-

View metadata, citation and similar papers at core.ac.uk brought to you by .i CORE

provided by CURVE/open

Nonautonomous elementary net
systems and their application to

programmable logic control

Brusey, J., McFarlane, D.C. and Thorne, A.
Author post-print (accepted) deposited in CURVE March 2012

Original citation & hyperlink:

Brusey, J., McFarlane, D.C. and Thorne, A. (2008) Nonautonomous elementary net systems
and their application to programmable logic control. IEEE Transactions on Systems, Man and
Cybernetics. Part A: Systems and Humans, volume 38 (2): 397-409.
http://dx.doi.org/10.1109/TSMCA.2007.914775

Publisher statement: © 2008 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during
the peer-review process. Some differences between the published version and this version
may remain and you are advised to consult the published version if you wish to cite from
it.

CURVE is the Institutional Repository for Coventry University
http://curve.coventry.ac.uk/open

https://core.ac.uk/display/228141326?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/TSMCA.2007.914775
http://curve.coventry.ac.uk/open

Non-Autonomous Elementary Net Systems and
their Application to Programmable Logic Control

James Brusey, Duncan C. McFarlane, and Alan Thorne

Abstract—A novel approach to Petri net modelling of Pro- details such as the physical layout of the shop floor, and the
grammable Logic Controller (PLC) programs is presented. Tre nature of the physical sensing and actuation configuraton c
modelling approach is a simple extension of Elementary Net ganerglly not be expressed in a Petri net model. Previous
Systems and a graphical design tool that supports the use of h in thi tably Chi d McEarl 7
this modelling approach is provided. A key characteristic ¢ the researchers in this area, notably Irn an cFarlane [7],
model is that the binary sensory inputs and binary actuation Frey [8]-[13] and Uzam and Jones [14]-[17], have addressed
outputs of the PLC are explicitly represented. This leads to the problem of integrating sensing and actuation by adding a
two improvements: outputs are unambiguous, and interactia annotationon each node of the net. Each annotation expresses
patterns are more clearly represented in the graphical form Use g fi6yy of information to or from the outside world associhte
of this modelling approach produces programs that are simp, ith that node. Such Petri net IIv classifi
light-weight, and portable. The approach is demonstrated g wi a no. €. such Fetr nets ar_e generally classi |.embas
app|y|ng it to the deve|0pment of a control module for a MonTeh autonomoum the sense that they |nﬂuence, a.nd are |nﬂuenced
Positioning Station. by, the external environment [1]. There are various forms of

Index Terms— Petri nets, programmable logic controllers such nets depending on the type of annotation, such as Frey’s
signal interpreted Petri nets (SIPNs) [13]. In this papen-n
autonomous Petri net will be used to refer to a net that defines

its external interface via an annotation for each node.
PETR| nets [1], [2] have long been used as a way of mod- The problem with existing approaches to coding the be-

elling manufacturing operations [3], [4]. In comparisomayiour of a PLC as a Petri net is that they treat inputs

with finite state automata [5], they have the advantage thg{q outputs as being external to the state of the PLC [7]-
they readily model processes that are sometimes concurmgif. This is at first a conceptual difficulty, meaning that
and sometimes sequential. For example, individual pags thhe correspondence to a finite state automaton is not clear,
are combined together into a product might be machinggt example. But it also causes some potential ambiguity
separately and independently. These independent pracegsane resulting control implementation. This paper prass
can proceed at any rate relative to each other. This megRgt it is advantageous to treat inputs and outputs as part
that there are many possible ways for the state of the wheJ the controller state, and to represent them explicitly in
system to evolve over time, depending on exactly when eagfy petri net model. There are two advantages. First, it then
machine reaches each different stage in its processin@.cy¢lecomes impossible to set outputs in an ambiguous way. It
Even though the compo_nents are machined separately, SipC ot possible (as it is in the SIPN model) to specify, for
they come together during the final stages, a model of thgample, that a certain output signal is to be set both on
complete system cannot merely be a collection of independ@Rq off simultaneously [9]. Second, inputs become a structural
automata, but must represent, for example, the way these figgment and thus interaction patterns are shown more glearl
stages must wait until all prior stages are complete. Pets N This paper shows how a PLC program can be compiled
can be used to express and reason about concurrent proceggggtly from a Petri netvithout requiring annotations. This
such as these in a simple and compact way [6], hence thgifreferred to azompilingthe net, in the sense that a high-
popularity as modelling tools for the manufacturing domainjeyel, abstract representation of the behaviour of the ramgs

Given that the Petri net is an appropriate model for j§eing used to automatically and directly generate exetaitab
manufacturing operation, it also seems natural to deriee tp| c code. A graphical tool that supports this process is a
corresponding controller for the operation directly frohist central outcome of this research. The general aim of such a
model. A controller, in this sense, means the program opo| is to ease the burden on the engineer. This overall aim
set of programs that runs on a Programmable Logic Copssolves into four fundamental requirements:
troller (PLC)—which is connected to sensors and actuators—i) To correctly translate the Petri net behaviour into corre-
allowing it to sense and change the manufacturing envi- sponding program behaviour,
ronment. An immediate concern is that there is often not 2) To automaticallyperform the translation without requir-

sufficient information in the Petri net model to enable an ing that the engineer ensures boundedness, absence of
unambiguous derivation of a controller. That is, the Pegti n conflict, or absence of output ambiguity

is too incomplete a description of the system. For example,3) To produce avariety of output formsncluding ladder

This work was supported by Auto-ID Labs, I*PROMS, and the Gedye- |OgiC diagrams,]
MIT Institute. 4) To support code reuse througiodularity.

0000-0000/00$00.0®) 2004 IEEE

|. INTRODUCTION

The paper is organised as follows. The next section reviewansitions sequentially. In contrast, the approach prteskein
related work including a brief introduction to the theory ofhis paper allows some simultaneous firing by checking for
Elementary Net Systems. This theoretical basis is then ugsatentially conflicting transitions and ensuring that thdy
to form a new class of net, referred to in this paper as Nonet fire simultaneously.
Autonomous Elementary Net systems. Section Il shows howA key issue with non-autonomous PN-based approaches is
the model can be automatically translated into a form slétalihat there is not a one-to-one correspondence betweentsutpu
for PLCs and proves that the resulting code has equivalemd a subset of the places in the net. Therefore it is possible
behaviour. Section IV discusses several aspects of the tisat when many places are marked, more than one of these
of this approach, particularly focusing on coordinatiord anplaces will set the value of the same output, and these \ariou
modularity. Section V demonstrates the compilation meth@gttings may be inconsistent. Minas and Frey [21] mentiah th
by applying it to a real device control problem. Finallythis was a difficulty that their students frequently encevaed
conclusions are presented in the last section. while using their SIPN-based tool. Having binary actuator
outputs correspond to a subset of places in the Petri net
prevents this ambiguity. Then, if two active “processeshivi
the net attempt to turn on an output, one will “block”, or wait
A basic approach to translating Petri net behaviour inigtil the other has finished.
ladder logic code is suggested by Chirn and McFarlane [7]. As with the work here, Frey’s and Chirn’s approaches are
Their approach is easy to understand and perform, howewesed on binary marks. In contrast, Uzam and Jones [14]-
it may produce some unwanted side-effects where a toker[1s], [22] developed the Token Passing Ladder Logic (TPLL)
temporarily in two places at once. Usually, this sort of sidgnethod that supports multiple tokens per place. As Peter-
effect has no impact on the overall behaviour. The difficidty son [2] notes, Petri’s original model involved binary marks
that it mayhave an impact, and in particular that the problemnd simple arcs, whereas this has been shown to be too limited
will tend to be hard to diagnose because the situation occtigg some problems and has been extended to allow multiple
for only a single PLC cycle. tokens per place, and multiple arcs between any two nodes.
A number of other authors have developed approachesNevertheless, Elementary Net systems, with binary markls an
producing PLC programs from Petri nets [12], [13], [16],]18 simple arcs, have a more natural correspondence to theybinar
[19]. The two most well known ones are found in theses lyensors and actuators controlled by a PLC. In addition,ewhil
Frey [13] (referred to here as the signal interpreted Peiti mplace-transition nets theoretically have no limit on thketus
or SIPN approach) and Uzam [15] (referred to as the tokger place, when this is translated to a PLC it would seem
passing ladder logic or TPLL approach). Frey and Minas [1hkcessary to include a limit to avoid overflow errors. TPLL
have also built a graphical development tool to supportrtheloes not seem to include such a limit.
approach [20]. Using their tool, the resultant nets can beJoneset al. [22] provide an approach for incorporating
simulated and analysed for liveness and reachability. éir thtime delays within the resulting program. However, their
approach, IEC 61131-3 standard Instruction Lists (IL) argpproach potentially leads to problems both of overflow and
produced by the compilation process (Frey has also examingfdunderflow in the number of tokens per place.
generating sequential function charts (SFC) [9]). The aaphn Boucher [18] mentions the use of Petri net places as a
here is similar, but whereas Frey and Minas’s tool produckasis for communicating resource locks between systems.
statements that include flow control instructions, the apph In particular, Boucher shows how handshaking between two
presented here does not. Avoiding flow control instructionystems can be performed. However this is merely shown
should make the program easier to debug because it meassa way of modelling the communication protocol, and the
that every statement is executed during every scan cycle.iltiplementation details, such as ensuring that shared deds a
addition, the lack of flow control instructions means that th(if any) are used in a safe manner, are not discussed.
program is readable in ladder diagram form, thus providimg a Feldmannet al. [23] define an extension to coloured Petri
easier migration path for manufacturing environments whenets called Ordered Coloured Petri Nets (or OCPNs) and show
the use of ladder diagrams is entrenched. how they can be translated to IEC 61131 Structured Text
Lee et al. [19] propose a method for deriving ladder logiqST). The OCPN approach is more sophisticated again than
from Control Petri Nets. Control Petri Nets (or CPNs) addzam’s TPLL, since not only may there be multiple tokens
enabling and inhibiting arcs. Lest al’s approach is to assumeper place, but also the tokens are coloured. Each transition
that the engineer has produced 1-safe nets that have cerigsimnnotated with a guard function that is a conjunction of
restrictions about what conflicts can occur. Their approabtolean variables. Also each arc is annotated by one ofalever
makes the optimisation of combining the calculation of whicstandard colour functions.
transitions to fire and the calculation of the updated maykin A difficulty with many of the existing approaches is that,
into a single step. However this appears to produce incorredth the exception of Frey and Minas’s compiler [8], they are
results for some nets. See the appendix for a counter-eeamfargely manual. In their review of this subject area, Peng an
Correctly dealing with concurrent firing of transitions isZhou [24] note the need for verified, automatic conversion
discussed by Frey [8]. Frey uses a similar approach to thetween Petri net and IEC 61131-3 programming languages.
one described here, that of updating tokens after detemginiThey also note the need for effective compositional methods
that a transition should fire. Conflicts are avoided by firinfpr modular, distributed control systems, and in particulate

Il. RELATED WORK

@——H—»@ 1) A transitiont is enabledto fire at configurationC,

denotedC [t), if all of its pre-conditions are marked

p1 1 P2 . : -
t C C and all of its post-conditions are unmarked
Fig. 1. A simple EN system corresponding = {p1,p2}, T = {t1}, t*NC=2.
F={(p1,t1), (t1,p2)}, Cin = {p1}- 2) When a transitiont fires at C, tokens are removed

from all pre-conditions and added to all post-conditions,

yielding a new configuratiod®”’ = (C'Ut*) — *t. That
the importance of interfaces or interlocks between differe C’ is the result oft firing at C' is denoted ag’ [t) C”.

PN-based control modules. This paper aims to address thesg) A set of transitionsU/ C T is a step enabled af,

needs with a minimalist model that is thus hopefully easily denotedC [U/), iff (a) all transitions inU are enabled at
understood. C, and (b) for allty, to € U with ¢1 # t5, *t1N % = @

To describe this approach rigorously it is first necessary to and#$ N3 = .
review the theory of elementary net systems on which thge Jatter condition of the third rule ensures that the firing
approach is based. of any individual transition i/ does not affect whether any
other transition inJ is enabled. Note that, in an EN system, if
some preconditions are also postconditions, or in othedsgyor
. if for any transitiont € 7', *t Nt* # &, then the transitior

An Elementary Net (EN) system [25] is a fundamental forrsan never be enabled. EN systems that have no such trassition
of Petri net. In comparison with ordinary Place / Transitiogre referred to apure
systems (P/T systems) [25], EN systems only allow a singleThijs section has introduced the domain. In the following

token per place, whereas ordinary P/T systems allow ag¥ction, a non-autonomous EN system model is defined and
number. Condition / Event (C/E) Systems also have only ofige mapping to PLC code described.

token per place and form the basis for SIPN systems [13].
The difference between C/E and EN systems is quite subtle
and the terms are often used interchangeably. Pomello and
Bernardinello [26] define the difference as being that witB C EN systems are autonomous. Programmable Logic Con-
systems forward and backward reachable cases are considerellers (PLCs) are not, since they must interact with theleho

whereas for EN systems, there is an initial configuration affthe behaviour of a PLC is much simpler, though, than a

A. Elementary Net Systems

IIl. NON-AUTONOMOUSELEMENTARY NETS

the system only evolves in a forward direction. general purpose computer. They operate in a cyclic fashion
The particular properties of EN systems can be describedhde up of three phases. First, sensor values are read into
as follows. An elementary net system is a 4-tudh¢, = a special memory area reserved for inputs (that is otherwise

(P,T,F,Cy,), where (P,T,F) is the underlying network read-only). Second, the user’s program is executed exactly
consisting of a set of places or statBsa set of transitions or once. Third, actuator states are updated based on the values
eventsI’ and a set of relations or directed arEs Transitions in the memory area reserved for outputs. These three phases
are distinct from places> N T = o and directed arcs are repeated indefinitely.
join either a place to a transition or a transition to a place PLC programs are usually written in an intermediate level
F C (PxT)U (T x P). It is usual to represent the netlanguage, such as ladder diagrams (LD) or function block
diagrammatically with circles for places, boxes for tréinsis, diagrams (FBD), that have a close correspondence with the
and lines with arrows for directed arcs as shown in figure lbw-level machine instructions. Of the standard PLC lan-
A configurationC C P corresponds to the dynamic state ofjuages, as defined by IEC 61131-3 [27], the Instruction List
the net and is initiallyCy,. The configuratiorC is represented (IL) language has the closest correspondence, and is npughl
graphically by the presence of a token (i.e. a large dot) aguivalent to assembly language. All LD programs can be
places that are . Roughly speaking, a place markedif expressed as IL, but not all IL programs can be expressed
it is in C' or unmarkedotherwise. For each € PUT, *x = in LD.
{y e PUT : (y,z) € F}isthe pre-set or set of elements with The non-autonomous EN system model of a PLC to be
arcs leading intor, while z* = {y € PUT : (x,y) € F} is developed here is based on the observation that elemerary n
the post-set or set of elements with arcs leading frorithat places are similar to the binary inputs, outputs and (iragrn
is for any nodex, be it a place or transition, its pre-sét data storage areas of a programmable logic controller.iSpec
contains all nodes that have arcs directed to it, while itstpoically, the set of places for an elementary net are equitalen
set z* contains all nodes that have arcs directed away fromfib the bitwise address locations for binary sensors (inputs
For a set of nodeX’ C PUT, its pre-set*X = J,.y *zis binary actuators (outputs) and binary data storage latsitio
the union of pre-sets of its elements and similarly its [gedt- The configuration of the Petri net then corresponds to which
X* =U,cx z* is the union of post-sets of its elements. bit address locations are “on” (i.e. set to “1"). This is afuse
The state of the net changes by “playing the token gameihalogy because it allows the dynamic behaviour of a PLC to
This game has a simple set of rules [25, page 32], whichhe modelled as an Elementary Net system.
restated here. Of the three basic types of PLC register locations (inputs,
Definition 1: The configurationC' of an EN systemN outputs and data storage), inputs are somewhat exceptional
changes according to three rules: in that they are not directly affected by the PLC’s operation

Past work, such as that of Fret al. [8], has resolved this
by altering the semantics of transition firing to additidpal
check an associated boolean expression, and to only fire if th
expression is true. In comparison, in the approach predente
here, inputs are integrated into the Elementary Net system
by having an input correspond to a place. Nevertheless, it is
necessary to augment the basic EN system model to include
a special type of placé € J to represent PLC inputs, where
J C P. Such input places must be treated differently because
they can only be affected by events that are external to the
modelled system. For example, a light sensor will only be
affected by the presence of light, and not the internal siéte
the PLC. (a) (b)
Previous work [7], [8], [14] has treated the statecnftputs

as external to the net. In the approach presented here, esigh2. Comparing (a) a non-autonomous Petri net with (b)ethaivalent
output, such as a valve, solenoid, or Iight, is represensed ngn-autonomous EIementary_Net system. In tI_'le PN _annosatimgation is

. represented by a bar, such @s In the EN, a triangle is used to denote an
a place Rather than turning on or off outputs on entry to g piace.
place (as in [7], [8], [14]), in a non-autonomous EN system
a single output is turned on when a token enters the place
corresponding to that output, and is turned off when thertokg-q (les for
leaves that place. Simply stated, the state of a single out systems can be stated as follows.

corresponds to the state of a single place. An advantagésof th Definition 3: The configurationC of a Non-Autonomous

approach is that it means that there can be no ambiguity in h%\N systemM changes according to three rules:
the output is set, since there is only one place correspgndin '

to each output. A drawback, however, is that outputs must bel) A transitiont is enabledto fire at configuratiort' if all
binary. It would be possible to support other types of output Of its pre-conditions are marketi: C C' and all of its

playing the token game” with Non-Autonomous

by a”owing annotation on p|aces' pOSt-ConditionS are unmarketin C = @.

Remark 1:In summary, given the three distinct sets of 2) When a transitiont fires at C', tokens are removed
inputs J, outputs O, and data storag®, the set of non- from all non-input pre-conditions and added to all non-
autonomous EN system places is the union of all thfee input post-conditions, yielding a new configuratioh=
DUITUO. (CU@*=7)—(*t=17).

Note that there is a mapping (dnjection) from non- ~ 3) A set of transitions/ C T'is a step enabled at iff

autonomous EN system places to PLC address locations. That (&) all transitions in are enabled at’, and (b) for all

is, each non-autonomous EN system place must correspond f1;%2 € U With &y # 5, *t; 1 *1; C J andt} Nit5 C J.

to a unique bit address in the PLC, and this can be a ddtais definition derives from Definition 1 and the requirement
storage address, an input address, or an output address. @it the state of input places is unaffected by the process of
input places can correspond to input addresses. It is upeto fiiing a transition. To see how this modified net compares with
programmer to provide the mapping of places to bit addresstaditional non-autonomous Petri nets [7]-[17], consitte
Transitions also must be mapped to data storage bit addressénple example shown in figure 2. In this example, two motors
but this can usually be done automatically. Note that atgsa 01 ando, are controlled by inputé andiz so that when either
and transitions are mapped to unique addresses but theénvéivitch is on,s is turned on, and; otherwise. The two motors

mapping from addresses to places or transitions may orsfyould not be on at the same time. In the PN (figure 2(a)),
apply to a subset of all possible addresses. inputs and outputs are distinct from places. Outputs can be

set (or reset, if negated) on entry to a place by coding an
o annotation (represented by a labelled box connected to the
A. Defining Non-Autonomous EN Systems place by a line). Similarly, inputs annotate transitiond #rus
As discussed above, the rules of the token game must d&re additional conditions for transition firing. For examgl
revised to suit this slightly altered model by subtracting set has the annotatiofy A i>. Thereforei; andi, must both be
J from all pre-conditions and post-conditions in rules 2 anaff (because the terms are negated) fptto fire (as well as
3 in Definition 1. To make it distinct, the resulting model i, being unmarked, ang, being marked). Placg; has the
referred to as &Non-Autonomoug&lementary Net system. annotatioro;, o3 meaning that when it receives a mawk,will
Definition 2: A Non-Autonomous Elementary Net systenbe turned on and; will be turned off. Note that any place
isatupleM = (P, T, F,J,C;,), where the tupléP, T, F, C;,) can update any output and this may lead to some confusion.
corresponds to the underlying Elementary Net system who&khough it is straightforward to check the behaviour ofsthi
behaviour is modified such that all placeglia P, referred to net, determining which places affect a particular outpuy ma
asinput places remain unaltered by the firing of a transitionbe more difficult with a larger net.
The initial configuration defines only the state of non-input Now consider the Non-Autonomous Elementary Net system
placesC;, C P — 1J. in figure 2(b). A triangle is used to denote an input place eNot

Fig. 4. Example of conflicting transitions. Transitionsandts are in conflict

)))) because if they both fired simultaneougly would overflow. Similarlyt, and
Fig. 3. The sequential configuration graph for the non-aatwous EN ¢; are in conflict because if both fire at ongey will underflow. Transition
system in figure 2(b). t4 does not conflict withés since the place that they have in common is an
input place.

that there are no annotations and only the standard rules for

firing apply. Thereforet; can fire if o, is marked andy, i is {o1}).

ando; are unmarked. When it fires; becomes marked and Having developed a theoretical basis, the process of con-
becomes unmarked according to the standard rules, howeverting Non-Autonomous EN systems is now described in the
in contrast to the standard rules, and i, are unaffected. next two sections, starting with the process of compiling th
The inputsi; andi, will only be affected by the state of theirarcs associated with transitions, and followed by the m®ce
associated sensors. In this form of net, all transitionsaffact of compiling the arcs associated with places.

an output must be connected to it by an arc. Therefore, even

in a large net, it should be easy to find all the ways in whi
an output can be changed.

Remark 2:1t is not always possible to map 1-safe non- For the purposes of “playing the token game” with a PLC,
autonomous PNs to non-autonomous EN systems since thiga@sitions and places can be viewed as boolean variables.
may be ambiguity in the setting of output places possible Based on the rules stated in Definition 1, a series of boolean
the PN. statements can be formed to determine which transitions can
As the Petri net model has been altered, this leads to the qu#€ as (representing logicalND by A, OR by Vv, andNOT by
tion of how the static analysis of such altered Petri netshinig—)- In the simplest case, there is no conflict between tramsti
change. For an EN system, it is possible to derive a seqliengad a transition is enabled when all of the pre-conditiords an
configuration graph (SCG) that has a node for each posapne of the post-conditions are marked. Conflict can occur
ble configuration (that is, each possible marking), and are#ien two transitions have arcs to or from the same place.
corresponding to enabled transitions in those markingg [28\n example showing these two types of conflict is shown in
Analysis of properties such agachability or livenesscan figure 4. The possibility of two or more conflicting transit®
then be derived from the SCG. Specifically, a configuratiditing simultaneously is precluded by rule 3 in definition 3.
is reachable if, in the SCG, there is a path to it from thievertheless, the question remains of how to implement this
initial configuration. A transition is live if it can be evarglly ~restriction. If the restriction were ignored, the simuktans
fired when starting from any reachable configuration. firing of conflicting transitions would lead to places either

The Non-Autonomous EN system also contains input placegerflowing (i.e. a transition firing when its post-conditio
i € J, which have slightly different semantics (their configura@lready had a token), or underflowing (i.e. a transition grin
tion is not updated by transitions firing), and this necdlysarwhen its pre-condition had already had its token removed).
affects the analysis. To model the possibility that the mse Fortunately, it is not necessary to insert code into the PLC
environment could change in any possible way, arcs mu¥pogram to evaluate which transitions might be conflicting.
also be included which allow any set of inputs to chandestead the compiler can simply look for thmossibility of
their state at any time. Alternatively, input places can onflict between two transitions (also known as structural
disregarded completely. The following result shows that thconflict), and guard against them firing simultaneously. @o d
simpler approach is equivalent for the purposes of ideinigfy this, an additional test is added to each update for a tiansit
reachability. with the potential of conflict with a preceding transition.

Lemma 1:The sequential case graph (SCG) for the Norf=or example, the logical update fos in figure 4 ist; «
Autonomous EN systemV/ = (P,T,F,Ci,,J) with arcs p1 A —p3 A —t1. Given thatt; will be evaluated firstf, will
added to allow input places € J to change their state atnever fire whert is firing. Potential conflict can be rigorously
any time, is equivalent (in terms of reachability) to the SC@efined as follows.
of the EN systemV/’ = (P —J,T,F —Ix T —T x J,Cj,). Definition 4: Let M = (P,T,F,J,Ci,) be apure Non-

Proof: See appendix. m Autonomous EN system. Let the set of transitigrgentially
The SCG for the Non-Autonomous EN system in figure 2(b) genflicting with ¢ € T' be those for which there is some
given in figure 3. From this graph it is clear that, for examplénarkingC' where they are conflicting. Define two transitians
configuration{o:, 05} is not reachable, and so both motors cafndu as beingconflictingin C' iff both are enabled angt, u}
never be on simultaneously (assuming the initial configomat is not a step enabled at'.

C - "
Q. Compiling Transitions

Lemma 2: The set of transitions potentially conflicting with @——H—»@ e Q——H

tIs t

Y41 b2 Pn tn
— . (] (]] o\
conf(t) o {u +t # un (tn u) Y (t Nu) J # g Fig. 5. Sequence of places. The marking of each place in theesee
ACtNu)U(t* N *u) = @} (1) persists for one cycle.
forallteT.
Proof: See appendix. []

. . : . o) should use sensory inputs to help determine which tramsitio
Given this notion of potential conflict, it is now possible tq ;| fire, rather than to fine tune transition priorities.

define an algorithm that finds a skt that is a step enabled . o)
at some configuratiod’. There is no attempt here to find theFOr example, given the net shown in figure 4, (2) gives the

. . ordered set of updates,
largest possible such set. (Note that for the)setith elements P
{z1,22,...,2,}, \V X is shorthand for; Vay V... Va, and

similarly, A X is shorthand fotr; A za A ... Ax,.) o= peAmps,
Theorem 1 (Step enabled &): Let M = (P, T, F,J,Cy,) ta = p2Amps At

be a pure Non-Autonomous EN system with a current config- t3 = p2a A7pa Ay,

urationC. Let Uy be an arbitrary subset @f. Definer;, to be ta — psA—pg.

a subset off" that contains{t;,to, ...t} for 1 < k < |T|
andr, to be the empty set. For each transitignbeing the It is assumed that these updates are processed in the order
kth element ofT, if ¢, is enabled at” and is not potentially given. Given the configuration in the diagram,andt; will
conflicting withUy,_1 N7,—1 (i.e. conf (tx) NUp_1 N7—1 = fire.
@), thenUy, = U1 U {1}, otherwiseU;, = Uy_1 — {tx}.
The final setl|7 is a step enabled 4. If there is an enabled
transition atC, thenU,r| is non-empty. C. Compiling Places

Proof: See appendix.]
The above theorem forms the basis for an algorithm thlg}The second phase is to compile places to PLC instructions.

. . - : pces should turn on when any transitions in its pre-set fire
sequentially examines each transition and finds the set tSrn off when anv of its post-set fire. and otherwise stav @irth
transitions enabled af’. The set is constructed by addin y P ’ Y

in enabled transitions that are not conflicting with the on yevious state. This can readily be expressed as an algorith

that have been included so far. By only examining confli pr updqtmg the conﬁguratlon. i i

with transitions that have been examined during this cycle,AIgorlthm 2 (Updating the configuration)-et

it is possible to avoid initialising the séf. Also, this means M =(PT,FJ, Ci“)_ be apure Non-Autonomous EN system
that if two transitions potentially conflict, only the secbwill with a current configuratio” and U be a step enabled at

perform the check for conflict, which is sensible since ohly t ¢+ L&t boolean variablep € P represent membership iff,
second transition ever needs to perform this check. and variables & T' represent membership #i. The updated

The setU corresponding to a step enabled @tcan be configurationC’ S!"Ch thatC’'[U) .C/ corresponds to updated
represented in PLC memory by associating a unique sin&@”ables}) according to the assignment,

bit address with each transition . The configuratiorC' can . .

also be represented by mapping each plac® ito a unique p= \/ pPVPA ﬁ\/p ’ 3)

single bit address. Since the algorithm does not assume that

the setU is initially empty, it is possible to proceed without orallpe _(P —J).

initialising each transition bit. On this basis, the algam can NOt€ that input places are not updated.

be restated as follows. Remark 4: Transient markings that are visited are always
Algorithm 1 (Find step enabled at): Let M — visited fpr at least one cyclg. For example, given the EN

(P,T,F,7,Ci,) be a pure Non-Autonomous EN systen?yStem in figure 5, the marking at the er_1d of the cycle is

with a current configuratiod’. Letp; € P for j € [1, |P|] be successively{ps} , {ps},....{pn},{},... with each place

a set of boolean variables representing membershi.ifo Peing visited once. _ _
find a step enabled &t and represent it as the ordered set dfor example, applying (3) the updates for place variables fo

boolean variables, € T, update (in ascending order), figure 4 are,
tk<—/\.tk/\—‘\/tz/\ﬁ\/(COHf(tk)ﬂkal), (2) p1 — p1 Aty
for all k € [1,|T]. P2 = p2A=(t2Vis),
Remark 3:All transitions in the identified step are fired p3 — (t1Vi2)Vps
simultaneously (during the same cycle). In the case of ainfli ps — ps Aty

the conflict will always be resolved in the same way (in favour

of earlier transitions) given a particular ordering of s#ions. The evaluation of these updates can occur in any order. Given
Note that the ordering of transitions is arbitrary; where ththe configuration{p1, p2, p5}, t1 andts firing will give a new
choice of one transition over another is important, theglesi configuration of{ps, ps}.

D. Extending the approach to T-timed Petri nets P e p2

4{ }—Mi run_timer(1, w(ts))

The compilation method described above has no timed ;, &, @)
aspect other than that induced by the implicit loop (known isfcom‘p‘/ete(l) ‘tl b2
as thescan cyclg of the PLC. It is a common requirement for P || V1 A

PLCs to have a timed interaction with the world. For example,
a button may need to be depressed for a full three seconds,
to ensure that it cannot be accidentally knocked, or a cgolin (@) (b)

fan may need to be run for several minutes after the CauseF%f. 6. T-timed Petri net (a) with a timed transitios that has a time delay

heat has been removed. w(ta), and the section of ladder diagram code (b) for firing trémsit.
One approach to introduce timed interaction into the modte that the conflict test for; only needs to be done just prior to firing the

and thus produce timed interaction behaviour in the PLC coff@s"o-

has been developed by Jonetsal. [22] and is based on T-

timed Petri nets. The “T” stands for transition, and this n®aicate 1s_coOMPLETE(a) is true when the time has completely

that transitions may have time delays associated with thestapsed.

In Joneset al’s implementation, the firing of a transition is Algorithm 3 (Find step enabled with timed transitions):
delayed until a certain time has elapsed. Let M = (P,T,F,Cy,J,W) be a pure T-timed Non-
Joneset al. apply this approach in the context of Petri netéutonomous EN system with a current configuratiéh
with no (apparent) limit on the tokens per place. If thereaneer Assume the availability of a timer for each timed transition
limit on the number of tokens per place, it would be necessafgr transitions withw(t) = 0, (2) applies, however when
to retest the conditions for firing when the time has elapsed(t) > 0 the following series of statements must be generated,

to ensure that, for example, the maximum number of output1) RUN_TIMER(j, w(ty)) iff A *tp A=\ 3

tokens per place is not be exceeded (i.e. check for overflow)2) ¢, «— —=\/ (conf (t;) N 7%_1) A IS_COMPLETE(j).
Consider also the situation where two timed transitions for eachk € [1,|T'|], wherej refers to the next available

have arcs flowing from a place with a single token. Although timer.

conflict checking might prevent them from beginning theinn example of timed interaction is shown in figure 6. For
timers simultaneously, the problem remains that both migkgaders not familiar with the ladder diagram (LD) language,
start timers, leading both transitions to fire, and thus ® tkn open contact (two short vertical bars separated by a space
situation that one transition attempts to draw a token frem @eans take the value of the element, and a closed contaet (lik
empty place (i.e. the place underflows). an open contact but with a diagonal stroke through it) means
The dual problems of overflow and underflow are particake the logicalNoT of the value of the element. Horizontal
ularly critical when dealing with Petri nets that have binarline joins correspond to a logicaNp, while vertical line joins
marks. They can be resolved by retesting the requiremeotsrespond to a logicar. Broken circles (referred to as coils)
for firing a transition after the time has elapsed, but beforaean that the logical value calculated so far is output to tha
firing the transition. This leads to the question of what $tiouelement. Boxes containing a function (such as “start timer”
happen if the requirements for firing a transition were onlgt in the diagram) are only executed if the preceding logical
intermittently during the timed delay. Consider, for exdena expression evaluates to true.
button being pressed intermittently but happening to begae
at the start and end of the timed delay. Following the usual IV. DIScUssION

semantics for T-timed PNs [1, p. 98], a transition with a time aAn important property of (2) and (3) is that they rely only
delay only fires after the normal conditions for firing haven hoolean logic and assignment operations at runtime. This
occurred continuously for the specified time period. leads to program code that contains no conditional statesmen
Definition 5: A T-timed Non-Autonomous EN system is aor loops. The time for each PLC scan cycle is tRu$P|+|T|)
tuple (P, T, F,Ci,,3,W) where (P, T, F,C,,J) is the un- for a net with |P| places andT| transitions. Note also that
derlying Non-Autonomous EN system, anfi : 7 — N° thjs is a tight bound; the scan cycle time will remain constan
is a mapping from transitions to non-negative integers theggardless of the state of the net. This is an important ptppe
specifies the “wait” time or time-delay associated with eador real-time systems.
transition. Transitions € 7" such thato(t) = 0 have the usual Since the statements in the resulting program are simple,
firing semantics, whereas those transitions whef¢) > 0 diagnosis of a problem within the program is straightforvar
only fire after being enabled continuously foft) time units. Note that even if the program were free of bugs, diagnosis
The above definition suggests that it is possible to simpbf the system as a whole, for example to find a faulty sensor,
extend Algorithm 1 that finds a step enabled at configuratievould still be important. Ladder diagram (LD) diagnosisl#o
C. It is common for PLCs to explicitly support timers,are useful in this respect because they make it easy to trace
although the semantics for using them vary. Here it is asdunmie cause of this type of problem. Of course, if bugs are
that an instruction and a predicate are suppore_TIMER, discovered, it is important not to change the ladder diagram
andis_CcOMPLETE The instructionRUN_TIMER(a, b), when but rather to change the Petri net and recompile it.
enabled, causes timer to run for up tob time units. Dis- An issue not dealt with in this approach is that of establish-
abling the instruction causes the timer to be reset. The-préualg the initial configuratiorC;,. Some PLC operating systems

Computer PLC

wait

to

D3

Fig. 7. Shared memory coordination pattern. Fig. 8. Wired connection coordination pattern.

provide a “first scan cycle” flag, and this can be used wonveyor dock discussed in section V, it is useful to be atle t
initialise the configuration. However the exact mechanisedu reuse that net for as many devices as exist. Second, it is ofte

may vary. desirable to decompose the task of controlling a device into
a series of interacting sub-components to reduce the dveral
A. Design Patterns complexity of the design.

. .. Module reuse is possible if modules are not hard-wired to
A fundamental advantage of the graphical representation is_ -
: oo .. specific addresses. In the model proposed here, module reuse
that it allows commonly used patterns to be easily identifie : : T
. : . IS made possible by separating the definition of the stractur
and described. To demonstrate this, two simple patterns are i X
. . ; : of the net from the assignment of PLC addresses. Borrowing
given, both to do with machine to machine (or modul X :) . .
L .. from the object oriented paradigm, the net is roughly like
to module) communication for the purpose of coordinatin - o .
. o definition of aclass whereas the specific use of it for a
behaviour. The first involves shared memory and the second .. S)) :
g ; - articular device is thénstance The graphical tool discussed
performs a similar task but without requiring shared memor: the next section supports this approach
1) Shared Memory Coordination Patternin previous PP pp)

work [28], the basis for using shared memory for communicat- Task decomposition is an important tool to avoid overly

ing between non-autonomous EN systems has been develoﬁgmplﬁx modules. T);p|cally% E_etn nﬁt dfecorpposgonakl) ap;
The main outcome of this work was to show that a pla foaches use some form of hierarchy of NEts and Sub-nets.

could be used to communicate safely as long as there w 1S 1S thel ar_Jr?]roach taker;] bhy the SIPNEd|totr _sE[)];tr\]/varg b[ll]'
only incoming arcs from one machine and only outgoing ar %r exampie. This approach, NOWEver, can restrict tne asan

to the other. Figure 7 shows a coordination pattern bas%dthe interface between sub-nets. Rather than communigati

on this approach. This is similar to Boucher’s use of Pet?lomplex messages, these types of sub-nets are merely being

nets for describing communication protocols [18, p. 354]. K)lld Whgn -tol starti']-and tf;}e.zn isaymg Whr?n tth Eave fm(;shg(;l}.
shared memory coordination pattern is generally apprtgria n pr;nmp € a Izlilrarc Lca aplproac t_cou h € use .tW't
between a general purpose computer and PLC or between \Wo-autonomous Systems. In praclise, however, it was

otherwise independent modules on the same PLC. An exam nd that a diﬁerent_ approach to task decomposition was
of the use of this pattern is given in the case study in se&tion ore useful_. that of using place-bordered modules. Rakfzer t
forming a hierarchy, these modules are autonomous and may

2) Wired Connection Coordination Patteritis not always initiate communication. Module to module communication ca
possible to use shared memory. Controlling a robot arm, fB?tenablted by r:jutltmg oncej or _rgo(rje_ p![z;]\ceshon (;he border
example, must typically be performed by wiring some of thged_/vee_n W0 mo zes’ abs de_sc:: edn Ihe share rrgemory co-
PLC'’s inputs and outputs to corresponding outputs and mp&r ination pattgrn_ escribed in the previous section. ialiy .
on the robot controller. Figure 8 shows a wired connectio hercommunlcatlon pat.terns CC.JUId also be useq. A useal si
coordination pattern. In this case, no places sit on the tiaryn effect of this approach is that it becomes straightforward t
between the two machines. Instead, the Ridplace is wired distribute a large system over a number of PLCs or computers
to the Go input on the robot, while the robot outpatsy is by simply moving some of the modules.
wired to theBusY input on the PLC, as shown by the dashed

arrows. C. Relationship to Function Block Architectures and Agent-
based Approaches

B. Modularity The concept of place-bordered modules is similar to that
There are two main requirements for modularity. First, whesf Function Block architectures [29]. Function blocks were
designing a net to control a particular device, such as tbeginally standardised in IEC 61131-3 as one of the altirea

File Project Edit Window Help

PLC programming languages. They have since been furt}”-; Jl—'l >
developed into the IEC 61499 series of standards. IEC 61< = 2L

is a significant extension over IEC 61131-3 function blOCHE - rching orc alill
that emphasises software reusability, distribution, avehe ijcom
based communication. e

A function block typically encapsulates an algorithm, ofte
implemented using Ladder Diagrams (LD). The algorithi
could also be designed as a non-autonomous EN sys!
module. In this way, the two approaches can be conside
complementary; function blocks dealing with the higherelev
description of how modules plug together while the noi
autonomous EN system defines how the function block 1
sponds to those signals. Indeed, the function block arctioite
neatly solves the problem of how to graphically specify tt
connections between place-bordered modules.

Vyatkin and Hanisch [30] have examined the use of N
Condition/Event Systems (NCES) as a model for IEC 614!
function blocks. In the NCES model of a distributed syster
a signal event from one component can force a simultar -
ous action in a second component, but only if the secoll—1
action s enabl(?d'.ln their work they d?rlve a Sln_gle n%g. 9. PReTRILLD graphical tool showing the net for a conveyor dock.
that models a distributed system of function blocks in ord@f the tool, a hexagon represents a place that must have disperidress,
to perform verification analysis. Computationally the NCE®hich saves the user from having to specify addresses thabtimatter.
model is similar to the non-autonomous EN system. The main
difference between the two being that in the modular non-
autonomous EN system model presented in this paper, e
do not cross module boundaries. Therefore, from the point
of view of the PLC software developer, they can consid&. Graphical Tool
each module in isolation. It is interesting to note that wdd To support the use of the compilation method presented in
be straightforward to start with a set of non-autonomous ENis paper, we created a graphical tool callegrRILLD * to
system modules and then compile them to a single NCES iglbw Non-Autonomous EN systems to be designed, simulated
for the purpose of using Vyatkin and Hanisch’s verificatioand compiled to executable PLC program code (shown in
approach. figure 9). Note that the tool includes a hexagonally shaped

The IEC 61499 architecture deals with distribution bylace to denote a place that must have a specified address
supporting event signals into and out of a function block i@ith the PLC. Circular places have their addresses dyndiyica
addition to data flows. This more naturally supports intetruassigned. The ErrILLD tool provides a number of features,
driven or “push” style communication, whereas without eveincluding:
signalling, polling or “pull” style approaches will tend twe 1y 3 graphical design tool that allows the user to graphicall
required. The place-bordered module appears initially as a layout a Non-Autonomous EN system,
polled approach. For examplg, in figure 7 seems to need 2y an address table editor that allows certain places to be
to poll “wait” and “done” in order to find out when to fire. associated with specific memory addresses in the PLC,
Nonetheless, it is possible, in the context of a generalgsep 3y 5 simulation tool that allows places to be marked or
computer, to only test for transitions being enabled when (& ~ |,nmarked and the firing sequence to be stepped through,
the previous cycle caused a transition to fire, (b) the esrlie and,
timer expiry has been reached, or (c) external (input or@itp 4y a compiler that produces PLC instructions as defined by
places are altered. Where (c) can be supported by a hardware ¢ compilation method described in this article.

intggys:éltgit?g?g]]cr)]rcIFL)J (()jli"nngg g:;nnssnsgng:c?gf]y ;end dU(I:_eecijtJ(-)he following section makes use of this graphical develapme
et al. [32], have shown how IEC 61499 function blocks ca nvironment to develop a PLC control program for a conveyor
be linked to higher-level agents. As we describe in previous
work [28], the communication can be peer-to-peer in nature,
allowing the low-level non-autonomous EN system to not
simply respond to requests for service from high-level &gen TO demonstrate the compilation approach, the graphical too
but be able to notify them of faults or other changes in th&@s used to develop PLC programs for a MonTeRbsition-
environment asynchronously. It may seem that it would Heg Station (or more simply, conveyor dock), controlled boy a
simpler to have all components being StrUCtu.red as SOftW_ar@Freely available under the GNU General Public License friont p:
agents, however, as Brennan et al. [31] discuss, physi¢abetril|d. sourcefor ge. net

machinery often requires its controller to be responsiveal- 2See http://www.montech.de

) - Step

_} cClampShuttle

cUnclampShuttle

t3

_) clamping

— / sTrknPos

t16

V. CASE STuDY: CONVEYOR DOCK

10

The former clamps the top of the shuttle in place, while the
latter signals the shuttle to start moving out of the docleSén
two output places should never be active simultaneouslias t
might damage the shuttle motor.

The placescCLAMPSHUTTLE, CLAMPING, and DONE are
an instance of the use of the shared memory coordination
design pattern described in section IV-A.1.

It is often desirable to have a transition fire when a place,
particularly an input place, is “false” or unmarked. For exa
ple, if a piston should fire only when a sensor detects nothing
in the way. A possible approach is to augment the EN model
with a “negated” place, similar to the approach used by Jones
et al.[14]. However it is actually unnecessary to add anything
to the EN model; reversing the direction of the arcs involved
produces the same effect. For example, in figure@,AmMP
must be unmarked (i.e. false) far7 to fire (among other
conditions).

When developing the net for the conveyor dock, it was
possible to test the dynamic characteristics of the net by
single stepping through a simulation (using the graphimal)t
This meant that most of the debugging could be performed
without having to test it on the physical hardware. In piibej
automated verification techniques could be used, howeeer th
tool does not currently support them. Once the net had been
compiled, and the resulting code transferred to the PLG; onl
two problems were discovered. The first was that one of the
addresses had been coded incorrectly, and the second was tha
commands should be normal places rather than input plases (a
discussed above). Previous experience with developing cod
by manually converting a non-autonomous Petri net model int
ladder diagram code was that it generated more complicated
code, and took much longer to debug.

Remark 5:In principle the SIPNEditor tool might have
Omron C200E PLC. A picture of the docking station is showgeen used, however IEC 61131-3 IL code is not supported
in figure 10. This docking station is one component in a8y the PLC being used.
experimental flexible manufacturing laboratory enviromine o section of the resulting program, in ladder diagram form,
that is described in detail elsewhere [33], [34]. The comveyis shown in figure 11. This section includes all statements
track is a monorail on which shuttles move in a single ditetti that relate to transitior3. There is the potential for conflict
around the track while there is nothing obstructing thethpa with transition T5 and so the second rung shown in the
They can also be signalled to stop and start using pneumafifure is coded to avoid it firing simultaneously witt3.
signals affixed to the track. The conveyor dock is a componesihecifically, conflict occurs if bottUNCLAMPSHUTTLE and
of this track. When a shuttle arrives at a dock, it is stoppegRe EASESHUTTLE are true, possibly indicating incorrect
If it has a work-piece top, the top can be clamped in placggic in the external computer. The conflict check ensuras th
allowing the work-piece to be worked on. The top can then R§en if this should happen, only one of the transitions will
unclamped, while leaving the shuttle stopped. This opematifjre.
is useful when lifting the top off the shuttle. At any stage, \while the statements for placeSUNCLAMPSHUTTLE,
the shuttle and top can be released, which causes the topyigcLampinG and vCLAMP have a similar structure, they
be gnclamped and the shuttle to start moving along the tragirrespond to different types of place€tJNCLAMPSHUTTLE
again. corresponds to a message from a remote computer and so is

Figure 9 shows the non-autonomous Elementary net desigmly turned on by the remote computer (via the data table);
developed for this conveyor dock using the graphical todUNCLAMPING corresponds to internal state and is turned on
The net is drawn graphically with circles for normal placedyy one transition and turned off by another; an@LAamP
triangles for input places, boxes for transitions and linith corresponds to a physical actuator, but is otherwise tuomed
arrows for directed arcs connecting places to transitionts aand off in the usual way. This last point reinforces the ide t
transitions to places. In this case study, the naming cdioren outputs, such as valves, lights and switches, are treated in
used for valves and sensors involves a prefix of “v” or “s'similar way to internal state flags. No distinction is madéhia
respectively, followed by a descriptive name. Two outpidon-Autonomous EN model, and the derived PLC program is
places,vCLAMP andVSTART correspond to valve actuatorsthe same for both.

Fig. 10. Photograph of docking station, also showing a Ehitithout a
top).

11

CU”C'a““"’Sh“”'e Unclamping Vc:a‘mp t3 Basic. In this paper, the approach and associated tool have
b /] b H been demonstrated using a practical example involving a
VClamp cReleaseShuttle Releasing 3 5 conveyor dock. Using the tool, deyelopment t|_me was g.reatly
| | A A H reduced, and most bugs were discovered prior to testing on
the hardware.
cUnclampShuttle t3 cUnclampShuttle
| i H ACKNOWLEDGEMENTS
3 Unclamping The authors would like to acknowledge the contribution of
N H Cambridge University Manufacturing Engineering Tripag-st
Unclamping 2 dents who provided valuable suggestions and feedback about
|| ¥ the FETRILLD tool over the last two years. The authors also
wish to thank the anonymous reviewers for their helpfuleewi
o "C'a;‘j comments and in particular for pointing out the relevance of
h IEC 61499 function blocks to this work.
vClamp t3 th
| // //
REFERENCES
Fig. 11. A section of the program generated for the convegokdn ladder 1] R. David and H. Alla, Discrete, Continuous and Hybrid Petri Nets
diagram form, showing all rungs that refer to transitio®. T5 is potentially Springer-Verlag, 2004.
conflicting (i.e. should not fire at the same time) and so theorset rung [2] J. L. PetersonPetri net theory and the modeling of systerisglewood
checks to ensure that3 is off (i.e. not firing) before firingr5s. Cliffs; London: Prentice Hall, 1981.
[3] F. DiCesare, ed.Practice of Petri nets in manufacturingChapman &
Hall, 1993.
[4] K. Saitou, S. Malpathak, and H. Qvam, “Robust design okifike
VI. CONCLUSION manufacturing systems using, colored Petri net and geakgarithm,”

. . . . Journal of Intelligent Manufacturingvol. 13, pp. 339-351, 2002.
Manufacturers, and indeed many other industries usin] A. V. Aho, J. E. Hopcroft, and J. D. UllmariThe Design and Analysis

automation, face an increasing rate of change in their ¢ipgra of Computer AlgorithmsAddison-Wesley, 1974.

environment to satisfy the requirements of having an agilé] J--S. Leedanth’--L-t HfSU,tr‘]‘Aﬂ improved evicllu”atiocrjl of ladﬂg; dia-
. . . . grams and petri nets 1or the sequence controller aesign mu uring
system. This leads to a higher rate of change being required systems,Int. J. Adv. Manuf. Techalvol. 24, pp. 279-287, 2004. DOI

in their automation systems. This paper contends that it iS 10.1007/s00170-003-1722-y.

easier to cope with changes in these automation systems if(i fj-f'—- Chirn ?”CL’J EA%C Mﬁaf'a’:_er ”F:egi ”‘?ts based deggﬁif&o%oo
P . . lagrams,” In nternational Conference on
is just a matter of manipulating an abstract model, such as ampridge, UK), September 2000.

adding new nodes and arcs to a Petri net, rather than alterifgy G. Frey, “Automatic implementation of Petri net basechtrol algo-
low-level program Code, such as inserting new lines in adadd rithms on PLC.,” inProc. 2000 American Control Conferenceol. 4,

. s . (Chicago, IL), pp. 2819-2823, 28-30 June 2000.
diagram program. It is important as well to avoid errors whe] G. Frey, “PLC programming for hybrid systems via signaerpreted

making such changes, and this can be achieved by automating petri nets,” inProc. 4th Int. Conf. on Automation of Mixed Processes
the compilation process. Designing at the higher level khou _ ADPM, (Dortmund, Germany), pp. 189-194, September 18-19 2000.

. . 10] G. Frey and L. Litz, “Formal methods in PLC programmingn
encourage reuse of designs and the formation of a cataldgué g Proc. IEEE Conference on Systems Man and Cybernetics SMG, 200

design patterns, since such patterns are more easily riseggn (Nashville), pp. 2431-2436, Oct 8-11 2000.
when working abstractly. These factors all lead to an inepealll] G. Frey and M. Minas, “Internet-based development gidacontrollers

. A h . using signal interpreted Petri nets and IEC 61131,Pmc. 5th World
n prOdUCtMty' Less skill may be requwed to develop cetre Multi-Conference on Systemics, Cybernetics and Inforad®Cl 2001)

PLC programs, and it should be quicker to do so. vol. 3, (Orlando (FL) USA), pp. 297-302, July 2001.
This paper has introduced a formalism for the design 6f] S. Klein, G. Frey, and M. Minas, “PLC programming witiysal inter-

t ti it that build . K i preted Petri nets,” iffroc. ICATPN 2003, Eindhoven (The Netherlands)
automation software that builds on previous work In NoN- | Ncs 2679, pp. 440-449, Springer Verlag, June 2003.

autonomous Petri nets. It adds in the idea of treating inpytS] G. Frey,Design and formal Analysis of Petri Net based Logic Control

and Outputs as first-class entities and shows how this cqn hel Algorithms PhD thesis, Fachbereich Elektro- und Informationstdchni
der Universitat Kaiserslautern, 2002.

with resolving ambiguity and allowing |nterac_t|on Pattem® 14 A H. Jones, M. Uzam, A. H. Khan, D. Karimzadgan, and S. B.
be more clearly represented. The mechanism for correctly Kenway, “A general methodology for converting Petri netwitadder

. . Integrated Manufacturing and Automation Technology (CINOS),
that does not require that the engineer check the net for such (France), pp. 357-362, May 1996.

things as boundedness, or absence of conflict. In additi@n, {15] M. Uzam and A. H. Jones, “Design of ladder logic for an lagi

modelling framework provides for the reuse of modules for manufacturing system using TPLL,” iRroc. 1st Turkish Symposium
on Intelligent Manufacturing Systems (IMS'96)Sakarya, Turkey),

similar hardwgre components and allows the decomposition pp. 513-518, May 3031 1996.
of a large net into a set of place-bordered sub-nets. [16] M. Uzam and A. H. Jones, “Real-time implementation ofrPeet

A key contribution of this work is a graphical design controllers using programmable logic controllers,” Rroc. 4th IFAC
! Workshop on Algorithms and Architectures for Real-Time tbn

simulation and compiler tool that provides the programmer (aarTC'97) (Vilmoura, Portugal), pp. 421-426, April 9-11 1997,
with an integrated environment for developing and perfoigni [17] M. Uzam, Petri-Net-based Supervisory Control of Discrete Event Sys

preliminary testing of PLC programs. This tool can auto- tems and their Ladde;r Logic _Diag_ram ImplementationBhD thesis,
icall ile int et i tout f includi Telford Research Institute, University of Salford, UK 1998
matically compile into a variety of output forms, inclu '”9[18 T. O. Boucher,Computer Automation in Manufacturing: An introduc-

several different PLC languages and also Java, and Visual tion. Chapman & Hall, 1996.

12

Duncan C. McFarlane is Professor of Service and
Support Engineering at the Cambridge University
Engineering Department, and head of the Distributed
Information & Automation Laboratory within the
Institute for Manufacturing. He is also Director of
the Cambridge Auto-ID Lab and Research Director
of two industrially supported activities: the Service
and Support Engineering Programme and the Aero
ID Programme. He has been involved in the design
[22] A. H. Jones, M. Uzam, and N. Ajlouni, “Design of discre&eent control and operation of automation and information system
systems for programmable logic controllers using T-timedriPhets,” for the manufacturing supply chain for twenty years.
in Proc. 1996 IEEE Int. Symposium on Computer-Aided ContreteBy Prof McFarlane completed a B Eng degree at Melbourne Urifyeis
Design (CACSD’96)(Dearborn MI, USA), pp. 212-217, September 151984, a PhD in the design of robust control systems at Cagéorid 1988,
18 1996. and worked industrially with BHP Australia in engineeringdaresearch
[23] K. Feldmann, A. W. Colombo, C. Schnur, and T. StockepéS&ification, positions between 1980 and 1994. Prof McFarlane joined tBpaBment
design, and implementation of logic controllers based dored petri of Engineering at Cambridge in 1995 as a lecturer in the aféadustrial
net models and the standard IEC 1131 part I: Specificationdasijn,” automation systems. His research work is focused in thes aedistributed
IEEE Trans. Control Syst. Technolol. 7, pp. 657-665, November industrial automation, reconfigurable systems, RFID iraggn and valuing
1999. industrial information. Most recently he has been exangnthe role of
[24] S. S. Peng and M. C. Zhou, “Ladder diagram and Petrbased automation and information solutions in supporting senativironments.
discrete-event control design method&EE Trans. on Syst.,, Man, and Between 2000 and 2003 he was the European Research Dirdctbe o
Cybern, vol. 34, pp. 523-531, November 2004. Auto-ID Center . In 2001 he also became a co-investigatorhen EPSRC
[25] W. Reisig and G. Rozenberg, edsectures on Petri Nets I: Basic funded Innovative Manufacturing Research Centre basetanrtstitute for
Models vol. 1491 of LNCS Springer Verlag, 1998. Manufacturing. In 2004, he became head of the Cambridge ADtdab
[26] L. Pomello and L. Bernadinello, “Formal tools for modulsystem de- and co founded the Aero ID Programme, examining the role dDRF the
velopment,” inApplications and Theory of Petri Nets 20@# Cortadella, aerospace industry. He was appointed to the Professorsh§emice and
ed.), pp. 77-96, Springer, January 2004. Support Engineering on 1 October 2006.
[27] R. W. Lewis,Programming Industrial Control Systems Using IEC 1131-
3: revised edition London: Institute of Electrical Engineers, 1998.
[28] J. Brusey and D. McFarlane, “Designing communicatiootgcols for
holonic control devices using elementary nets,'Piroc. 2nd Intl. Conf.
on Applications of Holonic and Multi-Agent Systems (Hol@/2005)
(Copenhagen, Denmark), August 2005.
[29] J. H. Christensen, “HMS/FB architecture and its impdgtation,” in
Agent-Based Manufacturin(S. Deen, ed.), pp. 53-88, Springer, 2003.
[30] V. Vyatkin and H.-M. Hanisch, “A modeling approach foenfication of

[19] G. B. Lee, H. Zandong, and J. S. Lee, “Automatic generatf ladder
diagram with control Petri netJJournal of Intelligent Manufacturing
vol. 15, pp. 245-252, 2004.

[20] M. Minas, “SIPNeditor.” Available online http://ww.eit.
uni - kl . de/ frey/ Downl oads/ SI PN/ SI PNEdi t or . ht m [Ac-
cessed 2006-09-20], October 2003.

[21] M. Minas and G. Frey, “Visual PLC-programming using redj in-
terpreted Petri nets,” inProc. American Control Conference 2002
(ACC2002 pp. 5019-5024, May 2002.

IEC1499 function blocks using net condition/event systémsProc. 7th
IEEE Int. Conf. Emerging Technologies and Factory AutoorafEFTA
'99, vol. 1, pp. 261-270, IEEE, 1999. DOI 10.1109/ETFA.1999335.
[31] R. Brennan, K. Hall, V. M&k, F. Maturana, and D. Norrie, “A real-time
interface for holonic control devices,” in Ni& et al. [35], pp. 25-34.
[32] P. Leitéo, R. Boissier, F. Casis, and F. Restivo, “Inigign of automation

Alan Thorne graduated from Anglia Polytechnic
University in Electronics and Control Systems and
has a varied background in the field of Automa-
tion and Control. He has been involved in British
Aerospace/IBM research projects as a systems engi-
neer investigating flexible manufacturing systems on

resources in holonic manufacturing applications,” infMeet al. [35],
pp. 35-46.

[33] J. Brusey, M. Fletcher, M. Harrison, A. Thorne, S. Hosigeand
D. McFarlane, “Auto-ID based control demonstration - phaséick
and place packing with holonic control,” tech. rep., Aul®-Centre,
Cambridge University, 2003.

[34] M. Fletcher and J. Brusey, “The story of the holonic pagkcell,”
in Proc. 2nd Intl. Joint Conf. on Autonomous Agents and Mulfg#t APPENDIX
Systems (AAMAS-Q3)Melbourne, Australia), ACM Press, July 2003.

[35] V. Maiik, D. McFarlane, and P. Valckenaers, eddalonic and Multi- A Counter example for Lee et al. [19]

Agent Systems for Manufacturing: Proc. First Intl. Confduistrial ; in fi ;
Applications of Holonic and Multi-Agent Systems (HoloMASD3), Consider the control PN in flgure 12. Applylng (4) of Lee
LNAI 2744, (Prague, Czech Republic), Springer, Septem@32 et al. [19], restated here as,

Po= |P+ > II »-c-E

{tjlt;€*pi} \{prlpr€*t;}

11 II »-cB
James Brusey received a B.Ap.Sci in Computer {tj\tjEp.‘} {prlpre *t;}
Science, and a Ph.D. from RMIT University (Mel- ‘

bourne, Australia) in 1996, and 2003, respectivelyyjelds the following update equations fptr andp-:
He is currently a Senior Research Associate with

civil and military aircraft production. More recently
he has been involved in projects relating to the
development of novel Al based machine control
strategies.

the Institute for Manufacturing in the Cambridge — + DT
University Engineering Department. His current re- p1 (p1 p2) p1
search interests include holonic or agent-based man- b2 = (p2 + Pl) P2

ufacturing systems, behaviour-based robotics, rein- .]
forcement learning for robotic systems, and probThis assumes that there are no conditions or event triggers;

abilistic approaches to interpreting sensor informathat is C'j —E; = 1 fOI’j — 1.92. Given that the update for

tion. . ' o .

on eitherp, or p, must be done first, and then the other second, it
is easy to see that this causes both to become unmarked after
the first iteration.

13

D1 true iff X C On(V), and\/ X is true iff X N On(V) # @.
Thus (2) can be restated as,

to tr — ("t COYA({rNC=2)A
(COIlf (tk) NTe_1 N Vi1 = @) R
Do for all & € [1,|T|], whereV;, = On,(T) is the set of true
boolean variableg,, € T after the kth transition has been
Fig. 12. Control PN for counter-example updated. The first part of the above expression corresponds

directly to the requirements in Definition 3; that all of the
pre-set oft; and none of its post-set must be @ for
B. Proof of Lemma 1 t, to be enabled to fire. The second part checks that no
Proof: Given that input places € J can change state atconflicting transition that is previous is currently firinBy
any time, the set of configurations with the same markings ovits construction, the sel), corresponds to the sdt; in
P —J will be strongly connected in the SCG. That is, given @heorem 1. []
particular marking for non-input places, any other markmeyg
has the same marking for non-input places will be reachalge pyoof of Algorithm 2
by changing the state of some or all of the inputs. Mergin . . .
e)allch sugh gétrongly connected set of conﬁgural?[ions andgthgn .Proof: Following the argument for Algorithm 1, (3) is
converting the resulting SCG to an EN system yields a n%guwalent to,

with no input places. | p— (pNU#S)VpA (P NU = 2),
C. Proof of Lemma 2 for all p € (P —7J). This can then be converted to the form,
Proof: Given any element: of the setconf (¢), the set p—peU*VpA-(pe *U),

U = {t,u} mustnot conform to part (b) of the third rule of
definition 3, or there must not be a markiggsuch that both
t and v are independently enabled to fire. The first part
(1) follows directly from negating part (b) of the third rulie C'N(P=9)=(CUU*—-"*U)N(P-7).

remains to prove thaf’ can exist for allt, u. Since the netis _)))
pure, botht andwu must be enabled under some configuratioiNce the update occurs in place, the configuration of input
If ¢+ could only be enabled whea was not enabled or vice Places is unchanged’ nJ = C'NJ. These combine to give

for all p € (P —7J). This update to boolean variables is
(ﬁquivalent to producing an updated configuratit'nwhere,

versa, then some pre-conditionsomust be post-conditions C'=CUU*—9)—(U-17),

of uw or some post-conditions af must be pre-conditions of

u. This is precluded by the final part of (1). m Which can easily be shown to be the set equivalent of the
second rule of Definition 3. []

D. Proof of Theorem 1
Proof: First, Uy N 1y is the empty set and thus a stef5. Proof of Algorithm 3

enabled aC, albeit a trivial one. Assuming thaf; , N7; 1 Proof: Part 1 ensures that the timer only runs while the
is a step enabled at' for 1 < k < [T, if ¢ is enabled at transition is enabled. The timer can only be complete if it
C and is not potentially conflicting wittt/y_1 N 7x—1 then gstays running for the entire time, therefore part 2 will only

(Ur—1 U {tx}) N7 must also be a step enabled@t If this fire the transition if the usual firing conditions hoded if the
were not the case, thefp must conflict with a transition in transition has been enabled fort) time units. m

Ur—1 N 1,—1 at C. However sincet;, does notpotentially
conflict with any transition inU;,_1 N 7,_1 at any possible
configuration, it cannot conflict at’. Similarly, if ¢; is not
enabled at’, (U,—1 — {tx}) N7y is equivalent td/;_1 N7i—1
and is thus also a step enabledcatBy induction,U, N7y IS
a step enabled at, for all 0 < k < |T'|. ThereforeU|r, is a
step enabled at’, sinceU|r| N 77y = Ujp. Furthermore, if
there is at least one enabled transitiorCatthere must be at
least one enabled transitiep such that/;_, N;_; is empty.
Since there can be no conflict with the empty set, and since
no operation subsequently removgsthe final sett/;r| will
have at least one element. [|

E. Proof of Algorithm 1

Proof: Given some set of boolean variabl®s define
On(V) = {x € V|z = true}. For any subseX C V, A X is

	Brusey4
	ieee-smc-a-petrilld

