1,049 research outputs found

    A CSMA/CA Based MAC Layer Solution for Inter-WBAN Interference and Starvation

    Get PDF
    With the advancement in wireless communication technologies, E-healthcare system has been proposed to deal with the issues such as inefficiency, high cost, and degradations in service quality in traditional health-care systems. Wireless Body Area Network (WBAN) is widely used in E-healthcare system as it provides continuous monitoring on physiological parameters. However, when two or more WBANs overlap with each other, there exists inter-WBAN interference. The inter-WBAN interference may cause transmission failures, which result in packet losses, throughput degradations, and energy wastes for energy limited sensors. This motivates us to develop a distributed CSMA/CA-based MAC protocol for inter-WBAN interference management. There are three challenges, namely, power optimization, protocol response time, and starvation in designing such a protocol. In this thesis, the power optimization challenge is overcome by an innovative WBAN system. To deal with the challenges in protocol response time and starvation, the proposed MAC protocol extends the CSMA/CA protocol with an adaptive transmission probability that uses frozen time as the adjustment criterion and a back-off counter adjustment mechanism that prioritizes the starving nodes. The proposed protocol achieves throughput improvement, starvation mitigation, and energy efficiency for sensors. Simulation results demonstrate the effectiveness of the proposed MAC protocol for health-care applications in scenarios such as having dinner at a round table or sitting in a hospital waiting room

    Machine Learning for Unmanned Aerial System (UAS) Networking

    Get PDF
    Fueled by the advancement of 5G new radio (5G NR), rapid development has occurred in many fields. Compared with the conventional approaches, beamforming and network slicing enable 5G NR to have ten times decrease in latency, connection density, and experienced throughput than 4G long term evolution (4G LTE). These advantages pave the way for the evolution of Cyber-physical Systems (CPS) on a large scale. The reduction of consumption, the advancement of control engineering, and the simplification of Unmanned Aircraft System (UAS) enable the UAS networking deployment on a large scale to become feasible. The UAS networking can finish multiple complex missions simultaneously. However, the limitations of the conventional approaches are still a big challenge to make a trade-off between the massive management and efficient networking on a large scale. With 5G NR and machine learning, in this dissertation, my contributions can be summarized as the following: I proposed a novel Optimized Ad-hoc On-demand Distance Vector (OAODV) routing protocol to improve the throughput of Intra UAS networking. The novel routing protocol can reduce the system overhead and be efficient. To improve the security, I proposed a blockchain scheme to mitigate the malicious basestations for cellular connected UAS networking and a proof-of-traffic (PoT) to improve the efficiency of blockchain for UAS networking on a large scale. Inspired by the biological cell paradigm, I proposed the cell wall routing protocols for heterogeneous UAS networking. With 5G NR, the inter connections between UAS networking can strengthen the throughput and elasticity of UAS networking. With machine learning, the routing schedulings for intra- and inter- UAS networking can enhance the throughput of UAS networking on a large scale. The inter UAS networking can achieve the max-min throughput globally edge coloring. I leveraged the upper and lower bound to accelerate the optimization of edge coloring. This dissertation paves a way regarding UAS networking in the integration of CPS and machine learning. The UAS networking can achieve outstanding performance in a decentralized architecture. Concurrently, this dissertation gives insights into UAS networking on a large scale. These are fundamental to integrating UAS and National Aerial System (NAS), critical to aviation in the operated and unmanned fields. The dissertation provides novel approaches for the promotion of UAS networking on a large scale. The proposed approaches extend the state-of-the-art of UAS networking in a decentralized architecture. All the alterations can contribute to the establishment of UAS networking with CPS

    MATCOS-10

    Get PDF

    Understanding and Adapting to Crowd Behavior: A Study of Wireless Networks and Entrepreneurial Crowdfunding

    Get PDF
    Title from PDF of title page viewed August 27, 2018Dissertation advisor: Cory BeardVitaIncludes bibliographical references (pages 119-138)Thesis (Ph.D.)--School of Computing and Engineering and Bloch School of Management. University of Missouri--Kansas City, 2018The advances of the future will demand scholars have a systemic vision to solve problems. Integration across disciplines is needed to study, explain, inquire and discover beyond the traditional borders of academic areas. In this research,we consider the effects of crowd behavior in wireless networks and funding. First,we seek to demonstrate how to improve the allocation of wireless network resources based on the use of aggregate data from crowds’ mobile phones and dynamically improve the wireless network around them. The data is used to develop an optimization allowing a more efficient management of the network. Second,using tool sets from engineering and entrepreneurship,we study the interaction of herding and speed to goal towards success on the crowdfunding environment using the liability of newness as a theoretical lens. Finally, we advance entrepreneurial crowdfunding literature through developing a new framework to understand the different paths to success. One of the challenges of deploying dense networks is unpredicted human mobility behavior. Today, the static allocation of carriers results in a suboptimal use of spectrum resources. In this essay, we introduce the concept of Dynamic Carrier Allocation as the ability of dynamically move carriers from one cell to another based on the demand. Simulation results demonstrate on average 25% higher efficiency when compared with the previous static allocation schemes. Crowdfunding has become a popular substitute for traditional sources of funding for new ventures. While some research has been done to explain the reasons an entrepreneur is successful in this environment, the understanding of the interaction between the early and late stages of the campaign still cloudy. In this essay, we use the liability of newness theory and over 2,400 crowdfunding projects to discuss the connection between the timing of the herding effect and the speed in which the campaign is funded. We also look how the size of the goal moderates this effect. Then, we propose a taxonomy for the different paths towards crowdfunding success. The conceptual and empirical findings of this work extend our understanding of entrepreneurial legitimacy and the roles played by early stage funding strategies in overcoming internal and external liabilities of newness.Introduction -- Optimal dynamic carrier allocation for future wireless networks -- Alternative pathways to succeed in rewards-based crowd-funding campaigns -- Conclusion and future research -- Appendix A.Mathematical justification of efficiency distribution -- Appendix B. Tutorial in Web scraping kickstarte

    A Comprehensive Survey of the Tactile Internet: State of the art and Research Directions

    Get PDF
    The Internet has made several giant leaps over the years, from a fixed to a mobile Internet, then to the Internet of Things, and now to a Tactile Internet. The Tactile Internet goes far beyond data, audio and video delivery over fixed and mobile networks, and even beyond allowing communication and collaboration among things. It is expected to enable haptic communication and allow skill set delivery over networks. Some examples of potential applications are tele-surgery, vehicle fleets, augmented reality and industrial process automation. Several papers already cover many of the Tactile Internet-related concepts and technologies, such as haptic codecs, applications, and supporting technologies. However, none of them offers a comprehensive survey of the Tactile Internet, including its architectures and algorithms. Furthermore, none of them provides a systematic and critical review of the existing solutions. To address these lacunae, we provide a comprehensive survey of the architectures and algorithms proposed to date for the Tactile Internet. In addition, we critically review them using a well-defined set of requirements and discuss some of the lessons learned as well as the most promising research directions

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Game-Theoretic Frameworks and Strategies for Defense Against Network Jamming and Collocation Attacks

    Get PDF
    Modern networks are becoming increasingly more complex, heterogeneous, and densely connected. While more diverse services are enabled to an ever-increasing number of users through ubiquitous networking and pervasive computing, several important challenges have emerged. For example, densely connected networks are prone to higher levels of interference, which makes them more vulnerable to jamming attacks. Also, the utilization of software-based protocols to perform routing, load balancing and power management functions in Software-Defined Networks gives rise to more vulnerabilities that could be exploited by malicious users and adversaries. Moreover, the increased reliance on cloud computing services due to a growing demand for communication and computation resources poses formidable security challenges due to the shared nature and virtualization of cloud computing. In this thesis, we study two types of attacks: jamming attacks on wireless networks and side-channel attacks on cloud computing servers. The former attacks disrupt the natural network operation by exploiting the static topology and dynamic channel assignment in wireless networks, while the latter attacks seek to gain access to unauthorized data by co-residing with target virtual machines (VMs) on the same physical node in a cloud server. In both attacks, the adversary faces a static attack surface and achieves her illegitimate goal by exploiting a stationary aspect of the network functionality. Hence, this dissertation proposes and develops counter approaches to both attacks using moving target defense strategies. We study the strategic interactions between the adversary and the network administrator within a game-theoretic framework. First, in the context of jamming attacks, we present and analyze a game-theoretic formulation between the adversary and the network defender. In this problem, the attack surface is the network connectivity (the static topology) as the adversary jams a subset of nodes to increase the level of interference in the network. On the other side, the defender makes judicious adjustments of the transmission footprint of the various nodes, thereby continuously adapting the underlying network topology to reduce the impact of the attack. The defender\u27s strategy is based on playing Nash equilibrium strategies securing a worst-case network utility. Moreover, scalable decomposition-based approaches are developed yielding a scalable defense strategy whose performance closely approaches that of the non-decomposed game for large-scale and dense networks. We study a class of games considering discrete as well as continuous power levels. In the second problem, we consider multi-tenant clouds, where a number of VMs are typically collocated on the same physical machine to optimize performance and power consumption and maximize profit. This increases the risk of a malicious virtual machine performing side-channel attacks and leaking sensitive information from neighboring VMs. The attack surface, in this case, is the static residency of VMs on a set of physical nodes, hence we develop a timed migration defense approach. Specifically, we analyze a timing game in which the cloud provider decides when to migrate a VM to a different physical machine to mitigate the risk of being compromised by a collocated malicious VM. The adversary decides the rate at which she launches new VMs to collocate with the victim VMs. Our formulation captures a data leakage model in which the cost incurred by the cloud provider depends on the duration of collocation with malicious VMs. It also captures costs incurred by the adversary in launching new VMs and by the defender in migrating VMs. We establish sufficient conditions for the existence of Nash equilibria for general cost functions, as well as for specific instantiations, and characterize the best response for both players. Furthermore, we extend our model to characterize its impact on the attacker\u27s payoff when the cloud utilizes intrusion detection systems that detect side-channel attacks. Our theoretical findings are corroborated with extensive numerical results in various settings as well as a proof-of-concept implementation in a realistic cloud setting

    Swarm intelligence techniques for optimization and management tasks insensor networks

    Get PDF
    The main contributions of this thesis are located in the domain of wireless sensor netorks. More in detail, we introduce energyaware algorithms and protocols in the context of the following topics: self-synchronized duty-cycling in networks with energy harvesting capabilities, distributed graph coloring and minimum energy broadcasting with realistic antennas. In the following, we review the research conducted in each case. We propose a self-synchronized duty-cycling mechanism for sensor networks. This mechanism is based on the working and resting phases of natural ant colonies, which show self-synchronized activity phases. The main goal of duty-cycling methods is to save energy by efficiently alternating between different states. In the case at hand, we considered two different states: the sleep state, where communications are not possible and energy consumption is low; and the active state, where communication result in a higher energy consumption. In order to test the model, we conducted an extensive experimentation with synchronous simulations on mobile networks and static networks, and also considering asynchronous networks. Later, we extended this work by assuming a broader point of view and including a comprehensive study of the parameters. In addition, thanks to a collaboration with the Technical University of Braunschweig, we were able to test our algorithm in the real sensor network simulator Shawn (http://shawn.sf.net). The second part of this thesis is devoted to the desynchronization of wireless sensor nodes and its application to the distributed graph coloring problem. In particular, our research is inspired by the calling behavior of Japanese tree frogs, whose males use their calls to attract females. Interestingly, as female frogs are only able to correctly localize the male frogs when their calls are not too close in time, groups of males that are located nearby each other desynchronize their calls. Based on a model of this behavior from the literature, we propose a novel algorithm with applications to the field of sensor networks. More in detail, we analyzed the ability of the algorithm to desynchronize neighboring nodes. Furthermore, we considered extensions of the original model, hereby improving its desynchronization capabilities.To illustrate the potential benefits of desynchronized networks, we then focused on distributed graph coloring. Later, we analyzed the algorithm more extensively and show its performance on a larger set of benchmark instances. The classical minimum energy broadcast (MEB) problem in wireless ad hoc networks, which is well-studied in the scientific literature, considers an antenna model that allows the adjustment of the transmission power to any desired real value from zero up to the maximum transmission power level. However, when specifically considering sensor networks, a look at the currently available hardware shows that this antenna model is not very realistic. In this work we re-formulate the MEB problem for an antenna model that is realistic for sensor networks. In this antenna model transmission power levels are chosen from a finite set of possible ones. A further contribution concerns the adaptation of an ant colony optimization algorithm --currently being the state of the art for the classical MEB problem-- to the more realistic problem version, the so-called minimum energy broadcast problem with realistic antennas (MEBRA). The obtained results show that the advantage of ant colony optimization over classical heuristics even grows when the number of possible transmission power levels decreases. Finally we build a distributed version of the algorithm, which also compares quite favorably against centralized heuristics from the literature.Las principles contribuciones de esta tesis se encuentran en el domino de las redes de sensores inalámbricas. Más en detalle, introducimos algoritmos y protocolos que intentan minimizar el consumo energético para los siguientes problemas: gestión autosincronizada de encendido y apagado de sensores con capacidad para obtener energía del ambiente, coloreado de grafos distribuido y broadcasting de consumo mínimo en entornos con antenas reales. En primer lugar, proponemos un sistema capaz de autosincronizar los ciclos de encendido y apagado de los nodos de una red de sensores. El mecanismo está basado en las fases de trabajo y reposo de las colonias de hormigas tal y como estas pueden observarse en la naturaleza, es decir, con fases de actividad autosincronizadas. El principal objectivo de este tipo de técnicas es ahorrar energía gracias a alternar estados de forma eficiente. En este caso en concreto, consideramos dos estados diferentes: el estado dormido, en el que los nodos no pueden comunicarse y el consumo energético es bajo; y el estado activo, en el que las comunicaciones propician un consumo energético elevado. Con el objetivo de probar el modelo, se ha llevado a cabo una extensa experimentación que incluye tanto simulaciones síncronas en redes móviles y estáticas, como simulaciones en redes asíncronas. Además, este trabajo se extendió asumiendo un punto de vista más amplio e incluyendo un detallado estudio de los parámetros del algoritmo. Finalmente, gracias a la colaboración con la Technical University of Braunschweig, tuvimos la oportunidad de probar el mecanismo en el simulador realista de redes de sensores, Shawn (http://shawn.sf.net). La segunda parte de esta tesis está dedicada a la desincronización de nodos en redes de sensores y a su aplicación al problema del coloreado de grafos de forma distribuida. En particular, nuestra investigación está inspirada por el canto de las ranas de árbol japonesas, cuyos machos utilizan su canto para atraer a las hembras. Resulta interesante que debido a que las hembras solo son capaces de localizar las ranas macho cuando sus cantos no están demasiado cerca en el tiempo, los grupos de machos que se hallan en una misma región desincronizan sus cantos. Basado en un modelo de este comportamiento que se encuentra en la literatura, proponemos un nuevo algoritmo con aplicaciones al campo de las redes de sensores. Más en detalle, analizamos la habilidad del algoritmo para desincronizar nodos vecinos. Además, consideramos extensiones del modelo original, mejorando su capacidad de desincronización. Para ilustrar los potenciales beneficios de las redes desincronizadas, nos centramos en el problema del coloreado de grafos distribuido que tiene relación con diferentes tareas habituales en redes de sensores. El clásico problema del broadcasting de consumo mínimo en redes ad hoc ha sido bien estudiado en la literatura. El problema considera un modelo de antena que permite transmitir a cualquier potencia elegida (hasta un máximo establecido por el dispositivo). Sin embargo, cuando se trabaja de forma específica con redes de sensores, un vistazo al hardware actualmente disponible muestra que este modelo de antena no es demasiado realista. En este trabajo reformulamos el problema para el modelo de antena más habitual en redes de sensores. En este modelo, los niveles de potencia de transmisión se eligen de un conjunto finito de posibilidades. La siguiente contribución consiste en en la adaptación de un algoritmo de optimización por colonias de hormigas a la versión más realista del problema, también conocida como broadcasting de consumo mínimo con antenas realistas. Los resultados obtenidos muestran que la ventaja de este método sobre heurísticas clásicas incluso crece cuando el número de posibles potencias de transmisión decrece. Además, se ha presentado una versión distribuida del algoritmo, que también se compara de forma bastante favorable contra las heurísticas centralizadas conocidas
    corecore