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ABSTRACT

Modern networks are becoming increasingly more complex, heterogeneous, and densely con-

nected. While more diverse services are enabled to an ever-increasing number of users through

ubiquitous networking and pervasive computing, several important challenges have emerged. For

example, densely connected networks are prone to higher levels of interference, which makes them

more vulnerable to jamming attacks. Also, the utilization of software-based protocols to perform

routing, load balancing and power management functions in Software-Defined Networks gives rise

to more vulnerabilities that could be exploited by malicious users and adversaries. Moreover, the

increased reliance on cloud computing services due to a growing demand for communication and

computation resources poses formidable security challenges due to the shared nature and virtu-

alization of cloud computing. In this thesis, we study two types of attacks: jamming attacks on

wireless networks and side-channel attacks on cloud computing servers. The former attacks disrupt

the natural network operation by exploiting the static topology and dynamic channel assignment in

wireless networks, while the latter attacks seek to gain access to unauthorized data by co-residing

with target virtual machines (VMs) on the same physical node in a cloud server. In both attacks, the

adversary faces a static attack surface and achieves her illegitimate goal by exploiting a stationary

aspect of the network functionality. Hence, this dissertation proposes and develops counter ap-

proaches to both attacks using moving target defense strategies. We study the strategic interactions

between the adversary and the network administrator within a game-theoretic framework.

First, in the context of jamming attacks, we present and analyze a game-theoretic formulation

between the adversary and the network defender. In this problem, the attack surface is the network

connectivity (the static topology) as the adversary jams a subset of nodes to increase the level of

interference in the network. On the other side, the defender makes judicious adjustments of the

transmission footprint of the various nodes, thereby continuously adapting the underlying network
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topology to reduce the impact of the attack. The defender’s strategy is based on playing Nash

equilibrium strategies securing a worst-case network utility. Moreover, scalable decomposition-

based approaches are developed yielding a scalable defense strategy whose performance closely

approaches that of the non-decomposed game for large-scale and dense networks. We study a class

of games considering discrete as well as continuous power levels.

In the second problem, we consider multi-tenant clouds, where a number of VMs are typically

collocated on the same physical machine to optimize performance and power consumption and

maximize profit. This increases the risk of a malicious virtual machine performing side-channel

attacks and leaking sensitive information from neighboring VMs. The attack surface, in this case,

is the static residency of VMs on a set of physical nodes, hence we develop a timed migration

defense approach. Specifically, we analyze a timing game in which the cloud provider decides

when to migrate a VM to a different physical machine to mitigate the risk of being compromised

by a collocated malicious VM. The adversary decides the rate at which she launches new VMs

to collocate with the victim VMs. Our formulation captures a data leakage model in which the

cost incurred by the cloud provider depends on the duration of collocation with malicious VMs.

It also captures costs incurred by the adversary in launching new VMs and by the defender in

migrating VMs. We establish sufficient conditions for the existence of Nash equilibria for general

cost functions, as well as for specific instantiations, and characterize the best response for both

players. Furthermore, we extend our model to characterize its impact on the attacker’s payoff

when the cloud utilizes intrusion detection systems that detect side-channel attacks. Our theoretical

findings are corroborated with extensive numerical results in various settings as well as a proof-of-

concept implementation in a realistic cloud setting.
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CHAPTER 1: INTRODUCTION

Networks are now densely connected and heterogeneous to enable more services to an ever-

increasing number of users. For instance, modern networks connect computers with different

operating systems and protocols, wireless networks accommodate different access technologies

and are able to provide services through a Wi-Fi LAN or through a cellular network as in heteroge-

neous wireless networks. Moreover, an increasing number of devices are being added to networks

everyday. For example, the deployment of wireless-enabled devices (e.g., Internet of Things, wear-

ables, etc.) has made our networks larger and denser. Hence, networks are prone to higher levels

of interference, which makes them more vulnerable to jamming attacks. To accommodate such

growth under spectrum constraints, significant research efforts focused on developing spectrum

management techniques through the use of Software Defined Networks (SDNs), Network Func-

tion Virtualization (NFV), and Cognitive Radios (CR) to improve the spectrum utilization. These

techniques rely on sensing the current conditions (e.g., channels used, transmission power, inter-

ference levels, etc.) and dynamically making the appropriate allocation decisions. Current Access

Points (APs) can dynamically select their channels and their transmission ranges to minimize in-

terference with surrounding APs in wireless mesh networks (e.g., Cisco’s Transmit Power Control)

[1]. The shared nature of wireless communication, however, has made many of the above tech-

niques susceptible to attacks.

SDNs seek to separate network control functions from network forwarding functions, while NFV

seeks to abstract network forwarding and other networking functions from the hardware on which

it runs. Thus, both depend heavily on virtualization to enable network design and infrastructure

to be abstracted in software and then implemented by the underlying software across hardware

platforms and devices [2].
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When SDNs execute on an NFV infrastructure, SDNs forward data packets from one network

device to another. At the same time, SDNs’ networking control functions for routing, policy defi-

nition and applications run in a virtual Machine (VM) somewhere on the network. Thus, NFV pro-

vides basic networking functions, while SDNs control and orchestrate them for specific uses. SDNs

further allow configuration and behavior to be programmatically defined and modified. These new

technologies are now replacing the infrastructure of traditional communication networks. How-

ever, it has led to a new set of vulnerabilities and security holes due to the reactive and dynamic

nature of frequency assignment and power management protocols. Therefore, we shed more light

on attackers’ techniques first and how they exploit such vulnerabilities, then we propose effective

remedies to those attacks.

Moreover, the growing usage of virtualization have increased the number of security issues in

future networks. Therefore, security challenges in cloud servers are getting more attention. Virtu-

alization is one of the main components of a cloud. But this poses major security risks. Ensuring

that different instances running on the same physical machine are isolated from each other is a

major task of virtualization which is not guaranteed completely in existing platforms [3]. In this

thesis, we focus on the issue of collocation between neighboring VMs in public cloud servers and

how to overcome possible collocation attacks. Before we delve into the detailed contributions of

this dissertation, we first put our work into the context of cyber science.

1.1 Science of Cybersecurity

The annual Data Breach Investigations Report (DBIR) issued by Verizon Inc reported more than

53,000 security related incidents and 2,216 confirmed data breaches in the year 2018. Although

76% of the crimes were financially motivated, 58% of the victims were small businesses and 25%

of the targets were healthcare organizations. Since people are becoming increasingly aware of
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unsafe emails, attacks caused by malware went down from 50% in 2017 to 30% in 2018. However,

the total number of security incidents and data breaches is increasing which poses more challenges

to network and system administrators regarding how to secure their database servers and in case of

being under attack, how to mitigate the effects of such attacks.

The domain of science of cybersecurity comprises phenomena that involve malicious agents used

to hack and damage a network of computing devices to perform actions desired by the attacker

and generally contrary to the intent (the policy) of the network administrator (the defender). More

specifically, the objects of research in cybersecurity can be summarized into:

• An attacker or (a set of colluding attackers) along with the attacker’s tools and techniques

(set of actions)

• A network defender with a set of defensive tools and actions

• The operational assets, networks and systems, which represent the target of the attacker.

• A set of defender’s assertions or requirements about what events should and should not

happen. To simplify, we may focus on cyber incidents and events that should not occur [4].

The science of cybersecurity develops a coherent family of models of relations between attributes,

structures and dynamics of: violations of cybersecurity policy; the network of computing devices

under attack; the defenders’ tools and techniques; and the attackers’ tools and techniques where

malicious software plays the central role.

For example, in the intrusion detection problem we seek to derive the best response actions for the

defender given the system status, actions taken by the adversary and the set of unwanted events. In

other words, the goal is to find defense techniques that detect certain types of malicious activities

which affect certain networked system, and result in some undesired cyber incidents.
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Another field of study within the science of cybersecurity is to assess the network vulnerabilities.

In this case, the goal is to identify the weaknesses of the system and the structures of the network

with respect to the defender given the possible actions that can be taken by an attacker.

In this thesis we focus mainly on deriving defensive techniques and securing actions to protect

wireless networks and cloud servers against jamming and collocation attacks, respectively.

1.2 Attack Surface

In the domain of software security, the attack surface of a software environment is the collection

of points through which an unauthorized user (the attacker) can try to enter data to, or extract data

from, an environment. Hence, security experts aim to reduce the attack surface. In this thesis, we

use the same notion of attack surface to represent the main points that the attacker is exploiting

within the network to disrupt the natural operation of the network. Specifically, we investigate two

attack scenarios that have the same attack surface nature as explained next.

We study two types of attacks: jamming attacks on wireless networks and side-channel attacks

on cloud networks. The former attacks disrupt the natural network operation by exploiting the

static topology and dynamic channel assignment in wireless networks, while the latter attacks

seek to gain access to unauthorized data by co-residing with target VMs on the same physical

node in a cloud network. In both attacks, the adversary exploits a fixed or static attack surface

and achieves her illegitimate goal by exploiting a stationary aspect of the network functionality.

Hence, this dissertation proposes and develops counter approaches to both attacks using Moving

Target Defense (MTD) strategies to shift and modify the attack surface periodically. We study the

strategic interactions between the adversary and the network administrator within a game-theoretic

framework.
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1.3 Defense Strategies

The most common and widely implemented reactive defense approach is the Intrusion Detecction

and Prevention system (IDPS). Such systems analyze the behavior of the users online and capture

anomalies and malicious activities as a reactive defense mechanism. However, the network ad-

ministrator needs to develop defense strategies in order to prevent and mitigate the effects of those

attacks and keep hold of the network resources until the IDPS identifies the malicious user and

knocks her out of the network. To defend against an attacker who is exploiting the static nature of

the network’s attack surface, we rely on Moving Target Defense (MTD) strategies as a proactive

defense technique to change the attack surface of the system over time. In this case, the defender

continuously moves the attack surface and controls the network resources in order to mitigate the

damage of the attack and alter any prior knowledge that the attacker may have obtained. As a re-

sult, the adversary attacks the network based on outdated information, or instead spends additional

time to monitor the system before launching another attack. In order to understand the strategic

interactions between the attacker and the system’s defender we develop a game-theoretic frame-

work between the two players. This thesis studies the trade-offs between the direct impact of the

aforementioned attacks and the attack cost incurred by the adversary.

Next, we introduce the standard definition of normal form games which are commonly used to

model security games in networks and systems.

1.4 Game Theory

Game theory can be defined as the study of mathematical models of conflict and cooperation

between intelligent rational decision-makers. It provides general mathematical techniques for ana-

lyzing situations in which two or more individuals make decisions that will influence one another’s
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welfare. As such, it offers insights of fundamental importance for researchers in several branches

of science as well as for practical decision-making [5]. Game theory is widely adopted by the en-

gineering community as a distributed optimization and control framework for networked systems,

partly for taking into account preferences of individual users, who share and compete for system

resources. Resting upon a rich mathematical foundation, game theoretical approaches, especially

strategic (non-cooperative) games, have been valuable for the analysis and design of various re-

source allocation protocols in wireless and wired networks. Problems such as rate control, inter-

ference management, and power control (e.g. in wireless and optical networks), for example, have

been investigated using game theoretical methods.

A non-cooperative game is a game with competition between individual players and in which only

self-enforcing alliances are possible due to the absence of external means to enforce cooperative

behavior. This is in contrast to cooperative games, which allow for external enforcement of co-

operative behavior. Cooperative games focus on predicting which coalitions will form, what the

possible joint group actions are, and the resulting collective payoffs. On the other hand, non-

cooperative game theory focuses on predicting individual players’ actions and payoffs. Players are

aware of the fact that the outcome of the game is affected by each individual in the game. One

of the principal assumptions in game theory is that all players are rational, which means that they

have well defined objectives over the set of all possible actions of the game and would implement

the best available strategy to pursue those objectives.

To study the strategic interactions between attackers and defenders, game theory has provided a

rigorous framework to model the strategies of each player and has been instrumental in advancing

the state-of-the-art in various security areas. In the following chapters of this dissertation, we

present different classes of games. These games are classified according to the type of the players’

action space (e.g, continuous or discrete). Also, those games can fall into one of two categories,

static or dynamic games depending on whether they are played in one shot or sequentially.
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1.4.1 Normal Form Game

Also called Strategic Form Game, a normal formal game is defined as a triple Γ(K,A,R)

• K is a finite set of players.

• A = A1 × A2 × ... × A|K| is the action profile of the game defined as the product of the

action space of all players.

• R = {R1, R2, ..., R|K|} is the reward (payoff) function, where the reward of the ith player is

Ri : A → R.

A joint action is a = (a1, a2, ..., aK), where K = |K| is also known as strategy profile. A best

response is the strategy which maximizes the outcome of a player in response to certain actions

taken by his opponents. In other words, for a fixed collection of other players strategies a−i, a

strategy ai played by the ith player is a best response if,

Ri(ai, a−i) ≥ Ri(a
′
i, a−i) , ∀ a′i ∈ Ai. (1.1)

Definition 1. In an N-person nonzero sum game, let ui(a1, . . . , ai, . . . , aN) be the utility func-

tion of player i. For each player i ∈ {1, . . . , N}, assume that the maximum of ui with re-

spect to ai ∈ Ai can be attained for any players’ action profile a−i ∈ A−i, where a−i :=

{a1, . . . , ai−1, ai+1, . . . , aN} and A−i ≡ A1 × . . . × Ai−1 × Ai+1 × . . . × AN . Then, the set

Ri(a−i) ⊂ Ai defined by

ui(a−i) = {ζ ∈ Ai : ui(ζ, a−i) ≥ ui(ai, a−i), ∀ai ∈ Ai} ,

is called the optimal (or best) response of player i. If ui is a singleton for every a−i ∈ A−i, then it
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is called the reaction curve [6, 7].

1.4.2 Nash Equilibrium

Nash equilibrium (NE) is a strategy profile such that each strategy is a best response (maximizes

payoff) to all the other strategies. An outcome a∗ = (a∗1, a
∗
2, ..., a

∗
K) is a NE if for each player

i ∈ K,

Ri(a
∗
i , a
∗
−i) ≥ Ri(ai, a

∗
−i) ∀ ai ∈ Ai (1.2)

Accordingly, it follows from the definition of a NE (in that no player can gain by a unilateral

change of strategy if the strategies of the other players remain unchanged) that the intersection

points of the best responses are NE. Hence, NE is considered self-enforcing in the sense that no

player has an incentive to deviate unilaterally.

1.5 Contributions

Finally, we state the main contributions of our dissertation:

• In a wireless network setting, we characterize a new type of jamming attacks and propose

defense strategies.

– We characterize a new type of attack strategy (aka pinball attacks) that aims to induce a

cascading channel switching behavior exploiting the adaptive nature of Dynamic Chan-

nel Assignment (DCA) algorithms and the connectivity of the wireless nodes. We show

that the attacker can solve an MDP to maximize the expected long-term reward.

– We develop suboptimal attack policies by judiciously choosing representative features

8



in an approximate dynamic programming framework to deal with the explosion of the

state space.

– We devise approximations to scale the policies learned for simple topologies to larger

size networks with repeated structures.

– We study two general setups (node and edge centric) and establish a duality principle,

namely, pinball attack policies learned for one setup can be directly mapped to attack

policies on the other.

– We conduct an extensive numerical evaluation to study the impact of pinball attacks

on various network topologies in different scenarios, including a wireless network of

APs deployed in a commercial building. Our results demonstrate that pinball attacks

can cause significantly more damage than other attack policies even on large scale

networks.

– We develop a unified game-theoretic formulation in which the defender simultaneously

adapts the footprint of N wireless nodes to maximize his utility against a jamming

adversary who selects a node (or a subset of nodes) to jam to increase the degree of

interference between nodes. We consider various cases of the action spaces of the

players (e.g., binary, discrete based on multiple power levels and continuous). In all

these cases, we consider a zero-sum game parameterized by an “attack-cost” metric

that captures the risk of exposure for the adversary, a “coverage” metric or constraint

that captures the level of service that needs to be maintained by the defender (e.g.,

preventing nodes from having too small of footprints that they do not become useful),

and a measure of the “attack-impact” on the network due to the action of the jammer.

This formulation is very different from previous work in this area that typically consider

the defender as a single sender-receiver pair along with a jamming attacker [8, 9].

In particular, our formulations capture the dependencies between neighboring nodes
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resulting in coupled optimization problems that we solve efficiently.

– In addition we develop concrete decomposition approaches (c.f. Section 3.3.1.1, 3.3.1.2)

to obtain scalable defense strategies which are applicable to large networks. Due to the

combinatorial nature of the action space for the defender (e.g., selecting the footprint of

N nodes based on just two transmission power levels is 2N ), finding optimal strategies

for large networks is computationally prohibitive for the discrete control set settings

considered. In the decomposition-based approach, we developed two novel techniques:

1. We decompose the game into N sub-games, one for each AP. We solve a sub-

game for each AP assuming a worst-case scenario for the defender based on the

state of the surrounding nodes. Solutions for the sub-games are combined to yield

a global tractable and scalable mixed-strategy that well approximates the optimal

best response strategy based on the non-decomposed game.

2. We consider progressive games in which we sequentially solve small sub-games

per node according to a predefined ordering of the nodes. The footprints obtained

for a node and its neighbors are leveraged and fed to subsequent sub-games until

all nodes are exhausted to obtain a solution for the game.

3. We consider a discrete action space with multiple power levels and explicit cover-

age constraints. To address complexity, we optimize over marginal strategies that

satisfy local and global coverage constraints to ensure network dependability (c.f.

Section 3.3.2). Then, we show that the obtained marginalized strategy is imple-

mentable, i.e, can be expressed as a convex combination of the pure actions of the

defender.

– Moreover, we consider a continuous version of the game wherein the utility function is

redefined in terms of the continuous domain of the node and jamming power distribu-

tion. We prove that this setting admits a unique pure strategy NE.
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– We support our findings with results from a real network topology consisting of 28

nodes deployed in a 3-floor academic building, in addition to results from extensive

simulation studies based on “building-block” topologies. We evaluate the performance

of our defense strategies played against various adversaries (e.g., random, rational,

computationally unrestrained, greedy) and demonstrate their effectiveness.

• In a cloud network setting, we develop timely migration defense approach to secure VMs

running on public clouds against side channel attacks. The proposed approach is based on

moving target defense strategy.

– We provide a new game-theoretic formulation for the VM collocation timing problem.

We do not assume the defender has prior knowledge of the exact location of the attacker,

thereby allowing for realistic threat and defense models. The defender has to migrate

the VMs at the right time(s) to defend against malicious collocating users.

– We analytically characterize the NE for the studied game model and derive sufficient

existence conditions.

– We study the behavior of the adversary when the defender adopts an intrusion detection

system (IDS). In this case, the adversary not only takes attack actions, but also decides

when to stop her attack to reduce the risk of being detected.

– We provide extensive numerical experiments to support our theoretical findings. In our

numerical evaluation, we consider several reward functions to reflect the degree of the

attack and the severity of the data breach. As a proof of concept, we also implement

the migration defense approach on a realistic cloud setup using the Xen hypervisor.
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1.6 Organization

This dissertation is organized as follows: A motivational security problem is proposed in Chapter

2 to explore the security challenges in wireless networks [10]. In Chapter 3 we present a static

security game to secure wireless networks against jamming attacks [11]. We also present a dynamic

version of the game [12]. In Chapter 4 we present a timing game to secure public clouds against

side-channel attacks, [13]. In Chapter 5 we conclude our work.
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CHAPTER 2: PINBALL ATTACKS AGAINST DYNAMIC CHANNEL

ASSIGNMENT IN WIRELESS NETWORKS

2.1 Introduction

Spectrum shortage and spectrum interference are two major challenges that face the evolution and

innovation of wireless technologies. On one hand, we are witnessing a tremendous growth in the

numbers and types of wireless devices owing to the emergence of the Internet of Things (IoT)

with different (often high) bandwidth requirements and provisioned Quality of Service (QoS) that

supports mobility. By 2021, it is envisioned that there will be up to 27.1 billion networked devices

putting strain on the available wireless resources [14]. On the other hand, the available wireless

spectrum is not growing as fast as it is tightly regulated by the Federal Communications Com-

mission (FCC). These challenges have prompted notable research efforts in the areas of Cognitive

Radio (CR) Networks [15], Software Defined Networks (SDNs) [16] and femtocells [17] so that

the frequency spectrum can be efficiently utilized among devices. Improving the utilization of the

wireless spectrum requires the wireless nodes to monitor the spectrum (e.g., channels, noise, load)

and adapt their own usages (e.g., choice of channel, power).

To minimize interference among wireless nodes (e.g., access points (APs) in a building), each radio

interface should be assigned a different frequency channel from those assigned to other adjacent

radio interfaces. Due to spectrum shortage, the number of available channel is limited. For exam-

ple, only 11 channels are allowed in the US in the 802.11 specifications and only channels 1, 6 and

11 do not overlap [18]. In general, signal interference is classified into two types:

• Co-Channel Interference (CCI): CCI occurs between two or more radio interfaces that use

the same frequency channel and are within each others’ interference radius. CCI increases
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transmission delays due to medium contention as nodes must wait for an idle medium before

transmission.

• Adjacent-Channel Interference (ACI): ACI occurs between two or more radio interfaces that

use adjacent overlapping frequency channels. In ACI, a node’s transmission is perceived as

a noise signal to nearby nodes on adjacent overlapping channels. ACI causes poor quality of

service and packet loss to the involved nodes.

To address CCI and ACI, channel assignment (CA) techniques carefully assign frequencies to ra-

dio interfaces in a non-overlapping non-interfering manner, whenever possible. CA techniques are

classified into two groups: Static Channel Assignment (SCA) and Dynamic Channel Assignment

(DCA) techniques. While SCA is typically used in smaller networks with limited mobility, DCA

allows nodes to dynamically select frequencies based on the network state and the sensed assign-

ments of their neighbors. Wireless networks employing DCA techniques to provide the nodes with

this self-resolving capability in software, however, are vulnerable to pinball attacks introduced in

this work. An example is SDNs, where the DCA function has been pushed to the software layer

[19], making them susceptible to such exploits.

The goal of an RF jammer is to increase the interference on the radio channel to degrade the signal

quality at the receiver [20]. On the other hand, MAC layer attacks typically target specific protocols

that are responsible for power management and/or disrupt the association process of stations with

the APs [21]. The adaptive nature of DCA techniques makes them susceptible to attacks [22, 23].

An attacker can easily trigger unnecessary switching behavior by inducing a conflicting channel

that causes nearby victims to switch their channels (with a possible cascading effect of damage).

A channel switch involves some overhead. For example, an AP must perform availability check

prior to switching, then broadcast an 802.11h channel switch announcement, and switch channels

at the end. This process takes 224 microseconds in hardware, but at Layer 2 or 3 it can take more
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than 320ms [24, 25]. Excessive channel switching behavior based on induced conflicts increases

the network latency and could potentially prevent the network from reaching a resolving state.

Furthermore, an intelligent attacker can tailor their attack to cause nodes to switch to an overall

configuration that has a higher number of conflicts, exploiting the way nodes are connected and

their node degrees. Understanding the effect of attacks that exploit software-based network activity

is crucial to improving the security of various wireless networks (e.g., SDNs) and is the focus of

this chapter.

In this chapter, we identify a class of stealthy attacks – which we coin pinball attacks – that target

DCA algorithms with the goal of inducing conflicting channels to lure the network into a cascading

channel switching behavior that increases the levels of interference and instability in the network1.

Pinball attack policies are the solutions to various Markov Decision Process (MDP) problems

in which the attacker aims to maximize their long-term net reward through choosing the right

action (e.g., which node to attack and what channel to use for interference). The rewards are

composed of a damage component that reflects the degree of interference induced by the attack

and a cost component that captures the cost incurred in mounting a pinball attack. Due to the

large state space representation, we develop approximation methods that rely on a well-chosen set

of features to approximate the value of being in any state of the network. We study two general

setups. In the first setup, we consider pinball attacks that induce interference in wireless networks

composed of APs that each should be assigned a different frequency from its neighbors. This

setup appears in campus buildings, apartment complexes and residential neighborhoods. In the

second setup, we consider pinball attacks that induce interference in networks composed of nodes

running multiple radio interfaces where every two interfaces on every neighboring nodes should

be assigned the same frequency to communicate. This setup arises in various sensor networks and

1The attack resembles the pinball arcade game in which the player strikes different targets with a ball using flippers
and tries to keep the ball in play by having each target induce a cascading effect of striking other targets.
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other applications with automatic resource assignment that can be intentionally triggered to cause

instability.

2.2 Related Work

The problem to be investigated in this chapter is related to a large body of research on CA tech-

niques in wireless networks and their security implications. We discuss representative pieces of

work that are most related to our work.

2.2.1 Channel Assignment Techniques

CA is instrumental in the design and operation of wireless networks and is done through static and

dynamic techniques that seek to minimize interference and improve the wireless spectrum (e.g.,

[26, 27, 28, 29, 30, 18]). In general, the assignment of channels amounts to a graph coloring prob-

lem so channels can be reused efficiently in a non-interfering manner [26]. In [27], the authors

develop a CA algorithm for maximizing the signal-to-interference ratio for users connected to ac-

cess points in a wireless local area network (WLAN). In [28], the authors develop an interference

estimation technique based on a multi-radio conflict graph to assign channels to minimize interfer-

ence within a mesh network. The authors in [29] cast the CA problem in a multi-radio interface

setting as an optimization problem. They develop centralized and distributed algorithms through

semidefinite and linear programs to derive lower bounds on the overall channel interference. A

greedy heuristic CA algorithm in multi-radio mesh networks is developed in [30] to identify con-

nected and low interference topologies. The authors in [18] surveyed DCA algorithms that seek to

minimize interference in IEEE 802.11-based WLANs.

The use of SDNs and CRs has allowed for a more efficient spectrum assignment, specially with
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the proliferation of the Internet of Things (IoT) and Cyber-Physical Systems (CPS) [31, 32, 33].

For example, vacant channels can be dynamically allocated to secondary users when they are not

in use by primary ones.

2.2.2 Security Implications of Channel Assignment

The adaptive nature of DCA techniques has been shown to be vulnerable to various attacks (e.g.,

[34, 22]. The work in [34] investigates three types of attacks that can potentially lead to a break-

down of the CA protocol of multi-interface and multi-channel (MIMC) networks thereby reducing

the overall network throughput. Security vulnerabilities in the 802.11 standard were identified

in [22], where the authors have shown that a one-minute denial of service (DOS) attack can be

achieved with a single message if the attacker forges the channel switch information. Other attacks

such as radio interference jamming attacks on wireless networks were investigated in [35], and sev-

eral intelligent jamming attacks were studied and analyzed in [36]. The work in [37] exposes three

types of attacks against CA algorithms that capitalize on attacking the channels with the highest

loads. One of those attacks is the Low-Cost Ripple Effect Attack (LORA) that aims to force the

network in a quasi-stable state by continuously inducing channel conflicts. On the defense front,

the authors in [38, 39, 40] address the control channel jamming attacks and propose a randomized

distributed scheme in which nodes can reestablish the control channel using frequency hopping

techniques. Furthermore, in [39] the authors introduce two methods for identifying the jammers

whether acting individually or colluding.

Within SDNs and CRs, various works have investigated related security issues (e.g., [41, 42, 23]).

In [43], the authors show a number of vulnerabilities in MAC protocols due to greedy CR users

that attempt to gain more than their fair share of resources. The authors in [44] propose a stochastic

game between cognitive attackers and secondary users and develop a minimax-Q learning method
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for the users to learn an optimal strategy.

Unlike previous work, we formulate the interference problem as an MDP problem, in which the

attacker seeks to find an optimal interference policy – exploiting the topology and the channels

used in the network. We apply approximation methods to obtain suboptimal policies due to the

intractable nature of the problem [45]. We believe this work shows inherent susceptibility of DCA

methods that are becoming critical components in SDNs and CRs.

2.3 System Model

In this section, we present a model of a wireless network employing DCA techniques. In this setup,

it is desired that each node (representing an AP in a static topology) uses a channel that does not

conflict with any of its neighbors, if possible.

An N -node network is represented by an interference graph, G(V , E), where V = {vi} , i =

1, . . . , N , is the vertex set of APs, and E = {eij} , i, j ∈ {1, . . . , N}, is the edge set. Each

node v ∈ V is assigned a frequency channel cv ∈ C, where C is the set of all usable frequen-

cies. For example, in the United States there are 11 usable channels in the 2.4 GHz band for the

802.11n network specifications [46], in which case C = {1, 2, . . . , 11}. The network topology is

described by a standard N ×N adjacency matrix, such that any APs connected by an edge cannot

use the same or adjacent channels without experiencing interference. Therefore, in this model two

nodes are considered adjacent, thus connected by an edge, if they are within each other’s interfer-

ence radius. Later in Section 2.4, we use different graph representations in which edges represent

communication links between the nodes.
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2.3.1 Channel Assignment Technique

We present a discrete-time interference-aware DCA technique to reduce channel conflicts for a

given network topology. We let Nv denote the neighbors of node v ∈ V ,

Nv = {u ∈ V|evu ∈ E} . (2.1)

We also define δv, v ∈ V , as the degree of node v, i.e., the cardinality |Nv| of the neighboring set.

In the event of a channel conflict with one or more neighbors, we assume an AP can determine

which channels are available to switch to so that it is no longer in conflict with its neighbors. An

available channel is one that is in the set of usable channels but not in any of the interference sets

of the AP’s neighbors. An interference set includes all channels that overlap with the assigned

channel based on a channel separation constant. For an AP, v ∈ V , on channel cv ∈ C, the AP’s

interference set denoted Iv consists of adjacent channels, i.e.,

Iv = {max(cv −∆, 1), . . . , cv − 1, cv, cv + 1, . . . ,min(cv + ∆, |C|)}, (2.2)

where ∆ is the channel separation constant. For example, for a separation value of 2, a channel cv

will overlap with channels cv − 2, cv − 1, cv + 1 and cv + 2. For all examined test cases, we used

a channel separation constant ∆ = 2. The set of channels an AP v can freely switch to, denoted

Lv, is thus the set difference of usable channels and the union of the interference sets of all its

neighbors, i.e.,

Lv = C \
⋃
u∈Nv

Iu , u, v ∈ V . (2.3)

We also define the conflict set Dv as the set of nodes in the neighborhood of v that use channels in
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its interference set, i.e.,

Dv = {u ∈ Nv : cu ∈ Iv}. (2.4)

Since we can count how many times a given channel appears in an interference set, we can build a

histogram ∀c ∈ C to find the least interfering channel.

Without loss of generality, we follow the following procedure to assign a new channel to a certain

node v, albeit pinball attacks apply to other DCA algorithms. If Lv is non-empty, i.e., Lv 6= ∅, then

v is assigned any channel drawn randomly from Lv. Otherwise, v is assigned the least interfering

channel according to the histogram. Graph coloring is generally NP-hard. Therefore, we do not

attempt to obtain a state of minimum conflict. Instead, we adopt a greedy graph coloring approach

to channel assignment as described in Algorithm 1.

Before randomly assigning channels to any node, the nodes are sorted in decreasing order accord-

ing to their node degrees, thereby giving priority to the hub nodes with the higher degrees. Let

vsorted denote the ordered sequence of nodes.

Algorithm 1 CA based on Greedy Graph Coloring
1: procedure CHANNEL ASSIGNMENT(vsorted, C)
2: for v in vsorted do
3: Find: Lv,Nv and Iv.
4: Update: Channel Histogram.
5: if Lv 6= ∅ then
6: Assign v a channel cv = c, c ∈ Lv, drawn randomly.
7: else
8: Choose cv as the least interfering channel.
9: end if

10: end for
11: end procedure

Algorithm 1 is a finite step greedy algorithm as it terminates once every node is assigned either a

20



non-interfering channel or a least interfering channel. At any time stage, the system may trigger

this algorithm to resolve a conflict. Based on this algorithm, no channel switching would occur

unless it resolves or reduces the network interference as in the DCA protocol applied in the Cisco

Radio Resource Management (RRM) system [1]. In the RRM system, the wireless controller

collects information from all the APs to estimate the interference and noise levels experienced by

each channel, and makes channel switching decisions accordingly.

Figure 2.1: Step 1: Initial channel assignments, the network has 3 conflicts. Step 2: After an
AP switches from channel 9 to 2, the network has 1 conflict. Step 3: After an AP switches from
channel 7 to 10, the network is conflict-free.
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Figure 2.2: Step 1: System starts with 3 conflicts. Step 2: Attacker jams its victim node with
jamming channel 3 and the system switched the node using channel 9 to the non-interfering channel
2. However, due to the jammer the new frequency is now suffering interference. Step 3: The
system is not only unable to resolve conflicts in 3 steps, but also three nodes may not find any
vacant non-interfering channels, resulting in perpetual switching among other nodes as well.

The neighborhood sets Nv, v ∈ V , capture the interference map of the network since only neigh-
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boring nodes assigned adjacent frequencies interfere. While the generation of the interference map

(hence, the underlying topology) depends on the physical distances between the nodes, the chan-

nel attenuation, and the used power levels, only the emerging adjacency structure and the actual

channel assignment are relevant to the occurrence of conflicts and to channel switching decisions2.

For example, in DCA protocols, channel switching occurs when the interference levels exceed

certain thresholds – and the topology already specifies which nodes interfere at levels that warrant

switching. In turn, the adjacency structure and the channel assignment information are sufficient

for optimal policy design by an attacker aiming to increase the number of conflicts and induce a

cascading channel switching behavior. Therefore, we henceforth use the distance in hops as our

distance measure.

2.3.2 Decoy Pinball Attack

An attacker mounting a decoy attack aims to degrade network performance by increasing network

instability and delays with unnecessary channel switching, increasing signal interference and con-

gestion by causing more conflicts, and preventing the system from reaching a conflict-free channel

assignment if one exists. Since each AP relies on the state of its neighbors to make switching

decisions, an attacker can travel to an AP in the network (e.g., by driving to, and taking a place,

near a home in a neighborhood) and broadcast a high-power signal that overwhelms the victim

AP. Neighboring APs detect and make switching decisions off the fake channel as well. It is also

worth mentioning that an attacker who can hijack an AP and switch its channel to a conflicting one

can achieve a similar attack behavior and outcome. We do not explicitly consider those hijacking

attacks since it is generally easier to broadcast a channel than to hijack an AP. An example of the

progression of a system that initially suffers 3 conflicts with ∆ = 2 is shown in Fig. 2.1. The

2This is not the case if we also consider system dynamics, such as due to power control, or time-varying channel
conditions through fading, in which case the topology is time-variant. However, this is not considered in this work.
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system can fully resolve all conflicts within 3 steps using Algorithm 1. On the other hand, Fig.

2.2 shows that under pinball attacks, the system fails to reach a zero conflict state within the same

number of steps.

Launching an attack does not guarantee that the system will enter into a worse state. One AP may

switch its channel per state transition, so even if an attacker creates a fake conflict, an AP involved

in a real conflict elsewhere in the network may be selected to switch instead of one of the APs

affected by the attack. Additionally, if an affected AP is selected to switch, it will not necessarily

switch to a conflicting channel. For this reason, the attacker must weigh the potential benefit of

successfully causing damage against the definite cost of launching an attack. We consider the

attack cost to be the risk of exposure, which means that the attack cost scales with the network

density as measured by node degree. Attacking an AP with a high node degree could possibly

impact a large number of surrounding APs, but the attacker runs a higher risk of being caught (e.g.,

see [47, 48] on localizing jammers based on jamming effect analysis).

2.3.3 MDP Formulation

To maximize the damage caused in comparison to the costs incurred, the attacker must program-

matically find a damaging attack pattern by maximizing (resp. minimizing) a reward (resp. cost)

function. When attacking a victim, a single attacker must travel to be within an attacking radius

from the desired victim AP’s location in order to launch the attack. The possible victims available

to the attacker at each step depend on the attacker’s location, so the travel distance is the limiting

factor in possible victims. We use the distance in hops between APs to represent the travel distance

for the attacker.

For a decoy attack, an attacker has two possible course of actions: (1) do nothing and (2) broadcast

channel c ∈ C at the location of an AP to make it appear as though the AP is using that channel.
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In this system model, an attacker has knowledge of the network state, i.e., the topology and the

currently assigned channels, and can compute additional information such as node degrees and hop

distances between the APs.

For an N -node network, the state of the system sk at time k is represented by the tuple

sk = (ck , nk, bk),

where ck is a vector of length N containing the channels assigned to each AP at time k, nk is the

AP most recently attacked (if any), and bk is the number of steps since the last attack. Also, let

ak = [v, c] denote the action of the attacker at time k, which consists of a victim node v and an

attack channel c ∈ Iu, for some u ∈ Nv ∪ {v}. The system transitions from sk to a new state

sk+1 when an AP switches channels, thus modifying the assignment vector. Being in state sk, the

system evolves to the next state sk+1 with a transition probability p(sk+1|sk, ak), which is uniform

over the set of reachable future states under action ak taken by the attacker at time k.

As the system transitions from sk to sk+1, the attacker collects an immediate reward r(sk, ak, sk+1),

which is the sum of conflicts in the reached state sk+1,

r(sk, ak, sk+1) =
∑
v∈V

mk+1(v) (2.5)

where the sum is over all the nodes in the graph and mk+1(v) is the number of channel conflicts at

node v at time k + 1 defined as

m(v) = |Dv|. (2.6)
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The cost σ(sk, ak) of an attack action ak = [v, c] is

σ(sk, ak) =

 h · d(nk, v) + δv if d(nk, v) ≤ bk + 1

∞ otherwise
(2.7)

where d(nk, v) is the number of hops between the last attacked AP nk and the victim node v, h is a

constant cost per hop, and δv is the node degree of the AP. Thus, mounting an attack incurs a cost

that takes into account the distance to the node (it is more costly to attack further away nodes), and

the importance of the node being attacked. Hence, this cost model captures the relative importance

of the different nodes. In practice, much traffic goes through central APs (hubs), hence disruption

of their operation could have a lager impact on the entire network. Therefore, associating a higher

cost with vital nodes (having larger node degrees) reflects the fact that attacking such nodes is

generally more costly to the attacker. The plausibility of this cost abstraction is evidenced by a

good number of recent studies showing that jammers can be better localized based on the effect of

their jamming [47, 48], or the increased difficulty in hijacking a central hub normally readied with

a more secure defense system. Also, note that the distance to the victim AP must be less than or

equal to the number of steps bk since the last attack plus 1. To clarify, we note that if the attacker can

only travel a distance of one hop at each transition, then at each time instant the reach of the attack

extends only to the neighboring nodes of its last visited node. Therefore, if the attacker chooses not

to mount an attack in a given stage and to save his jamming power, then the set of reachable victim

nodes will grow to encompass those nodes within a two-hop distance, and so on. Thus, the infinite

cost in (2.7) ensures that infeasible actions (i.e., attacking far away nodes that are not within the

reach of the attacker) will not be selected by the attacker. An alternative justification for the cost

in (2.7), is that if the attacker chooses not to attack for a number of steps (thereby saving power),

then an attack can be launched at future steps at higher power levels (to reach nodes that are further

away) without violating his power budget constraint. In other words, the attacker can increase the
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radius of the attack based on the time spent without launching an attack. In this case, the infinite

cost concerns attacking nodes that cannot be reached without violating the power constraint.

The net reward, denoted g(sk, ak, sk+1), is the difference between the immediate reward and the

cost of the attack. Hence,

g(sk, ak, sk+1) = r(sk, ak, sk+1)− σ(sk, ak). (2.8)

The expected net reward g(sk, ak) when transitioning from state sk to sk+1 is

g(sk, ak) =
∑
sk+1

p(sk+1|sk, ak)g(sk, ak, sk+1).

The more conflicts an attacker causes over the transition, the higher the path reward, which is the

sum of rewards as the system transitions along a discrete Markov chain. The reward earned during

a transition from sk to sk+1 is weighted by the probability p(sk+1|sk, ak) of transitioning from sk

to sk+1.

In order to find a favorable tradeoff between reward and attack cost, the attacker must identify a

sequence of attack policies π = {µ0, µ1, . . . , }, where µk : S → A, is the attack policy at time

k, i.e., a mapping from the state space S to the control space A. An attack policy describes the

sequence of actions the attacker should take over some time frame for all sequences of system

states. An optimal policy should optimize the tradeoff between the reward and attack cost so the

attacker can inflict maximum damage to the system at little expense. This is a discrete-time system

with observable state, hence the attacker can solve an MDP problem to identify an attack policy.

Since this channel switching model has an infinite horizon, we use a discount factor 0 < γ < 1 to
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weight the potential rewards and bias the attacker towards closer rewards. In particular, let

Jπ(s0) =
∞∑
k=0

γk E [g(sk, µk(sk), sk+1)] , (2.9)

where s0 is the initial state, E[.] the expectation w.r.t. the future states (which are unknown at the

times of the decisions), and π = {µ0, µ1, . . . , } the attack strategy. The attacker aims to solve for

the optimal strategy π∗ = {µ∗0, µ∗1, . . .} that maximizes the total discounted expected reward, i.e.,

solve the optimization problem

maximize
π

∞∑
k=0

γk E [g(sk, µk(sk), sk+1)] . (2.10)

The optimal solution Jπ∗(s0) is the optimal value function J∗(s0).

Remark 1. Our formulation assumes that the state of the network is observable to the attacker,

wherefore the problem is modeled as a fully observed MDP. The assumption of full observability

implicitly assumes worst case damage due to a powerful attacker capable of acquiring global net-

work information by listening to the channels before deciding on the next move. If the attacker only

has access to partial state information, then the problem can be modeled as a Partially observable

MDP (POMDP) with the main difference that the state is replaced with a posterior probability

distribution over the state space (so-called belief) given all past information. In this case, the be-

lief plays the role of the state and the state evolution is replaced by a belief evolution. However, a

POMDP formulation does not lead to fundamental changes from a conceptual standpoint.

2.3.4 Optimal Attack Policy

We have modeled our system as an MDP in which an attacker uses sequential decision-making to

navigate discrete system states by defined state transitions. The optimal solution to this problem is
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a time-invariant policy µ∗ [49] defining the optimal action for the attacker to take at each state, and

can be obtained as a solution to the Bellman equation,

J(sk) = max
ak∈A(sk)

{g(sk, ak) + γ E [J(sk+1)]}, (2.11)

where A(sk) denotes the set of allowable controls given the current state sk.

In order to obtain the optimal attack policy µ∗, the attacker would need to solve a set of linear

equations to evaluate the expected reward Jµ of a policy µ

Jµ(s) =
∑
s′

p(s′|s, µ(s)) · [g(s, µ(s), s′) + γJµ(s′)] , (2.12)

for s = 1, . . . , |S|. The summation above is over all states s′ reachable from s. Then, the attacker

would iteratively improve the policy by solving

µ̄(s) = arg max
a∈A(s)

∑
s′

p(s′|s, a) · [g(s, a, s′) + γJµ(s′)] , (2.13)

and then evaluate Jµ̄ as in equation (2.12). The attacker iterates over policy evaluation in (2.12) and

policy improvement in (2.13) until convergence to the optimal policy that maximizes the reward3.

The optimal policy obtained as an exact solution describes the optimal action the attacker should

choose given any state. For a very small network, an attacker could possibly enumerate every state

and select actions that lead to states with the best reward, but since we focuses on a state space

similar to a real-world network with N nodes and |C| channels, the exact solution is intractable.

Even if the maximum number of successive no-attack actions is restricted to K, the state space

would be of size |C|N × N ×K, which grows exponentially with N . Thus, it is computationally

3Convergence is guaranteed in this case since the transformation defined through policy iteration is a contraction
mapping, hence the iterations converge to a unique fixed point.
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intractable for the attacker to evaluate the expected state reward for every possible state and action

combination.

2.3.5 Suboptimal Attack Strategy

Instead, we develop suboptimal attack policies using Approximate Policy Iteration (API) based on

estimations of the state reward. Rather than examining every possible state, API uses representative

states and features. Representative states are used as training states during policy improvement,

so they must be selected in such a way that they capture most possibilities for the system and

give wide coverage of useful regions in the state space. Recalling the definition of a state sk,

the representative states have to capture all important combinations of the three variables, ck,

nk, and bk. Since, the initial distribution of conflicts among the network is a function of ck for a

given network topology, we selected representative states containing a spectrum of possible conflict

states, from minimal conflicts or a conflict-free assignment to maximum conflicts with all APs

assigned the same channel. All APs may start on any default channel, so an experimental run may

begin with any number of conflicts. The minimal size of a single conflict is 2 and the maximal size

is maxv∈V δv, the largest degree of an AP in the network.

From the representative states, a set of representative features is extracted that capture the char-

acteristics of the state and can be weighted and used to estimate its value. In API, the attacker

evaluates an approximate parametric expected state rewards using a weight vector r,

J̃r(s) =
M∑
j=1

rjφj(s), (2.14)

where M is the total number of features, φj(s) denotes the j-th feature for state s, and rj, j =

1, . . . ,M (the j-th entry of vector r) the weight of the j-th feature. Instead of iteratively evaluating
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and improving the policy until the iteration loop naturally terminates, API uses Monte Carlo sim-

ulations to evaluate the feature weights over a number of independent trajectories from these rep-

resentative states. More specifically, the weight vector r is obtained as a solution to a least-squares

problem minimizing the square error between the empirical average reward of these trajectories

and the parametric approximation J̃r in (2.14). Then, to compute an improved action for state s,

we solve

µ̃(s) = arg max
a

∑
s′

p(s′|s, a)
[
g(s, a, s′) + γ J̃r(s

′)
]
, (2.15)

where the value function is replaced by the approximate parametric form J̃r.

2.3.6 Feature Selection

API relies on a set of representative features to capture the characteristics of each state and approx-

imate the state value. For topologies with a diverse range of node degrees, we used the following

features:

• φ1 = Number of APs in conflict with one or more neighbors in the current state

• φ2 = Ratio of maximum number of APs involved in the same conflict to degree of the network

graph

• φ3 = Average number of APs involved in the same conflict

• φ4 = Average number of channels unavailable to an AP

• φ5 = Average conflict size of the highest degree APs

• φ6 = Last attacked AP

• φ7 = Steps since last attack
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• φ8 = Flag for whether attacker is at most complex node (MCN), i.e., node with highest degree

• φ9 = Degree of last attacked location

• φ10 = Conflicts at last attacked location

• φ11 = Available channels of last attacked location

• φ12 = Degree of largest neighbor

• φ13 = Fraction of APs within hop distance

We also fine tune the features used depending on the network topology. For a ring topology, for

example, we omitted features 8, 9, 12 since all APs in a ring have the same degree. To evaluate

how well the selected features capture the state characteristics, we compared the estimated path

reward computed based on the features to the actual path reward of an attacker over 35 steps and

found them to be fairly close. An example is shown in Fig 2.3.
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Figure 2.3: Approximate policy and exact policy path reward comparison.
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2.3.7 Dimensionality Reduction: Big Graphs

In this subsection, we address the scalability of pinball attacks to larger size graphs. Obtaining an

exact solution to the formulated MDP is intractable due to the dimensionality of the state space

(increases exponentially in the number of nodes), which motivated the aforementioned develop-

ment of suboptimal attack strategies based on feature selection and API. While the strategy that

describes the mapping of states into actions need only be computed offline, the run time for the

offline approximation still depends on the problem size, i.e., the number of nodes of the network.

We extend pinball attacks to large size graphs by considering large graphs with repeated patterns.

Attacking Networks of Repeated Structures: We consider a special set of large graphs that have

repeated patterns, namely, comprising those graphs with repeated structures of other smaller unit

graphs. Since the attacker’s control set is limited to the set of nodes in its current neighborhood, ex-

ploiting the graph structure and the attacker’s limitations leads to a simplified approach to attacking

larger graphs.

In this case, we propose to obtain the pinball policy (offline) for the small graph, which is then

used by the attacker to launch his attack on the full scale graph. As such, the attacker obtains a

pinball strategy by solving a small-size MDP for the unit graph in lieu of solving an MDP with

a large state space for the full graph. Then, the attacker uses this policy to attack the full graph

taking only the local neighborhood into consideration at every time step.

We have tested this approach on some synthesized large graphs with repeated structures of the

topologies considered initially in Section 2.3. The numerical results using this approach yield

larger rewards for the attacker compared to those obtained by other attack policies as shown in

Section 2.5.8. This approach has also shown to be work well when tested on large size networks

with arbitrary structures that can be approximated to large networks with repeated structures as in
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the example discussed in Section 2.5.9.

2.4 The Dual Problem

In this section, we consider a dual problem to the one presented in Section 2.3. In particular,

we consider a graph G(V , E), in which each node is equipped with multiple radio interfaces. An

edge between two nodes represents a communication link between their radio interfaces and a

certain frequency is assigned to this edge. Assuming link separation4 (i.e., a link only sees its

assigned frequency), interference occurs when two interfaces on a single node use the same channel

frequency, i.e., two adjacent edges are assigned the same frequency. This link separation could be

achieved, for example, by using directional antennas to establish communication links between

the radio interfaces in a wireless setting. Here, we show that both problems are in fact equivalent,

wherefore pinball attack policies identified in the former setup can be mapped into attack policies

in this setup.

2.4.1 Equivalence Formulation

For each edge eij , we define a set of neighboring edges, Neij , that share any of the end points of

eij ,

Neij = {eiu|i, u ∈ V}
⋃
{evj|v, j ∈ V} .

For simplicity we refer to any arbitrary edge in the network as e with no subscripts. Similar to

4This assumption could be relaxed by expanding on the notion of neighboring and interference sets to account for
other sources of interference.
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the first setup, we let the set Le denote the channels available for edge e and let Ie denote its

interference set as for the primary node attacking problem in Section 2.3. DCA uses the procedure

described earlier in Algorithm 1 but with respect to the set of edges E .

The attacker attacks the network edges by causing interference to the communication links, thereby

prompting the respective radio interfaces of the end nodes to switch their communication channels.

The edge attacking problem can also be formulated as an MDP with the objective of causing the

maximum damage to the network.

Let sk denote the state of the network at time k. Specifically, sk = (ck, `k, bk), where ck is a

1 × |E| vector representing the channels assigned to every edge in the network at time k, `k is the

last attacked edge, and bk denotes the number of successive no-attack actions at time k as defined

earlier. Being in state sk, the system evolves to the next state sk+1 with a transition probability

p(sk+1|sk, ak) under action ak taken by the attacker at time k, where p(sk+1|sk, ak) is uniform over

all possible future states. The attacker gains a reward and incurs a cost for taking this action ak.

For the sake of establishing the equivalence, let mk(e) also denote the number of conflicts at time

k in the network with respect to edge e ∈ E , and yk be the cost of an action ak = [q, c] when the

attacker attacks edge q ∈ E with jamming frequency c. Hence,

m(e) = | {ē|ce ∈ Iē, ē ∈ Ne} |, e ∈ E , (2.16)

where ce is the channel assigned to link e at a given time. In other words, m(e) is the number of

edges adjacent to e that have ce in their interference sets. The reward, r(sk, ak, sk+1), is defined as

the difference between the total number of conflicts and the cost of the attack,

r(sk, ak, sk+1) =
∑
e∈E

mk+1(e)− σk. (2.17)
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The Attack cost σk is defined as,

σk =

 ∞ if d(`k, q) > bk + 1

h · d(`k, q) + ζq otherwise,
(2.18)

where d(`k, q) is the number of hops between the current edge location `k and the victim edge

q, and h is some constant capturing the cost per unit distance. The edge degree ζq is taken into

consideration for cost computation since a higher degree implies a higher risk of attack. Hence,

the expected reward over all possible future states is

r̄(sk, ak) =
∑
sk+1

p(sk+1|sk, ak)r(sk, ak, sk+1). (2.19)

Again, we consider a discounted cost MDP formulation, where the attacker aims to solve for the

optimal policy that maximizes the total discounted expected reward [45]. In particular, let

Jπ(s0) =
∞∑
k=0

γkr̄(sk, µk(sk)), (2.20)

be the total discounted expected reward with equivalent definitions for the strategy π and the dis-

count factor γ as before. The attacker aims to solve the optimization problem

maximize
π

Jπ(s0) . (2.21)

We can readily state the following Theorem, which establishes equivalence between the node and

edge attack formulations.

Theorem 1. The edge attack problem for a network with graph Ga(Va, Ea) is equivalent to the node

attack problem for the network graph Gb(Vb, Eb) for eHa = Hb, where H is the node adjacency

matrix of a graph and eH the edge adjacency matrix.
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Proof. If eHa = Hb, then Vb = Ea, which means that Gb is the line graph of the original graph Ga

[50]. Therefore, the line graph of a graph preserves the adjacency between the edges. We start by

showing that ∀θ ∈ Vb and ∀e ∈ Ea, the neighboring set Nθ = Ne for θ = e. Since the two graphs

are connected, thenNθ andNe are non-empty. Given the condition in the statement of Theorem 1,

the line graphs of Ga and Gb are isomorphic.

Hence, ∀θ ∈ Vb we can define the neighboring set Nθ as

Nθ = {λ|eθ,λ ∈ Eb}. (2.22)

Moreover, δθ = ζe since |Nθ| = |Ne|, where δθ is the node degree and ζe the edge degree for

θ ∈ Vb and e ∈ Ea.

From equations (2.5), (2.6) and (2.7), the attacker’s reward depends only on the neighboring sets.

Noting that Algorithm 1 for both graphs uses random assignment for frequencies drawn from the

set of available channels, its randomness does not affect the number of conflicts associated with any

node or edge. Thus, both the node and edge attack problems have the same control set. Therefore,

the reward maximization problem associated with the attack of the nodes of Gb is equivalent to the

one associated with the attack of edges of Ga.

As an example of the mapping between both versions of the problem, consider the network de-
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picted in Fig. 2.4, whose node and edge adjacency matrices Ha and eHa are given by

Ha =



0 1 1 0 0

1 0 1 0 0

1 1 0 1 1

0 0 1 0 0

0 0 1 0 0


, eHa =



0 1 1 0 0

1 0 1 1 1

1 1 0 1 1

0 1 1 0 1

0 1 1 1 0


,

giving rise to the topology depicted in Fig. 2.5. Hence, the edge attack problem based on the

topology in Fig. 2.4 is mapped to an equivalent node attack problem with the topology in Fig. 2.5

that can be solved using the framework described earlier in Section 2.3.

n1

n2

n3

n4n5

e
1

Figure 2.4: Edge attack topology.
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Figure 2.5: Edge attack topology mapped to node attack problem.

2.4.2 Attacking Isomorphic Graphs

It follows that we can establish equivalence of the attack problem on any two isomorphic graphs

since the attacker’s reward is only dependent on the network adjacency. We state the following

result.

Theorem 2. Let G = {Gi(Vi, Ei)} be a set of isomorphic graphs. If Ga(Va, Ea) and Gb(Vb, Eb) ∈ G,

then the node attack problems on Ga and Gb are equivalent.

Proof. The proof follows the same lines of the proof of Theorem 1. The graphs Ga and Gb are

isomorphic, hence by definition there exists a bijective function f : Ga 7→ Gb such that two nodes

u and v are adjacent in Ga iff f(u) and f(v) are adjacent in Gb. Therefore, Nu = Nf(u). The

attacker’s reward (i.e, the objective function) is thus common to both graphs since it is function of

the neighboring sets Nu. Also, the set of available controls depends on the adjacency of the node

of the attacker’s location, hence the control set is the same for both graphs Ga and Gb. Therefore,

the reward maximization problems for both graphs are equivalent.
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In the next section, we present our extensive numerical analysis and evaluation to the proposed

pinball attacks.

2.5 Experimental Results

In this section, we study the performance of the proposed pinball strategies and provide compar-

isons to other attack policies via extensive numerical experiments. Several network topologies are

considered in our numerical evaluation including building-block topologies as shown in Fig. 2.6,

2.7, 2.8, 2.9. Moreover, we tested pinball attacks in a real commercial building topology as shown

in Fig. 2.14. During policy iteration, we tested a range of attack costs for a channel separation

constant ∆ = 2. To learn the approximate pinball attack via policy iteration, 35 representative

states have been considered for each of the tested topologies.

To evaluate the performance of the proposed pinball policy, we compare its performance to other

attack policies in terms of the average path reward accrued over 30 or more time steps. We also

quantify the number of conflicts that each attack policy is able to create over time. The attack

policies are (1) No-attack; (2) MCN (Most complex node); (3) Rand (Random) ; (4) DoS (Denial

of service); (5) Myopic; (6) Pinball.

• In a no-attack policy, the attacker decides not to attack any node at every step. This is

the lowest cost attack policy, and hence serves as a baseline policy against which all other

attacking policies are compared. Since a network may start with conflicts and resolve itself

over time, the attacker may see a non-zero path reward without expending any effort.

• In an MCN attack, the attacker always chooses to attack the node with the maximum degree.

The attacker takes a greedy approach in selecting the most complex node within the interfer-

ence radius of the largest number of APs. By selecting the highest degree node, the attacker
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can potentially disrupt the maximum number of nodes with a single attack. If there is more

than one AP with highest degree, the attacker picks the one with the shortest hop distance

from its current location. Once at the victim AP, the attacker ignores any costs incurred and

constantly attacks at every step with a guaranteed conflicting channel.

• In a random attack, the attacker naively selects any reachable AP at random and also chooses

at random between broadcasting a channel or doing nothing. Since the random policy allows

the attacker to withhold attacks at random, the attacker may miss critical attack opportunities

and allow the system to resolve itself.

• In a DoS attack, the attacker selects any random reachable AP and broadcasts an interfering

channel at every step. In a DoS policy, the attacker never chooses to refrain from attacking,

but attacks at every step without considering the attack cost. This type of attack ignores the

elevated cost stemming from constantly attacking in hope of inflicting substantial damage.

However, since the victim nodes are picked at random, the attacker may be expending energy

needlessly when there are more rewarding victims to attack.

• A myopic attack takes only the immediate reward into account and not the future value

of possible future states, thus it selects victim nodes without considering the features of

the potential states. By contrast, the pinball attack uses the features of the state and their

weights computed during policy iteration to judiciously select an attack that would lead to

more rewarding states.

For the 6-node chain network shown in Fig. 2.6, we tested a range of values for the scaling constant

h in (2.7) to observe the attacker’s behavior with high and low attack costs shown in Fig. 2.10. As

expected, the path reward for baseline no-attack remained constant across all attack costs. When

the attack cost is very low, the behavior of the pinball attacker approaches that of the DoS, while at

a very high attack cost, the behavior approaches that of no-attack. As the attack cost increases, the
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path reward of the DoS and Rand policies decreases, dropping well below that of no-attack for very

high attack costs. For all values – even very low attack costs – the path reward of the pinball policy

is higher than that of DoS. While DoS and Pinball are both constantly attacking at low attack costs

(they launch the same number of attacks), Pinball could outperform DoS since it maximizes the

inflicted damage by attacking intelligently balancing the potential of immediate reward and future

states. In all the tested topologies, the attacker adopting the pinball policy is able to achieve the

highest path reward.

e12

e23

e34

e45

e56

1 4 5 62 3

Figure 2.6: A 6-node chain network topology.
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Figure 2.7: 5-node interconnected network topology.
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Figure 2.8: A 6-node ring network topology.
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Figure 2.9: A 7-node tree network topology.
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Figure 2.10: Comparing different attack policies on the 5-node chain topology.
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Figure 2.11: Comparing different attack policies on the 5-node interconnected network topology.

2.5.1 Average Path Reward

In our numerical evaluations of the proposed attack policy, we first quantify the main objective of

the optimization problem, i.e., the average path reward for the attacker. Second, we quantify and

43



present the accumulated conflicts created by the attacker over 30 time steps for different policies

to capture the potency of the attack. We then analyze and present the frequency of node attacks to

understand the behavior of the proposed pinball policy. We also present the time evolution of the

conflicts, as well as the conflict size distribution.

In Fig. 2.10, the average path reward is plotted for the 6-node chain topology of Fig. 2.6. The

pinball policy always outperforms all other attack policies and yields the highest average path

reward. The average path reward is plotted for different attack costs. As the attack cost increases

from 0.1 to 4, DoS and Rand become very inefficient. At low attack costs, attacking any of the

feasible nodes has low cost, hence the pinball policy chooses to attack at every step. The pinball

policy yields higher path reward by directing attacks to the most rewarding nodes. Even though the

attack cost is low, an aggressive policy like DoS is unable to achieve a higher average reward, as it

occasionally misses rewarding actions depending on the network state at various times. At higher

attack costs, the pinball attacker avoids high-cost actions. The attacker is better off withholding

attacks due to the high risk of exposure, hence the average path reward converges to that of the no-

attack policy. Since the Myopic policy also considers the immediate costs and rewards, it avoids

the negative path reward by choosing not to attack as well.
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Figure 2.12: Comparing different attack policies on the 5-node ring topology.
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Figure 2.13: Comparing different attack policies on the 7-node tree topology.
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Figure 2.14: A 6-node topology representing the network of the tested building.

Figure 2.15: Plan view of the tested building.
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Figure 2.16: Comparing different attack policies on commercial building APs.

We evaluate the average path reward for the topologies shown in Figs. 2.7, 2.8, 2.9, and the

topology in Fig. 2.14 representing the interference graph of the APs in the building shown in Fig.

2.15. As for the previous topology, the pinball policy outperforms all other policies in terms of

average path reward as shown in Figs. 2.11, 2.12, 2.13 and 2.16, respectively.

2.5.2 Conflict Analysis

We also plot the number of conflicts accumulated over time for different topologies. In Figs.

2.17, 2.18 and 2.19 we show the conflicts accumulated in the network over 30 time steps for the

7-node tree topology, the 5-node interconnected topology and the 8-node topology of Fig. 2.20,

respectively. For all these topologies, the pinball policy clearly creates more conflicts than the

other policies. Adopting Pinball, the attacker is able to create a larger number of conflicts at the

beginning of the attack as evident from the larger slope of the shown curve designating a higher

rate of conflict generation. The attacker is taking advantage of the fact that the system is initially
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experiencing a medium to large conflict size by creating more compounded conflicts. As time

elapses, the system reassigns channels to the nodes reducing the number of conflicts while the

attacker continues to induce new ones. The ability of the system to resolve conflicts with time is

manifested by the reduced slope. For policies other than the pinball attack, the system is more able

to resolve conflicts over time.
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Figure 2.17: Accumulation of conflicts in the 7-node tree network for different attack policies.
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Figure 2.18: Accumulation of conflicts in the 5-node interconnected network for different attack
policies.
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Figure 2.19: Accumulation of conflicts in the 8-node mixed network topology.
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Figure 2.20: An 8-node mixed network topology.

2.5.3 Node Attack Frequency Analysis
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Figure 2.21: Frequency of attack actions for the interconnected network topology.
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Figure 2.22: Frequency of attack actions for the tree topology.
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Figure 2.23: Frequency of attack actions for the 8-node mixed network topology.
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Figure 2.24: Frequency of attack actions for the 8-node dense network topology
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Figure 2.25: An 8-Node dense network topology.

Next, we plot the frequency of attacking different nodes in Figs. 2.21, 2.22, 2.23 and 2.24 for

the topologies of Figs. 2.7, 2.9, 2.20 and 2.25, respectively. For the ring topology, all the nodes

have equal importance on average (similar degree). In Fig. 2.21, although most of the nodes
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were attacked at similar rates, the center node was attacked slightly more often. By comparison

to the MCN policy (which only attacks the center node), it is evident that attacking the most

complex node does not always yield the highest reward to the attacker. In addition, from Fig.

2.18 and Fig. 2.21, we see that while the MCN policy is always costly for the attacker, it fails to

create as many conflicts as the pinball policy that balances the attack cost and rewards to achieve

higher path reward. For the tree topology, the attacker utilizing the proposed pinball policy focuses

most attacks on the two nodes in the second level with the higher degrees rather than attacking

the leaf nodes. The same observation can be seen in Fig. 2.23, showing that the pinball policy

attacks internal nodes more frequently than leaf nodes. But, it balances between attacking the

most connected nodes and other internal nodes to avoid very costly actions. In Fig. 2.24, we

plot the node attack frequency for the 8-node dense network illustrated in Fig. 2.25. Due to the

structural similarity of most of the nodes, the pinball attack policy does not exhibit preferences

for particular nodes or set of nodes. However, we have observed that the node attack frequency

is more skewed towards the initial location of the attacker. Hence, for very dense topologies the

attacker chooses to attack closer nodes more frequently rather than attacking farther away nodes

with similar connectivities.
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Figure 2.26: Conflicts resolution over time for the 8-node mixed network topology.
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Figure 2.27: Frequency of different conflict sizes in the 8-node mixed network topology.

2.5.4 Conflict Decay Analysis

We select the 8-node Mixed topology of Fig. 2.20, which we purposely synthesized to have a

variation of node connectivities, to study the pinball policy more closely. We show the conflict

decay over time in Fig. 2.26 and make the following observations. First, the pinball policy is
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the most capable at delaying the system resolution to a no-conflict state. Normally, the system

takes 4 time steps to completely resolve its initial conflicts (under no-attack). It takes 13 and 17

time steps to resolve the conflicts under DoS and Rand attacks, respectively. In the pinball attack

case, the system reaches a no-conflict state after 27 time steps. Although the attack policies will

continue to build and induce new conflicts, these are not shown here as this experiment is focused

on evaluating the ability of the network to resolve conflicts measured by the decay rate under

various attacks. This experiment underscores that the proposed pinball attack is more damaging.
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Figure 2.28: Path reward gained over time when 8-nodes mixed network topology starts from a
zero-conflict state

2.5.5 Conflict Size Distribution Analysis

We study the conflict size distribution under different attack policies in Fig. 2.27. As shown,

the pinball policy tends to create large-sized conflicts more frequently than smaller ones. Taking

actions that cause larger conflicts explains the ability of Pinball to yield higher path rewards.
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2.5.6 Conflict Induction and Accumulation Analysis

We also investigate the conflict induction and accumulation rates under different attack policies

when the network starts from a state of zero initial conflicts. As shown in Fig. 2.28, not only is the

pinball policy more capable at exploiting the large number of initial conflicts (as shown before), but

also it outperforms the other policies in inducing conflicts and achieving higher net path rewards

over time.

2.5.7 Graph Connectivity Analysis

We also tested the proposed pinball attack policy on six different network topologies, each of which

is a 10-node graph, as we change the degree of connectivity between the 10 nodes. Examples

for the 10-node graph with different connectivities are shown in Fig. 2.29 and 2.30. Fig. 2.31

shows the average path reward versus the average node degree δavg used as a connectivity metric.

We chose the average node degree as it captures the average size of the neighboring set for each

node. Increasing the degree of connectivity, the attacker is able to achieve higher rewards as the

neighboring set for each node is getting larger allowing the attacker to create more conflicts under

any of the attack policies. However, the pinball policy outperforms all the other strategies for low

and moderate degrees of connectivity. For highly connected networks, we observe that the average

path reward of Rand and DoS are close to that of Pinball as we approach a fully connected graph,

since all actions inflict maximum conflict size when all nodes are more or less connected. Real

networks are not typically fully connected, in which case the pinball strategy has clear advantages

over the other strategies.

56



n1 n2

n6

n9

n5

n3

n7

n10

n4

n8

Figure 2.29: A 10-node graph with δavg = 1.8.
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Figure 2.30: A 10-node graph with δavg = 4.
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Figure 2.31: Comparing the performance of different attack policies as we increase the connectivity
of a 10-node graph.

2.5.8 Attacking Networks of Repeated Structures

We generated three large graphs by repeating the ring, the 5-node interconnected graph and the tree

topologies considered earlier as depicted in Figs. 2.32, 2.33 and 2.34, respectively. For instance,

Fig. 2.32 illustrates a repeated graph structure with a basic unit graph of a 6-node ring topology.

We adopt a pinball policy derived from the solution of the MDP corresponding to the small ring

network, thereby alleviating the prohibitive computational complexity of computing a policy for

the full scale graph.
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Figure 2.32: Graph with repeated ring structure.

Our results show that the pinball policy obtained from the small subgraph applied to the large graph

yields higher rewards than the other policies. This is shown in Figs. 2.35, 2.36, and 2.37 for the

three cases.
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Figure 2.33: Graph with repeated interconnected subgraph structure.
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Figure 2.34: Graph with repeated tree structure.
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Figure 2.35: Comparing attack policies for graph with repeated ring structure.

No Attack Rand DoS MCN Pinball

Attack Big Interconnected Topology nodes

0

100

200

300

400

500

600

A
v
e

ra
g

e
 P

a
th

 R
e

w
a

rd

Figure 2.36: Comparing attack policies for graph with repeated interconnected subgraph structure.
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Figure 2.37: Comparing attack policies for graph with repeated tree structure.

Figure 2.38: Partial view of an 800-node network with a repeated structure.
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Figure 2.39: Comparing attack policies for the 800-node network.
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Figure 2.40: A 37-node network with node degree distribution.
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Figure 2.41: A 32-node network of a repeated structure

It is worth mentioning that, although the pinball policy has shown to yield the highest performance,

the large scale graph starts from a state with a large number of conflicts, hence the number of addi-

tional conflicts due to the attack policy is rather small compared to the initial number of conflicts.

However, the advantage of the pinball policy from the attacker’s standpoint is that it hinders the

network from reaching a state of zero-conflicts, i.e, it slows down the rate at which the network

resolves its initial conflicts.

To even test our proposed policy on considerably larger graphs, we synthesized an 800-node graph

(Fig. 2.38) as a repeated structure of the network topology of Fig. 2.20. In this case, we start from

a no-conflict state and run the system for 10 steps. Fig. 2.39 shows the average path reward. The

pinball policy yields a significantly higher reward. The no attack strategy gives zero reward since

the network is started from a no-conflict state.

2.5.9 Attacking Networks of Arbitrary Structures

Finally, we extend the use of the pinball policy to arbitrary topologies. As an example, we consider

the network shown in Fig. 2.40 which consists of 37 nodes. We approximate this graph to obtain
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the same graph in Fig. 2.41, which has the repeated structure of Fig. 2.20 that only consists of 8

nodes. The pinball policy derived from the 8-node subgraph MDP problem is used for the attack.
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Figure 2.42: The gap due to approximating a graph with a repeated structure graph

Fig. 2.42 shows that the attacker incurs some loss in the average reward by using the approxi-

mate policy instead of the original one. However, the approximate pinball policy still outperforms

DoS and Rand. In addition, the approximate approach to attacking arbitrary networks provides a

substantial complexity reduction since it only needs to obtain the pinball policy for a small MDP

problem (corresponding to the 8-node subgraph in this example) in lieu of the larger one (cor-

responding to the 37-node graph). We should mention that there is some additional overhead in

identifying a graph with a repeated structure that well approximates an arbitrary graph.
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CHAPTER 3: ADAPTIVE TOPOLOGIES AGAINST JAMMING

ATTACKS IN WIRELESS NETWORKS

Shortage and tight control of the wireless spectrum coupled with the exponential demands for

wireless bandwidth have put a lot of strain on our wireless resources. The deployment of wireless-

enabled devices (e.g., Internet of Things, wearables, etc.) has made our networks larger and more

dense. To accommodate such growth under spectrum constraints, significant research efforts fo-

cused on developing spectrum management techniques through the use of Software Defined Net-

works (SDN), Network Function Virtualization (NFV), and Cognitive Radios (CR) to improve

the spectrum utilization [15, 51]. These techniques rely on sensing the current conditions (e.g.,

channels used, transmission power, interference levels, etc.) and dynamically making the appro-

priate allocation decisions. Current Access Points (APs) can dynamically select their channels and

their transmission ranges to minimize interference with surrounding APs in wireless mesh net-

works (e.g., Cisco’s Transmit Power Control [52]). The shared nature of wireless communication,

however, has made many of the above techniques susceptible to attacks.

Various types of attacks have emerged that target such adaptation employed in SDN and CR at

different layers [53, 42]. Jamming attacks, in particular, were shown to cause significant degrada-

tion in network performance through exploiting dynamic channel allocation feature and reactive

power transmission techniques used in NFV and SDN (e.g., [37, 54, 34, 55]). In these attacks,

the adversary creates interference on a given channel causing surrounding nodes to switch to other

channels. Depending on the topology of the network, the effect of the attack can ripple through the

network causing further nodes to switch. Once (and if) the network converges, the adversary can

repeat the attack. Attacks on the control channel can also cause a similar outcome. Defense against

jamming attacks has focused on the physical layer through frequency/channel hopping/selection
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techniques – including the control channels – (e.g., [44, 56, 39, 38]), as well as power allocation

methods (e.g., [40, 57]).

To study the interactions between the adversary and the defender, game theory has provided a

rigorous framework to model the strategies of each player and has been instrumental in advancing

the state-of-the-art in jamming games (e.g., [58, 8, 57, 44]) – which we explore in detail in Section

2.2. In many games, however, obtaining optimal policies is computationally prohibitive due to

the exponential nature of the action space of the players. Some studies have investigated different

techniques – that rely on either iteratively adding pure strategies to the problem or considering a

marginal strategy through a minimax problem formulation – to make the problem more tractable

[59, 60, 61]. We consider the defender’s strategy in adapting the footprint of the wireless nodes

to minimize the impact of a rational jammer, which presents itself as a combinatorial problem.

We develop effective decomposition approaches that are scalable for larger and more practical

problems.

In this chapter, we consider a wireless network of N nodes (APs) in which the defender adapts the

transmission power level of each node to minimize interference due to jamming attacks. The setup,

for example, corresponds to a wireless mesh network that exists in large buildings (e.g., academic,

residential) configured to minimize overlap between nodes while ensuring proper coverage to ser-

vice clients. We consider an adversary that aims to increase interference through selecting node(s)

to jam. The defender adjusts the wireless footprint of the nodes to effectively change the topology

for the adversary. The defender can be centralized as in wireless mesh networks in buildings that

are managed by a single entity, or distributed as with the use of SDN-enabled APs in residential se-

tups that are managed by multiple entities. In adapting the underlying topology via power control,

we seek to optimize an inherent tradeoff between immunity to jamming and network coverage. If

the footprints of the nodes recede, immunity to jamming could be enhanced at the expense of po-

tential reduction in network coverage and vice-versa. In our model, we capture this tradeoff in the
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cost function of various formulations of security games, classified according to the structure of the

players’ action spaces. To deal with the curse of dimensionality, we develop scalable approaches

to handle the complexity of the various classes of the games considered.

3.1 Related Work

This work is related to two research areas: security in wireless channel allocation techniques and

formulations of security games.

3.1.1 Security in Wireless Channel Allocation Techniques

There is a large body of research on the security of channel assignment algorithms in regards to

exposing attacks and developing defense mechanisms (e.g., [37, 34, 43, 55, 62, 38, 39]). The work

in [37] exposes three types of attacks against channel assignment algorithms that capitalize on

attacking the most loaded channels. One of these attacks is the Low-Cost Ripple Effect Attack

(LORA) that aims to force the network in quasi-stable state by continuously inducing channel con-

flicts. Moreover, the authors in [63] presented a game theoretical analysis to study the interaction

between mobile ad-hoc networks (MANET) nodes where a subset of the nodes are malicious. In

[43] the authors show a number of vulnerabilities in MAC protocols due to selfish cognitive radio

users that seek to gain more than their fair share of resources. The authors in [34] expose three

types of attacks against channel assignment mechanisms through creating utilization-based con-

flicts, link breakage and Denial of Service. The attacks above, however, were not studied from

an optimization/game-theoretic standpoint and thus the attack strategies were rather arbitrary. The

work in [55, 62] exposed attacks on dynamic channel allocation methods through Markov Decision

Process (MDP) problems in which the attacker seeks to maximize the damage inflicted (captured
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by the interference level in the network) subject to an attack cost (e.g., risk of being detected).

These attacks, however, did not consider the defense strategies and in this dissertation we consider

the impact of the defender through a game-theoretic formulation. On the defense front, the authors

in [38, 39, 40] address the control-channel jamming attacks and propose a randomized distributed

scheme in which nodes can reestablish the control channel using frequency hopping techniques.

Furthermore, in [39] the authors propose two methods for identifying the jammers whether act-

ing independently or colluding. The authors in [64] study and compare proactive versus reactive

frequency hopping techniques against jamming attacks through a min-max formulation. The de-

fense strategies, however, are limited to two defense actions: proactive vs. reactive. The author

in [40] considers power control to enhance successful transmission. Our work, however, considers

power control through a game-theoretic formulation with an attacker deciding which node(s) to

jam. Game theory has been also used to study the power allocation problem among wireless nodes

while managing the interference level between them [65, 66, 67]. In [65], the authors investigated

the joint uplink subchannel and power allocation problem in cognitive small cells in a cooperative

game-theoretic framework. In [66], the authors solved the subchannel assignment and power allo-

cation joint optimization problem in heterogeneous small cell networks in a non-cooperative game

setting. The power allocation problem for non-orthogonal multiple access amplify-and-forward

two-way relay wireless networks in the presence of eavesdroppers was investigated in [67].

3.1.2 Game-Theoretic Formulations in Security Games

There have been some studies that focused on the game-theoretic aspect of jamming attacks as in

[58, 9, 8, 57, 44, 68, 69, 70, 64, 71, 72, 73]. In [58] the authors consider a game in which the

attacker aims to maximize the number of corrupted communication links through jamming while

the defender aims to detect the presence of the attacker based on the percentage of collisions ob-

served by a set of monitor nodes. In [8], the authors consider a game-theoretic approach for a finite
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energy jamming game in which both players, the defender and the adversary, start with a power

budget and decide in each round what power to use. A reward is obtained based on their power

choices. The game is solved by computing the possible cases through dynamic programming, then

identifying the strategies through a linear program. The authors, however, consider the defender

as a single pair of nodes. The authors in [57] consider a jamming attack against a secondary user

in cognitive radio setups in which a secondary user allocates different transmission powers to the

fallow bands available. The attacker aims to induce interference by allocating different power lev-

els in the same bands. The game is cast as a Colonel Blotto zero-sum game and a NE is obtained

as randomized strategies over the power allocations of the players under certain conditions. The

dynamics of this game are studied later in [71, 74] with focus on the single node case with an

SINR objective function. Although the scope of the work is related to ours, our models and for-

mulations are different. In particular, we focus on the topological adaptation of N nodes under

coverage constraints whereby the power allocated to any node is coupled with the power allocated

to its neighbors. Such a problem increases the complexity of the underlying games and leads to

identifying scalable and computationally tractable defense mechanisms. In [44] the authors con-

sider a stochastic game between a jamming adversary and a secondary user. In this game, multiple

channels are reserved for control messages and are dynamically switched with data channels by

the secondary user based on the strategy of the adversary. The work in [68] studies a problem of

resource allocation in the presence of a jammer subject to total resource constraints. The authors in

[70] studied the power allocation problem in dense small cell networks in a game-theoretic frame-

work but at normal condition. i.e., when no threat is directed at the network. The authors establish

the uniqueness of the NE for special utility functions (such as α- fairness) and show that it admits

a closed-form parametrized solution that can be obtained by solving a non-linear system in few pa-

rameters, thereby evading the combinatorial complexity for that particular setting. This work was

further extended in [69] to non-zero sum games where both selfish and cooperative strategies are

characterized and shown to coincide under certain conditions. Authors in [75] considered a similar
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problem in a different setup as a Stackelberg game [76] formulation, however they considered a

decoupled SNR reward function that does not account for any interactions between the network

neighbors. In the considered model, we obtain a marginal strategy for the footprint assignment of

the nodes which satisfies a global coverage constraint through marginal relaxation of a zero-sum

formulation.

Prior work focused on securing separate transmitter-receiver pairs against jammers. In sharp

contrast, this work investigates the security of the whole network by considering the simultane-

ous adaptation of N wireless nodes through a game-theoretic framework. The proposed model

uniquely considers a coupled objective function in which the adaptation of a node is not done in

isolation from its neighbors, but rather depends on the power and frequency allocated to its neigh-

bors. Furthermore, due to the complexity of solving the full game NE, we develop decomposition

approaches to approximate the full games that have shown to yield efficient and scalable defense

strategies for securing wireless networks.

3.2 System Model

We consider a wireless network of N Access Points (APs), represented by a graph G(V , E), where

V is the set of APs (nodes) such that |V| = N , and E is the set of edges. Two nodes are considered

adjacent if the distance between them is below a certain threshold so that they may interfere given

the overlap of their footprints. Every node v ∈ V uses a channel frequency cv from a set of usable

frequencies C. This set depends on the network operating spectral band.
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3.2.1 Dynamic Channel Assignment

Channels should be assigned so as to avert Co-Channel Interference (CCI) and/or Adjacent Chan-

nel Interference (ACI) between neighboring nodes. Such an assignment is tantamount to a graph

coloring problem since a fixed number of channels are assigned to N nodes in such a way that no

two adjacent nodes share the same color, i.e, use interfering channels.

Let Nv := {u : rv + ru > du,v} , ∀ v, u ∈ V denote the neighboring set of node v predefined

by the network administrator prior to playing the game and adapting the topology, where rv is the

power radius of node v and du,v is the distance between the two nodes. We also define an interfer-

ence set, Iv, for every node v ∈ V as defined in equation (2.2). Thus, the set of non-interfering

channels Lv available to node v is the difference set of C and the union of the interference sets of

the neighbors of v as defined earlier in equation (2.3). We also define the conflict set Dv as the set

of nodes in the neighborhood of v that use channels in its interference set, equation (2.4).

In practice, if the interference level exceeds a certain admissible threshold, the system should

re-assign the channel frequencies. To further reduce interference with neighboring nodes, the foot-

print of the APs can be adapted by adjusting their transmission radii through power control. For

instance, in the Cisco Radio Resource Management (RRM) system, the Transmit Power Control

(TPC) protocol is automatically initiated if any AP is found to interfere with three or more neigh-

bors with an RSSI exceeding a certain threshold (-70 dBm), thereupon its transmission power level

is reduced to go below that threshold [52].

3.2.2 Jamming Attacks

Through jamming the APs, an adversary can trigger the channel assignment and adaptation pro-

tocols as mentioned earlier. Multiple jammers may further collude to inflict more damage by si-
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multaneously attacking several APs. Initiating channel re-assignment to resolve conflicts could, in

turn, result in increased network delay due to perpetual channel switching, and inadvertent changes

in the footprint of the APs could lead to a loss in network coverage through the formation of cov-

erage holes. The damage can be more drastic if these adaptations are automated on the software

level. For instance, dynamic channel switching in the application layer as in SDNs and NFV –

primarily intended to improve the network performance and stability [16] – can leave the network

more susceptible to such exploits.

Next, we present a general game-theoretic formulation to identify effective and scalable defense

strategies against jamming attacks based on adaptive network topologies.

3.2.3 General Framework

A game is defined as a tuple Γ(K,A,R), where

• K is the set of players. K = {1, 2}, denotes the defender (player 1) and the adversary (player

2).

• A = Ad ×Aa is the action space for the defender and adversary.

• R = {Rd, Ra} is the reward function, R : A → R2 mapping actions to rewards, where Rd

and Ra are the defender and adversary rewards, respectively. Since we consider zero-sum

games, Rd = −Ra = R.

The defender sets the power profile of the nodes. Let ad ∈ Ad ⊂ RN be a power assignment

vector designating the action of the defender. Hence, the defender action can be expressed as,

ad = [P1, · · · , PN ], where Pv is the power level assigned to node v. The adversary chooses one or

more nodes to jam with interfering signals. Therefore, aa = [J1, · · · , JN ], where Jv is the power
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used by the adversary to jam node v. In the first instantiation, we consider a discrete game where

Ad and Aa are both discrete and finite sets. As explained later, computing a NE in such games

is computationally prohibitive for large network sizes, therefore we identify suboptimal scalable

strategies. Also, in the second instantiation we further consider a defender with a continuous

control space and propose a marginal-based approach to identify favorable strategies. At last, we

consider a continuous game where both players have continuous action spaces.

The defender seeks to reduce the level of interference by adapting the power level of each node

while maintaining an acceptable network coverage. On the other hand, the adversary seeks to

inflict the maximum disruption to the network while reducing the cost of the launched attack. The

cost of the attack captures its risk of exposure. We develop defense strategies where the defender

chooses the power assignments for the nodes from both discrete and continuous sets.

3.3 Game Formulation

In this section, we use the general game-theoretic framework introduced above to present specific

game formulations based on the control sets available to the players (e.g., discrete and continuous

sets) as well as the corresponding utility functions (that capture the fundamental tradeoff between

mitigating the jamming damage and maintaining minimum network coverage). We devise scalable

solutions for the corresponding games to reduce the game complexity.

We focus on two-player zero-sum games. This class of games suits our system model as it does

not allow for any type of cooperation between the players – a reward for one player is a cost for

the other.
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3.3.1 Discrete Game

In the first instantiation, we start off with simple defense and offense strategies whereby the de-

fender selects one of two power levels, high or low, to assign for each node and the adversary is

only capable of jamming a single node at a time. We investigate a minimax formulation to obtain

a NE for the game. We remark that the use of two power levels is by no means restrictive and

only used here to simplify the exposition. We elaborate more on that later in the section as we

discuss the game complexity, as well as in Section 3.3.2 where we allow for more power levels

along with explicit coverage constraints. The essential assumption for the formulation we consider

in this section is the discrete nature of the action space for both players, hence the appellation

‘Discrete Game’. This assumption is relaxed in Section 3.3.3 where we study a continuous game

formulation.

With slight abuse of notation, we use Pv as a binary variable to designate the two power levels,

i.e., Pv ∈ {0, 1} , ∀v ∈ V , with Pv = 0 corresponding to low power for node v and Pv = 1 for

high power. Hence, the pure action ad ∈ Ad = {0, 1}N is a binary vector of length N . There exist

2N pure strategies for a network of N nodes, thus the dimensionality of the action space grows

exponentially with the graph size. The defender may choose to play any of these actions (a pure

strategy), or a combination of these strategies through a mixed strategy as explained later. On

the other hand, the jammer can select one node to jam at a time such that Jv ∈ {0, 1}, ∀v ∈ V ,

using the same convention used above for the power levels assigned by the defender. Hence, the

jammer’s pure action aa ∈ Aa ⊂ {0, 1}N is a binary vector of length N with at most one entry of

value 1. For example, if the adversary jams node k ∈ V , aa = ek, where ek is a vector of all zeros

except for a one at the k-th position. Similarly, aa = 0 corresponds to a no-attack action.

A pure strategy is one that selects one of the actions from the action spaces for each player. Alter-

natively, a player may choose to use a randomized (mixed) strategy defined through a probability
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distribution over the pure strategies. Given the set of actions of player 1, Ad, let X (Ad) denote the

set of all probability distributions over Ad, i.e., the set of mixed strategies for player 1. In a mixed

strategy x ∈ X , action ad is played with probability x(ad). Similarly, the mixed strategy of the

adversary is a probability distribution y ∈ Y over the pure strategies.

Let 1S be the indicator function associated with set S. The defender’s reward R is defined as,

R(ad, aa) =
∑
v∈V

(
h · 1{Jv=1}

δ−v + δ+
v

2
− 1{Pv=0}

− βv
(
1{Pv=1} + 1{Pv=0}1{Jv=1}

) )
, (3.1)

where βv =
∑
{u∈Nv :cu∈Iv}

(
1{Pu=1} + 1{Pu=0}1{Ju=1}

)
. The first term in the summand on the

RHS of (3.1) is the cost uncured by the adversary (reward for the defender) if he jams node v.

Recall that the topology varies from its original state depending on the selected power profile of

the nodes. The degree of node v ∈ V is δ−v and δ+
v prior and after playing the game, respectively,

and h denotes the attack cost. Hence, considering any node v ∈ V , the adversary incurs a cost

h · δ+
v /2 capturing the node degree after the game is played, plus another cost h · δ−v /2, which is

a constant penalty reflecting the original importance of the attacked node and the power used by

the adversary (proportional to node degree). The second term is a cost incurred by the defender

for the coverage holes captured by the number of nodes transmitting at ’low’ power level. The

third term counts the conflicts in the network, calculated by summing over the nodes in conflict,

each weighted by the number of neighbors it conflicts with. Thus, bv in (3.1) counts the number

of interfering nodes in the neighborhood of v due to transmitting at an interfering frequency or

because it is jammed by the adversary.

In order to obtain the NE of the game, the defender solves the following linear program (LP),
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maximize
x∈X

U (3.2)

subject to
∑

ad∈Ad

R(ad, aa)x(ad) ≥ U, ∀aa ∈ Aa, (3.3)

xT1 = 1, x ≥ 0, (3.4)

where U in (3.2) denotes the value of the game, which is the expected reward xTRy. Thus, the

defender seeks to maximize the value of the game with the first set of constraints (3.3) ensuring

that the defender plays best response to every pure strategy by the adversary. The remaining two

constraints in (3.4) ensure that x is a valid probability distribution vector.

Game complexity: While (3.2) can be readily solved to obtain a NE for the game, its complex-

ity grows exponentially with the network size and the power of the attack. Indeed, recalling that

Ad = {0, 1}N , each constraint in (3.3) involves a summation over 2N pure strategies. Note that

the restriction to two power levels in this section is without loss of generality and is only used

to simplify the exposition. Surely, for a fixed graph size N the complexity of the LP in (3.2) is

polynomial in the number of admissible power levels, so generalizing to more power levels does

not greatly impact complexity. Also, the number of constraints in (3.3) is linear in M := |Aa|,

the number of pure strategies for the jammer, albeit M itself is O(NK), i.e., exponential in the

power of the attack measured by the number of nodes K the adversary can attack simultaneously,

or equivalently the number of jammers colluding to attack different nodes at the same time. Typ-

ically K � N , yet the complexity of the game is still exponential in N . This motivates our next

section, where we develop scalable and tractable defense strategies based on a newly proposed

decomposition.
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3.3.1.1 Decomposition-based approach

In this approach, we define a sub-game per node. Each sub-game is associated with a subgraph

consisting of the corresponding node and its neighbors in a star topology. The defender solves N

simple sub-games – in lieu of one complex game – whose solutions are then combined to decide

on the power profiles for each node.

Similar to the game formulation of the full game in Sections 3.2.3 and 3.3.1, let Γv(P ,Av,Rv)

denote the sub-game corresponding to node v. The action space Av is the set of all possible

actions by both players, i.e.,

Av = {(Pv, Jv)} , Pv, Jv ∈ {0, 1} ,

and the set of sub-game reward for both playersRv = {Rv,−Rv}.

In solving the sub-game corresponding to node v to determine its power level, the defender has to

make some assumptions about the unknown power profiles of the neighbors of v. This uncertainty

is the result of our search for a decoupling scalable strategy versus a joint solution of all the power

profiles as in the full LP (3.2). To tackle this difficulty, we consider an all-high assumption, that is,

we assume that all the neighbors of v will be transmitting at ’high’. This is a worst case assumption

in terms of interference between neighbors in case conflicts exist between node v and any of its

neighbors. Hence, the reward of the defender for this sub-game can be expressed as,

Rv(Pv, Jv) = h · 1{Jv=1}
δ−v + δ+

v

2
− 1{Pv=0} − βv(Pv, Jv)

(
1{Pv=1} + 1{Pv=0}1{Jv=1}

)
, (3.5)

where all symbols are defined as before with respect to the subgraph of node v. As such, we only

account for the cost and reward for the defender and jammer with respect to node v. The value of
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the sub-game played at node v can be expressed as,

Uv =

[
1− xv xv

]Rv(0, 0) Rv(0, 1)

Rv(1, 0) Rv(1, 1)


1− yv

yv

 , (3.6)

where xv is the probability that the defender plays action ad = 1, i.e, assigns ’high’ power level to

node v, and yv the probability of attacking node v. We can readily write the optimization problem

solved by the defender to obtain a NE mixed strategy for sub-game Γv as,

maximize
xv

Uv

subject to Rv(1, 0)xv +Rv(0, 0)(1− xv) ≥ Uv,

Rv(1, 1)xv +Rv(0, 1)(1− xv) ≥ Uv,

xv ≥ 0.

(3.7)

Again, this naturally generalizes to any finite number of power levels. The probabilities xv, v ∈ V

fully define the overall strategy x of the defender through a simple product measure, where each

node is assigned its level based on its own distribution ([1 − xv xv]
T for the two-level case). The

first two constraints in (3.7) guarantee that any mixed strategy xv is an element of the best response

set of the defender [7].

After solving the set of decomposed games using the same procedure for solving the full-size

game, we obtain the jammer’s NE strategy yv, v ∈ V for each of the N sub-games. Then, the

strategy of the jammer is obtained through proper normalization since the mixed strategy can only

be supported on the jammer’s M admissible pure strategies. For example, consider the scenario

where the adversary can only jam one node at a time, i.e., Aa = {ek}Nk=0, recalling that ek is the

vector of all zeros except for a value one at the k-th position for k = 1, . . . , N , and e0 = 0 is

the vector of all zeros corresponding to no-attack. Hence, the probability that the adversary plays
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action ek, denoted y(ek), is obtained from the mixed strategies yv, v ∈ V , as

y(ek) =
yk
∏N

v=1
v 6=k

(1− yv)∑N
k=0 yk

∏N
v=1
v 6=k

(1− yv)
, k = 0, . . . , N (3.8)

where y0 = 1.

Through this decomposition we have reduced the complexity of the original LP (3.2) – which was

exponential in N (and polynomial in the number of power levels) – to linear complexity since the

complexity of each sub-game is linear in the number of power levels (here we simply considered

2 levels) and we have to solve N such sub-games.

3.3.1.2 Progressive decomposition approach

Here, we develop a second alternative for decomposing the original LP other than the one based

on the all-high assumption. In particular, we select an arbitrary ordering of the nodes. Then,

we proceed in a greedy manner by solving decomposed sub-games progressively with respect

to the predefined order of nodes, but this time sequentially feeding in the power assignment of

the solved sub-games to subsequent ones rather than making an all-high assumption for all the

neighbors. Hence, as we solve the sub-game corresponding to node v, the probability that some of

its neighbors are transmitting at the ’high’ level is now known from the previous steps. For those

neighbors whose assignment is not yet specified, we set their powers to ’high’. Once we go over

all the nodes in the specified order, we obtain the final strategy of the defender. We report on the

performance of both decomposition-based approaches in the results section.

Remark 2. When both players resort to decomposition owing to the combinatorial complexity of
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the full game, the decomposed strategies may yield a higher reward than the full game NE. This

does not violate optimality since a NE is only optimal in the sense of unilateral deviations by one

of the players [7].

3.3.2 Discrete Game with Explicit Constraints

In this section, we allow the action space of the defender to accommodate more than two power

levels and account for explicit coverage constraints in the formulation. We also devise a different

approach to address the aforementioned combinatorial complexity of the discrete game by allowing

the defender to directly optimize over the marginal footprints of the nodes rather than enumerating

all possible pure strategies. More specifically, let P̄ =
[
P̄1, . . . , P̄v, . . . , P̄N

]
denote a marginalized

power strategy, where P̄v is the marginal power of node v satisfying

PL ≤ P̄v ≤ PU , (3.9)

where PL and PU are the admissible lower and upper power levels, respectively.

In this formulation, we consider scenarios where we have an explicit constraint on coverage (as

opposed to absorbing it in the reward function as in the first formulation), for example to ensure

a minimum level of quality of service. Specifically, the defender seeks to maintain a minimum

network coverage measured by the sum of powers to avoid undue coverage loss, i.e., P̄T1 ≥ Cmin.

Thus, we modify the optimization space for the defender’s action as

Ad = {P̄ ∈ P ⊂ RN : P̄T1 ≥ Cmin, P̄ satisfies (3.9)}, (3.10)

where P is a discrete and finite subset of RN . For simplicity, we consider the action space of the

adversaryAa = {ek}Nk=1, in which one node is jammed at a time. Instead of using the node degree
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considered earlier, we adopt a measure of the interference overlap between the nodes. Therefore,

the reward function R now captures the impact inflicted by the adversary on the network that is

proportional to the degree of overlap between the jammed node and the rest of the nodes. The

overlap Luv between nodes v and u corresponding to assignment P̄ is defined as

Luv(P̄) = P̄u + P̄v − κd2
uv, (3.11)

where duv is the distance between the pair of nodes and κ is a weighting constant of proper units.

This choice is motivated by the fact that (3.11) provides a tractable approximation of the overlap

area of two circles, which consists of the sum of two terms proportional to the area of each circle

(captured here by the power which is proportional to the coverage area) minus a term that scales

with the square of the distance, [77]. We readily define the reward function as

R(P̄, ek) = −
N∑
v=1

(Lkv, 0)+, k = 1, . . . , N (3.12)

where the function (., 0)+ := max(., 0) captures the positive overlap and node k is the node being

jammed by the adversary. To account for colluding adversaries, (3.12) can be simply modified by

summing over the set of jammed nodes.

We consider a zero-sum game formulation in which the defender aims to maximize the worst case

utility, solving for the optimal tradeoff in the footprint assignment that reduces the severity of the

conflicts inflicted by the jammer subject to the minimum coverage requirement. Hence, the optimal

mixed strategy for the zero-sum game can be obtained by solving the LP given in (3.2), (3.3), and

(3.4), with the new definitions of the reward function and action spaces.

Solving this problem exactly is computationally prohibitive for large graphs since the number of

pure strategies grows exponentially in N . To handle the large pure strategy space, here we adopt
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a marginal-based approach [61], in which we directly optimize over the marginal assignment of

footprints instead of enumerating all the pure strategies in Ad.

Marginal-based approach: Here we require the marginal assignment P̄ to satisfy the coverage

constraint. Bypassing the modeling of the mixed strategy and optimizing over the marginal vari-

ables, we solve the following optimization

maximize
P̄∈Ad

U

subject to U ≤ −
N∑
v=1

(Lkv(P̄), 0)+, ∀k = 1, . . . , N,

(3.13)

with Ad defined in (3.10), which dispenses with the constraints in (3.4) and enforces the coverage

constraint in the marginal strategy. In the numerical evaluation, we used the CPlex Optimizer [78]

to solve the LP in (3.13).

Implementation of the marginal strategy: Since an AP only supports a discrete set of power

levels, we need to ensure that the obtained NE of the marginalized strategy is admissible, i.e.,

implementable using this set of power levels. Recall that a pure action, ad, is a vector of length

N whose v-th entry, Pv, designates the power level assigned to node v. This amounts to a re-

source allocation problem with one resource (power) to be assigned to N agents (nodes) subject

to minimum coverage constraints. A marginalized strategy is implementable if there exist positive

numbers {λn}Tn=1 such that, P̄ =
∑T

n=1 λnP
n, where Pn denotes the pure strategies.

Budish et al. established that a sufficient condition for marginalized strategies to be implementable

using pure strategies is when the resource assignment constraints set forms the so-called ‘hierar-

chy’ [79]. The concept of a hierarchy pertains to constraint structures of assignment problems

in which different objects/resources are assigned to a number of agents subject to a number of

assignment constraints.
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Constraint structures and hierarchies: To clarify, we briefly review the concept of hierar-

chies from [79], then show that our constraint structure naturally forms a hierarchy, wherefore

the marginalized strategy is implementable.

Given the set of nodes V and a set of resources O, a pure assignment is defined through a matrix

T = [Tvo] indexed by all node-resource pairs (v, o) defining the amount of resource o ∈ O assigned

to v ∈ V . The assignment has to satisfy constraints of the form

qS ≤
∑

(v,o)∈S

Tvo ≤ q̄S , (3.14)

for sets S of node-resource pairs, i.e. S ⊆ V × O, called constraint sets. The bounds qS and q̄S

are two assignment quotas, for example lower and upper bounds on coverage in our context. The

full collection of constraint sets along with the quotas in an assignment problem form a constraint

structureH.

Definition 2. H is a hierarchy if for every pair of constraints S and S ′ in H, we have S ⊂ S ′, or

S ′ ⊂ S, or S
⋂
S ′ = ∅.

Theorem 3. The constraint sets Ad defined in (3.10) for the power assignment problem form a

hierarchy, hence the marginalized strategy is implementable using pure strategies.

Proof. Per [79], it suffices to show that our constraint sets form a hierarchy. To this end, we first

note that we only have one resource (the power in a single band) to be assigned to N APs. Hence,

the set of resourcesO consists of one resource, equivalentlyO = {1}. The pure assignment vector

ad consists of power levels for each node, with two types of constraints, namely, individual power

constraints (3.9) for every node, and a total coverage constraint which must be satisfied for any

admissible pure assignment power vector ad. Hence, the constraint sets are singletons {(v, 1)} for

every node v ∈ V , as well as the set V × {1} of all nodes and resource pairs, with corresponding
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constraints PL ≤ ad(v) = Pv ≤ PU , and
∑

v∈V ad(v) ≥ Cmin, respectively. Clearly, the constraint

sets satisfy the requirements of a hierarchy given in Definition 2 since we have disjoint singletons,

which are also subsets of V × {1}. Therefore, any marginalized assignment strategy P̄ satisfying

the individual and total coverage constraints is implementable as a convex combination of pure

strategies.

The formulation in (3.13) only includes a (global) total coverage constraint, but this is by no means

restrictive. Specifically, we can also incorporate local coverage constraints – for example to avoid

local holes in coverage around certain areas. In general, adding such linear constraints to the

optimization problem will not affect its order complexity and only restricts the action space for the

defender, Ad. However, it may affect the implementability of the equilibrium marginal strategy.

To clarify, let %m denote a set of APs covering a local area indexed by m, where m = 1, . . . ,M ,

and let Cm
min be the corresponding minimum coverage. The local coverage constraints can thus be

expressed as, ∑
v∈%m

P̄v ≥ Cm
min , ∀m. (3.15)

Hence, the action space for the defender can be modified as,

Ad = {P̄ ∈ P ⊂ RN : P̄T1 ≥ Cmin, P̄ satisfies (3.9), (3.15)}, (3.16)

Theorem 4. The constraint sets in (3.16) for the power assignment problem in (3.13) form a hier-

archy if and only if %m
⋂
%m
′

= ∅ for m 6= m′. If the problem forms a hierarchy, the marginalized

strategy is implementable using pure strategies.

Proof. If the sets %m,m = 1, . . . ,M , for which the local coverage constraints (3.15) are defined
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are disjoint, then the corresponding constraint sets (sets of node-resource pairs) Sm := {(v, 1) :

v ∈ %m},m = 1, . . . ,M , are disjoint. In addition, the constraint sets Sm are subsets of the set

V × 1 corresponding to the total coverage constraint. Hence, the constraint structure is still a

valid hierarchy by Definition 2. Thus, the marginalized strategy can be implemented as a convex

combination of pure strategies.

3.3.3 Continuous Game

In the first instantiation, we considered a game with a discrete control space for each player. We

showed that computing a NE is computationally prohibitive, wherefore we devised decomposition-

based approaches to derive suboptimal strategies. In the discrete game we leveraged marginaliza-

tion to avert enumerating all possible pure actions for the defender. In this section, we consider

a continuous control space for both players. The defender assigns a power level from a com-

pact set to each node, and the jammer distributes his jamming power among the nodes to inflict

damage subject to a power constraint. Specifically, the defender chooses a power assignment

P = [P1, P2, ..., PN ]T . The power of each node is constrained as PL ≤ Pv ≤ PU , where PL and

PU denote the minimum and maximum power levels for AP v, respectively. The strategy of the

jammer is J = [J1, J2, ..., JN ]T , subject to a jamming power constraint, i.e.,
∑

v Jv ≤ J̄.

As considered in the earlier game instantiations, we define a utility function for the zero-sum game

capturing the inherent tradeoff of increasing the power level for each node in order to enhance net-

work coverage, and decreasing power to decrease the overlap between neighboring nodes thereby

reducing the impact of jamming. In addition, the reward function in this game explicitly accounts

for the impact of jamming on the users of the network. Meanwhile, the jammer seeks to reduce the

utility of the defender by selecting the jamming powers J subject to his jamming power budget,

while reducing the risk of exposure. The risk of exposure is a cost for the jammer that increases
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proportionally to the importance of the attacked node captured by the number of users it can po-

tentially serve. Hence, we account for the attacker cost by the term

T1(v) = Jv ·∆v, (3.17)

where ∆v denotes the density of users served by node v. Assuming that the active users are

uniformly distributed over the network, the number of users served by AP v is proportional to its

coverage area, hence proportional to the power transmitted by AP v, i.e., ∆v = KvPv, for some

proportionality constant Kv. We also define the second term

T2(v) =
∑

u∈Nv :u∈Iv

Pu, (3.18)

as a cost for the defender as he seeks to reduce the overlap between neighboring nodes1 by reducing

the power of the neighboring nodes while satisfying a minimum coverage constraint such that,∑
v Pv ≥ Cmin.

To capture the impact inflicted by the jammer, we consider its effect on the signal to noise ratio of

a user served by AP v,

T3(v) =
αvPv

N0 + hvJv
, (3.19)

where αv represents an average channel gain between AP v and a receiver within its coverage

area. The average gain hv is that of a channel between the jammer and the receiving device and N0

denotes the additive white Gaussian noise level.

We can readily define the reward function of the defenderR(P,J) =
∑

v θvT1(v)−γvT2(v)+T3(v)

1Even if neighbors are transmitting at non-interfering frequencies, undue overlap amounts to waste of resources
since multiple APs cover the same area.
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yielding the following reward,

R(P,J) =
∑
v

θvKvPvJv − ηv

( ∑
u∈Nv ,u∈Iv

Pu

)
+

αvPv
N0 + hvJv

, (3.20)

where θv and ηv, are weights with appropriate units.

To obtain the players best responses for the described zero-sum continuous game, the defender

solves

maximize
P

R (3.21)

subject to PL ≤ Pv ≤ PU , ∀v∑
v

Pv ≥ Cmin

while the jammer solves

minimize
J

R (3.22)

subject to
∑
v

Jv ≤ J̄.

The reward function of the defender (maximizer), R, is linear and continuously differentiable in

P ∈ RN , and convex and differentiable in J ∈ RN for the jammer (minimizer). Therefore, each

player maximizes his own utility function for a given strategy of his opponent, yielding a best

response function in terms of the opponent strategy. The NE strategy point, z = [P,J]T ∈ R2N ,

lies at the intersection of the produced best-response functions. Since each player is solving an

optimization problem that also depends on a set of variables shared with his opponent, at equi-

librium the best strategy for both optimization problems can be simultaneously satisfied for both
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players [80]. Therefore, an optimal strategy for the defender, denoted P∗, must satisfy the Karush-

Kuhn-Tucker (KKT) optimality conditions for the optimization problem characterized in (3.21).

Similarly, the optimal jamming strategy that minimizes the reward function must satisfy the KKT

conditions of the optimization problem defined in (3.22), [81]. Since the constraints for both play-

ers are not coupled, the Lagrange multipliers of the two optimization problems are independent.

Hence, a NE can be obtained by finding the optimal solution z∗ that simultaneously satisfies the

KKT conditions of both optimization problems, [80]. To characterize the optimal solution, we

write the Lagrangian for (3.21),

Ld = R−
N∑
v=1

(λv(Pv − PU)− µv(PL − Pv))− ρ(Cmin −
∑
v

Pv) . (3.23)

The optimal power assignment strategy P∗ for the defender must satisfy the following KKT con-

ditions,

• Equality conditions:

Pv
dLd
dPv

= 0 ∀v = 1, . . . , N (3.24)

λv
dLd
dλv

= 0, µv
dLd
dµv

= 0 ∀v = 1, . . . , N (3.25)

ρ
dLd
dρ

= 0, (3.26)

• Inequality conditions:

dLd
dPv
≤ 0 Pv ≥ 0 ∀v = 1, . . . , N (3.27)

89



λv ≥ 0, µv ≥ 0 ∀v = 1, . . . , N, ρ ≥ 0. (3.28)

Similarly, the Lagrangian for the optimization problem (3.22) of the jammer is

La = R + ν (
N∑
v=1

Jv − J̄). (3.29)

An optimal jamming strategy J∗ must satisfy the following KKT conditions

• Equality conditions:

Jv
dLa
dJv

= 0 ∀v = 1, . . . , N (3.30)

ν
dLa
dν

= 0, (3.31)

• Inequality conditions:

dLa
dJv
≥ 0, Jv ≥ 0 ∀v = 1, . . . , N (3.32)

ν ≥ 0, (3.33)

Since the equations generated by the KKT conditions are nonlinear, we used the Newton method

[82] to obtain the NE solution of this game. In addition, this NE (P∗,J∗) is unique as stated in the

next theorem. We establish uniqueness by leveraging a result in [83], which provided sufficient

condition for NE uniqueness.

Theorem 5. Given the utility function in (3.20), the pure strategies P∗ and J∗ that satisfy the

conditions in (3.24)-(3.33) are the pure strategy NE and this equilibrium is unique.
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Proof. The fact that P∗ and J∗ which satisfy the KKT conditions form a pure NE follows directly

from [81] as argued earlier in (3.3.3). It remains to establish uniqueness.

The utility function R in (3.20) is clearly linear in P. To show that the jammer’s reward function

is concave in J, we find the N ×N Hessian matrix Z = diag {Zv,v}

, where Zv,v = −2αvh2vPv

(N0+hvJv)3
, v = 1, ..., N . Z is diagonal with all negative elements, hence it is

negative definite. Hence, the jammer’s reward function, −R, is concave in J.

We now return to the proof of uniqueness in Theorem 5. Consider a strategic form game as defined

in Section 3.2.3. Assume that the strategy sets Sd (defender) and Sj (jammer) are given as defined

in the constraints of (3.21) and (3.22), respectively, where these constraint sets are linear functions,

and there exist some P̃ ∈ RN and J̃ ∈ RN for which the constraints in (3.21) and (3.22) are

satisfied. To show that the game has a unique pure strategy NE, it suffices to show that the payoff

functions (R,−R) are diagonally strictly concave for P ∈ Sd and J ∈ Sj [83].

Definition 3. (Diagonal strict concavity [83]): Let x = [P,J]T denote the combined strategy

played by the two players. Let (u1, u2) denote the payoff functions such that, u1 = R and u2 = −R.

The payoff functions (u1, u2) are said to be diagonally strictly concave for x ∈ Sd×Sj , if for every

x∗, x̄ ∈ Sd × Sj , we have that

(x̄− x∗)T∇u(x∗) + (x∗ − x̄)T∇u(x̄) > 0, (3.34)

where ∇u(x) = [∇1u1(x),∇2u2(x)]T , and where

∇1u1(x) =

[
∂u1(x)
∂P1

∂u1(x)
∂P2

· · · ∂u1(x)
∂PN

]T
(3.35)
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∇2u2(x) =

[
∂u2(x)
∂J1

∂u2(x)
∂J2

· · · ∂u2(x)
∂JN

]T
. (3.36)

A sufficient condition for Diagonal Strict Concavity was further given in [83], which we state next

for completeness. Let the strategy sets Sd and Sj be as defined earlier. Assume that the symmetric

matrix (U(x)+UT (x)) is negative definite for all x ∈ Sd×Sj , i.e., we have yT (U(x)+UT (x))y <

0,∀y ∈ R2N 6= 0, where U(x) denotes the Jacobian of∇u(x). Then, the payoff functions (u1, u2)

are diagonally strictly concave for x ∈ Sd × Sj .

For our defined two-player game, U(x) is a 2N × 2N Jacobian matrix.

We have that

yT (U(x) + UT (x))y =
N∑
k=1

N∑
l=1

(Uk,l + Ul,k)ykyl, (3.37)

where,

Uk,l =


−Ul,k ; |l − k| = N,

−2αvh2vPv

(N0+hvJv)3
; k = l = N + 1 : 2N, v = K −N

0 ; otherwise

(3.38)

Therefore,

yT (U(x) + UT (x))y =
2N∑

k=N+1

2Uk,ly
2
k < 0. (3.39)

Therefore, the symmetric matrix (U(x) + UT (x)) is negative definite, which completes the proof

of Theorem 5.
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3.3.4 Extension to Multiple Bands

Our game formulations allow us to consider the new generation of wireless APs that support mul-

tiple wireless bands whereby the defender adjusts the power radius for each supported band. Let

ω denote a specific wireless band in a set Ω of all supported bands (e.g., Ω ={2.4 GHz, 5 GHz}).

Since each band ω ∈ Ω is generally treated independently from the other bands, this truly amounts

to solving separate optimization problems, one for each band. As an example, we consider the

second formulation which considers a marginalized strategy. In this case, the marginalized action

space of the defender changes to

Ad = {P̄ ∈ P ⊂ RN×|Ω| : P̄T
ω1 ≥ Cω ,∀ω ∈ Ω}, (3.40)

where P̄ω is the power assignment vector corresponding to a wireless band ω ∈ Ω. The lower band

Cω generally depends on ω to reflect different coverage constraints for different bands. Thus, the

defender seeks to solve the following game,

maximize
P̄∈Ad

∑
ω

U(ω)

subject to U(ω) ≤ −
N∑
v=1

(Lωkv(P̄), 0)+,∀ω ∈ Ω, k = 1, . . . , N

(3.41)

This approach extends naturally to the other formulations, namely, the discrete and continuous

games of Sections 3.3.1 and 3.3.3. In Section 2.5, we show results on a real topology in a 3-

floor building for dual-band case where Ω = {2.4 GHz, 5 GHz}. Each of the bands has different

coverage constraints.

Remark 3. For the multiple-band marginalized strategy with constraints (3.40), we have a pure

assignment matrix, one column per frequency band. The corresponding constraint structure is also

a hierarchy since the constraint sets per band are disjoint.

93



3.4 Experimental Results

In this section we present numerical and simulation results obtained from extensive experimental

studies for the proposed defense approaches for a variety of topologies and under different con-

ditions and attack scenarios. Our assessment is performed on 3 types of topologies: (i) simple

topologies that are shown in Fig. 3.1 that describe “building block” structures for mesh networks,

(ii) a real deployment of a 28-node topology in a 3-story academic building (as shown later in

Figures 3.7 and 3.10), and (iii) a larger 64-node random topology.

In general, we are interested in assessing the performance of our decomposition approaches in

comparison to the full-game (which we can only solve for small networks due to the exponential

complexity) and assessing the gap between them. We present theoretical results (obtained as so-

lutions to the optimization problems presented in (3.2), (3.7) and (3.13)), as well as simulations

obtained by playing the game using actions sampled from the computed randomized strategies and

averaging over 1000 independent runs. Figs. 3.2 through 3.9 are for the first instantiation of the

reward (Section 3.3.1), and Fig. 3.10 through 3.12 concern the second instantiation (Section 3.3.2).

Performance evaluation for the continuous game (Section 3.3.3) is presented in Figs. 3.14, 3.15,

3.16 and 3.17.

1

2

5

3

4 6 7

1

2

5

3 4

1

2

5

3 4

(a) (b) (c)

Figure 3.1: Building block topologies, (a) 7-node tree, (b) 5-node star, (c) 5-node interconnected
network.

94



Defense and attack strategies: Fig. 3.2,3.3 and 3.4 show the defender’s reward under different

attack costs (h) for the building block topologies (a), (b) and (c) of Fig. 3.1. In this set of experi-

ments we consider an adversary jamming at most one node. Our results show that the defender’s

reward obtained by the decomposition-based approach (the resulting strategy is termed decom-

posed NE) performs closely to the NE obtained without decomposition, i.e., when solving jointly

for the power profiles (termed full game NE). Unless otherwise specified, the decomposed NE is

when both players apply a decomposition.

The decomposed NE is shown to yield a slightly lower reward for the defender (higher reward for

jammer) particularly in the low attack cost regime due to the all-high assumption for the neighbors

in solving the sub-games (cf. Sec. 3.3.1.1), which in turn motivates the defender to play more

conservatively when attacks are emboldened by the lower attacking cost. When the attack cost is

sufficiently high, both strategies converge to the same value of the game as the jammer chooses to

back-off with higher probability. Fig. 3.2,3.3, and 3.4 also show the performance as the defender

continues to play his best response against a random attack strategy in which the jammer picks

one node at random to attack regardless of the attack cost value. Since the jammer is unilaterally

changing its strategy, the reward of the defender increases by the definition of the NE.
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Figure 3.2: Defender reward for the 7-node tree network topology versus attack cost.
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Figure 3.3: Defender reward for different attack costs for the 5-node star network.
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Figure 3.4: Defender reward for the 5-node interconnected network topology vs attack cost.

In addition, we compare the performance of the defender’s strategy against a jammer that targets

the highest degree node (greedy attack). It is shown that the defender performs fairly close to the

NE for low attack cost (e.g., values less than 1 for topologies (a) and (c), and 2 for topology (c))

as attacking high-degree nodes can induce a large number of conflicts while being fairly uncostly.

As the cost of the attack increases, however, the greedy attack shows to be very expensive for the

jammer and enables the defender to secure larger rewards.

Unrestrained adversary: Our investigations have shown that the defense strategy based on decom-

position yields comparable performance to that of the (non-decomposed) NE (when its compu-

tation is non-prohibitive). However, obtaining an analytical characterization of the performance

gap is rather challenging due to the aforementioned coupling inherent to the minimax optimiza-

tion problem. In order to better understand the performance gap, we also study the defender’s

reward when only the defender (unilaterally) uses the decomposition to calculate his defense strat-

egy. The attacker, on the other hand, has the computational capability to obtain the optimal (non-

decomposed) attack strategy, hence the designation ‘unrestrained adversary’.
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In Figs. 3.2,3.3 and 3.4, the defender plays a decomposed NE strategy against a computationally

unrestrained adversary that plays its NE strategy (i.e. the adversary does not decompose the game).

Since this corresponds to a unilateral change of strategy by the defender, the reward of the defender

has to degrade by definition of the NE. However, the defender is still able to perform fairly well

even when the adversary has unlimited computational capability. More importantly, the small gap

from the full game NE indicates that the defender’s decomposed NE strategy only incurs minimal

loss in reward.

Fig. 3.2,3.3 and 3.4, also shows the reward with the progressive decomposition described at the

end of Section 3.3.1.2. The reward is fairly close, and sometimes higher (c.f. Remark 2), than that

of the full game NE. Since this is a successive approach in which the solution to sub-games are

successively fed into subsequent ones, the outcome will depend on the order of the nodes. For fair

comparison, the order of the nodes was selected randomly.
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Figure 3.5: Defender reward for topology (a) vs number of conflicts.
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Figure 3.6: Defender reward for topology (a) vs attack cost against two colluding jammers.

Number of conflicts: Fig. 3.5 shows the defender’s reward with and without decomposition at

attack cost h = 1 for topology (a) as a function of the number of conflicts that exist prior to

playing the game. In a network with a small number of initial conflicts, the jammer’s task is

harder, hence the larger reward for the defender. In this regime, the defender is able to play less

conservatively and to safely assign ’high’ power levels to a larger number of nodes. The defender’s

reward increases if the adversary chooses to use a random or greedy attack, and the gap between

the decomposed and full game NE strategies is negligible.

Colluding jammers: Fig. 3.6 shows the defender’s reward for topology (a) as a function of the

attack cost with two colluding jammers. We also compare the performance of the defender’s NE

strategy when the jammers deviate from the NE and choose to launch a random or greedy attack

leading to higher reward for the defender.
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Figure 3.7: (Left) Mixed strategy for power assignment of 28 nodes in 3-floor building, (Right)
The top plot shows the defender reward vs the attack cost, and the bottom plot displays the time
evolution of the conflicts with and without defense.
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Figure 3.9: Defender’s reward for a randomly generated 64-node topology.
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Figure 3.10: Defender’s strategies in a 3-floor building. 2D projection of the 3D footprint of each
access point, without coverage constraints (left) and with coverage constraints (right).

Real topology and value of defense: Our next experiment considers a real topology in one of our

academic buildings. The building consists of three floors with 10, 9 and 9 CISCO APs deployed
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on the first, second and third floor, respectively. In Fig. 3.7 (Left) we show the mixed strategy

for power assignments for the 28 nodes using a color map on each floor. We used fixed radii to

indicate node locations. Colors corresponding to higher percentages designate a higher probability

of assigning ‘high’ power level to a particular node. Note that for this network size computing a full

game NE is computationally prohibitive, so this mixed strategy is obtained through decomposition.

For the same topology, the top plot of Fig. 3.7 (Right) shows that the utility of the defender

increases significantly if the adversary deviates unilaterally from a decomposed NE and uses a

random attack. To demonstrate the gains emerging from using the defense strategy, we study the

evolution of the number of conflicts over time with and without defense as the game is played

repeatedly. Each game is initialized with the residual conflicts from the previous game. The lower

curve in the bottom plot of Fig. 3.7 (Right) shows the evolution when the defender adapts the

footprints using the decomposed NE. The middle curve is when the defender resolves the conflicts

by re-assigning the channels – each time switching the channel causing the largest number of

conflicts – but otherwise does not adapt the transmission footprints. The upper curve corresponds

to a no-defense scenario. In each scenario, the adversary plays its decomposed NE strategy. The

proposed defense strategy quickly resolves conflicts, thereby successfully protects the network,

and outperforms channel re-assignment. This experiment also underscores the value of using such

a defense mechanism versus no defense.
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Figure 3.11: 3D wireless footprints based on marginal strategy.
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Figure 3.12: Tradeoff between the number of non-conflicting APs and the minimum network cov-
erage.
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Figure 3.13: Power assignment in 3-floor building over two different wireless bands to enhance
coverage

Complexity reduction: The proposed decomposition brings about significant reduction in com-

plexity (c.f. Section 3.3.1.1 and 3.3.1.2). In Fig. 3.8 we compare the run time in computing a full

game and decomposed NE as we increase the network size. The complexity for the full game NE

increases exponentially in the size of the network – hence is computationally intractable beyond

a certain point – versus a linear increase for the decomposed NE. As such, in Fig. 3.9 we obtain

the reward based on a decomposed NE (and compare to random attack) for a randomly generated

topology of 64 nodes. The decomposed strategy is perfectly scalable.

Marginal strategy: Our next experiment considers the same 28-node topology inside the building.

We identify the marginal strategy of the two player zero-sum game developed in Section 3.3.2

obtained as a solution to (3.13) subject to the coverage constraint. Fig. 3.10 shows the defender’s

marginal strategy where we plot the 2D projection of the computed 3D wireless footprints for each

AP on each floor. A sample of computed 3D wireless footprints of the first and second floors is

shown in Fig. 3.11. Fig. 3.10 (left) shows the footprints with no coverage constraints – in this case

the marginal strategy amounts to no overlap between the nodes achieving zero value for the game.
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Fig. 3.10 (right) shows the footprints subject to a coverage constraint. Herein, we used a minimum

coverage that is twice the actual coverage that resulted from the marginal strategy of Fig. 3.10

(left).

In this case, the overlap maximizes the worst case utility of the defender. While the deployed

CISCO nodes do not implement or optimize an actual defense mechanism against adversaries, this

case study partially explains an actual poor wireless coverage phenomenon on the second floor of

the building. In particular, as the occupancy on and near the first floor tends to be high in this busy

area on campus, the APs on the first floor expand their footprints to serve more coverage based on

the TPC protocol of their RRM system. This in turn would trigger the APs on the second floor to

reduce their footprint to avert significant overlap with the ones on the first floor akin to the middle

plot of Fig. 3.10 (left) which uses no coverage constraints, leading to poor coverage. Note that

while the footprints in Fig. 3.10 are chosen to limit the worst-case effect of jamming attacks, they

share a similar objective with radio resource management – that is to minimize overlap between

the nodes. This issue has been brought up to IT who are currently investigating some solutions.

At a high level, this issue may be resolved by enforcing a minimal coverage constraint as in the

right figure. To further demonstrate the effectiveness of our proposed power adaptation approach,

in Fig. 3.12 we plot the tradeoff between the network immunity to jamming – measured in terms

of the number of APs with no conflicts (overlap) – and the network coverage, i.e., different values

of Cmin. We compare our proposed scheme to a power assignment scheme that uniformly allocates

the power levels across all the nodes. For the same network coverage, the proposed NE strategy is

shown to achieve about 36% improvement in jamming mitigation over uniform power allocation

when Cmin ≤ 300 power units. The gains are pronounced in the low 0 ≤ Cmin ≤ 300 and medium

300 ≤ Cmin ≤ 400 coverage regimes as the proposed scheme takes the node degrees into account

when assigning the power levels. For more demanding coverage requirements, the tradeoffs are

shown to concide since the maximum power is used up to meet the coverage constraint and there
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is no freedom to avoid overlap between many nodes. In Fig. 3.13, we show the power radii when

each AP is supporting two wireless bands as in the next generation APs to enhance the network

coverage and the QoS. We consider two different coverage constraints for each band. In practice,

the 5 GHz band has fewer applications in specific locations, hence is associated with less stringent

coverage constraints.
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Figure 3.14: Defender reward for the 7-node tree network topology versus attack cost.
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Figure 3.17: Power radii for different minimum coverage constraints.
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Figure 3.15: Defender reward for different attack costs for the 5-node star network.

In order to identify the unique NE for the continuous game in (3.21), the KKT equalities and

inequalities should be satisfied simultaneously for both players. We used Newton’s method to

solve the system of nonlinear equations numerically [81]. In Figs. 3.14, 3.15 and 3.16 we plot the

defender’s reward for the building block topologies.For this experiment, we set PL = 1, PU = 5

and Cmin = 14, as defined in 3.3.3. We compare the performance of the NE strategy to other

strategies where the adversary deviates unilaterally from the NE. In one instance, the jammer

chooses to attack only middle nodes (Greedy attack), and in another distributes the jamming power

uniformly across all 5 nodes regardless of their relative importance (Uniform attack). In both cases,

this indeed leads to higher reward for the network defender, equivalently loss in the jammer’s

reward. Fig. 3.17 demonstrates how the overlap increases by enforcing a more strict coverage

constraint. These results are obtained for the topology of the first floor of the building.
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Figure 3.16: Defender reward for the 5-node interconnected network topology vs attack cost.

3.5 Stochastic Games

A stochastic game Γ is defined as a tuple (S,N ,A, P,R), where

• S is a finite set of games, where each game represents a state. Hence, S is the state-space of

the game Γ.

• K is a finite set of k players.

• A = A1 × ... × Ak, is a game action space, where the action space Ai is a finite set of all

possible actions for player i.

• P : S×A×S → [0, 1] is a transition probability function, where P (s, a, s′) is the probability

of transitioning from state s to another state s′ after action profile a = (a(1), ..., a(k)) is

played.

• R = (R1, . . . , Rk), where Ri : S ×A×S → R is a real-valued payoff function for player i.
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Stochastic games provide a fairly broad framework as they generalize both MDPs and repeated

games. An MDP is a stochastic game with only one player, while a repeated game is a stochastic

game with a single stage. In the next section, we formulate a dynamic stochastic game-theoretic

framework to identify optimal defense policies against jamming attacks based on adaptive network

topologies. In this section, we present our stochastic Markov game formulation. A Markov game

can be seen as an MDP in which multiple agents influence the system dynamics. Such games

have several important properties. Every discounted reward Markov game has a non-empty set of

optimal policies, at least one of which is stationary. An optimal stationary policy is independent of

the time at which the game is played and only depends on the current state of the game [7],[84].

Following the definition of stochastic games introduced in the previous section, we define our

stochastic game as follows:

• A state s ∈ S is a normal form game played by two players, where S = {s1, . . . , s|S|}. We

generally use s to denote an arbitrary state. A state at time t is denoted st = (Ht, ct), where Ht is

the network adjacency matrix and ct is the channel assignment vector. Note the dependence of the

network topology and the channel assignment on t, the matrix Ht depends on the power assignment

a(d) set by the defender (defined below). The channel assignment vector c = [c1, . . . , cN ]T , where

cv is the channel assigned to node v. The channel assignment is controlled by a graph coloring

algorithm as discussed earlier. We refer to this algorithm as the system action which represents a

source of randomness as an exogenous variable. In case of conflicts, the system takes an action to

resolve these conflicts sequentially through channel re-allocation.

• K = {defender, attacker} is a set of 2 players.

• The action space A = Ad × Aa, where Ad = {d1, . . . , d|A
d|} and Aa = {a1, . . . , a|A

a|} are the

action spaces for the defender and the attacker, respectively. A pure action a(d) ∈ Ad, is a vector of

length N , where each entry a(d)(v) represents the power level assigned to node v. For simplicity,
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we assume that a(d)(v) ∈ {0, 1}, where a(d)(v) = 0 means the defender reduces the power level of

node v such that node v is not heard by any of its neighbors, and a(d)(v) = 1 means that node v

operates at its maximum possible coverage with respect to all of its neighbors.

A pure action for the attacker a(a) ∈ Aa is a binary vector of length N . The choice a(a)(v) = 1

means the attacker is attacking node v, otherwise a(a)(v) = 0. For simplicity and without loss of

generality, we assume the attacker has a limited power budget so that it can only attack one node

at a time or choose to completely back off.

• P : S ×A×S → [0, 1] is the transition probability function, i.e., P (s, a, s′) is the probability of

transitioning to a future state s′ from the current state s after action profile a = (a(d), a(a)).

• R =
(
Rd, Ra

)
, is the real-valued payoff function. We consider a zero-sum game, hence Rd =

−Ra = R. We consider a discounted long-term reward objective in which rewards are accumulated

over time. The immediate reward of the defender due to a transition from the current state st = s

to state st+1 = s′ is defined a

R(s, a, s′) =
∑
v∈V

(
h · 1{a(a)(v)=1}

δov + δv(s
′)

2
− 1{a(d)(v)=0} − βv(s

′)

)
(3.42)

The first term of the summand on the RHS of (3.42) accounts for the cost paid by the attacker for

attacking node v, where h is the attack cost parameter and 1{.} is the indicator function. Recall that

the topology varies from its original state according to the power transmission profile specified by

the defender’s actions. Hence, at terminal state s′, the node degree δv(s′) varies accordingly from

its maximum value δov , where δov is the node degree when all the nodes are transmitting at their

maximum power levels. Thus, considering any node v ∈ V , the attacker’s cost is the average of

two terms. The first cost term is a cost hδv(s′) that captures the node degree after the game is

played reflecting the risk of getting exposed as the attacker is avoiding attacking very dense areas.
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The other cost term is hδov , which is a constant penalty reflecting the original importance of the

attacked node since hub nodes that have higher degrees are more expensive to attack than leaf

nodes. The attack cost is a reward for the defender.

The second term in (3.42) is the cost incurred by the defender for the coverage holes captured by

the number of nodes transmitting at ’low’ power level.

The third term accounts for the conflicts in the network, where βv(s′) is the conflict size for node

v, defined in (3.43) which counts the number of nodes in the neighborhood of v with channels in

its interference set that are either assigned high power or attacked by the adversary.

βv(s
′) =

∑
u∈Dv

(
1{a(d)(u)=1} + 1{a(d)(u)=0}1{a(a)(u)=1}

)
(3.43)

where we have made the dependence of the conflict set Dv defined in (2.4) on the future state s′

explicit sinceDv depends on the neighborhood set and the channel assignment, which are both part

of the state.

3.5.1 Mixed strategy, state evolution and objective function

Unlike MDPs, the optimal stationary policy for stochastic games need not be deterministic. Since,

we will be searching for an optimal mixed (randomized) stationary policy we start with a definition

of stationary mixed strategies for both players.

Let xi(s), i = 1, . . . , |Ad|, and yj(s), j = 1, . . . , |Aa|, denote the probability that the defender and

attacker play the pure action di ∈ Ad and aj ∈ Aa while at state s, respectively. A mixed strategy

is then defined as a probability distribution over the whole action space. Specifically, given a state
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s, x(s) = [x1(s), . . . , x|Ad|(s)]T and y(s) = [y1(s), . . . , y|Aa|(s)]T are the mixed strategies for the

defender and the attacker at state s, respectively. A stochastic stationary policy is readily defined

as π = {x(s1), . . . ,x(sn)} for the defender, and θ = {y(s1), . . . ,y(sn)} for the attacker, where n

is the total number of states.

The network evolves from state s at time t to state s′ at time t + 1 according to the evolution

equation

s′ = f(s, a(d), a(a), ζt) (3.44)

for some deterministic function f , where ζt is a random variable representing the system action

based on a graph coloring algorithm for channel assignment that picks one node in conflict at

random and re-assigns it to a non-interfering channel if such a channel exists. Eq. (3.44) defines

the transition probability P (s, a, s′).

The defender goal is to maximize the expected sum of discounted rewards. Under randomized

stationary defense and attack policies π and θ, the expected sum of discounted rewards starting

from state s ∈ S at time t = 0 is,

V (s, π, θ) = E

[
∞∑
t=0

γtR
(
st, a

(d)
t , a

(a)
t , st+1

) ∣∣∣s0 = s, π, θ

]
, (3.45)

where the expectation is over the randomness of the players’ actions (recalling that π and θ are

randomized policies) and the state evolution (the exogenous variables). Subscript t denotes the t-

th stage and 0 < γ < 1 is a discount factor. The goal is to solve for the optimal stationary policies

for both players, i.e., obtain the solution to

V ∗(s) := V (s, π∗, θ∗) = max
π

min
θ
V (s, π, θ). (3.46)
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The optimal randomized stationary policies x∗(s) and y∗(s) for state s are the solutions to

V ∗(s) = (3.47)

max
x(s)

min
y(s)

E
[
R(s, a(d), a(a), s′) + γV ∗(s′)

∣∣∣x(s),y(s)
]

where the immediate reward term is given by

E
[
R(s, a(d), a(a), s′)

∣∣∣x(s),y(s)
]

=
∑
s′∈S

|Ad|∑
i=1

|Aa|∑
j=1

R(s, di, aj, s′)xi(s)yj(s)p(s′|s, di, aj). (3.48)

Thus, the optimal stationary policies are π∗ = {x∗(s1), . . . ,x∗(sn)}, θ∗ = {y∗(s1), . . . ,y∗(sn)}.

3.5.2 Q-minmax Algorithm

MDPs (single-player Markov game) can be solved using value iteration [45]. There, the total

expected discounted reward V ∗(s) is termed the value of state s since larger rewards are collected

from states with larger values of V ∗. The value of a state V ∗(s) satisfies

V (s) = max
a′∈A

Q(s, a′), (3.49)

where Q(s, a) is the quality of the state-action pair (s, a) defined as the total expected discounted

reward attained by the non-stationary policy that takes action a then follows with the optimal policy

from this point on. Given two players, this notion can be extended so that

Q(s, a(d), a(a)) = E
[
R(s, a(d), a(a), s′) + γV ∗(s′)

∣∣∣a(d), a(a)
]

To solve (3.46) for the optimal policy, we adopt the Q-minmax value-iteration based algorithm of
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Littman [85] extended to zero-sum stochastic games, which replaces the maximization in (3.49)

with a maxmin operator to account for the actions of the second player. Hence,

V ∗(s) = max
x(s)∈χ(Ad)

min
a(a)∈Aa

|Ad|∑
i=1

Q(s, di, a(a))xi(s), (3.50)

where χ(Ad) is the space of probability distributions defined over Ad. In the next section, we

discuss the complexity of the Markov game and propose an approach to handle complexity.

3.6 Approximate Policy

The complexity of the formulated game grows exponentially in the network size N and in the

number of usable channels |C|. Even with limiting the number of power levels to 2 levels, the

number of possible states is 2N × |C|N . In order to implement the Q-minimax algorithm, one

needs to iterate over all possible states, which is computationally prohibitive even for medium-size

networks. In addition to enumerating all the states, in each iteration the algorithm solves for a NE

of a matrix game of size 2N×(N+1). We focus on addressing the state-space complexity problem.

In our previous work [86], we developed a decomposition-based approach for static games that can

substantially speed up the search for a NE in large scale networks. Next, we propose an approach

to reduce the state-space size using features to represent each state.

Approximate value iteration: The idea underlying this approach is to use representative states

and features instead of enumerating all possible states. A set of representative states is selected

for ‘training’ for policy improvement. These states should be selected so as to capture most of the

possible system evolutions. Here, we select representative states containing a spectrum of possible

conflict states, ranging from minimal conflicts or conflict-free assignment to maximum conflicts

where all APs are assigned the same channel. The assignment to APs may start from any default
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channel, so an experimental run may begin from any number of conflicts.

From these representative states, a set of features are extracted to capture the characteristics of the

state and its conflict profile. A weighted sum of those features is then used to approximate the

value for a given state as

Ṽ (s) =
M∑
i=1

riφi(s). (3.51)

Where ri is a weight for the i-th feature, φi(s) the value of the i-th feature for state s, and M the

number of used features. Hence, the algorithm can find an approximate value for any state and

plug it in equation (3.50) using this feature representation.

Monte Carlo simulations are used to evaluate the feature weights over a number of independent

trajectories. In our simulations, we used the following 5 features to capture the degree of conflict

in a given state. Feature φ1 is the number of APs in conflict with one or more neighbors, φ2 the

ratio of maximum number of APs involved in the same conflict to the degree of the network in the

original graph, φ3 the average number of APs involved in the same conflict, φ4 the average number

of channels unavailable to an AP, and φ5 the average conflict size of the highest degree AP(s).

3.7 Experimental Results

In this section, we evaluate our proposed defense approach using numerical simulations. We test

the defense approach on different network topologies considered as building blocks for many real

world networks. The numerical evaluation consists of two main steps. First, we implement the

Q-minimax learning algorithm in order to learn the optimal policy for each state – this is the NE

strategy upon convergence. Second, we evaluate the learned NE strategies through comparisons to

other strategies.

115



3.7.1 Learning step

The Q-minimax algorithm proposed by Littman in [85] is a reinforcement learning algorithm. It

follows the same procedure of the standard Q-value algorithm which starts by assigning initial

values for each state [87]. Then, to solve the two-player zero-sum game the ‘max’ operator in the

update step of the standard Q-learning algorithm is replaced by a ‘minimax’ operator, which can

be evaluated by solving a linear program.

n3n1 n2

Figure 3.18: A 3-node chain network topology

For illustration, we start off with a very simple network that consists of three nodes forming a

chain topology as shown in Fig. 3.18. Hence, the defender has 8 different pure actions and the

attacker has 4 possible pure actions (including the no-attack action). Thus, when only 2 possible

channels are usable, the state space consists of 32 states. Fig. 3.19 shows the convergence of the

value function for a particular state using the Q-minimax algorithm. The value function converges

in approximately 130 steps. The corresponding defense and attack strategies are plotted in Figs.

3.20 and 3.21. The defender’s strategy converges to the NE (mixed) policy at this particular state

as shown in Fig. 3.20, which is a probability 0.6 for pure action ad = [1 1 0] and probability 0.4 for

action ad = [1 1 1], and zero probability for the remaining 6 pure actions. The attacker’s strategy

converges to the randomized strategy in which he attacks node 3 with probability 0.333 and backs

off (no attack) with probability 0.6667.
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Figure 3.19: Convergence of the state value function for a 3-node chain network.
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Figure 3.20: The defender strategy at a sample state for a 3-node chain network converges to a
mixed NE strategy.
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Figure 3.21: The attack strategy at a sample state for a 3-node chain network converges to a mixed
NE strategy.
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Figure 3.22: The defender’s NE average path reward for a 3-node chain network against an attacker
that plays best response and one that uses a random attack. Comparison to no-defense is also
shown.
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3.7.2 Testing step

After obtaining the stationary defense and attack policies for both players at NE for the Markov

game using the Q-minimax algorithm, we evaluate the performance of our proposed defense ap-

proach against jamming attacks. In Fig. 3.22, we plot the objective function over 10 time steps.

For each step we obtain the average (defender) reward of 1000 runs. Clearly, the NE policy yields

substantial performance gains for the defender versus not using any defense mechanism. Further-

more, if the attacker deviates from the NE by launching a random attack (where attacked nodes are

chosen uniformly at random), the defender will be able to secure higher reward.

n1

n4n2

n5

n3

Figure 3.23: A 5-node interconnected network topology.
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Figure 3.24: The defender’s average path reward for a 5-node interconnected network compared
with other attack and defense policies.

We also tested our defense approach on the 5-node interconnected topology of Fig. 3.23. In

Fig. 3.24 we compare the defender’s reward for equilibrium strategies obtained by both the ex-

act Q-minimax algorithm and the approximate approach described in Section 3.6. The scalable

approximate policy is shown to yield a comparable reward to that of the exact NE. Note that the

approximate NE curve (shown with the circular markers) is obtained when both players use an

approximate strategy, i.e, when both players deviate from the exact NE. Thus, the fact that the de-

fender achieves a higher reward using the approximate policy than with the exact NE policy does

not violate the definition of the NE which is only optimal in the sense of unilateral deviation by one

of the players. We also plot the average path reward when only the defender uses the approximate

policy while the attacker is assumed to have superior computational resources to compute his exact

NE policy (dashed line). As shown, the reward achieved is only slightly smaller than that of the

NE. This demonstrates the effectiveness of the approximate policy since it only costs the defender

little loss when deviating from his exact NE.

120



CHAPTER 4: VIRTUAL MACHINES MIGRATION TIMING PROBLEM

4.1 Introduction

One of the main characteristics of the cloud that allows scalable and cost-effective operation is

multi-tenancy. Multi-tenancy is achieved through virtualization to enable cloud providers to host

multiple virtual machines (VMs) on the same physical machine while providing isolation between

them. Recent attacks, however, have been shown to bypass such isolation [88]. A malicious

VM collocating on the same physical machine with a victim VM can seek unauthorized access

to sensitive and private data and/or intellectual property, or can render some of its computational

functionality unusable.

This has prompted cloud providers to develop various strategies for VM placement, migration and

reconfiguration to mitigate some of these attacks. Moving target defense (MTD) strategies aim

to dynamically shift the attack surface, making it more difficult for attackers to launch effective

attacks [89]. When developing an MTD strategy, two main questions generally arise: which targets

should be moved? and when should they be moved? The answers to these questions largely depend

on the context of the problem and the nature of the attack. For example, if an attacker contemplates

to infer the underlying topology of the cloud, then the target is the machine connectivity that

should then be adapted over time. However, if the attacker seeks to crack system credentials that

protect the users’ databases, then the target are the keys that should be constantly reconfigured (i.e.,

moved). In the proposed model, we consider collocation attacks whereby an attacker can access

sensitive data from a targeted victim by running a VM on the same physical node (e.g., through

launching a side-channel attack). Thus, for securing such systems, VMs should be periodically

migrated, i.e., moved to different physical machines. While much work focused on the scheduling

and placement aspect of VM migration, the timing problem is largely understudied. This motivates
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the work in this chapter, which is primarily focused on the second question, that is, when to move

the identified targets.

In the MTD literature, this question is usually referred to as the timing problem of the MTD strat-

egy. In this chapter, we study this question in a game-theoretic framework seeking an understand-

ing of the interplay of the strategies of the cloud provider (i.e., the defender) and the adversary.

In our formulation, the adversary seeks to prolong the collocation time with the victim VMs to

maximize the amount of information she can access. Since the adversary has no guarantees for be-

ing successfully collocated on the same node with the victim (different cloud providers implement

different placement algorithms according to different criteria that the attacker has no control over),

her best-effort is to increase the number of VMs to launch (which is a cost metric we capture). Af-

ter the adversary is placed on given physical machines, she can check whether she had a successful

collocation or not [90]. The cloud provider, on the other hand, migrates VMs between physical

machines to minimize the collocation times between VMs. VM live migration, while efficient at

not significantly disrupting the tasks running on a VM in the event of migration, is not free [91].

In practice, the number of cache pages read by an adversary from shared memory pages is propor-

tional to the duration of a side-channel attack. It also depends on the technique used to access the

last level cache (LLC) (e.g, PRIME+PROBE and FLUSH+RELOAD attacks) as shown in [92]. To

read the cache, an attacker would need to adjust the time of the PROBE phase, which in turn affects

the error rate of the attack covert channel. Thus, the question as to when to migrate is crucial. At

the same time, the defender controls the migration time in order to mitigate the collocation attack

threats while not burdening the system with significant overhead, e.g., due to VM downtime and

undue memory usage.

Contributions: While VM migration strategies have been proposed as defense mechanisms against

collocation attacks in various studies, such work focused on the VM assignment problem (mapping

VMs to physical nodes) as a single player scheduling problem. In proposed model, however, we
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consider the timing problem of the MTD as a game between the attacker and the cloud provider.

Our work contributes to the theory of timing games [93, 94], which is largely unexplored in cloud

computing settings. We leverage the results of the leakage model in the FlipIt game considered

previously in [95, 96, 97, 98, 99, 100] to develop a novel formulation to study the VM collocation

problem in an extended FlipIt game-theoretic framework. To the best of our knowledge, this is the

first work to investigate the following aspects of timing games.

4.2 Related work

This work is at the intersection of two areas focused on securing cloud computing: Cross-VM side-

channel attacks and mitigation, and game-theoretic modeling and techniques in cloud security. In

this section, we put our work in context within these two areas.

4.2.1 Cross-VM side channel attacks and mitigation strategies

Cloud security has received considerable attention recently [88, 101]. Various studies have investi-

gated the impact of cross-VM side-channel attacks [102, 103, 104, 90, 105, 92, 106]. Users’ cryp-

tographic keys have been shown to be vulnerable to exfiltration attacks when adversaries perform

Prime+Probe attacks on the square-and-multiply implementation of GnuPG [105]. The authors

in [90, 106, 92] have shown that some side-channel attacks can extract cryptographic keys by ex-

ploiting the last-level shared caches of the memory. Other attacks have identified pages that a VM

shares with its collocated neighboring VMs revealing information about the victim’s applications

[103] and OS [104].

To combat cross-VM side-channel attacks, various approaches have been proposed at the hyper-

visor [107, 108, 105, 109, 110]), the guest OS [111], the hardware level [112, 113], and the ap-
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plication layer [114]. These techniques, however, suffer from two fundamental limitations. First,

they cannot be generalized to different types of side-channel attacks [115]. Second, they require

major changes to the hypervisor, OS, hardware, and applications [116]. VM live migration, on the

other hand, has been proposed as an effective mechanism to combat side-channel attacks [91, 117].

The authors in [118] provided a detection mechanism known as CloudRadar that works as a real-

time side-channel attack detector based on monitoring hardware performance counters. The au-

thors in [119] proposed another detection system that can differentiate between friendly and other

malicious activities of neighboring tenants. The authors in [120] showed that by controlling the

placement process, a defense mechanism can mitigate the effect of cross-VM attacks through re-

ducing the co-run probability between users. The approach, however, is only effective in the case

of time-sensitive attacks and when the number of assigned virtual CPUs is large. Motivated by the

MTD concept, the authors in [121] presented a migration engine in which VMs are migrated to

balance the load between different nodes in the cloud. Although MTD is a well-known defense

methodology, the authors in [122] demonstrated that in certain scenarios the migrated VMs can be

tracked by adversaries. Hence, they proposed a stealthy approach to migrate VMs that can hide

them on the network. In [123], the authors study an MTD migration strategy against an attacker

that seeks to collocate with VMs of high rewards by solving a multi-armed bandit problem.

4.2.2 Cloud security using game-theoretic techniques

The use of game theory has largely focused on the VM allocation problem in the presence of

adversaries [124, 125, 126, 127, 128]. A common assumption in such formulations is that the

adversary is known, which may not hold in practice. Additionally, existing formulations do not

consider the timing question for the VM migration problem, which is a critical one for the cloud

provider wishing to migrate VMs for security. A more practical leakage model was considered in

[129, 130], based on the FlipIt game model. FlipIt is a two-player game in which a defender and
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an attacker compete over the control of a given resource, which can only be held by one player

at a time. A flip is an action performed by a player to gain control of the resource. The goal is

to hold the resource for the longest duration possible with the least number of flips (i.e., flips are

costly). Over time, the resource generates rewards for the player holding the resource. The state

of the resource is obscured from each player until they “flip”. Several variants of the FlipIt game

model were considered to study different security situations [95, 96, 131, 132, 97, 98, 99, 100]. In

[96], the authors studied different strategies for each player and calculated dominant strategies and

Nash equilibria. In [131], the game model was studied under the assumption that the players know

the state of the resource before taking actions. In [132, 97] the game was extended to the case of

a system where insiders can work in favor of external adversaries. The authors in [98] considered

the game with both players having limited budgets. Pawlick et al. investigated the game model

with characteristics of signaling games [99]. In [100], Farhang et al. studied a variant of the

FlipIt game with an associated data leakage model in which the defender can partially eliminate

the foothold of the attacker. The attacker exploits the system vulnerabilities that appear based on a

periodic process. The authors assume that the attacker’s strategy is fixed since she always starts to

attack right after the defender takes his action. This, however, requires the attacker to fully observe

the defender’s strategy which we do not assume here.

In this work, we consider a significantly different and a realistic threat model that captures data

leakage due to cross-VM side-channel attacks and develop defense strategies for identifying the

best time(s) to migrate VMs. We do this through a game-theoretic framework in which the attacker

only controls the attack rate and does not fully observe the defender’s strategy. In addition, we

assume that the attacker controls the probability of a successful attack by choosing the attack rate

as opposed to the time to launch the attack.
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4.3 System Model

4.3.1 The cloud
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Figure 4.1: System model illustration for different placement events.

We model the cloud as a set of physical machines and each machine can host a number of VMs

from different users. The cloud provider uses a placement strategy to initially assign VMs to

physical machines. The details of the placement strategy do not affect our analysis and we assume

that the adversary (or any user) has no control over it. We assume the adversary is interested in

targeting a set of victim VMs by collocating with them on the same physical machines. We study

the interaction between the cloud provider (defender) and the adversary through a game-theoretic

framework in which the rewards are time-dependent. In particular, the defender’s strategy is to
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choose the time to re-assign VMs to different machines to defend against collocation attacks. The

adversary, on the other hand, chooses an attack rate to launch more VMs to increase her chances

for prolonged collocation with her victims. Fig. 4.1 illustrates three possible placement scenarios

for the game. In plot (a), the attacker’s VM is successfully collocated at time τa with her target VM

on the same hypervisor before the target VM is migrated to another node at time τd. This scenario

represents a successful collocation event, which results in information leakage. In plot (b), the

target VM is migrated before the malicious VM is placed on the hypervisor, hence the collocation

event does not occur. Finally, the plot in (c) illustrates a no-migration policy, where the collocation

duration is maximized. We define the game next.

4.3.2 The game

A game is defined as a tuple Γ(K,A,U), where

• K is the set of players. Here, K = {1, 2}, denoting the defender (player 1) and the adversary

(player 2).

• A = Ad ×Aa is the action space for the defender and adversary.

• U = {ud, ua} is the utility function, U : A → R2. In this chapter we use U to denote a utility

function instead of a reward function since the defender reward is always negative for the

considered system model as explained next.

4.3.2.1 Defender’s action space

Since we are investigating the timing factor, the cloud provider (referred to as the system defender)

is assumed to control the re-allocation period. Let τd ∈ Ad denote the time instant at which the

127



defender migrates a running VM to a new physical node, such that Ad = [τmin, T ], where T is a

system parameter at which the credentials are reset and τmin is the smallest reconfiguration time.

Since we assume a leakage model, at time T when the system credentials are reset, the attacker can

no longer benefit from the side-channel attack. Therefore, the whole game will be reset every T .

The defender seeks to optimize the value of τd to minimize chances for information leakage and

avoid loading the system with unnecessary migrations. Thus, the defender’s goal is to optimize the

tradeoff between security and stability. In particular, a smaller τd ensures the system is more secure

since the co-residency times between any two VMs will be small. However, the system’s overhead

increases due to frequent migration of the VMs between the physical nodes. The overhead of VM

live migration has been investigated in [91, 133], and in general depends on the VM workload. The

work in [133] has shown that the main factors affecting the VM migration overhead are the VM

memory size and the network speed. On the other hand, a larger τd leads to a more stable system.

However, the co-residency times between VMs on the same node will be large making the system

more susceptible to a data breach through collocation attacks.

4.3.2.2 Attacker’s action space

Here, we assume that the attacker does not know the system placement algorithms, hence only

tries to increase her co-residency chances via increasing the number of requests submitted to the

cloud provider. Let λa ∈ Aa denote the rate of requests (rate of attack) submitted to the cloud,

where Aa = [λmin, λmax] is an interval of non-negative attack rates. The game is assumed to start

at time t = 0, and let τa denote the actual time at which the attacker successfully collocates with

her targeted victim. Hence, τa > 0 is a non-negative random variable with a probability density

function (pdf) fa(.;λa) parametrized by λa. Since the attacker pays a cost for each submitted job,

she needs to optimize over the attack rate λa. Hence, the attacker’s tradeoff can be summarized

as follows. When λa is very small, it is less probable for the attacker to successfully co-reside
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with her victim and in turn steal any information before VMs are migrated. When λa is very large,

the attacker increases her chances of successful collocation at the expense of a higher attack cost.

Therefore, the pdf fa should be such that fa(τa;λa1) yields a higher probability of early collocation

than fa(τa;λa2), when λa1 > λa2 . Mathematically, this requirement is expressed through the

following assumption.

Assumption 1. Fa(t;λa1) ≥ Fa(t;λa2) for λa1 ≥ λa2 , where Fa(t;λa) := Pr(τa ≤ t) denotes the

cumulative distribution function (CDF) of the collocation time.

If λmin = 0, then the attacker can choose to back off (i.e., not attack). In such case, fa(τa; 0) is a

degenerate deterministic distribution such that Fa(T ; 0) = 0 since the probability of collocation is

0.

We focus only on the timing factor of the problem, and the mapping of VMs to physical nodes is

carried out through the placement engine. The separation of the placement and timing strategies

allows for layered functionality highly desirable in practice. In particular, the developed timing

policies can be implemented on any existing platform without modifying the existing placement

engine. This is especially true since allocation decisions are typically developed around widely

differing load balancing and power reduction objectives, and other operational constraints. Next,

we define the players’ utility functions in a nonzero-sum two-person game.

4.3.2.3 Attacker’s utility

Once the attacker’s VM is successfully placed on the same node where the victim VM resides,

she immediately starts accumulating rewards by reading out data from the target VM. The amount

of information leakage depends in practice on the duration of collocation as shown in [92]. Let

G(τd, τa) denote the reward accumulated by the attacker capturing the relation between the collo-
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cation duration and the amount of the data leaked.

Assumption 2. G(τd, τa) is a stationary function and monotonically non-decreasing in the col-

location duration t = τd − τa. Therefore, G(τd, τa) = G(τd − τa, 0) = G(t), where G(t) is an

abbreviated notation indexed by one variable.

Stationarity signifies that the attacker’s accumulated reward depends on the collocation and migra-

tion times only through their difference, i.e., the duration of collocation. The accumulated reward

is assumed to be zero if τa ≥ τd. The attacker incurs a cost Ca for launching an attack. Hence, the

total cost is scaled by the rate of attack λa. Therefore, the attacker’s expected utility is given by

ua(τd, λa) =

∫ τd

0

G(τd, τa)fa(τa, λa) dτa − Caλa. (4.1)

4.3.2.4 Defender’s utility

The defender, on the other hand, incurs a loss due to the collocation of a victim VM with the

attacker equal in magnitude to the gain of the attacker. In addition, the defender pays a cost per

migration denoted by Cd. This cost captures the migration overhead, which stems from the VM

downtime, performance degradation of the running applications (e.g., due to successive iterations

of memory pre-copying [134]), and the amount of memory and cache usage. Accordingly, the

defender’s expected utility can be written as

ud(τd, λa) = −
∫ τd

0

G(τd, τa)fa(τa, λa) dτa −
Cd
τd

. (4.2)
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4.4 Theoretical Analysis

A NE characterizes a solution for non-cooperative games in which no player can gain by deviating

from his own equilibrium strategy while the other players’ strategies are fixed [135, 7]. In this

section, we establish sufficient conditions for the existence of a NE for the formulated game model

in Theorems 8 and 13. We characterize the players’ best responses (c.f. Definition 1) in Theorem

10 and Lemma 14. By definition, a NE secures a minimum utility for the cloud admin since the

defender’s utility cannot decrease if only the adversary deviates from her best response. Since the

utilities for both players depend on the cost parameters Ca and Cd (c.f. Section 2.3), the role of

these parameters is also analyzed in Lemmas 11, 12 and Theorems 15 and 16.

Existence of NE depends on the properties of the payoff functions. First, we derive existence con-

ditions for a general accumulated reward function G(τd, τa) and pdf fa(τa;λa) of collocation time,

then we provide analysis for a special instantiation of the payoff functions. We also characterize

the best response curves for both players and derive existence conditions for the corresponding

NE strategies. First, we restate a general theorem from [7] that provides sufficient conditions for

N -person nonzero-sum games to admit a pure strategy NE.

Theorem 6. [6, 7] For each player i in the set N of N players, let the action space Ai of player

i be a closed, bounded and convex subset of a finite-dimensional Euclidean space, and the cost

functional Ji : A1 × · · · × AN → R be jointly continuous in all its arguments and strictly convex

in ai ∈ Ai, for every aj ∈ Aj, j ∈ N , j 6= i. Then, the associated N -person nonzero-sum game

admits a Nash equilibrium in pure strategy.
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4.4.1 General reward functions

For the general payoff formulation described in equations (4.1) and (4.2), the following lemma

establishes sufficient conditions for the concavity of the payoff functions.

Lemma 7. For the 2-person nonzero-sum game defined in Section 4.3.2 with payoff functions

defined in equations (4.1) and (4.2) under Assumptions 1 and 2, if E
[
G(τd, τa)1{τa<τd}

]
is strictly

concave in λa ∈ Aa for any τd, then ua(τd, λa) is strictly concave in λa for any τd ∈ Ad, and

if E
[
G(τd, τa)1{τa<τd}

]
is convex in τd ∈ Ad, then ud(τd, λa) is strictly concave in τd for any

λa ∈ Aa, where 1{.} is an indicator function.

Proof. If E
[
G(τd, τa)1{τa<τd}

]
is strictly concave in λa, then

∫ τd
0
G(τd, τa)fa(τa;λa) dτa is strictly

concave in λa. Since the expected payoff ua in (4.1) is a linear combination of a strictly con-

cave function and a linear function λaCa, it follows that ua is strictly concave. Similarly, if

E
[
G(τd, τa)1{τa<τd}

]
is convex in τd, then

∫ τd
0
G(τd, τa)fa(τa;λa) dτa is strictly convex. From

(4.2), it follows that ud is strictly concave in τd since Cd

τd
is strictly convex in τd.

Therefore, we can readily state sufficient conditions for our game to admit a pure strategy NE.

Theorem 8. The 2-person nonzero-sum game defined in Section 4.3.2 under Assumptions 1 and 2

with the payoff functions in (4.1) and (4.2) admits a NE in pure strategy if E
[
G(τd, τa)1{τa<τd}

]
is continuous and strictly concave in λa ∈ Aa, and E

[
G(τd, τa)1{τa<τd}

]
is convex and G is

continuous in τd ∈ Ad.

The proof of Theorem 8 follows directly from Lemma 7, which establishes strict concavity of the

payoff functions under the conditions in the statement of the theorem, and Theorem 6 from [7].

Proposition 9. For the game defined in Section 4.3.2 with λmin = 0, there exists an equilibrium in

which the attacker backs off (i.e., does not attack) and the defender does not migrate if the reward
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function G(t) satisfies

Eλa [G(T − τa)] ≤ λaCa, (4.3)

for every λa ∈ Aa, where Eλa [.] denotes the expectation w.r.t. the measure induced by fa(.;λa).

Proof. If the attacker backs off, i.e., chooses λa = λmin = 0, then the defender’s payoff in (4.2)

becomes

ud(τd, 0) =
−Cd
τd

,

which attains its maximum at τd = T for any Cd > 0. Hence, the defender’s best response is to

not migrate over the game interval. Also, if condition (4.3) in the statement of Proposition 9 is

satisfied, then the attacker’s best response to the defender’s action τd = T is λa = 0. To see that

note that if

Eλa [G(T, τa)] =

∫ ∞
0

G(T, τa)fa(τa;λa)dτa ≤ λaCa ,

then ∫ τd

0

G(τd, τa)fa(τa;λa)dτa ≤ λaCa

since G(t) is monotonically non-decreasing in t per Assumption 2. Recalling the attacker’s payoff

function in (4.1), the attacker’s decision to back off is at least as good as launching an attack at an

alternative non-vanishing rate since the cost of the attack upper bounds the leakage reward for any

λa 6= 0.

In the following theorem, we characterize the best response for both players.

Theorem 10. For the 2-person nonzero-sum game defined in Section 4.3.2, if the attacker’s payoff

function in (4.1) is strictly concave in λa, then the attacker’s best response λ∗a to any defense

strategy can be described as
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• λ∗a = λmax, if ∂ua
∂λa

> 0, ∀ λa ∈ Aa

• λ∗a = λmin , if ∂ua
∂λa

< 0, ∀ λa ∈ Aa

• λ∗a ∈
{
λa | ∂

∂λa
Eλa [G(τd, τa)1{τa<τd}] = Ca

}
, if ∂ua

∂λa
= 0, for any λa ∈ Aa.

Also, if the defender’s payoff function in (4.2) is strictly concave in τd, then the best response τ ∗d

can be described as

• τ ∗d = T , if ∂ud
∂τd

> 0, ∀ τd ∈ Ad

• τ ∗d = τmin , if ∂ud
∂τd

< 0, ∀ τd ∈ Ad

• τ ∗d ∈
{
τd | τ 2

d
∂
∂τd

Eλa [G(τd, τa)1{τa<τd}] = Cd

}
, if ∂ud

∂τd
= 0, for any τd ∈ Ad.

Proof. Given the concavity of the payoff function ua in λa ∈ Aa, the derivative ∂ua
∂λa

is monotone.

Hence, there exist three possibilities for the behavior of ua. If ∂ua
∂λa

> 0, then ua is strictly increasing

in λa for all λa ∈ Aa, thus the payoff is maximized by λ∗a = λmax. If ∂ua
∂λa

< 0, ∀λa ∈ Aa,

then ua is strictly decreasing in λa for all λa ∈ Aa, thus the payoff is maximum at λ∗a = λmin.

Otherwise, ua attains its maximum when ∂ua
∂λa

= 0, hence the best response λ∗a belongs to the set

Λa =
{
λa |

∫ τd
0

∂fa
∂λa

G(τd, τa)dτa = Ca

}
at which ∂ua

∂λa
= 0. The second part of Theorem 10 which

characterizes the defender’s best response can be proven similarly.

Next, we study the effect of the attack costCa and the moving costCd and state bounds on the costs

beyond which no player is interested in the game. When the cost Ca exceeds a certain threshold,

the cost of the attack dominates the attacker’s tradeoff, i.e., the attacker is better off backing off

over attempting to access the victim’s information. Similarly, if Cd is too high, the defender incurs

a cost for migration that exceeds any benefit he would get at any migration rate.
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In the following lemma, we derive a lower bound on the attack cost Ca beyond which the attacker

is always better off attacking with the minimum rate λmin. If λmin = 0, then the attacker will back

off.

Lemma 11. For the two person nonzero-sum game Γ defined in Section 4.3.2, if E
[
G(τd, τa)1{τa<τd}

]
is strictly concave in λa ∈ Aa, and Ca > ∂

∂λa
Eλa [G(τd, τa)1{τa<τd}] |λa=λmin

, then the attacker’s

best response to any defense strategy τd is to attack at the minimum permissible rate λmin.

Proof. We argue that under the condition stated in the lemma, the attacker’s payoff is monoton-

ically decreasing in λa. Hence, λ∗a = λmin is the attacker’s best response to any τd. To show

that λmin is the unique best response, assume for contradiction there exists λ∗ = λ1 6= λmin. If

Ca >
∫ τd

0
Gf ′a(λa) dτa |λa=λmin

, where f ′a(λa) = ∂fa
∂λa

, then ua is monotonically decreasing, there-

fore ua(λmin) > ua(λ1) since λ1 > λmin. Hence, λ1 is not in the best response set.

Similarly, the following lemma establishes a lower bound on the migration cost Cd of the defender,

beyond which it is more advantageous not to migrate before the system reconfiguration cycle T .

Lemma 12. For the two person nonzero-sum game Γ defined in Section 4.3.2, if Eλa
[
G(τd, τa)1{τa<τd}

]
is strictly convex in λa andG is continuous in τd ∈ Ad, andCd > T 2 d

dτd
Eλa

[
G(τd, τa)1{τa<τd}

]
|τd=T ,

then the action of not migrating any VM before T is the defender’s unique best response regardless

of the attacker’s strategy λa, where Eλa [.] is the expectation with respect to fa(τa;λa).

Proof. By an argument similar to the proof of Lemma 11, under the condition in the statement of

the lemma, the defender’s payoff is monotonically increasing in τd. Hence, T ∈ R1(λa) for any

λa. Establishing the uniqueness of T as a best response action follows the same argument used in

the proof of Lemma 11.
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4.4.2 Special instantiation analysis

In Section 4.4.1, we provided conditions for the existence of an equilibrium for generic reward

functions. The conditions imposed were the strict concavity of fa in addition to the non-negativity,

monotonicity and stationarity of G (stationarity in that the accumulated reward depends on the

collocation and migration times only through their difference, i.e., the duration of collocation). In

this section, we study existence conditions for equilibrium and characterize the best response sets

of both players for specific choices of the reward function G and the collocation pdf fa(τa;λa).

Since the amount of information leakage depends in practice on the duration of collocation, here

we provide an analysis for the case where G(t) increases linearly in the collocation duration t.

Hence, we analyze the formulated timing game for the following choice of G,

G(τd, τa) =


α (τd − τa) , τa ≤ τd ≤ T

0, otherwise.
(4.4)

In Section 4.6.4, we provide numerical results on the best response for other (non-linear) functions,

including when G scales sublinearly and quadratically in t. Without loss of generality, we always

consider α = 1. The case α 6= 1 corresponds to the case α = 1 with the migration cost Cd replaced

by Cd

α
.

In our numerical evaluation we consider an exponential pdf fa for the collocation time, i.e.,

fa(τa;λa) = λae
−λaτa , τa ≥ 0. (4.5)

This choice of fa(.;λa) is motivated by the interpretation of λa as the rate of attacks launched by

the adversary. In other words, the attacker controls the rate of the submitted requests to the cloud
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server. Her requests are served within the queue of the placement engine and hence assigned to

different physical machines according to a Poisson arrival process justifying the exponential arrival

time.

Next, we derive sufficient conditions for the existence of a NE for the choice of functions in (4.4)

and (4.5).

Theorem 13. The 2-person nonzero-sum game defined in Section 4.3.2 with G(t) and fa(τa;λa)

defined in (4.4) and (4.5) admits a pure strategy NE.

The proof of Theorem 13 rests upon proving the strict concavity of ua and ud, which translates into

existence of a NE in pure strategy from [7, Theorem 1].

Proof. From Theorem 6, it suffices to show that for every pair of (τd, λa) ∈ Ad×Ad, ua is strictly

concave in λa for every τd ∈ Ad and that ud is strictly concave in τd for every λa ∈ Aa. Per Lemma

2, it suffices to show that Eλa [G(τd, τa)1{τa<τd}] is strictly concave in λa ∈ Aa and strictly convex

in τd ∈ Ad. For the functions G and fa defined in (4.4) and (4.5),

Eλa [G(τd, τa)1{τa<τd}] =
λaτd + e−λaτd − 1

λa
. (4.6)

Taking the derivative with respect to λa twice,

∂2

∂λ2
a

Eλa [G(τd, τa)1{τa<τd}] =
(λ2

aτ
2
d + 2λaτd + 2)e−λaτd − 2

λ3
a

. (4.7)

By Taylor’s expansion of ex for x > 0, ex > x2

2
+ x + 1. Hence, (λ2

aτ
2
d + 2λaτd + 2)e−λaτd < 2.

Therefore, ∂2

∂λ2a
Eλa [G(τd, τa)1{τa<τd}] < 0,∀λa ∈ Aa. Thus, Eλa [G(τd, τa)1{τa<τd}] is strictly

concave in λa for every τd.

Next, we prove that Eλa [G(τd, τa)1{τa<τd}] is convex in τd. To this end, we obtain its second

137



derivative with respect to τd,

∂2

∂τ 2
d

Eλa [G(τd, τa)1{τa<τd}] = λ2
ae
−λaτd . (4.8)

Since, ∂2

∂τ2d
Eλa [G(τd, τa)1{τa<τd}] > 0, ∀τd ∈ Ad, then Eλa [G(τd, τa)1{τa<τd}] is convex in τd for

every λa. Accordingly, existence of a NE follows from Theorem 8.

To characterize NE for both players, we start off by characterizing the best response set for each

player in the following lemma whose proof follows the same argument used in the proof of Theo-

rem 10.

Lemma 14. For the 2-person game defined in Section 4.3.2 with the reward function G(t) and the

probability density function fa(τa;λa) defined in (4.4) and (4.5), the attacker’s best response pure

strategy is characterized as

• λ∗a = λmax , if 1− λaτde−λaτd − e−λaτd − Caλ2
a > 0

• λ∗a = λmin , if 1− λaτde−λaτd − e−λaτd − Caλ2
a < 0

• λ∗a =
{
λa | 1− λaτde−λaτd − e−λaτd = Caλ

2
a

}
, otherwise,

for any action τd by the defender.

The best response strategy for the defender is characterized as

• τ ∗d = T , if Cd − τ 2
d

(
1− e−λaτd

)
> 0

• τ ∗d = τmin , if Cd − τ 2
d

(
1− e−λaτd

)
< 0
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• τ ∗d =
{
τd | τ 2

d

(
1− e−λaτd

)
= Cd

}
, otherwise,

for any action λa by the attacker.

Remark 4. The optimal NE strategies can be obtained analytically using the players’ best re-

sponse curves derived in Lemma 14 (c.f. Section 4.6). In situations where an analytical solution

is intractable, they can be obtained numerically as the equilibrium solution of convex optimization

problems associated with each player. Specifically, for λa ∈ Aa, λ∗a = arg maxua and for τd ∈ Ad,

τ ∗d = arg maxud. Since both objective functions were shown to be convex and differentiable, each

player is guaranteed to converge to his optimal action for every action by the opponent. The equi-

librium (τ ∗d , λ
∗
a) satisfies the Lagrangian equations corresponding to both problems [136] and can

be obtained by solving both problems simultaneously using standard techniques such as Newton’s

method with convergence guarantees [80, 11].

The following two theorems establish bounds on both the attack cost Ca and the migration cost Cd

beyond which the players’ best response strategies are on the boundaries of their action intervals.

Theorem 15. For the two person nonzero-sum game defined in Section 4.3.2 with the reward

function in (4.4) and the exponentially distributed collocation time τa in (4.5), if

Ca >
1− (1 + λmaxτd)e

−λmaxτd

λ2
min

,

then the attacker’s best response to the action τd of the defender is λ∗a(τd) = λmin.

Proof. Given the reward function G(τd, τa) in (4.4) and the pdf of τa in (4.5), the attacker’s ex-

pected payoff function can be expressed as in (4.11). If the lower bound on Ca in the statement of

the theorem is satisfied, i.e.,

Ca >
1− (1 + λmaxτd)e

−λmaxτd

λ2
min

,
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then,

Ca >
1− (1 + λaτd)e

−λaτd

λ2
a

, ∀λa ∈ Aa

since the function in the numerator of the RHS of the inequality is monotonically increasing in λa

for λa, τd ≥ 0. Hence,

1− Caλ2
a − (λaτd + 1)e−λaτd < 0 .

Dividing both sides by λ2
a,

1− Caλ2
a − (λaτd + 1)e−λaτd

λ2
a

< 0.

The left hand side of the above inequality is ∂ua
∂λa

. Thus, ua is monotonically decreasing in λa,

therefore, λ∗a = λmin, which completes the proof.

Theorem 16. For the two person nonzero-sum game defined in Section 4.3.2 with the reward

function in (4.4) and the exponentially distributed collocation time τa in (4.5), if

Cd > T 2(1− e−λaT ) ,

then the defender’s best response to the action λa of the attacker is to stop migrations, i.e, τ ∗d (λa) =

T .

Proof. Similar to the argument used in the proof of Theorem 15 above, if Cd > T 2(1 − e−λaT ),

then

Cd > τ 2
d (1− e−λaτd), ∀τd < T

since τ 2
d (1− e−λaτd) is monotonically increasing in τd ≥ 0. Dividing by τ 2

d ,

0 <
Cd
τ 2
d

− (1− e−λaτd) =
∂ud
∂τd

.
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Hence, ud is monotonically increasing in τd, therefore, the best response τ ∗d (λa) = T .

4.5 Generalization: Game Model with IDS

In the aforementioned model, the attacker’s goal is to be collocated with her victim as soon as

possible before the victim is migrated. Evidently, upon collocation with her victim, the attacker

will choose to reside there until τd since no detection mechanism is in place to urge her to evade.

In this section, we extend the existing system model and consider the case in which the cloud data

center is equipped with an IDS. The IDS monitors suspicious activities and captures malicious be-

havior of any user after a sufficient period of time δ, which is a random variable with distribution

y(δ), δ ∈ [0, T ]. For useful detection, δ < τd. Hence, the attacker may need to stop her collocation

attacks before being detected. This introduces another control variable s to be optimized by the

attacker, namely how long she should continue to carry on the attack after successful collocation.

The distribution y(δ) accounts for the entire range of priors between the extreme of an uninforma-

tive prior (a uniform distribution) in which the players do not have useful information about the

time-to-detection δ, and the extreme of a fully degenerate distribution in which the players know δ

exactly. For the latter case, the attacker will surely choose to stop after a duration δ from the onset

of successful collocation, i.e., right before τa + δ.

Next, we modify the attacker’s payoff function ua in order to account for the probability of detec-

tion. In the event of detection, the attacker incurs a cost D (since this user will be black-listed),

but her gain is in the amount of data read out until detection. Therefore, we redefine the attacker’s
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expected utility by averaging over both the time-to-detection δ and the collocation time τa,

ua(τd, λa, s) =

∫ T

δ=s

G(s)y(δ)dδ

∫ τd−s

τa=0

fa(τa;λa)dτa

+

∫ s

δ=0

(G(δ)−D)

(∫ τd−δ

0

fa(τa;λa)dτa

)
y(δ)dδ

+

∫ s

δ=0

(∫ τd

τd−δ
G(τd − τa)fa(τa;λa)dτa

)
y(δ)dδ

+

∫ T

δ=s

(∫ τd

τd−s
G(τd − τa)fa(τa;λa)dτa

)
y(δ)dδ − Caλa.

(4.9)

The first term in (4.9) accounts for the attacker’s expected payoff in the event of no detection as

the attacker stopped malicious activities before the IDS alarm, i.e., s < δ, as illustrated in Fig. 4.2.

The second term represents the event of detection, hence collocation ends at τa + δ, i.e., after a

collocation duration δ as δ < s, as shown in Fig. 4.3. Therefore, the attacker incurs a detection

loss D. The third and fourth terms account for the event of no detection but due to the migration

mechanism. In other words, the attacker is not identified because τd − τa < min(δ, s). The last

term accounts for the cost of launching the attack.

0

Game Time

  
τa τd Tτ τ

Placement Migration
Reconfiguration

TTs+τa

Attack stopped 

before detection

s+ δ+τaδ

IDS

Figure 4.2: Attacker evades IDS by early stopping of malicious activity.
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τa τd T τ τ

Placement Migration
Reconfiguration

Ts+τa

Attack  detected

+δ+τaδδ+

IDS

Figure 4.3: Attacker detected by the IDS.

Similarly, we redefine the defender’s expected payoff function,

ud(τd, λa, s) = −
∫ T

δ=s

G(s)y(δ)dδ

∫ τd−s

τa=0

fa(τa;λa)dτa

−
∫ s

δ=0

(G(δ)−D)

(∫ τd−δ

0

fa(τa;λa)dτa

)
y(δ)dδ

−
∫ s

δ=0

(∫ τd

τd−δ
G(τd − τa)fa(τa;λa)dτa

)
y(δ)dδ

−
∫ T

δ=s

(∫ τd

τd−s
G(τd − τa)fa(τa;λa)dτa

)
y(δ)dδ − Cd

τd
.

(4.10)

4.6 Numerical Analysis

In this section, we provide numerical analysis of the proposed game model. To characterize the

payoff functions for both players, we need to specify G(t) and fa(τa;λa). For the linear reward

function G(t) and the exponential density function fa(τa;λa) described in (4.4) and (4.5), the

utility functions can be readily expressed as

ua(τd, λa) =
λaτd + e−λaτd − Caλ2

a − 1

λa
, (4.11)
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ud(τd, λa) =
1− λaτd − e−λaτd

λa
− Cd
τd
, (4.12)

for τd ∈ Ad, λa ∈ Aa. In the following analysis, we study the behavior of the payoff functions for

both players. We illustrate the utility of the defender as a function of the migration time τd for a

range of attack rates λa. For the attacker, we plot her utility as a function of λa for different τd.

Afterwards, we investigate the effect of the migration cost Cd and the attack cost Ca on the utility

functions and the players’ best response curves. We also demonstrate existence of NE when the

game satisfies the concavity conditions. Finally, we generalize our analysis to investigate different

scaling regimes of the reward function, including sublinear and superlinear regimes.
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Figure 4.4: For the shown action space, A = Ad ×Aa, the game admits a NE in pure strategies.
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Figure 4.5: At τd = 0.1, the attacker payoff is monotonically decreasing, but not for τd = 2, in
agreement with the bound on Ca in Theorem 15.

We start our numerical analysis by reflecting on the theoretical analysis in Section 4.4.2. In Fig.

4.4, we plot the NE existence region that satisfies strict concavity of both ua and ud. Per Theorem

13, for G and fa as defined in (4.4) and (4.5), the game played over the illustrated action space

admits a NE in pure strategies circled in Fig. 4.4. The figure illustrates the best response curves

along with the game action space at Cd = 0.3 and Ca = 0.3. Fig. 4.4 verifies our analytical results

of NE existence. An equilibrium point lies at the intersection of the two best response curves for

both players. By definition, this point is a NE at which each player makes the best decision taking

into account the opponent’s best fixed strategy. In this setting, the NE is unique – the unique inter-

section point of the best response curves for both players at τ ∗d = 0.93 and λ∗a = 0.48. Theorems

15 and 16 established lower bounds on Ca and Cd beyond which ua and ud are monotone. Fig.

4.5 shows the attacker’s utility function at different migration rates, verifying Theorem 15. We

numerically verify the monotonicity of ua for τd = 0.1 and τd = 2. Let λmin = 1 and λmax = 3,

hence according to Theorem 15, ua is monotonically decreasing when Ca > 0.04 when τa = 0.1.

However, at τd = 2, the attack cost Ca > 0.98 ensures that ua is monotonically decreasing in λa.

In Fig. 4.5 where Ca = 0.1, it is shown that the corresponding ua is monotonically decreasing for
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all λa ∈ [1, 3] for τd = 0.1. At τd = 2 when the condition on Ca is not satisfied, the payoff ua is not

monotonically decreasing. Next, we study and discuss the effect of different system parameters on

the players’ payoff and best response in comparison to other defense and attack policies.

4.6.1 Utility functions

Fig. 4.6 shows the payoff function of the defender ud versus the migration time τd for Cd = 0.3,

τmin = 0.1, and T = 3. The figure highlights the tradeoff of the defender as he seeks to optimize

τd to secure the system through VM migration while avoiding a large overhead. Evidently, the

optimal migration time τ ∗d depends on the attacker’s strategy λa. The tradeoff shown in Fig. 4.6

agrees with our intuition based on the game model. Specifically, a very small τd signifying a high

VM migration rate is associated with a high migration cost that dominates the payoff function ud.

On the other hand, with a larger τd, the VMs dwell for a longer duration on the same physical

node leaving more room for the attacker to collocate and steal data from her target VM. In Fig.

4.6, we compare the defender’s utility at different attack rates λa. Clearly, when the attack is more

aggressive, the defender is able to maximize his payoff by reducing the migration time τd at the

expense of higher migration cost. Therefore, when λa increases from 1 to 2.5, the optimal τd

reduces from 0.8 to 0.6.

In Fig. 4.7, we plot the attacker’s expected payoff ua versus the attack rate λa for different de-

fense actions τd for an attack cost Ca = 0.2. As shown, the optimal attack rate depends on the

defender’s action. As the attack rate increases, the cost of attack increases and eventually becomes

the dominant term in the payoff function. Moreover, as the defender reduces his time to migrate

τd, the attacker’s utility decreases. This is due to the fact that when τd is small (a higher migra-

tion rate), there is a shorter time window for the attacker to successfully collocate with her victim.

Contrariwise, when the migration rate is not too high (i.e., τd is fairly large), the attacker can max-
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imize her utility by increasing the attack rate λa. For example, when τd is reduced from τd = 3.5

to τd = 1.5, the optimal attack rate that maximizes the payoff ua decreases from λ∗a = 2.21 to

λ∗a = 2. However, if the defender is migrating the VMs at a very high rate, i.e., τd is very small,

the attacker’s best response is to attack at the minimum possible rate or completely back-off since

the attack is useless. To better understand the effect of the migration (attack) cost on the optimal

migration (attack) rate for the defender (attacker), in the following two subsections we study the

behavior of the payoff functions at different values of the cost. We also study the behavior of the

best response curves to gain more insight into the tradeoffs associated with this game.
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4.6.2 Cost effect and monotonicity

To show the effect of the migration and attack costsCd andCa, we plot the players’ utility functions

for different values of the cost. In Fig. 4.8, we plot the defender’s payoff versus τd for different

attack strategies for a fairly small migration cost Cd = 0.03. At this small migration cost, the

defender’s best response is to always migrate at the highest permissible rate, i.e., τ ∗d = τmin regard-

less of the attack rate λa. Hence, the leakage loss term dominates the defender’s payoff function

ud at this small migration cost. Indeed, referring to (4.12), ud is monotonically decreasing in τd

when Cd → 0. On the other hand, when the migration cost is too high as shown in Fig. 4.9 where

Cd = 10, the defender’s best response is τ ∗d = T to reduce the associated migration cost. We

remark that the utility function is monotonically increasing in τd for such high migration cost, a

fact which was established analytically in Theorem 16.
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Figure 4.9: Defender’s utility versus migration time τd for Cd = 10

Similarly, the effect of the attack cost Ca can be shown in Fig. 4.10 and 4.11. At a very small

attack cost, Ca = 0.01, as shown in Fig. 4.11, the attacker’s best attack strategy is to attack

aggressively at λmax to maximize the chances of successful collocation regardless of the defender’s
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action. Recalling the attacker’s payoff function in (4.11), ua is monotonically increasing in λa

when Ca → 0. In case of a high attack cost, the behavior of the payoff function is reversed as

shown in Fig. 4.11 where Ca = 6. In this case, the cost of the attack term dominates the payoff

function. Therefore, the best action for the attacker is λmin regardless of the action of the defender.

This behavior is confirmed by the analysis in Theorem 15.
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4.6.3 Best response curves

In this section, we study the best response curves for both players based on Definition 1 to provide

more insight into the optimal action of a player as function of the action of the opponent. The solid

blue line in Fig. 4.12 shows the defender’s best response curve τ ∗d as function of λa. The attacker’s

best response curve λ∗a as function of the defender’s action τd is shown in dashed red line. In this

scenario, we set T = 3, λmax = 3, Cd = 0.3, and Ca = 0.1. In Fig. 4.12, the intersection point

of the two response curves is the unique NE. The point(s) of equilibria depend on the values of Ca

and Cd as detailed next. The best response curves also underscore the tradeoff for each player. For

example, at equilibrium the defender migrates with τd = 0.66 while the attacker uses rate λa = 1.8

for the attack. Clearly, at low attack rate, VM migration at a very small migration rate, i.e, larger

τd, is more favorable. As the attack rate increases, the defender is urged to migrate the VMs at

faster rate, wherefore τ ∗d decreases as λa increases. On the attacker’s side, a similar tradeoff is

observed. The attacker attacks the system at the minimum rate λmin as long as the VM stays on
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the same physical node for a duration τd < 0.4 since it is very hard to collocate when migration is

taking place at such high rates. If the defender increases the time before migrating, i.e τd > 0.4,

the attacker is enticed to attack the system at higher rates to increase the amount of data leaked

out to the attacker as long as the defender is reducing the migration rate. The best response curves

also demonstrate the monotonicity of the payoff functions with respect to Ca and Cd as explained

earlier in Section 4.6.2. To show this, Fig. 4.13, 4.14 and 4.15 illustrate the best response curves

at extreme cost values. In particular, in Fig. 4.13, both Cd and Ca are set to zero. It is obvious

that the defender is migrating with the highest permissible frequency such that, τ ∗d = τmin for any

attack rate. In response, the attacker’s best action is λa = λmax regardless of the defender’s action.

Hence, when the costs of migration and attack are zero, both players do not face any tradeoffs and

the game is zero-sum. Fig. 4.14 shows another extreme scenario where only the defender faces a

very high cost for migration. His best response is τ ∗d = T = 3, which corresponds to the lowest

migration rate possible. In Fig. 4.15, the attack cost Ca = 6 while the defender incurs zero cost for

migration. Hence, the defender adopts the highest migration rate at τ ∗d = τmin against any attack

rate. In response, it is more rewarding for the attacker to attack at λmin for any τd.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Nash equilibrium, C
d
=0.3 and C

a
=0.1

τ d

λ
a

 

 

λ
a

*
(τ

d
)

τ
d

*
(λ

a
)

Figure 4.12: Players best response curves for Cd = 2.5 and Ca = 1
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Figure 4.13: Players best response curves for Cd = 0 and Ca = 0
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Figure 4.14: Players best response curves for Cd = 10 and Ca = 0
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Figure 4.15: Players best response curves for Cd = 0 and Ca = 6
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Figure 4.16: Defender’s best response curves for different reward scaling regimes.
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Figure 4.17: Attacker’s best response curves for different reward scaling regimes.

4.6.4 Different reward scaling regimes

In the numerical analysis above, we considered the reward function G to be linearly increasing in

the collocation duration. However, the reward function need not be linear. In this section, we study

other scaling regimes. In particular, we consider the scenario where the reward G(τd, τa) scales

sub-linearly, quadratically or cubically with the collocation duration. In other words, G(τd, τa) =

max{0, (τd − τa)
n}, where n = {0.2, 1, 2, 3}. The scaling of the reward function relates to the

power of the attack as well as the vulnerability of the system under attack. The more powerful the

attacker, the more data she is able to read out for a given duration of collocation. The power of

the attack also depends on the side-channel technique used. The authors in [92] have shown that

the amount of data leaked practically depends on the technique used to access the last level cache

(LLC) (e.g., PRIME+PROBE and FLUSH+RELOAD attacks [102, 105]). For example, to read

the cache, an attacker would need to adjust the time of the PROBE phase, which in turn affects the

error rate of the attack covert channel.
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In Fig. 4.16, we plot the defender’s best response curves for sub-linear, linear, quadratic, and cubic

reward functions. Intuitively, higher order reward functions are more disposed to dominate the

payoff functions than for the linear and sub-linear scaling. In Fig. 4.16, the migration cost is set

to Cd = 1. For the sub-linear regime, the defender’s payoff function is more dominated by the

migration cost. As the attack rate λa increases, the defender is urged to migrate the VMs at a

faster rate (wherefore τ ∗d decreases), but only until a certain point where faster migration becomes

futile. Indeed, when the attack rate is overwhelming, it is more rewarding for the defender to use a

large τd to alleviate high migration costs. For the linear regimes, the defender is facing exactly the

same tradeoff discussed earlier in Section 4.6.3. Similarly, for the higher order reward regimes, the

leakage term dominates the payoff over the entire range of attack rates. Therefore, the defender

is consistently urged to increase the migration rate as the attacker increases her attack rates. With

the quadratic and cubic reward functions the defender’s best response is shown to exhibit a similar

behavior, but conceivably the cubic reward incentivizes a faster increase in the rate of migration.

In Fig. 4.17, the attacker’s best response curves are plotted for different reward functions. The

higher the order of the reward regime, the more is the attacker enticed to attack. For the sub-linear

regime, the attacker attacks at rates higher than λmin when τd > 0.6. However, in the linear regime,

the attacker’s best response rate is non-vanishing and increasing in τd for τd > 1, reaches λa = 1.4

as soon as the cost of the attack starts to dominate the attacker’s payoff. Evidently, the higher the

order of the reward, the more is the attacker willing to attack at higher rates. As shown in Fig.

4.17, the cubic regime is extremely rewarding to the attacker, and as a result the attacker affords to

attack at the maximum permissible rate as the reward term dominates her utility function.
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4.6.5 Game simulation and implementation

In this section, we compare the payoff of both players playing NE strategies to the payoffs of

other defense and attack strategies. As per our theoretical analysis in Section 4.4, the players’

optimal (NE) policies depend on the values of the associated costs Cd and Ca. Table 4.1 presents

the results of a simulation of the game for the linear reward regime in which G(τd, τa) = (τd −

τa)
+ = max(τd − τa, 0) at different values of Cd and Ca. For the numerical results, the maximum

collocation time is set to T = 3 and the maximum attack rate is λmax = 3. The results underscore

that a rational attacker would adapt the attack rate to the attack cost to avoid incurring high cost

and/or launching useless attacks. For example, when Ca = 8, the payoff corresponding to the

NE converges to that of the No Attack strategy, which is substantially higher than the payoff of

an aggressive attacker of −23.68 due to a substantial attack cost. Similarly, the defender should

not resort to very high frequency migration (equivalently, small τd), unless the migration cost is

fairly low. For example, the results in the table show that the payoff of the defender adopting the

NE policy tends to that of the No defense policy as Cd increases. The last column designated as

worst case (for the defender) corresponds to the scenario where the attacker is attacking at the

highest rate while the defender does not adopt any migration policy. The loss of the defender for

not migrating compared to the NE strategy is more pronounced when the NE point has τ ∗d < T ,

i.e., when the defender is in a position to defend the system through VM migrations.

Real system implementation: To demonstrate the effectiveness of the proposed approach, we

implemented the migration defense approach on a proof-of-concept cloud setup using the Xen hy-

pervisor [137], which allows us to run many instances of an operating system on a single machine.

The setup is composed of five physical nodes in addition to the orchestrating controller node. The

specifications of the nodes are: Dell Inc. PowerEdge 1900 Intel(R) Xeon(R), 4-core CPU E5335

(2.00GHz) and 8GB Ram running Ubuntu 16.04.4 LTS with Xen 4.6. Each hypervisor initially
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runs 20 VMs. The number of VMs residing on each hypervisor changes slightly over time due

to live migration. Three target VMs are uniformly distributed over the five hypervisors. We vali-

date our results by comparing the performance of the proposed defense approach to a no-defense

approach and to a random migration defense policy with a uniform distribution over the interval

[τmin, T ]. In Fig. 4.20, we plot the collocation duration per target VM (left y-axis) and the average

number of collocation events (right y-axis). As shown, the no-migration approach results in collo-

cation events of longer duration. The proposed defense approach can reduce both the durations and

number of occurrences of collocation events. VM migration defense policies are shown to reduce

the duration of collocation events by half. In Fig. 4.21, we evaluate the defender’s utility at dif-

ferent migration cost values. The proposed defense is shown to outperform the random migration

policy, which does not adapt to the migration cost Cd as it chooses a random τd.

4.6.6 Extended model with IDS

In Fig 4.18, we compare the attacker’s payoff with and without an IDS in place based on the

analysis in Section 4.5. In this experiment, we set D = 0.2, Ca = 0.2 for different stop times s.

It is clear that the IDS drastically reduces the attacker’s utility. In addition, while the IDS is in

place the attacker can increase her expected payoff by shortening the attack duration. Hence, the

defender’s utility increases since the amount of data leaked out is reduced.

Fig. 4.19 illustrates the attacker’s payoff as function of the attack stopping time s for different

values of the detection cost D. Obviously, the best time to stop the attack depends on the detection

cost D. As D increases, the attacker’s payoff decreases and the optimal stopping time s (corre-

sponding to the highest payoff) is shown to decrease. At a certain point, the attacker is forced to

stop as soon as she collocates to evade a high penalty if detected.
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Table 4.1: Players’ Payoff For Several Attack and Defense Strategies.

Cost NE No Defense No Attack Aggressive Attack Worst case
Cd Ca ud ua ud ua ud ua ud ua ud ua
0 0 -1.49E-04 1.49E-04 -2.6778 2.6778 -5.00E-07 5.00E-07 -1.47E-04 1.47E-04 -2.6722 2.6722

0.1 0 -0.4184 0.1745 -2.711 2.6778 -0.2447 8.39E-04 -0.4164 0.1725 -2.7054 2.6722
0.1 0.1 -0.292 0.0147 -1.9578 1.8396 -0.1937 3.50E-04 -0.447 -0.0414 -2.7054 2.3762
0 0.1 -5.00E-07 -1.00E-03 -0.0448 0.0438 -5.00E-07 -1.00E-03 -1.47E-04 -0.2959 -2.6722 2.3762

0.4 0.2 -0.7561 0.0603 -2.2234 1.8825 -0.4912 0.0014 -0.9998 -0.08 -2.8051 2.0802
0.4 0.4 -0.6141 0.0331 -1.5869 1.254 -0.3864 0.0015 -1.1082 -0.4567 -2.8051 1.4882
0.4 0.6 -0.5024 0.0158 -1.0553 0.7664 -0.3379 0.0013 -1.2121 -0.8944 -2.8051 0.8962
0.8 0.6 -0.9674 0.0732 -1.7374 1.1656 -0.5974 0.0032 -1.6164 -0.7478 -2.938 0.8962
0.8 1 -0.7914 0.0345 -1.1881 0.6624 -0.5098 0.0029 -1.7719 -1.685 -2.938 -0.2878
2 4 -0.9212 0.0145 -0.9206 0.0162 -0.7112 0.0046 -3.3289 -9.1778 -3.3367 -9.1678

10 0 -6 2.6667 -5.999 2.6767 -3.3779 0.0446 -5.9955 2.6622 -5.9945 2.6722
0 8 -5.00E-07 -0.08 -0.0448 -0.0352 -5.00E-07 -0.08 -1.47E-04 -23.6799 -2.6722 -21.0078
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Figure 4.18: Attacker’s payoff with and without IDS.
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CHAPTER 5: CONCLUSION

We investigated the security of DCA in wireless networks. We formulated the attack as an MDP

problem solved by the attacker to yield pinball jamming attacks that optimize the tradeoff between

the damage inflicted in creating conflicts and the attack cost. Given that the original MDP is not

scalable, we proposed an approximate yet effective policy which was shown to outperform other

policies such as DoS, MCN, myopic and random attacks. The proposed policy judiciously adapts

the level of the attack from highly aggressive at low attack costs to less aggressive at higher costs.

Pinball attacks are shown to cause cascading channel switching and prevent the network from

resolving conflicts to reach a zero-conflict state.

The performance gaps of the different policies compared to pinball attacks are more pronounced in

sparser graphs since pinball attacks are capable of exploiting the graph structure and the variability

in node degrees to yield substantially higher rewards. Also, we formulated the dual problem of

attacking the network communication links and established the equivalence of the edge and node

attack problems. We also extended pinball strategies to large scale networks. We considered large

graphs with repeated structures and derived policies obtained as solutions to MDPs corresponding

to the small repeating subgraphs. Based on a thorough experimental evaluation with numerous

topologies, we have shown that the proposed pinball policy outperforms the other attack policies

in different scenarios.

On the defense side, we proposed a game-theoretic defense against jamming attacks via adapt-

ing the transmission profiles of the wireless access points, i.e. adapting the underlying network

topology. Given the combinatorial complexity of the best response strategy, we developed scalable

strategies based on newly proposed game decompositions in which the defender solves multiple,

yet simple, sub-games instead of one large combinatorial game. The decoupled approach was
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shown to yield mixed strategies with performance close to (and could outperform) that of the

full-scale NE. They also come with marginal reward loss against computationally unrestrained ad-

versaries. Also, we developed a scalable marginal strategy for selecting the footprints in terms

of expected power levels which enforce a minimum coverage constraint. The proposed marginal

strategy is shown to substantially enhance the network dependability against jamming attacks over

uniform power allocation. Further, we extended the marginal-based approach and considered a

continuous game in which the defender and the jammer assign powers from a continuous set. We

characterized and proved uniqueness of a pure strategy NE for such game.

Finally we developed a moving target defense framework for the VM migration timing problem.

Live migration of VMs between different physical nodes is studied in a game-theoretic framework

to defend multi-tenant clouds against side channel attacks launched by malicious users co-residing

on the same physical node. We characterized best strategies for the players and established NE ex-

istence conditions. We also considered an extended system model in which the cloud is equipped

with an IDS. The IDS is a reactive defense approach which, combined with our proactive VM mi-

gration defense approach, enhances the cloud security against side channel attacks. We also veri-

fied our theoretical results numerically for different settings of the game. The theoretical and nu-

merical analyses provided characterize the performance of the migration defense approach against

collocation attacks. We also demonstrated the proposed migration defense on a cloud network

implemented in a Xen-based cluster.
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