
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

4

The Java based Programmable Logic Controller.
New Techniques in Control and Supervision

of a Flexible Manufacturing Cell.

Ramón Piedrafita and José Luis Villarroel
Department of Computer Science and Systems Engineering, University of Zaragoza

Spain

1. Introduction

In this chapter, we explain new techniques and technologies applied to the control of a
flexible manufacturing cell. We have proposed a new control platform: a Java based
Programmable Logic Controller (PLC). The Java PLC comprises several modules where the
real time control, the communication with industrial fieldbuses and the supervision via web
technologies have been developed. This control architecture (Piedrafita & Villarroel 2006)
and development environment is based on Petri Nets (PNs), Sequential Function Charts
(SFCs) and the Real Time Java programming language. Our objective is to explore the
application of new control techniques of manufacturing systems, and to test the use of the
Java programming language as a platform for those techniques. To demonstrate the
practical utility of the techniques, we have applied them to the control of a flexible
manufacturing cell.
This research follows earlier studies at the University of Zaragoza on the software
implementation of PN. In those studies, Ada95 was the implementation language (García &
Villarroel 1996). For the current study, Java was chosen for the following reasons:

• The possibility of executing the same code on different platforms.

• To compare the Ada95 and Java implementations using the same concurrent and real-
time characteristics.

• Java is a language that is beginning to be used in the development of control and
embedded systems.

• Java has a real time extension that allows the necessary time predictability required in
these types of applications.

From the perspective of the software implementation of Discrete Event Control Systems, we
have translated into the Java language some classic PN implementation techniques such as
Enabled Transitions or Representing Places. We have also developed SFC implementation
techniques such as the Deferred Transit Evolution Model and Immediate Transit Evolution
Model.
In the execution of a Petri net, a task, the coordinator, makes the firing of transitions and
updates the marking. We propose a new PN implementation technique called concurrent
coordinators, in which centralized and decentralized ideas are merged. The net is
decomposed into several subnets following, for example, a functional criterion, and a

Source: Programmable Logic Controller, Book edited by: Luiz Affonso Guedes,
 ISBN 978-953-7619-63-3, pp. 170, January 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com

 Programmable Logic Controller

52

different coordinator implements each subnet in a centralized way. The communication
between the different subnets is made using communication places that are implemented by
monitors that use synchronized methods for marking and unmarking.
The Java PLC can load PNs in PNML (Billington, Christensen et al. 2003) and can load SFCs
in the PLCopen XML format (Open 2005). In the input/output module we have developed
libraries for communication with bus Interbus, CANopen and Modbus TCP/IP.
The hardware of the Java PLC is based on a PC equipped with several fieldbus master cards,
where the input/output modules of the machines are connected. The software of the control
system is based on a real-time control program that has several threads responsible for the
concurrent execution of PN or SFC programs. The threads communicate through monitors.
The development of this open platform has involved the development of an open
framework of Java classes. This includes classes for the PN and SFC implementation, from
the basic classes that model places, transitions, and the structure of a Petri net to the classes
that execute the PN, and classes that allow communication with several fieldbuses. There
are also classes for remote supervision via the RMI protocol or web Supervision.
A practical application of the proposed approach, the control of a flexible manufacturing
cell, was developed at the Department of Computer Science and Systems Engineering at the
University of Zaragoza, Spain.
The remainder of this chapter is organized as follows. In Section 2 we present the
characteristics of the Java language relevant to the implementation of control systems and
we present the Java PLC structure. In section 3 we review the different techniques for the
implementation of PNs and SFCs. The flexible manufacturing cell is described in Section 4.
In Section 5 the communication with the controlled system is explained. Section 6 describes
the structure of the proposed control architecture and in section 7 we show a new technique:
the Execution Time Controller. In Section 8, some details of the software implementation in
the Java language are presented. The development environment we have created is
described in Section 9 and, in Section 10 we present conclusions and suggest future lines of
research.

2. Java based programmable logic controller

This research follows earlier studies at the University of Zaragoza on the software
implementation of PN. In those studies, Ada95 was the implementation language (García &
Villarroel 1996).
Java has some of the characteristics required for the implementation of control applications,
including the concurrent execution of threads; however, Java also has characteristics that
impede its use as a programming language for control applications:

• Although there exits compilers, Just in Time compilers, Virtual Machines with onthe-
fly recompilation, Java mainly is used like interpreted language.

• Programs written in Java link classes dynamically; thus, the load of remote classes can
delay the execution of the program.

• Java uses dynamic memory to create objects as needed, and the time to create an object
depends on the memory state.

• A high-priority thread performs the garbage collection, the process of automatically
freeing objects that are no longer referenced by the program.

www.intechopen.com

The Java based Programmable Logic Controller. New Techniques in Control
and Supervision of a Flexible Manufacturing Cell.

53

• The Java scheduler works with fixed priorities, but there is no guarantee that the
highest-priority thread is running. To avoid starvation, the thread scheduler might
choose to run a lower-priority thread. The thread priority affects the scheduling policy
for efficiency purposes only.

The first characteristic affects the run-time performance only, but the others imply time
unpredictability, which prevents Java from being used in the development of real-time
systems. These problems have been solved in the Real Time Java Specification (RTJS) (Bollella
and Gosling 2000.) which has been implemented in some platforms, such as JamaicaVM
(Aicas 2007) which includes the following:

• The Real Time Virtual Machine executes "bytecodes," but programs are also compiled to
machine code, which increases the speed of execution.

• New thread classes, RealtimeThread and NoHeapRealtimeThread, which are
unaffected or at least less heavily affected by garbage collection activity.

• New memory classes (InmortalMemory and ScopedMemory) that are not under the
control of the garbage collector.

• A true fixed-priority pre-emptive scheduler that has an expanded range of priorities.

• The incorporation of classes for the treatment of asynchronous events and to manage
the asynchronous transfer of control.

• The ability to work with high-resolution real-time clocks.
These characteristics of real time Java provide the basic tools for the development of control
applications. This has enabled the development of a platform for the real time
implementation of discrete event control systems based on the Java language. We call this
platform the Java PLC. Petri nets are used as a tool for modelling and implementing discrete
event systems, and also their programmed implementation: the Sequential Function Charts.
The Java PLC should be able to execute PNs or SFCs in real time. To develop the control
function, it should be able to communicate with fieldbuses in such a way that it can read the
signals of the sensors and write signals to actuators. It should also be able to communicate
with the plant operators providing information about the controlled system.
With these objectives, and in order to carry out the development correctly, the Java PLC has
been structured in several modules, each one responsible for a function (control,
communication, supervision…) and able to exchange information one with another.
The Java PLC comprises several modules (see Fig. 1):

• The control module is in charge of executing the PLC program.

• The input/output module is in charge of communicating with several fieldbuses like
Interbus, CANopen or Modbus TCP/IP.

• RMI communication module. This allows communication with other Java virtual
machines and for the Web Server to exchange information with the control module.

• Web Server. This module is responsible for providing information about the state of the
program and the input / output variables, allowing remote visualisation of the state of
the program.

3. The control module

The control module is responsible for executing the PLC programs. These programs can be
run using Petri nets in the PNML format or in the Sequential Function Chart language in the
PLCopen XML format. The execution in the PLC is carried out in real time as a high-priority
task.

www.intechopen.com

 Programmable Logic Controller

54

Fig. 1. Java based Programmable Logic Controller.

Currently most industrial PLCs run their programs in an interpreted and centralized
manner. The PLC reads the inputs, executes the program (i.e. runs an interpreter of SFCs,
also called coordinator in this paper) and writes the outputs.
In the execution of the program it is necessary to determine which transitions can fire, and
then fire them so that the state of the SFC (or PN) will evolve. This will also include the
actions programmed in the steps. The algorithm to determine which transitions are enabled
and can fire is important because it introduces some overhead in the controller execution
and the reaction time is affected. In the Java PLC we have implemented several algorithms
in which different enabled transition search techniques are developed:

• Brute Force (BF). PN implementation technique.

• Deferred transit evolution model (DTEVM). SFC implementation technique.

• Immediate transit evolution model (ITEVM). SFC implementation technique.

• Static Representing Places (SRP). PN implementation technique.

• Enabled Transitions (ET). PN implementation technique.
In the Brute force algorithm all the transitions are tested for firing. Brute Force algorithms
do not try to improve the search of enabled transitions. Works such as (Peng & Zhou 2004)
(Uzam & Jones 1996) (Klein, Frey et al. 2003) belong to this implementation class.
The IEC-61131 standard is not very precise in the definition of the SFC execution rules.
Different execution models have been proposed to interpret the standard. As with BF, in the

www.intechopen.com

The Java based Programmable Logic Controller. New Techniques in Control
and Supervision of a Flexible Manufacturing Cell.

55

Immediate Transit Evolution Model (ITEVM) algorithm all the transitions are tested for
firing (Hellgren, Fabian et al. 2005). However, the Deferred Transit Evolution Model
(DTEVM) (Hellgren, Fabian et al. 2005) only performs the testing of the transitions
descending from the marked places, improving in this way the Brute Force operation.
In (Lewis 1998) the IEC-61131 standard is interpreted and the following tasks are proposed
to run an SFC:

• Determine the set of active steps

• Evaluate all transitions associated with the active steps

• Execute actions with falling edge action flag one last time

• Execute active actions

• Deactivate active steps that precede transition conditions that are true and activate the
corresponding succeeding steps

• Update the activity conditions of the actions

• Return to step 1
These tasks are implemented in the DTEVM algorithm. In DTEVM, the transition conditions
of all transitions leading from marked places are evaluated first. Then, the transitions found
to be fireable are executed one by one. In ITEVM, the transition conditions of all transitions
are evaluated one by one. In the case of a transition condition being true, i.e., the
corresponding transition being fireable, this transition is fired immediately.
In the Static Representing Places (SRP) algorithm, only the output transitions of some
representative marked places are tested (Colom, Silva et al. 1986). Each transition is
represented by one of its input places, the Representing Place. The remaining input places
are called synchronization places. Only transitions whose Representing places are marked
are considered as candidates for firing.

Fig. 2. Flexible manufacturing Cell.

www.intechopen.com

 Programmable Logic Controller

56

In the Enabled Transitions algorithm, only totally enabled transitions are tested. A
characterization of the enabling of transitions, other than marking, is supplied, and only
fully enabled transitions are considered. This kind of technique is studied in works such as
(Silva & Velilla 1982) (Briz. 1995).
In the implementations developed in the present study, the program loads the net structure
from a XML file that is generated by a Petri net editor; thus, the implementation is
independent of the net and is an interpreted implementation. In the execution of a Petri net, a
thread called the “coordinator” is responsible for the firing transitions and updates the state
of the net (marking), this being a centralized approach. Furthermore, we have introduced
centralized techniques into decentralized implementations, thereby creating a new
technique called concurrent coordinators. The application can run several coordinators
simultaneously by executing a sub-net for each subsystem.

4. The flexible manufacturing cell.

The practical application of the ideas presented in this paper were tested using a flexible
manufacturing cell installed at the Department of Computer Science and Systems
Engineering at the University of Zaragoza, Spain, for research and teaching purposes.
The manufacturing cell carries out a complete production process making various types of
pneumatic cylinders. The orders are composed by a rectangular base (white or black) and
three cylinders produced in the first production ring, being able previously to select both the
base and the cylinders. It also has two storage areas, one intermediate store for the
manufactured pneumatic cylinders and the other for orders. The term “flexible” means that
the cell can manufacture any component type at any moment.
There are two types of base, white and black, and six types of pneumatic cylinders divided
into two groups, cylinders with and without a cap.
The cylinders with a cap are made up of a sleeve with a closed cap. These pieces are already
manufactured and require no handling apart from identification and storage. The
components without a cap are cylinders simple effect pneumatic cylinders made up of a
piston, a recoil spring and a head.
There are three types in both groups: black, red and metallic. The cylinders without cap
have two sorts of piston, metallic and plastic. The metallic piston is narrower and shorter
than the plastic, and is only included in the black pieces, while the plastic piston is mounted
in the red or metallic cylinders. The composition of the cylinders without cap is shown in
Fig. 3.
The manufacturing cell is composed of a set of stations for the production and storage of
pneumatic cylinders and is divided into two zones (Fig. 4): (a) the production zone (stations
1, 2, 3, and 4, and the transport 1), and (b) the product expedition zone (station 6 and storage
station 7, two robots, and the transport 2). Station 5 is an intermediate storage area between
the two zones.
Transport 1 (left hand side of Fig. 4) is responsible for moving the pallets in the production
zone between the stations and is above the pallets where the operations are carried out. This
transport connects stations 1, 2, 3 and 4 which carry out the following operations:

• Station 1: identifies and positions the sleeves for cylinders without cap or those with
cap and previously manufactured.

• Station 2: assembles the corresponding piston with the sleeve type and next assembles
the coil spring.

www.intechopen.com

The Java based Programmable Logic Controller. New Techniques in Control
and Supervision of a Flexible Manufacturing Cell.

57

Fig. 3. Types of Cylinders.

Fig. 4. Flexible manufacturing cell.

• Station 3: attaches the Cap.

• Station 4: checks the components and acts as a link between the production zone and
storage area for all the finished components.

Transport 2 (right hand side of Fig. 4) arranges the transport of the cart in the expedition of
orders zone between stations 6, 7, 8 and 9 that do the following operations:

• Station 6: is in charge of retrieving the base (black or white) where the three cylinders
will be situated.

• Station 7: is a servo controlled storage area that stores the orders in one of its eighty
positions.

• Station 8: will grasp the stored cylinders in the station 5 and inserts them in the base
according to the order introduced by the user.

• Station 9: removes orders from the cell.

www.intechopen.com

 Programmable Logic Controller

58

Station 5 links the production and expedition zones, acting as or intermediate storage area
of 16 positions. The different pieces (cylinders) are dispatched depending on the production
orders and the storage policy of station 5.
The original control system of the cell consisted of a programmable logic controller (PLC)
that controlled each station. A real-time industrial net connected all of the PLCs. We then
installed a new control system based on a fieldbus. The fieldbus was installed at stations 1,
2, 3, and 4, and at Transport 1 (see Fig. 5). Stations 1 and 4 have Inline modules
(Phoenix_Contact 2006), and stations 2, 3 and Transport 1 have Advantys STB modules
(Schneider_Electric. 2006).

Fig. 5. Fieldbus and Product Identifier

Both Transport 1 and Transport 2 identify the contents of every pallet by means of the read
and write heads of the memories attached to the pallets.
At the beginning of an operation at a cell station, to determine the operation that has to be
performed, the memory of the pallet that arrives must be read. At the end of the
manufacturing operation, the memory of the pallet must be updated.
The product identifier module is a resource shared by all of the stations. Communication
with the identifier module is achieved using a serial port inserted in the Inline module of
Station 1. Access to the module must be protected from concurrent access.

5. The input/output module

Communication with the control system could be established with the coordinators directly
accessing the communications network to read or write each time that they need to interact

www.intechopen.com

The Java based Programmable Logic Controller. New Techniques in Control
and Supervision of a Flexible Manufacturing Cell.

59

with the cell. This strategy would not be very efficient because even writing or reading only
one station variable would involve a complete reading or writing of the bus. This task has
therefore been left to the communications layer. The coordinators access the data they need
through monitors that guarantee mutual exclusion in accessing variables. In this way the
implementation of the control layer is independent of the system used to communicate
physically with the cell.
The communication between the control module and the I/O module takes place via the
station monitors. The control module reads the input values from the station monitors,
executes the PLC program, and writes the output values in the station monitors. The I/O
module reads the input signals of the fieldbus and leaves them in the station monitors. It
then collects the output values and sends them via the fieldbus to actuators.
The execution of the periodic task of communication with the fieldbuses is run in a real-time
thread at a lower priority than the task of executing the PLC program.
We have been developed classes to allow communication with the fieldbuses Interbus,
CANopen and Modbus TCP/IP. The communication with the Interbus and CANopen
fieldbuses is carried out through libraries in C++. The call to these libraries is made through
JNI (Java Native Interface). Java allows fragments of native code to be incorporated in its
programs that is code compiled for a specific platform, generally written in C/C++. JNI is
the tool Java has to make use of methods run in other programming languages. For this
reason it uses the JNI.
Interbus is a network of distributed sensors and actuators for manufacturing systems and
control processes. It is an open system with advanced features and a ring topology. The
basic concept of an open bus is to provide information exchange between devices produced
by different manufacturers. The information exchanged includes processing data (inputs /
outputs) and parameters (configuration data, programs, monitoring data). The information
format is defined by means of a standard profile for the devices. Interbus has standard
profiles for servomotors, encoders, robot controls, positioning controls, control and
operation panels, digital inputs / outputs, analogue inputs / outputs, thermocouples,
meters, frequency variators, robots, soldering control, identification systems, etc. The
INTERBUS protocol, DIN 19258, is the standard interface for these profiles. This is an open
standard for E/S networks in industrial applications.
A task has been developed for communicating with Interbus. This is implemented as a
periodic task responsible for reading all the input variables and writing the output variables
on the bus. This task is run every 10 ms, which is sufficient given the dynamics of the
controlled system. The program uses the driver (native functions written in code C accessed
through JNI - Java Native Interface) offered by the manufacturer of the bus PCI master card.
In fact the reading and writing is not done directly on the bus but on an image of the
memory of this card.
Communication with the CANopen bus is carried out through a periodic task responsible
for reading the bus inputs and writing the bus output variables and, as with Interbus, this
task run every 10 ms.
Communication with the Modbus TCP/IP protocol in ethernet is made directly in Java,
providing communication with the input / output modules. The classes have functions for
reading and writing the input/ouputs of the modules using the ModBus TCP/IP protocol. It
is possible to change the communication interface of each fieldbus module. Interbus,
CANopen, and Industrial Ethernet are supported. If Interbus is used, the bus master card
will be the Hilscher CIF50-IBM (Hilscher 2007). If CANopen is used, the master card will be

www.intechopen.com

 Programmable Logic Controller

60

the CIF50-COM card and if Industrial Ethernet is chosen, the Ethernet card of the PC acts as
the master. The Interbus topology is a ring and inputs cannot be read or outputs written
individually. The reading of inputs and the writing of outputs are managed by the bus
master in the same operation. Each station of the cell has a reading/writing head of the
pallet memory that is connected to an identifying module of the products (Pepperl&Fuchs
IVI-KHD2-4HRX) (Pepperl&fuchs 2006)
Finally, a program also has to be developed for providing communication with the product
identifier and thus be able to control production. Sun supplies a Java communications
library for applications requiring communication with a device through a serial port (Sun
2006).

6. Control architecture.

One of the main objectives of this work is to define a control architecture. From a
hierarchical standpoint, our proposal is about the coordination and the local control layers
of flexible manufacturing systems. Rather than distribute the local control of each subsystem
of a flexible manufacturing system (manufacturing cells, transports, stores) in various PLCs,
we have opted to centralize them in a computer. The system inputs/outputs are distributed
over several modules connected by a field bus (see Section 5, above). This approach permits
an easy way of developing and debugging new control techniques.
The design and implementation of the local control of subsystems are maintained
separately. In this way, separate threads running on the central computer control each
subsystem. Another thread is responsible for the coordination function of the cell.
Synchronization with the controlled system is achieved using an image memory of the
inputs and outputs of the subsystems in the control computer, which is periodically
updated through the field bus. That is, in each period, the inputs are read from the bus and
the outputs are written to the bus. The cell coordinator updates the memory image. Several
monitors protect the memory image because the input-output variables can be shared by
more than one local controller, the cell coordinator, and some other threads, such as the
Human Machine Interface HMI. Each local controller has its own monitor that protects the
variables of the controlled subsystem. Fig. 6 shows the proposed software control
architecture.
To synchronize the local controller’s execution with the reading/writing of data in the field
bus, a semaphore for each controller is used. The local controllers are cyclical but, at the
beginning of each cycle, they must wait for a signal from the cell coordinator. It is periodic
and, in each period, it sends a signal to all of the semaphores, which permits the execution
of a new cycle of all of the controllers. Thus, the coordinator and the local controllers are
periodic and have the same period. To implement this schema, the following three levels of
fixed priorities are needed:

• High priority. This is reserved for the cell coordinator.

• Medium priority. All of the local controllers have the same priority.

• Low priority. This level is associated with threads that do not have real-time
requirements, e.g., the HMI.

The proposed concurrent structure and priorities guarantee that the controllers always
execute using updated input data and allow real-time analysis of the thread set. Following a
rate monotonic approach, all of the local controller’s threads run within their period (the
control period) if:

www.intechopen.com

The Java based Programmable Logic Controller. New Techniques in Control
and Supervision of a Flexible Manufacturing Cell.

61

Fig. 6. Control architecture

(1)

where T is the control period, Ci is the Worst Case Execution Time (WCET) of control thread

i, Ccoord is the WCET of the cell coordinator, and b is the blocking time of the monitors. We

have used the immediate ceiling priority protocol, so the blocking time is the largest WCET

of all of the services provided by the monitors and called by the lower priority threads, such

as the HMI. The expression imposes a restriction on the number and complexity of local

controllers running on the computer and on the refresh time of the bus. If the previous

condition is fulfilled, the worst-case response time for events in the system can be calculated

as:

 (2)

That is, the response time (tr) has a bound related to the control period (T) and the

readingwriting time of the bus (tbus). An example of the system response time to an

incoming event is presented in Fig. 7.

www.intechopen.com

 Programmable Logic Controller

62

Fig. 7. System Control Time response:
a) An event happens in the system (e.g., a pallet arrives at a station).
b) The event is copied to the memory image of the control system.
c) A local controller reads the event and establishes the reaction as changes on the memory
 image of outputs.
d) The outputs are established in the system through the fieldbus.

In our application, the control period is 10 ms, sufficient for the dynamics of the controlled
system. With Interbus, the read-write time is less than 2 ms; therefore, the response time of
the real-time control will be:

 (3)

In the proposed architecture, only one thread accesses to the communication field bus and
establish the refresh frequency; therefore, it is extremely simple to adapt the control
application to field buses other than Interbus. At present, it is possible to execute the control
over the Interbus, CANopen, and Industrial Ethernet field buses.
In this control architecture, we propose the following:

• The specification of control systems using PN and SFC that allows simulation and
system analysis, and the automatic generation of code (see Section 8).

• The use of the JamaicaVM platform to support the concurrence and real-time execution
of control programs.

• In addition, we have implemented a graphical task (HMI) that allows real-time
visualization of the state of the control system and the PN in Execution (see Fig. 8). In
Java Real Time, the graphical task is executed in a remote virtual machine and the
communication is made using the Java Remote Method Invocation System (RMI) (Sun
2008). In a monitor, the graphical task writes the orders that the operator sends to the
control system.

Those aspects are presented below.

8. The Java implementation

Previous research on deriving Java code from PN specifications (see for example (Conway,
Li et al. 2002) or (Buchs, Chachkov et al. 2003)) has focused on prototyping and simulation.
Our objective is to generate Java code for Real Time control systems and, thus, we have
chosen to adapt classic techniques of PN implementation developed for obtaining efficient
and predictable control applications.

www.intechopen.com

The Java based Programmable Logic Controller. New Techniques in Control
and Supervision of a Flexible Manufacturing Cell.

63

Java is an object oriented language. As in any Java application, the code is encapsulated in a

series of classes that contain a specific functionality. A set of classes that carry out related

tasks are usually grouped in the same package. In the application design it has been

attempted to take advantage of the opportunities offered by Java to make a modular and

robust application so that future modifications can be made quickly and efficiently.

The packages of the classes implemented are described below. The basic organization is as

follows:

• Petri net: a package of classes representing places, transitions and structure of a Petri
net.

• SFC: a class that extends the Petri net class and allows the SFC representation.

• Applications: the application package contains the final applications of the project and
constitutes the definitive set of classes both for both manual and automatic control of
the cell and small manual and automatic control applications of the stations. The main
content comprises the programs for the server of the applications and the interfaces
required for remote communication with the RMI.

• Input/Output: contains the classes enabling communication with the controlled system
through Interbus, CANopen and Ethernet.

• Control: contains the basic classes for the execution of the Petri nets. The execution
algorithms are implemented in this package for the Petri nets and SFCs: Enabled
Transitions, Representing Places, Brute Force, Deferred Transit and Immediate Transit
Evolution Model.

• Centralized control: implements the centralized execution technique of the Petri nets.
Among other classes, it contains the coordinator that executes the global Petri net of the
cell.

• Decentralized control: implements the decentralized technique for the Petri net control.

Among other classes, it contains the coordinators responsible for executing

independently and concurrently each of the Petri nets that make up the cell system.

• Stations: monitors that contain the values of the sensors and actuators of each station.

• Serial Port: contains the classes that manage the communication with the product

identifier through the PC serial port.

The first steps in the Java implementation were to develop the basic classes that allow

representation of a Petri net. In addition, classes were developed that allow connections

between the physical environment and the classes responsible for the execution of the Petri

net, as well as classes that allow communication between different threads (monitors).

In the implementations developed in the present work, the program loads the net structure

from a text file generated by a Petri net editor. Thus, the implementation is independent of

the net and, therefore, is an interpreted implementation.

In the execution of a Petri net, a thread, the coordinator, makes the firing of transitions and

updates the marking, this being a centralized approach. Following the approach presented in

the previous section, we propose a new PN implementation technique called concurrent

coordinators, in which centralized and decentralized ideas are merged. The concept is very

simple; the net is decomposed into several subnets following, for example, a functional

criterion, and a different coordinator implements each subnet in a centralized way. The

communication between the different subnets is made using communication places that are

implemented by monitors that use synchronized methods for marking and unmarking.

www.intechopen.com

 Programmable Logic Controller

64

Fig. 8. Human Machine Interface.

In our practical application, the decomposition is straightforward; there are separate subnets
for each station. Thus, the local controllers are coordinators that implement these subnets.
For an efficient search of fireable transitions and the update of the data structure that stores
them, diverse techniques have been proposed; e.g., enabled transitions, representing and
dynamical representing places (Silva 1985) (Colom, Silva et al. 1986) (Villarroel 1990). Also,
for the implementation of SFCs: Immediate Transit Evolution Model (ITEVM) (Hellgren,
Fabian et al. 2005) algorithm and the Deferred Transit Evolution Model (DTEVM) (Hellgren,
Fabian et al. 2005). In the present work, these five techniques were implemented.
As indicated above, the cell coordinator and the local controllers are concurrent threads with
real-time requirements. From the perspective of the Real Time Specification of Java, they are
RealtimeThreads. Thus, they are scheduled following a static priorities policy with
preemption. The cell coordinator is defined as periodic. The Java scheduler is responsible for
the periodic activation of that thread. Fig. 9 shows the class hierarchy of our practical
application.
The class coordinator inherits from the RealtimeThread class of real time Java. Each
implementation technique opens a branch in the hierarchy. In the abstract class
Enabledtransitions, the enabled transitions technique (also called transition driven) is
implemented. In the abstract class representingplaces, the methods of the technique
representing places are implemented. Dinamicrepresentingplaces and staticrepresentingplaces
inherit from the previous one.
The cell coordinator and the local controllers are instances of descendants of those abstract
classes. For example, Fig. 9 shows the classes in the control of the manufacturing cell that are

www.intechopen.com

The Java based Programmable Logic Controller. New Techniques in Control
and Supervision of a Flexible Manufacturing Cell.

65

implemented by the enabled transitions method. All of the classes inherit the real-time
characteristics.

Fig. 9. Coordinator Class Hierarchy.

Fig. 10. Petri Net Visualization in a web browser.

www.intechopen.com

 Programmable Logic Controller

66

In the coordinator class, we have defined the abstract methods related to the Petri net
interpretation:

These methods are application-dependent and must be implemented by the developer. Also
we have defined the methods for the implementation of SFCs actions. Table 1 shows the
actions that can be programmed in a SFC. In a PLC cycle, the following must be executed:

• Actions which depend on the state of a step: action qualifiers N, L, D, P, P0, P1.

• In the step where is programmed the storage of the stored actions (S, SL, SD, DS) and
their cancellation (R).

• The stored actions (S, SL, SD, DS)
The state of the action depends on the action flag Q and the activation flag A. The activation
and action flags are activated when the action is activated; the activation flag also remains
active in the cycle that turns off the action flag. The action types and qualifiers are the
standard ones of the IEC 61131 (ISO/IEC 2001).

Table 1. SFC action qualifiers.

The methods for the implementation of SFCs actions are described in (Piedrafita & Villarroel
2008).
The application of control consists of three separate modules. In the abstract coordinators,
the control algorithms are implemented. In the non-abstract descending coordinators, the
actions of the places and the conditions of firing of the transitions are implemented. The last
module is responsible for the input/output. To communicate with Interbus and CANopen,
the C libraries provided by the manufacturer were used. For their use in Java, several
functions in JNI were developed. In the case of Ethernet, the communication was developed
entirely in Java.

www.intechopen.com

The Java based Programmable Logic Controller. New Techniques in Control
and Supervision of a Flexible Manufacturing Cell.

67

We used the JamaicaVM for our implementation. JamaicaVM’s real-time garbage collector
does not interrupt application threads; therefore, RealtimeThreads do not have to run in
special memory areas, such as LTMemory or ImmortalMemory, which are not under the
control of the garbage collector. The garbage collector is pre-empted by any real-time thread.

9. Development platform

We have set up a development environment for the control architecture based on PN and
the Java language (see Fig. 11). The basic Java classes were extended to allow the graphical
representation and animation of PN that control the system in real time. To describe the PN,
we used the Petri Net Markup Language (PNML) (Billington, Christensen et al. 2003), which,
among other advances, contains graphical information of the net elements (its graphical
coordinates) thus allowing the graphical representation of PN and its evolution.

Fig. 11. Development of control aplications

Petri nets were created using Pipe Editor (Bloom, Clark et al.), which allows the Petri net
structure to be defined. The transitions predicates and the actions to execute are
implemented directly in Java and are associated with the corresponding place and transition
objects. The Petri net in PNML format is loaded by the application using parser XML, which
creates a tree structure. From that tree, an object of the class Petri Net is created. Later, a
thread from the coordinator class is instantiated and the Petri net object is sent as an
argument.
We have developed a graphical module that allows the load, representation, and run time
animation of the Petri net models. The Java Real time platform does not support the
graphical classes of Java. The JamaicaVM platform has a small set of classes that allows the

www.intechopen.com

 Programmable Logic Controller

68

drawing of points, lines and rectangles only. We decided to keep the graphics section
separate from the real time control application. The communication between the two
applications is performed using RMI, which allows an object that is executing in a Java
virtual machine to call methods of objects or threads running on another virtual machine.
RMI applications have two separate programs: a server and a client. In our case, the server is
the real time control application and the remote client is the HMI graphic interface. The full
application is composed of the following (see Fig. 12):

• The real time control. In this application, the real-time execution of the Petri net occurs.
It acts as a server in the RMI protocol. There is a set of class methods to allow the RMI
clients to consult the state of the Petri net in execution.

• The graphical Java client. In this application, the necessary classes for the graphical
visualization created in Classic Java are defined. It uses the RMI to consult the data
about the PN in execution and allows the visualization.

• Web server. The Web server is programmed in Java and uses the RMI to consult the
data of the real-time control.

Fig. 12. Graphical interface and communication RMI

When a Web browser connects to the server, the communication is produced by means of
the HTTP protocol, but when the real time visualisation of the Petri net execution applet is
executed in the browser the communication with the control application takes place in the
RMI protocol directly with the server.

10. Conclusions

In this paper, we have proposed a control architecture and a development environment
based on Petri Nets, SFCs and the Java language. The architecture is related with the
coordination and the local control layers of flexible manufacturing systems. A centralized
approach permits the easy development and debugging of new control techniques. One of
the mains contributions of this paper is that the proposed architecture allows the verification
of the real time constraints of control systems and the use of formal tools as PNs and SFCs.

www.intechopen.com

The Java based Programmable Logic Controller. New Techniques in Control
and Supervision of a Flexible Manufacturing Cell.

69

The hardware is based on a central computer that is connected to the controlled system
through a fieldbus. The software architecture is based on several periodic threads. One of
the threads, the cell coordinator, plays the role of the coordination layer, and the others are
the local controllers of each subsystem. Synchronization with the controlled system is
achieved using an image memory of inputs and outputs that is periodically updated
through the fieldbus. A set of monitors protects that memory image.
The execution of the software structure over a fixed-priority scheduler allows real-time
analysis of the system and a bound for the worst-case response time for events in the system
can be established.
Java has been chosen as the implementation language to evaluate them in control systems.
An open framework of Java classes for the PN and SFCs implementation has been
developed, from the basic classes to the classes that execute the PN, and the classes that
allow communication with several fieldbuses. Java lacks the real-time characteristics needed
to execute the proposed architecture; therefore, the Real Time Java Specification, which
provides the necessary real-time behaviour, has been adopted. The non real-time
functionalities, such as the graphic interface, were implemented in classic Java because the
development of graphic environments and remote web clients is easier. In this way the
controlled system can be supervised remotely through the web.
The coordination function and the local controllers have been specified using Petri nets that
allow simulation, systems analysis, and automatic code generation. A new PN
implementation technique called concurrent coordinators, involving the use of techniques
centralized in decentralized implementations has been developed. This technique is
perfectly suited to the control architecture.
All of the techniques and technologies presented in this paper have been evaluated in a
practical application, the control of a flexible manufacturing cell composed of
manufacturing stations, transports, robots, and stores. The control system of the cell is
currently running without problems. This work concludes that the Real Time Java
Specification for the development of control systems based (or not) on PN is entirely valid.
The work sets the basis for more detailed research in the fields of programmed
implementation of PN and SFC, languages, and execution and real-time platforms. Future
work will examine the following:

• The migration to real time operative systems.

• Simultaneous control in several fieldbuses.

• Discrete event control systems decentralized and distributed implementations.

11. References

Aicas, G. (2007). JamaicaVM Realtime Java Technology. http://www.aicas.com/.
Billington, J., S. Christensen, et al. (2003). "The Petri net markup language: Concepts,

technology, and tools." Lecture Notes in Computer Science: 483-506.
Bloom, J., C. Clark, et al. PIPE Platform Independent Petri Net Editor, Technischer Bericht,

Department of Computing, Imperial College London, 2003.
Bollella, G. and J. Gosling (2000.). "The Real-time Specification for Java." Computer 33(6):

47-54.
Briz., J. L. (1995). "Técnicas de implementación de redes de Petri. ." PhD thesis, Univ.

Zaragoza.

www.intechopen.com

 Programmable Logic Controller

70

Buchs, D., S. Chachkov, et al. (2003). "Modelling a secure, mobile, and transactional system
with CO-OPN." Application of Concurrency to System Design, 2003. Proceedings.
Third International Conference on: 82-91.

Colom, J. M., M. Silva, et al. (1986). "On software implementation of Petri nets and colored
Petri nets using high-level concurrent languages." Seventh European Workshop on
applications and theory of Petri nets, Oxford, July 86: 207-241.

Conway, C., C. H. Li, et al. (2002). Pencil: A Petri net specification language for Java. Math.
Dept., Macquarie Univ., Sydney, Australia.

García, F. J. and J. L. Villarroel (1996). "Modelling and Ada Implementation of Real-Time
Systems using Time Petri Nets." Proc. of the 21st IFAC/IFIP Workshop on Real-
Time Programming. Gramado-RS, Brazil. November.

Hellgren, A., M. Fabian, et al. (2005). "On the execution of sequential function charts."
Control Engineering Practice 13(10): 1283-1293.

Hilscher. (2007). "PC cards. http://www.hilscher.com." ISO/IEC (2001). "International
standard IEC 61131-3 (2nd ed.). Programmable logic controllers—Part 3. ISO/IEC
(final draft). ."

Klein, S., G. Frey, et al. (2003). PLC Programming with Signal Interpreted Petri Nets.
ICATPN 2003, Eindhoven, Srpinger Verlag.

Lewis, R. W. (1998). "Programming industrial control systems using IEC 1131-3." IEEE
control engineering series 50. Open, P. L. C. (2005). XML Formats for IEC 61131-3.

Peng, S. S. and M. C. Zhou (2004). "Ladder diagram and Petri-net-based discrete-event
control design methods." Systems, Man and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on 34(4): 523 – 531.

Pepperl&fuchs. (2006). "IVI-KHD2-4HRX DataSheet. http://www.pepperl-fuchs.com." 2006.
Phoenix_Contact. (2006). "Inline Modules. www.phoenixcontact.com. ."
Piedrafita, R. and J. L. Villarroel (2006). Petri Nets and Java. Real-Time Control of a flexible

manufacturing cell. Emerging Technologies and Factory Automation, 2006.
ETFA'06. IEEE Conference on: 1246-1253.

Piedrafita, R. and J. L. Villarroel (2008). Evaluation of Sequential Function Charts Execution
Techniques. The Active Steps Algorithm. Emerging Technologies and Factory
Automation,. IEEE Conference on. Hamburg, Germany.

Schneider_Electric. (2006). "Advantys STB. http://www.telemecanique.com."
Silva, M. (1985). Las Redes de Petri en la Automatica y la Informatica. Editorial AC, Madrid,

1985, Spanish.
Silva, M. and S. Velilla (1982). "Programmable logic controllers and Petri nets: A

comparative study." IFAC/IFIP Symposium on Software for Computer Control,
Madrid, Spain, October 1982: 83–88.

Sun. (2006). "Java serial communication http://java.sun.com/products/javacomm/." 2006.
Sun. (2008). "Java Remote Method Invocation.http://java.sun.com/."
Uzam, M. and A. H. Jones (1996). Towards a Unified Methodology for Converting Coloured

Petri Net Controllers into Ladder Logic Using TPLL: Part I - Methodology.
International Workshop on Discrete Event Systems - WODES'96. Edinburgh, UK:
178 - 183.

Villarroel, J. L. (1990). Integración Informática del Control de Sistemas Flexibles de
Fabricación. Tesis Doctoral. Ingeniería Eléctrica e Informática, Universidad de
Zaragoza.

www.intechopen.com

Programmable Logic Controller

Edited by Luiz Affonso Guedes

ISBN 978-953-7619-63-3

Hard cover, 170 pages

Publisher InTech

Published online 01, January, 2010

Published in print edition January, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Despite the great technological advancement experienced in recent years, Programmable Logic Controllers

(PLC) are still used in many applications from the real world and still play a central role in infrastructure of

industrial automation. PLC operate in the factory-floor level and are responsible typically for implementing

logical control, regulatory control strategies, such as PID and fuzzy-based algorithms, and safety logics.

Usually PLC are interconnected with the supervision level through communication network, such as Ethernet

networks, in order to work in an integrated form. In this context, this book was written by professionals that

work and research in automation area and it has two major objectives. The first objective is present some

advances in methodologies and techniques for development of industrial programs based on PLC. The

second objective is present some PLC-based real applications from various areas such as manufacturing

system, robotics, power system, communication system, and education.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ramón Piedrafita and José Luis Villarroel (2010). The Java Based Programmable Logic Controller. New

Techniques in Control and Supervision of a Flexible Manufacturing Cell., Programmable Logic Controller, Luiz

Affonso Guedes (Ed.), ISBN: 978-953-7619-63-3, InTech, Available from:

http://www.intechopen.com/books/programmable-logic-controller/the-java-based-programmable-logic-

controller-new-techniques-in-control-and-supervision-of-a-flexible

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

