
University of North Dakota
UND Scholarly Commons

Theses and Dissertations Theses, Dissertations, and Senior Projects

January 2014

Translation Of AADL To PNML To Ensure The
Utilization Of Petri Nets
Amrita Chatterjee

Follow this and additional works at: https://commons.und.edu/theses

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact
zeineb.yousif@library.und.edu.

Recommended Citation
Chatterjee, Amrita, "Translation Of AADL To PNML To Ensure The Utilization Of Petri Nets" (2014). Theses and Dissertations. 1629.
https://commons.und.edu/theses/1629

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UND Scholarly Commons (University of North Dakota)

https://core.ac.uk/display/235077415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://commons.und.edu?utm_source=commons.und.edu%2Ftheses%2F1629&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F1629&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/etds?utm_source=commons.und.edu%2Ftheses%2F1629&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F1629&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/1629?utm_source=commons.und.edu%2Ftheses%2F1629&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:zeineb.yousif@library.und.edu

TRANSLATION OF AADL TO PNML

TO ENSURE THE UTILIZATION OF PETRI NETS

By

Amrita Chatterjee

Bachelor of Science, Guru Nanak Institute of Technology, India, 2009

A Thesis

Submitted to the Graduate Faculty

of the

University of North Dakota

In partial fulfillment of the requirements

for the degree of

Master of Science

Grand Forks, North Dakota

August 2014

ii

Copyright 2014 Amrita Chatterjee

iv

PERMISSION

Title Translation of AADL To PNML To Ensure the Utilization of Petri Nets

Department Computer Science

Degree Master of Computer Science

 In presenting this thesis in partial fulfillment of the requirements for a graduate

degree from the University of North Dakota, I agree that the library of this University

shall make it freely available for inspection. I further agree that permission for extensive

copying for scholarly purposes may be granted by the professor who supervised my

dissertation work, or, in his absence, by the Chairperson of the department or the dean of

the School of Graduate Studies. It is understood that any copying or publication or other

use of this dissertation or part thereof for financial gain shall not be allowed without my

written permission. It is also understood that due recognition shall be given to me and to

the University of North Dakota in any scholarly use which may be made of any material

in my thesis.

 Amrita Chatterjee

 July 25, 2014

v

TABLE OF CONTENTS

LIST OF FIGURES ... ix

LIST OF TABLES ... xi

ACKNOWLEDGEMENTS ... xii

ABSTRACT ... xiii

CHAPTER

I. INTRODUCTION ... 1

1.1 Research Definition .. 1

1.1.1 Non-Functional Properties .. 3

1.1.2 Functional Properties ... 3

1.1.3 The Need for Petri Net Markup Language 4

1.2 Motivation .. 4

1.2.1 What is Correctness and Why Does it Matter in Safety-

 Critical systems? ... 5

1.2.2 How Does a Petri Net Address AAD Limitations in

 Safety-Critical Systems? ... 5

1.2.3 Why Extend AADL to PNML? ... 5

1.3 Approach .. 5

1.3.1 Case Study Elements of AADL .. 6

1.3.2 Mapping of AADL to PNML ... 6

vi

1.4 Scope .. 6

1.4.1 Applicability of PNML ... 6

1.4.2 Traditional Approach .. 7

1.5 Expected Results .. 7

1.6 Thesis Structure .. 8

II. BACKGROUND .. 10

2.1 Architecture Analysis Design Language 11

2.2 Petri Nets .. 13

 2.2.1 Definition of Acronyms [Define the Terms] 15

 2.2.2 Design Process .. 16

2.3 Transformation Techniques .. 16

2.4 Related Work .. 16

 2.4.1 Petri Net Type Definition .. 18

2.5 PNML ... 19

 2.5.1 Limitations and Benefits of PNML 21

2.5.2 The PNML Framework ... 21

2.6 Improving the Transition from AADL to PNML 22

 2.6.1 Related Work ... 22

 2.6.2 PNML Ontology .. 23

 2.6.3 Petri Net Type Definition .. 23

 2.6.4 AADL-OSATE .. 24

 2.6.5 2009 Petri Net Workshop .. 25

 2.6.6 PNML Core Model .. 25

 2.6.7 Mapping of PNML Core Model to XML 26

vii

 2.6.8 Summary of the Project ... 27

 2.6.9 Development Process .. 28

 III. METHODOLOGY .. 29

3.1 Description of Methodology .. 29

3.2 Steps of the Methodology ... 30

3.3 Algorithms .. 32

 3.3.1 AADL Conversion .. 32

 3.3.2 PN Conversion .. 32

 3.3.3 Mapping ... 33

 3.3.4 Petri Net Markup Language .. 35

 3.3.5 XSLT ... 36

 3.3.6 High Level Petri Nets .. 36

 3.3.7 Data Types ... 36

 3.3.8 PNML Framework .. 36

 3.3.9 Applications of PNML Frameworks 37

3.4 Development .. 38

 3.4.1 The Aarhus Petri Net Workshop 38

 3.4.2 Extensions of AADL ... 40

 3.4.3 Combining AADLs with High Level Petri Nets 40

 3.4.4 Strengths and Weaknesses of AADL 41

3.5 Description of the Proposed Model .. 41

 3.5.1 Algorithm Explanation with Diagram 42

3.6 Summary of the Methodology .. 43

IV. CASE STUDY ... 44

4.1 Case Elements .. 44

viii

4.2 Analysis of the Case Study ... 47

 4.2.1 Description of XSLT and How XSLT Works 50

 4.2.2 Application of XSLT Script .. 53

4.3 Results of the Case Study ... 54

V. CONCLUSION .. 56

5.1 Future Work ... 57

APPENDICES .. 58

Appendix A AADL Specifications ... 59

Appendix B Java Programs ... 60

Appendix C Petri Net Type Definitions .. 66

REFERENCES ... 67

ix

LIST OF FIGURES

Figure Page

1. AADL Components .. 2

2. Functional and Non-Functional Properties ... 4

3. Approaches: a) Traditional Approach and b) Proposed Approach 7

4. AADL ... 11

5. A Petri Net and its Component Parts .. 14

6. PNML Core Model ... 26

7. The Transformation of AADL to AADL-XML .. 30

8. The Transformation of AADL-XML to PNML via Mapping Rules 31

9. The Conversion of AADL-XML to PNML via XSLT 32

10. AADL Text Conversion .. 32

11. PN Conversion .. 32

12. AADL-XML Conversion to PNML ... 33

13. PNML ... 39

14. AADL-XML to PNML- Architecture and Automated Version 42

15. Components of a Cruise Control System .. 45

16. AADL Text of Device “Wheel Rotation Sensor” ... 48

17. XML Version of AADL Text for “Device” .. 48

18. PNML Version of “Device” .. 50

x

19. Graphical Version of the Translation .. 50

20. The Structure of how the XSLT Works ... 51

21. XML Input (AADL-XML) ... 52

22. XSL script .. 52

23. Output XML (PNML) ... 52

24. XSLT Script Converting AADL-XML of Device to PNML53

25. Screenshot of Conversion of AADL-XML to PNML via XSLT 54

26. The AADL Graphical Representation of Device .. 54

27. The Whole Transformation from AADL-text to PNML 55

xi

LIST OF TABLES

Table Page

1. Correlation between AADL and System Architecture 12

2. Representation of Petri Net Components [6] .. 23

3. Mapping of PNML Core Element to XML [1] ... 27

4. AADL to PN Mapping .. 33

5. Mapping of AADL Text Elements to AADL-XML Components 48

6. Mapping of Major AADL Elements to PNML ... 49

xii

ACKNOWLEDGEMENTS

I am grateful to my committee members Dr. Hassan Reza, Dr. Emanuel Grant,

and Dr. Wen-Chen Hu for their support for the research for my thesis. Without the

guidance and the time they have generously provided, this thesis would not have been

possible. In particular, I thank Dr. Hassan Reza for agreeing to be my advisor, for

introducing me to this fascinating topic, for all the invaluable lessons he has taught me

about Architecture Analysis and Design Language and Petri Net Markup Language, and

for all the useful comments and remarks he has contributed over the last couple of years.

I appreciate the guidance and encouragement he has given me throughout my academic

years at UND, and especially throughout the thesis process.

In addition, I am grateful to Dr. Emanuel Grant for agreeing to serve as a member

of my committee and for the support and assistance he has provided throughout my

academic program at UND. I would also like to thank Dr. Wen-Chen Hu for his support.

I would particularly like to thank my family and my fellow students in the program at

UND who have supported me throughout this entire process, both by keeping me

harmonious and helping me put the pieces together.

xiii

ABSTRACT

Architecture Analysis and Design Language (AADL), which is used to design and

analyze software and hardware architectures of embedded and real-time systems, has

proven to be a very efficient way of expressing the non-functional properties of safety-

critical systems and architectural modeling. Petri nets are the graphical and mathematical

modeling tools used to describe and study information processing systems characterized

as concurrent and distributed. As AADL lacks the formal semantics needed to show the

functional properties of such systems, the objective of this research was to extend AADL

to enable other Petri nets to be incorporated into Petri Net Markup Language (PNML), an

interchange language for Petri nets. PNML makes it possible to incorporate different

types of analysis using different types of Petri net. To this end, the interchange format

Extensible Markup Language (XML) was selected and AADL converted to AADL-XML

(the XML format of AADL) and Petri nets to PNML, the XML-format of Petri nets, via

XSLT script. PNML was chosen as the transfer format for Petri nets due to its

universality, which enables designers to easily map PNML to many different types of

Petri nets. Manual conversion of AADL to PNML is error-prone and tedious and thus

requires automation, so XSLT script was utilized for the conversion of the two languages

in their XML format. Mapping rules were defined for the conversion from AADL to

PNML and the translation to XSLT automated. Finally, a PNML plug-in was designed

and incorporated into the Open Source AADL Tool Environment (OSATE).

1

CHAPTER I

INTRODUCTION

1.1 Research Definition

Architecture Analysis & Design Language (AADL) [9] is an effective approach to

the model-based analysis and specification of complex real-time embedded systems such

as those used in unmanned aerial vehicles. It is utilized to specify and analyze real-time

embedded systems and complex systems, specializing in the performance of the system.

It benefits from good semantics and is used for the verification of non-functional

properties. AADL is a very specific language. AADL and its supporting toolset, the Open

Source Architectural Tool Environment (OSATE)[51], were first issued in November

2004 as part of the standardization program run by SAE (the Society of Automotive

Engineers in the United States) (SAE AS5506)[9]. Because code tests are generated from

models, the design of the models plays an important role. AADL incorporates both

textual and graphical notations for defining the software and hardware of the system,

focusing on three main types of components:

a) Software components,

b) Hardware components, and

c) System components.

2

AADL

Thread

Thread

group

Process

Data

Subprogram

Processor

Memory

Device

Bus

Software Hardware

System

Composite

Figure 1. AADL components.

As Figure 1 shows, the software components include the process, thread, thread

group, subprogram and data; the hardware components include the processor, memory,

bus, and the device itself; and the system components describe how the software

components are allocated to the hardware components.

The system components communicate through ports. A process consists of a

thread or thread group, where a thread is an AADL component that represents a sequence

flow of execution. Thread groups are a convenient abstraction for organizing threads, the

data within a process. Interactions between components are performed via features and

connections. Features are classified as ports, component access, subprogram calls and

parameters. Ports are classified as event data ports, data ports and event ports. A port is

3

used to exchange data and event information. Connections are links which represent the

communication of data between components.

AADL has become increasing popular in recent years as it offers a good way to

deal with safety-critical systems in avionics, automotive and other application domains.

AADL is specifically designed for model-based engineering [31], describing how

components such as data inputs and outputs are connected and the way the software and

hardware components are allocated. AADL, which is based on the component-connector

paradigm, enables designers to evaluate the reliability, availability, performance,

schedulability and fault tolerance (non-functional properties) of a system and is generally

used for modeling large scale systems.

1.1.1 Non-Functional Properties

AADL can be used to determine the non-functional properties of real-time

embedded systems. These non-functional properties include important characteristics

such as the availability, reliability, and schedulability of both the software and hardware

components of real time systems. Originally developed for applications in the field of

avionics, AADL contains constructs for modeling both the software and hardware of a

system and can be represented both graphically and as text. The software architecture is

modeled in terms of components and interactions.

1.1.2 Functional Properties

AADL cannot, however, determine the functional properties or the correctness of

the system, both of which are vitally important in safety-critical systems. To address this

deficit, Petri nets are a useful mathematical modeling tool that can be applied to

determine the behavior of the system. The main shortcoming of AADL-OSATE is that it

4

is not easy to use to analyze the behavior of the components of a system in order to

identify system conditions such as deadlock or livelock.

Safety

Performance

Reliability

Security

Availability

System correctness/

behaviour

Non-Functional

Properties

Functional

properties

Figure 2. Functional and non-functional properties.

1.1.3 The Need for Petri Net Markup Language

Correctness of the system is essential for the security of the system, but AADL

cannot be used to determine the functional properties of real-time embedded systems in

its current form. Extending AADL to include the additional functionality offered by Petri

nets will address this issue. In order to convert AADL to Petri nets, a new schema must

be developed. ISO/IEC 15909-2 [1] is a standardized interchange format for Petri nets

that defines the standard format to be the Petri Net Markup Language (PNML)[4], which

is known for its interoperability. It facilitates the exchange of Petri nets among different

Petri net tools and among different parties.

1.2 Motivation

Though AADL has proven to be an efficient language in the field of aeronautics

and space science, it has some limitations. AADL with OSATE supports many of the

features involved in analyzing and simulating systems but is unable to analyze their

correctness, as AADL cannot detect either the functional properties or the behavior of the

5

system. Deadlock can also not be detected through AADL. One way to bridge this gap is

to introduce a Petri net. It is difficult to convert directly from AADL to a Petri net

without going through an intermediate format, so in order to ease the translation XML is

used.

1.2.1 What is Correctness and why does it Matter in Safety-Critical Systems?

A safety-critical system requires a high degree of safety assurance. Thus, it is

essential to determine the behavior of the components of the system. Petri nets can be

used to determine the correctness or functional properties of the system in order to

analyze conditions such as deadlock or livelock.

1.2.2 How does a Petri Net Address AADL Limitations in Safety-Critical Systems?

Petri nets are mathematical modeling tools that are used to represent discrete

distributed systems. They determine the behavior or correctness (correction to

specification or verification) of the system and are applied widely to study concurrent,

non-deterministic, stochastic, asynchronous systems.

1.2.3 Why Extend AADL to PNML?

AADL defines the non-functional properties of a system but it is not meant to

analyze functional properties. Petri nets have the capability to determine the behavior of a

system. If AADL is extended to PNML (Petri Net Markup Language, the interchange

language for Petri nets) then Petri nets can be incorporated to facilitate the analysis of

other functional aspects.

1.3 Approach

There are several steps involved in extending AADL to the PNML version. First,

the AADL text is converted to AADL-XML and the Petri net is converted to PNML (Part

6

2 of the ISO standard [1]). Once this has been accomplished, AADL-XML can be

mapped to PNML, making it easy to then apply it to any kind of Petri net, as PNML is

known for its universality [7].

1.3.1 Case Study Elements of AADL

As noted earlier, AADL is used to describe:

a) Application software,

b) Execution platform (the hardware), and

c) Composite (the system).

In the case study described in Chapter IV, one of the hardware components of

AADL, “Device”, is considered. The AADL text of “Device” is transformed to the XML

version of AADL and then further transformed to its corresponding PNML version.

1.3.2 Mapping of AADL to PNML

Between the AADL text and AADL graphics, the AADL text is converted to

AADL- XML and then mapped to the XML version used for Petri nets, PNML,

according to the mapping rules[8].

1.4 Scope

1.4.1 Applicability of PNML

PNML ideally consists of the following features:

a) The PNML core,

b) The elements, which are basic to all Petri nets, and

c) The corresponding PNML syntax.

7

1.4.2 Traditional Approach

In the traditional approach, AADL is directly converted to either Colored Petri

Nets, Timed Petri Nets or Stochastic Petri Nets, as shown in Figure 3a. In [45] AADL is

directly transformed to a Stochastic Petri Net [45] through the model transformation tool

ADAPT to provide a Generalized Stochastic Petri Net (GSPN) in XM/XMI format.

1.5 Expected Results

In the new approach proposed for this project, which is shown in Figure 3b,

AADL text is instead transformed to Petri Net Markup Language. Here, XML is utilized

as the interchange format to bridge the gap between AADL-XML and PNML. AADL is

extended to PNML (via XML) in order to permit the use of other Petri Nets.

AADL

Colored Petri Nets

Stochastic Petri Nets

Timed Petri Nets

Figure 3(a). Traditional Approach.

8

PNML

Colored Petri nets

Timed PN

Stochastic PN

AADL-XML XSLT

Figure 3(b). Proposed Approach.

1.6 Thesis Structure

This chapter has presented an overview of the whole thesis. AADL is an efficient

way to determine the non-functional properties of real-time embedded systems but is

unable to address the functional properties of safety critical systems. Instead, Petri nets

offer a mathematical modelling tool that can determine the system behavior. PNML is the

XML-based format for Petri nets and is known for its universality, making Petri nets

interoperable via PNML. It therefore makes sense to extend AADL to PNML by

incorporating Petri nets to perform this essential service. In order to do this effectively, an

interchange format is required and XML was selected as the most appropriate interchange

format between AADL and Petri nets. Once the components are in PNML format, they

can be easily transformed into High-level Petri Nets, Symmetric Nets or Place/Transition

Nets, as required. XSLT is utilized in the transformation of the XML version of AADL to

the XML version of PNML.

The remainder of this thesis is organized as follows. Chapter 2 presents the

theoretical background for the research and discusses the relevant literature. Chapter 3

9

describes the methodology and the development of the new algorithms, which are then

tested in the case study presented in Chapter 4 and the results evaluated. The thesis

concludes with a summary of the project in Chapter 5, along with suggestions for future

research.

10

CHAPTER II

BACKGROUND

AADL is a textual and graphical language that supports model based engineering

of real time embedded systems and is used to express the non-functional properties of a

system. It is an important modelling language that is used to analyze system software by

describing the dynamic behavior of real-time systems through formal notations,

facilitating the design of the software and hardware involved. The model driven safety

analysis technique is based on AADL. AADL components are specified in terms of

component types and component implementations. SAE AADL is applicable in domains

such as avionics, aerospace and automotive systems. AADL has the following advantages

[26]:

 AADL makes it possible to apply a system engineering approach to software

intensive systems.

 AADL enables architectures to be analyzed and reworked, decreasing their

complexity.

 AADL is extendable and provides a good foundation for additional

capabilities in automated system integration.

11

AADL

AADL-Text
AADL

graphical

Figure 4: AADL.

Figure 4 depicts the two different forms of AADL, which can be represented by

both textual and graphical formats.

2.1 Architecture Analysis Design Language

AADL provides analyses such as Flow Latency Analysis, Security and Safety

Analysis, among others [48]. All these features are supported by a variety of specialized

tools such as OSATE and Cheddar [48]. However, AADL lacks the flexibility to express

some conceptual features of software architecture, although it does support components,

connectors and configurations [8]. AADL has been designed to specify and analyze the

non-functional aspects of a system, which include security, reliability, performance and

safety, but is not intended to analyze the behavior of a system, especially problems like

deadlock or livelock that may exist in different subcomponents of the system. Non-

functional aspects of components (schedulability, performance, reliability) can be

described within an AADL model, which is useful for examining items such as thread

dispatching condition, interface specifications and interconnections between components.

Elements of the architecture are described by the components and procedures are

modeled by subprograms. The active part of an application is modeled by threads. AADL

descriptions are hierarchical and AADL can analyze schedulability, error modeling, and

12

code generation, although it suffers from the absence of concrete operational semantics

[15].

Table 1. Correlation between AADL and System Architecture.

AADL Architecture

Components Elements

Subprograms Procedures

Thread Active part of application

Processors Processors and OS scheduler

Memories Storage

Buses Communication

Devices Hardware

Process Virtual Address Space

Table 1 represents the correspondence between the different hardware and

software components of AADL and the architecture of a system. The hardware

components of AADL consist of the processor, memory, and bus device, while the

software components consist of the subprograms, data, thread and process.

An example of AADL- text for a cruise control system[11] is:

port group wheel_sensors_socket

features

wheel_pulse: in data port bool_type;

wheel_slippage: in data port real_type;

end wheel_sensors_socket;

13

2.2 Petri Nets

Petri nets are mathematical modeling tools that are used for studying the dynamic

behavior and concurrency of a system and are capable of determining the correctness

(correctness to specification or verification) of the system. A typical Petri net consists of

place, arc and transition, and this graphical notation provides the basic primitives for

modeling concurrency and synchronization [12]. The mathematical definition of high

level Petri nets provided by the ISO [1] consists of a semantic model, and the graphical

form of the technique is referred to as a High Level Petri Net Graph (HLPNG). Petri nets

can be used to determine the correctness or the behavior of safety-critical systems. Petri

nets can be used for both structural analysis and model checking to identify problems

such as deadlock, which is a safety property, and livelock, which is a causal property.

Petri nets were invented in 1962 to facilitate modelling the behavior of complex software

systems Parallelism, non-determinism, synchronicity and distributedness can also be

modelled using Petri nets.

14

Arc

Transition

Token

Place

P1

T1

P2

T2

P3

P4

Arc

Arc
Arc

Arc
Arc

Arc

Figure 5. A Petri Net and its component parts.

Figure 5 shows a diagram of a Petri net. In the figure, circles represent places and

bars represented transitions; the flow of information is represented by arcs. The dynamic

of the net is represented by tokens (solid dots). The execution of tokens, known as a

token game, models the dynamic of a system under construction.

A Petri net is a labeled, directed graph. A label represents all the specific

information for a net. It may be associated with a node (places, transitions), arc or net.

ISO/IEC 15909-2 defines UML packages for Place/Transition Nets, a package for

Symmetric Nets and a package for High-level Petri Net Graphs. Symmetric Nets are

formally known as Well-Formed nets and represent a subclass of High-level Petri Nets.

Petri nets reflect system behavior. Transitions describe the behavior of the component.

15

The mathematical representation of Petri nets allows the quantitative analysis of

deadlock detection. Because it can be executed, the dynamics of the system can be

shown. Petri nets are considered to be a powerful modeling language [17].

Petri nets are often utilized in information systems development and system

modelling. For practical applications of Petri nets, easy exchanges between different

Petri net models are essential. To this end, PNML was defined by ISO/IEC 15909-2 and

published on November 11, 2009 [1] to support various kinds of Petri nets. According to

ISO/IEC 15909-2, PNML is defined as the transfer format between three versions of Petri

nets, namely PT Nets, Symmetry Nets, and HLPN, as stated in Part 1 of ISO/IEC 15909-

1. PNML supports any type of Petri net and is the XML based format for Petri nets. An

XML representation is used to enable the exchange of models among different Petri net

software applications.

Extensible Stylesheet Language Transformation (XSLT) supports the

transformation and representation of data in XML format. It has become indispensable

for XML data exchanges. XSLT consists of a set of templates. XSLT script is the

specification of the output as a function of input.

2.2.1 Definition of Acronyms [Define the Terms]

The following acronyms are used in this document-

AADL: Architectural Analysis and Design Language

AADL-XML: XML version of AADL

PNML: Petri Net Markup Language

PN: Petri Nets

XSLT: Extensible Stylesheet Language Transformations

16

2.2.2 Design Process

XML is utilized as the interchange format for this extension of AADL to PNML.

XSLT is employed as the language in order to automate the process of one XML file to

another XML file. The XML version of AADL (AADL-XML) is taken as the input and

PNML is the output via XSLT.

2.3 Transformation Techniques

In the transformation techniques required for this project, XML and XSLT are

used. Java is also used to perform the same transformation.

2.4 Related Work

A number of studies have explored ways to extend the AADL standard to Petri

nets. Part 1 of the International Standard (ISO/IEC 15909-1:2004(E)) [1] provides a

formal protocol for the technique and defines the semantics and syntax used for Petri

nets. This International Standard is applied in the design of systems and processes like air

traffic control, banking, avionics, computer hardware architectures, distributed

computing, nuclear power systems, operating systems, defense command and control,

transport systems, legal processes, logistics, music telecommunications and workflow.

PNML enables compatibility and interoperability among different Petri net tools

[2]. ISO/IEC 15909 defines Petri nets through a mathematical semantic model. It

supports a number of different types of Petri nets. A software framework is proposed for

the entire Petri net community in order to make PNML applicable and integrable at low

cost. PNML relies on:

 A PNML Core Model,

 Concrete Petri net-type metamodels, and

17

 A Petri net-type Definition Interface.

Here, the PNML syntax is defined in terms of RELAX NG grammar. RELAX NG

technology [15] is easy to handle and more flexible to use. It is a schema language for

XML. The software framework is approached with the following main purposes:

 Providing tools for developers with standard APIs

 Making the ISO/IEC 15909-2 International Standard Applicable

 Easing the International Standard Applicability, and

 Enabling Petri net tool designers to add their own extensions.

PNML is intended to comprise three main capabilities: compatibility, extensibility, and

applicability

Model Driven Development and model transformation have been used to

introduce several successive models, with the most important being:

 Platform Independent Model (PIM): Here the model specification is not

dependent on any particular platform technological requirements.[]

 Platform Specific Model (PSM): Here the model specification does take into

account the specific platform utilized.[]

Model engineering techniques are concerned with model transformations. These

techniques need metamodels in order to transform from a source meta-model to a target

meta-model. PIMs can be transformed into other PIMs by considering the specific

business concerns for a particular domain; PIMs can be transformed into PSMs by

considering the platform specification; and PSMs can be transformed into PSMs by

taking into account different platform specifications.

18

MathML[] is introduced in order to specify the annotations for higher level Petri

net types other than PT(Place/Transition) Systems. These researchers structured the

framework APIs into four virtual categories:

1. Create: While performing model transformation, framework based PNML

models are created.

2. Save: The PNML models are written into a PNML file.

3. Load: After parsing the PNML file, the corresponding models are loaded.

4. Fetch: The user can fetch the elements.

The basic language structure of Petri nets consists of:

a) PNTD (Petri Net Type Definition)

b) PNML (Petri Net Markup Language), which is independent of the specific

Petri net dialect.

2.4.1 Petri Net Type Definition

The Petri Net Type Definition provides the legal labels for a particular Petri Net

Type. PNML provides a mechanism for defining Petri Net Types and for using labels

from a conventions document, but PNTD (Petri Net Type Definition) contains additional

features that are not included in PNML, including the extension of PNML via object-

oriented principles. The PNML Core Model contains the basic structural definition of a

Petri net as a labeled directed graph and is the primary building block upon which

concrete Petri net types are defined. The basic structure of a PNML Document is defined

in the PNML Core Model, which contains one or more Petri Nets. There may be

graphical information with each object and this information may include its position,

shape, color etc.

19

 The important component parts of Petri Nets are places, transitions and arcs.

Places contain tokens that carry data. According to the PNML Core Model it is legal to

connect two places by arcs and two transitions by arcs in order to support the variations

and extensions of the Petri Net types.

2.5 PNML

Petri Net formalism requires standardization in order to facilitate the work of

researchers and permit data exchanges between different Petri Net tools [5]. PNML is

introduced next in order to provide the syntax for the conversion of Petri net models

between different applications [3].

Petri Nets are used to provide unambiguous specifications and descriptions of

applications and thus support concurrency. Though PNML is an XML format of Petri

Nets, it is independent from XML. A number of features make the ISO/IEC-15909-2

standard effectively a universal transfer syntax for Petri nets, including the following

features:

a) Flexibility,

b) Universality,

c) Mutuality,

d) Readability,

e) Compatibility, and

f) Extensibility

However, there remains a challenge associated with the use of Petri nets for some

systems. When Petri nets are described in the graphical form for the specification of

complex systems, there are a huge number of elements involved. High Level Petri Nets

20

were introduced in order to overcome this by incorporating high level concepts.

Examples of High Level Petri Nets include Predicate-Transition nets and Colored Petri

Nets. Standardization has been recommended as a better opportunity to improve

organization in the Petri Net Community in order to address issues such as:

 The need for more support for researchers

 The need for a reference implementation capable of facilitating data

exchange between various Petri net tools, and

 The need to develop future extensions on a stable common basis.

Part 1 of this standardization defines the mathematical definitions of High Level

Petri Nets, while Part 2 defines a transfer format in order to support the exchange of High

Level Petri Nets among different tools and Part 3 involves the standardization of Petri

Net extensions. PNML consists of two aspects:

 The abstract syntax (structurally)

 The concrete syntax (textually)

The main Petri net types are defined using Unified Modeling Language. They are:

 The Core Model, which provides the foundation for further definitions of

new Petri net types;

 P/T (Place/Transition) Systems metamodels built on extensions of the

Core Model; and

 High-level Petri net metamodels built on extensions of P/T Systems,

which require new labels and high-level functions to be defined.

Petri nets are graphical and mathematical modeling tools for processing systems

or describing and studying information [12] and thus are ideally suited to visual

21

communication. Tokens are used in order to simulate the dynamic and concurrent

activities of systems. Petri nets have a wide variety of applications due to their generality

and permissiveness, especially for the analysis of large Petri Models. The graph in a Petri

net consists of places, transitions and arcs. Arcs are labelled with their individual weights,

and each place is assigned a non-negative integer. In modelling, places represent

conditions and transitions represent events.

Colored Petri Nets are high level Petri nets and the tokens in CPN carry data. A

discretization method has been used to convert CPN to Symmetric Nets [28]. Colored

Petri Nets can be helpful in analyzing the modelling of a system, while Symmetric Nets

are useful in representing the state space of large systems. A CPN model represents the

states in a system and the events which cause the system to change its state.

2.5.1 Limitations and Benefits of PNML

 Petri Net Markup Language is designed to support all kinds and variants of Petri

Net types. It is categorized into specific levels: a) PNML Technology b) PNML Types

and Features and c) PNML Documents. However, the main challenge facing PNML is its

applicability.

2.5.2 The PNML Framework

In order to make the PNML standard applicable a PNML framework is used. This

helps Petri net tools to remain updated and to comply with the standard [5].The first

release of the PNML Framework was published in March 2006. The PNML Framework

has the following capabilities:

 Easy integration in Petri net tools,

 Efficient model-driven import and export tool for PNML models, and

22

 Standalone execution.

The PNML Framework has been designed using model engineering techniques.

The flexibility of the PNML Framework facilitates the export and import of appropriate

elements of Petri Net models and is designed on the basis of a model driven technique.

The PNML Framework is open source software and is distributed under the Eclipse

Public License.

2.6 Improving the Transition from AADL to PNML

AADL is designed in such a way that it can be extended to support other

languages. It suffers from some shortcomings, including its inability to determine the

behavior of the components of the system subject to deadlock, and thus cannot be used

directly for safety critical systems as the correctness of the system requires a high degree

of assurance that cannot be analyzed via AADL. Thus, the objective of the research

reported in this thesis is to extend AADL to address this issue. In order to extend AADL

to various kinds of Petri nets, an interchange format is required to translate AADL to an

XML version of Petri nets, namely PNML. Once AADL has been extended to PNML,

then it will be relatively straightforward to extend it to other Petri net tools.

2.6.1 Related Work

EPNML, the XML format of Petri nets, is used in many web applications [6].

Petriweb, a web application based on PNML, is used to manage Petri net repositories

although it is independent of Petri net tools. PNML is defined with <pnml>, Petri nets by

<nets>, places by <place>, and arcs by <arcs> (Table 2). Nets contain subnets, which are

supported by EPNML. To represent a subnet EPNML uses Pages. A page occurs within a

net. In order to specify the position and size of an element for layout, EPNML uses a

23

<graphics> element, which may include the subelements <position>, <offset>, and

<dimensions>. The element <name> contains the name of the element, while the

<description> element contains the description of the element. PNML specifications

require an ID attribute.

Table 2. Representation of Petri Net Components [6].

Terms PetriWeb

PNML <pnml>

Petri Nets <nets>

Places <place>

Arcs <arcs>

2.6.2 PNML Ontology

Guidelines for PNML ontology are provided in [16]. Renew uses XML in order to

overcome the problem of model exchange with other Petri net types and PNML is

accepted by the Petri Net Society. PNML consists of two parts, the first of which is

independent of the specific Petri net dialect and the second of which is specific. The

general part is referred to as PNML and the specific part as PNTD (Petri Net Type

Definition). PNTD defines additional features that are not defined in PNML. PNML is

used as the base for Petri Net Ontology and thus provides a mechanism for defining Petri

Net types.

2.6.3 Petri Net Type Definition

XML Schema language is used for defining PNTDs. It defines the legal labels for

a particular Petri Net type. In the ISO/IEC 15909 standard, for example, PNML and its

24

modular extension are represented as the most appropriate interchange format for Petri

nets [1].

2.6.4 AADL-OSATE

AADL-OSATE was designed to specify and analyze the real time embedded

systems used in safety critical systems [8]. AADL is used to analyze system-wide

properties like safety, performance, reliability, security and availability. AADL-OSATE,

which provides model representations for real-time embedded systems, utilizes the XML

interchange format in order to allow model transformations. The formal theory of AADL

is based on MetaH[], which is an extensible domain specific architectural description

language. AADL and its tool OSATE support the features required for simulating,

prototyping and analyzing the quality of a system. However, AADL-OSATE is not

capable of analyzing the behavior of the components, and cannot detect either deadlock

or livelock of the system [8]. This may result in serious problems, as the development of

safety and mission critical systems requires the highest level of dependability.

In order to overcome these limitations, this project was designed to extend

AADL-OSATE by incorporating Petri nets. Formal mapping rules are first established to

determine the proper and precise relationship between the elements of Colored Petri nets

and AADL. CPN was chosen because this is a formal modeling language and

incorporates support tools such as model checker and editor. Colored Petri Nets are

generally used to analyze both deterministic and non-deterministic systems and offer a

useful way to identify the presence of unsafe states. Once AADL elements are mapped to

CPN, the CPN models will make it possible to analyze the behavior of the system, in

particular by verifying the absence of deadlocks and livelocks. Livelocks occur when a

25

process is starved of resources and thus is prevented from progressing, while in deadlock

the processes are waiting for one another in order to start executing

2.6.5 2009 Petri Net Workshop

In 2000 the 10
th

 Workshop on Coloured Petri Nets was held in Aarhus, Denmark

[4]. As a result of the discussions held at this workshop, PNML was finally adopted as

the ISO/IEC 15909-2 standard [1]. ISO/IEC 15909-2 defines a transfer syntax for High

Level Petri Net graphs. Any kind of Petri net can be considered to be a labelled graph.

The standard defines the transfer format of a number of different versions of Petri nets

including Place/Transition nets, High Level Petri Net Graphs and Symmetric nets. All

kinds of specific information of a net are represented in labels. A label may be associated

with an arc, a net or a node.

2.6.6 PNML Core Model

Core concepts of Petri nets can be found in the PNML Core Model, which can be

used to represent any kind of Petri net. Technically, this is a UML package. Though

UML is a semi-formal modeling notation, it is utilized in this context due to its

modularity, expressivity, and hierarchy. The use of the UML is suitable because it is

generally accepted and standardized for analysis and modeling in software engineering

[uml specific reference] and offers a convenient way to define the basic structure of Petri

nets. This is a metamodel that defines the basic structure of a net graph, which is common

to all versions of Petri nets. A Petri Net Document is a document that meets the

requirement of a PNML Core Model. It is represented using UML class diagrams and can

represent any kind of Petri net. The package PNML Core Model defines the basic

structure of Petri nets.

26

A Petri net consists of one or more pages, each of which consists of objects. The

most important objects in a Petri net are places, transitions and arcs. Places and

transitions are referred to as nodes, and the nodes of a Petri net are connected by arcs.

According to the PNML core model, it is legal to have arcs from one place to another

place and from a transition to another transition because there are versions of Petri nets

that support arcs. Figure 6 shows a schematic of a PNML Core Model.

Figure 6. PNML core model.

2.6.7 Mapping of PNML Core Model to XML

Each concrete class in the PNML Core Model is mapped to an XML element.

These XML elements are also called PNML elements. Mapping examples are shown

below in Table 3.

27

Table 3. Mapping of PNML Core to XML Element [1].

Structuring a Petri Net involves three objects: Pages, Reference places and

reference transitions. A page can contain other pages, but an arc cannot connect nodes on

different pages. The Petri net labels are distinguished as:

1. Annotation: Names, Initial Marking, Arc Inscriptions and transition guards are

in this category. Annotation is represented as text near the object.

2. Attributes are represented in the form, style or color of the object. An attribute

has its impact on the shape of the object.

2.6.8 Summary of the Project

Although AADL has proven to be an efficient way of determining the non-

functional properties of the components of a system, it is not capable of determining its

functional properties. Safety critical systems require a higher degree of safety assurance,

so it is therefore essential to extend AADL to PNML in order to incorporate Petri Nets

(mathematical modeling language) and thus gain this additional functionality. It is

difficult to transform AADL to Petri nets directly and the use of an interchange language

is proposed in order to ease the transformation. As manual conversion of this translation

is both error prone and tedious, XSLT has been chosen to automate the process.

Class XML Element

Place <place>

Transition <transition>

Arc <arc>

Petri Net <pnml>

28

2.6.9 Development Process

The development and standardization of conventions is an ongoing process and

requires further research.

29

CHAPTER III

METHODOLOGY

AADL is extended to PNML via a series of steps. Part 2 of the International

Standard defines PNML as the preferred transfer format for High-level Petri Nets in order

to support the exchange of High Level Petri Nets between various tools [1]. PNML is

known for its universality and interoperability between different Petri net tools.

AADL is designed such a way that it can be extended to support other languages.

The process begins when the AADL text version is transformed to the AADL-XML

version. Simultaneously, the Petri net (PN) is converted to PNML, which is the XML

format for Petri nets. AADL-XML is then transformed to the PNML version. In order to

automate the process, XSLT script is employed. In the case study presented in Chapter

IV, one of the hardware components of AADL is shown to illustrate the conversion of

AADL text to PNML via XSLT script. Once the transition is made to PNML, it is then

straightforward to transition from One Petri Net to another.

3.1 Description of Methodology

There are several important issues that must be considered when performing a

transfer to a Petri Net format. It is difficult to convert AADL to various types of Petri nets

without passing through any interchange format, so an appropriate interchange format

must be chosen to perform the conversion. XML was chosen as the interchange format

for this study since it is platform independent and Petri nets can be readily converted to

XML format. This allows AADL XML to be mapped to the corresponding PNML

30

format, which then facilitates the transfer of one Petri net to another. XML is a widely

used format. The methodology can be broken down into two distinct steps:

1. AADL text to AADL- XML

2. AADL-XML to PNML

This is followed by the conversion of AADL-XML to PNML via XSLT in order to

automate the process.

Figure 3(b) gives a broad overview of what the methodology entails. Step 1

consists of the conversion of AADL text to AADL-XML, and Phase 2 comprises the

conversion of AADL-XML to PNML-XML via the mapping rules.

3.2 Steps of the Methodology

In this section the steps involved in the translation of AADL- text to the xml

version of PNML will be discussed in more detail. The AADL text version is first

translated to the XML version of AADL, AADL-XML, to ease the translation. The

resulting AADL-XML text is then mapped to PNML via the standard mapping rules.

Step 1:

AADL Text XML AADL-XML

Figure 7. The transformation of AADL to AADL-XML.

There are two possible versions of AADL, text and graphical, and the same

procedure is followed for both. Figure 7 shows the process used to transform the textual

31

version of AADL into the XML format, which is the conversion of AADL text to AADL-

XML.

The Mapping rules that are used in the Transformation of AADL-text to AADL-

XML are as follows:

AADL -text AADL-XML

Wheel_rotation_sensor “wheel_rotation_sensor”

Wheel_pulse “wheel_pulse”

Features <Features> </Features>

Device DeviceType name

data port DataPort name

in Direction=”in”

out Direction=”out”

Step 2:

AADL-XML Mappping Rules PNML-XML

Figure 8. The transformation of AADL-XML to PNML via mapping rules.

After the AADL text has been translated to AADL-XML, AADL-XML is mapped

onto PNML using the mapping rules for the conversion of AADL to Petri nets (Figure 8).

32

AADL-XML XSLT PNML-XML

Figure 9. The conversion of AADL-XML to PNML via XSLT.

XSLT may also be used to convert AADL-XML to PNML-XML.

3.3 Algorithms

The textual version of AADL is transformed into the XML version of PNML

using the following strategy.

3.3.1 AADL Conversion

AADL

AADL-Text AADL graphical
AADL-XML

Figure 10. AADL text conversion.

AADL can be represented by either AADL text or AADL graphical notations.

AADL text can be converted to its XML format – AADL-XML (Figure 11).

3.3.2 PN Conversion

Petri Nets PNML

Figure 11. PN conversion.

33

The XML format of Petri Nets takes a standard format known as Petri Net

Markup Language (PNML). The conversion process is shown in Figure 12.

3.3.3 Mapping

AADL-XML PNML

Figure 12. AADL-XML conversion to PNML.

AADL-XML is mapped to PNML using the following mapping rules:

Device transition

PortPlace

For example, in the case of a wheel rotation sensor the mapping rules used for the

translation of AADL-XML to PNML are:

Device name Type transition id class=”data_flow”

Port name Type place id class=”data_flow”

Table 4 shows how individual AADL components of AADL are mapped to the

elements of a Petri Net.

Table 4. AADL to PN Mapping.

AADL PN

In or Out Data Port Place

In or Out Event Port Place

Port Group Place

Event Data Port Place

Data Access Place

34

Table 4. cont.

AADL PN

System Hierarchy transition or transition

Process Hierarchy transition or transition

Thread Transition

Device Transition

Memory Transition

Arc Connection

The following scheme shows the steps involved in converting AADL to PNML

for a Device “Component”:

AADL text (see also Figure 17 in Chapter 4):

Device wheel_rotation_sensor

Features

Wheel_pulse: out data port;

End wheel_rotation_sensor;

XML version of AADL Text (see also Figure 18 in Chapter 4):

<device Type name=”wheel_rotation_sensor”>

<features>

<data Port name=”wheel_pulse”

Direction=”out”>

</features>

PNM version of the above (see also Figure 19 in Chapter 4):

<transition id=”wheel_rotation_sensor” class=”data_flow”>

<place id=”wheel_pulse” class =”data_flow”>

</place>

</transition>

35

3.3.4 Petri Net Markup Language

PNML was designed based on the following properties: [2, 7]

(a) Universality: It should be general enough to support any kind of Petri net with

any kind of extension.

(b) Readability: It should be convenient to read.

(c) Mutuality: It should be able to extract information such as common principles

and notations for Petri nets.

(d) Extensibility: It should be extendable to future versions of Petri nets, apart

from the types of Petri nets mentioned in Part 1 of the International Standard.

(e) Compatibility: It should be compatible with all types of Petri nets.

(f) Applicability: Engineers should be able to develop Petri net tool interfaces

using any other high-level programming language.

Though AADL-XML is an XML-based format, it is independent from XML.

PNML conveys the structural information for Petri nets. PNML is standardized to enable

the conversion from one Petri net type to another without loss of information. PNML

relies on XML technology. The XML version of a Petri net is employed in [23], where it

is used in a software tool to convert a Petri net to ruleML, the rule markup language, and

then applied in a rule-based system. RuleML is the XML version of rule and is based on

knowledge representation for knowledge-based systems. The PNML transfer format was

designed to permit a convenient interchange of variants of Petri nets between different

Petri net tools.

36

3.3.5 XSLT

XSLT facilitates the conversion of languages in their XML format. XSLT script is

used in this study in order to automate the conversion of AADL-XML to PNML. The

components which comprise XSLT are the templates. XSLT is used for transforming one

XML document to another XML document. XSLT is used as a part of XSL, which is

used for styling XML documents. The mechanism which processes the conversion of one

XML document to another is the XSLT processor. More about XSLT is discussed later.

3.3.6 High Level Petri Nets

The basic features of a High-level Petri Net are the annotations of arcs, transitions

and arcs. A term which is associated with the place denotes the initial marking and it

must be associated with an appropriate term that defines the type of the tokens at a

particular place. The term associated with an arc determines which tokens are to be added

or removed on the firing of transitions. Each place in a Place/Transition (Petri) net is

labeled with a natural number that indicates the initial marking. Each arc is labeled by the

arc annotation, which denotes the arc weight. Examples of High Level Petri Nets include

Predicate-Transition Nets and Colored Petri Nets [1]

3.3.7 Data Types

The data types used in different versions of High Level Petri Nets include: dots,

Booleans, partitions, multisets, integers, strings, and lists, which may be finite

enumerations, cyclic enumerations or finite integer ranges.

3.3.8 PNML Framework

The PNML Framework, released in 2006, is the API framework for standard

types of Petri nets and is built following the Model Driven engineering technique .It is

37

introduced here in order to make use of the PNML standard applicable through

automation.

3.3.9 Applications of PNML Frameworks

An API based framework helps tool developers to achieve conformance with the

PNML standard [1]. This API framework is compatible with and works alongside the

PNML standard. To support the wider application of PNML, its low-cost integration into

the Petri net tools PNML framework is recommended. It relies on multi-platform

technologies such as the Eclipse Modeling Framework, which runs on the Eclipse Java

based platform. The Eclipse Modeling Framework (EMF) supports UML, code

generation and model transformation and was designed to address several important

issues, specifically:

1. To facilitate the applicability of PNML over a wide range.

2. To provide standard APIs for tool developers.

The developers of Petri net tools utilize API frameworks as a convenient way to support

PNML documents. This in turn supports different kinds of Petri nets as this approach is

based on a structured set of metamodels issued from the PNML standard and is designed

to facilitate the export and import of Petri Net models. The framework provides a set of

APIs to read and write PNML files and is implemented in Java. Its flexibility and ability

to evolve supports the further development of the PNML standard. PNML framework

code is automatically generated; an API is automatically generated from the PNML meta-

models in EMF.

38

3.4 Development

Phase 1 of this methodology involves the description of the Conversion of AADL

text to AADL- XML. The major aspect of Phase 1 is the transformation of Architecture

Analysis Design Language from its textual version to an XML version. This conversion

is required since it is difficult to convert AADL to Petri nets directly. XML was chosen

as a convenient interchange format that acts as a bridge to facilitate the conversion of

AADL to PN. The XML representations are specifically defined to ease the

interoperability between tools.

3.4.1 The Aarhus Petri Net Workshop

In 2000, a workshop was held in Aarhus, Denmark, to formulate a definition for

the standard transfer format of Petri nets [4]. It synthesized the independent work of a

number of different research groups on XML-based Petri net formats and initiated the

development of a standard interchange format for Petri Nets. The attendees were faced

with several problems in trying to define an interchange format for Petri nets:

 Each Petri net tool had its own file format. A different parser was needed to

implement each, which was tedious. There was no generally agreed file

format for such a standard.

 Each Petri net tool supported different versions of Petri nets.

The decision to utilize XML sidestepped the above issues and the existing XML

tools reduced the cost of the implementation of XML based interfaces. This made it

possible to propose a document description of Petri nets [47] by treating them as having:

a) a general part, which is independent of the specific type of Petri net, and

b) a specific part, which is specific to the Petri net version.

39

The general part is known as Petri Net Markup Language (PNML) and the

specific part is the Petri Net Type Definition (PNTD). PNML defines the features of all

Petri Nets, while PNTD defines additional features which are not captured by PNML.

PNTD defines the special features of a particular Petri net type. The general interchange

format is expected to support all features of Petri net tools, both those already in

existence and those yet to be developed.

Typically a Petri net consists of places, transitions, and arcs, where places are

associated with marking. The typical features of Petri nets can now be extracted into

PNML and the resulting PNML forms a uniform file structure for all kinds of Petri nets.

PNML makes it possible to exchange nets among different compatible Petri net types.

Figure 13 shows a representation of PNML.

Figure 13. PNML.

40

There are several reasons for choosing PNML for this project, the most important

being that it is a convenient way to exchange content-only for non-graphic tools. Here,

AADL-XML is treated as the input file and the PNML version is the output file.

AADL describes the architecture of the software and hardware components of a

system and its functional interfaces [37]. AADL is designed to be extensible in order to

accommodate analyses which the core language does not support. AADL is particularly

efficient in architectural modeling and AADL models can be transformed into GSPN

(Generalized Stochastic Petri Nets).

3.4.2 Extensions of AADL

AADL is used to describe functional interfaces and performance-critical aspects

of components [15]. Here, AADL is transformed into BIP (Behavior Interaction Priority).

BIP is a language used for the description and composition of components, as well as

associated tools for analyzing models. BIP provides a framework for modeling

heterogeneous real-time components. A general methodology is provided for translating

AADL models into BIP models.

3.4.3 Combining AADLs with High Level Petri Nets

AADL is combined with High Level Petri Nets in order to perform model based

testing. Traditional software testing suffers from interoperability requirements. Formal

methods must be employed in order to overcome the limitations and improve the

reliability and confidence of software products. Software testing is the final step before

the software is released, and companies invest considerable amounts of time, effort, and

money in their software testing activity. Safety critical systems require greater cost and

attention in software testing since they require a higher degree of dependability. Many

41

techniques have been suggested to improve this process including, for example,

architectural-based testing, model-based testing and hybrid-based testing. Of these,

hybrid-based testing combines many of the benefits of formal verification testing. AADL

is used to specify the system at the architectural level and then mapped to Petri nets. High

Level Petri Nets have proven to provide an effective modeling notation for describing a

system at different levels of abstraction.

Petri Net Models are built from AADL in order to evaluate the behavior or

schedulability of Distributed Real-Time Embedded systems in order to check for

deadlock [13] in particular. This objective of this study is to take advantage of the

benefits offered by both AADL and Petri Nets for software testing by building an XML

bridge between them to facilitate the conversion process. Since the qualitative analysis of

AADL specifications is required, Symmetric Petri Nets are selected as being the most

appropriate.

3.4.4 Strengths and Weaknesses of AADL

AADL is used to analyze the non-functional properties of a system but is unable

to determine the functional properties of a system. The correctness of a system is of

crucial importance in safety-critical systems, so this project aims to extend AADL to

incorporate PNML functionality. PNML was selected as the interchange format due to its

universality. Once AADL [11] can be transformed to PNML, then it can be easily

transformed into any kind of Petri net.

3.5 Description of the Proposed Model

AADL will be converted to a Petri net via an interchange format, in this case

XML, as it offers a convenient way to ease the interoperability between the tools

42

involved. The process begins by converting AADL to AADL-XML and the Petri net to

PNML, the XML format for Petri nets. Once this is achieved, the resulting Petri net that

is now in PNML can readily be transformed to another type of Petri net.

3.5.1 Algorithm Explanation with Diagram

AADL-XML is converted to PNML using the standard mapping rules. XSLT is

utilized in order to automate the conversion of AADL-XML to PNML.

PNML

Colored Petri nets

Timed PN

Stochastic PN

AADL-XML XSLT

Figure 14. AADL-XML to PNML - architecture and automated version.

Figure 14 shows the architecture involved in moving from AADL-XML to PNML

and from PNML to different Petri nets via the automated process based on XSLT. The

XML version of AADL is translated to PNML via mapping rules and in an automated

way through XSLT to make it easier to then switch between different Petri net tools once

it has been translated to PNML. As the figure shows, AADL-XML is first translated to

PNML and then once in PNML it can be translated to Timed Petri Nets, Stochastic or

Colored Petri Nets relatively easily.

43

3.6 Summary of Methodology

In this methodology, the major aspects were divided into three phases, the

conversion of AADL Text to AADL-XML, the conversion of Petri nets to Petri Net

Markup Language, and the mapping of AADL-XML to PNML. This process can be

automated by invoking another step, namely the conversion of AADL-XML to PNML

via XSLT. Chapter 4 will present a case study in which the phases outlined in the

methodology described in this chapter will be applied to a theoretical example as a proof

of concept.

44

CHAPTER IV

CASE STUDY

This chapter presents a case study that demonstrates how one component of

AADL is converted to PNML. The transformation is shown in several steps. The textual

version of AADL is first converted to its XML version. The XML version of AADL is

then transformed into the XML version of a Petri net. XSLT script is utilized for this

transformation, taking as its input the XML version of AADL and generating as output

the corresponding XML version for a Petri net, namely PNML. In this case, an

automobile cruise control system is considered as the example to demonstrate how one

component of a cruise control system is translated into the XML version of a Petri net in

a step by step process. The “wheel rotation sensor” device is at the center of the process

as in this case the concept “device” can represent the abstract version of a complicated

system. Communication with the device consists of data and control commands.

4.1 Case Elements

This case study focuses on the operation of a vehicle cruise control system. To

make the case more manageable, only a part of the cruise control system is used. It is

translated to the XML version of PNML using the mapping rules discussed in the

previous chapter. The “wheel_rotation_sensor” device is the part of the cruise control

system that is used as the subject of this case study.

The cruise control system controls the speed of an automobile automatically. It is

used by drivers in the case of steady traffic conditions such as those typically encountered

45

when driving long distances on an interstate. The cruise control system takes over the

throttle of the car and helps to maintain a set speed for the vehicle that is specified by the

driver. When the driver applies the brakes, the cruise control disengages.

The components of a cruise control system are shown below in Figure 15.

Cruise
Control
System

Engine

Cruise Control Switch

Brake

Throttle Sensor

Wheel Rotation Sensor

Speed Sensor

Figure 15. Components of a cruise control system.

The main components of a cruise control system are:

1. Cruise Control Switch

2. Brake

3. Engine

4. Wheel Rotation Sensor (Device)

5. Throttle Sensor

6. Speed Sensor

46

Cruise control switch. This comprises the cruise control “on/off” button, the

“resume” button, and the “accelerate” and “set” options. Once a certain speed is attained

in a vehicle and the cruise control switch is activated, then the vehicle is expected to run

at a steady speed set by the driver.

Brake. The braking system deactivates the cruise control system. When the driver

hits the brake, the vehicle slows down and no longer maintains the same steady pace. In

order to resume the same speed the “resume” option must be activated.

Wheel rotation sensor. The “wheel rotation sensor” monitors the wheel rotation.

Device. An AADL device is generally used to represent a sensor. Here, “device”

represents the abstraction of one or more complex entities. Data and data communication

are both modelled via AADL.

Throttle sensor. The throttle sensor represents an electronic device. It is capable

of receiving a signal representing the relationship between fuel and engine function.

“Device” can represent single function components and also more complicated

components. Single function components include sensors (such as the

wheel_rotation_sensor), while complicated components include GPS (Global Positioning

System). A device thus represents those components that have an interface with the

external environment. Communication of data from a device is configured via the “in

data port” and “out data port”. A device interacts with the software and execution

components of AADL via physical connections to processors and logical connections to

applications such as software components.

In this case, one of the hardware components, “Device”, is used for the case

study. In a series of steps (shown earlier in Figures 7, 8 and 9 in Chapter 3), the element

47

is transformed to the PNML version. The textual version of the “Device” component of

AADL is transformed into Petri Net Markup Language. The component is first

transformed into the XML version from the AADL textual version, after which it is

mapped to the corresponding XML version of the Petri Net Core Model. XSLT is then

used to transform the XML version into other XML versions.

In this case study, the “wheel_rotation_sensor” device is translated into the XML

version of PNML. In the “wheel_rotation_sensor”, the wheel rotation is declared by

wheel pulses. Data type is not declared in this scenario.

4.2 Analysis of the Case Study

AADL syntax represents the components, connections and behavior of a system.

In this case study, the “Device” component is the focus of attention. Components have a

component type that represents the component specification or the interface of the

component. These can include, for example, “features”, “flows”, and “properties.”

Device represents sensors, actuators, or other components. Devices have an interface with

the external environment. “Features” are used to exchange control and data with other

components through connections. Components contain “data ports”, which can be either

in data ports or out data ports. Data is communicated to or from the “device” via the in

data port or the out data port, respectively. Figures 17 through 19 show the

transformation of the textual version of AADL (Figure 17) into the XML version of the

Petri net (Figure 19). The hardware component “Device” is shown to be mapped to the

corresponding XML version of PNML. In this case, the device is

“wheel_rotation_sensor”. At this point, the data type is not known but untyped data

declarations are supported.

48

The textual version of the “device” component of AADL, namely,

wheel_rotation_sensor, is shown in figure 16.

Device wheel_rotation_sensor

Features

Wheel_pulse: out data port;

End wheel_rotation_sensor;

Figure 16. AADL text of device “wheel rotation sensor”.

The wheel rotation is modeled by the “device” (wheel_rotation_sensor). The

corresponding xml version of the “Device” component of AADL (wheel_rotation_

sensor) can be represented figure 17 using mapping rules in table X1.

<?xml version="1.0" encoding="UTF-8"?>
<Test>

<DeviceType name="wheel_rotation_sensor" />
<features>

<DataPort name="wheel_pulse" Direction="out" />
</features>

</Test>

Figure 17. XML version of AADL text for “device”.

Table 5. Mapping of AADL Text Elements to AADL-XML Components.

AADL -text AADL-XML

Wheel_rotation_sensor “wheel_rotation_sensor”

Wheel_pulse “wheel_pulse”

Features <Features> </Features>

49

Table 5. cont.

AADL -text AADL-XML

Device DeviceType name

data port DataPort name

in Direction=”in”

out Direction=”out”

After the applying mapping rules from AADL to the Petri net, the corresponding

PNML version is shown in Figure 18 below. The “Device” component is mapped to the

“transition” component in the Petri net. In and out data ports are mapped to “place” in the

Petri net. The mapping rules are shown below for the translation in this case study.

According to the mapping rules, “Device” in AADL corresponds to “transition” in

the Petri net. Similarly, “in data port/out data port” corresponds to “place” in transition.

Table 6. Mapping of Major AADL Elements to PNML.

AADL-XML

PNML

DeviceType name Transition id class=”data_flow”

DataPort name Place id class=”data_flow”

SystemType name Transition id class=”data_flow”

MemoryType name Place id class=”data_flow”

ThreadType name Transition id class=”data_flow”

ProcessorType name Transition id class=”data_flow”

BysType name Arc id class=”data_flows”

50

After applying mapping rules from AADL to the Petri net, “Device” can be

represented by Figure 18.

<?xml version="1.0" encoding="utf-8"?>

<transition id="wheel_rotation_sensor" class="data_flow">
<place id="wheel_pulse" class="data_flow" />

</transition>

Figure 18. PNML version of “device”.

The graphical representation of the above example is as follows:

Device is the “wheel_rotation_sensor” in the following diagram, represented by transition

in the Petri net. “Wheel_pulse” is represented by the place.

transition

place

Arc

Wheel_rotation_sensor

Wheel_pulse

Out data port

Figure 19. Graphical version of the translation.

4.2.1 Description of XSLT and How XSLT Works

XSLT (Extensible Stylesheet Language Transformations) is used for transforming

one XML document to another XML document. Tree of nodes are generated as output. It

uses the pattern matching template mechanism [49].

In the first step the XML document which is the input file (in our context id

AADL-XML) and XSLT code are fed to the XSLT processor. It builds a source tree

using Xpath from the input XML document. In the next step the source tree’s root nodes

51

are processed. Now, as it works with the pattern matching template mechanism it finds a

matching template for that node in the style sheet. It proceeds to the next step after

evaluation. In the following step it either creates nodes in the source tree or more nodes

are processed as the source tree. XSLT uses XPath [50] in order to identify the subsets of

the source document tree. Figure 20, 21, and Figures 22 show the example of XSLT

conversion. More specifically, Figure 20 shows the original XML version of a document

used as an input to XSLT. Figure 21 shows the XML template used to convert XML

input to output. Figure 24 shows the output of the conversion. The figure X1 shows how

the architecture of XSLT.

Figure 20. The structure of how the XSLT works.

AADL-XML

XSL Script Process

or

PNML

52

<?xml version="1.0" encoding="UTF-8"?>
<Test>
 <DeviceType name="wheel_rotation_sensor" />
 <features>
 <DataPort name="wheel_pulse"
Direction="out" />
 </features>
</Test>

Figure 21. XML input (AADL-XML).

The XSLT stylesheet:

<?xml version="1.0" encoding="iso-8859-1"?>
<!-- Edited by XMLSpy® -->
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <xsl:element name="transition">
 <xsl:attribute name="id">
 <xsl:value-of select="Test/DeviceType/@name"/>
 </xsl:attribute>
 <xsl:attribute name="class">data_flow</xsl:attribute>

 <xsl:element name="place">
 <xsl:attribute name="id">
 <xsl:value-of select="Test/features/DataPort/@name"/>
 </xsl:attribute>
 <xsl:attribute name="class">data_flow</xsl:attribute>
 </xsl:element>

 </xsl:element>
 </xsl:template>
</xsl:stylesheet>

Figure 22. XSL script.

The Resulting XML document is as follows:

<?xml version="1.0" encoding="utf-8"?>
<transition id="wheel_rotation_sensor"
class="data_flow">
 <place id="wheel_pulse" class="data_flow" />
</transition>

Figure 23. Output XML (PNML).

53

4.2.2 Application of XSLT Script

XSLT is used for the conversion of one language in XML format to another

language in its XML format. It can be employed for the conversion of AADL-XML to

PNML (the XML format of Petri nets). The XSLT script takes the XML version of the

“Device” component and generates the corresponding XML version of PNML.

Figure 24. XSLT script converting AADL-XML of “device” to PNML.

In the above XSL file, a template is created. For the “DeviceType” it generates

as”transition id” followed by the class which is “data_flow”, for “DataPort” it generates

as”place id”. According to the mapping rules (see TableX). Mapping of AADL-XML to

PNML, the rest of the transformations will be done.

<?xml version="1.0" encoding="iso-8859-1"?>
<!-- Edited by XMLSpy® -->
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <xsl:element name="transition">
 <xsl:attribute name="id">
 <xsl:value-of select="Test/DeviceType/@name"/>
 </xsl:attribute>
 <xsl:attribute name="class">data_flow</xsl:attribute>

 <xsl:element name="place">
 <xsl:attribute name="id">
 <xsl:value-of select="Test/features/DataPort/@name"/>
 </xsl:attribute>
 <xsl:attribute name="class">data_flow</xsl:attribute>
 </xsl:element>

 </xsl:element>
 </xsl:template>
</xsl:stylesheet>

54

Figure 25. Screenshot of conversion of AADL-XML to PNML via XSLT.

The above screenshot shows the conversion of AADL-XML to PNML. On the

left panel of the screen, AADL-XML is taken as the input and the PNML version is

generated as the output. The AADL-XML text is translated to the XML version of

PNML. This is done by the XSLT script on the right panel. Figure 26 shows the

Graphical Representation of the Device named “wheel rotation sensor”.

Figure 26. The AADL Graphical Representation of Device.

4.3 Results of the Case Study

The above case study demonstrates how one of the devices that make up the

Cruise Control System is mapped from its original AADL textual version to the XML

version of PNML using the standard mapping rules. Once the component is translated

into PNML, it can then be easily translated into other types of Petri nets (for example,

Place/Transition Nets, Stochastic Petri Nets, or High-level Petri Nets). However, some

limitations remain to be addressed. PNML is known for its universality and

Wheel_rotation_sensor
Cruise_control

55

interoperability, but it cannot yet support the exchange of Petri net tools for every kind of

Petri net. In the case study, one component of AADL is declared and translated into the

XML version of PNML. If all the AADL components of the cruise control system are

translated to PNML in the same way, then this would make it relatively straightforward

to transform the components from one kind of Petri net to another. This methodology is

shown in order to show the importance role played by XML in this translation.

Using PNML, it should now be possible to apply various types of Petri net

modeling and tool reasoning related to system invariance and safety. These analyses

could consist of simulations of the net and/or the ability to perform various types of

analytical reasoning. This is because PNML is designed to support different variants of

Petri nets based on its universality, flexibility, and extensibility. Figure 27 shows the

complete process of converting AADL to PNML.

Figure 27. The whole transformation from AADL-Text to PNML.

56

CHAPTER V

CONCLUSIONS

A new paradigm for the conversion of AADL to Petri nets has been presented in

this paper. In addition to their growing popularity due to the utility of their graphical

notation in applications such as simulating dynamic systems, Petri nets can be used to

determine the correctness of a system, which is not possible in AADL. In order to support

this property of Petri nets, the main objective of this research was to extend the AADL -

OSATE by incorporating Petri net functionality to facilitate the process of verifying the

absence of deadlock. Since AADL cannot be converted to Petri nets directly without

going through an interchange format, the XML version of Petri nets, PNML, was

invoked. By first converting AADL to AADL-XML, its components can be mapped to

their respective PNML elements. Once the PNML equivalent is created, this can be easily

converted to different kinds of Petri net, thus permitting the incorporation and integration

of discretized Petri net models with complex specifications.

PNML was chosen as the transfer format for Petri nets due to its universality.

However, the XML format of Petri nets used for the manual conversion of AADL to

PNML is error-prone and tedious, and would thus benefit considerably from automation.

However, the main limitation of PNML is its applicability and tooling [2].

57

5.1 Future Work

The results of this study suggest several potentially very fruitful directions for

future research. For example, research on the design of a PNML plug-in that can be

incorporated in the OSATE environment is clearly indicated. Once the AADL text is

given as input for the whole system, the corresponding PNML version should be

generated automatically as output. In the future the addition of a Model Checker to

analyze or verify the behavior of the system could prove very useful to facilitate the

process of verifying the correctness of the system.

APPENDICES

59

APPENDIX A

AADL SPECIFICATION

AADL_specification::={AADL_global_declaration|

 AADL_declaration}+

AADL_global_declaration::=package_spec| property_set

AADL_declaration::=component_classifier

 |port_group_classifier | annex_library

Component_classifier::=component_type |

 component_type_extension |

 component_implementation |

component_implementation_extension

Port_group_classifier::=port_group_type |

 port_group_type_extension

Component_type_extension::=component _category

Component_category::=software_category|

execution_platform_category| composite_category

Software_category::=data|subprogram|thread|

thread group| process

Execution_platform_category::=memory|processor|

bus|device

Composite_category::=system

 [16] suggest the use of PNML as a basis for Petri net ontology. PNML contains all the

concepts found in each format. PNML is independent of specific Petri net dialects and

contains most of the Petri net bases. This XML based interchange format of Petri nets

provides interoperability between various Petri net tools. Based on these features of

PNML, ISO/IEC is planning to introduce Part 3 in the near future, which will introduce

more Petri nets.

60

APPENDIX B

JAVA PROGRAMS

Java program to convert AADL XML PNML for the above translation.

The program will take AADL-XML as input and will generate PNML as output:

Place.java

package xmltest;

public class Place {

 private String id;

 private String className;

 public String getId()

 {

 return id;

 }

 @javax.xml.bind.annotation.XmlAttribute

 public void setId(String id)

 {

 this.id = id;

 }

 @javax.xml.bind.annotation.XmlAttribute(name

 = "class")

 public String getClassName()

 {

 return className;

 }

 public void setClassName(String className)

 {

 this.className = className;

 }

}

61

Transition.java

 package xmltest;

 @javax.xml.bind.annotation.XmlRootElement

 public class Transition {

 private String id;

 private String className;

 private Place place;

 @javax.xml.bind.annotation.XmlAttribute

 public String getId()

 {

 return id;

 }

 public void setId(String id)

 {

 this.id = id;

 }

 @javax.xml.bind.annotation.XmlAttribute(name

 = "class")

 public String getClassName()

 {

 return className;

 }

 public void setClassName(String className)

 {

 this.className = className;

 }

 public Place getPlace()

 {

 return place;

 }

 public void setPlace(Place place)

 {

 this.place = place;

 }

 }

62

Device.java

 package xmltest;

 @javax.xml.bind.annotation.XmlRootElement

 public class Device {

 private String typeName;

 private java.util.ArrayList<DataPort> features;

 @javax.xml.bind.annotation.XmlAttribute

 public String getTypeName()

 {

 return typeName;

 }

 public void setTypeName(String typeName)

 {

 this.typeName = typeName;

 }

 @javax.xml.bind.annotation.XmlElementWrapper

 @javax.xml.bind.annotation.XmlElement(name =

 "dataPort")

 public java.util.ArrayList<DataPort> getFeatures()

 {

 return features;

 }

 public void setFeatures(java.util.ArrayList

 <DataPort> features)

 {

 this.features = features;

 }

 }

63

DataPort.java

package xmltest;

@javax.xml.bind.annotation.XmlRootElement (name

= "DataPort")

public class DataPort {

 private String name;

 private String direction;

 @javax.xml.bind.annotation.XmlAttribute

 public String getName()

 {

 return name;

 }

 public void setName(String name)

 {

 this.name = name;

 }

 @javax.xml.bind.annotation.XmlAttribute (name

 = "Direction")

 public String getDirection()

 {

 return direction;

 }

 public void setDirection(String direction)

 {

 this.direction = direction;

 }

}

64

Converter.java

package xmltest;

public class Converter {

 public static void main(String args[]) throws

 javax.xml.bind.JAXBException, java.io.

 IOException

 {

 javax.xml.bind.JAXBContext readContext = javax.

 xml.bind.JAXBContext.newInstance(Device.

 class);

 /*Device device = new Device();

 device.setTypeName("wheel_rotation_sensor");

 java.util.ArrayList<DataPort> features = new

 java.util.ArrayList<DataPort>();

 DataPort port = new DataPort();

 port.setName("wheel_pulse");

 port.setDirection("out");

 features.add(port);

 device.setFeatures(features);

 javax.xml.bind.Marshaller m = readContext

 .createMarshaller();

 m.setProperty(javax.xml.bind.Marshaller.

 JAXB_FORMATTED_OUTPUT, Boolean.TRUE);

 m.marshal(device, System.out);

 java.io.Writer writer = null;

 try

 {

 writer = new java.io.FileWriter("aadl.xml");

 m.marshal(device, writer);

 }

 finally

 {

 try

 {

 writer.close();

 }

 catch (Exception e)

 {

 }

 }*/

65

javax.xml.bind.Unmarshaller um = readContext.

 createUnmarshaller();

Device newDevice = (Device)um.unmarshal(new

java.io.FileReader("aadl.xml"));

Transition transition = new Transition();

transition.setId(newDevice.getTypeName());

transition.setClassName("data_flow");

Place place = new Place();

place.setId(newDevice.getFeatures().get(0).getName());

place.setClassName("data_flow");

transition.setPlace(place);

 javax.xml.bind.JAXBContext writeContext =

javax.xml.bind.JAXBContext.newInstance

(Transition.class);

 javax.xml.bind.Marshaller m = writeContext.

createMarshaller();

 m.setProperty(javax.xml.bind.Marshaller.

 JAXB_FORMATTED_OUTPUT, Boolean.TRUE);

 m.marshal(transition, System.out);

 java.io.Writer writer = null;

 try

 {

 writer = new java.io.FileWriter("pnml.xml");

 m.marshal(transition, writer);

 }

 finally

 {

 try

 {

 writer.close();

 }

 catch (Exception e)

 {

 }

 }

 }

}

66

APPENDIX C

PETRI NET TYPE DEFINITIONS

Petri Net Type Definitions

Petri Net Type Definitions specify the legal labels for particular Petri Net Types.

PNML provides a mechanism for defining Petri Net Types and for using labels from a

conventions document. PNTD contains additional features which are not included in

PNML. It is the extension of PNML by object- oriented principles. The PNML Core

Model contains the basic structural definition of a Petri Net as a labeled directed graph. It

is the primary building block upon which concrete Petri Net types are defined. The basic

structure of PNML Document is defined in the PNML Core Model. It contains one or

more Petri Nets. There may be graphical information with each object. The information

may include its position, shape, color etc.

The important objects of Petri Nets are places, transitions and arcs. According to

the PNML Core Model, it is legal to connect two places by arcs and two transitions by

arcs. In order to support the variations and extensions of the Petri Net types, Model

engineering techniques are chosen.

67

REFERENCES

[1] ISO/IEC 15909-2:2011 Systems and software engineering - High-level Petri nets -

Part 2: Transfer format.

[2] L. Hillah, F. Kordon, L. Petrucci, N. Trèves, “Model engineering on Petri nets for

ISO/IEC 15909-2: API framework for Petri net types metamodels.” Petri Net Newsletter,

69:22–40, 2005.

[3] L.M. Hillah, F. Kordon, L. Petrucci, N. Trèves, “PNML framework: An extendable

reference implementation of the Petri Net Markup Language.” In: Lilius, J., Penczek, W.

(eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 318–327. Springer, Heidelberg (2010)

[4] L. Hillah, E. Kindler, F. Kordon, L. Petrucci, N. Treves, “A primer on the Petri Net

Markup Language and ISO/IEC 15909-2.” In: Jensen, K. (ed.) 10
 th

Workshop on

Coloured Petri Nets (CPN 2009), pp. 101–120 (2009)

[5] L. Hillah, F. Kordon, L. Petrucci, N. Tr ves, “PN standardisation: a survey.” In 26th

International Conference on Formal Methods for Networked and Distributed Systems

(FORTE'06), volume 4229 of LNCS, pages 307-322, Paris, France, September 2006.

Springer Verlag.

[6] J.M.E.M. van der Werf, R.D.J. Post, (2004). EPNML 1.1 : an XML format for Petri

nets. (External Report). Eindhoven: Petriweb.org, 16 pp

[7] M. Weber, E. Kindler (2002) “The Petri net markup language.” In: Ehrig H, Reisig

W, Rozenberg G, Weber H (eds) Petri net technology for communication based systems,

vol 2472 of Lecture Notes in Computer Science, pp 124–144

[8] H. Reza, E.S. Grant, "Toward Extending AADL-OSATE Toolset with Color Petri

Nets (CPNs)," Information Technology: New Generations, 2009. ITNG '09. Sixth

International Conference on , vol., no., pp.1085,1088, 27-29 April 2009

doi: 10.1109/ITNG.2009.246

[9] P. H. Feiler, D. P. Gluch, J. J. Hudak. The Architecture Analysis & Design Language

(AADL): An Introduction. Technical report, 2006. CMU/SEI-2006-TN-011.

[10] Welcome on PNML.org. http://www.pnml.org/tutorialpn09.php accessed on 11th

July.

http://www.tue.nl/en/university/departments/mathematics-and-computer-science/the-department/staff/detail/ep/e/d/ep-uid/19970318/
http://www.tue.nl/en/publication/ep/p/d/ep-uid/167528/
http://www.tue.nl/en/publication/ep/p/d/ep-uid/167528/

68

[11] J. Hudak, P. Feiler, "Developing AADL Models for Control Systems: A

Practitioner's Guide," Software Engineering Institute, Carnegie Mellon University,

Pittsburgh, Pennsylvania, Technical Report CMU/SEI-2007-TR-014, 2007.

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8437

[12] T. Murata, "Petri nets: Properties, analysis and applications, ” Proceedings of the

IEEE , vol.77, no.4, pp.541,580, Apr 1989

[13] X. Renault, F. Kordon, J. Hugues. From AADL architectural models to Petri Nets:

Checking model viability. In 12th IEEE International Symposium on Object-oriented

Real-time distributed Computing (ISORC'09), pages 313-320, Tokyo, Japan, March

2009. IEEE CS.

[14] X. Renault, F. Kordon, J. Hugues, "Adapting models to model checkers, a case

study: Analysing AADL using Time or Colored Petri Nets," Rapid System Prototyping,

IEEE International Workshop on, vol. 0, pp. 26-33, 2009

[15] M. Y. Chkouri, A. Robert, M. Bozga, and J. Sifakis. “Translating AADL into BIP -

Application to the Verification of Real-time Systems.” In Model Based Architecting and

Construction of Embedded Systems, 2008.

[16] D. Gasevic, V. Devedzic, “Petri Net Markup Languages and formats as guidelines

for ontology development”, In Proceedings of the IADIS International Conference on E-

Society,pp 662-665, June 2003.

[17] Z. Jin, A software architecture-based testing technique. Thesis for Doctor of

Philosophy in Information Technology, George Mason University, Fairfax, Virginia

(2000)

[18] JAXB Tutorial, http://www.vogella.de/articles/JAXB/article.html

[19] Java and XML Tutorial, http://www.vogella.de/articles/JavaXML/article.html

[20] Generating XML from an Arbitrary Data Structure,

http://download.oracle.com/javaee/1.4/tutorial/doc/JAXPXSLT5.html

[21] B. Jean-Paul, C. Raphaël, C. David, F. Mamoun, R.Jean-François, “A mapping from

AADL to Java-RTSJ, ” International Workshop on Java Technologies for Real-time and

Embedded Systems, pp. 165-174, 28/09/07 .

[22] C. Dong, J. Bailey, “Static analysis of XSLT programs,” Proceedings of the 15th

Australasian database conference , vol. 27, pp. 151-160, 2004.

[23] K. Tongprasert, S. Chittayasothorn, “An XML-based Petri Net to Rules

Transformation Software Tool, ” The 14th World Multi-Conference on Systemics,

Cybernetics and Informatics: WMSCI 2010 , pp. 1-4, 2010.

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8437
http://goodoldai.org/publications/author/5
http://goodoldai.org/publications/author/5

69

[24] K. Jensen, L. M. Kristensen, L. Wells, “Coloured Petri Nets and CPN Tools for

modelling and validation of concurrent systems,” International Journal Software Tools

Technology Transfer, vol. 9, pp. 213-254, 13 March 2007.

[25] M. Hecht, C Vogle, A Lam, “Application of the Architectural Analysis and Design

Language (AADL) for Quantitative System Reliability and Availability Modeling,”
Aerotech 2009, November, 2009.

[26] F. Singhoff, J. Legrand, L. Nana, L. Marce, “Scheduling and memory requirements

analysis with AADL,” Proceedings of the 2005 annual ACM SIGAda International

Conference on Ada: The Engineering of Correct and Reliable Software for Real-Time

and Distributed Systems using Ada and Related Technologies, vol. XXV, no. 4, pp. 1 -

10, December 2005.

[27] K.B. Lassen, M. Westergaard, “Embedding Java Types in CPN Tools,” Transactions

on Petri Nets and Other Models of Concurrency, pp. 1 - 19, October 2006.

[28] F. Bonnefoi, C. Choppy, F. Kordon, “A Discretization Method from Coloured to

Symmetric Nets: Application to an Industrial Example,” Transactions on Petri Nets and

Other Models of Concurrency III Lecture Notes in Computer Science, vol. 5800, pp. 159

- 188, 2009.

[29] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, "Giotto: A time-triggered language

for embedded programming", Proc. 1st Int. Workshop on Embedded Software, vol.

2211, pp.166 -184 2001

[30] J. Clark. RELAX NG Home Page. http://www.relaxng.org/,2003

[31] B. Berthomieu, “Formal Verification of AADL Specifications in the Topcased

Environment. ” Ada-Europe '09 Proceedings of the 14th Ada-Europe International

Conference on Reliable Software Technologies. (2009): 207 – 221

[32] A.-E. Rugina, "System dependability evaluation using AADL (Architecture analysis

and design language)", Rencontres Jeunes Chercheurs en Informatique Temps-Réel

(RJCITR), 2005

[33] D. Hemer, Y. Ding, "Modelling Software Architectures Using CRADLE," in World

IMACS/MODSIM Congress, 2009, pp. 404-410.

[34] Z. Qureshi, “Formal Modelling and Analysis of Mission-Critical Software in

Military Avionics Systems. ”Proceedings of the eleventh Australian workshop on Safety

critical systems and software. (2006): 67-77.

[35]L. Grunske, J. Han, “A Comparative Study into Architecture-Based Safety

Evaluation Methodologies using AADL’s Error Annex and Failure Propagation Models.”
11th IEEE High Assurance Systems Engineering Symposium. (2008): 283 - 292.

http://www.relaxng.org/,2003

70

[36] X. Renault, F. Kordon, J. Hugues. “From AADL architectural models to Petri Nets:

Checking model viability.” In 12th IEEE International Symposium on Object-oriented

Real-time distributed Computing (ISORC'09), pages 313-320, Tokyo, Japan, March

2009. IEEE CS.

[37] A.E. Rugina, K. Kanoun, M. Kaâniche. “A system dependability modeling

framework using AADL and GSPNs. ” Architecting Dependable Systems IV. Springer

Berlin Heidelberg, 2007. 14-38.

[38] Systems and software engineering -- High-level Petri nets -- Part 1: Concepts,

definitions and graphical notation. Switzerland : INTERNATIONAL STANDARD

ISO/IEC 15909-1, 2004.

[39] M. Magyar, I. Majzik, “Tool Supported Structures of dependability Evaluation of

Redundant architectures in Computer based control systems, ” in IEEE Int. Conf.

Quantitative Evaluation of Systems, pp. 95-96, 2009

[40] A. Ghosh, L. Pereira, T. Yan, H. Cao. “Modeling Wireless Sensor Network

Architectures using AADL.” In ERTS, Toulouse, France, January 2008.

[41] K. Jensen, L. Kristensen, L. Wells. “Coloured Petri Nets and CPN Tools for

Modelling and Validation of Concurrent Systems.” Journal International Journal on

Software Tools for Technology Transfer. no. 3 (2007): 213-254.

http://dl.acm.org/citation.cfm?id=1266789 (accessed April 13, 2014).

[42] H. Reza, F. Gu, B. Shafai. “Toward Model Based Testing: Combining AADLs with

High Level Petri Nets.” Software Engineering Research and Practice (2010): 619-623.

[43] H. Reza, S. Lande, “Model Based Testing Using Software Architecture,
” Information Technology: New Generations (ITNG), 2010 Seventh International

Conference on , vol., no., pp.188,193, 12-14 April 2010 doi: 10.1109/ITNG.2010.122

[44] H. Reza, R. Marsh, M. Askelson. “A Fault Tolerant Architecture Using AADLs and

Error Model Annex for Unmanned Aircraft Systems (UAS).. ” Software Engineering

Research and Practice (2010): 180-184.

[45] A.E. Rugina, K. Kanoun, M. Kaâniche, “The ADAPT Tool: From AADL

Architectural Models to Stochastic Petri Nets through Model Transformation, ”

Proceedings of the 2008 Seventh European Dependable Computing Conference, p.85-90,

May 07-09, 2008

[46] E. Kindler, L. Petrucci, “A framework for the definition of variants of high-level

Petri nets. ”Proceedings of the Tenth Workshop and Tutorial on Practical Use of

Coloured Petri Nets and CPN Tools (CPN '09). 2009. 121-137

http://orbit.dtu.dk/en/persons/ekkart-kindler(72a19e84-bc11-4da5-97cf-a20d41525f61).html
http://orbit.dtu.dk/en/publications/a-framework-for-the-definition-of-variants-of-highlevel-petri-nets(14cc3b64-25c0-4d12-96ee-a5365949824f).html
http://orbit.dtu.dk/en/publications/a-framework-for-the-definition-of-variants-of-highlevel-petri-nets(14cc3b64-25c0-4d12-96ee-a5365949824f).html

71

[47] M. Jüngel, E. Kindler, M. Weber, 2000. Towards a Generic Interchange Format for

Petri Nets. In: Bastide, R., Billington, J., Kindler, E., Kordon, F. and Mortensen, K. H.

(eds.): Meeting on XML/SGML based Interchange Formats for Petri Nets. 1--5, Århus,

Denmark, 21st ICATPN.

[48] N. Muhammad, Y. Vandewoude, Y. Berbers, S. van Loo. 2009. Modelling

composite end-to-end flows with AADL. In Proceedings of the workshop on the

definition, evaluation, and exploitation of modelling and computing standards for Real-

Time Embedded Systems (Dublin, Ireland. July 1--3, 2009)

[49] http://en.wikipedia.org/wiki/XSLT

[50] http://en.wikipedia.org/wiki/XPath

http://en.wikipedia.org/wiki/XSLT
http://en.wikipedia.org/wiki/XPath

	University of North Dakota
	UND Scholarly Commons
	January 2014

	Translation Of AADL To PNML To Ensure The Utilization Of Petri Nets
	Amrita Chatterjee
	Recommended Citation

	Chatterjee signature page
	Amrita Chatterjee Thesis

