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Non-Autonomous Elementary Net Systems and
their Application to Programmable Logic Control

James Brusey, Duncan C. McFarlane, and Alan Thorne

Abstract— A novel approach to Petri net modelling of Pro-
grammable Logic Controller (PLC) programs is presented. The
modelling approach is a simple extension of Elementary Net
Systems and a graphical design tool that supports the use of
this modelling approach is provided. A key characteristic of the
model is that the binary sensory inputs and binary actuation
outputs of the PLC are explicitly represented. This leads to
two improvements: outputs are unambiguous, and interaction
patterns are more clearly represented in the graphical form. Use
of this modelling approach produces programs that are simple,
light-weight, and portable. The approach is demonstrated by
applying it to the development of a control module for a MonTech
Positioning Station.

Index Terms— Petri nets, programmable logic controllers

I. I NTRODUCTION

PETRI nets [1], [2] have long been used as a way of mod-
elling manufacturing operations [3], [4]. In comparison

with finite state automata [5], they have the advantage that
they readily model processes that are sometimes concurrent
and sometimes sequential. For example, individual parts that
are combined together into a product might be machined
separately and independently. These independent processes
can proceed at any rate relative to each other. This means
that there are many possible ways for the state of the whole
system to evolve over time, depending on exactly when each
machine reaches each different stage in its processing cycle.
Even though the components are machined separately, since
they come together during the final stages, a model of the
complete system cannot merely be a collection of independent
automata, but must represent, for example, the way these final
stages must wait until all prior stages are complete. Petri nets
can be used to express and reason about concurrent processes
such as these in a simple and compact way [6], hence their
popularity as modelling tools for the manufacturing domain.

Given that the Petri net is an appropriate model for a
manufacturing operation, it also seems natural to derive the
corresponding controller for the operation directly from this
model. A controller, in this sense, means the program or
set of programs that runs on a Programmable Logic Con-
troller (PLC)—which is connected to sensors and actuators—
allowing it to sense and change the manufacturing envi-
ronment. An immediate concern is that there is often not
sufficient information in the Petri net model to enable an
unambiguous derivation of a controller. That is, the Petri net
is too incomplete a description of the system. For example,
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details such as the physical layout of the shop floor, and the
nature of the physical sensing and actuation configuration can
generally not be expressed in a Petri net model. Previous
researchers in this area, notably Chirn and McFarlane [7],
Frey [8]–[13] and Uzam and Jones [14]–[17], have addressed
the problem of integrating sensing and actuation by adding an
annotationon each node of the net. Each annotation expresses
the flow of information to or from the outside world associated
with that node. Such Petri nets are generally classified asnon-
autonomousin the sense that they influence, and are influenced
by, the external environment [1]. There are various forms of
such nets depending on the type of annotation, such as Frey’s
signal interpreted Petri nets (SIPNs) [13]. In this paper, non-
autonomous Petri net will be used to refer to a net that defines
its external interface via an annotation for each node.

The problem with existing approaches to coding the be-
haviour of a PLC as a Petri net is that they treat inputs
and outputs as being external to the state of the PLC [7]–
[17]. This is at first a conceptual difficulty, meaning that
the correspondence to a finite state automaton is not clear,
for example. But it also causes some potential ambiguity
in the resulting control implementation. This paper proposes
that it is advantageous to treat inputs and outputs as part
of the controller state, and to represent them explicitly in
the Petri net model. There are two advantages. First, it then
becomes impossible to set outputs in an ambiguous way. It
is not possible (as it is in the SIPN model) to specify, for
example, that a certain output signal is to be set both on
andoff simultaneously [9]. Second, inputs become a structural
element and thus interaction patterns are shown more clearly.

This paper shows how a PLC program can be compiled
directly from a Petri netwithout requiring annotations. This
is referred to ascompiling the net, in the sense that a high-
level, abstract representation of the behaviour of the program is
being used to automatically and directly generate executable
PLC code. A graphical tool that supports this process is a
central outcome of this research. The general aim of such a
tool is to ease the burden on the engineer. This overall aim
resolves into four fundamental requirements:

1) To correctly translate the Petri net behaviour into corre-
sponding program behaviour,

2) To automaticallyperform the translation without requir-
ing that the engineer ensures boundedness, absence of
conflict, or absence of output ambiguity,

3) To produce avariety of output formsincluding ladder
logic diagrams,

4) To support code reuse throughmodularity.

0000–0000/00$00.00c© 2004 IEEE
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The paper is organised as follows. The next section reviews
related work including a brief introduction to the theory of
Elementary Net Systems. This theoretical basis is then used
to form a new class of net, referred to in this paper as Non-
Autonomous Elementary Net systems. Section III shows how
the model can be automatically translated into a form suitable
for PLCs and proves that the resulting code has equivalent
behaviour. Section IV discusses several aspects of the use
of this approach, particularly focusing on coordination and
modularity. Section V demonstrates the compilation method
by applying it to a real device control problem. Finally,
conclusions are presented in the last section.

II. RELATED WORK

A basic approach to translating Petri net behaviour into
ladder logic code is suggested by Chirn and McFarlane [7].
Their approach is easy to understand and perform, however
it may produce some unwanted side-effects where a token is
temporarily in two places at once. Usually, this sort of side-
effect has no impact on the overall behaviour. The difficultyis
that it mayhave an impact, and in particular that the problem
will tend to be hard to diagnose because the situation occurs
for only a single PLC cycle.

A number of other authors have developed approaches to
producing PLC programs from Petri nets [12], [13], [16], [18],
[19]. The two most well known ones are found in theses by
Frey [13] (referred to here as the signal interpreted Petri net
or SIPN approach) and Uzam [15] (referred to as the token
passing ladder logic or TPLL approach). Frey and Minas [11]
have also built a graphical development tool to support their
approach [20]. Using their tool, the resultant nets can be
simulated and analysed for liveness and reachability. In their
approach, IEC 61131-3 standard Instruction Lists (IL) are
produced by the compilation process (Frey has also examined
generating sequential function charts (SFC) [9]). The approach
here is similar, but whereas Frey and Minas’s tool produces
statements that include flow control instructions, the approach
presented here does not. Avoiding flow control instructions
should make the program easier to debug because it means
that every statement is executed during every scan cycle. In
addition, the lack of flow control instructions means that the
program is readable in ladder diagram form, thus providing an
easier migration path for manufacturing environments where
the use of ladder diagrams is entrenched.

Lee et al. [19] propose a method for deriving ladder logic
from Control Petri Nets. Control Petri Nets (or CPNs) add
enabling and inhibiting arcs. Leeet al.’s approach is to assume
that the engineer has produced 1-safe nets that have certain
restrictions about what conflicts can occur. Their approach
makes the optimisation of combining the calculation of which
transitions to fire and the calculation of the updated marking
into a single step. However this appears to produce incorrect
results for some nets. See the appendix for a counter-example.

Correctly dealing with concurrent firing of transitions is
discussed by Frey [8]. Frey uses a similar approach to the
one described here, that of updating tokens after determining
that a transition should fire. Conflicts are avoided by firing

transitions sequentially. In contrast, the approach presented in
this paper allows some simultaneous firing by checking for
potentially conflicting transitions and ensuring that theydo
not fire simultaneously.

A key issue with non-autonomous PN-based approaches is
that there is not a one-to-one correspondence between outputs
and a subset of the places in the net. Therefore it is possible
that when many places are marked, more than one of these
places will set the value of the same output, and these various
settings may be inconsistent. Minas and Frey [21] mention that
this was a difficulty that their students frequently encountered
while using their SIPN-based tool. Having binary actuator
outputs correspond to a subset of places in the Petri net
prevents this ambiguity. Then, if two active “processes” within
the net attempt to turn on an output, one will “block”, or wait
until the other has finished.

As with the work here, Frey’s and Chirn’s approaches are
based on binary marks. In contrast, Uzam and Jones [14]–
[16], [22] developed the Token Passing Ladder Logic (TPLL)
method that supports multiple tokens per place. As Peter-
son [2] notes, Petri’s original model involved binary marks
and simple arcs, whereas this has been shown to be too limited
for some problems and has been extended to allow multiple
tokens per place, and multiple arcs between any two nodes.
Nevertheless, Elementary Net systems, with binary marks and
simple arcs, have a more natural correspondence to the binary
sensors and actuators controlled by a PLC. In addition, while
place-transition nets theoretically have no limit on the tokens
per place, when this is translated to a PLC it would seem
necessary to include a limit to avoid overflow errors. TPLL
does not seem to include such a limit.

Joneset al. [22] provide an approach for incorporating
time delays within the resulting program. However, their
approach potentially leads to problems both of overflow and
of underflow in the number of tokens per place.

Boucher [18] mentions the use of Petri net places as a
basis for communicating resource locks between systems.
In particular, Boucher shows how handshaking between two
systems can be performed. However this is merely shown
as a way of modelling the communication protocol, and the
implementation details, such as ensuring that shared data areas
(if any) are used in a safe manner, are not discussed.

Feldmannet al. [23] define an extension to coloured Petri
nets called Ordered Coloured Petri Nets (or OCPNs) and show
how they can be translated to IEC 61131 Structured Text
(ST). The OCPN approach is more sophisticated again than
Uzam’s TPLL, since not only may there be multiple tokens
per place, but also the tokens are coloured. Each transition
is annotated with a guard function that is a conjunction of
boolean variables. Also each arc is annotated by one of several
standard colour functions.

A difficulty with many of the existing approaches is that,
with the exception of Frey and Minas’s compiler [8], they are
largely manual. In their review of this subject area, Peng and
Zhou [24] note the need for verified, automatic conversion
between Petri net and IEC 61131-3 programming languages.
They also note the need for effective compositional methods
for modular, distributed control systems, and in particular note
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p1 t1 p2

Fig. 1. A simple EN system corresponding toP = {p1, p2}, T = {t1},
F = {(p1, t1) , (t1, p2)}, Cin = {p1}.

the importance of interfaces or interlocks between different
PN-based control modules. This paper aims to address these
needs with a minimalist model that is thus hopefully easily
understood.

To describe this approach rigorously it is first necessary to
review the theory of elementary net systems on which the
approach is based.

A. Elementary Net Systems

An Elementary Net (EN) system [25] is a fundamental form
of Petri net. In comparison with ordinary Place / Transition
systems (P/T systems) [25], EN systems only allow a single
token per place, whereas ordinary P/T systems allow any
number. Condition / Event (C/E) Systems also have only one
token per place and form the basis for SIPN systems [13].
The difference between C/E and EN systems is quite subtle
and the terms are often used interchangeably. Pomello and
Bernardinello [26] define the difference as being that with C/E
systems forward and backward reachable cases are considered,
whereas for EN systems, there is an initial configuration and
the system only evolves in a forward direction.

The particular properties of EN systems can be described
as follows. An elementary net system is a 4-tuple,N =
(P, T, F, Cin) , where (P, T, F ) is the underlying network
consisting of a set of places or statesP , a set of transitions or
eventsT and a set of relations or directed arcsF . Transitions
are distinct from placesP ∩ T = ∅ and directed arcs
join either a place to a transition or a transition to a place
F ⊆ (P × T ) ∪ (T × P ). It is usual to represent the net
diagrammatically with circles for places, boxes for transitions,
and lines with arrows for directed arcs as shown in figure 1.
A configurationC ⊆ P corresponds to the dynamic state of
the net and is initiallyCin. The configurationC is represented
graphically by the presence of a token (i.e. a large dot) in
places that are inC. Roughly speaking, a place ismarkedif
it is in C or unmarkedotherwise. For eachx ∈ P ∪ T, •x =
{y ∈ P ∪ T : (y, x) ∈ F} is the pre-set or set of elements with
arcs leading intox, while x• = {y ∈ P ∪ T : (x, y) ∈ F} is
the post-set or set of elements with arcs leading fromx. That
is for any nodex, be it a place or transition, its pre-set•x
contains all nodes that have arcs directed to it, while its post-
set x• contains all nodes that have arcs directed away from it.
For a set of nodesX ⊆ P ∪ T , its pre-set•X =

⋃

x∈X
•x is

the union of pre-sets of its elements and similarly its post-set
X• =

⋃

x∈X x• is the union of post-sets of its elements.
The state of the net changes by “playing the token game”.

This game has a simple set of rules [25, page 32], which is
restated here.

Definition 1: The configurationC of an EN systemN

changes according to three rules:

1) A transition t is enabled to fire at configurationC,
denotedC [t〉, if all of its pre-conditions are marked
•t ⊆ C and all of its post-conditions are unmarked
t• ∩ C = ∅.

2) When a transitiont fires at C, tokens are removed
from all pre-conditions and added to all post-conditions,
yielding a new configurationC′ = (C ∪ t•)− •t. That
C′ is the result oft firing at C is denoted asC [t〉C′.

3) A set of transitionsU ⊆ T is a step enabled atC,
denotedC [U〉, iff (a) all transitions inU are enabled at
C, and (b) for allt1, t2 ∈ U with t1 6= t2, •t1∩

•t2 = ∅

and t•
1
∩ t•

2
= ∅.

The latter condition of the third rule ensures that the firing
of any individual transition inU does not affect whether any
other transition inU is enabled. Note that, in an EN system, if
some preconditions are also postconditions, or in other words,
if for any transitiont ∈ T , •t ∩ t• 6= ∅, then the transitiont
can never be enabled. EN systems that have no such transitions
are referred to aspure.

This section has introduced the domain. In the following
section, a non-autonomous EN system model is defined and
the mapping to PLC code described.

III. N ON-AUTONOMOUSELEMENTARY NETS

EN systems are autonomous. Programmable Logic Con-
trollers (PLCs) are not, since they must interact with the world.
The behaviour of a PLC is much simpler, though, than a
general purpose computer. They operate in a cyclic fashion
made up of three phases. First, sensor values are read into
a special memory area reserved for inputs (that is otherwise
read-only). Second, the user’s program is executed exactly
once. Third, actuator states are updated based on the values
in the memory area reserved for outputs. These three phases
are repeated indefinitely.

PLC programs are usually written in an intermediate level
language, such as ladder diagrams (LD) or function block
diagrams (FBD), that have a close correspondence with the
low-level machine instructions. Of the standard PLC lan-
guages, as defined by IEC 61131-3 [27], the Instruction List
(IL) language has the closest correspondence, and is roughly
equivalent to assembly language. All LD programs can be
expressed as IL, but not all IL programs can be expressed
in LD.

The non-autonomous EN system model of a PLC to be
developed here is based on the observation that elementary net
places are similar to the binary inputs, outputs and (internal)
data storage areas of a programmable logic controller. Specif-
ically, the set of places for an elementary net are equivalent
to the bitwise address locations for binary sensors (inputs),
binary actuators (outputs) and binary data storage locations.
The configuration of the Petri net then corresponds to which
bit address locations are “on” (i.e. set to “1”). This is a useful
analogy because it allows the dynamic behaviour of a PLC to
be modelled as an Elementary Net system.

Of the three basic types of PLC register locations (inputs,
outputs and data storage), inputs are somewhat exceptional,
in that they are not directly affected by the PLC’s operation.
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Past work, such as that of Freyet al. [8], has resolved this
by altering the semantics of transition firing to additionally
check an associated boolean expression, and to only fire if the
expression is true. In comparison, in the approach presented
here, inputs are integrated into the Elementary Net system
by having an input correspond to a place. Nevertheless, it is
necessary to augment the basic EN system model to include
a special type of placei ∈ I to represent PLC inputs, where
I ⊆ P . Such input places must be treated differently because
they can only be affected by events that are external to the
modelled system. For example, a light sensor will only be
affected by the presence of light, and not the internal stateof
the PLC.

Previous work [7], [8], [14] has treated the state ofoutputs
as external to the net. In the approach presented here, each
output, such as a valve, solenoid, or light, is represented as
a place. Rather than turning on or off outputs on entry to a
place (as in [7], [8], [14]), in a non-autonomous EN system
a single output is turned on when a token enters the place
corresponding to that output, and is turned off when the token
leaves that place. Simply stated, the state of a single output
corresponds to the state of a single place. An advantage of this
approach is that it means that there can be no ambiguity in how
the output is set, since there is only one place corresponding
to each output. A drawback, however, is that outputs must be
binary. It would be possible to support other types of outputs
by allowing annotation on places.

Remark 1: In summary, given the three distinct sets of
inputs I, outputs O, and data storageD, the set of non-
autonomous EN system places is the union of all threeP =
D ∪ I ∪ O.
Note that there is a mapping (orinjection) from non-
autonomous EN system places to PLC address locations. That
is, each non-autonomous EN system place must correspond
to a unique bit address in the PLC, and this can be a data
storage address, an input address, or an output address. Only
input places can correspond to input addresses. It is up to the
programmer to provide the mapping of places to bit addresses.
Transitions also must be mapped to data storage bit addresses,
but this can usually be done automatically. Note that all places
and transitions are mapped to unique addresses but the inverse
mapping from addresses to places or transitions may only
apply to a subset of all possible addresses.

A. Defining Non-Autonomous EN Systems

As discussed above, the rules of the token game must be
revised to suit this slightly altered model by subtracting the set
I from all pre-conditions and post-conditions in rules 2 and
3 in Definition 1. To make it distinct, the resulting model is
referred to as aNon-AutonomousElementary Net system.

Definition 2: A Non-Autonomous Elementary Net system
is a tupleM = (P, T, F, I, Cin), where the tuple(P, T, F, Cin)
corresponds to the underlying Elementary Net system whose
behaviour is modified such that all places inI ⊆ P , referred to
as input places, remain unaltered by the firing of a transition.
The initial configuration defines only the state of non-input
placesCin ⊆ P − I.

t1i1 ∧ i2

p1o1, o2

t2i1 ∨ i2

p2o1, o2

(a)

t1

i1 o1 i2

t2 t3

o2

(b)

Fig. 2. Comparing (a) a non-autonomous Petri net with (b) theequivalent
non-autonomous Elementary Net system. In the PN annotations, negation is
represented by a bar, such asi1. In the EN, a triangle is used to denote an
input place.

The rules for “playing the token game” with Non-Autonomous
EN systems can be stated as follows.

Definition 3: The configurationC of a Non-Autonomous
EN systemM changes according to three rules:

1) A transitiont is enabledto fire at configurationC if all
of its pre-conditions are marked•t ⊆ C and all of its
post-conditions are unmarkedt• ∩ C = ∅.

2) When a transitiont fires at C, tokens are removed
from all non-input pre-conditions and added to all non-
input post-conditions, yielding a new configurationC′ =
(C ∪ (t• − I))− ( •t− I).

3) A set of transitionsU ⊆ T is a step enabled atC iff
(a) all transitions inU are enabled atC, and (b) for all
t1, t2 ∈ U with t1 6= t2, •t1 ∩

•t2 ⊆ I and t•
1
∩ t•

2
⊆ I.

This definition derives from Definition 1 and the requirement
that the state of input places is unaffected by the process of
firing a transition. To see how this modified net compares with
traditional non-autonomous Petri nets [7]–[17], considerthe
simple example shown in figure 2. In this example, two motors
o1 ando2 are controlled by inputsi1 andi2 so that when either
switch is on,o2 is turned on, ando1 otherwise. The two motors
should not be on at the same time. In the PN (figure 2(a)),
inputs and outputs are distinct from places. Outputs can be
set (or reset, if negated) on entry to a place by coding an
annotation (represented by a labelled box connected to the
place by a line). Similarly, inputs annotate transitions and thus
are additional conditions for transition firing. For example, t1
has the annotationi1 ∧ i2. Therefore,i1 and i2 must both be
off (because the terms are negated) fort1 to fire (as well as
p1 being unmarked, andp2 being marked). Placep1 has the
annotationo1, o2 meaning that when it receives a mark,o1 will
be turned on ando2 will be turned off. Note that any place
can update any output and this may lead to some confusion.
Although it is straightforward to check the behaviour of this
net, determining which places affect a particular output may
be more difficult with a larger net.

Now consider the Non-Autonomous Elementary Net system
in figure 2(b). A triangle is used to denote an input place. Note
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{}

{o2}{o1}

{o1, o2}

t1

t2, t3

Fig. 3. The sequential configuration graph for the non-autonomous EN
system in figure 2(b).

that there are no annotations and only the standard rules for
firing apply. Therefore,t1 can fire if o2 is marked andi1, i2
ando1 are unmarked. When it fires,o1 becomes marked ando2

becomes unmarked according to the standard rules, however,
in contrast to the standard rules,i1 and i2 are unaffected.
The inputsi1 andi2 will only be affected by the state of their
associated sensors. In this form of net, all transitions that affect
an output must be connected to it by an arc. Therefore, even
in a large net, it should be easy to find all the ways in which
an output can be changed.

Remark 2: It is not always possible to map 1-safe non-
autonomous PNs to non-autonomous EN systems since there
may be ambiguity in the setting of output places possible in
the PN.
As the Petri net model has been altered, this leads to the ques-
tion of how the static analysis of such altered Petri nets might
change. For an EN system, it is possible to derive a sequential
configuration graph (SCG) that has a node for each possi-
ble configuration (that is, each possible marking), and arcs
corresponding to enabled transitions in those markings [25].
Analysis of properties such asreachability or livenesscan
then be derived from the SCG. Specifically, a configuration
is reachable if, in the SCG, there is a path to it from the
initial configuration. A transition is live if it can be eventually
fired when starting from any reachable configuration.

The Non-Autonomous EN system also contains input places
i ∈ I, which have slightly different semantics (their configura-
tion is not updated by transitions firing), and this necessarily
affects the analysis. To model the possibility that the external
environment could change in any possible way, arcs must
also be included which allow any set of inputs to change
their state at any time. Alternatively, input places can be
disregarded completely. The following result shows that this
simpler approach is equivalent for the purposes of identifying
reachability.

Lemma 1:The sequential case graph (SCG) for the Non-
Autonomous EN systemM = (P, T, F, Cin, I) with arcs
added to allow input placesi ∈ I to change their state at
any time, is equivalent (in terms of reachability) to the SCG
of the EN systemM ′ = (P − I, T, F − I× T − T × I, Cin).

Proof: See appendix.
The SCG for the Non-Autonomous EN system in figure 2(b) is
given in figure 3. From this graph it is clear that, for example,
configuration{o1, o2} is not reachable, and so both motors can
never be on simultaneously (assuming the initial configuration

p1

t1 t2 t3

p2

p3

t4

p4

p5

Fig. 4. Example of conflicting transitions. Transitionst1 andt2 are in conflict
because if they both fired simultaneouslyp3 would overflow. Similarlyt2 and
t3 are in conflict because if both fire at once,p2 will underflow. Transition
t4 does not conflict witht3 since the place that they have in common is an
input place.

is {o1}).
Having developed a theoretical basis, the process of con-

verting Non-Autonomous EN systems is now described in the
next two sections, starting with the process of compiling the
arcs associated with transitions, and followed by the process
of compiling the arcs associated with places.

B. Compiling Transitions

For the purposes of “playing the token game” with a PLC,
transitions and places can be viewed as boolean variables.
Based on the rules stated in Definition 1, a series of boolean
statements can be formed to determine which transitions can
fire as (representing logicalAND by ∧, OR by ∨, andNOT by
¬). In the simplest case, there is no conflict between transitions
and a transition is enabled when all of the pre-conditions and
none of the post-conditions are marked. Conflict can occur
when two transitions have arcs to or from the same place.
An example showing these two types of conflict is shown in
figure 4. The possibility of two or more conflicting transitions
firing simultaneously is precluded by rule 3 in definition 3.
Nevertheless, the question remains of how to implement this
restriction. If the restriction were ignored, the simultaneous
firing of conflicting transitions would lead to places either
overflowing (i.e. a transition firing when its post-condition
already had a token), or underflowing (i.e. a transition firing
when its pre-condition had already had its token removed).

Fortunately, it is not necessary to insert code into the PLC
program to evaluate which transitions might be conflicting.
Instead the compiler can simply look for thepossibility of
conflict between two transitions (also known as structural
conflict), and guard against them firing simultaneously. To do
this, an additional test is added to each update for a transition
with the potential of conflict with a preceding transition.
For example, the logical update fort2 in figure 4 is t2 ←
p1 ∧ ¬p3 ∧ ¬t1. Given thatt1 will be evaluated first,t2 will
never fire whent1 is firing. Potential conflict can be rigorously
defined as follows.

Definition 4: Let M = (P, T, F, I, Cin) be a pure Non-
Autonomous EN system. Let the set of transitionspotentially
conflicting with t ∈ T be those for which there is some
markingC where they are conflicting. Define two transitionst

andu as beingconflictingin C iff both are enabled and{t, u}
is not a step enabled atC.
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Lemma 2:The set of transitions potentially conflicting with
t is

conf(t) = {u : t 6= u ∧ ( •t ∩ •u) ∪ (t• ∩ u•)− I 6= ∅

∧ ( •t ∩ u•) ∪ (t• ∩ •u) = ∅} (1)

for all t ∈ T .
Proof: See appendix.

Given this notion of potential conflict, it is now possible to
define an algorithm that finds a setU that is a step enabled
at some configurationC. There is no attempt here to find the
largest possible such set. (Note that for the setX with elements
{x1, x2, . . . , xn},

∨

X is shorthand forx1∨x2 ∨ . . .∨xn and
similarly,

∧

X is shorthand forx1 ∧ x2 ∧ . . . ∧ xn.)
Theorem 1 (Step enabled atC): Let M = (P, T, F, I, Cin)

be a pure Non-Autonomous EN system with a current config-
urationC. Let U0 be an arbitrary subset ofT . Defineτk to be
a subset ofT that contains{t1, t2, . . . , tk} for 1 ≤ k ≤ |T |
and τ0 to be the empty set. For each transitiontk being the
kth element ofT , if tk is enabled atC and is not potentially
conflicting withUk−1 ∩ τk−1 (i.e. conf (tk)∩Uk−1 ∩ τk−1 =
∅), thenUk = Uk−1 ∪ {tk}, otherwiseUk = Uk−1 − {tk}.
The final setU|T | is a step enabled atC. If there is an enabled
transition atC, thenU|T | is non-empty.

Proof: See appendix.
The above theorem forms the basis for an algorithm that
sequentially examines each transition and finds the set of
transitions enabled atC. The set is constructed by adding
in enabled transitions that are not conflicting with the ones
that have been included so far. By only examining conflict
with transitions that have been examined during this cycle,
it is possible to avoid initialising the setU . Also, this means
that if two transitions potentially conflict, only the second will
perform the check for conflict, which is sensible since only the
second transition ever needs to perform this check.

The setU corresponding to a step enabled atC can be
represented in PLC memory by associating a unique single
bit address with each transition inT . The configurationC can
also be represented by mapping each place inP to a unique
single bit address. Since the algorithm does not assume that
the setU is initially empty, it is possible to proceed without
initialising each transition bit. On this basis, the algorithm can
be restated as follows.

Algorithm 1 (Find step enabled atC): Let M =
(P, T, F, I, Cin) be a pure Non-Autonomous EN system
with a current configurationC. Let pj ∈ P for j ∈ [1, |P |] be
a set of boolean variables representing membership inC. To
find a step enabled atC and represent it as the ordered set of
boolean variablestk ∈ T , update (in ascendingk order),

tk ←
∧

•tk ∧ ¬
∨

t•k ∧ ¬
∨

(conf (tk) ∩ τk−1) , (2)

for all k ∈ [1, |T |].
Remark 3:All transitions in the identified step are fired

simultaneously (during the same cycle). In the case of conflict,
the conflict will always be resolved in the same way (in favour
of earlier transitions) given a particular ordering of transitions.
Note that the ordering of transitions is arbitrary; where the
choice of one transition over another is important, the designer

p1 t1 p2

· · ·

pn tn

Fig. 5. Sequence of places. The marking of each place in the sequence
persists for one cycle.

should use sensory inputs to help determine which transition
should fire, rather than to fine tune transition priorities.
For example, given the net shown in figure 4, (2) gives the
ordered set of updates,

t1 ← p1 ∧ ¬p3,

t2 ← p2 ∧ ¬p3 ∧ ¬t1,

t3 ← p2 ∧ ¬p4 ∧ ¬t2,

t4 ← p5 ∧ ¬p4.

It is assumed that these updates are processed in the order
given. Given the configuration in the diagram,t1 and t3 will
fire.

C. Compiling Places

The second phase is to compile places to PLC instructions.
Places should turn on when any transitions in its pre-set fire,
turn off when any of its post-set fire, and otherwise stay in their
previous state. This can readily be expressed as an algorithm
for updating the configuration.

Algorithm 2 (Updating the configuration):Let
M = (P, T, F, I, Cin) be a pure Non-Autonomous EN system
with a current configurationC and U be a step enabled at
C. Let boolean variablesp ∈ P represent membership inC,
and variablest ∈ T represent membership inU . The updated
configurationC′ such thatC [U〉C′ corresponds to updated
variablesp according to the assignment,

p←
∨

•p ∨ p ∧ ¬
∨

p•, (3)

for all p ∈ (P − I).
Note that input places are not updated.

Remark 4:Transient markings that are visited are always
visited for at least one cycle. For example, given the EN
system in figure 5, the marking at the end of the cycle is
successively{p2} , {p3} , . . . , {pn} , {} , . . . with each place
being visited once.
For example, applying (3) the updates for place variables for
figure 4 are,

p1 ← p1 ∧ ¬t1,

p2 ← p2 ∧ ¬ (t2 ∨ t3) ,

p3 ← (t1 ∨ t2) ∨ p3

p5 ← p5 ∧ ¬t4.

The evaluation of these updates can occur in any order. Given
the configuration{p1, p2, p5}, t1 andt3 firing will give a new
configuration of{p3, p5}.
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D. Extending the approach to T-timed Petri nets

The compilation method described above has no timed
aspect other than that induced by the implicit loop (known
as thescan cycle) of the PLC. It is a common requirement for
PLCs to have a timed interaction with the world. For example,
a button may need to be depressed for a full three seconds,
to ensure that it cannot be accidentally knocked, or a cooling
fan may need to be run for several minutes after the cause of
heat has been removed.

One approach to introduce timed interaction into the model
and thus produce timed interaction behaviour in the PLC code
has been developed by Joneset al. [22] and is based on T-
timed Petri nets. The “T” stands for transition, and this means
that transitions may have time delays associated with them.
In Joneset al.’s implementation, the firing of a transition is
delayed until a certain time has elapsed.

Joneset al. apply this approach in the context of Petri nets
with no (apparent) limit on the tokens per place. If there were a
limit on the number of tokens per place, it would be necessary
to retest the conditions for firing when the time has elapsed
to ensure that, for example, the maximum number of output
tokens per place is not be exceeded (i.e. check for overflow).

Consider also the situation where two timed transitions
have arcs flowing from a place with a single token. Although
conflict checking might prevent them from beginning their
timers simultaneously, the problem remains that both might
start timers, leading both transitions to fire, and thus to the
situation that one transition attempts to draw a token from an
empty place (i.e. the place underflows).

The dual problems of overflow and underflow are partic-
ularly critical when dealing with Petri nets that have binary
marks. They can be resolved by retesting the requirements
for firing a transition after the time has elapsed, but before
firing the transition. This leads to the question of what should
happen if the requirements for firing a transition were only true
intermittently during the timed delay. Consider, for example, a
button being pressed intermittently but happening to be pressed
at the start and end of the timed delay. Following the usual
semantics for T-timed PNs [1, p. 98], a transition with a time
delay only fires after the normal conditions for firing have
occurred continuously for the specified time period.

Definition 5: A T-timed Non-Autonomous EN system is a
tuple (P, T, F, Cin, I, W ) where (P, T, F, Cin, I) is the un-
derlying Non-Autonomous EN system, andW : T → N

0

is a mapping from transitions to non-negative integers that
specifies the “wait” time or time-delay associated with each
transition. Transitionst ∈ T such thatw(t) = 0 have the usual
firing semantics, whereas those transitions wherew(t) > 0
only fire after being enabled continuously forw(t) time units.
The above definition suggests that it is possible to simply
extend Algorithm 1 that finds a step enabled at configuration
C. It is common for PLCs to explicitly support timers,
although the semantics for using them vary. Here it is assumed
that an instruction and a predicate are supported:RUN_TIMER,
and IS_COMPLETE. The instructionRUN_TIMER(a, b), when
enabled, causes timera to run for up tob time units. Dis-
abling the instruction causes the timer to be reset. The pred-

(t2, w(t2))t1

p1

p2

(a)

p1 p2

run timer(1, w(t2))

is complete(1) t1 t2

(b)

Fig. 6. T-timed Petri net (a) with a timed transitiont2 that has a time delay
w(t2), and the section of ladder diagram code (b) for firing transition t2.
Note that the conflict test fort1 only needs to be done just prior to firing the
transition.

icate IS_COMPLETE(a) is true when the time has completely
elapsed.

Algorithm 3 (Find step enabled with timed transitions):
Let M = (P, T, F, Cin, I, W ) be a pure T-timed Non-
Autonomous EN system with a current configurationC.
Assume the availability of a timer for each timed transition.
For transitions withw(t) = 0, (2) applies, however when
w(t) > 0 the following series of statements must be generated,

1) RUN_TIMER(j, w(tk)) iff
∧

•tk ∧ ¬
∨

t•k
2) tk ← ¬

∨

(conf (tk) ∩ τk−1)∧ IS_COMPLETE(j).
for eachk ∈ [1, |T |], wherej refers to the next available
timer.

An example of timed interaction is shown in figure 6. For
readers not familiar with the ladder diagram (LD) language,
an open contact (two short vertical bars separated by a space)
means take the value of the element, and a closed contact (like
an open contact but with a diagonal stroke through it) means
take the logicalNOT of the value of the element. Horizontal
line joins correspond to a logicalAND , while vertical line joins
correspond to a logicalOR. Broken circles (referred to as coils)
mean that the logical value calculated so far is output to that
element. Boxes containing a function (such as “start timer”
in the diagram) are only executed if the preceding logical
expression evaluates to true.

IV. D ISCUSSION

An important property of (2) and (3) is that they rely only
on boolean logic and assignment operations at runtime. This
leads to program code that contains no conditional statements
or loops. The time for each PLC scan cycle is thusΘ(|P |+|T |)
for a net with |P | places and|T | transitions. Note also that
this is a tight bound; the scan cycle time will remain constant
regardless of the state of the net. This is an important property
for real-time systems.

Since the statements in the resulting program are simple,
diagnosis of a problem within the program is straightforward.
Note that even if the program were free of bugs, diagnosis
of the system as a whole, for example to find a faulty sensor,
would still be important. Ladder diagram (LD) diagnosis tools
are useful in this respect because they make it easy to trace
the cause of this type of problem. Of course, if bugs are
discovered, it is important not to change the ladder diagrams,
but rather to change the Petri net and recompile it.

An issue not dealt with in this approach is that of establish-
ing the initial configurationCin. Some PLC operating systems
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p1

wait

p3

p4

busy

p6

go

done

t1

t2

t4

t5

...

PLCComputer

Fig. 7. Shared memory coordination pattern.

provide a “first scan cycle” flag, and this can be used to
initialise the configuration. However the exact mechanism used
may vary.

A. Design Patterns

A fundamental advantage of the graphical representation is
that it allows commonly used patterns to be easily identified
and described. To demonstrate this, two simple patterns are
given, both to do with machine to machine (or module
to module) communication for the purpose of coordinating
behaviour. The first involves shared memory and the second
performs a similar task but without requiring shared memory.

1) Shared Memory Coordination Pattern:In previous
work [28], the basis for using shared memory for communicat-
ing between non-autonomous EN systems has been developed.
The main outcome of this work was to show that a place
could be used to communicate safely as long as there were
only incoming arcs from one machine and only outgoing arcs
to the other. Figure 7 shows a coordination pattern based
on this approach. This is similar to Boucher’s use of Petri
nets for describing communication protocols [18, p. 354]. A
shared memory coordination pattern is generally appropriate
between a general purpose computer and PLC or between two
otherwise independent modules on the same PLC. An example
of the use of this pattern is given in the case study in sectionV.

2) Wired Connection Coordination Pattern:It is not always
possible to use shared memory. Controlling a robot arm, for
example, must typically be performed by wiring some of the
PLC’s inputs and outputs to corresponding outputs and inputs
on the robot controller. Figure 8 shows a wired connection
coordination pattern. In this case, no places sit on the boundary
between the two machines. Instead, the PLCGO place is wired
to the GO input on the robot, while the robot outputBUSY is
wired to theBUSY input on the PLC, as shown by the dashed
arrows.

B. Modularity

There are two main requirements for modularity. First, when
designing a net to control a particular device, such as the

go

wait

p3

p4

busy

p6

t1

t2

t4

t5

go

busy

...

RobotPLC

Fig. 8. Wired connection coordination pattern.

conveyor dock discussed in section V, it is useful to be able to
reuse that net for as many devices as exist. Second, it is often
desirable to decompose the task of controlling a device into
a series of interacting sub-components to reduce the overall
complexity of the design.

Module reuse is possible if modules are not hard-wired to
specific addresses. In the model proposed here, module reuse
is made possible by separating the definition of the structure
of the net from the assignment of PLC addresses. Borrowing
from the object oriented paradigm, the net is roughly like
the definition of aclass, whereas the specific use of it for a
particular device is theinstance. The graphical tool discussed
in the next section supports this approach.

Task decomposition is an important tool to avoid overly
complex modules. Typically, Petri net decompositional ap-
proaches use some form of hierarchy of nets and sub-nets.
This is the approach taken by the SIPNEditor software [11],
for example. This approach, however, can restrict the richness
of the interface between sub-nets. Rather than communicating
complex messages, these types of sub-nets are merely being
told when to start, and then saying when they have finished.

In principle, a hierarchical approach could be used with
non-autonomous EN systems. In practise, however, it was
found that a different approach to task decomposition was
more useful: that of using place-bordered modules. Rather than
forming a hierarchy, these modules are autonomous and may
initiate communication. Module to module communication can
be enabled by putting one or more places on the “border”
between two modules, as described in the shared memory co-
ordination pattern described in the previous section. Potentially
other communication patterns could also be used. A useful side
effect of this approach is that it becomes straightforward to
distribute a large system over a number of PLCs or computers
by simply moving some of the modules.

C. Relationship to Function Block Architectures and Agent-
based Approaches

The concept of place-bordered modules is similar to that
of Function Block architectures [29]. Function blocks were
originally standardised in IEC 61131-3 as one of the alternative
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PLC programming languages. They have since been further
developed into the IEC 61499 series of standards. IEC 61499
is a significant extension over IEC 61131-3 function blocks
that emphasises software reusability, distribution, and event-
based communication.

A function block typically encapsulates an algorithm, often
implemented using Ladder Diagrams (LD). The algorithm
could also be designed as a non-autonomous EN system
module. In this way, the two approaches can be considered
complementary; function blocks dealing with the higher level
description of how modules plug together while the non-
autonomous EN system defines how the function block re-
sponds to those signals. Indeed, the function block architecture
neatly solves the problem of how to graphically specify the
connections between place-bordered modules.

Vyatkin and Hanisch [30] have examined the use of Net
Condition/Event Systems (NCES) as a model for IEC 61499
function blocks. In the NCES model of a distributed system,
a signal event from one component can force a simultane-
ous action in a second component, but only if the second
action is enabled. In their work they derive a single net
that models a distributed system of function blocks in order
to perform verification analysis. Computationally the NCES
model is similar to the non-autonomous EN system. The main
difference between the two being that in the modular non-
autonomous EN system model presented in this paper, arcs
do not cross module boundaries. Therefore, from the point
of view of the PLC software developer, they can consider
each module in isolation. It is interesting to note that it should
be straightforward to start with a set of non-autonomous EN
system modules and then compile them to a single NCES net
for the purpose of using Vyatkin and Hanisch’s verification
approach.

The IEC 61499 architecture deals with distribution by
supporting event signals into and out of a function block in
addition to data flows. This more naturally supports interrupt
driven or “push” style communication, whereas without event
signalling, polling or “pull” style approaches will tend tobe
required. The place-bordered module appears initially as a
polled approach. For example,t2 in figure 7 seems to need
to poll “wait” and “done” in order to find out when to fire.
Nonetheless, it is possible, in the context of a general purpose
computer, to only test for transitions being enabled when (a)
the previous cycle caused a transition to fire, (b) the earliest
timer expiry has been reached, or (c) external (input or output)
places are altered. Where (c) can be supported by a hardware
interrupt, the need for polling can be significantly reduced.

Several authors, including Brennan et al. [31], and Leitão
et al. [32], have shown how IEC 61499 function blocks can
be linked to higher-level agents. As we describe in previous
work [28], the communication can be peer-to-peer in nature,
allowing the low-level non-autonomous EN system to not
simply respond to requests for service from high-level agents,
but be able to notify them of faults or other changes in the
environment asynchronously. It may seem that it would be
simpler to have all components being structured as software
agents, however, as Brennan et al. [31] discuss, physical
machinery often requires its controller to be responsive inreal-

Fig. 9. PETRILLD graphical tool showing the net for a conveyor dock.
In the tool, a hexagon represents a place that must have a specified address,
which saves the user from having to specify addresses that donot matter.

time.

D. Graphical Tool

To support the use of the compilation method presented in
this paper, we created a graphical tool called PETRILLD 1 to
allow Non-Autonomous EN systems to be designed, simulated
and compiled to executable PLC program code (shown in
figure 9). Note that the tool includes a hexagonally shaped
place to denote a place that must have a specified address
with the PLC. Circular places have their addresses dynamically
assigned. The PETRILLD tool provides a number of features,
including:

1) a graphical design tool that allows the user to graphically
layout a Non-Autonomous EN system,

2) an address table editor that allows certain places to be
associated with specific memory addresses in the PLC,

3) a simulation tool that allows places to be marked or
unmarked and the firing sequence to be stepped through,
and,

4) a compiler that produces PLC instructions as defined by
the compilation method described in this article.

The following section makes use of this graphical development
environment to develop a PLC control program for a conveyor
dock.

V. CASE STUDY: CONVEYOR DOCK

To demonstrate the compilation approach, the graphical tool
was used to develop PLC programs for a MonTech2 Position-
ing Station (or more simply, conveyor dock), controlled by an

1Freely available under the GNU General Public License fromhttp:
//petrilld.sourceforge.net

2See http://www.montech.de
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Fig. 10. Photograph of docking station, also showing a shuttle (without a
top).

Omron C200E PLC. A picture of the docking station is shown
in figure 10. This docking station is one component in an
experimental flexible manufacturing laboratory environment
that is described in detail elsewhere [33], [34]. The conveyor
track is a monorail on which shuttles move in a single direction
around the track while there is nothing obstructing their path.
They can also be signalled to stop and start using pneumatic
signals affixed to the track. The conveyor dock is a component
of this track. When a shuttle arrives at a dock, it is stopped.
If it has a work-piece top, the top can be clamped in place,
allowing the work-piece to be worked on. The top can then be
unclamped, while leaving the shuttle stopped. This operation
is useful when lifting the top off the shuttle. At any stage,
the shuttle and top can be released, which causes the top to
be unclamped and the shuttle to start moving along the track
again.

Figure 9 shows the non-autonomous Elementary net design
developed for this conveyor dock using the graphical tool.
The net is drawn graphically with circles for normal places,
triangles for input places, boxes for transitions and lineswith
arrows for directed arcs connecting places to transitions and
transitions to places. In this case study, the naming convention
used for valves and sensors involves a prefix of “v” or “s”,
respectively, followed by a descriptive name. Two output
places,VCLAMP and VSTART correspond to valve actuators.

The former clamps the top of the shuttle in place, while the
latter signals the shuttle to start moving out of the dock. These
two output places should never be active simultaneously as this
might damage the shuttle motor.

The placesCCLAMPSHUTTLE, CLAMPING, and DONE are
an instance of the use of the shared memory coordination
design pattern described in section IV-A.1.

It is often desirable to have a transition fire when a place,
particularly an input place, is “false” or unmarked. For exam-
ple, if a piston should fire only when a sensor detects nothing
in the way. A possible approach is to augment the EN model
with a “negated” place, similar to the approach used by Jones
et al. [14]. However it is actually unnecessary to add anything
to the EN model; reversing the direction of the arcs involved
produces the same effect. For example, in figure 9,SCLAMP

must be unmarked (i.e. false) forT7 to fire (among other
conditions).

When developing the net for the conveyor dock, it was
possible to test the dynamic characteristics of the net by
single stepping through a simulation (using the graphical tool).
This meant that most of the debugging could be performed
without having to test it on the physical hardware. In principle,
automated verification techniques could be used, however the
tool does not currently support them. Once the net had been
compiled, and the resulting code transferred to the PLC, only
two problems were discovered. The first was that one of the
addresses had been coded incorrectly, and the second was that
commands should be normal places rather than input places (as
discussed above). Previous experience with developing code
by manually converting a non-autonomous Petri net model into
ladder diagram code was that it generated more complicated
code, and took much longer to debug.

Remark 5: In principle the SIPNEditor tool might have
been used, however IEC 61131-3 IL code is not supported
by the PLC being used.
A section of the resulting program, in ladder diagram form,
is shown in figure 11. This section includes all statements
that relate to transitionT3. There is the potential for conflict
with transition T5 and so the second rung shown in the
figure is coded to avoid it firing simultaneously withT3.
Specifically, conflict occurs if bothCUNCLAMPSHUTTLE and
CRELEASESHUTTLE are true, possibly indicating incorrect
logic in the external computer. The conflict check ensures that
even if this should happen, only one of the transitions will
fire.

While the statements for placesCUNCLAMPSHUTTLE,
UNCLAMPING and VCLAMP have a similar structure, they
correspond to different types of places.CUNCLAMPSHUTTLE

corresponds to a message from a remote computer and so is
only turned on by the remote computer (via the data table);
UNCLAMPING corresponds to internal state and is turned on
by one transition and turned off by another; andVCLAMP

corresponds to a physical actuator, but is otherwise turnedon
and off in the usual way. This last point reinforces the idea that
outputs, such as valves, lights and switches, are treated ina
similar way to internal state flags. No distinction is made inthe
Non-Autonomous EN model, and the derived PLC program is
the same for both.
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cUnclampShuttle Unclamping vClamp t3

vClamp cReleaseShuttle Releasing t3 t5

cUnclampShuttle t3 cUnclampShuttle

t3

Unclamping t2

Unclamping

t4

vClamp t3 t5

vClamp

Fig. 11. A section of the program generated for the conveyor dock in ladder
diagram form, showing all rungs that refer to transitionT3. T5 is potentially
conflicting (i.e. should not fire at the same time) and so the second rung
checks to ensure thatT3 is off (i.e. not firing) before firingT5.

VI. CONCLUSION

Manufacturers, and indeed many other industries using
automation, face an increasing rate of change in their operating
environment to satisfy the requirements of having an agile
system. This leads to a higher rate of change being required
in their automation systems. This paper contends that it is
easier to cope with changes in these automation systems if it
is just a matter of manipulating an abstract model, such as
adding new nodes and arcs to a Petri net, rather than altering
low-level program code, such as inserting new lines in a ladder
diagram program. It is important as well to avoid errors when
making such changes, and this can be achieved by automating
the compilation process. Designing at the higher level should
encourage reuse of designs and the formation of a catalogue of
design patterns, since such patterns are more easily recognised
when working abstractly. These factors all lead to an increase
in productivity. Less skill may be required to develop correct
PLC programs, and it should be quicker to do so.

This paper has introduced a formalism for the design of
automation software that builds on previous work in non-
autonomous Petri nets. It adds in the idea of treating inputs
and outputs as first-class entities and shows how this can help
with resolving ambiguity and allowing interaction patterns to
be more clearly represented. The mechanism for correctly
generating ladder diagram code has been derived in a way
that does not require that the engineer check the net for such
things as boundedness, or absence of conflict. In addition, the
modelling framework provides for the reuse of modules for
similar hardware components and allows the decomposition
of a large net into a set of place-bordered sub-nets.

A key contribution of this work is a graphical design,
simulation and compiler tool that provides the programmer
with an integrated environment for developing and performing
preliminary testing of PLC programs. This tool can auto-
matically compile into a variety of output forms, including
several different PLC languages and also Java, and Visual

Basic. In this paper, the approach and associated tool have
been demonstrated using a practical example involving a
conveyor dock. Using the tool, development time was greatly
reduced, and most bugs were discovered prior to testing on
the hardware.
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APPENDIX

A. Counter example for Lee et al. [19]

Consider the control PN in figure 12. Applying (4) of Lee
et al. [19], restated here as,

Pi =



Pi +
∑

{tj |tj∈ •pi}





∏

{pk|pk∈ •tj}

Pk · Cj ·Ej









·
∏

{tj |tj∈p•

i }





∏

{pk|pk∈ •tj}

Pk · Cj ·Ej





yields the following update equations forp1 andp2:

p1 = (p1 + p2) · p1

p2 = (p2 + p1) · p2

This assumes that there are no conditions or event triggers;
that is,Cj = Ej = 1 for j = 1, 2. Given that the update for
eitherp1 or p2 must be done first, and then the other second, it
is easy to see that this causes both to become unmarked after
the first iteration.
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p1

p2

t1 t2

Fig. 12. Control PN for counter-example

B. Proof of Lemma 1

Proof: Given that input placesi ∈ I can change state at
any time, the set of configurations with the same markings over
P − I will be strongly connected in the SCG. That is, given a
particular marking for non-input places, any other markingthat
has the same marking for non-input places will be reachable
by changing the state of some or all of the inputs. Merging
each such strongly connected set of configurations and then
converting the resulting SCG to an EN system yields a net
with no input places.

C. Proof of Lemma 2

Proof: Given any elementu of the setconf (t), the set
U = {t, u} must not conform to part (b) of the third rule of
definition 3, or there must not be a markingC such that both
t and u are independently enabled to fire. The first part of
(1) follows directly from negating part (b) of the third rule. It
remains to prove thatC can exist for allt, u. Since the net is
pure, botht andu must be enabled under some configuration.
If t could only be enabled whenu was not enabled or vice
versa, then some pre-conditions oft must be post-conditions
of u or some post-conditions oft must be pre-conditions of
u. This is precluded by the final part of (1).

D. Proof of Theorem 1

Proof: First, U0 ∩ τ0 is the empty set and thus a step
enabled atC, albeit a trivial one. Assuming thatUk−1 ∩ τk−1

is a step enabled atC for 1 ≤ k < |T |, if tk is enabled at
C and is not potentially conflicting withUk−1 ∩ τk−1 then
(Uk−1 ∪ {tk}) ∩ τk must also be a step enabled atC. If this
were not the case, thentk must conflict with a transition in
Uk−1 ∩ τk−1 at C. However sincetk does notpotentially
conflict with any transition inUk−1 ∩ τk−1 at any possible
configuration, it cannot conflict atC. Similarly, if tk is not
enabled atC, (Uk−1 − {tk})∩τk is equivalent toUk−1∩τk−1

and is thus also a step enabled atC. By induction,Uk ∩ τk is
a step enabled atC, for all 0 ≤ k ≤ |T |. ThereforeU|T | is a
step enabled atC, sinceU|T | ∩ τ|T | = U|T |. Furthermore, if
there is at least one enabled transition atC, there must be at
least one enabled transitiontj such thatUj−1∩τj−1 is empty.
Since there can be no conflict with the empty set, and since
no operation subsequently removestj , the final setU|T | will
have at least one element.

E. Proof of Algorithm 1

Proof: Given some set of boolean variablesV , define
On(V ) = {x ∈ V |x = true}. For any subsetX ⊆ V ,

∧

X is

true iff X ⊆ On(V ), and
∨

X is true iff X ∩ On(V ) 6= ∅.
Thus (2) can be restated as,

tk ← ( •tk ⊆ C) ∧ (t•k ∩ C = ∅) ∧

(conf (tk) ∩ τk−1 ∩ Vk−1 = ∅) ,

for all k ∈ [1, |T |], whereVk = Onk(T ) is the set of true
boolean variablestk ∈ T after thekth transition has been
updated. The first part of the above expression corresponds
directly to the requirements in Definition 3; that all of the
pre-set of tk and none of its post-set must be inC for
tk to be enabled to fire. The second part checks that no
conflicting transition that is previous is currently firing.By
its construction, the setVk corresponds to the setUk in
Theorem 1.

F. Proof of Algorithm 2

Proof: Following the argument for Algorithm 1, (3) is
equivalent to,

p← ( •p ∩ U 6= ∅) ∨ p ∧ (p• ∩ U = ∅) ,

for all p ∈ (P − I). This can then be converted to the form,

p← p ∈ U• ∨ p ∧ ¬ (p ∈ •U) ,

for all p ∈ (P − I). This update to boolean variables is
equivalent to producing an updated configurationC′ where,

C′ ∩ (P − I) = (C ∪ U• − •U) ∩ (P − I) .

Since the update occurs in place, the configuration of input
places is unchangedC′ ∩ I = C ∩ I. These combine to give

C′ = C ∪ (U• − I)− ( •U − I) ,

which can easily be shown to be the set equivalent of the
second rule of Definition 3.

G. Proof of Algorithm 3

Proof: Part 1 ensures that the timer only runs while the
transition is enabled. The timer can only be complete if it
stays running for the entire time, therefore part 2 will only
fire the transition if the usual firing conditions holdand if the
transition has been enabled forw(t) time units.
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