jJ2- This function is known as a defuzzifier. A centre of gravity defuzzifier

(Kosko, 1997), for example, forms the output as:

Y= (3-87)

where N is the number of regions.

For a fuzzy model with N regions per input, Q inputs and M outputs there is Amw+1
rules required (Kosko, 1997). Thus as the number of inputs increases the number of
rules increases exponentially. Thus the number of inputs that may be used with a
fuzzy model is restricted. This is the greatest setback of fuzzy models and known as

the curse ofdimensionality (Kosko, 1997).

*This definition of membership is consistent with that in Section 3.2.1.2 where cluster analysis was
used to determine membership functions.
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There are several types of Fuzzy logic models which differ in the models used to

approximate the function within the regions, among the most important are:

The Fuzzy Inference Engine (FIE), which uses the expected value of the outputs

for each region (Kosko, 1997),

The Takagi-Sugueno-Kang (TSK) model which uses a linear regression model

(Kosko, 1997), and

The Fuzzy ARMAX (FARMAX) model which uses an ARMAX model (Yang
and Huang, 1998).

In addition, the shape of the membership functions, the location of the regions, and

the type of defuzzifier must be decided. The following section details the

approaches taken in the field of Short-Term Load Forecasting (STLF).

3.4.2.1 Fuzzy Logic Models for Short-Term Load Forecasting

There have been several approaches taken in STLF using fuzzy techniques, these

can be classed as:

1

Input fuzzification. In this case the membership of the inputs to the fuzzy sets,
jU, are calculated and used as inputs for a separate non-fuzzy model. As noted
by Bitzer and RoBer, (1998) human sensitivity to weather is not exact and is
based on fuzzy measures like ‘cold’ and ‘warm’. For example, their model
incorporates five fuzzy regions for the temperature ranging from ‘very cold’ to
‘hot’. Given a certain temperature there is a corresponding membership assigned
to each of these regions. These memberships are then used as inputs for a neural
network. Similar approaches are taken by Elkateb et. al. (1998), Muller and
Petrisch (1998) and Tamimi and Egbert (2000). There is a trade-off involved in

this approach; although the membership variables are presumably more
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Rr

correlated with the output, there are more of them. This is important as the
studies mentioned above (Bitzer and RoRer, 1998, Elkateb et. al., 1998, Muller
and Petrisch, 1998 and Tamimi and Egbert, 2000) use neural networks as the
non-fuzzy model. As will be seen in Section 3.4.3, training becomes more

difficult for neural networks as the number of inputs increases.

Pattern matching techniques. This is based on the assumption that if the load
on day n+ 1 has the same history (or pattern, an example is given below) as the
load on day n+I-i then these loads will be equal. For example, Otto and Schunk

(1999) use the rule base:

IFCy,, =ynl)AND (ynl=yBf ).. AND(ynN=yni NJTUENym =ynM (3.88)

where R, is the /th rule, ynis a vector containing the 24 loads on day n, the
average temperature on day n and the average solar radiation on day n. N is the
window size (i.e. the number of days that are compared to each other) and n+ 1 is
the day to be forecast. In this case yntoynnis the history or pattern of the day to
be forecast and yni to jVi-w is the pattern that it is being compared to. Similar
approaches have been used by Dash et. al. (1995b) and Papadakis et. al. (1999).
This approach is advantageous in that it mirrors the manual approach taken by
many system operators (Jabbour et. al., 1988, Lonergan and Ringwood, 1995)

and can thus be understood intuitively by the user.

Function approximation techniques. These techniques seek to approximate
the function between a set of inputs and the load to be forecast. For example,
Yang and Huang (1998) model load as a function of the previous 24 hours of
load and weather inputs using a FARMAX model. In this case Yang and Huang
note that the forecasting accuracy of the FARMAX model is not as sensitive to
model structure as a traditional ARMAX model (Section 3.3.1.2). Similarly,
Mastorocostas et. al. (1999) model load as a function of the loads, the average,

the maximum and the minimum daily temperatures in the previous seven days
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using a TSK type fuzzy model, trained using the gradient descent algorithm.

Mori and Kobayashi (1996) model load using only auto-regressive terms as:

y(K) =7 y{k - Dy(k- 1)- y,rem(k - 1,y mem(k)-ynam{k - 1) ) + e(k) (3.89)

where y(k) is the load at time k, £(k) is the modelling error,/(*) is the function

to be approximated and ymeen(k) is an average defined as:

ynam(k) =X (y(fe- 70%4) Hy(k - 14x 24) Hy(k - 21x 24)) (3.90)

The function/(*) is approximated by use of an FIE. Interestingly the third term
in /(¢), ymean(k)- ynean(k-\), is found to be highly non-linear and requires ten
membership functions while the first two terms require only two membership
functions each. Other studies that have used this approach are Srinivasan et. al.
(1995), Raanaweera et. al. (1996), Dash et. al. (1997), Dash et. al. (1994),
Abdelaziz and Gouda, 1998, and Bretschneider et. al. (1999).

4. Residual modelling techniques. This approach first uses a non-fuzzy model to
produce a forecast of the load. The error in this forecast is then estimated using
a fuzzy model. An example of this is the method used on Irish data by Lonergan
and Ringwood (1995) in which the load is first forecast using a standard day.
The standard day is simply the load curve for the same day on the previous
week. This load curve is then adjusted using a FIE with temperature, and other
weather variables as inputs. In a later study Commannond and Ringwood
(1997) used a similar technique employing a TSK fuzzy model. Similarly Kim
et. al. (2000) use a neural network to generate a forecast of a daily load curve
which is altered using a FIE fuzzy model. Similar approaches are used by Liang
and Cheng (2000) for a linear regression model and Srinivasan et. al. (1999)

with a Kohonen map.

5. Fuzzy post-processor. Sharaf and Lie (1995) use a FIE to determine error

bands and variance of a load forecast produced by a neural network. Thus the
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FIE is not explicitly used to forecast the load but rather to calculate statistics of

the forecast.

3.4.2.2 Radial Basis Function Neural Networks

Radial Basis Function (RBF) neural networks are a special case of fuzzy models
(Kosko, 1997) and are thus included in this section as opposed to the section on
neural networks (Section 3.4.3). The RBF may be used to approximate the function
relating an input vector at time k, u(k) e RI%2, to an output at time k, x(k), (Mars et.

al., 1996) as:

=2 X Iy(«(*)-) (3-91)
A

where of is a weight, //() is a radial basis function (explained below), N is the
number of radial basis functions used and Cj e RIxeis called the centre of.//()» The
radial basis functions may take on several forms, one example (more may be found
in Mars et. al., 1996) is the Gaussian form (Mars et. al., 1996), which may be

expressed as:

Qi) -cij |

fl(u(k)-Cl)=cxp " o (3.92)

where Q is the dimension of the input, «e is the zh element of u(k), cy is the i

element of Cjand G is the standard deviation of the Gaussian radial basis function.

In terms of fuzzy logic models, the radial basis functions cover a region of the input
space centred on Cj and the width of the region is determined by Q. Thus £{¢)
represent the models and the membership functions. De-fuzzification is

accomplished by means of a weighted average using aij.
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Mitchell (1992) has questioned the use of radial basis function neural networks as

time-series models for several reasons:

As the network performs an interpolation between prior values of the series it is

assumed that the series is not changing with time,

As the dimension of the input variables increases (for example, five causal
variables are used instead of four) the number of prior examples required to
maintain the density of examples increases geometrically; i.e. the curse of
dimensionality (Section 3.4.2). Mitchell (1992), thus notes that more than six
inputs would seem impractical. Kodogannias and Anagnostakis (1999) similarly
noted that the number of inputs is restricted in an application of RBF networks to
short-term load forecasting. However, Gontar and Hatziargyriou (2004) found
that an RBF with nineteen inputs was superior to a feed forward neural network
(Section 3.4.3). This was not a valid comparison of the two methods however, as
the feed forward neural network used only a single layer which is not typically

the preferred option (Section 3.4.3.1), and

Small amounts of noise lead to large gaps between the training examples in n-
dimensional space and thus the network is very sensitive to input noise
(Mitchell, 1992).

3.4.3 Neural Network Techniques

Neural network techniques are black-box modelling techniques. That is, they require

no understanding of the physical process underlying the data (Aussem, 1999). The

techniques are based on approximating a function via a set of basic processing units

called neurons or nodes (Mars et. al. 1996). The structure of a typical neuron is

shown in Figure 3.14 below. The inputs u\, ..., un are multiplied by weights wi, ...,

wyv and the sum of these and a bias, b, is transformed using a non-linear activation

function/(*) to form the output x as (Mars et. a | 1996):
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X =f(w lui +w2u2 +... + WNuN + b) (3.93)

where N is the number of inputs to the neuron. Note also that some of the outputs

may be fed back as inputs.

Figure 3.14 Structure of a neuron.

The neural networks examined in this section differ:
* Inthe way in which these neurons are arranged (topology),
» The activation functions,
* The means by which the weights are determined (training algorithm), and

 Whether feedback is used.

3.4.3.1 Feed Forward Neural Networks

In a typical feed forward neural network, also known as a Multi Layer Perceptron
(MLP), the neurons are arranged in layers. An example ofa 3 layer MLP is shown in
Figure 3.15 (next page). The network has N inputs, the input layer*, which are first
fed into a layer of neurons called hidden layer 1. The output of hidden layer 1 is fed
forward to hidden layer 2 and then to the final layer of neurons called the output
layer (Figure 3.15). Afully connected MLP is one in which each node is connected
to every node in the following layer. However, this is not always the case, as will be
seen in the next section. In this example, there are four and two neurons in the first
and second hidden layers, respectively, and one in the output layer thus the network
structure is denoted as a 4><2x 1 network. The output of nodej in layer k, x*k, may be

expressed in a similar way to Equation (3.93) as (Haykin, 1999):
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(3.94)
/

where fijJi*)is the activation function used, wtJ* is the weight connecting node i in
layer k-1 to nodej in layer k, is the bias on nodej in layer k and A is the

number nodes in layer k-1.

The activation functions which maybe used can be sigmoidal (see Schalkoff, 1997),
sinusiodal (see Choueiki et. al., 1997) or linear (see Schalkoff, 1997) among others.
Typically the activation functions in the hidden layers are sigmoidal, while the
activation functions in the output layer are linear (Hippert et. al., 2001). Choueiki et.
al. (1997) examined the most important factors in designing neural networks for
STLF and found that the choice of activation function in the output layer was the

most important factor followed by the activation function in the hidden layers.

Input Hidden Hidden Output
Layer Layer 1 Layer 2 Layer

Figure 3.15 Feed forward neural network with 4x2x1 structurel

’ The input layer is typically not counted as a layer as itjust presents the inputs to the network.
+Some weights and biases have been suppressed for clarity.



The MLP maps inputs to outputs and has no memory. When the inputs represent
previous values of a time series and external inputs it can be considered as a non-
linear equivalent of an ARX model (Connor et. al., 1992). Theoretically it has been
shown that a feed forward neural network is a universal approximator (Funahashi,
1989), i.e. it can approximate any continuous function to any degree of accuracy,
given a sufficient number of nodes. Although this result may seem appealing,
selecting the correct number of nodes and training the network to approximate the

function is a difficult task (Mars et. al.) due to two problems:

1. The network topology must be determined, and

2. The weights and biases for this topology must be estimated.

Topology Determination

The number of hidden layers and nodes and the connections between these nodes
form the topology of a network. The ability of an MLP to model complex functions
rises with the number of hidden layers, nodes and connections. However, its ability
to overfit the data also increases. There is no one agreed approach for topology

determination for MLP’s. Primarily the number of hidden layers must be chosen.

With respect to the field of STLF, studies which use a single hidden layer can be
found in Chen et. al. (1992), Mohamad et. al. (1996), Drezga and Rahman (1998)
and Lu and Vemuri (1993). Although a single hidden layer is the most popular
configuration (Reinschmidt, 1995), Lee et. al. (1992) found that an MLP with a
single hidden layer required a large number of nodes to model the load. This large
number of nodes was subsequently difficult to train. Thus two hidden layers where
used and found to give superior performance. Other examples of authors that use
two hidden layers have been found in Hsu and Yang (1991b) and Kalaitzakis et. al.
(2002) to mention but a few. Using three or more hidden layers for STLF is rare.
Mizukami and Nishimori (1993) specifically studied the merit of using three or more

hidden layers for STLF and found no benefit.
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The next step is to determine the number of nodes in each hidden layer and the
number of connections. The most common approach for STLF is trial and error. This
involves testing several different topologies and selecting the best one (for example,
Mohammed et. al., 1996, Drezga and Rahman, 1999, Lee et. al., 1992, Gross and
Wagner, 1996, Kiartzis et. al., 1995, Darbellay and Slama, 2000 and Peng et. al.,
1992). Another method is network pruning (Weigend et. al., 1991, Hassibi et. al.,
1992, Le Cun et. al., 1990). A non-fully connected network is less complex than a
fully connected network and the method proposed by Weigend et. al. (1991) for
example, advocates eliminating connections with insignificant weights as a method
of reducing the network complexity. Additionally, if all the weights to a node have
been eliminated then the node itself can be removed from the network. Examples of
this method of topology determination applied to STLF can be found in Lu et. al.
(1993) and Chen et. al. (1992) among others.

Training Algorithms

The most common training algorithm used for the MLP is called the Back
Propagation (BP) algorithm (Rumelhart et. al., 1986). This algorithm can be
implemented in several steps (further details may be found in Chihocki and

Unbehauen, 1993):

1 The training data (previous inputs and associated known outputs or

targets) are presented to the network,

2. The error between the network outputs and the targets is calculated,

3. The error is used to estimate the derivatives of the weights and biases

with respect to the errors,
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4. The weights are adjusted, using the derivatives, in the direction of fastest

decent of the errors, and

5. The whole process is repeated until the error has reached a desired level
or the maximum numberof epochs (iterations) has been exceeded. Both
the desired error level and maximum number of epochs are user

specified.

This algorithm is a calculus based search algorithm; it attempts to find the optimum
values of the weights and biases starting in a neighbourhood around an initial
starting point (Mars et. al., 1996). However, as this type of algorithm is based on a
local search it is susceptible to converge on a local minimum instead of the global
minimum required (Mars et. al., 1996). Training several networks each with
different initial conditions can help to alleviate this problem (Schalkoff, 1997).
However, as the search involves a multi-dimensional search, for example a 4 >¢ x|
network (Figure 3.15) with 3 inputs has 34* weights and biases to estimate, a good
local minimum is often the best that can be achieved. Global search algorithms such
as Genetic Algorithms (GA) have been used for training neural networks (Mars et.
al), however they can be slow to converge as the dimension of search space is so
large (Mars et. al.). For STLF the BP algorithm is the most popular algorithm used
(Hippert et. al., 2001, examples are Chiu et. al., 1997, Dash et. al., 1995a) although
GA have been used by several authors (Srinivasan, 1998 and Yang and Huang, 1996
to mention a few). Alternatively, Park et. al., (1991a), suggest adaptively training a
neural network so that the weights can be updated as the network proceeds through

the data.

*This number is derived from 12 weights and 4 biases from the input to 1st hidden layer, 15 weights
and biases from 1stto 2rdhidden layers and 3 weights and biases from the 2ndhidden layer to the
output layer.
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3A.3.2 Recurrent Neural Networks

Unlike feed forward neural networks, recurrent neural networks involve some form
of feedback in their structure. This means that recurrent neural networks incorporate
memory into the structure as is also the case with an MA model (Section 3.3.1.2).
When the inputs represent previous values of a time series and external inputs it is
often considered as a non-linear equivalent of an ARMAX model (Aussem, 1999,
Connor et. al., 1992). The Dynamic Recurrent Neural Network (DRNN) presented
by Aussem (1999) is more general and is the non-linear equivalent of a state space
model. Figure 3.16 below, shows an MLP in which the output is fed back to the

input to form an Infinite Impulse Response (HR) recurrent neural network.

Figure 3.16 HR recurrent neural network with 4><2xl structure.

Alternative recurrent neural network representations can be found in Chihocki and
Unbehauen (1993) and Schalkoff (1997).

Recurrent neural networks can be trained in several ways. The HR network shown
above may be trained using the same methods as employed with the feed forward
network (Section 3.4.3.1). In this case the outputs that are fed back to the inputs (x in
Figure 3.16) are replaced with the target values, i.e. open-loop operation (Schalkoff,
1997). The network can be also be trained in recurrent mode, i.e. feeding the outputs

back to the inputs.

Although a recurrent neural network has the ability to model processes with memory

this increased capacity (above an MLP) leads to several disadvantages:
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1 Network behaviour can be difficult to predict due to the feedback in the
structure (Choueiki et. al., 1997). Specifically the network output is liable to

oscillate, be unstable or fail to converge to a stable state (Schalkoff, 1997),

2. Training can be more computationally expensive than for an MLP. This is
because the training forecast errors of a recurrent neural network are dependent
on the memory in the network which is in turn dependent on the parameters
(Schalkoff, 1997), and

3. Larger data sets are required than for an MLP as a recurrent neural network can

model more complex mappings (Choueiki et. al., 1997).

Examples of recurrent neural networks applied to load forecasting can be found in
Vermaak and Botha, (1998) and Hippert et. al. (2001) among others.
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3.5 Techniques for Integrating Weather Forecast Errors
into Load Forecasts

Miyake (1995) breaks the area of short term load forecasting into the consideration

ofthree problems:

1. The load is affected by factors which cannot be included in any model,

for example the effect of a football match,

2. The relationship between the load and causal factors, that can be

included, needs to be determined via a load forecasting model, and

3. Some factors are forecasted values, which have their own associated

forecast errors, for example temperature forecasts.

The first problem is usually considered as a random effect (Miyake, 1995). The
second problem relates to the forecasting model as discussed in Sections 3.1 to 3.4.
The third problem refers to the use of weather variables in load forecasting models.
The load on the day to be forecast is among other things affected by the weather on
that day. The only source for this weather is via a weather forecast, which has
associated weather forecast errors. ldentifying and minimising the effect of weather

forecast error is the focus of this section.

However, Miyake (1995) states that the third problem has not been addressed in the
literature. Although this is not strictly true, many authors have to a large extent
ignored weather forecast error. For example, Lu et. al. (1989), Haida and Muto
(1994), Gupta (1985), Park et. al. (1991b) and Tamimi and Egbert (2000) remark
that weather forecasts are required to produce load forecasts in their models,
however the effect of the weather forecast error is not considered. Alternatively,
Kodogannis and Anagnostakis (1999), Park et. al. (1991c), Mohammed et. al.

(1995) and Rahman and Bhatnagar (1988) remark that weather forecast error
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degrades the performance of a load forecasting model significantly but do not

attempt to limit this effect or quantify it.

Although the effect of weather forecast error on a load forecast is highly dependent
on the electrical system, the accuracy of the weather forecast and the load
forecasting model, several sources have indicated that the effect is significant. An
IEEE committee report (1985) indicates that between 60-70% of online load
forecasting errors may be attributed to weather forecast error. Douglas et. al.
(1998b) calculate that 30-50% of load forecast errors for their model may be
attributed to weather forecast error during the summer months but the effect is

negligible in the winter.

Typically a load forecasting model is trained using actual weather readings (for
example Rahman and Bhatnagar, 1988, Lu et. al., 1989, Haida and Muto, 1994,
Gupta, 1985, Chen et. al., 1992 to mention but a few) rather than with historical
weather forecasts (exceptions are Feng et. al., 1998 and Papalexopolous and

Hesterburg, 1990). There are several reasons for this:

1. Using weather forecasts in place of actual weather readings effectively
introduces noise (i.e. weather forecast error) into the training set making
parameter estimation more difficult. Additionally, it has been shown that
there is no improvement in load forecasting accuracy by using weather

forecasts during training (Papalexopolous and Hesterburg, 1990),

2. Historical weather forecasts are often not available for the whole training
set (for example, Lu et. al. 1989, Gupta, 1985, Tamimi and Egbert,

2000), and
3. The accuracy of weather forecasts is improving over time due to the

introduction of better meteorological modelling techniques (Fuller and

Harris, 1999). Therefore the weather forecast errors present in the earlier
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part of the training set do not represent the level of error expected in

current weather forecasts.

However, weather forecast errors not present in the training set can have a
disproportionate influence on the load in models as illustrated by Yoo and Pimmel,
(1999) and Dash et. al., (1997 ). Changing the load model parameters to account for
this can be impossible in many conventional models once training is completed. As
the effect of weather forecast error cannot be reduced during model training the
following question arises as to how to quantify this effect on load forecasting

accuracy (Section 3.5.1) and strategies for minimising it (Section 3.5.2).

3.5.1 Techniques for Quantifying the Effect of Weather Forecast
Error

The increased load forecast error variance due to weather forecast errors can be

calculated by two approaches, either:

Approach 1. Observing the load forecasts with and without weather
forecast error and calculating the variance of the resultant errors (for
example

Park et. al., 1993a and Chen et. al., 1992), or

Approach 2. Explicitly calculating the increase in load forecast error
statistics from weather forecast error statistics (Douglas et. al., 1998b,

Ranaweera et. al., 1995).

In the first case both Park et. al., (1993a) and Chen et. al., (1992) are restricted by a
lack of historical weather forecasts. In order to overcome this, Gaussian noise is
added to the actual weather readings to produce pseudo-weather forecasts. Park et.
al., (1993a) uses Gaussian noise with zero mean and a standard deviation of 5% of
the actual temperature. The MAPE for the test set, using actual weather, was 1.41%.
When the pseudo-weather forecasts where used this rose to 1.70%, or arise in the

MAPE of 20%. However these results are based on two assumptions:

96



1. The weather forecast error has a Gaussian distribution, and

2. The standard deviation of the Gaussian distribution is 5% of the

temperature.

Chen et. al., (1992) does not detail the Gaussian noise and so the results are difficult

to evaluate.

Douglas et. al. (1998b) approach the problem by relating the variance of the load
forecast error to the variance of the temperature forecast error (temperature is the
only variable examined in this study). The load forecasting model used is a BSM
(Section 3.3.2.3) which is trained using a Bayesian approach (Section 3.3.3). The
effect of the temperature forecast may be calculated (Douglas et. a | 1998b) with the

aid of the following relationship:

E\y2]=E[(y-E[y\x =xf\+ E [ E 2\y\x]] (3.95)

Where x and y are random variables, X is a realisation of x and £[+] denotes the
expectation operator. In terms of the current discussion Equation (3.95) may be

expressed (Douglas et. al., 1998b) as:

E[e(")2]= it[(*)-£KA U ;. W =AI2] + ek 2[eK) |£..E)]] (3.96)

Where e(k) is the load forecasting model error, thr(k) is the temperature forecast and

thr(k) is the actual temperature at hour k. The first term on the right hand side of
Equation (3.96) represents the error in the load forecast due to modelling error and
the random component of the load, given that the actual temperature is used. The
second term, E£'[£2[EA) |thr(&)]] , represents the increase in load forecasting error

due to inaccuracies in the temperature forecast. The disadvantage of this technique is
that in order to evaluate Equation (3.96) the variance of the temperature forecasts

must be known.
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Ranaweera et. al. (1995) again relates the variance of the load forecasting error to
the variance of the weather forecast errors. This method differs from that of Douglas
et. al. ( 1998b) however, in that a Taylor series expansion is used. Consider a

function of several variables:

x=f(uvu2...,u,,) (3.97)

Where /() is the function, x is the output and are the inputs and n is the
number of inputs. Given the variance in one or more of the inputs, the variance in
the output may be calculated via a Taylor series expansion of/ (Ranaweera et. al.,

1995)as%

n
‘M. K (3-98)
/=1 du.

7

Where is the variance of the output and 4 is the variance of input i. In terms of

. 2 .
load forecast error variance, ox represents the load forecast error variance and

o~ the variances of the weather inputs.

Ranaweera et. al. (1995) apply this method to two types of model; an MLP (Section
3.4.3.1) and an RBF neural network (Section 3.4.3.3). The forecasted weather
variables used are the daily maximum and daily minimum temperatures. As the
standard deviation (and thus variance) of the weather forecast errors are unknown a
series of values ranging from 5% to 20% of the actual temperature values are used.
With the standard deviation of both the weather variables set at 5% the load forecast
error standard deviation is increased by .65%. Given that the MAPE of the load
forecasts produced using the MLP and RBF networks is 2.05% and 2.08%
respectively this represents approximately a 17% increase in the load forecast error

MAPE which is significant*.

%T his equation is only valid around the operating point at which the partial derivatives are taken.
*This figure assumes that a 0.65% increase in the standard deviation of the load forecast error results
in a 0.65% increase in the MAPE of the load forecast error which is not strictly true.
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This technigue has several disadvantages however:

1. Equation (3.98) is valid only if the errors in the inputs are independent.
Thus in the study presented by Ranaweera et. al. (1995) it is assumed that
the error in the forecast of maximum daily temperature is independent of

the error in the minimum forecast,
2. The variances of the inputs must be known or approximated,

3. The error in the load forecast due to factors other than weather forecast

error are not considered, and

4. Both MLP and RBF neural networks have no memory (see Sections
3.4.3.3 and 3.4.3.3). There is no indication how this technique may be

extended to a load forecasting technique with memory.

Having explored the techniques for quantifying the increase in load forecast error
due to weather forecast error the next section investigates techniques for limiting

that error.

3.5.2 Techniques for Minimising the Effect of Weather Forecast
Error

Four techniques have been identified in the literature for minimising the effect of

weather forecast errors:

1 The first technique involves fuzzifying the inputs (Section 3.4.2.1). According to
Bitzer and Rofier (1998) fuzzification of forecasted temperature inputs reduces
the effect of the temperature forecast error on the load forecast. However, the

reduction is not quantified,
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2. The second technique is implemented by Rahman and Hazim (1993). In this case
confidence limits for the weather forecast are made available by the weather
service used. The load forecasting model uses a pattern matching technique
similar to the one used by Otto and Schunk (1999) (discussed in Section 3.4.2.1).
In this case the load forecast is produced using historical data of days with a
similar temperature and load profile history. As explained by Rahman and
Hazim (1993) a load forecasting model is vulnerable to weather forecast error.
To overcome this Rahman and Hazim (1993) select days with not only
temperatures similar to the expected temperature of the forecast day but also
days in which the temperature is within the confidence limits of the weather
forecast. Unfortunately the improvement in forecasting accuracy using this

technique is not investigated,

3. Taylor and Buizza (2003) propose a technique which employs weather forecasts
which are given as probability density functions as opposed to a normal weather
forecast which is just a single figure. These weather forecasts are then used to
produce ensemble predictions of the load. Each prediction has an associated
probability and it is left to the system operator to choose the best course of

action,

4. The fourth technique is based on the principle that the optimum load forecasting
model is, among other things, dependent on the weather forecast error inherent in
some inputs (Miyake et. al., 1995). That is, the advantages of including a
weather variable that is correlated to the load may be eroded when weather
forecast error is introduced. In order to determine the best model Miyake et. al.,
(1995) constructs a set of candidate models for each forecast day and the best
model is selected. The load forecasting models are similar to the Hammerstein
models described in Section 3.4.1.2, specifically the form of the models (Miyake

et. al., 1995) is:

N M

y(k +i)y=a0d + X X aw {x‘k+$
A j4
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Where y(k) is the load at time k, i is the forecast horizon, aijj are the model
parameters, N and M are the orders of the model and xi(k) is input / at time & To

construct the candidate models the orders and inputs for the models are varied.

In order toselect the optimum model, anadjustment to amodel selection
criterion knownas the Final PredictionError (FPE) (Brockwelland Davis,

1987) is used. The FPE is defined (Brockwell and Davis, 1987) as:

Ifpr=— ] 6l (3-100)

Where J/pe is the final prediction error, n is the number of data points used, q is
the number of parameters in the model and <Ris the variance of the errors in the

training set. The FPE reflects the fact that as the complexity of the model
(represented by q in Equation 3.100) increases, the in-sample (forecasts made
on the training set) forecasts improve, while the out ofsample (validation set)
forecasts may deteriorate due to over fitting. Thus the inclusion of q in Equation
(3.100) effectively penalises increased complexity in the model. Miyake et. al.,

(1995) adjusts the FPE to include for errors in the weather forecast variables as:

., e . (3101)
n-q n

Where Jfpeev is the adjusted final prediction error or Final Prediction Error in
Explanatory Variables (FPEEV), V is a vector of inputs, W is a set of weights
used to calculate the parameters of the model, a, and Qu s the error covariance
matrix of the inputs (i.e. the covariance matrix of the weather forecast errors).
Jfpeev is then calculated for each candidate model and the model with the lowest
Jipeev is then chosen. Further details on the construction of U,W, a, and Qumay
be found in Miyake et. al., (1995). However, it is sufficient to note here that

Equation (3.101) is specific to the models described by Equation (3.99).
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The advantages of this technique are:

1. Unlike the technique used by Ranaweera et. al. (1995) the covariance
matrix of the weather forecast errors is used, thus recognising that the
errors in one forecast weather variable may be correlated to the errors in

another, and

2. The error in the load forecast due to factors other than weather forecast

error is considered via the FPE.

However the technique is restricted by two factors:

1 The FPEEV in Equation (3.101) is model specific and calculating an
FPEEV for a different model type may be difficult, and

2. Calculating the covariance matrix of weather forecast errors may be
difficult.

3.6 Conclusion

The literature reviewed in this chapter demonstrates that the area of STLF has been
tackled using many different approaches. The reason for the multitude of approaches
lies with the fact that each electricity system has different characteristics.
Additionally, it is impossible to attempt all of the approaches in order to ascertain
the optimum one. Also in many cases the differences in performance may be
insignificant (Hippert et. al. 2001). However, there remain several topics of

discussion in this area which require investigation:

1 A parallel approach versus a sequential approach. The advantages and
disadvantages of both approaches have been examined in Section 3.2, however
there are no guidelines for determining which approach may be superior for a

given electricity system,
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2. Choosing the optimum forecasting technique. The techniques explained in
Section 3.2 and 3.3 differ in their ability to model complex behaviour. As the
complexity of the technique increases however, determining the optimum
parameters of the model becomes more difficult. Additionally, different
techniques may be more appropriate at different times, or a combination of
techniques may be superior. There have been several studies to investigate if
certain characteristics of a time series can be used to determine what the
optimum model for that time series may be (Arinze et. al., 1997). However the
results are inconclusive at this stage and the choice of technique remains a

subjective choice to be made by the forecaster, and

3. Integrating the effect of weather forecast error into a load-forecasting model. In
Section 3.5 it was pointed out that a significant percentage of load forecasting
error may be due to weather forecast error. This topic has however been largely

ignored in the literature.
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Chapter 4
Day-Type ldentification

4.1 Introduction

This chapter describes the techniques used to identify day-types in Irish load data
(as discussed in Sections 2.3.2 and 3.2.1). The primary purpose of day-type
identification is to disaggregate the data prior to modelling (Section 4.2). Once
the data has been disaggregated into the respective day-types, it is then important
to know if there is sufficient data within each day-type to allow consistent model
building (Section 4.2.1). In addition, the relationship between the load and the
dominant exogenous variable, temperature, within each day-type is important for
model building and is examined in Section 4.2.2. Finally, the transitions between

the day-types (see Section 3.2.1.2) are identified in Section 4.3.

4.2 Day-Type ldentification

In Section 3.2.1.1 several techniques for day-type identification were discussed.
Ofthe three candidate techniques proposed in Section 3.2.1.1, the Kohonen map
is best suited to this task, as operator interviews can be subjective and cluster
algorithms require a-priori knowledge of the day-types (for example, see Section

4.3).

The parameters used in the Kohonen map are:
e Initial neighbourhood size: 4,
e Adaptation gain: .002,
* Number of iterations after which Nc is reduced: 10, and

* Number of output nodes: 18x18 (324 in total).

These values are similar to those used by Hsu and Yang (1991a). The value of
a affects the rate at which the network adapts to each input; if the value is too
large, the network over-reacts to each input, while the network will not converge

if the value is too small. The value of a may be adapted from iteration to
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iteration, however in simulations conducted by the author little difference was
found; this was also the case reported by Hsu and Yang (1991a). As was found
by Hsu and Yang (1991a), a wide range of values from .001 to .007 was found to

give satisfactory results.

For the present study, the trials used all of the last 2 full years of data, 1998 and
1999. Figures 4.1 to 4.6 below show which nodes are triggered and the number

of inputs that mapped to that node.

Although the weights are initialised to aid in spreading the activation across the
complete output grid, after a single iteration the inputs map to several nodes in
close proximity to each other (Figure 4.1). This is because the neighbourhood is
large and the adaptation is acting globally (the weights of many of the output

nodes are adapted by each input).

After fifteen iterations the outputs have segregated into four groups, the groups
with the lower number of mappings representing mostly Sundays and Saturdays
and the other groups representing mainly weekdays (Figure 4.2). At this point the

neighbourhood size has reduced to three.

After thirty iterations the data has been spread across the grid of output nodes
with different day-types occupying different parts of this grid (Figure 4.3). The
neighbourhood size is now two and the weights are being adapted locally (only
the weights associated with nodes a distance of two away from the mapped node
are being adapted). This causes similar day-types in the four groups to subdivide
and trigger adjacent nodes. Graphically, this means that new parts of the grid are
being triggered in Figure 4.3 relative to Figure 4.2. An example is indicated in

Figure 4.2 and Figure 4.3 ofthe subdivision ofthe winter weekday group.
Iteration fifty is the last iteration as the neighbourhood size has now reduced to

zero. The final iterations from thirty to fifty refine the day-types already

identified (Figure 4.4).
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Iteration :1

Figure 4.1 Number of inputs that map to each node (iterations:!, Nc: 4).

Iteration :15
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Subdivision of the winter
weekday group Iteration ;30

Figure 4.3 Number of inputs that map to each node (iterations:30, Nc: 2),

Iteration :50

Figure 4.4 Number of inputs that map to each node (iterations:50, Nc: 0).

From the above analysis, it can be seen that the algorithm has operated as
expected. Initially, the inputs are spread across the output grid according to large
differences in the inputs. Subsequently each of the large groups is refined locally

into any sub-groups that may exist.
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The next step is to assign day-types to the triggered nodes in Figure 4.4. Figure
4.5 shows the nodes that are triggered from Monday to Friday. As can be seen
the nodes that are triggered for these days occupy the same parts ofthe grid. Note
the only exception, that several Monday loads trigger nodes around (;,=13,7=13).

This is explained later in this section.

Monday Tuesday
20
nodej 0 o0 nodei 00 node i
Wednesday Thursday
30
120
20
A O node i nodej 00 nodei
Friday
20
0 O node i

Figure 4.5 Nodes triggered by Monday-Friday loads (iterations:50, Nc: 0).

Sunday, Saturday and Monday loads trigger different parts of the grid showing

the difference between these days (Figure 4.6). The one exception as pointed out
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previously is that several Monday inputs trigger the nodes around (i=\2>j=\7>).
The inputs responsible for this are Monday bank holidays and it is interesting to
note that they are mapped to the same nodes as some of the Sunday loads (Figure

4.6).

On closer inspection, it is seen that the summer months (May to September) are
mapped to the right-hand side of the grid while the winter months (excluding
Christmas) are mapped to the left-hand side. Christmas loads with the exception
of Saturdays occupy a separate node indicating that Christmas loads are different
to others (Figure 4.6). It is by co-incidence that the triggered nodes are aligned
on the grid such that loads on different days of the week changes with the _y-axis
and the time of year with the x-axis (Figure 4.6). Other tests, performed by this
author, have shown similar results with the triggered nodes aligned in other
directions e.g. diagonally. Finally, with the exception of Summer bank holidays,
the spikes in Figure 4.5 for working day loads can be assigned similar day-types

to those for Mondays (Figure 4.6).
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Monday Summer Bank

Saturday
Octobcr-March*
Christmas
node i
Sunday
April-September
10
node i

* Excluding Christmas

Figure 4.6 Nodes triggered by Monday, Saturday and Sunday loads. (iterations:50, Nc: 0).

The day-types identified are collated in Table 4.1. The October to March day-
types are split into two groups (early and late winter) to reflect the fact that

Christmas lies at the centre ofthis range.
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Table 4.1 Day-types identified for Irish load.
Day-type Number Range
Early winter Sundays October-Christmas
Summer Sundays & bank holidays April-September & bank holidays
Late winter Sundays January-March
Early winter working days October-Christmas
Summer working days April-September
Late winter workings days January-March
Early winter Saturdays October-Christmas
Summer Saturdays April-September
Late winter Saturdays January-March
Christmas days Christmas

© e g gl wdN e

[N
o

The bank holidays in the Irish calendar are:

e St. Patrick’s day March 17 * (or closest Monday),
* Good Friday (Lunar calendar),

» Easter Monday (Lunar calendar),

* May day, 1¢Monday in May,

« 1s¢Monday in June,

e I1stMonday in August and

e Last Monday in October.

The transitions between these day-types are considered in Section 4.3 after the

relationship of temperature to the load in each day-type has been examined.

4.2.1 Segmentation of Data for Model Building

This section lays out the blueprint for a load-forecastingpackage (a set of models
that can be used to forecast all day-types) in light of the analysis inSection 4.2.
As pointed out in Section 3.2.1, by modelling each day-type separately the
information that each model must incorporate is reduced. This aids in the
modelling task. There is however a trade-off. As pointed out by Hippert et al.
(2001) in a study of neural networks applied to the load-forecasting problem, if
the data is subdivided into too many day-types then the resulting data sets are too

small to permit adequate model training.

The segmentation of the data set (by the day-types chosen in Section 4.1) is
shown in Figure 4.7 with the number of days in each set shown (note: some days

are not classified as they occur at the boundary between day-types).



The amount of data required to allow modelling is difficult to quantify as it is
influenced by the type of model used and the amount of noise in the data, among
other things. To determine if the amount of data in each subset is sufficient to
allow modelling, comparisons are drawn with other studies. Hippert et al. (2001)
gives a list of the data set sizes used in twenty-two studies by various authors.
The size of the total data sets used in each study varies from thirty-four days to
four years. The total size of the data set in the current study is thirteen years,

which is relatively large. This allows a greater level of segmentation, if desired.

The amount of data in each day-type, for the current study, is given in Figure 4.7
and shows that for the day-types chosen, the amount of data is similar to that
used by Sharaf and Lie (1995), Srinivasan et al.(1999) to mention but a few.
Sharaf and Lie (1995) used three months of data for each of their day-types and
Srinivasan et al. (1999) used two years of data broken into 3 day-types with
approximately three hundred days in the working and Saturday day-type and fifty
days in the Sunday day-type.

Figure 4.7 Segmentation of data set with approximate number of days in each subset.
4.2.2 Temperature-Load Relationship within Day-Types

The following analysis uses the pre-processed average load, za«k), and average
temperature, tavk) as defined in Section 2.3.3.2. Figure 4.8 shows the load-

temperature relationship for working days with data points for each month of the
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year highlighted. The data points for each month group into clusters with a few

exceptions due to Christmas, bank holidays and exceptional days (Figure 4.8).

In order to compare the load-temperature relationship at different times of the
year regression lines are employed (Figure 4.8). As pointed out by Murray
(1996), Hyde and Hodnett (1997b) and Fan and McDonald (1994), among others,
the temperature-load relationship is non-linear and so it should be noted that the
use of regression lines is an approximation. However, the approximation is
considered sufficient to identify significant differences in the load-temperature

relationship for different months ofthe year.

In calculating the regression lines, Christmas, bank holidays and exceptional
days are excluded to avoid them influencing the line parameters. Several
algorithms exist for selecting which points to include and exclude for calculating
regression lines (Wisnowski et. al., 2001, lists several techniques). The points to
be excluded in the current analysis are easily identified (as can be seen in Figure
4.8) and so the selection of the exclusion technique is not critical. The BACON
(Blocked Adaptive Computationally efficient Outlier Nominators) method
proposed by Billor et. al (2000) was chosen for its fast convergence. This

technique may be broken down into several steps:

1 The technique first requires that a subset of the data, safely assumed to be
free of outliers, be chosen. This subset is called the basic set, and is formed
from chosen loads, Z&, and corresponding temperatures, 7*. In this analysis,
the basic set is determined by first calculating a regression line using all the

data:
() =A% () + &+ *(*) @)
where /?[, /% are parameters of the regression line calculated via least squares

(i.,e. minimum ~ e2(/c)) and e(k) is an error term. The basic set then
k

contains the top ten percent of points with the lowest e(k),
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2. Next, each point is tested to see if it is significantly different from the line.
The test statistic, called the discrepancy, is calculated (Billor et. al, 2000) as:

e(k)

if day k€.Th

b (4.2
if day ket Th 4.2

Ay < AX T BTy, (K)

where %(K) is the discrepancy for day k, and O is the standard deviation of

the errors in the basic set,

3. The basic set is then increased to include points for which (Billor et. al,
2000):
%(k) < ¢@i/2(rH),-) (4.3)

where r is the number of points in the basic set, a* is the significance level

and t'a r_"is the I-o™ percentile of the ¢-distribution with r-1 degrees of

freedom,

4. Following the expansion of the basic set, the regression line parameters are
recalculated (Equation 4.1) using only the data points in the basic set. Steps 2

and 3 are then repeated, and

5. The process continues until the basic set no longer increases in size. The
points excluded from the basic set are then designated as outliers. Finally, the
points in the basic set are used to calculate the parameters of the regression

line.

The value of a* has to be adjusted so that only true outliers are identified. The
outliers of interest in this study are Christmas, bank holidays and exceptional
days. There may however, be little correlation between the load and temperature
in the remaining points. An example ofthis can be seen for August working days
(Figure 4.8). Thus the discrepancy values calculated by Equation (4.2) are
relatively high. Choosing a small value for a would thus result in many of the

non-exceptional points being excluded. A significance level of 0.4 was found to
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be sufficient in this study to identify all the outliers while retaining most of the

other points.

January February March

¢
I-*
0 10 20
0 April 0 Mayo June
Avg Temp Avg Temp Avg Temp

Figure 4.8 Scatter plot with regression lines for temperature-load relationship by month
(working days, selected points in black, complete data setin grey).

The load-temperature relationship is different for each month of the year (Table
2.5). For January to April, the slopes of the regression lines are negative and
similar. From May to June the slopes approach zero. The low correlation co-
efficients for July to October indicate very little correlation between temperature

and load in those months. The regression lines and correlation co-efficents for
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November and December are similar to those in January. With respect to the day-
types identified in Section 2.3.2, this indicates that there is no significant
difference in the temperature-load relationship within the periods spanned by the
late winter working day day-type (October to March). The summer working day
day-type (spanning April to September), however, has a significantly different
temperature-load sensitivity (defined as the slope of the regression line) in April
and May than in the period June-September. The early winter working day day-
type (spanning October to December, excluding Christmas) also has a different

sensitivity in October than in November-December.

The load-temperature sensitivities for Saturday and Sunday day-types show a

similar result to that of working days (Table 4.2).
Table 4.2 Temperature-load regression line co-efficients and correlations.

Jan.  Feb. Mar.  Apr, May  June  July Aug.  Sept.  Oct. Nov. Dec.

Working  Slope (P.)* 542 -620 -572 -569 -219 0559 181 -109 -0.823 115 -360 -6.13
Days E-03 E-03 E-03 E03 EO03 EO03 E-03 E-03 EO03 E-03 E-03 EO03
Intercept (Pz)' 9.63 955  9.39 900 829 775 743 923 813 831 926 9.72

E-01 E-01 EO01 EO1 EO01L EO01 EOl EO01 E0l EOL EO1L EO1

Correlation -0.53 -049 -065 -048 -0.14 0.25 -0.20 0.02 011 -007 -0.63 -0.49
between
temperature
and load

Sundays  Slope (P)* 594 -439 677 -502 -240 594 187 -133 118 229 -437 -378
E-03 E03 EO03 E-03 EO03 E-03 E-03 E-03 E-03 E-03 E-03 EO3

Intercept (P2)’ 800 767 770 730 687 556 586 647 634 7.02 780 805

E01 E-01 EO01 EO01 EO01 EO01 EO01 EO0l EO0l E-01 E01 EO01

Correlation -0.28 -0.65 -037 -004 -056 -038 026 -0.18 -035 -0.15 -042 -0.39
between
temperature
and load

Saturdays Slope (Pi)’ -274 -440 -486 -3.04 -271 -155 1.95 -169 534 -136 -206 -2.83
E-03 E-03 E-03 E-03 E-03 E-03 E-03 E-03 E-04  E-03 E-03  E-03

Intercept (P2)* 8.47  8.48 8.32 7.59 7.58 7.25 6.56 7.18 7.07 7.68 8.31 8.66

E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01

Correlation -0.32 -038 -045 -061 -0.83 -019 -0.64 0.20 046 -0.18 -0.73 -0.68
between
temperature
and load

*For normalised data.
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4.3 Transitions between Day-Types

Two candidate techniques for identifying day-type transitions were examined in
Section 3.2.1.2; cluster algorithms and Kohonen neural networks. The FCM
cluster algorithm is chosen as Kohonen neural networks are not suited to this task
(Section 3.2.1.2). In the current study, the inputs, I/*, are composed of the
twenty-four hours of data, normalised as described in Section 3.2.1.2 (Equation
3.6). For the current analysis, only data from the years 1999 and 2000 are used.
This is to avoid the clustering algorithm identifying the differences between
years as opposed to day-types. The desired level of fuzziness depends on the
accuracy of load-forecasting models. However, at this stage, a value of 2.0 for k

was found to give a good indication of the transitions between the day-types.

As pointed out in Section 3.2.1.2, clustering algorithms Ere best used when the
existence of clusters is known a-priori and it is the transitions that are desired.
As an example of this, working day data was analysed to determine if FCM
could allocate the clusters and transitions between the five day-types for working
days. As can be seen, the algorithm identified five clusters which do not
correspond to the day-types identified in Section 4.2 and the Christmas period is
not assigned to a cluster at all (Figure 4.9). For example, two clusters are

identified for summer while a single cluster was desired.

117



0.8

0.7

0 2 4 6 8 10 12 14
Month (1=January)

Figure 4.9 Segmentation of data set using FCM with five clusters.

However, as the data has already been segmented in Section 4.2 (Table 4.1), the
existence of the clusters is already known. The data was segmented into pairs of
known clusters, as only two day-types overlap at a time. FCM was then used to

determine the transition between the two. These segmented pairs are:

e Early winter working day and Christmas day-types,
e Christmas and late winter working day day-types,
» Late winter and summer working day day-types and

» Summer and early Winter working day day-types.

The transition between early winter working day day-type and Christmas day-

types occurs over the period of several days, however the two periods are distinct

(Figure 4.10).
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Figure 4.10 Early winter (working day) day-type to Christmas day-type transition.

Recall that a winter day-type is identified in Section 4.2. However, as the winter
day-type is disjoint due to the Christmas period, the early and late winter day-
types were created. Figure 4.11 shows the transitions between winter day-type
data and Christmas. It is interesting to note, as expected, that the transition into
Christmas corresponds to that in Figure 4.10. The transition between Christmas
and late winter working day day-types also occurs over several days (Figure

4.11).

Month (January =1)

Figure 4.11 Christmas day-type to late winter (working day) day-type transition.

119



The transition from late winter to summer occurs over the hourly changes for
daylight savings. Figure 4.12 shows the load for Friday 25 March 1999 (before
the change) and Tuesday the 30th March (after the change). The load profiles for
these days are significantly different, due to the fact that there is a lower lighting

requirement on Tuesday 30th March.

Hour
Figure 4.12 Differing load profiles due to day-light savings changes.
As a consequence of the changes for day-light savings, the transition between
late winter working day day-types and summer working day day-types is hard

(Figure 4.13).

————— Late winter
At /

0.9 -1 — . Summer

/
0.8 v o Vv [V ' .o» 1 / *1
. 1
0.7 : 1 - \!
0.6 1 "o
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0.4
0.3

0.2 3

=
PR e —

I |

N k_\ .a A
\l 1 S|NJ|V1

0.1

25 3.5 4 4.5 5 5.5 6
Month (January =1)

Figure 4.13 Late winter to summer (working day) day-type transition.
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Finally the transition between summer and early winter working day day-types is
shown in Figure 4.14. This transition is fuzzy demonstrating that there is a
significant overlap between the two periods. The day-light savings change does
not have the same effect here as lighting requirements are not influential in

summer.

0.9
0.8
0.7

0.6

0.4

0.3

0.1

6 7 8 9 10 11
Month (January =1)

Figure 4.14 Summer to early winter (working day) day-type transition.

4.4 Conclusion

This chapter investigated the disaggregation of Irish electrical load data by day-
type. The blueprint for a load-forecasting package is laid out in consideration of

these characteristics without biasing the choice of load forecasting models used.

It was found in Section 4.2 that the day-types correspond well with the expected
segmentation by working days, weekend days and by summer and winter.
Exceptional days, such as bank holidays, are found to have a similar shape to
Sundays while the Christmas period is treated separately. The fact that the daily
load shape is not consistent is important for modelling as it requires that the

model must incorporate shape information.
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Section 4.2.1 outlines the consequences (in terms of reduced data sets) of
applying a different model to each day-type. While this reduces complexity, in
that the shape of the load in each day-type is consistent, the data is more
segmented, resulting in several smaller data sets. In this respect, it is the only
modelling decision made in this chapter. However, similar studies (see Section
4.2.1) have shown that the segmented data set sizes are not too small to restrict

the type of model.

The relationship of temperature (the dominant causal variable to load) to load is
examined in Section 4.2.2. The results (Table 4.2) show that the load-
temperature relationship for early winter day-types is constant within the range
of those day-types. Thus, when forecasting the load, the operating point on the
load-temperature curve is not significant. In contrast, this is not true for the other
day-types. For these other day-types, the operating point on the load-temperature

curve is significant and must be considered when modelling these loads.

Finally, the transitions between the different day-types is highlighted in Section
4.3. For some day-types there is a significant overlap indicating that some days
are members of two day-types. As the data has already been segmented and the
number of models decided, the load forecast in these overlapping days is

required to be composed of the output ofthe two corresponding models.
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Chapter 5

Parallel Models for Short Term Load Forecasting

5.1 Introduction

The relative performance of parallel and sequential models is unclear (Section
3.2.2), thus both are examined in this thesis. Parallel models are presented in this
chapter and are compared with sequential models which are presented in Chapter
6. As discussed in Section 3.2.2, parallel models model the load at each hour of
the day separately. In addition, for reasons discussed in Chapter 4 (Section
4.2.1), the data is disaggregated by day-type, with separate models being
employed for each different day-type.

This chapter begins by demonstrating how the data sets are constructed prior to
modelling (Section 5.2). A novel technique is then presented which examines the
data to determine whether parallel models could be an appropriate approach

(Section 5.3).

As mentioned in Section 2.3.1, Irish load has a trend and (yearly) seasonal
component which varies little from day to day and so can be easily predicted.
The approach taken here is to first remove the trend and seasonal component
(Section 5.4) and then model the residual (Sections 5.5, 5.6 and 5.7). An
important step in model building is to determine the appropriate inputs to use.
This topic is examined in depth in Section 5.5, where several methods are
compared. Using the inputs determined in Section 5.5, Sections 5.6 and 5.7
present linear and non-linear parallel models which are compared (Section 5.8),

to determine whether the use of non-linear models in STLF is justified.

Practical note: As there are nine day-types (excluding Christmas), and the
results of the analysis for each day-type are similar, only one day-type is
presented in detail. The results for the other day-types are presented in
summarised form, except where large differences in results are present. The late

winter working day-type is used as the indicator as it represents a greater
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forecasting challenge since the late winter load has a greater variability than the

other day-types.

5.2 Construction of Partitioned Series for Parallel Model
Building.

In Section 4.2.1, ten day-types were identified in Irish electrical load data. Thus
the first step in constructing the partitioned series (Section 3.2.2) is to divide the
data into these day-types (Note: these data sets are used for the models in
Chapter 6). Within each day-type, the data is then partitioned by hour of the day
to form the partitioned series. Letytj denote the load at hour i in day-typej. Then,
Figure 5.1 below shows an example of how the partitioned series for OOhrs in the

late winter working day-type (day-type 6), y(@§ is constructed.

0.8 i fiil 4
Al loads 06 .V Fmeftgte
1o *e Vil , y.n .
It '
1088 1990 1992 " W96 1998 20
1
Early winter 0.8 s tywintd m
working day 0.6
loads 04" ff
0.2
1995 1996 1997
Partltlgned \s  lecto( ©° s
load series for 0.8
00 hrs (early 0.6
winter working 04
days) 02
. 1995 1995.5 1996
Year

Figure S.I Construction of the partitioned series >m6from complete data set.

yoo,6 is shown without the intermediate gaps in Figure 5.2, below.
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Figure 5.2 Partitioned seriesj Go6(Intermediate gaps removed).
Partitioning the load data by day-type, as above, is not the only alternative that is
considered. In Section 5.4.2.3 two alternative partitions (this term will be used
strictly to distinguish the alternative partitioned series from the partitioned

series) are examined.

5.3 Examining Partitioned Series for Independence.

This section examines whether Irish electrical data has the characteristics of a
sequential time series (defined in Section 3.2.2). This is achieved by examining
the partitioned series within each day-type, to see whether they are independent

from each other.

Consider the partitioned series yQJ....,y% which are the partitioned series for
hours 00:00 hrs to 23:00 hrs in day-typej. If electricity demand is hour ofthe day
independent (which is the underlying assumption of the sequential approach),
then the cross-correlation between any two adjacent partitioned series should be
independent of which two hours are chosen. For example, the correlation
betweeny Xand y 2Jshould equal the correlation between yA and y5J. If the parallel
models for hours i =0,.. .,23 on day-typej, fQj(),.. .. /2\), (Section 3.2.2) are linear
functions then this hypothesis can be tested using the linear cross-correlation
coefficient rubetween parallel series i and I (the day-typej has been suppressed

for clarity). Even iffojO,-.-, fnj§ are non linear, the linearising assumption of

*As defined in Section 3.2.2
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using linear cross-correlation analysis is sufficient to either confirm or reject the

hypothesis.

The cross-correlation coefficient is defined (Papoulis, 1991) as:

r -yu)] Ao

where yi. is the average ofytj and £[¢] denotes the expectation operator. An

example of the cross-correlation matrix between the 1pm, 2pm and 3pm series is

shown in Table 5.1 below.

Table 5.1. Cross-correlation matrix of VivanmJ'i.-kimi. and .vion*.

Hour 1p.m. (13 hrs) 2 p.m. (14 hrs) 3 p.m. (15 hrs)
1p.m. (13 hrs) 1 .9958 .9924

2 p.m. (14 hrs) .9958 1 .9934

3 p.m. (15 hrs) .9924 .9934 1

As can be seen, the cross-correlations are very high (Table 5.1). This is not
surprising; the load curves within any day-type are very similar, thus a large
component of the data is highly correlated (Section 2.3.2). Also note that the
correlation between the load at 1 p.m. and 3 p.m. is less than that between the
load at 1 p.m. and 2 p.m. This is to be expected, as a larger gap between the
times leads to a lower correlation. However, the main point is that rl2is not equal
to r23 suggesting that load is hour of the day dependent. The cross-correlation
matrix between all the partitioned series is calculated and the contour for ru
=0.99 is shown in Figure 5.3 . An example of the expected contour for the case
where the load is hour of the day independent, is also shown for comparison

(Figure 5.3).
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Series i
Figure 5.3 Actual and expected contour plot of i';;,=0.99 for partitioned series”™ withj/6

Inside the contour, the cross-correlation is higher than 0.99 and outside it is
lower. The contour changes with each hour and so the assumption that load is
hour of the day independent does not appear to hold. The narrowness of the
contour at 8 a.m. and 5-8 p.m. show that at these hours especially, the load may
have an independent component. This suggests that it may be best to model the
load at s a.m. and 5 p.m. to & p.m. separately rather than try to incorporate them

into a sequential model.

5.4 Preliminary Modelling of Partitioned Series.

As pointed out in Section 2.3.1, electrical load has a rising trend and a (yearly)
seasonal component. The non-stationarity in load is as a result of the rising trend
and variability (Section 2.3.1), which changes very slowly from day to day.
Thus, for the forecasting horizon required in the current research (i.e. up to seven
days ahead), removing this non-stationarity is not a difficult task. The purpose of
this section is to present this model, called the preliminary parallel model (PPM).

This model is used to remove the trend for hour i on day k in day-typej, d (K),
ij
and the seasonal component for hour i on day k in day-type /, Uij(k) (Figure 5.4).

The PPM for hour i on day-typej is denoted PPM,V. Modelling the error or

residuals, x (k), is the subject of later sections (Sections 5.5, 5.6 and 5.7).
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Seasonal component T Residual xbj (k)

PPM,V . >
dij (k) + vy/ij (k)

Figure 5.4. Preliminary parallel model overview

5.4.1 Choice of Preliminary Model.

Several techniques are described in Chapter 3 which can model the non-

stationarity of a time series, namely:

1. Recurrent neural networks (Section 3.4.3.2),

2. Differencing or another stationarity transform as laid out in Section 3.3.1.1,

and

3. State space models as laid out in Sections 3.3.2 and 3.3.4.

As explained in Section 3.4.3.2, the behaviour of recurrent neural networks can
be difficult to predict, training can be computationally expensive and large data
sets are generally required. In addition, the application of such a complex

technique to this problem would seem inappropriate.

As explained in Section 3.3.1.1, differencing can lead to excessive inclusion of
high frequency noise in the resulting stationary time series. The gentle
differencing transform examined in Section 3.3.1.5 however, does not have this
drawback and would seem to be a better choice. One problem with the gentle
differencing technique is that the coefficients of the filter are not calculated
recursively. This is a disadvantage, as electrical load is a non-stationary time

series and allowing the coefficients to vary over the data may be advantageous.
Linear state space models (Section 3.3.2) have the ability to adjust the

coefficients of the model as the model proceeds over the data. In fact an optimal

algorithm (in the linear least squares sense), the Kalman filter (Section 3.3.2.1)
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exists for recursively calculating these coefficients. As mentioned by Harvey
(1984, Section 3.3.2.2), the state space equivalent of the gentle differencing
algorithm is the Integrated Random Walk (IRW) (Section 3.3.2.2). In addition,
all difference equation filters have a state space representation. Thus, a state

space model appears to be the best choice.

Although there are an infinite number of state space models, the Basic Structural
Model (BSM) (Section 3.3.2.3) is the most popular model for load forecasting
(the reasons are laid out in Section 3.3.2.3). The IRW (Section 3.3.2.2) is used to
model the trend in a BSM. As Irish load has a trend which rises at an increasing
rate (Section 2.3.1) an IRW is particularly useful as the rate of increase of the
trend is free to vary via the derivative term, d(k) (Section 3.3.2.2, Equation
(3.55) ). The seasonal component in a BSM may be modelled using a Periodic
Random Walk (PRW), a Differenced PRW (DPRW) or a Dynamic Harmonic
Regression (DHR) model (Section 3.3.2.2). The amplitude of the seasonal
component of Irish load data is increasing (Section 2.3.1). Thus, the PRW is not
suitable as the seasonal component in this model is assumed to be constant
(Section 3.3.2.2). The DPRW and DHR however, allow the seasonal component
to increase or decrease over time (Section 3.3.2.2). In contrast to the DPRW, the
DHR has twice the number of coefficients to be calculated. Thus, the DPRW is

chosen to model the seasonal component of the load data.

5.4.2 Application of the Basic Structural Model.

The BSM chosen consists of an IRW to model the trend and a DPRW to model
the seasonal component. From Sections 3.3.2.2 and 3.3.2.3 the form of the model

maybe specified as:

11'0
0 0f-1 . Hr,.j= |l 1 0 0 5.2
r,.j= - .
.. i= | ] 52)
0 0i0 0
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where &mpm e RED4s 1) and Hpom e RIx(s 1) are the state transition matrix and
ij u

observation matrix for the PPM for partitioned series i in day-typej and s is the
seasonal length (Section 3.3.2.2). Additionally, the states of the PPM and the

associated process noise maybe expressed as:

"d (x41) (k+1)

0 (k+

I U R (e
[ o= ¥2,.(k+1) ° IJOFFh]%’( )+ WIJO
Vs-1j k+1)_ 0

where 6pom is the state vector of PP M ;for partitioned series i in day-typej on
ij

day k, w1 (k),..., ws\ (k) are the seasonal states, d (k) is the trend and d (k) is
L b i 'j

the slope of the trend. 7jds\](k), ri* .(A) and rj"h_(k) are white noise components

h

with variances <7d.., <jJand cr2;.respectively. In addition, there is a
measurement error term (Section 3.3.2.4), x (k), (equivalent to the residual) with
i]

a variance of g%\] . In order to use this model there are several issues which need

to be addressed:

* Treatment of the boundary between years in the partitioned series (Section

5.4.2.1),
* Tuning of the PPM which may be done using Predictive Error
Decomposition (PED) or Sequential Spectral Decomposition (SSD) (Section

5.4.2.2), and

*  Whether the partition of the data by day-type is better than either of the

alternative partitions (Section 5.4.2.3).
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5.4.2.1 Treatment of Day-Type Boundary Conditions

Figure 5.2 (Section 5.2) shows the partitioned load series for 00 hrs for the late
winter day-type. However, as can be seen from Figure 5.1 (Section 5.2), this
series is formed ofslices of data from several different years. Thus, for example,
the last data point taken in 1996 is followed by the first data point taken in 1997.
However, between these points there is a gap of approximately 9 months. The
growth in the trend component of load data over this period is significant. For
this reason the boundaries between the years in all day-types must be given

special treatment.

In order to estimate the trend states (Equation (5.3)) at the boundaries of the day-
types, an IRW model was employed. The entire load data set is first divided into
24 partitioned series, one for each hour of the day. An IRW model is then tuned
using PED (Section 3.3.2.4), on each ofthe 24 partitioned data series. During this
process, the states of the IRW models at each point are recorded. The appropriate
states at the day-type boundaries are then extracted and used as the estimates of
the trend and slope components in the PPMs. The results are found to be quite

robust to the parameters of the IRW and so the details are not provided.

As an example consider the PPM for 00 hrs in day-type s, PPM@6 A Kalman
filter is used to predict the states of this model (further details of the PPM are
explained in the next section, the boundary conditions are the only concern here).
At the last data point in 1996, the Kalman filter gives an estimate of the states of
PPMauos for the first data point in 1997. This estimate is, however, as mentioned
above, a 9-month ahead forecast and is thus discarded. Instead, the trend and

slope states recorded by the IRW model for 00 hrs are used as the estimates of

the trend, duws (k0, and slope, d0® (A0O), states in Oppmooe(k() , Where kOis the 14

point in 1997.
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5A.2.2 Tuning the Preliminary Parallel Models.

The PPM are tuned via selection of o JTj ,05“ ,a\i“.j and <7*2.j as explained in

Section 3.3.2.4. Two methods are examined for tuning of the PPMs; PED and
SSD (Section 3.3.2.4).

Tuning via PED

The PED algorithm is implemented in the following steps:

1. The state vector is initialised by setting the trend component to the first value

of the time series and all the other states to zero (Table 5.2 below),

Table 5.2. Initialisation values for the state vector using PED.

State Value
d; ©) 7 @
d ;0 0
yli U'(O)V’ Vsau.(O) 0

2. <X s setto one (for reasons given in Section 3.3.2.4). The other parameters
of the PPM’s, o,I,_J iis and ol\)‘j , are free to vary in order to minimise the

log likelihood function, and
3. The log likelihood function to be minimised (Section 3.3.2.4) is:

log @.j>,(2) a#éiJal,j.ajry =

mg)l°cg2~-~ J log*?.j(k)-~ ~ log"7-777 (54>
" k=mQ+\ A k=mQ+\ Ayigpoyod
where yfJ (k) is the estimated load for hour i in day-typej on day k and
a-, (k) is the estimated variance of y(y(k)at day k. mg is the number of

data points in the transient in the covariance matrix of state vectors (Section

3.3.2.1). mg is set to 20 (the choice of 20 is explained below). Equation (5.4)
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is minimised by used of the FMINSEARCH algorithm in Matlab which uses
the Nelder Mead direct search algorithm (Box et. al., 1969).

Table 5.3 below shows the parameters calculated for the PPM for the 13 hrs late

winter working day partitioned series.

Table 5.3. Parameters of PPMi3#using PED.

Parameter Value
1
0.0590
A43X10-4
ali3s 343X10

<%6 2.79*10"

As <ju 6 is an order of 2 greater than <7j}g and <J2U6 (Table 5.3) it can be seen

that this PPM allows the load estimates to vary mainly through the trend level

State.

The forecasts produced by PPM”e are shown in Figure 5.5 below, by way of
example. As can be seen, the forecasts give a MAPE in the training set of 2.25%
and in the validation set 1.92%. The forecasts of this partitioned series in the first
few days are quite poor. This is due to the transient in the covariance matrix of
the state vector estimates, as mentioned in Section 3.3.2.1. Note that the training

set MAPE of 2.25% excludes the forecasts made within this transient.
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Figure 5.5. Aplot of yu 6(k) and j)136(k) using PPM 136trained with PED.

Figure 5.6 (note the different j*-axis scales) below, shows how the variance of the
estimates, «? (k), varies as the Kalman filter runs through the data. As can be
seen, after approximately 10 data points, the filter has locked on to the data. That

is, the initial transient has subsided. In order to ensure that the transient has

passed mg is set to 20 for all the PPMs.

40
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100 200 300 400 500 600 700
16
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12
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Day
Figure 5.6. A plot of <7? (k) at each point in the data, note the y-axis has 3 different
scales (PPM trained using PED).
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The Sample Auto Correlation Function (SACF) (Section 3.3.1.4) of the residuals,

x  (k), are shown in Figure 5.7 below. The confidence bounds represent the level
13,6

past which a lag is said to be statistically significant 95% of the time (Harvey,
1989). Specifically, if the absolute value of the SACF at a certain lag is greater
than the 95% confidence bounds, then the SACF at that lag is statistically
different from zero. If the SACF is statistically different from zero, then a
correlation exists between the residuals at that lag. As can be seen, the SACF is
within the intervals at all lags, except at a lag of 1 and 7. The SACF at a lag of 7
has a value of -0.095 while the lower bound is -0.072. Thus the SACF at this lag
is just beyond the lower bound and does not represent a strong correlation.
Similarly, the correlation at a lag of 1, although statistically significant, is not
very strong with a value of only 1.6. Thus, the residuals are deemed to be
sufficiently random to state that no linear autoregressive information remains in

the residuals. Finally, the SACFs for other hours and day-types are similar.

-0.4
-0.6

-0.8

0 5 10 15 20
Lag

Figure 5.7. A plot of the SACF of x136(k) with 95% confidence intervals (PPM trained
’using PED).
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Tuning via SSD.

SSD (Section 3.3.2.4) is implemented in the following steps:

1. The state vector is again initialised by setting the trend component to the first

value of the time series and all the other states to zero (Table 5.4 below),

Table 5.4. Initialisation values for the state vector with SSD.

State Value

d..{0) \V/ Q

VA ’
»U(O)v> Vs-lu(O) 0

2. a* is set to one (as explained in Section 3.3.2.4).<rj_ is set to zero
(Section 3.3.2.4). a] is not calculated via the periodogram as suggested in

Section 3.3.2.4, as it may easily be specified as occurring at a frequency less
than the yearly frequency. There are 53 load points per year in the late winter
working day partitioned series for 13 hrs. The cut-off frequency,/so0, (Section

3.3.2.4) lies at a point lower than the corresponding yearly period. That is:

/ D < 1/53 (5.5)

Taking /50 to be half the yearly frequency and substituting this value into

Equation (3.67) gives:
a] =1605(1/(53x 2))4=1.25x105 (5.6)

The value of a]aij may be calculated similarly for the other PPMs, noting that

the number of data points per year varies depending on the day-type.

3. (Xy. is freeto vary in order to minimise the log likelihood function, and

4. The log likelihood function to be minimised is (Section 3.3.2.4):
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where the number of data points in the transient in the covariance matrix
of state vectors (Section 3.3.2.1). This is again set to 20 (the choice of 20 is
explained below). Equation (5.7) is minimised by used of the FMINSEARCH
algorithm in Matlab which uses the Nelder Mead direct search algorithm (Box
et. al., 1969).

Table 5.5 below shows the parameters calculated for PPM 136

Table 5.5. Parameters of PPMi36(trained using SSD).

Parameter Value
1
°rfl3,6 0
1.25x10°
axX»
.0044

This PPM allows the load estimates to vary mainly through the trend derivative

state, as can be seen in the relative amplitudes of 0  and (jfm 6 (Table 5.5).

Similar component values were found for the other PPMs.

The forecasts produced by this PPM, for the 13 hrs late winter workings days
partitioned series, are shown in Figure 5.8 below. The forecasts of this
partitioned series in the first few days are again quite poor, due to the transient in

the covariance matrix of the state vector estimates, as mentioned in Section
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Figure 5.8. A plot of yU6 (k) and yn 6(K) using PPM116(trained with SSD).

Figure 5.9 (note the different j-axis scales) shows how the variance of the
estimates, <r?36(k), varies as the Kalman filter runs through the data. As can be
seen, after approximately 10 data points, the filter has locked on to the data, i.e.

the initial transient has subsided. In order to ensure that the transient has passed,

meiis set to 20 for all the PPMs.
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Figure 5.9. A plot of (k) at each point in the data, note the y-axis has 3 different

scales (Model trained using SSD).
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The SACF (Section 3.3.1.4) of the residuals produced by PPMi3g§ x" k), using

SSD, are shown in Figure 5.10 below. As can be seen, the SACF is very similar

to the SACF of the residuals for the PPM trained with PED (Figure 5.7).

Figure 5.10. A plot of the SACF of *116(£) with 95% confidence intervals (trained with
SSD).

A Comparison of PED and SSD.

Figure 5.11 shows the MAPE achieved by all the PPMs for late winter working
day loads, tuned using PED and SSD. As can be seen, the results are very similar

at all hours and the daily MAPE (i.e. the average MAPE over all hours of the
day) is 2.79% for PED and 2.83% for SSD.

Hour of the day

Figure 5.11. A comparison of PED and SSD. (late winter working days, validation set)
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Tables 5.6 (validation set) and 5.7 (training set) show the daily MAPEs achieved
using the two tuning algorithms for all day-types. As can be seen, PED is the
superior tuning method for most day-types. However, the differences between
the two tuning algorithms are insufficient to recommend one above the other.

PED was chosen as the tuning algorithm.

Table 5.6. Daily MAPE for PPMs using different tuning algorithms (Validation set).

Day-type PED SSD
MAPE (%) MAPE (%)
Early winter Sundays 3.53 3.51
Summer Sundays 3.07 3.12
Late winter Sundays 2.57 2.57
Early winter working days 2.65 2.65
Summer working days 2.60 2.51
Late winter working davs 2.79 2.83
Early winter Saturdays 2.76 2.80
Summer Saturdays 2.20 2.27
Late winter Saturdays 2.54 2.54

Table 5.7. Daily MAPE for PPMs using different tuning algorithms (Training set).

Day-type PED SSD
MAPE (%) MAPE (%)
Early winter Sundays 3.58 3.58
Summer Sundays 3.99 4.02
Late winter Sundays 3.00 3.00
Early winter working days 2.98 2.99
Summer working days 3.05 2.88
Late winter working days 2.98 2.93
Early winter Saturdays 3.23 3.23
Summer Saturdays 2.95 3.01
Late winter Saturdays 2.86 2.85
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5.4.2.3 Tuning the Preliminary Parallel Models Using Alternative Data
Partitions.

In Section 4.2 ten different day-types were identified. In addition, the reasons for
treating each of these day-types with a separate model were explained. In order
to test the validity of those assumptions, two alternative partitions of the data are

modelled using a BSM:

Alternative partition 1: The entire data set with the exception of Christmas days
is partitioned by hour of the day only, resulting in 24 partitioned series. As there
are seven data points per week, the seasonal length used in the BSMs reflects

the weekly seasonal length and is seven, and

Alternative partition 2: The entire data set with the exception of Christmas days

is partitioned by hour ofthe day and in the following three categories:

» Sundays (including bank holidays),

e Saturdays, and

» working days.
This results in 24x3 alternative partitioned series. The seasonal lengths used in
the BSMs, which model each alternative partitioned series, depend on the series
in question. The working day series have a seasonal length of five to reflect the
five working days per week (Monday-Friday) that are used. The Sunday and
Saturday series have a season of one to reflect that only one day per week is

used.

Tables 5.8 and 5.9 compare the daily MAPEs achieved by the PPMs trained with
the partitioned series and the alternative partitioned series. Although the
alternative partitions do not use the day-type partitions, the daily MAPE for the

forecasts made on the day-types is used to allow comparisons.

The PPMs trained using the first alternative partition have a poor performance
compared to the other partitions (Tables 5.8 ,5.9). This implies that trying to
model Sundays, Saturdays and working days together does not work well with

BSMs.
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Table 5.8. Daily MAPE for PPMs using alternative data partitions (Validation set).

Day-type Alternative Alternative Original Day-
Partition 1 Partition 2 type Partition
MAPE (%) MAPE (%) MAPE (%)
Early winter Sundays 14.28 2.65 3.53
Summer Sundays 17.95 3.20 3.07
Late winter Sundays 15.81 3.21 2.57
Early winter working days 4.94 2.36 2.65
Summer working days 6.15 3.04 2.60
Late winter working days 5.29 2.94 2.79
Early winter Saturdays 511 2.19 2.76
Summer Saturdays 5.60 2.83 2.20
Late winter Saturdays 7.92 3.06 2.54

Table 5.9. Daily MAPE for PPMs using different data partitions (Training set).

Day-type Alternative Alternative Original Day-
Partition 1 Partition 2 type Partition
MAPE (%) MAPE (%) MAPE (%)
Early winter Sundays 16.69 2.95 3.58
Summer Sundays 19.93 3.91 3.99
Late winter Sundays 19.50 331 3.00
Early winter working days 5.31 2.87 2.98
Summer working days 6.75 3.29 3.05
Late winter working days 5.70 2.86 2.98
Early winter Saturdays 7.07 2.62 3.23
Summer Saturdays 7.00 3.37 2.95
Late winter Saturdays 9.10 3.07 2.86

The PPMs trained using the second alternative partition compare favourably to
those trained with the day-type partition. In the validation set, a pattern emerges
in which the second alternative partition appears to be superior for early winter
day-types (Table 5.8). Table 5.10, below, shows the number of days in each day-
type partition. As can be seen the early winter Sunday day-type has the lowest
number of days of any Sunday day-type. Similarly, the early winter working day-
type has the lowest number of days for any working day day-type. The same
situation applies with the early winter Saturday day-types. This would seem to
suggest that the early winter day-types can be modelled better by the inclusion of

days from the other day-types into the training set. This benefit of including more
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data has outweighed the disadvantage that other day-types have a different load

curve shape (Section 2.3.2).

Table 5.10. The number of clays per day-type (Christmas excluded).

Day-type Number of days
1. Early winter Sundays 158
2. Summer Sundays 378
3. Late winter Sundays 164
4. Early winter working days 692
5. Summer working days 1382
6. Late winter working days 740
7. Early winter Saturdays 141
8. Summer Saturdays 284
9. Late winter Saturdays 150

In conclusion, the second alternative partition is superior for modelling early
winter day-types and so is chosen as the PPM for these day-types (Table 5.11). It
should be noted that in order to use this PPM the model must be applied to all the
load data in the second alternative partition. However, only the forecasts for the

early winter day-types are retained.

Table 5.11. Data partitimi used by each day-type.

Day-type Partition
Early winter Sundays 2

Summer Sundays Day-type
Late winter Sundays Day-type
Early winter working days 2

Summer working days Day-type
Late Winter working days Day-type
Early winter Saturdays 2

Summer Saturdays Day-type
Late winter Saturdays Day-type

5.4.3 De-Seasonalisation of Weather Inputs.

There is a high degree of correlation between weather and load (Section 4.2.2).

As the residuals, x, (k), have had the trend and seasonal components of the load

extracted, this distorts the relationship between the weather variables and the

residual. The seasonal component of the weather is related to y/ (k), but not to

xi, (k) and so cannot be used to forecast x, ,(k). Thus, the seasonal component
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in the weather variables must be removed. As pointed out by Harvey (1994) (in
the general case), this may be achieved by filtering the causal variable with the
same model used to produce the residual (Section 3.3.1.3). That is, the trend,

dw“(k), and seasonal components, y/wh-(ft), of the weather variable, wLIk), are

removed using a PPM with the same coefficients as the PPM that produced

Xjj (k). In this case, the autoregressive variable is Wjj{k), in place o f>>¢&). This
results in a weather residual xwjJ(k) (Figure 5.12). The weather residuals

xW.j (k) are also called thepre-whitened weather variables.

Actual weather variable w- (k)

Trend and Pre-whitened
PPM\V Seasonal component weather xw>(k)

dw.(k)+ yw.{k)

Figure 5.12. Pre-whitening a weather variable.

5.5 Input Selection.

Input selection forms perhaps the most important step in model building (Long
et. al.,, 2000, Abraham and Ledholter, 1983 and Hocking, 1976). Inclusion of
non-causal variables leads to poor model generalisation. Hocking (1976)
specifically identified two difficulties in linear regression models which

incorporate non-causal inputs:

1. The error variance of the estimates is equal to or higher than linear regression

models that do not include the non-causal variables, and
2. The non-causal variable may lead to a bias in the forecasts.

In addition, reducing the dimensionality of the inputs aids in model training

(Long et. ah, 2000).
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Another factor in input selection is multi-colinearity. Multi-colinearity refers to
inputs which share the same or similar information. A good example, given by
Abraham and Ledolter (1983), is a model which uses the number of miles
travelled, x\(k), and the number of kilometers travelled, x2(k), at time k, as inputs.
If the dependant variable is y(k), then a linear regression model relating y(k) to

X\(K) and x2(k) maybe expressed as:

y(k) = axxx(k) +a2x2(k) +e(k) (5.8)

where a\ and a2 are the coefficients relating to x\(k) and x2(k), £(k) is an error
term and k is the time. In matrix notation this may be expressed as:

y =ax+e (5.9

wherey is a vector of dependant variables, a is a column vector of coefficients, x
is a matrix of the inputs called the design matrix and e is vector of error terms.

The least squares solution to Equation (5.9) is

a = [ijctjc] 1jr (510)

As x\(k) and x2(k) contain the same information, x & is not of full rank and cannot
be inverted. Even if x\(k) and x2(k) contain similar information, [jc'jc]-L will have

a very small determinant and the variance of a will thus be very high.

However, consider the situation in which both x\(k) and X2(k) have added
uncorrelated measurement noises with equal variance. In this situation, a new
input variable, xi(k), may be formed by pre-processing the inputs as:

LY XI(K) +x2(k /C11,
The variance of the measurement noise on x-i(k) is half that of x\(k) (McCabe,

1991) and it is thus a better input than either x\(k) or Xz(k). Thus, multi-

collinearity can be advantageous if dealt with properly.
The type of weather input variables available arelisted inTable 2.2 (Section

2.2.1). For the load atany given hour, the previous 72hoursof weather are

considered as inputs. Thus, the variables that are considered are:
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tij(k), a vector of pre-whitened temperatures from hour i to hour i-12 on day k

of day-typej,

hij(k), a vector of pre-whitened humidities from hour i to hour i-12 on day «

of day-typej,

a vector of pre-whitened wind speeds from hour i to hour i-72 on day «

of day-typej,

oj/k), a vector of pre-whitened wind directions from hour i to hour i-12 on
day k of day-typej. As the wind direction is a circular measurement, i.e. 0°is

equiavalent to 360° the cosine and sine ofthis variable is used, and

ci/k), avector of pre-whitened cloud covers from hour i to hour i-12 on day «

of day-typej.

The set of all possible inputs [ti/k) hij(k) qij(k) COS(oij(k)) SiN(ojk)) Cilk)]

contains 6x72 (432) inputs which, in many cases, is larger than the number of

days in a partitioned series (Table 5.10). This means that not all of the inputs can

be used in a linear regression model, as the coefficients cannot be estimated. For

this reason, it is necessary to reduce the number of inputs, prior to any pre-

processing.

The input selection procedure is performed in two stages:

Input reduction in order to reduce the number of inputs to a number less than

the number of days in the partitioned series (Section 5.5.1), and

Input pre-processing and selection in order to take advantage of multi-

colinearity and choose the optimal number of inputs (Section 5.5.2).
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5.5.1 Input Reduction.

There are many methods that can be used to determine which inputs to retain and
which to eliminate. A survey of methods is given by Hocking (1976) and with
some exceptions (Castellano and Fanelli, 2000), these methods are still in
common use today. Ideally, load forecasting models with all possible
combinations of the reduced inputs should be constructed and the best selected.
However, this is not possible, as the number of possible combinations of 432
inputs choosing 80 at a time is too large to implement, even with the simplest

model.

The procedure used in the current research is called stepwise regression.
Stepwise regression falls into 2 classes; forward selection and backward

elimination (Abraham and Ledolter, 1983).

In forward selection, the response variable (output) is first estimated using the
causal variables individually. For example, if there are 432 inputs this results in
432 models each with one input variable and 432 sets of response variable
estimates. The causal variable that leads to the "best" model (the definition of
best is discussed below) is then retained. The next step then uses the retained
variable paired with all the un-retained variables individually. Using the example
quoted above, this would lead to 431 models with two inputs and 431 sets of
response variable estimates (as the retained variable is not paired with itself). The
"best" pair of variables are then retained and this process then continues until the
required number of input variables has been chosen or some stopping condition
has been met. There are several types of forward selection algorithms which
differ in their definition of the "best" model. The most popular measure of “best”
estimate is the F-statistic of the model errors (Abraham and Ledolter, 1983 and
Roecker, 1991). This has several problems, as shown by Grechanovsky and
Pinsker (1995). Other measures, such as the mean squared error of the model
forecasts on a validation set, have been proposed and found to work well
(Roecker, 1991). It should be noted that forward selection is not guaranteed to

give an optimal set of inputs. However, as stated by Hocking (1976), many sets
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of inputs often exist which are close to optimal and forward selection usually

finds one of these sets.

Backward elimination is the reverse of forward selection; a model with all the
inputs is first trained and then the "worst" input is removed from the model at
each iteration. As mentioned above, the number of inputs exceeds the number of
data points in many partitioned series, and so calculating the coefficients of a
model with all the inputs (i.e. step 1) is not possible. Thus, backward elimination

cannot be considered as an option here and forward selection is used.

In the current research, forward selection is required, not to determine the
optimal inputs, but rather to reduce the number of inputs to a level were input
selection (Section 5.5.2) can be used. The number of inputs to be retained is set
at 80. This number is considered sufficiently large to retain all the important

inputs, while allowing a large degree of freedom in the data.

For input selection, a linear Regression Model (RM) (Harvey, 1994), which is
computationally inexpensive, is used. Though this model is not representative of
the full complexity of the system, it is more than sufficient to determine the
relative importance of the inputs. The RM model for hour i on day-typej with n

inputs, RM,, V, has the form:

xij(k) = aujui,ij(k) + azjju2jj (k) + - +an,ju,jj(k +eij(k) (5-12)

where xij(k) is the residual to be forecast for hour i on day-typej at day k, uaj is
the Ith input for RM,W, auj is the coefficient applied to that input (calculated by
least squares) and n is the number of inputs retained which increases by one at

each step in the forward selection procedure (as mentioned above).

For each RM the sum squared error of the forecasts in the validation set is used
as the indicator of the "best" model. Table 5.12 shows the delays in each of the
input variables which were retained for the late winter working days, 13 hrs

partitioned series.
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Table 5.12. Delays in input variables retained (late winter working days, 13 hrs partitioned

series)"" ™
Variable Retained delays.
Temperature 2, 3,4, 15, 19, 20, 23, 42, 44, 45, 46, 48, 49
Humidity 0,167 8,9, 10, 11, 12, 24, 25, 26, 27, 29, 32, 33, 34, 37, 40, 42,
43,44
Cloud Cover 1,3,4, 8,9, 14, 15, 16, 18
Wind speed 1,5, 6,7, 8, 11, 12, 13, 14, 15, 19, 21, 23

Cos(wind direction) 2,3,7, 12, 14, 15, 16, 17, 19, 20,21
Sin(wind direction) 3,4, 6,7, 8,11, 15, 16, 17, 19,21,23

These results need to be interpreted carefully. The fact that more humidity
variables are retained does not necessarily mean that humidity is a more
important weather variable than temperature. Rather, the temperature at one hour
may be highly correlated to the temperature at other hours and so only a few
temperatures are required to include all the temperature information. What is
significant is that only one variable from a delay greater than 2 days is chosen
(the temperature with a delay of 49 hours). This implies that only the previous 2

days of weather have a significant effect on the load.

5.5.2 Input Pre-Processing and Selection.

At this point there are 80 variables in the set of reduced inputs. The purpose of
input pre-processing is to retain the optimal number of inputs as opposed to input
reduction which seeks to reduce the number of inputs to a manageable size. In
addition, multi-colinearity in the reduced input sets is used to advantage. The
ideal approach would be to construct load forecasting models with all possible
combinations of the reduced inputs and select the best. This is not possible, as the
number of possible combinations of the i'nputs (80! = 7.1x101]8) is t00 large to

implement even with the simplest model.

Thus, the same form of linear regression model is utilised as that in Equation
5.12. However, for input pre-processing and selection, the inputs, uuj, are
selected from the reduced inputs in different ways and may represent the reduced

inputs after pre-processing (details are given in Sections 5.5.2.1 to 5.5.2.4).

%N ote that the current hour has a delay of 0; a delay of 1 implies that the variable at 12 hrs (i.e.
13 hrs -1) on the current day is retained etc.
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In order to allow a statistical evaluation of the different input selections a
bootstrapping technique (van Giersbergen and Kiviet, 2002) is used.
Bootstrapping refers to the use of alternate parts of the data set as training and
validation sets (as mentioned in Section 2.2). In this case, eight bootstraps are
constructed, where the validation set occupies a different range for each set

(Figure 5.13, Table 5.13).

Table 5.13. Segmentation of data set for input selection (late winter working days, 13 hrs

Set Training Validation
Range Variable Variable
Size (Days) 624 78
Bootstrap Division oftraining and validation sets.
number (V=validation T=Training)
1 \% T
2 T \% T
3 T \% T
8 T \Y

Figure 5.13. Selection of training and validation sets for input selection.

Four methods are now evaluated for input selection.

5.5.2.1 Method 1
Method 1 performs input selection using the following algorithm:

For all inputs:

Train a linear regression model.

Calculate the T-ratio (Kazmier and Pohl, 1987) of all the
coefficients. This is the ratio of the variance of a”-to the amplitude
of a,/. A high T-ratio for aiiU implies that uljj is of little use in

forecasting xu.

*Note that the days for 1999 and 2000 are excluded as they are part of the test set which is only
used after models have been trained and validated.
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Order the inputs with increasing value of T-ratio.

For number of inputs NINP = 1 to 80:
Select the first NINP inputs.

Train a linear regression model for these inputs, for each

training bootstrap (see Table 5.13 and Figure 5.13).

Calculate each of the Minimum Absolute Errors (MAEs)*, on

each of the bootstrap validation sets.

Next NINP

In summary, the technique uses the T-Ratio to order the inputs so that 80

combinations of the inputs can be evaluated (Figure 5.14).

Figure 5.14. A block diagram of Method 1 for input selection for hour i day-typej model.

* Although the Mean Absolute Percentage Error (MAPE) is the preferred error measure in the
field of short-term electrical load forecasting, the data trend changes over time and thus so does
the MAPE. This means that the MAPE cannot be used as an error measurement in a bootstrap.
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5.5.2.2 Method 2

One disadvantage of Method 1 is that it is susceptible to colinearity in the inputs
(Rencher, 1995). If two inputs are highly correlated, then the likelihood is that
neither variable will attain the same significance. This, in turn, can mistakenly
push these inputs down the priority list. One means of reducing the colinearity in

the input data is to use Principal Component Analysis (PCA) (Rencher, 1995).

PCA is a technique used for input dimension reduction (Moral and Valderamma,
1997). Consider, for example, the case where just two highly correlated input
variables are available, u\(t) and W(t) (Figure 5.15). PCA transforms these
variables into a set of orthogonal variables u'\(t) and #2(o, such that each
variable represents the coefficient along a basis vector in characteristic directions
of the original data set (Rencher, 1995) (Figure 5.15). Thus, the transformed

variables are not colinear.

Additionally, the transformed variables (u\(t) and #2¢ in this example), or
components, are ordered in descending order of variance explained in the original

data set (errand in Figure 5.15), with the first component containing the

highest amount of information (Rencher, 1995). As can be seen from Figure

5.15,72(0 accounts for very little information and could be discarded.

u2

Figure 5.15. An example of two variables transformed using PCA.
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Method 2 performs input selection using the following algorithm:

For all inputs:

Transform the inputs using PCA.

Order the transformed components in descending order of

variance explained.

For number of components NCOMP = 1 to 80
Select first NCOMP components.

Train a linear regression model for these components, for each

training bootstrap (see Table 5.13 and Figure 5.13).

Calculate each of the Minimum Absolute Errors (MAES), on

each of the bootstrap validation sets.

Next NCOMP

Figure 5.16 below gives an overview of Method 2.

All reduced inputs

Figure 5.16. A block diagram of Method 2 for input selection for hour i, day-typej, model.
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5.5.2.3 Method 3

One difficulty in Method 2 is that components are ordered by variance explained
in the input data, which may not reflect the significance of these inputs with
respect to the output data. For example, the first component may have the highest
level of variance explained with respect to the input data, whilst still having no
correlation with the output data. Method 3 attempts to circumvent this problem
by removing the inputs least correlated with the output prior to transformation

with PCA using the following algorithm:

For all inputs:

Train a linear regression model.

Calculate the T-ratio (Kazmier and Pohl, 1987) of all the

coefficients.
Choose the inputs with the lowest 50 T-ratio scores.
Transform the inputs using PCA.

Order the transformed components in descending order of

variance explained.
For number of inputs NCOMP = 1 to 50:
Select first NCOMP components.

Train a linear regression model for these components, for each

training bootstrap (see Table 5.13 and Figure 5.13).

Calculate each of the Minimum Absolute Errors (MAE’), on

each of the bootstrap validation sets.

Next NCOMP

Figure 5.17 below gives an overview of Method 3.
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Figure 5.17. A block diagram of Method 3 for input selection for hour i, day-tpyej, model.

5.5.2.4 Method 4

Method 4 is similar to Method 3 in that a combination of PCA and multiple

regression models is used. However, the order of application is reversed and the

transformed components are ordered exclusively using the T-ratio scores, so that

the correlation between the components and the output is emphasised, rather than

the variance explained in the input. Method 4 performs input selection using the

following algorithm:

For all inputs:

Transform the inputs using PCA.

Train a linear regression model with the transformed

components.

Calculate the T-ratio (Kazmier and Pohl, 1987) of all the

coefficients.

Order the transformed components with increasing value of T-

ratio.

For number of inputs NCOMP = 1 to 80:
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Select first NCOMP components.

Train a linear regression model for these components, for each

training bootstrap (see Table 5.13 and Figure 5.13).

Calculate each of the Minimum Absolute Errors (MAEs), on

each of the bootstrap validation sets.

Next NCOMP

Figure 5.18 below gives an overview of Method 4.

Figure 5.18. A block diagram of method 4 for input selection for hour i, day-typej, model.

5.5.2.5 A Comparison of Methods 1-4.

For each method and each hour of the day, the optimum selection of inputs
(Method 1) or components (Methods 2-4) is that which gives the minimum MAE
in the validation set (Figure 5.19). Plots of the MAE as a function of the number
of inputs used (or components used in the case of Methods 2-4) are shown in

Figure's 5.19 to 5.22 below, for the four methods.
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Figure 5.19. Bootstrapped MAE for Method 1 (late winter working days, 13 hrs partitioned
series).
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Figure 5.20. Bootstrapped MAE for Method 2 (late winter working days, 13 hrs partitioned
series).
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Figure 5.21. Bootstrapped MAE for Method 3 (late winter working days, 13 hrs partitioned
series).
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Figure 5.22. Bootstrapped MAE for Method 4 (late winter working days, 13 hrs partitioned
series).

As can be seen from Figures 5.19 to 5.22 there is good agreement between the
MAEs for the training and validation sets, although the standard deviations of the

MAEs in the validation sets is larger. This is expected, as the validation set is not
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used in training. However, as the number of inputs or components used
increases, the MAE in the validation set starts to deviate from the MAE in the
training set. An example of this may be shown by extending the number of
components plotted to 50 (Figure 5.23). The deviation occurs as complexity of
the model increases past the complexity of the data (this concept is discussed in
Section 3.3.1.4).

Number of Coefficients used
Figure 5.23. Bootstrapped MAE for Method 2 (late winter working days, 13 hrs partitioned
series).

Table 5.14 (next page) shows the minimum MAE in the validation set and the
corresponding number of components for each method. As can be seen, Method
2 has the lowest MAE at 0.0112 with 50 components. However, Method 3 has an
MAE of 0.0114 and uses only 17 components. Closer inspection of Figure 5.20
shows that with 8 components, the MAE for Method 2 is 0.0115. Thus the
improvement in Method 2 by the inclusion of the last 42 inputs is not significant.
Subjectively, therefore; applying Method 2 and using 8 components would seem

to be the best choice for input selection.
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Table 5.14. Minimum MAE, corresponding number of components and standard deviations
(normalised, late winter working days, 13 hrs partitioned series).

Method MAE Number of Standard
components deviation

1 0.0115 46 0.0020

2 0.0112 50 0.0022

3 0.0114 17 0.0019

4 0.0125 48 0.0016

An objective measure of the performance of a model which penalises the
complexity of the model is the AIC criterion (discussed in Section 3.3.1.4). The
AIC for each method, as a function of the number of components, is shown in
Figure 5.24 below. As can be seen, the intuitive selection of Method 2 (with 8

components) made above yields the minimum AIC .

Number of components used
Figure 5.24. AIC for Methods 1 to 4 (late winter working days, 13 hrs partitioned series).

The optimum method and number of components, as selected by the AIC, for
each hour of the day in the late winter working day day-type are tabulated in

Table 5.15 below.
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Table 5.15. Optimum method for input selection and associated statistics (AIC, MAE and
standard deviation of MAE have been normalised, late winter working days, validation

set).

Hour of Method AIC (xIOH Number of MAE Standard deviation
the day components of MAE
00:00 2 0.3378 3 0.0188 0.0034
01:00 2 0.2328 7 0.0156 0.0029
02:00 2 0.2204 1 0.0152 0.0026
03:00 2 0.2130 9 0.0150 0.0024
04:00 2 0.2035 1 0.0146 0.0024
05:00 2 0.2030 7 0.0146 0.0028
06:00 2 0.1786 2 0.0136 0.0023
07:00 2 0.1902 7 0.0140 0.0020
08:00 2 0.2070 2 0.0147 0.0013
09:00 2 0.1485 7 0.0121 0.0011
10:00 2 0.1421 15 0.0115 0.0016
11:00 2 0.1434 9 0.0115 0.0013
12:00 2 0.1658 7 0.0126 0.0014
13:00 2 0.1428 8 0.0115 0.0014
14:00 2 0.1503 8 0.0119 0.0013
15:00 2 0.1713 17 0.0123 0.0020
16:00 2 0.2931 19 0.0175 0.0026
17:00 2 0.3691 15 0.0197 0.0037
18:00 2 0.2107 7 0.0145 0.0029
19:00 2 0.1262 7 0.0110 0.0023
20:00 2 0.1441 7 0.0123 0.0026
21:00 2 0.1257 6 0.0113 0.0018
22:00 2 0.1605 6 0.0130 0.0021
23:00 2 0.0906 10 0.0092 0.0013

As can be seen, Method 2 performs the best in all cases and the number of
components chosen ranges from 1 to 19. The average number of components
used is 7.79, while the mode is 10. The histogram of the optimum number of
components for all hours in the late winter working day day-type is shown in
Figure 5.25 below and shows that 7 to 8 components appears to be the most
popular choice. However, the conclusion here is that the optimum number of
components is hour of the day dependent and does not follow any discernible

pattern.
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Figure 5.25. A histogram of the number of components chosen by Method 2 over all hours
of the day (late winter working days).

5.6 Linear Modelling of Partitioned Series.

This section examines linear modelling of the partitioned series. Section 5.5 used
linear models to determine the best inputs and these linear models are used to
form the linear parallel models. However, while the same linear model structure
is used in this section, the models are no longer trained using the bootstrapped
data sets used in Section 5.5. An overview of the linear parallel models is shown
in Figure 5.26 below. Figure 5.26 can also be viewed as a summary of the best

preliminary models and input selection techniques selected in Sections 5.4 and
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Pre-whilened

Figure 5.26* Linear parallel model overview

The modelling process may be split into 4 stages:

Input Selection and Pre-processing (Section 5.6.1),
Structure Determination (Section 5.6.2),

Parameter Evaluation (Section 5.6.3), and

A W N

Model Validation (Section 5.6.4).

Although stages 1-3 have been covered in previous sections they are summarised

here for clarity and to allow easy comparison with the non-linear parallel models

(Section 5.7).
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5.6.1 Input Selection and Pre-Processing.

The inputs and pre-processing are discussed in Section 5.5.

5.6.2 Structure Determination.

The structure of the PPMs has been discussed in Section 5.4 while the structure
of the RMs is determined uniquely by the number of inputs as discussed in

Section 5.5.

5.6.3 Parameter Evaluation.

The parameters of the PPMs are discussed in Section 5.4. The RMs are trained
using least squares. The data set is divided into a training set a validation set and
a novelty set as explained in Section 2.2 (Table 2.3, recreated below in Table
5.16)

Table 5.16. Division of data set.

Set Training Validation Novelty
Range 1987-1996 1997-1998 1999-2000

5.6.4 Model Validation.

The coefficients applied to the eight components in the RM applied to the
13:00hrs late winter working day partitioned series are shown in Table 5.17
below. As can be seen each input has a high T-ratio except for the 5 input which
may not be required. The sum of the variance explained in the reduced input set
by the eight components is 52% and so approximately half the information in the

set ofreduced inputs has not been used in this model.

Table 5.17. Coefficients applied to the components, the T-ratio of the co-efficients and the
% of variance explained in the reduced input set by that component.

Component 1 2 3 4 5 6 7 8

Coefficient -3.42 441 4.64 115 -0.74 -10.25 -5.35 -1.35
% Variance Explained 13.5 9.89 8.99 5.70 4.64 4.01 3.17 2.86
T-ratio 4.34 4.84 4.86 9.59 0.54 7.31 3.22 2.45
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The Ljung-Box test statistic for the errors in the validation set is 0.017 (Equation
3.36). The number of points in the validation set for the 13:00hrs late winter
working day is 104 and so the critical level with a 95% confidence level

is2'5(V104 - 8=2) =5.991. As the test statistic is less than the critical level this

model is deemed to have been validated.

The SACF of the errors in the validation set are shown in Figure 5.27 below. As
can be seen, the SACF at a lag of 5 is statistically different from zero. However,

the SACF at this lag is -.23 and is not a strong correlation.

----- SACF
-— +/- 95% Conf. Int.
* Inside bounds

1 O Outside bounds

0.6

0.8

Lag

Figure 5.27. The SACF for the errors in the linear parallel model for 13 hrs late winter
working day partitioned series.

The MAPE for all hours of the day in the late winter working day-type is shown
in Figure 5.28 on the next page (novelty set). As can be seen there is an

improvement of 0.4% in the forecast by inclusion of the weather variables.
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4.5

----- Unear model (2.55%)
...... PPM (2.94%)

Hour of Day

Figure 5.28. The SACF for the errors in the linear parallel model for the 13 hrs late winter
working day partitioned series (Novelty Set).

Table 5.18, below, shows the average daily MAPE for all da>-types in the
Novelty set for both the PPM and Linear Parallel models.

Tabic 5.18. Daily average MAPE for Linear Parallel models and PPMs (Christmas days
excluded, novelty set).

Day-type MAPE MAPE Linear Improvement
PPM's (%) Parallel Models (%)
(%)
1 Early winter Sundays 275 2.70 0.04
2. Summer Sundays 3.22 3.14 0.08
3. Late winter Sundays 2.78 2.75 0.02
4. Early winter Working days 2.36 2.25 0.10
5. Summer working days 3.04 2.99 0.05
6. Late winter working days 2.94 2.55 0.38
7. Early winter Saturdays 2.19 2.20 -0.01
8. Summer Saturdays 2.83 2.81 0.01
9. Late winter Saturdays 3.06 2.86 0.20
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5.7 Non-Linear Modelling of Partitioned Series.

This section examines non-linear modelling of the partitioned series. Non-linear
models have been found to provide excellent results in Short Term Load
Forecasting (STLF), as discussed in Section 3.4. An overview of the non-linear
parallel models is shown in Figure 5.29, below. In contrast to the linear parallel
models (Figure 5.26), the linear Regression Models (RM) are replaced with
Neural Networks (NN) and several additional inputs are considered. The
motivations for using neural networks and including additional inputs are
discussed in Sections 5.7.1 and 5.7.2, respectively. Similar to the linear parallel

models, the modelling process is again split into 4 stages:

Input Selection and Pre-processing (Section 5.7.2),
Structure Determination (Section 5.7.3),

Parameter Evaluation (Section 5.7.4), and

A w0 DN o

Model Validation (Section 5.7.5).

Pre-whitened

Figure 5.29. Non-linear parallel model overview
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5.7.1 Choice of Non-Linear Model.

In Section 3.4 several non-linear modelling techniques are reviewed:

Volterra models (Section 3.4.1),

Wiener models (Section 3.4.1.1),

Hammerstein models (Section 3.4.1.2),

Fuzzy logic models (Section 3.4.2.1),

Radial Basis Function (RBF) neural networks (Section 3.4.2.2),

Feed forward neural networks (Section 3.4.3.1), and

N oo g &M w N o

Recurrent neural networks (Section 3.4.3.2).

The Wiener model and the Hammerstein model are based on the Volterra model.
As pointed out in Section 3.4.1, calculating the Volterra kernels in a Volterra
model can be difficult and in addition, they may not converge (Section 3.4.1).
Thus a parametric non-linear technique (i.e. techniques one to three above) is not

considered.

The fuzzy logic and RBF models suffer from "the curse of dimensionality” as
mentioned in Sections 3.4.2, 3.4.2.1 and 3.4.2. Specifically, Mitchell (1992)
notes that the use of RBF networks is impractical for more than six inputs. As the
optimum number of input variables (for forecasting the load residuals in the
current research) determined in Section 5.5 exceeds six in many cases, RBF
networks and fuzzy logic techniques are eliminated from the choice of non-linear

modelling technique.
In choosing between the two remaining techniques (feed forward neural
networks and recurrent neural networks) the following factors must be

considered:

1. The partitioning of the data has produced partitioned sets which vary in size

from 141 to 1382 (Table 5.10),

2. The residual to be modelled (produced by the PPM) is stationary, and
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3. There are 216 partitioned series (24 partitioned series per day-type and nine
day-types) and thus 216 non-linear parallel models are required. This is a
large number of models and thus the computational expense of the non-linear

modelling technique must be considered.

With regard to the first point above, the number of data points in each partitioned
series cannot be considered abundant. While both a recurrent neural network and
a feed forward neural network would require large data sets for training,
recurrent neural networks generally require larger data sets than feed forward

neural networks (Section 3.4.3.2).

A recurrent neural network has the ability to model non-stationary time-series.
However the second point above means that this ability is not required by the
non-linear technique to be chosen. This is a disadvantage for reasons explained

in Section 3.4.3.2.

With respect to point three above, recurrent neural networks generally require

more computation time than feed forward neural networks (Section 3.4.3.2).

Thus the feed forward neural network appears to be the best choice of non-linear
modelling technique in this case, and so is chosen. Although a feed forward
neural network is computationally less expensive than a recurrent neural
network, it is still quite time consuming to train. Thus there are restrictions on the

number ofvariations in the non-linear parallel models that can be attempted.

5.7.2 Input Selection and Pre-Processing.

Ideally, neural networks with all possible combinations of the weather inputs
should be constructed and the best selected. However, this is not possible, as the
computational expense of a neural network prohibits more than a few
combinations being tested. However, the input selection techniques used in

Section 5.5 identified the optimum number of weather components for a linear
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parallel model. Though this analysis is not representative of the full complexity
of the system (specifically non-linear effects), it is more than sufficient to
determine the relative importance of the weather inputs. To summarise the
selection input procedure used in Section 5.5, the pre-whitened weather inputs
are reduced to 80 inputs, transformed using PCA and this produces 80 pre-
whitened weather components. The components are then ordered by variance

explained.

The computational expense of training 216 neural networks will be seen in the
next section (Section 5.7.3) to constrict the structure of the neural networks in
the non-linear parallel models to be the same. This in turn requires that the
number of pre-whitened weather component inputs for each neural network is the
same. From Figure 5.25 the most popular number of pre-whitened weather
components used as inputs is 7-8. Thus the number of pre-whitened weather

components used in each non-linear model is thus chosen to be seven.

In addition to the pre-whitened weather components, the following additional

inputs are considered:

1. Auto-regressive inputs (i.e. previous residuals). As mentioned in Section 3.4,
there is evidence to show that a non-linear auto-regressive relationship exists
in load data in other utilities. As there is no linear auto-regressive
information left in the data, there is no way of choosing which auto-
regressive residuals to include. The input reduction procedure used with the
weather variables suggests however, that only the previous two days of
weather variables are significant (Section 5.5.1). By extension, it is assumed
that the previous two days of residuals are significant and so these are used as

additional inputs,
2. Temperature at the hour to be forecast% In Section 4.2.2 it was shown that

the temperature-load sensitivity in April and May is significantly different

than in the period June-September. This means that the relationship between

%T his should not be confused with pre-whitened temperature.
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load and temperature is dependant on the level of the temperature during
summer (and possibly other periods of the year). As the pre-whitened
temperatures contain information regarding the change of temperature, as
opposed to the level of the temperature, they are of no use in this case. Thus
the temperature at the hour to be forecast is included as operating point

information, and

3. A schedule variable. A plot of the residual for the 00 hrs late winter working
day day-type, xM®6(k), versus the 1st pre-whitened weather component is
shown in Figure 5.30 below. As can be seen there appear to be two clusters

of data. The second cluster of data was identified as occurring on Mondays.

Specifically, the effect is more pronounced during the morning and evening

hours.
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Figure 5.30. A plot of the residual versus the 1stpre-whitened weather variable showing two
clusters of data. (00 hrs Late Winter Working Day day-type).

This implies that the relationship between the residual and the pre-whitened
weather inputs is different on Mondays. To provide this information to the
non-linear parallel models, a scheduling variable is provided for the working
day day-types (as this effect is not present in the weekend day-types). This

variable has a value of 1 for Mondays and a value of 0 elsewhere.
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Several types of non-linear parallel models are trained, each differing by the
types of inputs they use. In order to distinguish between these models, they are
given the names shown in Table 5.19, below, where ij denotes the model for

hour i on day-typej.

Table 5.19. Non-linear parallel model naming convention.

Model Name Inputs used.

NN;j/ 7 Pre-whitened weather components.

NNAR,-./ 7 Pre-whitened weather components, 1) x,j(k-2)

NNARTI/j 7 Pre-whitened weather components, X,j(K-\) xw{k-2), T~k)

NNS/j 7 Pre-whitened weather components, Scheduling variable.

NNARS/., 7 Pre-whitened weather components, Xj/k-1) xL(k-2), Scheduling variable.

NNARTS/j 7 Pre-whitened weather components, x,/k-\) x,j(k-2), Ti¢(k), Scheduling
variable.

5.7.3 Structure Determination.

Determining the structure of a neural network may be broken down into 3 stages:

1. The number of hidden layers and the activation functions must be chosen
(Section 5.7.3.1),

2. The training algorithm must be chosen (Section 5.7.3.2), and

3. The number of nodes in each layer must be determined (Section 5.7.3.3).

5.7.3.1 Choice of network architecture.

The number of layers used in the field of STLF was reviewed in Section 3.4.3.1.
As three hidden layers are seldom used (Section 3.4.3.1), the choice lies between
a single hidden layer or two hidden layers. The latter is chosen as Lee et. al.
(1992) found that two hidden layers gave better performance for STLF (Section
3.4.3.1).

The activation functions chosen are tan sigmoidal for the hidden layers, and
linear for the output layers, as they are the most common activation functions
used in feed forward neural networks applied to STLF (Section 3.4.3.1). The
input data is normalised between £ 1 so that the tan sigmoid activation functions

are not driven into saturation (Chihocki and Unbehauen,1993), with a resulting

*This is the neural network for hour i on day-typej.
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speed up in training, since the high gain (gradient) of the neuron characteristic is

used.

5.7.3.2 Choice of Training Algorithm.

The training algorithm used is the back propagation algorithm, as a genetic
algorithm is too slow to converge (Section 3.4.3.1). Ten neural networks were
trained for each topology, with random initial weights to assist in achieving a

global (or at least a good local) minimum (Section 3.4.3.1).

Each model is trained using early stopping (Haykin, 1999), in which training
ceases when the sum squared error of predictions in the validation set reaches a
minimum (an example is shown in Figure 5.31, Section 5.7.3.3). If a minimum is
not found, the training stops after ten thousand epochs. Cessation of training at
the validation set minimum prevents over-training of the neural network
(Haykin, 1999) and assists, in conjunction with topology determination and input

selection, in achieving a parsimonious network.

5.7.3.3 Network Topology Determination.

In order to determine the correct topology, 49 neural network architectures were
examined, using 1-7 nodes in both the first and second hidden Ilayers,
respectively. To perform this for each partitioned series would require training
105,840 (49 architectures x24 hours/day x9 day-types xIO) neural networks,
which is too computationally expensive. Thus the network topologies are refined
for the 13 hrs and 07 hrs late winter working day partitioned series (as
representative models) and applied to the others. In addition the NNART and
NNARTS models network topologies are refined for the 13 hrs and 07 hrs
summer working day partitioned series (as representative models) and applied to
the others. This is because the operating point input (i.e. the temperature) in these
models (Section 5.7.2) is included, as is thought to be especially relevant in
modelling the load during summer months (Section 4.2.2). Table 5.20 (next

page) shows the results for the model NNo76*

*(i.e. the 07 hrs Late Winter Working Day partitioned series)
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Table 5.20 may be explained as follows. 'Layer 1 nodes' and 'Layer 2 nodes'
refers to the number of nodes in hidden layers 1 and 2 respectively. Network
number refers to the 10 networks that are trained for each topology. The MAPE
in the training, validation and novelty sets is recorded for each network, as is the
epoch number at which the training was stopped (called Index in Table 5.20).
The 10 networks trained for each topology are sorted in descending order, with
the network that achieved the lowest MAPE in the validation set last. The four
networks with the lowest MAPESs in the validation set are then retained (these are
lightly shaded in Table 5.20). The other six networks are discarded as networks
that failed to reach a good local minimum, due to their random initial conditions.
The MAPEs of the retained networks are averaged to give the Averaged MAPEs
(AMAPES). This term is used to distinguish the AMAPE from the MAPE which
is the MAPE achieved by an individual network. The AMAPE represents the

performance of each topology.

To aid the explanation of Table 5.20, the MAPEs for the third network trained
with a 4x3x1 topology are shaded diagonally in Table 5.20. The validation
MAPE for this network is 2.96% which does not compare well with the best

validation MAPE achieved with this topology (2.92%).

Figure 5.31 below shows an example of early stopping using the 4x4x1

topology.

’ Note there is only one output and so the all the neural networks have a topology ** *x 1.
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Figure 5.31 An example of early stopping (Topology: 4x4x1, Model: NNGO,6).
Method for Choosing the Best Topology

Ideally, the optimum topology is that with the lowest AMAPE in the validation
set (Table 5.20). However, this approach is only valid if the validation set
AMAPEs are exact. However, they are estimates of the AMAPE in the validation
set. Thus some caution must be exercised in interpreting the results in Table 5.20.

The following factors are useful to consider prior to determining the topology:

1. As the complexity (number ofnodes) of the networks increase, their ability to
over-fit the data increases (this general point is discussed in Section 3.3.1.4)
and so the AMAPEs become less reliable estimates. Although there are only
four MAPEs used to calculate the AMAPEs this point can still be readily
demonstrated by plotting the variance of the AMAPESs against the complexity
ofthe networks (Figure 5.32, below).
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Figure 5.32 The variance of the validation set AMAPEs versus the number of nodes in each
topology (Model: NNGj6.

As can be seen the variance of the validation set AMAPEs rises with

complexity and thus their reliability decreases , and

2. Although the differences between two AMAPEs may appear small this is
misleading. Table 5.20 for example, shows the AMAPEs achieved by two
topologies, IxIxl and 3x4x1. The differences between the validation set
AMAPEs for each topology in Table 5.20 appear small. However, each neural
network is estimating the same residual, xo7s(E), which is produced by
PPMoz,s (Figure 5.29). That is, the forecast of the load produced by PPMo7s
has a MAPE of 3.51% (Figure 5.11) and the validation set AMAPEs in Table
5.20 are improvements on this figure. As can be seen, the variance of the
AMAPEs (Table 5.21) is quite small compared to the difference between the
AMAPEs. Thus in this example topology 3x4x1 is considered superior to

IxIxi although it is more complex and thus it's AMAPE is less reliable.

*This does not mean that topology Ix Ix1 is necessarily the best topology; just that the estimated
AMAPE for this topology is the most reliable.
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Table 5.21 Validation set AM APEs for NNO07.6using 2 different topologies.
Variance of validation

Topology

Ix1Ixl
3x4x1

Validation set AMAPE

(%)
2.932

2.892

0
6

set AMAPE
4.85x10 '

1.OIXIO4

Considering the above factors, the method for choosing the optimum topology is:

=

identified,

Topologies with AMAPESs close to the lowest validation set AMAPE are first

2. Topologies which are more complex than the topology with the minimum

validation set AMAPE are eliminated,

3. A preference

difference between topologies is large, and

is shown towards simpler topologies,

especially if the

4. Additionally, the AMAPEs in the training set are used to indicate whether the

validation set AMAPEs are a random occurrence or are consistent with a

network which has generalised well.

As an example, the AMAPEs for NNo7e in the training and validation sets are

shown in Tables 5.22 and 5.23 below (extracted from Table 5.20).

Table 5.22 AMAPEs for NNO7t (Training set, best in bold italic font)

Number Layer 2: 1

ofNodes
Layer 1: 1  3.439

~No o wN

3.434
3.412
3.432
3.411
3.399
3.436

2

3.436
3.407
3.409
3.439
3.412
3.408
3.474

3

3.436
3.429
3.440
3.379
3.401
3.405
3.493

4

3.545
3.403
3.389
3.394
3.385
3.440
3.460

5

3.442
3.424
3.402
3.399
3.426
3.383
3.419

6

3.441
3.435
3.405
3.441
3.361
3.341
3.340

Table 5.23 AMAPEs for NNB6 (Validation set, best in bold italic font)

Number Layer 2: 1

ofNodes
Layer 1 1 2.9320

~No o wN

2.9192
2.9117
2.9227
2.9199
2.9173
2.9083

2

2.9213
2.9162
2.9075
2.9249
2.9041
2.8939
2.8879

3

2.9314
2.9147
2.9092
2.9306
2.9031
2.8921
2.8952
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4

2.9267
2.9187
2.8926
2.9419
2.9181
2.9050
2.9036

5

2.9331
2.9095
2.8953
2.9266
2.9172
2.9126
2.9148

6

2.9437
2.9343
2.9384
2.8979
2.9063
2.9043
2.9112

3.441
3.428
3.429
3.407
3.414
3.371
3.382

2.9266
2.9303
2.9039
2.9264
2.9231
2.9302
2.9109



The optimum topology is selected as follows:

1. As can be seen in Table 5.22, the minimum MAPE in the validation set is
2.88% using topology 7x2x1. Topologies 6x2x1, 6x3xl and 7x2x1 have
similar AMAPEs. These are indicated in bold in Tables 5.22 and 5.23,

2. There are other topologies with similar AMAPEs however they are more

complex than 7x2x1 and are thus eliminated,

3. It is noted that topology 3x4x1 is simpler than 7x2x1 and that the difference
between the validation set AMAPEs is only 0.0005%, and

4. The training set AMAPE for topology 3x4x1 is 0.016% better (a large figure
in the current context) than that for topology 7x2x1. Thus topology 3x4x1 is

chosen.

Table 5.24 below shows the topologies selected at the representative hours, for

each of the models trained for topology determination.

Table 5.24 Selected topologies refined for each mode) at different hours and day-tvpes.

Model Hour Day-type Topology MAPE MAPE
draining set) (validation set)

N N 07.6 07 Late winter 3x4x1 3.408 2.8939
NNI3.6 13 Late winter 4 X7 X1 1.842 1.503
NNSo6 07 Late winter 2x3x1 2.369 2.060
NNSn.fi 13 Late winter 6x3x1 1.808 1.502
NNAR (7 6 07 Late winter 5x3x1 3.293 2.788
NNAR,3.6 13 Late winter 3x1x1 1.894 1.552
NNARSo7.fi 07 Late winter 3x4x1 2.216 1.983
NNARSN.6 13 Late winter 6x1x1 1.827 1.501
NNARTo7.6 07 Late winter 7x5x1 3.109 2.690
NNART13f 13 Late winter 3x6x1 1.844 1.517
NNARTM s 07 Summer 6x3x1 4.104 3.511
nnart35 13 Summer 6xIxI 1.583 1.417
NNARTSO7.fi 07 Late winter 6x3x1 2.182 1.861
NNARTSu 6 13 Late winter 5x7x1 1.800 1.477
NNARTSO75 07 Summer 6x6x1 2.734 2.424
NNARTS,3.s 13 Summer 5xIxI 1.573 1.401
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Model

NN
NN
NNS
NNS
NNAR
NNAR
NNARS
NNARS
NNART
NNART
NNART
NNART
NNARTS
NNARTS
NNARTS
NNARTS

5.7.4 Parameter Evaluation.

The model parameters are evaluated using the back-propagation algorithm as

discussed in Section 5.7.3.2.

5.7.5 Model Validation.

Table 5.24 shows 16 topologies calculated at representative hours for the six
types of non-linear parallel model (Table 5.19). The next step is to train neural
networks for all hours of all day-types (excluding Christmas as usual) using the

16 topologies listed in Table 5.24 and the appropriate model type.

Tables 5.25 and 5.26 shows the daily AMAPE achieved using the topologies
calculated in Section 5.7.3.3 (Table 5.24) for all day-types in the validation and
novelty sets respectively.
Table 5.25 Daily AMAPE (%) for each model using selected topologies (validation set, the
best model in each day-type is shown in bold italic font. Note: the scheduling variable is

only applicable to working days).
Early

Latt

E_arly Summer I_'ate winter S””"T‘er winter Egirly Summer
RO e S I workmg GO workng QL St
3x4x1 2.54 3.02 2.69 2.69 3.02 2.47 2.62 2.91
4x7x1 2.55 3.08 2.73 2.69 3.02 2.45 2.62 2.92
2x3xl1 - - - 2.00 2.31 2.00 - -
6x3x1 - - - 1.96 2.28 1.95 - -
5x3x1 2.53 3.01 2.50 2.60 2.98 2.44 2.58 2.91
3xIxl 2.51 2.98 2.49 2.61 2.99 2.44 2.60 2.90
3x4x1 - - - 1.97 2.37 1.92 - -
6X1X1 - - - 1.93 2.24 191 - -
7x5x1 2.47 3.05 2.35 2.62 2.99 2.42 2.62 2.95
3x6x1 2.51 3.07 2.41 2.62 2.99 2.45 2.61 2.98
6x3x1 2.41 3.03 2.32 2.59 2.97 2.43 2.52 2.90
6X1X1 241 2.99 2.33 2.61 2.99 241 2.53 2.91
6x3x1 - - - 1.92 2.29 1.89 - -
BX7x1 - - - 1.96 2.28 1.89 - -
6X6X1 - - - 1.95 2.23 1.90 - -
5x1x1 - - - 1.94 2.23 1.90 - -
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Model

NN
NN
NNS
NNS
NNAR
NNAR
NNARS
NNARS
NNART
NNART
NNART
NNART
NNARTS
NNARTS
NNARTS
NNARTS

Table 5.26 Daily AMAPE (%) for each model using selected topologies (Novelty set, the best
model in each day-type is shown in bold italic font. Note: the scheduling variable is only
applicable to working days).
Early Late

Topology vs?r:tlzr Summer Wl_iiizr Wintgr svuoTkr?negr wint.er vI\f;rtlgr g;urrmer
Sundays Sundays Sundays wz;l;lsng days Wg;';':g Saturdays oy
3xax1 2.73 3.19 2.75 2.31 2.99 2.69 2.19 2.71
4xx] 2.69 3.20 2.73 2.31 3.00 2.68 2.28 2.77
2x3x1 - - - 1.74 2.20 2.16 - -
6x3x1 - - - 1.72 2.18 2.10 - -
5x3x1 2.71 3.15 2.70 2.30 2.93 2.66 2.12 2.60
3xix1 2.57 3.13 2.66 2.25 2.95 2.63 2.17 2.62
3xax1 - - - 1.72 2.25 2.02 - -
6x1x1 - - - 1.71 2.09 2.01 - -
7x5x1 2.63 3.19 2.57 2.29 2.93 2.61 2.26 2.63
3x6x1 2.62 3.15 2.60 2.30 2.96 2.64 2.21 2.70
6x3x] 2.56 3.14 2.44 2.31 2.95 2.60 2.08 2.61
6X1x1 2.55 3.13 2.44 2.26 2.94 2.59 2.07 2.64
6x3x] - - - 1.70 2.15 1.98 - -
5x7x1 - - - 1.73 2.16 2.01 - -
6X6X1 - - - 1.72 2.09 1.99 - -
SxIx1 - - - 1.72 2.08 1.98 - -

The first thing to note is that the scheduling variable is applicable only to
working day-types. Thus there are no entries in the weekend day-types for the

NNS, NNARS and NNARTS models.

For the working day day-types, the scheduling variable is beneficial in all cases.
For example, the NNS models are superior to the NN models for late and early
winter working days (Table 5.25), the NNARS models are superior to the NNAR

models etc.

Figure 5.33 indicates the benefit of the scheduling variable at each hour of the
day (as opposed to daily averages in Table 5.25). There is little difference
between 10 hrs and 16 hrs. This implies that the scheduling variable is also of no

benefit during normal working hours of the day.

181

Late
winter

Saturdays
2.76
2.73

2.69
2.60

2.67
2.64
2.65
2.55



1 .
NN 3x4x1 (2.47%) — NNAH5x3*1 (2.44%) |

A r NNS 2x3x1 (2.00%) A e+ NNAPS3-4.1 M
! LAtflwi fll WOfttoQ days \ Lain W*mW wortong

§ A
“V . J‘\] 1 \/

s
<
-3

O 5 15 20 o 5 10 15 20
1 1 E
NNART 7x5x1 (2 42%) « % NNART 6x3x1 (2 29%)
NNARL1 S 6x6x1 (2 23%)
Voo, \ SumnxwwertdiHLdia t
M
A
s/~ '\ \
\ A \
~=A 5 \
Vv r
VeA
1
Hour of the day Hour of the day

Figure 5.33 The AMAPE for non-linear models with and without the scheduling variable
(Validation set, Models: differing types shown in legends).

For a given model type (NN, NNS etc.) the simpler topologies tend to give
superior results (Table 5.25). Figure 5.34 shows the AMAPE achieved by using
NNo7,6 with topologies 4x7x1 and 3x4x1 when applied to all hours of the day.
Topology 4x7x1 is superior at 13 hrs and 3x4x1 is superior at 07 hrs, as these
are the topologies optimised at these hours, respectively (Section 5.7.3.3, Table
5.24). However, there is not a consistent difference between their performances
at other hours of the day. The conclusion here is that the best topology for one
hour of the day is not an indicator of the best topology for other hours of the day.
A similar situation applies to the topologies calculated for the other models listed

in Table 5.25.
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Hour of the day

Figure 5.34 The AMAPE for topologies 3><4xl and 4x7x1 versus the hour of the day
(Validation set, Models: NNoo,sto NN236).

Comparing models with and without the AR inputs (e.g. NN and NNAR or NNS
and NNARS), shows that the AR variables are beneficial in most cases (Table
5.25). Similarly, the operating point inputs are beneficial in most cases except
summer Saturdays and Sundays (Table 5.25). This is a surprising result as the
operating point input was thought to be especially useful for predicting summer
loads (Section 4.2.2). The temperature-load relationship in summer is operating
point dependant but the correlation between temperature and load is low (Section
4.2.2). This low correlation may override the advantage of using an operating

point input for summer Saturdays and Sundays.

In summary, the analysis above proposes:

1. Simpler topologies are selected within each model type,

2. The scheduling variable is used (where applicable), but not at working hours

(i.e.10 hrs to 16 hrs) or during summer, and

3. The operating point input is beneficial except for summer Saturdaysand

summer Sundays.
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5.8 Comparison of Linear and Non-linear parallel models

Table 5.27, below, shows the daily MAPEs achieved by the PPMs and linear
parallel models in the novelty set. In addition the AMAPEs of the best non-linear
parallel models chosen in Section 5.7.5 (Table 5.26) are shown. As can be seen,
the parallel models are superior to the PPMs in all cases. The non-linear parallel
models also give better forecasts in all cases, although the gap is small in the case
of summer Sundays. It can therefore be concluded that there is a non-linear
relationship between the load and the inputs chosen, justifying the use of a non-
linear forecasting technique.

Table 5.27. Daily MAPEs for PPMs, Linear and non-linear parallel models (Christmas days
excluded, novelty set 1

MAPE MAPE Linear MAPE Non-

Day-type PPM's (%) Parallel Models linear Parallel

(%) Models (%)
1. Early winter Sundays 2.75 2.70 2.55
2. Summer Sundays 3.22 3.14 3.13
3. Late winter Sundays 2.78 2.75 2.44
4. Early winter working days 2.36 2.25 1.70
5. Summer working days 3.04 2.99 2.08
6. Late winter working days 2.94 2.55 1.98
7. Early winter Saturdays 2.19 2.20 2.08
8. Summer Saturdays 2.83 2.81 2.61
9. Late winter Saturdays 3.06 2.86 2.55

5.9 Conclusion.

The linear and non-linear parallel models were presented in this chapter. In
Section 5.3, a technique was presented to determine whether the parallel
approach was justified based on the data alone. From this analysis, there is some
evidence to support the view that some hours of the day have independent
components, thus justifying the parallel approach. However, this evidence is not
conclusive and requires comparison with a sequential approach for confirmation

(Chapter 6).

The preliminary parallel models were constructed in Section 5.4. These models
are based on the day-types identified in Chapter 4. However, in order to check
that the day-types determined in Chapter 4 are the optimum means of partitioning

the data, two other alternative partitions achieved through amalgamation were
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examined (Section 5.4.2.3). It was found that the day-type partitions are superior
in most cases, and significantly improved on partitioning the data by hour of the
day alone (alternative partition 1, Section 5.4.2.3). However, alternative partition
2 (partitioning the data as Saturdays, Sundays and working days and by hour of
the day) was found to give superior forecasts over the early winter periods. Thus,
the optimum partition of the data is a mix between the day-type partition and

alternative partition 2.

Section 5.4.2.2 examined two techniques for tuning the parameters in the PPMs,
PED and SSD. It was found that there were negligible differences between the
PPMs trained with both techniques. However, the main difference between SSD
and PED is that the parameters may be chosen explicitly with SSD, making this

technique more appealing in a practical sense.

Input selection was examined in Section 5.5. The first finding was that only up to
two days of past (pre-whitened) weather was significant in forecasting load
(Section 5.5.1). Four techniques were then examined for pre-processing, and
selecting which of these weather inputs should be used. It was found that the
techniques which used PCA (Methods 2, 3 and 4, Section 5.5.2) provided the
best results. PCA uses the colinearity between the weather inputs to produce
transformed inputs or components (Section 5.5.2.2). It can therefore be
concluded that reducing the colinearity in model inputs aids in the modelling
process. In addition, the techniques which order the components by variance
explained (Methods 2 and 3) were superior to Method 4 which ordered the
components via the T-ratio. The reason that variance explained is a good
indicator of which components are important in load forecasting is explained

below.

High frequency information in the original weather variables will tend to have a
low cross-correlation. For example, the high frequency information in the
temperature at 5 p.m. will be uncorrelated with the temperature at 4 p.m. (as this
information changes at a high frequency). The variance explained orders the
components by the amount of information in the original weather inputs that is

present in the components. Thus, high frequency information will appear in
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components ordered lower down the list. From the coherence plot in Section
2.3.3.2 (Figure 2.11) it can be seen that high frequency information in
temperature has a low correlation with high frequency information in load. Thus
there is a correspondence between the variance explained in each component and

the correlation of each component with the load.

Section 5.6 presented the linear parallel models. It was seen that these models
were superior to the PPMs and so it can be concluded that inclusion of external

variables can improve load forecasts.

Section 5.7 presented the non-linear parallel models. The inclusion of three types
of inputs, not present in the linear parallel models, was investigated: auto-
regressive inputs, temperature (note: not the pre-whitened temperature) and a
scheduling variable. The AR input was found to be beneficial in almost all cases
and was present in all the best models selected in Table 5.25. Thus, the presence
of a non-linear autoregressive component in Irish load (as suggested in Section
5.1) is confirmed. The inclusion of the other two inputs is dependent on the hour

of the day and day-type.

Finally Section 5.8 compares the results for the linear and non-linear parallel
models (Sections 5.6 and 5.7, respectively). It is found that the non-linear parallel
models are superior to the linear parallel models in all cases, justifying the use of

anon-linear technique in load forecasting.
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Chapter 6
Multi-Timescale Modelling for Short-Term Load

Forecasting

6.1Introduction

This chapter outlines and extends the application of the Multi-TimeScale (MTS)
technique used by Murray (1996, Section 3.3.4.2 and henceforth referred to as

the MTS technique for clarity) to the problem of short term load forecasting.

The MTS approach is based on combining parallel models with sequential
models, as discussed in Sections 3.2.2 and 3.3.4.2. The advantages of this
approach are discussed in Section 3.3.4.2. As discussed in Section 3.2.2, there is
no consensus in the literature regarding a choice between the parallel and
sequential approaches. Thus, another motivation for using this approach is to

draw a comparison with the parallel approach used in Chapter 5.

As pointed out by Murray (1996), the MTS technique may be applied in three

steps:

1. Develop a lower-timescale model or Sequential load forecasting Model (SM)

(Section 6.2),

2. Generate forecasts of the cardinal points and end-sum points (Section 6.3)

and

3. Combine the SM with the cardinal point and end-sum forecasts using the
MTS technique. The MTS technique requires choosing the freed states and
the appropriate weight matrices (see Section 3.3.4.2). The freed states are
chosen using a method proposed by Murray. Two new methods are proposed
here for determining the weight matrices; a numerical approach (Section

6.4.1) and a deterministic approach (Section 6.4.2).

187



As in Chapter 5, the late winter working day-type is again used as an indicator of
other day-types. Differences between the results for day-types will be mentioned

as appropriate.

Note: It is not practical to index the models in this chapter in the same manner as
the parallel models in Chapter 5. Specifically, the variables in the models used in
this chapter are indexed with the number of hours from the start of the data, k, as
opposed to indexing by hour i on day k as in the case of the parallel models
(Chapter 5). For example, the notation for the load is now >>/k), for the load k
hours form the start of the data for day-typej. In Chapter 5 the notation for the
load was yi,j{k), where i was the hour ofthe day,y was the day-type and k was the
kA day in partitioned seriesj. Note: that this is because the MTS approach only
disaggregates the load by day-type.

Finally; note that the load data used in this chapter is disaggregated by day-type,
but not by hour of the day.

188



6.2 The Sequential Model.

As a linear state space model structure is required for the SM (Section 3.3.4.2), a
BSM using a DPRW (Section 3.3.4.2) is selected. As explained in Section
3.323 a BSM s ideal for modelling short-term load. The BSM may be

expressed as:
y/k) = dj (k) +y/j(k) +£j(k) (6.1)

where dj{k) is the trend component, i//j(k) is the seasonal component and £/(k) is
the SM error (or residual, although error is used here to distinguish that the
residual will not be forecast as in the parallel models) k hours from the start of
the sequential time-series, for day-typej. Also, the SM for day-typej is referred
to as SM/.

As with the preliminary linear parallel model (also a BSM) in Section 4.1, the
trend component is modelled using an Integrated Random Walk (IRW) (Section
3.3.2.2), with the seasonal component modelled using a Differenced Periodic

Random Walk (DPRW) (Section 3.3.2.2) as:

dj (k) "1 o 0 . . 0. dj (k- 1) 0
dj (k) 0 1 o 0o . 0 dj(k-1) nd (k-\)
. Vi (k) co -1 -1 . -1 ¥jk-] % (k~ 1)
= 6.2
eI y/j(k-1) 00 1 0 . 0 Wij(k~ 2) ' 0 (6-2)
° ] ' * ° . O ° °
¥j(k-(24-2))_ 0 0O o o . ., . Yylik-(24-1)) 0

where 0{(k) is the state vector, dj(k) is the rate of change of the trend, k hours

from the start of the sequential time series for day-typej, and the other notation is
explained below. The seasonal length in this case is 24, since there are 24 hours

in each day. |Ijd (k) andJjjk) are white noise components with
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variancesaj andcrf ., respectively. In addition there is a measurement error

term efk) (Section 3.3.2.4) with a variance of a] .

Figure 6.1 below summarises the application of the BSM to the sequential model.

£ w. xi Q

Seasonal component

0]

Trend component

0]

Error

Figure 6.1 Overview of how the SM decomposes the load into seasonal and trend
components.

As with the other models presented in this thesis, the modelling process for the

SM may be split into four stages:

Input Selection and Pre-processing (Section 6.2.1),
Structure Determination (Section 6.2.2),

Parameter Evaluation (Section 6.2.3), and

Ea A

Model Validation (Section 6.2.4).

6.2.1 Input Selection and Pre-processing.

The SM is an Auto-Regressive (AR) model and has no external inputs.
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6.2.2 Structure Determination.

The structure of the SM is given by the state transition matrix in Equation (6.2),

above. This is a fixed structure and so no structure determination is required.

6.2.3 Parameter Evaluation.

As with the PPM (Section 5.4.2), the SM also uses a BSM. Again, the variances

of the noise components in the BSM, aj andcr® and o\ are the parameters that

must be determined. The SSD (Section 5.4.2.2) method is used and is

summarised below.

The initial values of the state vector are shown in Table 6.1, below.

Table 6.1. Initialisation values for the state vector with SSD.

State Value
d (0) y;0)
dj (0) 0

0

As in Section 5.4.2.2, azJ is set to one and a1l is set to zero, a] is again not
aj aj

calculated via the periodogram as suggested in Section 3.3.2.4, as it may easily
be specified as occurring at a frequency less than the yearly frequency. For
example, there are 1272 (53x24) load points per year in the late winter working
day day-type (i.e. for j = 6). The cut-off frequency,/o, (Section 3.3.2.4) lies at a

point lower than the corresponding yearly period. That is:

/so <1/1272 (6.3)

Taking fso to be half the yearly frequency and substituting this value into

Equation (3.54) gives:

a) =1605(1/(1272x2))4 = 3.83x10 1 (6.4)



The value of <j] may be calculated similarly for the other SMs (i.e. forj =

1,_,9), noting that the number of data points per year varies depending on the

day-type.

a] is free to vary in order to minimise the log likelihood function as in Section
J

5.4.2.2. Table 6.2 below shows the parameters calculated for SM6.

Table 6.2. Parameters of SM6(trained using SSD).

Parameter Value

< 1

< 0

< 3.83X10'11
< 6.61 x1O'6

6.2.4 Model Validation.

Figure 6.2 below shows the MAPE for each hour ofthe day made using a 1-hour
ahead forecast, i.e. the 4 a.m. forecasts were made at 3 a.m., the 10 p.m. forecasts
were made at 9 p.m. etc. The daily MAPE (i.e. the mean value of the graph in

Figure 6.2) is 2.92%.

Figure 6.2. The MAPE as a function of hour of the day for SM6. (1-hour ahead forecasts,
training set)
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Figure 6.3, below, shows the MAPE as a function of the hour of the day, for
forecasts again made 1-step ahead and also 10-steps ahead. As can be seen, the
forecast MAPEs are similar, but the 10-step ahead forecasts are slightly less
accurate due to propagation error (Section 3.2.2). The daily MAPEs for the 1 and
10-step ahead forecasts are 2.92% and 3.04%, respectively.

Hour of the day

Figure 6.3. The MAPE as a function of hour of the day for SM6. (1-hour and 10-hour ahead
forecasts, training set)

Figure 6.4 below shows how the daily MAPE changes, with the forecast horizon
from 1 to 24-steps ahead. As can be seen, the propagation error in this model
accumulates. The minimum occurs at 1-step ahead (2.92%) and the maximum

occurs at 24-steps ahead (3.19%).
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Forecast Horizon (Hours)

Figure 6.4. The MAPE as a function of forecast horizon for SM6. (training set)

Tables 6.3 (training set) and 6.4 (validation set) show the daily MAPEs achieved
for all day-types at four different forecast horizons. The daily MAPEs for each
SM are high compared to the performance of the PPMs (see Tables 5.8 and 5.9,
Section 5.4.2.3). For example, the daily MAPE achieved by the (best) PPMs for
the summer working days day-type is 3.05% (Table 5.8), compared with 4.65%
using the SM on the same day-type. The cause of this relatively bad performance
is discussed below.

Table 6.3. Mean absolute percentage daily errors of SMs at differing forecast horizons
(Training set).

Day-type Daily MAPE (%)

1-step 8-steps  16-steps  24-steps

ahead ahead ahead ahead
Early winter Sundays 4.75 5.54 5.07 5.33
Summer Sundays 7.30 7.29 7.29 7.27
Late winter Sundays 5.89 6.72 5.54 5.25
Early winter working days 3.66 391 3.99 411
Summer working days 4.40 4.40 4.40 4.46
Late winter working days 2.92 3.02 3.10 3.19
Early winter Saturdays 3.63 4.22 4.19 4.63
Summer Saturdays 3.82 391 3.96 412
Late winter Saturdays 3.48 3.86 381 4.25
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Table 6.4. Mean absolute percentage daily errors of SMs at differing forecast horizons
(Validation set).

Day-type Daily MAPE (%)

1-step 8-steps  16-steps  24-steps

ahead ahead ahead ahead
Early winter Sundays 4.73 5.18 431 5.17
Summer Sundays 5.35 5.38 5.39 5.74
Late winter Sundays 5.24 6.00 4.66 4.82
Early winter working days 3.99 4.33 4.30 4.36
Summer working days 4.58 4.66 4.59 4.65
Late winter working days 3.37 3.56 3.64 3.75
Early winter Saturdays 4.02 5.12 5.00 5.03
Summer Saturdays 3.73 4.37 401 3.97
Late winter Saturdays 3.38 321 3.28 3.88

Figure 6.5, below, shows a plot of six days of load taken from the late winter
working days day-type. The six days shown are Wednesday, Thursday, Friday,
(Saturday and Sunday are not working days) Monday, Tuesday and Wednesday.
As can be seen, there is a shift in the level of the load in the centre of the plot
caused by the removal of Saturday and Sunday during construction of the late

winter working days series (Section 5.2).

Day

Figure 6.5. Loads in the late winter working day day-type from 03/02/1999 to 10/02/1999
(Note: Day 3 = Friday, Day 4 = Monday)

The SM attempts to model the load as atrend and seasonal component (Equation
6.1). As already stated (Section 3.3.2.4), the trend component acts as a low pass-

filter and so is unable to adjust to the shift (which occurs at a single point and is
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thus at a high frequency). Therefore, the shift must be accounted for by the
seasonal component. However, the seasonal component requires the expected
sum of the load (minus the trend) over the season (24-hours) to be zero (Equation
3.58, Section 3.3.2.2). As the shift violates this condition, it introduces a large
error into the seasonal component forecast. It should be noted that this effect is
more pronounced with weekend day-types, as they have a shift after every day. It
was also found that the MTS model using these SMs performed badly compared
to the parallel models. Thus a different approach is required, in which the trend

component accounts for the shift.

The seasonal component, as stated above, requires the expected sum of the load
(minus the trend) over the season to be zero. The solution proposed here is to
remove the (forecasted) average value of the load for each day from each day.
That is, the trend component is now modelled as fixed over the duration of a day
i.e. as a daily trend. As the change in the trend component over the course of a
day is negligible, this approximation may be justified. The remaining load is then
zero-mean as required and may be modelled as a seasonal process. Figure 6.6
below, contrasts this approach with the previous one. This approach is called the

Adjusted Sequential Model (ASM).
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*
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Figure 6.6 Comparison of the SM and Adjusted SM approach (trend component
exaggerated for clarity).

In order to model the average load per day, a series is constructed by taking the
average value of each day. This series has one point per day and thus has similar
characteristics to a partitioned series (which is composed of loads from one hour
per day). Thus the average load is modelled using a model similar to a PPM
(Section 5.4). This model will be referred to as a Trend Model (TM), and TM/

will be used to denote the trend model for day-typej.

The trend model forecasts are then removed from the actual load leaving a
seasonal component (see Figure 6.6 above). This seasonal component is then
forecast using a DPRW (Section 3.3.2.2) as before. Figure 6.7, below, again
contrasts the SM and ASM approach, but from a model building perspective. It
should be noted that the SM models the trend and seasonal component jointly,

while the ASM models the trend and seasonal component separately.
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Figure 6.7 Comparison of the SM and Adjusted SM approach from a model building
perspective (trend component exaggerated for clarity).

Table 6.5 shows the parameters calculated for ASM6 (i.e. the late-winter working
day day-types model). Comparing Tables 6.2, above, and 6.5 below it can be
seen that the parameters calculated for the ASM and SM models differ greatly.

<j]6 for the SM has a far smaller value than that of the ASM. However, as the
trends in both models are calculated differently (Figure 6.7), they cannot be
directly compared. In contrast, the seasonal component in both models is trying
to forecast the same component of the load (Figure 6.6). Comparing ov for both
models shows that the ASM has a seasonal component with a greater variance
than the SM; 1.33x10'2 and 6.61><10~6, respectively. Thus the SM reacts to a

change in the seasonal component far slower than the ASM. This may be caused

by the effect of the shift in the load between weeks (Figure 6.5) for the SM.

Table 6.5. Parameters of ASM6using SSD.

Parameter Value

< 1

< 0

< 1.25x105
< 0.0133
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Figure 6.8, below shows the daily MAPE as a function of forecast horizon for

ASMS6. In contrast to SM6 (Figure 6.3) the MAPE remains relatively constant

despite the increase in forecast horizon.

Forecast Horizon (Hours)

Figure 6.8. The MAPE as a function of forecast horizon for ASM6 (training set)

Tables 6.6 and 6.7, below, show the daily MAPE achieved at four different
forecast horizons for all the day-types in the training and validation sets.
Comparing these results with those for the SMs (Tables 6.3 and 6.4) it can be
seen that the daily MAPEs for the ASMs are lower. They are also broadly in line

with the results for the PPMs used in the parallel models (Tables 5.6 and 5.7,
Section 5.4.2.3).
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Table 6.6. Mean absolute percentage daily errors of ASMs at differing forecast horizons
(Training set).

Day-type Daily MAPE (%)

1-step 8-steps  16-steps  24-steps

ahead ahead ahead ahead
Early winter Sundays 4.15 4.15 4.15 4.15
Summer Sundays 4.70 4.63 4.63 4.61
Late winter Sundays 3.65 3.65 3.65 3.65
Early winter working days 3.18 3.04 3.04 3.03
Summer working days 3.14 2.93 2.93 2.94
Late winter working days 3.04 2.97 2.97 2.97
Early winter Saturdays 3.67 3.67 3.67 3.67
Summer Saturdays 3.07 3.02 3.02 2.99
Late winter Saturdays 3.14 3.05 3.05 3.05

Table 6.7. Mean absolute percentage daily errors of ASMs at differing forecast horizons
(Validation set).

Day-type Daily MAPE (%)

1-step 8-steps  16-steps  24-steps

ahead ahead ahead ahead
Early winter Sundays 4.20 4.20 4.20 4.20
Summer Sundays 3.57 3.48 3.49 3.45
Late winter Sundays 3.70 3.70 371 3.70
Early winter working days 3.18 3.03 3.03 3.02
Summer working days 3.07 2.85 2.85 2.88
Late winter working days 2.95 2.89 2.89 2.90
Early winter Saturdays 4.06 4.06 4.07 4.06
Summer Saturdays 3.04 2.98 2.98 2.94
Late winter Saturdays 2.87 2.75 2.75 2.75
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Topology
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6.3 The Cardinal Point and End-Sum Models.

The cardinal point models generate forecasts for the load at specific hours of the
day. The end-point model generates forecasts for the load at the end-point which
is the last hour of the day. The parallel models generate forecasts at specific
hours of the day and so these are used as the cardinal and end-point models. The
specific parallel models used are the non-linear models selected in Section 5.7.5
and presented in Table 5.25 which are summarised below (Table 6.8).

Table 6.8 Daily AMAPE (%) for non-linear parallel models using selected topologies
(validation set).

Early Late
\/Eﬁ]rtlgr Summer Wl_iﬁ?;r winter a/uoTaneg]r winter vl\f;rtlgr Summer Late
Sundays working working Saturday»
Sundays Sundays days days days Saturdays
NNART NNAR NNART NNARTS NNARTS  NNARTS NNART NNART
6X1X1 3xIx] 6x3x1 6x3x1 5xIx] 6x3x1 6x3x1 6x3x1
2.41 2.98 2.32 1.92 2.23 1.89 2.52 2.90

The end-sum model forecasts the sum of the load over the period of a day. The
first part of constructing this model was to form a series made up of the daily
sums. This series was then modelled in a manner similar to the partitioned series.
That is; a preliminary linear model is first used to remove the trend and seasonal
component, and then the residual is modelled using a neural network. The
preliminary linear model has been described in Section 6.2 and is in fact the
trend model (TM). This is because the sum of the load over the period of a day is

simply the average load for that day multiplied by twenty-four.

Table 6.9 below summarises the end-sum model performance, type and topology
used for each of the day-types. It should be noted that the AMAPEs for the end-
sum models are lower than for the parallel models as it is easier to forecast the

sum of load over a day rather than at particular hours.

Table 6.9 AMAPE (%) for non-linear end-sum models using selected topologies (validation

winter
Saturdays

NNART

6X1X1

2.28

set).
Early Late
E_arly Summer L_ate winter Summer winter Egrly Summer I:atc
winter Sundays winter working working working winter Saturdays Wwinter
Sundays Sundays days days days Saturdays Saturday»
Model NNART NNAR NNART NNARTS NNARTS  NNARTS NNART NNART NNART
Topology 3xIxI 2xIxl 2X2X1 2X1X1 2X2X1 2x3x1 2x3x1 3x3x1 2X2X1
AMAPE 1.95 2.17 1.67 1.25 1.43 1.45 2.61 2.01 1.81
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6.4The Multi-Timescale Model.

The sequential model (Section 6.2), cardinal point, end-point and end-sum
forecasts are now combined by using the MTS technique (Section 3.3.4).

Specifically, the following are combined:

» Sequential model forecasts from a forecast horizon of 1 to N (see Section
3.3.4.2), where N = 72, i.e. a three day ahead SM forecast. Note: the

adjusted SM forecasts (Section 6.2.4) are used in this section,

» Cardinal point forecasts at the hours of 5 a.m., 1 p.m., 2 p.m., 6 p.m. and 11
p.m. for one day ahead only. These hours are chosen as they have been

identified by Eirgrid as the most important hours ofthe day (Murray, 2000),

» End-sum forecasts for the first, second and third day ahead.

The first state in the SM is fixed and the other states are allowed to vary in the
MTS technique in order to combine the forecasts above. It was found by Murray,
(1996) that fixing the first state (the trend component, see Equation 6.2) and
freeing the other states in a DPRW (as is used in the SM here) gave the best

results.

In addition, all of the forecast origins are chosen to be at 12 a.m. (00:00 hrs) as
this is the first hour of each day. The parameters of the multi-time scale model

are summarised in Table 6.10 below.

Table 6.10 Parameters for the MTS model (see Section 3.3.4.2 for definitions).
Variable Values/Dimension Description

n 25 Dimension of the state vector Q(k)

r 24 Number of freed states of s{k)

N 72 Number of points used in the smoothing constraint

M 5 Number of cardinal point forecasts used.

P 3 Number of end-sum forecasts used.

q [5 13 14 18 23] The _distanc_e from the forecasting origin to the iw

cardinal point.

S 24 Length of the summations for end-sum model.
1x80 Weight vector.

w 80x80 Diagonal weight matrix.
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The weight matrix, W, must now be determined. This is examined in Sections

6.4.1 and 6.4.2.
6.4.1 Weight determination: A numerical approach

The diagonal elements of the weight matrix, w-, may be expressed in terms of the
weights applied to the five cardinal point deviations, wj,..., W, three end-sum

deviations, w”,..., and 72 sequential model deviations, wy,.. Wso, as:

diag(W) =[w, e ws wes W7 Ws Wy mE w3 W33 e Ws Ws7 e W8] (6.5)

\ ' V ,\'I \vl \vl "
Cardinal points End-SumSMdaylSMday2¢

where ‘SM day 1’ refers to the SM deviations from the MTS forecasts for day 1,
etc. In order to reduce the dimension of the weight matrix above, it is assumed
that the weights applied to the sequential model deviations are the same for each
day:

MO mm WB=[WRB e WH=[We o= wWAJ (6.6)

Three types of technique are now examined for determining the weight matrix:
1. A random approach (Section 6.4.1.1), where wi,...,W32 are assigned
randomly, with no regard to the differing accuracies of the models. This is

included to demonstrate the importance of calculating the weights properly,

2. Weight profiles (Section 6.4.1.2). Murray (2000) suggests the use of profiles

based on experience, and

3. An optimised weight matrix (Section 6.4.1.3), calculated by use of a non-

linear search routine.
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6.4.1.1 Random Weight Selection.
Three random weight matrices are constructed using a uniform pseudo-random

number generator. These weights are shown below in Figure 6.9.

Cardinal End-sum

Weight
Figure 6.9. A plot of the diagonal of the three random weight matrices (Note: elements 33
to 56 and 57 to 80 are the same as elements 9 to 32 and so are not shown (see Equation 6.6)).

6.4.1.2 Weight Profile Selection.

The weight profiles constructed by Murray (1996) were developed from

empirical evidence. They are constructed using the following procedure:

* The weights applied to the cardinal point and end-sum deviations are given

values of 100,

* The weights applied to the first sequential model deviation, w% are given
values approximately 1/10th of the weight applied to the cardinal and end-
sum deviations. This recognises that the end-sum and cardinal point forecasts

have a greater accuracy than the sequential model forecasts,

* Weights wio to ws2 may then be constructed using three different approaches,

resulting in three different profiles:
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1. SM deviations closer to the forecasting origin are penalised more,
allowing the MTS forecast more freedom to meet the cardinal and end-
sum forecasts away from the forecasting origin. This is achieved by

decrementing the weights by a constant amount:

wi=wg-(i-9)— i=10,...,32 (6.7)

2. Alternatively, the SM deviations closer to the end of the day are given a
greater weight (for example, Wa2 is the weight applied to the SM deviation
for 23:00 hrs and is given a greater weight than w% which is at the
forecasting origin). This is achieved by incrementing the weights by a

constant amount:

Wi=w9+ (i-9)- i —10,...,32 (6.8)

3. SM deviations close to the forecasting origin and the end of the day are
given equal weights, so as to obtain more agreement (between the SM
and MTS forecasts) at both the forecasting origin and at the boundaries
between the days. The intervening weights are then assigned lower values
using a quadratic curve as:

w, =0.38i2-1.55/+20.89 i=9,..,32 (6.9)

* Weights W3 to wgo are again constructed by repeating weights Ws to W2 (see

Equation 6 .6).

These three profiles are shown below in Figure 6.10.
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Figure 6.10. A plot of the diagonal of the three profile weight matrices (Note: elements 33
to 56 and 57 to 80 are the same as elements 9 to 32 and so are not shown).

6.4.1.3 Optimised Weight Selection.

Given a particular weight matrix (and the various components required for the
MTS technique, which are described in Section 6.4), the MTS technique may be
used to produce load forecasts. The load forecasts that are produced over the
validation set may then be compared to the actual load, to give a MAPE over the
validation set. By allowing elements wi,...,ws2 of the weight matrix to vary
(elements wss,...,wgo are again calculated using equation (6.6)), a cost function,

J, may be constructed as:

. "
Jiw,..wz)=2 (0 17 C O 110 (6.10)

H v«
wherey(k) is the load at time k, ynts(k) is the MTS load forecast at time k and K is
the number of points in the validation set. The optimised weight selection
technique consists of optimising Equation (6.10) via a non-linear optimisation
routine. The routine used is the FMINSEARCH algorithm in Matlab which uses
the Nelder Mead direct search algorithm (Box et. al., 1969).
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To start the optimisation, w\,...,w2 are initialised randomly using the same
technique used in Section 6.4.1.2. The optimisation routine is stopped after five
thousand iterations. To help avoid local minima or at least find a good local
minimum, the optimisation is carried out using three different initial conditions.
Finally, unlike in Sections 6.4.1.2 and 6.4.1.3, different weight matrices are

optimised for each day-type (i.e. 9x3 optimisations).

Figure 6.11, below, shows three optimised weight matrices for the late winter
day-type. The optimised values are quite similar, though there are some

important differences.

Cardinal End-sum Sequential model

Weight

Figure 6.11. A plot of the diagonal of the three optimised weight matrices (Note: elements
33 to 56 and 57 to 80 are the same as elements 9 to 32 and so are not shown).

The amplitudes of the weights applied to the cardinal and end-point deviations
are approximately 10 times larger than those applied to the SM deviations
(Figure 6.11, above). This is in agreement with the weight profiles (Section
6.4.1.2). However, some of the weights have much lower amplitudes. For
example, the first optimised weight matrix has a value of 0.5 for Ws; the weight
applied to the s p.m. cardinal point deviation. The second optimised weight
matrix has a value of 1.75 for Ws; the weight applied to the 11 p.m. cardinal point

deviation. From experience it has been found that applying a large weight to W
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requires a low weight to be applied to W5, in order to reach a good minimum in

Equation (6.10) and vice versa.

In the third optimised weight matrix, the value for Wes (the weight applied to the
5 p.m. SM deviation) has a lower value than the other SM deviation weights,
implying that the SM forecast for 5 p.m. may have a lower accuracy than the
other SM forecasts. The cause of these low weights will be further examined in

Section 6.5.

Although the optimised weight matrices are similar, the differences between
them imply that local minimums have been found to Equation (6.10), and that the

weights are dependent on the initial conditions.

6.4.1.4 Results and Analysis.

Figure 6.12 below, shows the MAPE as a function of the hour of the day using
the SM and the MTS technique, with the three random weight matrices (Section
6.4.1.1) over the novelty set (late winter day-type). As can be seen, the MTS
forecast MAPEs are better than the SM model forecast MAPEs at some hours but

the results are inconsistent.

Figure 6.12. MAPE as a function of the hour of the day for the SM and the MTS technique
with three random weight matrices (late winter working days, novelty set).
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In addition, the accuracy of the forecasts made using the random weight matrices
at some hours are very poor (for example, at 13 hrs for random weight matrix 1,

and at 20 hrs for random matrix 2, in Figure 6.12).

The cardinal point forecasts and end-sum forecasts are superior to the SM
forecasts. Yet, the forecasts produced by combining the SM, cardinal point and
end-sum forecasts (via the MTS technique) using the first random weight matrix
(2.93%) are inferior to the SM forecasts (2.79%). This shows that if the weights
in the MTS technique are not estimated correctly, the technique may result in

very poor forecasts.

Figure 6.13, next page, shows the MAPE as a function of the hour of the day,
using the SM and the MTS technique, with the three profile weight matrices
(Section 6.4.1.2) over the novelty set (late winter day-type). The MTS MAPEs
are superior to the SM MAPEs at most hours of the day and the daily MAPEs for
the profiles (2.30%, 2.52% and 2.36%) are significantly better than the SM daily
MAPE. Thus the use of weight profiles in the MTS technique can generally be

said to provide increased accuracy.

Figure 6.13. MAPE as a function of the hour of the day using three weight profiles (late
winter working days, novelty set).
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As can be seen, Profile 1 and Profile 3 result in superior forecasts to Profile 2 at
00:00 hrs (Figure 6.13). 00:00 hrs is the forecasting origin and the weights given
to the SM deviations at the forecasting origin are given greater weights in Profile
1 and Profile 3, than in Profile 2. Conversely, Profiles 2 and 3 result in superior
forecasts to Profile 1at 23:00 hrs (Figure 6.13). This is because the weight given

to the SM forecast at this point has a greater weight in Profiles 2 and 3.

At the cardinal points (05:00 hrs, 13:00 hrs, 14:00 hrs, 18:00 hrs and 23:00 hrs)
the MTS forecasts are all significantly better than the SM forecasts. However at
the other hours, the results are mixed. This implies that the weight profiles may
be weighting the cardinal point deviations too heavily, at the expense of the

forecasts at other hours of the day (Figure 6.13).

Figure 6.14, below shows the MAPE as a function of the hour of the day, using
the SM and the MTS technique with the three optimised weight matrices (Section
6.4.1.3) over the novelty set (late winter day-type). As can be seen, the optimised
weight matrices lead to similar MAPEs for each hour of the day and are
significantly better at all hours than the SM forecasts. The first and third
optimised weight matrices have very similar performance. The second optimised
weight matrix leads to poorer results and the optimisation procedure in this case

may have found a poor local minimum.
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Hour ofthe day

Figure 6.14. MAPE as a function of the hour of the day using three optimised weight
matrices (Late winter working days, Novelty set).

Tables 6.11 and 6.12, below, summarise the MTS forecast daily MAPEs
produced over all day-types using the weight matrices defined in Sections 6.4.1.1
to 6.4.1.3. The first thing of note is that the optimised weight matrices give
superior results, in almost all cases, to both the weight profiles and random
weight matrices. However, there are some exceptions; for example, weight
profile 3 gives the best results in the validation set during late winter Saturdays
(Table 6.11). This result may just be a random occurrence as it does not carry

over to the novelty set (Table 6.12).
The random weight matrices in many cases give inferior results when compared

to the SM. Thus, the MTS technique requires appropriate estimation of weight

matrices in order to improve on SM forecasts (as noted in earlier in this section).
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Table 6.11 Daily MAPEs for the SM and the MTS model using different types of weight
matrix (Validation set).

Early Late
Early Late B Summer - Early
. : . . S
Weight type winter gﬂ:drz eSr winter sz'rnktiir working szlrnktienr winter Sal:LT'Lnaers
Sundays y Sundays days 9 days days Y Saturdays y

Random 1. 5.15 4.27 441 3.12 2.76 2.75 5.14 4.43
Random 2. 5.25 4.02 431 2.86 2.82 2.29 4.98 431
Random 3. 5.02 4.15 4.12 2.95 2.69 2.39 4.64 4.07

Profile 1 481 3.69 3.96 2.53 2.46 2.39 4.47 4.04
Profile 2. 4.77 3.77 3.79 2.34 2.35 2.08 4.56 3.85
Profile 3. 4.86 3.74 3.82 2.42 2.53 2.24 4.62 3.95

Optimised 1 3.86 3.32 3.22 2.23 2.13 2.08 3.78 2.79
Optimised 2 3.84 3.34 3.21 2.23 2.24 2.15 3.69 2.85
Optimised 3 3.85 3.32 3.24 2.25 2.14 2.09 3.80 2.81
SM 4.20 3.49 3.70 3.04 2.88 2.90 4.06 2.98

Table 6.12 Daily MAPEs for the SM and the MTS model using different types of weight
matrix (Novelty set).
Early Late

Early Late . Summer - Early
- - Summer p winter : winter - Summer
Weight type winter winter - working - winter
Sundays working working Saturdays
Sundays Sundays days days days Saturdays
Random 1 5.12 4.23 4.36 2.64 2.55 2.93 5.01 3.74

Random 2. 5.23 3.98 4.23 2.56 2.58 2.46 4.87 3.89
Random 3. 5.04 4.12 4.10 2.76 2.46 2.62 4.55 3.67

Profile 1 4.83 3.67 3.97 2.14 2.23 2.36 4.36 3.42
Profile 2. 4.75 3.76 3.78 2.12 2.13 2.52 4.45 3.24
Profile 3. 4.87 3.73 3.85 2.22 2.19 2.30 4.62 3.95

Optimised 1 4.03 3.10 3.27 1.85 1.93 2.01 3.64 2.15
Optimised 2 4.01 3.13 3.27 1.85 1.98 2.19 3.60 2.16
Optimised 3 4.01 3.10 3.29 1.87 1.95 2.01 3.63 2.15
SM 4.23 3.46 3.59 2.67 2.63 2.79 4.19 2.36

6.4.2 Weight determination: A deterministic approach

The following derivation seeks to find an analytic solution for the weight vector
in the MTS technique. The aim is to minimise (in some sense) the error between
the MTS forecasts of load and the actual load. However, this aim is in conflict
with the MTS technique which minimises the deviations between the MTS
forecast and the SM, PM and end-sum forecasts. The reason for this conflict is
shown diagrammatically in Figure 6.15 below, which shows a plot of a MTS
forecast, a SM forecast and the actual load (note: the end-sum, and PM forecasts

are excluded for clarity). As can be seen from Figure 6.15; if the deviation of the
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MTS forecast from the SM forecast at &+40, ;40 (see Section 3.3.4.2), is forced to
zero (i.e. the MTS forecast at this point is forced to be equal to the SM forecast),
then the forecast error at this point, say £40 ( note: £45 is shown in Figure 6.15 for
clarity), will be non-zero. Alternatively if £40 is forced to zero (i.e. the MTS load
forecast at this point is forced to be equal to the actual load), then the deviation

will be non-zero and hence the conflict.

Figure 6.15 Diagram showing the conflict between minimising <¢and e, together.

The final aim of all forecasting models is to minimise the forecasting error in
some sense. The MTS technique is based on the assumption that by maintaining
the shape of the SM forecast with adjustments from the PM and end-sum models,
the forecasting error will be reduced. In this sense the MTS technique is similar
to a regularising term (see Haykin, 1999); i.e. a term added to the cost function
which places a penalty on some geometric quality of the model, so as to aid its
ability to generalise. The approach presented below constructs an error cost
function based on the standard sum of squared errors plus a régularisation term

based on the MTS technique.

Define a vector w as the diagonal of the weight matrix, W, as:

W,

W
w = =diagiW) (6.11)

WN+M+P
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where N is the number of points used in the smoothing constraint, M is number
of cardinal point forecasts used, P is the number of end-sum forecasts used and
Wi is the ithelement of w. The aim of this derivation is to find the optimal value of

W.

Define a vector, y , of actual loads in the training set as:
y=Iy{M) y(2) - yK)} (6.12)

where K is the number of points in the training set and y(k) is the load at time k.

In addition, define a vector of forecasts made by the eventual model, Vo 8

£,=y.JV y,JV - («13)
where ynis(k) is a one-step ahead forecast for time k. A standard sum of squared

errors cost function may now be defined as:

. / w - k - i (614)
where J(w) is the sum of squared forecast errors (Note: this is not the only cost
function that could be used). Note thatJ is a function of w, which is the unknown
parameter. However, it is desired to maintain the shape of the forecast by use of
the MTS technique, i.e. Equation (6.14) is constrained by Equation (3.79)
(Section 3.3.4.2) evaluated atk =1,.. .,K:

02(Lw)-(btWB)~X8 t WA(L)

cy= ©1@W)-{BIWDIBIWAR) (6.15)

Q\(K, w)- (BrwB)~IB tWA(K)_

where C(w) is the constraint, 0\(k,h>) is the vector of freed states which is now

indexed by k to show that the altered state vector changes as a function of time
and is also a function of the weight vector, w. W is a diagonal weight matrix, B
and A(k) are matrices as defined in Section 3.3.4.2 and A(Kk) is also now indexed
by k as it is different at each k. Thus Equation (6.14) is to be solved subject to the

constraint in Equation (6.15). This problem may be classified as constrained
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optimisation and may be solved with the use of Lagrange multipliers (Apostol,

1974).

Given a cost function J(w) and an equality constraint C(w) the objective is to find
a value wg of w (Apostol, 1974) such that:

w{ =argminJ(w’) (6.16)
{tv-C(M>)=0}

The Langrangian may be defined as:
G(w,A) =J(w)-C(w)A (6.17)

where G(w,A) is the Langrangian and vl is a column vector of Lagrange
multipliers, A= [A\ fa . It is well known that under regularity conditions,
wo in Equation (6.16) can be equivalently solved as the solution (Apostol, 1974)
to the following extremal problem:
(w0,Ao0)=argminargmax G(w, A) (6.18)
w A
Taking the partial derivatives of Equation (6.18) with respect to w and A and

setting equal to zero gives:

BG(w,A) _dJ(w) dC(w)A=Q (6" 9)
and
A 02‘ =C(w)=0 (6.20)
Defining:
(6.21,
dw \Y

and substituting into Equation (6.19) gives:

ANCD /1 =0 (6.22)
dw

In solving Equations(6.20) and(6.22) one could eliminate wandthen solve for
A or eliminateA and thensolve for w. If Q is of fullrank then the easiest

approach is to eliminate A and then solve for w.

215



Pre-multiplying Equation (6.22) by QTgives (Apostol, 1974):

(6.23)
dw

As the determinant of £2QT” 0 Equation (6.23) can be solved for A as:

A=(QTnYnTA ~ - (6.24)
dw
Substituting back into Equation (6.23) gives (Apostol, 1974):
(/-Q (a7i2)"Qr) ~ ~ =0 (6.25)
dw

The matrix Q(i2rQ) 'E}r has well known properties and is idempotent (Apostol,

1974) i.e.:

(6.26)
In addition, the rank of C*Q7*) is the same as the rank of Q. If £2is of full
rank then there is a unique solution for to = w using Equations (6.26) and

(6.20) (Apostol, 1974).

Returning to the MTS problem considered here, the first thing to consider is
whether £2 is of full rank. Examining Equation (6.21) it can be seen that Q is of
full rank if each of the partial differentials of C(w) with respect to w are
independent. The only term in C(w) (Equation 6.15) that differs between the
rows of C(w) is A(k), k=\,...JC. Thus we require that:

A(KMAG) kj = 1. Tand kA j (6.27)

otherwise one row will be equal to another and C(w) will not be full rank. A(k) is
a function of the SM states, cardinal point forecasts and end-sum forecasts (see
Equations 3.77 and 3.78). Thus it is likely that Equation (6.27) holds', as the SM
states, the cardinal point forecasts and the end-sum forecasts vary over time (due
among other things to a rising trend in load). Thus a unique minimum of w

probably exists.
The gradient of Equation (6.15) with respect to w now needs to be calculated.

However, the mathematics soon became intractable and a closed form solution

could not be found (details are given in Appendix B). Another solution would be
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to solve Equations (6.25) and Equation (6.20) numerically. Details of this
approach can be found in Apostol (1974).

6.5 A Comparison of Parallel and Multi-Timescale Models.

Figure 6.16 below, shows the MAPE as a function of the hour of the day for the
SM, PMs and MTS model during the late winter working day day-type (novelty
set). As can be seen, the MTS model and PMs perform significantly better than
the SM at all hours. In addition, the MTS’ and PM’s performance is similar at
most hours of the day. The MTS model gives better results over the hours of 09
hrs to 14 hrs. It is interesting to note that within these hours, there are two
cardinal points (1 p.m. and 2 p.m.). Conversely, the MTS forecasts at 17 hrs (5
p.m.) are significantly inferior to the PM forecasts, despite the presence of a

cardinal point at 18 hrs (6 p.m.).

Figure 6.16. MAPE as a function of the hour of the day using for the SM, PMs and MTS
model (optimised weight matrix 3, late winter working days, novelty set).

Figures 6.17, below, features the same graphs as Figure 6.16, above, except that
the data used is the summer working day day-type (novelty set). As can be seen,
the MTS and PMs forecasts again have similar accuracy at most hours of the day.
However, it can be seen that at 5 p.m. and 6 p.m., the MTS forecasts are again

inferior to the PM forecasts. In addition, the forecasts of load at 8 p.m. for the
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summer working days, using the MTS model, are significantly inferior to those

of the PMs.

Figure 6.17. MAPE as a function of the hour of the day using for the SM, PMs and MTS
model (optimised weight matrix 1, Summer working days, novelty set).

Figures 6.18, below, features the same graphs as Figure 6.17 above, except that

the data used is the early winter working day day-type (novelty set). Again it can
be seen that at 5 p.m. and 6 p.m. the MTS forecasts are inferior to the PM

forecasts. In addition, the MTS forecasts of load at 7 p.m. are significantly

inferior to those ofthe PMs.

OIN E

0%~ 5 10 15 20
Hour of the day

Figure 6.18. MAPE as a function of the hour of the day using for the SM, PMs and MTS
model (optimised weight matrix 1, early winter working days, novelty set).

218



In Section 5.3 the partitioned series were examined for independence and it was
found that at the hours of 8 a.m. and 5to 8 p.m., the load may have independent
components. This implied that a parallel approach would be superior to a
sequential approach at these hours (see Section 3.2.2). The MTS model, which is
a mix of parallel and SMs, performs well compared to the PMs at all hours
except between 5 p.m. and 8 p.m. as seen above. Thus there is more evidence to
support the view that the load at these hours may have independent components.
However, there appeared to be no significant differences between the MTS and
PM performance at 8 a.m. and so the presence of an independent component at

this hour ofthe day is questionable.

Tables 6.13 and 6.14 below, summarise the performance of the SMs, PMs and
MTS models in all day-types. The MTS models used the three optimised weight

matrices and the average of the MAPE is taken.

As can be seen, the MTS technique does not perform well for some weekend
day-types compared to the PM forecasts (specifically in the early winter
Sundays, late winter Sundays and early winter Saturday day-types). This is
because the MTS technique attempts to maintain the shape of the SM forecast up
to three days into the future (Section 6.4). However, as discussed in Section
6.2.4, there is a ‘shift’ in the load after every day in the weekend day-types. The
MTS forecasts do not have this shift and so have the same problem encountered
with the sequential models in Section 6.2.4. In the case of the SM, the state

vector, o{k), could be changed to account for the ‘shift’ in the load by
estimating the trend and seasonal states separately (Section 6.2.4). However, the
MTS technique estimates an altered state vector, 0*(k) (see Section 3.3.4.2), via

a weighted least squares solution and so estimating the trend and seasonal
component separately may not be possible. The working day day-types also
have a ‘shift’ in the load (Section 6.2.4). However, in this case it occurs after

every five days and does not affect performance dramatically.
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The MTS forecasts perform well compared to the PM forecasts during summer
Saturdays and summer Sundays. A possible reason for this, despite the effect of
the ‘shift’ described above, is that load is relatively uncorrelated to weather
during the summer months (Section 4.2.2). Thus the ‘shifts’ are not as

pronounced in summer as they are in winter.

Table 6.13 Daily MAPEs for PMs, SM and MTS model (validation set).

Model Early Late
E_arly Summer I__ate winter Summer winter Egrly Summer L_ate
Type winter sundays winter working working working winter saturdays winter
Sundays Sundays davs days days Saturdays Saturdays

4.20 3.49 3.70 3.04 2.88 2.90 4.06 2.98 2
241 2.98 2.32 1.92 2.23 1.89 2.52 2.90 2
3.85 3.33 3.22 2.24 2.17 2.11 3.76 2.82 2

Table 6.14 Daily MAPEs for PMs, SM and MTS model (novelty set).
Early Late

Model Early Late : Summer - Early Late
: Summer - winter . winter : Summer -
Type winter winter - working - winter winter
Sundays Sundays Sundays Wg:;':g days ng;lsng Saturdays Saturdays Saturdays
4.23 3.46 3.59 2.67 2.63 2.79 4.19 2.36 2.30
2.67 3.21 2.39 1.69 2.10 1.98 2.23 2.68 2.23

.75
.28
.79

4.02 3.11 3.28 1.86 1.95 2.07 3.62 2.15 2.34

6.6 Conclusion.

The multi-timescale technique consists of combining the forecasts of several
different models. The models combined (the sequential models, parallel models
and end-sum models) were presented, and methods for determining the weight
matrix used in the technique were examined in depth. Finally, a comparison of

the MTS and parallel models was performed.

The sequential models were examined in Section 6.2, but it was found that they
performed inadequately. Partitioning the data into day-types results in several
intervening days being removed (Section 5.2). This in turn resulted in a shift in
the load at the point were the days were removed (Section 6.2.4, Figure 6.5). The
underlying requirement of a sequential approach is that a data set is hour of the

day independent. However, the shift mentioned above occurs only at 23 hrs and 0
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hrs, i.e. between days. Thus, partitioning the data by day-type produces data sets

that are not hour ofthe day independent.

For a working-day day-type, a shift occurs once every 5 days, which may appear
negligible. However, as was seen in Section 6.2.4, this has an adverse effect on
estimation of the seasonal component in the SM. The solution involved
modelling the trend component as constant at all hours of a day (Section 6.2.4).
This is equivalent to modelling the trend using a parallel approach, as there is

only one value that needs to be estimated per day.

The multi-timescale technique was examined in Section 6.4. An essential part of
this technique is determining appropriate values for the weight matrix. A novel
technique was examined in which the weights are determined by means of
numerical optimisation. It was found that the weights determined improved the
performance of the MTS technique above previous procedures (i.e. weight

profiles, Section 6.4.1.2).

Three optimised weight matrices were trained for each day-type (Section
6.4.1.3). It was found that each optimised weight matrix led to good results when
used in the MTS technique. This is important as the optimisation procedure is

computationally expensive, and is impractical to perform numerous times.

Section 6.4.2 examined the theory behind the MTS technique. It was proposed
that the MTS technique should be viewed as a régularisation term, as the
estimation of the altered state vector, o2 (k, w), is not related to forecasting error,
but rather to the shape of the multi-step ahead forecasts. A technique based on
constrained optimisation was then proposed for altering the MTS technique to
include a measure ofthe forecast error. This is achieved by optimising the weight
matrix as a function of forecast error. However, due to the complexity of the
equations involved, a closed form solution cannot be found and a numerical

solution is instead proposed.

*Three optimised weight matrices are used and an average MAPE taken.
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In Section 6.5 the MTS technique was compared to the parallel models. The
results showed that overall the MTS and parallel models provide similar forecast
accuracy. At some hours of the day, the MTS forecasts are marginally superior to
the parallel model forecasts. However, at other hours of the day (5 p.m. to 8

p.m.) the parallel model forecasts are significantly better than the MTS forecasts.

Finally, due to the problems with a shift in the load between day-types, the MTS
technique was found not to perform well during weekend days in winter (Section
6.5). In summer the shift is less significant and the MTS technique was found to

compare well to the PMs during weekend days.
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Chapter 7

Fusion of Models for Load Forecasting.

7.1 Introduction.

Modelfusion consists of taking the forecasts from several models (which forecast
the same variable) and combining them into one forecast known as a fused
forecast. The concept of model fusion is well known in the general field of
forecasting and was pioneered mainly by Bates and Granger (1969) and Reid
(1968). Fused forecasts are often more accurate than any of the individual model
forecasts (Palit and Popovic, 2000, Xiong et. al., 2001, Shamseldin et. al., 1997
and Perrone and Cooper, 1993, among others). This is because different models
are often better at modelling different aspects of an underlying process and thus
combining the models appropriately gives a better forecast. In addition, a single
model incorporating all aspects of an underlying process may be more complex
and difficult to train than the individual models (Palit and Popovic, 2000). The
concept of model fusion therefore agrees with the 'divide and conquer' strategy
discussed in Section 4.2.1 (in that case segmentation of the data set was

discussed).

Model fusion has been applied to many fields. Examples are rainfall run-off
models (Shamseldin et. al., 1997, Xiong et. al., 2001), wine analysis (Rong et.
al., 2000) and chemical processes (Sridhar et. al., 1999). However, at the time of
this author’s publication in the area, model fusion was new to the field of short -
term load forecasting (Fay et. al., 2000). Model fusion is particularly suited to
short term load forecasting, due to the problems encountered when using weather
forecasts in STLF models (Section 3.5). In Section 3.5 it was pointed out that
STLF models should be trained with actual weather inputs, even though they are
used with weather forecasts. However, if information is available on weather
forecast errors, and this can be incorporated into the STLF model, then models

using forecasted inputs can be substantially improved.
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Model fusion offers the following solution procedure:

1. Several models (called sub-models) are first trained. The models differ in the
inputs presented, e.g. the weather and non-weather inputs are presented to

different models, and

2. The sub-model forecasts are fused together. At this point the errors in the

weather forecasts may be taken into account.

This solution methodology allows the problem of weather forecast errors to be

dealt separately from the parameter evaluation stage of the model.

In general terms, model fusion may be expressed as a function approximation
problem of the form:
ffi.se(fi(*)/2(*),.--Mx)) =fix) + £ (7.1)
where J(x) is the function to be approximated, x is a vector of inputs,/fuis the
model fusion algorithm, f(x) is sub-model i, N is the number of sub-models used
and e is an associated error term. Note that each sub-model also attempts to
approximate the function”*) i-e.:
fix) =fix) + U (7.2)
where f(x) is the function implemented by sub-model i and vt is the error

associated with that sub-model.

As with STLF techniques, model fusion techniques may be categorised as either
linear or non-linear. In the linear case, Equation (7.1) may be expressed as a
weighted sum of the sub-model forecasts (McCabe, 1991), as:

fix) =w\f\(x) + wA2(x)+ .. . +WNy(x)...+ £ (7.3)
where w, is the weight applied to sub-model forecast i. There are several linear
fusion algorithms available but they all share the advantage that the weights may
be determined uniquely and optimally (in some sense, see below) from the data
set. For example, McCabe's fusion algorithm minimises the trace of the
covariance matrix of fused forecast errors (see Section 7.4.2) while the weighted

average method (Shamseldin et. al., 1997) minimises the sum of squared errors.
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Thus linear combination methods will give an optimal result (in the linear least
variance sense in the case of McCabe's algorithm (1991) and the best linear fit

sense in the case of the weighted average method).

As pointed out by Fiordoliso, (1998), the function approximation performed by
Equation (7.3) is not a universal approximator. That is; linear fusion models do
not have the ability to approximate an arbitrary function with an arbitrarily small
error. This is because linear fusion models can only expressfix) as a (weighted)
sum of several other functions (i.e. Equation 7.3). In the opinion of Palit and
Popovic (2000) it is unlikely that an underlying processfix) can be expressed as

such. Thus they conclude that the use of linear fu_ on models is questionable.

Non-linear fusion models use a non-linear function to implement /ffuse(#) in
Equation (7.1). Several techniques may be used, such as fuzzy logic (Section
3.4.2) or neural networks (Section 3.4.3). Although fuzzy logic and neural
network techniques are themselves universal approximators, the function
approximation implemented by the overall non-linear model fusion is not
(contrary to the view expressed by Fiordoliso, 1998). This is because information
may be lost by the sub-models which cannot be recovered by /fusi(«) (Palit and
Popovic, 2000).

In contrast to the linear fusion model, non-linear fusion modelling techniques do
not have a unique structure or solution for the parameters. As discussed in
Sections (3.4.2) and (3.4.3) it may be difficult to obtain an optimal or near

optimal model.

In conclusion, linear and non-linear fusion models both have disadvantages
which are dependent on the underlying process and so the choice between them

is application specific.

In practical terms, the first factor to be noted is the availability of the weather
forecast data. From Table 2.2 (Section 2.2) weather forecasts are available for the
period of 1s February 2000 to 1¢ March 2000. These forecasts are available only

for temperature, cloud cover, wind speed and wind direction; thus humidity
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forecasts are not available. In addition, the weather forecasts that are available
are for days in the late winter day-types and so these are the only day-types
analysed. Also note that statistics on the weather forecasts such as confidence

intervals etc. are not available.

7.2 Modelling Weather Forecast Errors.

Due to the sparseness of weather forecasts and the fact that weather forecast
errors change over time (see Section 3.5), it is necessary to model the error on
the weather forecasts to produce what are termed pseudo-weatherforecasts. The
approach here is to first model the temperature forecast errors as temperature is

the dominant input variable. The other weather forecast errors are then analysed.

7.2.1 Modelling Temperature Forecast Errors.

Figure 7.1 below shows a plot of the actual and forecast temperatures for 1
February 2000 to 1 March 2000. As can be seen, the temperature forecasts are

reasonably accurate.

Hours from start of data

Figure 7.1. Actual and forecast temperature (1st February 2000 to 1stMarch 2000).

However, the errors in the forecasts do not seem to follow a Gaussian
distribution but rather are either above or below the actual for prolonged periods

(Figure 7.2). The weather in Ireland is dominated by Atlantic weather systems.
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When a weather system orfront reaches Ireland, there is a shift in the level of the
temperature and other weather variables. This shift is also a factor that the Irish
Meteorological Office must forecast. In Figure 7.2 it can be seen that the sign of
the weather forecast error typically changes when there is a large change in the

temperature.

Figure 7.2. Actual and forecast temperature (6thto 15th February 2000).

The points at which there is a shift in the temperature are called turning points.
Several different procedures were attempted to find the turning points. However,

the following procedure was found to give excellent results:

1 The temperature is first smoothed to provide an easier means of detecting the
turning points. To this end the temperature is filtered using an IRW (Section
3.2.2.2). The states of the filter are estimated using a Kalman filter (Section

3.3.2.1). In contrast to previous state space approaches in the current
research, the a posteriori state estimate, o +(k), (as opposed to the a priori
state estimate) is used to estimate the temperature. The smoothed temperature

attime k, T(k) is then:
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T(k)=H jr(k) (7.4)

Where is the observation matrix of an IRW (Section 3.3.2.2). The a
posteriori state estimate is used, because the aim is to smooth the
temperature and not to forecast it. The noise-variance ratio, (Section
3.3.2.4) of the filter was set to .03. This algorithm was found to be robust to

a wide range of values for £, and

2. A window, with a width of eleven hours, is then passed over the smoothed
temperature. If the smoothed temperature at the centre of the window is the

maximum within that window:

T(k) = ma\[f(k - 5), f(k +5)] (7.5)

and it is greater than half the average value of the other smoothed

temperatures in the window:

i£5 (7.6)

Then point k is designated a high turning point. The procedure for finding a
low turning point is equivalent except that the minimum is used in Equation
(7.5). Figure 7.3 below shows the actual weather, the weather forecasts and

the high and low turning points.
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Figure 7.3. Detected turning points in temperature (1st February 2000 to 1st March 2000,
second graph is a close-up).

Had the Irish Meteorological Office known the level of the temperature in
advance then it is the assumption of this analysis that they would have no
forecast errors. To test this assumption the mean (called the level here) and
standard deviation (called the shape here) of the actual and forecast temperatures
between the turning points is calculated. An adjusted forecast is then produced
by removing the level and shape of the temperature forecast and introducing the

actual level and shape as:

T(k)~Tk k
T(k) = St +75 ke[kIBKD  (7.7)
af.

Where T (k) is the adjusted temperature forecast k hours from the start of the

forecast data (1st February 2000), T(fc)is the forecast temperature and kv is the
ith turning points. The following statistics are calculated between the M and (',+]’.th

turning points klp and kg\ﬂ-; Thn-"*ﬂis the average forecast temperature or
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level, <7- is the forecast temperature standard deviation or shape, Tk k is

KPi "KPi+

the average (or level) of the actual temperature and % o diis the standard

deviation (or shape) of the actual temperature. Figure 7.4 below shows the

adjusted temperature forecast and the actual temperature.

Hours from start of data
Figure 7.4. Adjusted temperature forecast and actual temperature (1st February 2000 to 1s
March 2000).

As can be seen, there is good agreement between the adjusted and actual

temperatures. The temperature forecast errors can now be divided into the

following components:

» The difference between the adjusted and actual temperature, T(k)-T (k),
called the random error,

* The difference between the forecast temperature level and the actual level

(between the turning points), Tk N ~THWp Kp ~, called the level error, and

» The difference between the forecast temperature shape and the actual shape,

i7 - —<Ir, , called the shape error.



Figure 7.5 below, shows the histograms of the three errors listed above with
Gaussian distributions which have been fitted to the data. In addition the SACF
of the random temperature forecast errors is shown. Although the SACF of the
random forecast errors is statistically significant for some lags the auto-
correlation is still quite small and thus it can be assumed that the randomforecast
error are indeed taken from a random population. Similarly, the level and shape

errors are found to be taken from a random population.

150 12

*10

Random error Level error

----- SACF
Histogram mees +/s 95% Conf. Int.
, Fitted Gaussian m  Qutside bounds
O inside bounds

Shape error Lag

Figure 7.5. Various statistics of temperature forecast errors.

As can be seen, the Gaussian distributions fit the histograms well. Thus, it is
assumed that the temperature forecast shape, level and random errors are

normally distributed.

The values of the fitted normal distributions in Figure 7.5 are shown in Table 7.1

below.
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Table 7.1 Fitted normal distribution values for the difference between weather forecast
statistics and actual weather statistics.

Distribution Mean Standard Deviation
T(K) - T(K) (Random) -.5312 1.4902
Thﬂﬁ"l%tﬂ ) TKﬁ'kﬂk (Level) 0.0292 1.3131
<7- <Oy oy (S1209) 0.9407 0.8008

Reversing the previous analysis gives a mechanism by which pseudo-
temperature forecast errors can be produced. This process involves the following

algorithm called the pseudo-weatherforecast generation algorithm:
1. The turning points in the actual temperature are identified,

2. A Gaussian random number generator is used to generate pseudo values for
the random temperature forecast errors (using the values in Table 7.1). These

are then subtracted from the actual temperature to produce a pseudo adjusted

weatherforecast, T (k),

3. A Gaussian random number generator (using the distribution values in Table

7.1) is used to generate pseudo values for .and <Jl- ) denoted

f ypirgHt My Y

and o, respectively, and
Vow p y

* AR Ak
4. Equation (7.7) is inverted as:

FTY-Th &

T\k) = :
O i *\bi

A 'ﬂd&# +K y 0 X t
Where f (k) is the pseudo weather forecast required.

Figure 7.6 below shows the pseudo-temperature forecasts produced for the

period 1st February 2000 to 1stMarch 2000.
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Figure 7.6. Actual and pscudo-forecast temperature (11 February 2000 to 1st March 2000).

Figure 7.7 shows the SACFs of the temperature forecast errors and the pseudo-
temperature forecast errors. As can be seen, they are in good agreement, showing
that the pseudo-temperature forecast errors have similar statistics to the
temperature forecast errors. Finally, the sum squared error of the weather
forecast errors (3.32x103) compares well with that of the pseudo-weather

forecast errors (3.02* 103).
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Figure 7.7. SACF of forecast and pseudo-forecast temperature errors.

7.2.2 Modelling Cloud Cover, Wind Speed and Wind Direction
Forecast Errors.

The cloud cover, wind speed, and wind direction weather forecast errors are
modelled in a similar way to the temperature forecast errors. Note that the
turning points are assumed to be the same for all weather variables. Figures 7.8

to 7.10 show the distributions and SACFs of these weather variables.

Figure 7.8. Histograms for cloud cover forecast errors and the SACF of the cloud cover
forecast errors and the pseudo forecast errors.
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Figure 7.9. Histograms for wind direction forecast errors and the SACF of the wind direction
forecast errors and the pseudo forecast errors.

Random error
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Figure 7.10. Histograms for wind speed forecast errors and the SACF of the wind speed
forecast errors and the pseudo forecast errors.
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7.2.3 Joint Modelling of Weather Forecast Errors.

The cross-correlation (co-efficients) of the three types of weather forecast errors
in temperature, cloud cover, wind speed, and wind direction weather forecast

errors shown in Tables 7.2 and 7.3 below™.

Table 7.2 The cross-correlation matrix of random forecast errors of temperature, cloud
cover, wind speed and wind direction.

Random error type  Temperature Cloud Cover Wind Direction Wind Speed
Temperature 1.00 0.06 0.02 0.21
Cloud Cover 0.06 1.00 0.02 0.00
Wind Direction 0.02 0.02 1.00 0.06
Wind Speed 0.21 0.00 0.06 1.00

Table 7.3 The cross-correlation matrix of shape and level forecast errors of temperature,
cloud cover, wind speed and wind direction.

Error type Temperature Temperature Cloud Cloud Wind Wind Wind Wind

Level Shape Cover Cover Direction  Direction  Speed Speed
Level Shape Level Shape Level Shape

Temperature 1.00 -0.26 0.17 0.16 0.26 -0.02 0.32 0.16

Level

Temperature -0.26 1.00 -0.37 0.16 0.00 -0.02 -0.01 0.04

Shape

Cloud Cover 0.17 -0.37 1.00 -0.09 0.08 0.08 0.02 0.14

Level

Cloud Cover 0.16 0.16 -0.09 1.00 0.08 0.19 0.04 0.17

Shape

Win(i Direction 0.26 0.00 0.08 0.08 1.00 -0.37 0.07 0.19

Level

Wind Direction -0.02 -0.02 0.08 0.19 -0.37 1.00 -0.22 0.26

Shape

Wind Speed 0.32 -0.01 0.02 0.04 0.07 -0.22 1.00 -0.19

Level

Wind Speed 0.16 0.04 0.14 0.17 0.19 0.26 -0.19 1.00

Shape

As some of the cross-correlations are quite large this implies that some of the
errors are jointly distributed. For example, as the cross-correlation coefficient
between the wind speed level error and temperature level error has a correlation
coefficient of 0.32 (highlighted in Table 7.3), these errors are most likely

correlated.

It is assumed that as the distributions of the all the weather forecast errors (i.e.

the random, level and shape errors) are normally distributed, they are alsojointly

normally distributed.

* As the random weather forecast errors are not serially correlated (Figure 7.5) they are assumed
to be uncorrelated to the level and shape forecasts and so are shown separately.
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In order to take account of the fact that the weather forecast errors are jointly
normally distributed the pseudo-weather forecast generation algorithm laid out in
Section 7.2.1 must be adapted. This is achieved by changing step 3 of the

algorithm to:

3. A multivariate Gaussian random number generator (using the distribution
values in Table 7.2) is used to generate pseudo values for the random errors
in temperature, cloud cover, wind speed and wind direction simultaneously.
A multivariate Gaussian random number generator (using the distribution
values in Table 7.3) is then used is used to generate pseudo values for the
level and shape errors in temperature, cloud cover, wind speed and wind

direction simultaneously.
The multivariate Gaussian random number generator used is based on the
Cholesky decomposition and details may be found in Dagpunar (1988). The

jointly generated pseudo-weather forecasts are those used in the remainder of this

chapter.

7.3 Choice of Load Forecasting Model.

Four models were identified in Section 3.5.2. for minimising the effect of

weather forecast error on load forecasts:

1 The fuzzy logic model of Bitzer and Rofler (1998),

2. The fuzzy logic model of Rahman and Hazim (1993),

3. The ensemble models of Taylor and Buizza (2003), and

4. The Hammerstein model of Miyake et. al., (1995).

The first approach seeks to reduce the effect of weather forecast error by

fuzzification of the inputs. This is equivalent to using a qualitative rather than

quantitative measure of the inputs (e.g. temperature is high). It is presumed
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however that the magnitude of the weather forecast error is not sufficient to
change the classification of the inputs (e.g. temperature may be classed as high
when in fact it is low). The approach here however is to deal with the weather

forecast errors in a quantitative way.

The second and third approaches uses statistics of the weather forecasts as inputs
These are provided for each weather forecast by the weather forecast service
used by Rahman and Hazim (1993) and by Taylor and Buizza (2003). As
confidence intervals or any other statistics regarding individual weather forecasts

are not available in the current research this approach cannot be used.

The third approach (Miyake et. al., 1995) constructs a set of N candidate models
(or sub-models) each with differing inputs and selects the best model (Section
3.5.2). Each sub-model is evaluated using the FPEEV (Section 3.5.2) which is a
function of the error covariance matrix of the weather forecast errors. This
approach has the advantage that the effect of weather forecast error can be
separated by sub-model. This circumvents the problems created when weather
forecast errors are not present in the training set (Section 3.5) as the sub-model

which performs best with weather forecast errors is chosen.

However, the FPEEV is specific to the Hammerstein sub-models used. As the
load forecasting models used in the current research (Chapters 5 and 6) are not
Hammerstein models (for reasons given in Section 5.7.2), the Miyake et. al,,
(1995) approach is not used in the current research. Nevertheless, the principles

used in this approach may be generalised.
The approach of Miyake et. al, (1995) may be viewed as a gating network

(Haykin, 1999). That is, a weighted sum approach in which the model with the
best FPEEV is given a weight of 1 and all others a weight of 0 (Figure 7.11).

238



Figure 7.11. A weighted sum view of the approach of Miyake et. al., (1995).

The binary weights used by Miyake et. al., (1995) may be generalised by

combining the output of the models i.e. modelfusion.

As the FPEEV is model specific, it can only be used to weight the output of
Hammerstein models. In the approach proposed here however, the data fusion
algorithm of McCabe (1991) (explained in Section 7.4.2) was chosen as it is not
model specific. This algorithm depends on the covariance matrix ofsub-model
forecast errors (explained in more detail in Section 7.4.2). In addition, the
distribution of the sub-model forecast errors is required only to be un-biased and
symmetric i.e. normality is not required. This is an advantage as the weather
forecast inputs to the sub-models are not Gaussian as discussed in Section 7.2.
Also, the weights can be easily changed to cater for perceived shifts in the
relative significance of the various forecasts used to form the composite output.

The entire model is called the data fusion model and is shown in Figure 7.12

below.
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Figure 7.12. The data fusion model overview.

7.4 Sub-Modelling of Partitioned Series.

As shown in Figure 7.12 the Data Fusion Model consists of several sub-models
which have their outputs combined to form a final forecast. The sub-models used
are similar to the best non-linear parallel models, which are described in Section

5.7.5 (Figure 7.13, notation explained below).

The following variables are re-defined (from Chapter 5) for clarity*:

dij(k) and y/ij(k) are the trend and seasonal components, respectively, for hour

i on day k in day-typej in the Preliminary Parallel Model (PPM),

NN# denotes a neural network for hour i on day k in day-typej,

xt_(k) is the load residual from the PPM and x, Ak) is the estimated load
|

residual given by NNy

y (k) and y t3 (k) are the actual and estimated load respectively,

*Note that humidity is not included as forecasts of humidity are not available for this study.
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Tjj (k) the temperature,

tij(k), is a vector of pre-whitened temperatures from hour i to hour i-12 on

day k of day-typej with pseudo-weatherforecast errors,

is a vector of pre-whitened wind speeds from hour i to hour i-12 on

day k of day-typej with pseudo-weatherforecast errors,

Oij(k), is a vector of pre-whitened wind directions from hour i to hour i-12 on
day k of day-type j with pseudo-weather forecast errors. As the wind
direction is a circular measurement, i.e. 0° is equivalent to 360° the cosine

and sine of this variable is used, and

Cij{k), is a vector of pre-whitened cloud covers from hour i to hour i-12 on

day k of day-typej with pseudo-weatherforecast errors.

Pre-whitened

Figure 7.13. Sub-model overview (note: the inputs to NNV-vary depending on the sub-
model)
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Three types of sub-models were chosen which have different types of inputs.
These are chosen so that forecast errors can be attributed to particular inputs. A
fourth sub-model type is included using all the available inputs to capture any
non-linear relationships between the inputs and the residual. These sub-models

are:
1. A model with AR inputs only; Sub Model 1,
2. A model with temperature inputs only; Sub Model 2,

3. A model with cloud cover, wind speed and wind direction inputs; Sub Model

3, and

4. A model with AR, temperature, cloud cover, wind speed and wind direction

inputs; Sub Model 4.

As the sub-models are parallel models, there are 24x4 (one for each hour of the

day and four sub-model types) sub-models per day-type .

7.4.1 Input Selection and Pre-processing.

All of the sub-models use the operating point input, as they all forecast the load
for the late winter day-types (see Section 5.7.5). The scheduling variable is used
with all late winter weekday sub-models (see Section 5.7.5). Sub-model 1 uses

the AR inputs selected in Section 5.2.

The external input selection and processing for sub-models 2 to 4 is similar to

that used for the non-linear parallel models (Section 5.7.2).

7.4.2 Structure Determination.

The structure determination for the neural networks uses the same approach as

for the non-linear parallel models (Section 5.7.3).

” Note that only the load forecasts of the sub-models for hour i on day-typej are combined
together and not with the forecasts at any other hour or day-type.
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7.4.3 Parameter Evaluation.

The parameter evaluation for the neural networks uses the same approach as for

the non-linear parallel models (Section 5.7.4).

7.4.4 Model Validation.

Tables 7.4 and 7.5 below, show the AMAPEs achieved by each of the four
models in the novelty, validation and training sets. Table 7.4 is for the case
where actual weather inputs are used. Table 7.5 is for the case where pseudo-
weather forecasts are used. As can be seen the performance of sub-models 2 to 4
deteriorates with the inclusion of pseudo-weather forecasts (Table 7.6). Sub-
model 1 has no external inputs and so it's performance is unaffected by pseudo-

weather forecast error (Table 7.6).

Sub-model 4 performs best in most day-types when using actual weather inputs
(Table 7.4). However, with the inclusion of pseudo-weather forecast errors sub-
model 4's performance deteriorates and the best model is now dependent on the

day-type (Table 7.5).

Table 7.4 The AMAPEs of the sub-models using actual weather inputs.

Training Set Validation Set Novelty Set
Late . Late Late
Topology V\I/_il:‘ttir V\\Il\gipktienr V\Il_i?]tteer V\Il_iéri:t(;r V\\;V ir|1(t_er V\Il_iiltt%r V\I/_i?]tteer V\\//V ir:(t_er
Sundays days g Sflturduys ~ Sundays g;y'sng Saturday«  Sundays ggy'sng
3xax1 3.13 2.3 2.96 2.6 2.17 2.65 2.69 231
4x7x1 2.85 231 2.86 2.58 2.15 2.48 2.51 2.32
2x3x1 3.06 2.39 2.98 2.65 2.22 2.68 2.79 2.44
6x3x1 2.74 2.21 2.83 2.46 2.08 2.52 2.55 2.2

Table 7.5 The AMAPEs of the sub-models using pseudo weather forecast inputs.

Training bet Validation Set Novelty Set
Late Late Late
L_ate Winter L.ate L.Ute Wi inter L_ate L_ate W inter
Topology Winter Workin Winter Wi inter Workin W inter Winter Workin
Sundays 9 Smurduvi Sundays 9 saturdays Sundays g
davs days days
3x4x1 3.13 2.3 2.96 2.6 2.17 2.65 2.69 2.31
4xX7x1 2.99 2.36 3.07 2.69 2.2 2.56 2.49 2.35
2x3x1 3.52 2.4 3.11 2.92 2.24 2.74 2.86 2.44
6x3x1 3.04 2.25 2.96 2.68 2.12 2.52 2.69 2.21
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Table 7.6 The difference between the AMAPESs of the sub-models with and without pseudo
weather forecast inputs (i.e. the values in Table 7.5 minus those in Table 7.4).

Training Set Validation Set Novelty Set
Sub- e Wl_iittir Late L-ate V\I/_ iilteer Late Late WLiér:tteer Lnte
model Topology Winter Working Winter Winler Working Winter Winter Working Winter
Sundays days Saturday»  Sundays days Saturdays ~ Sundays days Saturdays

1 3x4x1 0 0 0 0 0 0 0 0 0

2 4*7x1 0.14 0.05 0.21 0.11 0.05 0.08 -0.02 0.03 0.12

3 23N 0.46 0.01 0.13 0.27 0.02 0.06 0.07 0 0.04

4 6x3x1 0.3 0.04 0.13 0.22 0.04 0 0.14 0.01 -0.06

7.5 The Linear Model Fusion Algorithm.

The model fu on algorithm described by McCabe, (1991) seeks to minimize the
variance of a fused forecast based on the covariance error matrix of sub-model
forecasts. The cross-covariance error matrix of the sub-model forecasts is
considered and the distribution of the forecast error noise is not restricted to

Gaussian but merely required to be unbiased and symmetric.

In this case a combined forecast of the load on day k at hour i of day-typej,

ytj (k), is created using a weighted average of the four sub-model forecasts

PujV) (McCabe, 1991), as:

(7.9)

where wnij. is the weight applied to the mth sub-model forecast, ym.j (k), and is

derived from the error covariance matrices of yUj(k)... yd4J(k). As this

analysis is similar for each parallel model, the hour and day-type indices, i andj,

are at this point suppressed for clarity. The weights may be derived (McCabe,

1991), as:
-1
- C., <2 CU~
[, w2 W A2 Q3 c., a2 (7.10)
Q2 c;.
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where C m (for w ” 4) is an auxiliary variable defined as:

c, =C,,-C 4 (7.11)

4,m 4,4 4.m

and CW, (form,nT 4) is another auxiliary variable defined as:

Onn~Cmn CAn Cméd+ C44 m*4,n*4 (7.12)

where CmH(or C«,«”) is the (sample) cross covariance of the forecast errors from

sub-model m with sub-model n, defined (Papoulis, 1991), as:

1M
cm, =Eb(/t)-j),,. {k))(y(k)-y..(*))] = CK*) (W ~H (k) (7-13)

where E denotes the expectation operator and M is the number of samples used.

The final weight Ws is determined using the constraint that y,j(k)is unbiased

(McCabe, 1991), as:

wh=T~XxX W (7.14)
el
In addition an estimate of the error variance of yi} (k), , may be calculated
(McCabe, 1991), as:
Q1
ah = CAA-[wx 4.2 (7.15)

w43

7.5.1 Fusing Sub-Model Outputs.

Fusing sub-model outputs consists of calculating the weights in Equations (7.10)
and (7.14) using covariance matrices calculated with all the sub-model output

errors in the training set.
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The following algorithm, describes the approach in more detail:

For partitioned series day-type j=3,6 and 9
For partitioned series hour i= 0 to 23
For Sub-Model = 1to 4
Train Sub-Model
Record the model errors in the training set
Next Sub-Model
Estimate the cross-covariance matrix of sub-model load forecast
errors (Equation 7.13)
Calculate the weights using Equations (7.10) and (7.14)
Calculate a fused forecast using a weighted average of the sub-
model forecasts ( Equation 7.9)
Next hour

Next day-type.

The results for j>6,13.00 are now presented as a sample of the wider results.

Aggregated results are presented in Sections 7.4.3.1 and 7.4.3.2.

Table 7.7 below shows the cross-covariance matrix of sub-model load forecast
errors (using the partitioned series for hour 13:00hrs in the late winter day-type
and without weather forecast error). Note that the matrix is symmetric, as are all
covariance matrices. The diagonal elements of the matrix are the variance's ofthe
individual sub-model forecast errors. As can be seen sub-models 2 and 3 have the
lowest and highest variances respectively. Also note the large degree of cross-
correlation between the load forecast errors indicated by the high off-diagonal
elements. This shows that the forecasts made by each model are highly
correlated. In this situation the improvement gained by use of data fusion may

not be substantial (see Section 7.1).

” These are the Late Winter Day-types, see Table 5.10
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Table 7.7 The cross-covariance matrix of sub-model load forecast errors (normalised, day-
type 6 ,13:00hrs, actual weather inputs).

Sub-model 1 2 3 4

1 1.18 112 1.18 1.16
2 112 1.16 1.13 112
3 1.18 1.13 1.20 1.18
4 1.16 112 1.18 1.18

The weights calculated for this fusion model are shown in Table 7.8 below. As
can be seen, the models have roughly equal (absolute) weights reflecting that

their performances are similar.

Table 7.8 The weights applied to each sub-model forecast (day-type 6,13:00hrs, actual
weather inputs).
Sub-model 1 2 3 4

Weight 0.54 0.59 -0.60 0.47

The estimated error variance of the fused estimate (calculated using Equation
(7.15)) is 1.14*. This figure is lower than any of the individual sub-model error
variances (i.e. the diagonal elements of Table 7.7), demonstrating that the fused

load forecast is superior (in the least error variance sense).

The MAPEs (or AMAPEs in the case of the sub-models) of the load forecasts
from the fusion and sub-models for "e,13:00 are presented in Table 7.9 below. As
can be seen, the fusion model has the lowest MAPE and variance in the training
and novelty sets. However, in the validation set, the MAPE for the fusion model
is not the lowest. This is because the fusion model is trained to minimise the

error variance and not the MAPE.

Table 7.9 The MAPEs and sample error variances of the load forecasts from the fusion and
sub models (Notes: day-type 6,13:00hrs, actual weather inputs, sample error variances
have been normalised).

Training Set Validation Set Novelty Set

Sample Sample Sample

Model MAPE Error MAPE Error MAPE Error
Variance Variance Variance
Sub-model 1 2.28 1.18 1.97 131 1.99 1.74
Sub-model 2 2.30 1.16 2.02 1.34 2.03 1.68
Sub-model 3 2.30 1.20 1.97 1.34 2.05 1.83
Sub-model 4 2.27 1.18 1.96 1.33 2.01 1.76
Fusion 2.25 1.14 1.97 1.30 1.97 1.64

*This figure has been normalised by the same normalisation factor used throughout this thesis.
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Note that the previous example is for the situation in which no weather forecast
errors are included in the sub-model inputs. When pseudo-weather forecast errors

are added to the weather inputs, the covariance matrices, Cmn.. (for m,n =1,...,4,

i=1,...,.9 andj = 0,...,23), will be different. As a consequence the weights,

ks, will be different.

7.5.1.1 Results without Pseudo-Weather Forecast Errors.

Figure 7.14 below, shows the MAPE of the load forecasts produced by the fusion
and sub models for all hours of the late winter working day-type over the period
of the novelty set. As can be seen, the fus i>nmodel achieves the best MAPE at
most hours, or is close to the best. The daily MAPE is shown in the key of Figure
7.14 and again the Fusion model has the lowest MAPE with a value 0f2.17%.
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Figure 7.14. MAPE as a function of hour of the day for fusion and sub-models (notes: late
linter working day-type, novelty set, actual weather inputs used)

Tables 7.10, 7.11 and 7.12, below, summarise the daily MAPEs achieved by all
of the models in all the day-types used in this chapter (i.e. the late winter day-
types). Similar to results presented in Section 7.4.3, the fusion model load

forecasts have the best MAPEs and lowest variances of most of the models in the

248



training and validation sets (Tables 7.10 and 7.11). In addition, the fusion model
is also the best in all data sets for the working days (Tables 7.10, 7.11 and 7.12).
This is important, as the working day series have more data than the Sunday or
Saturday day-type series and thus are more reliable estimates of the performance
of the fusion model relative to the sub-models.

Table 7.10 The daily MAPEs of the load forecasts from the fusion and sub-models (Notes:
Training set)*.

Model Late winter Late winter Late winter
Sundays working days Saturdays
Sample Sample Sample
MAPE Error MAPE Error MAPE Error
Variance Variance Variance
Sub-model 1 3.13 1.10 2.30 0.93 2.96 1.24
Sub-model 2 2.85 0.96 2.31 0.91 2.86 1.15
Sub-model 3 3.06 1.07 2.39 0.98 2.98 1.23
Sub-model 4 2.74 0.87 2.21 0.86 2.83 111
Fusion 2.54 0.72 2.19 0.83 2.60 0.91

Table 7.11 The daily MAPEs of the load forecasts from the fusion and sub-models (Notes:
Validation set)*.

Model Late winter Late winter Late winter
Sundays working days Saturdays
Sample Sample Sample
MAPE Error MAPE Error MAPE Error
Variance Variance Variance
Sub-model 1 2.60 1.19 2.17 131 2.65 1.52
Sub-model 2 2.58 1.23 2.15 1.28 2.48 1.36
Sub-model 3 2.65 1.33 2.22 1.37 2.68 1.60
Sub-model 4 2.46 1.07 2.08 1.22 2.52 1.35
Fusion 2.38 101 2.07 1.20 2.48 1.36

Table 7.12 The daily MAPEs of the load forecasts from the fusion and sub-models (Notes:
Novelty set) *.

Model Late winter Late winter Late winter
Sundays working days Saturdays
Sample Sample Sample
MAPE Error MAPE Error MAPE Error
Variance Variance Variance
Sub-model 1 2.69 1.61 2.31 1.73 2.83 2.13
Sub-model 2 251 1.37 2.32 1.74 2.69 1.91
Sub-model 3 2.79 1.75 2.44 191 2.88 2.20
Sub-model 4 2.55 1.46 2.20 1.59 2.81 2.10
Fusion 2.54 151 2.17 1.56 2.69 1.96

” Variances have been normalised.
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7.5.1.2 Results with Pseudo-Weather Forecast inputs.

Figure 7.15, below, shows the MAPE of the load forecasts produced by the
fusion and sub-models for all hours of the late winter working day-type over the
period of the novelty set (with pseudo-weather forecast errors on the weather
inputs). As can be seen the fusion model again achieves the best MAPE at most
hours or is close to the best. The daily MAPE is shown in the key of Figure 7.14
and again the fusion model has the lowest MAPE with a value of 2.22%. Note
that the performance of sub-models 2 to 4 deteriorates relative to the

performance without pseudo weather forecast error (Figures 7.14 and 7.15).
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Figure 7.15. MAPE as a function of hour of the day for fusion and sub-models (notes: late
winter working day-type, novelty set, pseudo weather forecasts used)

The results in Tables 7.13, 7.14 and 7.15 below are similar to those in the last
section (Section 7.4.3.1). The fusion model is the best model, except in the
novelty set for late winter Sundays (Table 7.15) and the validation set for late
winter Saturdays (Table 7.14). However, the fusion model has again the best
performance in all sets for the late winter working days which, as mentioned in
Section 7.4.3.1, is the most reliable estimate of the relative performance of the

models.
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Table 7.13 The daily MAPEs of the load forecasts from the fusion and sub-models (Notes:
Training set, pseudo weather forecasts used) .

Model Late winter Late winter Late winter
ode Sundays working days Saturdays
Sample Sample Sample
MAPE Error MAPE Error MAPE Error
Variance Variance Variance
Sub-model 1 3.13 1.10 2.30 0.93 2.96 1.24
Sub-model 2 2.99 1.03 2.36 0.95 3.07 1.32
Sub-model 3 3.52 1.99 2.40 0.99 3.11 1.40
Sub-model 4 3.04 1.04 2.25 0.89 2.96 1.25
Fusion 2.79 0.88 2.22 0.87 2.82 1.12

Table 7.14 The daily MAPEs of the load forecasts from the fusion and sub-models (Notes:
Validation set, pseudo weather forecasts used) .

Model Late winter Late winter Late winter
Sundays working days Saturdays
Sample Sample Sample
MAPE Error MAPE Error MAPE Error
Variance Variance Variance
Sub-model 1 2.60 1.19 2.17 131 2.65 1.52
Sub-model 2 2.69 1.28 2.20 1.35 2.56 1.45
Sub-model 3 2.92 1.64 2.24 1.39 2.74 1.64
Sub-model 4 2.68 1.28 2.12 1.27 2.52 1.37
Fusion 2.52 1.10 2.10 1.25 2.56 1.40

Table 7.15 The daily MAPEs of the load forecasts from the fusion and sub-models (Notes:
Novelty set, pseudo weather forecasts used)*.

Model Late winter Late winter Late winter
Sundays working days Saturdays
Sample Sample Sample
MAPE Error MAPE Error MAPE Error
Variance Variance Variance
Sub-model 1 2.69 1.61 2.31 1.73 2.83 2.13
Sub-model 2 2.49 1.34 2.35 1.78 2.81 2.05
Sub-model 3 2.86 1.88 2.44 1.91 2.92 2.26
Sub-model 4 2.69 1.61 2.21 1.62 2.75 2.00
Fusion 2.50 1.38 2.20 1.59 2.73 1.98

Next, the situation in which the fusion model weights are trained using actual
weather inputs, but the model is operated using pseudo-weather forecasts is
considered. This situation is used as an example of how a load model’s
performance (in this case the fusion model’s) can degenerate if weather forecast

errors are not taken into account (this point is discussed in Section 3.5).

*variances have been normalised
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Table 7.16 below shows the results achieved in the novelty set for this situation.
It can be seen that the fusion model in Table 7.16 has higher MAPEs than any
other model. However, the performance of the fusion model has not deteriorated
significantly.

Table 7.16 The daily MAPEs of the load forecasts from the fusion and sub-models (Notes:
Novelty set)*.

Tl(/jpg of IianUtt usTe)(/jpfoOJelr?ergte Late winter Late winter Late winter
usea 1o calculate i
weights forecasts Sundays working days Saturdays
Sample Sample Sample
MAPE Error MAPE Errar MAPE Error
Variance Variance Variance
Pseudo-wealher  Pseudo-weather 2.50 1.38 2.20 1.59 273 1.98
forecasts. forecasts.
Actual weather Pseudo-weather 265 161 591 161 575 501
forecasts.

7.6 The Non-Linear Model Fusion Algorithm.

The non-linear model fusion algorithm uses an MLP (Section 3.4.3) to
implement the model fusion. The overall forecast produced by the non-linear

model fusion algorithm may be expressed as:
y,J (%) =fij (oiu (k), y2u  ¢3t3(k), h t3(*)) (7-16)

wheref j represents the function implemented by the MLP for hour i on day-type

J, yt.(k) isthe non-linear fusion model estimate and yx (k) D4 (A) are the

forecasts from the four sub-models. Note that a different MLP is trained for each

hour ofthe day and for each day-type.

The details of the MLPs are similar to those used in Section 5.7 and are now
summarised. There are four inputs given by the four sub-model forecasts (which
have been normalised). As there are only four inputs, no input pre-processing is
performed. The MLPs have two hidden layers with sigmoidal activation
functions and a linear output layer. The structure of the MLPs is determined by
training 64 different structures (from 1 to 8 nodes in hidden layer 1, and 1to 8
nodes in hidden layer 2) and choosing the structure which performed best (in

terms of the AMAPE, see below) in the validation set. Each network is initialised

252



using random starting conditions and 10 networks are trained for each structure,
the top four being retained. These four networks are then used to give an

AMAPE (as in Section 5.7.3.3). The back-propagation training algorithm is used

with early stopping and cross-validation.

The results of the non-linear model fusion algorithm are now compared to those

using the linear model fusion algorithm.

7.6.1 Results without Pseudo-Weather Forecast Errors.

Figure 7.16 below, shows the MAPE of the load forecasts produced by the linear
and non-linear fusion models for all hours of the late winter working day-type
over the period of the novelty set. As can be seen the non-linear fusion model
achieves the best MAPE at most hours or is close to the best. The daily MAPE is

shown in the key of Figure 7.16, as can be seen there is a minor improvement by

use of a non-linear fusion algorithm.
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Figure 7.16. MAPE as a function of hour of the day for linear and non-linear fusion models
(notes: late winter working day-type, novelty set, actual weather inputs used)

*variances have been normalised
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Tables 7.17, 7.18 and 7.19 compare the performance of the linear and non-linear
fusion models in the training, validation and novelty data sets for all day-types.
As can be seen, the non-linear fusion model has the best performance in the
training and validation sets. However, in the novelty set the non-linear fusion
model has the lowest daily MAPE only for the late winter working days day-type
(Table 7.19). Even in this case the non-linear fusion model has a higher variance
than the linear fusion model (1.58 compared to 1.56 respectively). In conclusion,
there seems to be no advantage in using this type of non-linear fusion model in

this case.

Table 7.17 The daily MAPEs of the load forecasts from the fusion and sub-models (Notes:
[mining set, actual weather inputs used)*.

Model Late winter Late winter Laie winter
Sundays working days Saturdays
Sample Sample Sample
MAPE Error MAPE Error MAPE Error
Variance Variance Variance
Non-linear 2.21 0.57 2.15 0.81 2.24 0.70
Linear 2.54 0.72 2.19 0.83 2.60 0.91

Table 7.18 The daily MAPEs of the load forecasts from the fusion and sub-models (Notes:
validation set actual weather inputs used)*.

Model Late winter Late_winter Late winter
Sundays working days Saturdavs
Sample Sample Sample
MAPE Error MAPE Error MAPE Error
Variance Variance Variance
Non-linear 2.27 0.936 2.03 1.16 2.34 1.20
Linear 2.38 1.01 2.07 1.20 2.48 1.36

Table 7.19 The daily MAPEs of the load forecasts from the fusion and sub-models (Notes:
novelty set actual weather inputs used) *.

Model Late winter Late_winter Late winter
Sundays working days Saturdavs
Sample Sample Sample
MAPE Error MAPE Error MAPE Error
Variance Variance Variance
Non-linear 2.74 1.77 2.16 1.58 2.79 2.09
Linear 2.54 151 2.17 1.56 2.69 1.96

7.6.2 Results with Pseudo-Weather Forecast inputs.

The MLPs in the non-linear fusion algorithm are again trained for this
simulation. However, in this case the forecasts from the sub-models produced

with pseudo weather forecasts are used (Section 7.5.1.2). Figure 7.17 below,

' Variances have been normalised.
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compares the linear and non-linear fusion model MAPEs for all hours of the day
for the late winter working day day-type. As can be seen, the non-linear fusion
model has a lower daily MAPE (2.16% compared with 2.20%). However, the
non-linear fusion model is not the best at all hours of the day. Thus no clear

difference between these models can be discerned.

Hour

Figure 7.17. MAPE as a function of hour of the day for Unear and non-linear fusion models
(notes: late winter working day-type, novelty set, pseudo weather forecasts used)

Tables 7.20, 7.21 and 7.22 compare the performance of the linear and non-linear
fusion models in the training, validation and novelty data sets for all day-types.
As can be seen, the non-linear fusion model again has the best performance in
the training and validation sets. However, in the novelty set the non-linear fusion
model has the lowest daily MAPE only for the late winter working days day-type
(Table 7.19 and Figure 7.17 above). In conclusion; the non-linear fusion models
do not appear to be generalising well and a non-linear combiner may be too

complex for this situation.
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Table 7.20 The daily MAPEs of the load forecasts from the Fusion and sub models (Notes:
Training set, pseudo weather forecasts used).

Model Late winter Late_winter Late winter
Sundays working days Saturdays
Sample Sample Sample
MAPE Error MAPE Error MAPE Error
Variance Variance Variance
Non-linear 221 0.57 2.16 0.82 2.25 0.71
Linear 2.79 0.88 2.22 0.87 2.82 112

Table 7.21 The daily MAPEs of the load forecasts from the Fusion and sub models (Notes:
Validation set, pseudo weather forecasts used) m

Model Late winter Late winter Late winter
Sundays working days Saturdays
Sample Sample Sample
MAPE Error MAPE Error MAPE Error
Variance Variance Variance
Non-linear 2.28 0.98 2.04 1.17 2.40 1.25
Linear 2.52 1.10 2.10 1.25 2.56 1.40

Table 7.22 The daily MAPEs of the load forecasts from the Fusion and sub models (Notes:
Novelty set, pseudo weather forecasts used) .

Model Late winter Late_wiuter Late winter
Sundays working days Saturdays
Sample Sample Sample
MAPE Error MAPE Error MAPE Error
Variance Variance Variance
Non-linear 2.73 1.78 2.16 1.55 2.84 2.19
Linear 2.50 1.38 2.20 1.59 2.73 1.98

7.7 Conclusion.

This chapter examined the use of fusion models with a view to minimising the

effect of weather forecast errors on load forecasts.

Section 7.2 modelled and examined the statistics of weather forecast errors.
Previous approaches in STLF have modelled the weather forecast error as an
independent Gaussian random variable (Park et. al., 1993a and Chen and Yu,
1992). However, it was found that this assumption does not apply to Irish
weather forecasts in two respects; the weather forecast errors have serial
correlation (Figure 7.2) and they are cross-correlated (Tables 7.2 and 7.3).
Typically, some form of aggregate weather variables are used in STLF models
(e.g. average daily temperature). In the sub-models used here, the transformation

ofthe weather inputs by PCA results in a similarly aggregated variable. The error

*variances have been normalised
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in an aggregate weather variable will have a non-zero mean (Figure 7.2) and a
Gaussian approximation would underestimate this. For example, independent
Gaussian random noise added to hourly temperature would tend to cancel itself
out when the average is taken. Thus the effect of weather forecast errors on load

forecasting models would be underestimated.

The structure of the weather forecast errors was then used to produce pseudo-
weather forecast errors from 1986 to 2000 which have the accuracy of current
weather forecasts. This is important as, for example, weather forecasts from 1986
are less accurate than current weather forecasts and would thus be of no

relevance in predicting future loads.

A model fusion technique was then proposed for minimising the effect of
weather forecast errors. In general, weather forecast error causes approximately
1% deterioration in load forecasts of all models used here. This figure, though
important, is not as high as suggested by Douglas et. al. (1998b) and the IEEE
Committee report (1985), for their systems. However, the fusion model was
capable of adjusting the weighting of the sub-models to reflect that the weather
based sub-models deteriorated relative to the AR model. The fusion model was
shown to successfully separate the tasks of model training and rejecting weather

forecast errors.

Finally, a comparison of linear and non-linear fusion models found little
difference between them. Considering that the novelty set results for the non-
linear fusion model were generally worse than for the linear fusion model, it
would appear that the non-linear fusion models used are over-complex for this

problem.

257



Chapter 8

Conclusions

8.1 Broad Conclusions.

This thesis examined a strategy for short-term load forecasting in Ireland. As
seen in Chapter 3, short-term load forecasting is a popular area of research and
there are a multitude of modelling approaches which have been proposed. In
addition, no single benchmark exists that would allow a comparison of these
approaches. Indeed, differences between electrical grid systems mean that the
choice of modelling approach is application specific. Thus, the overall tactic
taken in this thesis has been to identify the major choices facing a short-term load

forecaster, and identify the correct choice for Irish load data.

The first choice to be made was the level of disaggregation of the data (Section
3.2). Overall, it was found that the amount of data contained in each day-type
was sufficient to allow modelling of that day-type (Chapters 5, 6 and 7). With
some exceptions, the day-type partition was found to give the best results, while
alternative partition 1 (which partitioned the data by hour of the day only, i.e. no
day-types at all) led to significantly inferior model performance (Section 5.4.2.3).
Alternative partition 2 (which partitioned the data by hour of the day and
Saturday, Sunday and working day) removed the winter and summer part of the
day-type partition and led to good model performance in all day-types (Section
5.4.2.3). In addition, this partition was found to be superior when forecasting the

load in early winter.

Disaggregation of the data by hour of the day depends on whether there are
independent components in load at some hours of the day (Section 5.3).
Empirical evidence suggests that there is a case for modelling the hours of 5 p.m.
to 8 p.m. separately from other hours of the day as they have independent
components (Section 6.5). As these hours are the hours at which many people
return from work and use electrical appliances at home, it would seem that
electricity consumption at home is influenced by different factors than those for

other hours of the day. In general though, it was found that neither the parallel
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nor the sequential approach was best for all day-types or even for all hours of the
day. Rather, each day-type and each hour of the day have separate characteristics
which need to be taken into account when constructing models (more detail is

given in Section 8.3 below).

Linear and non-linear models were examined in Chapter 5. Empirical evidence
suggests that there is a non-linear relationship between Irish load and weather
variables and also a non-linear auto-regressive component (Section 5.8). This
suggests the use of non-linear models in short-term load forecasting can provide

considerable improvement on linear models.

Chapter 6 examined and extended the multi-timescale technique of Murray
(2000). This technique was found to work well during most hours of the day and
methods for estimating the weight matrix, used in the technique, were examined
(Section 6.4.1). A novel approach was proposed in which the weights could be
determined numerically and it was found that this approach gave excellent results
(Section 6.4.1). However, the MTS technique was susceptible to the way in
which the data was partitioned (Section 6.5) and perhaps a different means of
partitioning the data or adjustments to the technique could be examined. This is

an area of future research.

A novel view of the MTS technique was then presented in which the technique
was viewed as a régularisation term as opposed to a model combination
technique. It was seen that attempting to optimise the weight matrix estimates to
minimise the forecast error, while simultaneously attempting to minimise the
deviations (of the SM, cardinal point and end-sum forecasts from the MTS
forecasts), were conflicting objectives. A numerical approach solving this
conflicting objective was suggested and is left for future research. In addition, a

route is given for a derivation of a closed form solution.

Chapter 7 presented a fusion model which used a novel approach to minimise the
effect of weather forecast errors. This model is a generalisation of the model
proposed by Miyake et. al., (1995) but it not restricted in terms of the type of

model or the distributions of the weather forecast errors. The fusion model was
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found to give excellent load forecasts even in the presence of weather forecast
errors. The statistics of weather forecast errors in Ireland were also examined. It
was found, contrary to previous research in this area (Section 3.5), that weather
forecast error is not independently normally distributed, but has a structure. A
novel algorithm was presented which allows pseudo-weather forecasts to be

produced based on this structure.

8.2 Analysis of Models.

The parallel models are based on disaggregation of the load by hour of the day
and are found to give very good results in all day-types. This is partly due to the
nature of the partitioned series, which are constructed by taking a single hour
from each day-type. By taking a single hour from each day, the ‘shift’ in the
load, which gave rise to problems in the sequential and MTS models was avoided
(see Section 6.2.4). This is because the load at 3 p.m., for example, on a Friday is
similar to the load at 3 p.m. on the following Monday (the data point that would
come after the Friday load in a working data partitioned series). Also, the rise in

the trend component from Friday to Monday is negligible.

The input selection procedures for the parallel models were examined in Section
5.5.2. It was concluded that Method 2 was the best method. As explained in
Section 5.8, this is because there is correspondence between the frequency
information in the pre-whitened weather variables, the variance explained by
each transformed pre-whitened weather component and the correlation of the
weather inputs to the load. However, this correspondence is application specific

and so this technique may not work well in other situations.

The feed forward neural networks used in Section 5.7 were found to work well.

The following suggestions were noted during their construction:
e The topology determination technique used was very computationally

expensive and did not allow for non-fully connected architectures. This is an

area for future research,
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* Cross validation and early stopping improved network performance

considerably and should always be used,

* The multi-step ahead performance of the networks was found in most cases

to be stable, but this should be checked,

* Training several networks with different initial conditions is recommended,

as it allowed those that did not generalise well to be identified and discarded,

* Weighting the network errors during training to discount older data did not

bring about much improvement. This is also an area for future research,

» Using a single hidden layer resulted in relatively bad model performance and

* No discemable improvement resulted from the use of different activation

functions, contrary to the findings of Choueiki et. al. (1997).

The MTS models performed well in the working day day-types, but did not
compare well to the parallel models in the winter weekend day-types. The reason
for this poor performance lay with the way in which the data was partitioned,
which resulted in a ‘shift’ in the load (Section 6.5). It was found that the
sequential model had to be adjusted to account for this shift and that even then,

the MTS models performed badly in some day-types (Section 6.5).

The sequential model was found not to be very robust to ‘bad data’, or outliers in
the data set. During operation, an outlier tended to persist in the sequential model
forecasts for several days. Additionally, a ‘few’ outliers in the training set result
in underestimates of the seasonal component parameters. For these reasons, it is
proposed that research into a different model for the seasonal component be
pursued or that any application of this model should verify the data prior to using
it. In addition, the SSD algorithm for BSM parameter estimation (Section
3.3.2.4) should be used, as it allows the trend component parameters to be

estimated independent of any outliers in the data.
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Day-type

The fusion models were presented in Chapter 7. These were designed to
minimise the effect of weather forecast errors. The construction of each sub-
model is similar to that of a parallel model. However, the fusion approach may
be applied to other model types and requires only that the weather inputs be
separated from the auto-regressive inputs, at the sub-model stage. The non-linear
fusion algorithm was found to give no improvement over the linear fusion
algorithm. However, feed forward neural networks may not be the ideal
modelling technique for non-linear fusion. Fuzzy logic techniques combine the
output of several models and may thus be superior in this case. These are

suggested as an avenue of future research.

8.3 Recommendations and Caveats.

Figure 8.1 below, summarises the best models found for each day-type and hour

of the day.

Late winter Saturdays /

Summer Saturdays NNART

Early winter Saturdays N )

Late winter working days ! / N ’ f N
u

Summer working days NNARTS or MI'S MTS £ S< NNARTS  xf2
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Early winter working days :

R
Late winter Sundays .
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Summer Sundays j
Y J NNAR
Early winter Sundays NNART
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Hour of the day

Figure 8.1 An overview of the best model to use for each hour of the day in each day-type.

The following are recommendations for Eirgrid (project sponsors) regarding
construction of a load forecasting computer application and more generally

characteristics of Irish electrical load data:
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e The MTS and parallel models should both be used but at different times, as
indicated in Figure 8.1,

» The MTS technique combines the output of several models and thus requires
more development and maintenance costs. The use of the parallel models
alone will reduce load forecast accuracy slightly, but will be cheaper, less

time consuming and more robust to outliers/missing data,

e The loads between 5 p.m. and 8 p.m. have independent components, but are
still highly correlated with the load at other hours of the day. This means that
approaches which depend on forecasting the load using load curves are not

obsolete but need to have their forecasts at these hours adjusted,

* The non-linear parallel models are quite robust, but it is recommended that

they are retrained every year,

e The fusion model shows promise, but requires more research and weather

forecast data,

* There is no discemable cooling effect in Irish load although this situation

may change in the future, and

» Bank holidays and Sundays have similar load curves and should be modelled

together.

8.4 Future Research.

The following areas require further attention and are suggested as topics for

future research:

1. The level of day-type disaggregation. Disaggregation by day-type was
found, in general, to be advantageous. However, alternative partition 2
was found to be the best partition for early winter working days, but not
for summer working days or late winter working days (Section 5.4.2.3).
The day-type partitions and alternative partition 2 are overlapping sets

(Figure 8.2), yet empirical evidence suggests the use of both for different
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situations. The day-types were identified by dividing the output grid of a
Kohonen map (Section 4.2) into several non-overlapping sets (i.e. the
day-types) in Section 4.2. It may however, be fruitful to divide the output

grid into overlapping sets; this is an area for future research.

Late winter working days Summer working days

alternative partition 2-working days

Range of data sets

Figure 8.2 The overlap of alternative partition 2 and the working day day-types.

2. The non-linear parallel modelling technique. The feed forward neural
networks used to model the residual component in the parallel models
gave results superior to a linear model. In addition, these models provided
an appropriate tool to investigate a strategy for load forecasting in
Ireland. However, feed forward neural networks are just one type of non-

linear model, and there exist many others (as seen in Chapter 3),

3. A non-linear input selection and pre-processing procedure. The input
selection procedure relied on identifying those elements of the data that
were linearly correlated with the load. This procedure may have excluded
inputs which had a non-linear relationship with the load. Specifically,
non-linear PCA and Independent Component Analysis (ICA) are two
techniques which may provide better input selection. However, the
computational expense of any non-linear technique would have to be

taken into account,

4. Calculation of the weight matrix in the MTS technique. In Section
6.4.1 the importance of calculating W was demonstrated. A numerical
approach is given, but this approach is computationally expensive and
may not give an optimum result. In Section 6.4.2 a deterministic approach

was attempted and the route for a solution was given. This approach
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appears promising, but the equations became intractable quite early in the
derivation. It is suggested that a statistical approach based on the
expected value of the cost function would result in an easier formulation.
In addition, any solution from a statistical approach could lend itself

easily to a recursive solution.

Development of the fusion models. The fusion models attempt to
minimise the effect of weather forecast errors on load forecasts and are
also valid load forecasting models in their own right. Only two fusion
algorithms were examined for combining the sub-model forecasts and
more could be examined in future research. It was found during
development of the fusion models that when the weather based sub-model
forecasts deviated significantly from the auto-regressive sub-model
forecasts, the former were more accurate. However, this effect was not

consistent and requires more research,

Christmas and exceptional days. The Christmas period was not
examined in this thesis and a model for this period is required. Christmas
is distinct from all other day-types as each day in the period is
significantly different (i.e. the load on Christmas day is different from the
load on 2nd January, etc.). In addition the amount of data in the Christmas
day-type is limited and may benefit from inclusion of data outside the
day-type in a similar manner to the early winter day-types (Section

5.4.2.3), and

Multi-step ahead performance. The performance of models for a
forecast horizon of several days ahead was not examined in this thesis. It
is possible that different models may be superior for different forecast
horizons and also that weather forecasts for several days ahead will be

less accurate than twenty-four hour ahead weather forecasts.
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Appendix A

Dimension

I x|

I x1

I x1

nx 1

I X «

n*n
(n-r)x 1

rxl

(n-r x (n-r)

rx I
Ix(n-r)

\xr

(N+M+P)x 1
(N+M+P)xr
(N+M+P) x1
(N+M+P) x (N+M+P)
(N+M+P)x\
(N+M+P)xK
n-(rx K)
rxK
\x K

I x ~

Table of variables used in the multi-time scale technique.

Description
Length of the state vector 6(k)

Number of freed states of (KKk)

Load at time k

State vector at time k

Observation matrix

Transition matrix

Fixed states at time k

Freed states at time k

Partition of 0 for fixed states

Partition of O for freed states

Partition of H for fixed states

Partition of H for treed states

Number of points used in the smoothing constraint
Number of cardinal point forecasts used.

Number of end-sum forecasts used.

[“*cardinal point forecast

The distance from the forecasting origin to the
The deviation ofthe  cardinal point from the MTS
/I" end-sum forecast.

Length of the summations for end-sum model.

The deviation of ys from the summation ofthe MTS
The deviation of the state space model forecast at k+i
Left hand side of Equation 3.74.

1stterm on the right hand side of Equation 3.74.
Diagonal of weight vector.

Diagonal weight matrix.

Vector of deviations.

D) A2 A{K)\
@9 0.(2) e,(K>]
e;o0) e\(ii aim

Vector of actual loads
Vector of 1-step MTS load forecasts



Appendix B

Suggested derivation route for gradients used in the multi-time scale
technique.

From Section 6.4.2 the derivative of the MTS constraint with respect to the

weights may be expressed as:
f dC(n>) x
dw,
dC(w)

dc
(Mg - dw2 (B1)

dw
dC(w)
ydWNHVHp 7

The following gradient is now considered which is required in evaluating
Equation (BI):
3[17WBYrwEm™'B V ) BrWAK)+{BrWBr jfr'H?) (B2)
3W; dw, dw.

Using the following matrix gradient:

akl)=_x-gyxx-¢ (B3)
dz dz

where X is amatrix and z is a scalar, Equation (B2) becomes:

d"BTWB\ [B TWA(K))_
dw.

{BTWBY dB ~ (BTWBY BTWA() +{BTWBY * (B4)

Considering the partial derivative term in Equation (B4):

N —_ N —_
W B) =BT ) B=BBr (B5)
dw, dw:

where B, is the ithrow of B. The result above is obtained by noting that the result
of taking the partial derivative is a sparse matrix with an entry equal to one on

the zhdiagonal element:



3w,

O L]
dwj 0 0 0 0O 0 0 0 O
0 0 0 0 0 * 0 0
dw,
dw)_ v o 0 O =00 10 0 (B6)
dw, dw,
AWN+HVHP 0O 0 0 0o O

0 0 0 0
dw,

Substituting Equation (B5) into Equation (B4) gives:

d"BTWBY B TWA(K)) _
dwj

(BTWBY BiBtT{BTWBY BTWA{k) +[BTWBY BfB T (B7)

This may be rearranged to give:

B ~W bX BrwA(k)+l) (B8)
dw,

Equation (B1) is now reconsidered and expanding C(w) using Equation (6.13)

gives:
[e'l(i,w)-(b twbY B tWA(\))
2L w)-(btwbY BtWA(I)
dC(W) dWN+M+P
dwx 0%(1,w )-(btwbY B 7WA(2))
BC(>V) dw.
Q= dw2 (B9)
@2, W)- (b twbY btwa()
dC(w) dWN+M+P

A~ WN+M+P

d (fl2(1, w) - (btwbY BtWA(K))
ow

—-—--(el (1, w) - (b twbY B t WA(K))

N+M+P

dw
The partial differential of the constraint for time k with respect to weight i is now

considered:

— [el(k, w)-[b twbY B TWA(k))= d°2( — ~({b tWb }~1B tWA(k)) (B10)
dw, ' dw dw,

Equation (B.8) is then substituted into Equation (BIO) to give:



— fe (ktw)- (b tWb Y B TWA(k))=
dwt
de2(k,w) _(piWBy B'BjT((BTWBY BTWA(k)+I) (BII)
dwj
Finally the differential of the weight matrix with respect to the weights may be

expressed as:

ag;(I"'W) -{BtWB) ' BiBj7((BTWB)~I B TWA()+1)

d02(L, _{pTWBy BIBIT((BTWBY B TWA(\)+I)

dWN+M+P
do2(2,W) "~ 7WBy BB~ BTWBY b tWA(2)+i)
dw,
Q, = (B].Z)
de2( i , _"BrwBy BBr Br\WBy btwa(2)+i)
3w

N+M+P

do2(k ,w) (BTWBY b~AB"~WhbY BtWA(K)*+i)
dw.

d*-(Kw) _(btWBY B.BAB TWBY BtWA(K) +1)

UWN+M+P

The gradient of J(w) with respect to w is now considered. From Equation (6.12),

J(w) may be expressed as:

=t(y(.k)-y,, AK)Y (Bi3)

*-]
where the individual elements of y and y have been expanded in the
summation above. Differentiating J(w) with respect to  and noting that y is
fixed gives:

A =2y «¥W wt)Ir-()) (B14)
dw, k< dw,

From Equation (3.76) the MTS forecast may be expressed in terms of the altered

state vector as:



AW (B15)

ymK) = HO" () =[Hx H2

Taking the partial derivative of Equation (B15) with respect to w, gives:

M t (k)
JAW dw,
Ur, =\h, hr2 B16
dw, dw. [e'2(k) de{ (k) (B10)
dw,
Noting that 0\(k) is not a function of w, gives:
P = W2 MIk) =H (B17)
dw. dw, W,
Substituting Equation (B17) and into Equation (B 14) gives:
( k d0'(k)
2~ "H 2-~-(y{k)-H ~k)-H 2]{k))
%] ON
K do’ (k
di{w)  2£ //, — - )(.y(k)-HtO,(k)-H 0\(k)) (B18)
dw. *= ows
K 7)0" (k\
Zid H> 4w

At this point the mathematics was found to be intractable and a numerical

solution is proposed as mentioned in Section 6.4.2.



