2,549 research outputs found

    Wireless Communications in the Era of Big Data

    Full text link
    The rapidly growing wave of wireless data service is pushing against the boundary of our communication network's processing power. The pervasive and exponentially increasing data traffic present imminent challenges to all the aspects of the wireless system design, such as spectrum efficiency, computing capabilities and fronthaul/backhaul link capacity. In this article, we discuss the challenges and opportunities in the design of scalable wireless systems to embrace such a "bigdata" era. On one hand, we review the state-of-the-art networking architectures and signal processing techniques adaptable for managing the bigdata traffic in wireless networks. On the other hand, instead of viewing mobile bigdata as a unwanted burden, we introduce methods to capitalize from the vast data traffic, for building a bigdata-aware wireless network with better wireless service quality and new mobile applications. We highlight several promising future research directions for wireless communications in the mobile bigdata era.Comment: This article is accepted and to appear in IEEE Communications Magazin

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    Wearable technology: role in respiratory health and disease

    Get PDF
    In the future, diagnostic devices will be able to monitor a patient's physiological or biochemical parameters continuously, under natural physiological conditions and in any environment through wearable biomedical sensors. Together with apps that capture and interpret data, and integrated enterprise and cloud data repositories, the networks of wearable devices and body area networks will constitute the healthcare's Internet of Things. In this review, four main areas of interest for respiratory healthcare are described: pulse oximetry, pulmonary ventilation, activity tracking and air quality assessment. Although several issues still need to be solved, smart wearable technologies will provide unique opportunities for the future or personalised respiratory medicine

    Efficient radio resource management in next generation wireless networks

    Get PDF
    The current decade has witnessed a phenomenal growth in mobile wireless communication networks and subscribers. In 2015, mobile wireless devices and connections were reported to have grown to about 7.9 billion, exceeding human population. The explosive growth in mobile wireless communication network subscribers has created a huge demand for wireless network capacity, ubiquitous wireless network coverage, and enhanced Quality of Service (QoS). These demands have led to several challenging problems for wireless communication networks operators and designers. The Next Generation Wireless Networks (NGWNs) will support high mobility communications, such as communication in high-speed rails. Mobile users in such high mobility environment demand reliable QoS, however, such users are plagued with a poor signal-tonoise ratio, due to the high vehicular penetration loss, increased transmission outage and handover information overhead, leading to poor QoS provisioning for the networks' mobile users. Providing a reliable QoS for high mobility users remains one of the unique challenges for NGWNs. The increased wireless network capacity and coverage of NGWNs means that mobile communication users at the cell-edge should have enhanced network performance. However, due to path loss (path attenuation), interference, and radio background noise, mobile communication users at the cell-edge can experience relatively poor transmission channel qualities and subsequently forced to transmit at a low bit transmission rate, even when the wireless communication networks can support high bit transmission rate. Furthermore, the NGWNs are envisioned to be Heterogeneous Wireless Networks (HWNs). The NGWNs are going to be the integration platform of diverse homogeneous wireless communication networks for a convergent wireless communication network. The HWNs support single and multiple calls (group calls), simultaneously. Decision making is an integral core of radio resource management. One crucial decision making in HWNs is network selection. Network selection addresses the problem of how to select the best available access network for a given network user connection. For the integrated platform of HWNs to be truly seamless and efficient, a robust and stable wireless access network selection algorithm is needed. To meet these challenges for the different mobile wireless communication network users, the NGWNs will have to provide a great leap in wireless network capacity, coverage, QoS, and radio resource utilization. Moving wireless communication networks (mobile hotspots) have been proposed as a solution to providing reliable QoS to high mobility users. In this thesis, an Adaptive Thinning Mobility Aware (ATMA) Call Admission Control (CAC) algorithm for improving the QoS and radio resource utilization of the mobile hotspot networks, which are of critical importance for communicating nodes in moving wireless networks is proposed. The performance of proposed ATMA CAC scheme is investigated and compare it with the traditional CAC scheme. The ATMA scheme exploits the mobility events in the highspeed mobility communication environment and the calls (new and handoff calls) generation pattern to enhance the QoS (new call blocking and handoff call dropping probabilities) of the mobile users. The numbers of new and handoff calls in wireless communication networks are dynamic random processes that can be effectively modeled by the Continuous Furthermore, the NGWNs are envisioned to be Heterogeneous Wireless Networks (HWNs). The NGWNs are going to be the integration platform of diverse homogeneous wireless communication networks for a convergent wireless communication network. The HWNs support single and multiple calls (group calls), simultaneously. Decision making is an integral core of radio resource management. One crucial decision making in HWNs is network selection. Network selection addresses the problem of how to select the best available access network for a given network user connection. For the integrated platform of HWNs to be truly seamless and efficient, a robust and stable wireless access network selection algorithm is needed. To meet these challenges for the different mobile wireless communication network users, the NGWNs will have to provide a great leap in wireless network capacity, coverage, QoS, and radio resource utilization. Moving wireless communication networks (mobile hotspots) have been proposed as a solution to providing reliable QoS to high mobility users. In this thesis, an Adaptive Thinning Mobility Aware (ATMA) Call Admission Control (CAC) algorithm for improving the QoS and radio resource utilization of the mobile hotspot networks, which are of critical importance for communicating nodes in moving wireless networks is proposed

    Satellite Communications [Editorial]

    Get PDF
    YesWe are delighted to bring to you this special issue on satellite communications, which we have prepared as part of the spreading of excellence remit of the satellite communications network of excellence (SatNEx). The SatNEx project, which began in 2004, is funded for five years under the European UnionÂżs Sixth Framework Programme (FP6) Information Society Technologies (IST) Thematic Area. Led by the German Aerospace Center, SatNEx brings together a network of 24 partners, distributed throughout Europe, with membership drawn from ten countries. The philosophy underlying the SatNEx approach revolves around the selection of focused actions under Joint Programmes of Activities, which are carried out collectively by the partners and include research, integration, and dissemination activities. Training represents an important part of the SatNEx remit and is supported through a number of initiatives including the hosting of internship projects and an annual summer school. The call for papers resulted in a high number of submissions, from which we have been able to select 12 excellent papers dealing with the different aspects of satellite communications and navigation.European Unio

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems

    Spectrum Management using Markov Decision Processes

    Get PDF
    Abstract: The advent of cognitive radio technology has enabled dramatically more options in the use of RF spectrum, allowing multiple transmitters to effectively share spectrum in ways that were previously unavailable (either due to technical limitations or regulatory restrictions). In this dissertation, we investigate approaches to managing RF spectrum use, with a focus on combining multiple control decisions in a mutually beneficial manner. Our approach to making spectrum management decisions is grounded in Markov decision theory, which has a rich formal foundation and is frequently used to guide decision making in other disciplines. Here, we develop a set of Markov Decision Processes (MDPs) that model the RF spectrum management problem (in various forms). These MDPs are then queried to provide guidance for management decisions, including the combination of both admission and modulation decisions. This results in control decisions that are optimal in expectation. To address the computational complexity inherent in computing these control decisions, we develop heuristic approaches that mimic the MDP\u27s decisions based upon patterns observed in the MDP decision space. These heuristics are shown to closely approximate the optimal results from the MDP. Finally, we empirically assess the appropriateness of using Markov decision theory for RF spectrum management by comparing our MDPs to a discrete-event simulation model that relaxes several of the modeling assumptions made in the development of the MDPs
    • …
    corecore