298 research outputs found

    Constrained Bimanual Planning with Analytic Inverse Kinematics

    Full text link
    In order for a bimanual robot to manipulate an object that is held by both hands, it must construct motion plans such that the transformation between its end effectors remains fixed. This amounts to complicated nonlinear equality constraints in the configuration space, which are difficult for trajectory optimizers. In addition, the set of feasible configurations becomes a measure zero set, which presents a challenge to sampling-based motion planners. We leverage an analytic solution to the inverse kinematics problem to parametrize the configuration space, resulting in a lower-dimensional representation where the set of valid configurations has positive measure. We describe how to use this parametrization with existing algorithms for motion planning, including sampling-based approaches, trajectory optimizers, and techniques that plan through convex inner-approximations of collision-free space.Comment: Submitted to ICRA 2024. 8 pages, 5 figures. Interactive results available at https://cohnt.github.io/Bimanual-Web/index.htm

    Space robotics: Recent accomplishments and opportunities for future research

    Get PDF
    The Langley Guidance, Navigation, and Control Technical Committee (GNCTC) was one of six technical committees created in 1991 by the Chief Scientist, Dr. Michael F. Card. During the kickoff meeting Dr. Card charged the chairmen to: (1) establish a cross-Center committee; (2) support at least one workshop in a selected discipline; and (3) prepare a technical paper on recent accomplishments in the discipline and on opportunities for future research. The Guidance, Navigation, and Control Committee was formed and selected for focus on the discipline of Space robotics. This report is a summary of the committee's assessment of recent accomplishments and opportunities for future research. The report is organized as follows. First is an overview of the data sources used by the committee. Next is a description of technical needs identified by the committee followed by recent accomplishments. Opportunities for future research ends the main body of the report. It includes the primary recommendation of the committee that NASA establish a national space facility for the development of space automation and robotics, one element of which is a telerobotic research platform in space. References 1 and 2 are the proceedings of two workshops sponsored by the committee during its June 1991, through May 1992 term. The focus of the committee for the June 1992 - May 1993 term will be to further define to the recommended platform in space and to add an additional discipline which includes aircraft related GN&C issues. To the latter end members performing aircraft related research will be added to the committee. (A preliminary assessment of future opportunities in aircraft-related GN&C research has been included as appendix A.

    Numerical computation and avoidance of manipulator singularities

    Get PDF
    This thesis develops general solutions to two open problems of robot kinematics: the exhaustive computation of the singularity set of a manipulator, and the synthesis of singularity-free paths between given configurations. Obtaining proper solutions to these problems is crucial, because singularities generally pose problems to the normal operation of a robot and, thus, they should be taken into account before the actual construction of a prototype. The ability to compute the whole singularity set also provides rich information on the global motion capabilities of a manipulator. The projections onto the task and joint spaces delimit the working regions in such spaces, may inform on the various assembly modes of the manipulator, and highlight areas where control or dexterity losses can arise, among other anomalous behaviour. These projections also supply a fair view of the feasible movements of the system, but do not reveal all possible singularity-free motions. Automatic motion planners allowing to circumvent problematic singularities should thus be devised to assist the design and programming stages of a manipulator. The key role played by singular configurations has been thoroughly known for several years, but existing methods for singularity computation or avoidance still concentrate on specific classes of manipulators. The absence of methods able to tackle these problems on a sufficiently large class of manipulators is problematic because it hinders the analysis of more complex manipulators or the development of new robot topologies. A main reason for this absence has been the lack of computational tools suitable to the underlying mathematics that such problems conceal. However, recent advances in the field of numerical methods for polynomial system solving now permit to confront these issues with a very general intention in mind. The purpose of this thesis is to take advantage of this progress and to propose general robust methods for the computation and avoidance of singularities on non-redundant manipulators of arbitrary architecture. Overall, the work seeks to contribute to the general understanding on how the motions of complex multibody systems can be predicted, planned, or controlled in an efficient and reliable way.Aquesta tesi desenvolupa solucions generals per dos problemes oberts de la cinemàtica de robots: el càlcul exhaustiu del conjunt singular d'un manipulador, i la síntesi de camins lliures de singularitats entre configuracions donades. Obtenir solucions adequades per aquests problemes és crucial, ja que les singularitats plantegen problemes al funcionament normal del robot i, per tant, haurien de ser completament identificades abans de la construcció d'un prototipus. La habilitat de computar tot el conjunt singular també proporciona informació rica sobre les capacitats globals de moviment d'un manipulador. Les projeccions cap a l'espai de tasques o d'articulacions delimiten les regions de treball en aquests espais, poden informar sobre les diferents maneres de muntar el manipulador, i remarquen les àrees on poden sorgir pèrdues de control o destresa, entre d'altres comportaments anòmals. Aquestes projeccions també proporcionen una imatge fidel dels moviments factibles del sistema, però no revelen tots els possibles moviments lliures de singularitats. Planificadors de moviment automàtics que permetin evitar les singularitats problemàtiques haurien de ser ideats per tal d'assistir les etapes de disseny i programació d'un manipulador. El paper clau que juguen les configuracions singulars ha estat àmpliament conegut durant anys, però els mètodes existents pel càlcul o evitació de singularitats encara es concentren en classes específiques de manipuladors. L'absència de mètodes capaços de tractar aquests problemes en una classe suficientment gran de manipuladors és problemàtica, ja que dificulta l'anàlisi de manipuladors més complexes o el desenvolupament de noves topologies de robots. Una raó principal d'aquesta absència ha estat la manca d'eines computacionals adequades a les matemàtiques subjacents que aquests problemes amaguen. No obstant, avenços recents en el camp de mètodes numèrics per la solució de sistemes polinòmics permeten ara enfrontar-se a aquests temes amb una intenció molt general en ment. El propòsit d'aquesta tesi és aprofitar aquest progrés i proposar mètodes robustos i generals pel càlcul i evitació de singularitats per manipuladors no redundants d'arquitectura arbitrària. En global, el treball busca contribuir a la comprensió general sobre com els moviments de sistemes multicos complexos es poden predir, planificar o controlar d'una manera eficient i segur

    Coordinated Motion Control of Multiple Robotic Devices for Welding and Redundancy Coordination through Constrained Optimization in Cartesian Space

    Get PDF
    In this paper we consider the problem of coordinating multiple motion devices for welding. We focus on the problem of coordinating a positioning table and a seven axis manipulator, given the parametric definition of a trajectory on a weld piece. The problem is complex as there are more than nine axis involved and a number of permutations are possible which achieve the same motions of the weld torch. The system is redundant and the robot has singular configurations. As a result, manual programming of the robot system is rather complex. Our approach to the coordination problem is based on subdivision of constraints. The welding table is coordinated to ensure down-handed welding convention, while the seven axis robot (a six axis Cybotech WV15 robot and track) are coordinated to track the weld point. The coordination is achieved by keeping the robot in good maneuverability position, so as to avoid the robots singularity conditions and motion limits of the track. We were able to express the singularity conditions in terms of cartesian coordinates [I]. As a result, we could obtain analytic solution to our optimization of the maneuversability and therefore avoid using known pseudoinverse techniques which are known to exhibit inaccuracies [2]. The output of our optimization process is the positions of the track and the robot end-effector, these positions are used to generate the joint angles of the arm by inverse kinematics

    Dynamics and Motion of a Six Degree of Freedom Robot Manipulator

    Get PDF
    In this thesis, a strategy to accomplish pick-and-place operations using a six degree-of-freedom (DOF) robotic arm attached to a wheeled mobile robot is presented. This research work is part of a bigger project in developing a robotic-assisted nursing to be used in medical settings. The significance of this project relies on the increasing demand for elderly and disabled skilled care assistance which nowadays has become insufficient. Strong efforts have been made to incorporate technology to fulfill these needs. Several methods were implemented to make a 6-DOF manipulator capable of performing pick-and-place operations. Some of these methods were used to achieve specific tasks such as: solving the inverse kinematics problem, or planning a collision-free path. Other methods, such as forward kinematics description, workspace evaluation, and dexterity analysis, were used to describe the manipulator and its capabilities. The manipulator was accurately described by obtaining the link transformation matrices from each joint using the Denavit-Hartenberg (DH) notations. An Iterative Inverse Kinematics method (IIK) was used to find multiple configurations for the manipulator along a given path. The IIK method was based on the specific geometric characteristic of the manipulator, in which several joints share a common plane. To find admissible solutions along the path, the workspace of the manipulator was considered. Algebraic formulations to obtain the specific workspace of the 6-DOF manipulator on the Cartesian coordinate space were derived from the singular configurations of the manipulator. Local dexterity analysis was also required to identify possible orientations of the end-effector for specific Cartesian coordinate positions. The closed-form expressions for the range of such orientations were derived by adapting an existing dexterity method. Two methods were implemented to plan the free-collision path needed to move an object from one place to another without colliding with an obstacle. Via-points were added to avoid the robot mobile platform and the zones in which the manipulator presented motion difficulties. Finally, the segments located between initial, final, and via-points positions, were connected using straight lines forming a global path. To form the collision-free path, the straight-line were modified to avoid the obstacles that intersected the path. The effectiveness of the proposed analysis was verified by comparing simulation and experimental results. Three predefined paths were used to evaluate the IIK method. Ten different scenarios with different number and pattern of obstacles were used to verify the efficiency of the entire path planning algorithm. Overall results confirmed the efficiency of the implemented methods for performing pick-and-place operations with a 6-DOF manipulator

    Environment- and task-driven tool for selecting industrial robots

    Get PDF
    The problem of the research is to find a better solution for environment- and task-driven industrial robot selection process. Currently there are no tools or methods for the robot selection problem when considering an environment and a robot task. The goal was to find a solution for an industrial robot selection that takes the environment and the task into account and therefore make the robot selection process more simple and efficient. This thesis solves an inverse kinematic problem within joint limits while avoiding colli-sions. Three tools were created using MATLAB to solve the industrial robot selection problem: Robot Selector for selecting industrial robots in the custom environment (mod-eled in OBJ-format) and task requirements, Robot Builder for creating robot model li-braries and modeling custom robots and Environment Builder for creating robot envi-ronment models in OBJ-format. Website was designed and created for distributing the tools and a source code of the tools. The tools were converted into EXE-format and uploaded to website (robotselection.wordpress.com). The source code was uploaded to GitHub. A robot selection algorithm was tested empirically with a qualitative method and with a quantitative experiment. The results were good: An inverse kinematic solver succeeded in all 200 cases. The robot violated a collision distance in 1 case out of 200. The cause of the problem got fixed after the experiment. The algorithm was tested with 2 devices. Average processing time with a desktop PC was 3.88 seconds and with a laptop PC 11.5 seconds. Three test subjects tested the tools and created a robot and environment models after getting familiar with the tools. The average modeling time was about 7 minutes with the Environment Builder and about 5 minutes with the Robot Builder. The robot selection took averagely 4 minutes with the Robot Selector

    Path planning with loop closure constraints using an atlas-based RRT

    Get PDF
    In many relevant path planning problems, loop closure constraints reduce the configuration space to a manifold embedded in the higher-dimensional joint ambient space. Whereas many progresses have been done to solve path planning problems in the presence of obstacles, only few work consider loop closure constraints. In this paper we present the AtlasRRT algorithm, a planner specially tailored for such constrained systems that builds on recently developed tools for higher-dimensional continuation. These tools provide procedures to define charts that locally parametrize manifolds and to coordinate them forming an atlas. AtlasRRT simultaneously builds an atlas and a Rapidly-Exploring Random Tree (RRT), using the atlas to sample relevant configurations for the RRT, and the RRT to devise directions of expansion for the atlas. The new planner is advantageous since samples obtained from the atlas allow a more efficient extension of the RRT than state of the art approaches, where samples are generated in the joint ambient space.Peer ReviewedPostprint (author’s final draft

    Development of Novel Task-Based Configuration Optimization Methodologies for Modular and Reconfigurable Robots Using Multi-Solution Inverse Kinematic Algorithms

    Get PDF
    Modular and Reconfigurable Robots (MRRs) are those designed to address the increasing demand for flexible and versatile manipulators in manufacturing facilities. The term, modularity, indicates that they are constructed by using a limited number of interchangeable standardized modules which can be assembled in different kinematic configurations. Thereby, a wide variety of specialized robots can be built from a set of standard components. The term, reconfigurability, implies that the robots can be disassembled and rearranged to accommodate different products or tasks rather than being replaced. A set of MRR modules may consist of joints, links, and end-effectors. Different kinematic configurations are achieved by using different joint, link, and end-effector modules and by changing their relative orientation. The number of distinct kinematic configurations, attainable by a set of modules, varies with respect to the size of the module set from several tens to several thousands. Although determining the most suitable configuration for a specific task from a predefined set of modules is a highly nonlinear optimization problem in a hybrid continuous and discrete search space, a solution to this problem is crucial to effectively utilize MRRs in manufacturing facilities. The objective of this thesis is to develop novel optimization methods that can effectively search the Kinematic Configuration (KC) space to identify the most suitable manipulator for any given task. In specific terms, the goal is to develop and synthesize fast and efficient algorithms for a Task-Based Configuration Optimization (TBCO) from a given set of constraints and optimization criteria. To achieve such efficiency, a TBCO solver, based on Memetic Algorithms (MA), is proposed. MAs are hybrids of Genetic Algorithms (GAs) and local search algorithms. MAs benefit from the exploration abilities of GAs and the exploitation abilities of local search methods simultaneously. Consequently, MAs can significantly enhance the search efficiency of a wide range of optimization problems, including the TBCO. To achieve more optimal solutions, the proposed TBCO utilizes all the solutions of the Inverse Kinematics(IK) problem. Another objective is to develop a method for incorporating the multiple solutions of the IK problem in a trajectory optimization framework. The output of the proposed trajectory optimization method consists of a sequence of desired tasks and a single IK solution to reach each task point. Moreover, the total cost of the optimized trajectory is utilized in the TBCO as a performance measure, providing a means to identify kinematic configurations with more efficient optimized trajectories. The final objective is to develop novel IK solvers which are both general and complete. Generality means that the solvers are applicable to all the kinematic configurations which can be assembled from the available module inventory. Completeness entails the algorithm can obtain all the possible IK solutions

    Postprocesamiento CAM-ROBOTICA orientado al prototipado y mecanizado en células robotizadas complejas

    Full text link
    The main interest of this thesis consists of the study and implementation of postprocessors to adapt the toolpath generated by a Computer Aided Manufacturing (CAM) system to a complex robotic workcell of eight joints, devoted to the rapid prototyping of 3D CAD-defined products. It consists of a 6R industrial manipulator mounted on a linear track and synchronized with a rotary table. To accomplish this main objective, previous work is required. Each task carried out entails a methodology, objective and partial results that complement each other, namely: - It is described the architecture of the workcell in depth, at both displacement and joint-rate levels, for both direct and inverse resolutions. The conditioning of the Jacobian matrix is described as kinetostatic performance index to evaluate the vicinity to singular postures. These ones are analysed from a geometric point of view. - Prior to any machining, the additional external joints require a calibration done in situ, usually in an industrial environment. A novel Non-contact Planar Constraint Calibration method is developed to estimate the external joints configuration parameters by means of a laser displacement sensor. - A first control is originally done by means of a fuzzy inference engine at the displacement level, which is integrated within the postprocessor of the CAM software. - Several Redundancy Resolution Schemes (RRS) at the joint-rate level are compared for the configuration of the postprocessor, dealing not only with the additional joints (intrinsic redundancy) but also with the redundancy due to the symmetry on the milling tool (functional redundancy). - The use of these schemes is optimized by adjusting two performance criterion vectors related to both singularity avoidance and maintenance of a preferred reference posture, as secondary tasks to be done during the path tracking. Two innovative fuzzy inference engines actively adjust the weight of each joint in these tasks.Andrés De La Esperanza, FJ. (2011). Postprocesamiento CAM-ROBOTICA orientado al prototipado y mecanizado en células robotizadas complejas [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/10627Palanci
    corecore