616 research outputs found

    Colored Petri Net Model of IEC Function Block and Its Application

    Get PDF
    Colloque avec actes et comité de lecture. internationale.International audienceA CPN based IEC FB model and its application are introduced in this paper. The model not only can analyze the internal procedure of IEC FB, especially the parameter's status propagation and the mode's switch, but also can be integrated into modeling IEC FB application. The latter is explained with a FB application, FB based boiler water level control system

    Translation Of AADL To PNML To Ensure The Utilization Of Petri Nets

    Get PDF
    Architecture Analysis and Design Language (AADL), which is used to design and analyze software and hardware architectures of embedded and real-time systems, has proven to be a very efficient way of expressing the non-functional properties of safety-critical systems and architectural modeling. Petri nets are the graphical and mathematical modeling tools used to describe and study information processing systems characterized as concurrent and distributed. As AADL lacks the formal semantics needed to show the functional properties of such systems, the objective of this research was to extend AADL to enable other Petri nets to be incorporated into Petri Net Markup Language (PNML), an interchange language for Petri nets. PNML makes it possible to incorporate different types of analysis using different types of Petri net. To this end, the interchange format Extensible Markup Language (XML) was selected and AADL converted to AADL-XML (the XML format of AADL) and Petri nets to PNML, the XML-format of Petri nets, via XSLT script. PNML was chosen as the transfer format for Petri nets due to its universality, which enables designers to easily map PNML to many different types of Petri nets. Manual conversion of AADL to PNML is error-prone and tedious and thus requires automation, so XSLT script was utilized for the conversion of the two languages in their XML format. Mapping rules were defined for the conversion from AADL to PNML and the translation to XSLT automated. Finally, a PNML plug-in was designed and incorporated into the Open Source AADL Tool Environment (OSATE)

    Nonautonomous elementary net systems and their application to programmable logic control

    Get PDF

    Experimental and simulation study on the effect of geometrical and flow parameters for combined-hole film cooling

    Get PDF
    Film cooling method was applied to the turbine blades to provide thermal protection from high turbine inlet temperatures in modern gas turbines. Recent literature discovers that combining two cylindrical holes of film cooling is one of the ways to further enhance the film cooling performances. In the present study, a batch of simulations and experiments involving two cylindrical holes with opposite compound angle were carried out and this two cylindrical hole also known as combined-hole film cooling. The main objective of this study is to determine the influence of different blowing ratio, M with a combination of different lateral distance between cooling holes (PoD), a streamwise distance between cooling holes (LoD) and compound angle of cooling hole (1/2) on the film cooling performance. The simulation of the present study had been carried out by using Computational Fluid Dynamic (CFD) with application of Shear Stress Transport (SST) turbulence model analysis from ANSYS CFX. Meanwhile, the experimental approach makes used of open end wind tunnel and the temperature distributions were measured by using infrared thermography camera. The purpose of the experimental approach in the present study is to validate three cases from all cases considered in the simulation approach. As the results shown, the lateral coverage was observed to be increased as PoD and 1/2 increased due to the interaction between two cooling air ejected from both cooling holes. Meanwhile, film cooling performance insignificantly changed when different LoD was applied. As the conclusion, a combination of the different geometrical parameters with various flow parameters produced a pattern of results. Therefore, the best configuration has been determined based on the average area of film cooling effectiveness. For M = 0.5, PoD = 1.0, LoD = 2.5 and 1 / 2 = -45o /+45o case is the most effective configuration. In the case of M = 1.0 and M = 1.5, PoD = 0.0, LoD = 3.5, 1 / 2 = -45o /+45o and PoD = 0.0, LoD = 2.5, 1 / 2 = -45o /+30o are the best configurations based on the overall performance of film cooling

    Engineering framework for service-oriented automation systems

    Get PDF
    Tese de doutoramento. Engenharia Informática. Universidade do Porto. Faculdade de Engenharia. 201

    Petri net modeling and performance analysis of can fieldbus

    Get PDF
    The CAN FB (Controller Area Network FieldBus) has been in existence for ten years. It supports automated manufacturing and process control environments to interconnect intelligent devices such as valves, sensors, and actuators. CAN FieldBus has a high bit rate and the ability to detect errors. It is immune to noise and resistant to shock, vibration, and heat. Two recently introduced mechanisms, Distributed Priority Queue (DPQ) and Priority Promotion (PP) enable CAN FieldBus networks to share out the system bandwidth and grant ail upper bound on the transmission times so as to meet the requirements in real-time communications. Modeling and analysis of such networks are an important research area for their wide applications in manufacturing automation. This thesis presents a Petri net methodology which models and analyzes CAN FieldBus access protocol. A Reachability Graph of the Petri net model is -utilized to study the behavioral properties of the protocol. A timed Petri net simulator is used to evaluate the performance of the protocol. Performance measures include the completion time for successful events and operations. Operational parameters investigated using the Petri Net model are FieldBus speed, the length of each frame, and the number of frames in a message

    An approach to task coordination for hyperflexible robotic workcells

    Get PDF
    2014 - 2015The manufacturing industry is very diverse and covers a wide range of specific processes ranging from extracting minerals to assembly of very complex products such as planes or computers, with all intermediate processing steps in a long chain of industrial suppliers and customers. It is well know that the introduction of robots in manufacturing industries has many advantages. Basically, in relation to human labor, robots work to a constant level of quality. For example, waste, scrap and rework are minimized. Furthermore they can work in areas that are hazardous or unpleasant to humans. Robots are advantageous where strength is required, and in many applications they are also faster than humans. Also, in relation to special-purpose dedicated equipment, robots are more easily reprogrammed to cope with new products or changes in the design of existing ones. In the last 30-40 years, large enterprises in high-volume markets have managed to remain competitive and maintain qualified jobs by increasing their productivity with the incremental adoption and use of advanced ICT and robotics technologies. In the 70s, robots have been introduced for the automation of a wide spectrum of tasks such as: assembly of cars, white goods, electronic devices, machining of metal and plastic parts, and handling of workpieces and objects of all kinds. Robotics has thus soon become a synonym for competitive manufacturing and a key contributing technology for strengthening the economic base of Europe . So far, the automotive and electronics industries and their supply chains are the main users of robot systems and are accounting for more than 60% of the total annual robot sales. Robotic technologies have thus mainly been driven by the needs of these high-volume market industries. The degree of automation in the automotive industries is expected to increase in the future as robots will push the limits towards flexibility regarding faster change-over-times of different product types (through rapid programming generation schemes), capabilities to deal with tolerances (through an extensive use of sensors) and costs (by reducing customized work-cell installations and reuse of manufacturing equipment). There are numerous new fields of applications in which robot technology is not widespread today due to its lack of flexibility and high costs involved when dealing with varying lot sizes and variable product geometries. In such cases, hyper-flexible robotic work cells can help in providing flexibility to the system and making it adaptable to the different dynamic production requirements. Hyper-flexible robotic work cells, in fact, can be composed of sets of industrial robotic manipulators that cooperate to achieve the production step that characterize the work cell; they can be programmed and re-programmed to achieve a wide class of operations and they may result versatile to perform different kind of tasks Related key technology challenges for pursuing successful long-term industrial robot automation are introduced at three levels: basic technologies, robot components and systems integration. On a systems integration level, the main challenges lie in the development of methods and tools for instructing and synchronising the operation of a group of cooperative robots at the shop-floor. Furthermore, the development of the concept of hyper flexible manufacturing systems implies soon the availability of: consistent middleware for automation modules to seamlessly connect robots, peripheral devices and industrial IT systems without reprogramming everything (”plug-and-play”) . In this thesis both innovative and traditional industrial robot applications will be analyzed from the point of view of task coordination. In the modeling environment, contribution of this dissertation consists in presenting a new methodology to obtain a model oriented to the control the sequencing of the activities of a robotic hyperflexible cell. First a formal model using the Colored Modified Hybrid Petri Nets (CMHPN) is presented. An algorithm is provided to obtain an automatic synthesis of the CMHPN of a robotic cell with detail attention to aircraft industry. It is important to notice that the CMHPN is used to model the cell behaviour at a high level of abstraction. It models the activities of each cell component and its coordination by a supervisory system. As more, an object oriented approach and supervisory control are proposed to implement industrial automation control systems (based on Programmable Logic Controllers) to meet the new challenges of this field capability to implement applications involving widely distributed devices and high reuse of software components. Hence a method is proposed to implement both controllers and supervisors designed by Petri Nets on Programmable Logic Controllers (PLCs) using Object Oriented Programming (OOP). Finally preliminary results about a novel cyber-physical approach to the design of automated warehouse systems is presented. [edited by author]XIV n.s

    No Code AI: Automatic generation of Function Block Diagrams from documentation and associated heuristic for context-aware ML algorithm training

    Full text link
    Industrial process engineering and PLC program development have traditionally favored Function Block Diagram (FBD) programming over classical imperative style programming like the object oriented and functional programming paradigms. The increasing momentum in the adoption and trial of ideas now classified as 'No Code' or 'Low Code' alongside the mainstream success of statistical learning theory or the so-called machine learning is redefining the way in which we structure programs for the digital machine to execute. A principal focus of 'No Code' is deriving executable programs directly from a set of requirement documents or any other documentation that defines consumer or customer expectation. We present a method for generating Function Block Diagram (FBD) programs as either the intermediate or final artifact that can be executed by a target system from a set of requirement documents using a constrained selection algorithm that draws from the top line of an associated recommender system. The results presented demonstrate that this type of No-code generative model is a viable option for industrial process design.Comment: 2022 7th International Conference on Mechanical Engineering and Robotics Researc
    corecore