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ABSTRACT 

ANTTI RUOKONEN: Environment- and task-driven tool for selecting industrial 
robots 
Tampere University of Technology 
Master of Science Thesis, 84 pages, 1 Appendix page 
August 2016 
Master’s Degree Programme in Automation Technology 
Major: Factory Automation 
Examiners: Professor Jose Martinez Lastra and Doctor Andrei Lobov 
 
Keywords: robot selection, robot modeling, robot environment modeling, inverse 
kinematics, collision avoidance, kinematic roadmap, MATLAB, robotic toolbox, 
industrial robots 

The problem of the research is to find a better solution for environment- and task-driven 

industrial robot selection process. Currently there are no tools or methods for the robot 

selection problem when considering an environment and a robot task. The goal was to 

find a solution for an industrial robot selection that takes the environment and the task 

into account and therefore make the robot selection process more simple and efficient.  

This thesis solves an inverse kinematic problem within joint limits while avoiding colli-

sions. Three tools were created using MATLAB to solve the industrial robot selection 

problem: Robot Selector for selecting industrial robots in the custom environment (mod-

eled in OBJ-format) and task requirements, Robot Builder for creating robot model li-

braries and modeling custom robots and Environment Builder for creating robot environ-

ment models in OBJ-format. Website was designed and created for distributing the tools 

and a source code of the tools. The tools were converted into EXE-format and uploaded 

to website (robotselection.wordpress.com). The source code was uploaded to GitHub.  

A robot selection algorithm was tested empirically with a qualitative method and with a 

quantitative experiment. The results were good: An inverse kinematic solver succeeded 

in all 200 cases. The robot violated a collision distance in 1 case out of 200. The cause of 

the problem got fixed after the experiment. The algorithm was tested with 2 devices. Av-

erage processing time with a desktop PC was 3.88 seconds and with a laptop PC 11.5 

seconds. Three test subjects tested the tools and created a robot and environment models 

after getting familiar with the tools. The average modeling time was about 7 minutes with 

the Environment Builder and about 5 minutes with the Robot Builder. The robot selection 

took averagely 4 minutes with the Robot Selector. 
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TIIVISTELMÄ 

ANTTI RUOKONEN: Ympäristö- ja tehtävä-perusteinen työkalu teollisuusrobot-
tien valitsemiseksi 
Tampereen teknillinen yliopisto 
Diplomityö, 84 sivua, 1 liitesivu 
Elokuu 2016 
Automaatiotekniikan diplomi-insinöörin tutkinto-ohjelma 
Pääaine: Factory Automation 
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nen, käänteinen kinematiikka, törmäyksen välttäminen, kinemaattinen tiekartta, 
MATLAB, robotic toolbox, teollisuusrobotit 

Tämän diplomityön tutkimusongelmana on ympäristön ja tehtävän huomioiminen robotin 

valintaprosessissa, sillä tällä hetkellä ongelman ratkaisemiseen ei ole metodia tai työka-

lua. Työn tavoitteena on löytää ratkaisu teollisuusrobotin valintaan huomioiden ympäristö 

ja robotin tehtävä. Tämä yksinkertaistaa ja tehostaa robotinvalintaprosessia.    

Tämä työ ratkaisee käänteisen kinematiikan ongelman robotin nivelten rajoissa väistäen 

samalla ympäristön esteitä. Kolme työkalua kehitettiin käyttäen MATLAB-ohjelmaa tut-

kimusongelman ratkaisemiseksi: Robot Selector kehitettiin teollisuusrobotin valitse-

miseksi omassa ympäristössä (OBJ-formaatissa) ja halutun tehtävän asettamissa rajoissa. 

Robot Builder kehitettiin robottikirjastojen luomiseksi ja robottien mallintamiseksi. Li-

säksi kehitettiin Environment Builder omien robottiympäristöjen mallintamiseen OBJ-

formaatissa. Tämän jälkeen työkaluille tehtiin internetsivu (robotselec-

tion.wordpress.com) ja työkalut käännettiin EXE-muotoon. Työkalut ladattiin internetsi-

vulle kaikkien käytettäväksi. Lähdekoodi ladattiin GitHub-palvelimelle kaikkien käytet-

täväksi.   

Robotinvalinta-algoritmi testattiin empiirisesti kvalitatiivisilla menetelmillä ja kvantita-

tiivisella tutkimuksella. Tulokset olivat erittäin hyviä: käänteisen kinematiikan ratkaisual-

goritmi ratkaisi kaikki 200 testitapausta. Robotti alitti törmäysrajan yhdessä tapauksessa 

kahdesta sadasta. Virhe tuli myöhemmin korjatuksi. Algoritmi testattiin kahdessa lait-

teessa. Prosessoinnin keston keskiarvo pöytäkoneella oli 3,88 sekuntia ja kannettavalla 

11,5 sekuntia. Kolme koehenkilöä opettelivat työkalujen käytön, jonka jälkeen he mal-

linsivat robotin ja ympäristön. Mallintaminen kesti noin 7 minuuttia Environment Buil-

derilla ja noin 5 minuuttia Robot Builderilla. Robotin valinta kesti koehenkilöillä keski-

määrin 4 minuuttia. 
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1. INTRODUCTION 

This thesis work starts with introducing the subject, the background and different methods 

of the main problem, which is inverse kinematics with collision avoidance. Later in the 

thesis one of the analyzed methods will be selected and modified if necessary. This will 

be discussed in the approach chapter. Implementation chapter reviews how the approach 

method was implemented and what was done for solving the problem. After implemen-

tation an experiment and its results are discussed. A next chapter will include general 

discussion of the implementation and the results of the experiment. Then the thesis ends 

with conclusions. 

1.1 Motivation 

Selecting an industrial robot is not an easy process, especially when the robot selection is 

environment- and task-driven. The robot must be suitable for selected task and environ-

ment. Nowadays there are no free tools which can be used for selecting the industrial 

robots regarding the task and the environment. The existing tools are mostly robot sizing 

tools that checks only the basic task requirements like maximum payload and reach with-

out considering the environment. These tools are in most of the cases designed to select 

robot models from the tool’s manufacturer. For now, engineers must select the industrial 

robots based of their knowledge and skill to estimate the robot’s suitability to environ-

ment, when considering the environment in the robot selection. 

A working environment of the thesis work is MATLAB with Robotic Toolbox. 

MATLAB is a fourth generation programming language. MATLAB is a strong tool for 

handling matrices and numerical computing. MATLAB has also great plotting tools and 

algorithm implementation. MATLAB was known from my previous works, so this makes 

it easier to start thesis in this environment. Capabilities and limitations of MATLAB were 

also already known. Robotic Toolbox is set of algorithms to MATLAB robot modeling. 

These are the main reasons for selecting MATLAB as the working environment. 

1.2 Problem statement 

The main problem of the thesis work is to find and implement or create a new algorithm 

of inverse kinematics that avoids collisions to environment. Inverse kinematics means 

generating robot joint values that leads a robot tool to required coordinates with a given 

orientation. This must be done without collisions and within robot joint limits.  
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To find a suitable industrial robot while considering environment and a task, the inverse 

kinematic problem must be solved in the joint limits of the robot while avoiding the col-

lisions. The robot cannot be suitable if it collides to the environment. A payload and other 

task requirements must also be checked. This requires an algorithm that solves the inverse 

kinematic problem without the collisions or violating the joint limits of the robot and 

compares an attributes of the robot to requirements of the task. The algorithm also re-

quires models of the environment and the robot. The solutions must be general so it can 

be utilized with any serial manipulator industrial robot and with any environment.  

1.3 Research hypothesis 

By solving the inverse kinematic problem within the joint limits while avoiding obstacles 

of the given environment, it is possible to solve the environment-driven robot selection 

problem. When this problem is solved the robot is suitable to the environment. By creat-

ing adequate models of the robots and the environment, it is possible to avoid collisions 

to the environment utilizing the created models with a right algorithm. By checking the 

task requirements of the robot, it is possible to find out the suitability of the robot in the 

given task. Creating and sharing the solution built on appropriate frameworks like 

MATLAB, it is possible to make the environment and task-driven industrial robot selec-

tion process more efficient and simple.  

1.4 Objectives 

The objectives of the thesis are to solve the inverse kinematic problem within the robot 

joint limits and avoid obstacles of the environment and checking the task requirements of 

the robot. The solutions should be general and work with any environment and any robot. 

Reaching the goal may result providing a single or multiple tools or algorithms for solving 

the industrial robot selection problem. Then a source code or the tools and the algorithms 

are distributed to users. 

1.5 Limitations 

The limitations of the thesis ensured from the working environment. The thesis is limited 

to the MATLAB-code. The algorithms require certain toolboxes and libraries like Robotic 

Toolbox. This environment limits the expendability of the source code, since MATLAB 

is not as common language as for example C++, even if MATLAB-files can be converted 

to C++ with converters. 
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2. THEORY AND BACKGROUND 

In this chapter background and theory of industrial robots and the project are discussed 

in general. The chapter focuses mostly to the robot selection and robot kinematics.  

Robots have certain specifications. Depending of the task, some features are more im-

portant than others. When selecting the industrial robot, it is important to know the most 

important qualities. This chapter discusses where to focus in the environment- and task-

driven robot selection.  

In this chapter different methods are reviewed for solving the problems of this thesis. 

Inverse kinematic solvers are reviewed. In this thesis we do not consider inverse kine-

matic problems with velocities because in this thesis the problem is a point-to-point in-

verse kinematic problem. 

After reviewing the inverse kinematic solvers, collision detection methods are discussed. 

Collision detection methods are useful to understand when implementing the collision 

avoidance. After discussing the collision detection, different obstacle avoidance methods 

are reviewed.  

2.1 Background of the project 

This thesis started as a special assignment in factory automation. The given assignment 

was to create a tool allowing the modelling robot operational environment and required 

robot tasks. The tool should be based on the environment details to calculate which robot 

can be suitable for it. The tool should provide the best structure for the robot, as well as 

be able to check existing robots if those will fit for the task. 

The tool was made using MATLAB and Robotic toolbox version 9.7. This implementa-

tion utilized custom robot library file format (txt). The user can import an environment 

model and a robot library file to the tool using Graphical User Interface (GUI). Using the 

GUI user can enter environment, robot and target details and run a robot suitability algo-

rithm. The tool gives list of suitable robots to the given task and environment as output. 

Figure 2.1 shows the tool as it was in special assignment phase. 
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Figure 2.1 Environment-driven robot selection 

The robot libraries were made manually with text editors and user had to know the right 

syntax. The environment files had to be made with separate 3D-modelling tool like Solid-

Works. The tool did not detect collisions. Environment models were only for choosing 

robot’s and target’s location coordinates, but the environment does not actually affect the 

robot’s inverse kinematics in any way. In some situations, the robot can even collide with 

itself so the robot’s ability to reach close target points must be double-checked with an-

other method. The problem of this tool was also the fact that the tool requires the robot 

library file made with notepad and also model file of the environment in obj-format. 

The given assignment was interesting and challenging but it required large amount of 

work to finish the goals. It was decided ask to continue the assignment as the Master of 

Science thesis work.  

2.2 Selecting an industrial robot 

For now, there is no simple and neutral tool for selecting an industrial robot. Especially 

when considering tasks and a working environment of the robot. Selecting the robot re-

quires knowledge and lot of comparing and consideration [35]. 

Most common industrial robots are serial manipulators. Industrial robots are usually now-

adays capable of different tasks and applications by utilizing different grippers and tools. 

Still robot manufacturers have models for different purposes. [11, 19] 

In a robot selection a task and environment should always be taken into account. The 

robot must be capable to the selected application. The selected robot should also be able 

to reach each point of the task and produce sufficient torque. If overload occurs, the robot 

can even shut down. Budget or schedule can also affect the robot selection. However, a 

decent and most suitable robot is usually worth of money. [11, 19] 
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2.2.1 Task-driven robot selection 

Application might be the most important factor in the industrial robot selection. Each 

application makes individual requirements for the robot selection. For example, small part 

assembly requires completely different type and size robot than welding application. Dif-

ferent application types can be for example welding, painting, packing, assembly, tending 

or measuring. The application type should be the first thing taken to account when select-

ing an industrial robot. This determines the type of the required robot. the robot types can 

be for example SCARA-, delta- or collaborative-robot. However, this thesis and the robot 

selection tool focuses only to industrial robots. Nowadays the industrial robots are able 

to execute large amount of different task like welding, tending or painting. Robot manu-

facturers have an industrial robot model for almost all different applications. [11, 19, 32, 

34] 

Payload is an important factor when selecting the industrial robot. The payload means the 

maximum amount of mass the robot can handle. The payload includes also mass of grip-

per of the robot. There are completely different set of the robot models for handling heavy 

products comparing for example to fast small part assembly robots. [11, 19, 32, 34] 

A workspace of the robot is the area where the robot can reach. This must be considered 

to make sure that the robot can reach and work in the desired point. Different industrial 

robots have different workspaces. All the robot manufacturers inform their workspaces 

of the robots. Before selecting the robot, it should be checked that the robot can reach all 

the task points with right orientation. [11, 19, 21, 32, 34] 

Repeatability and accuracy are important aspects in certain tasks. Repeatability is the ro-

bot’s ability to repeat exactly same movements. Accuracy is the robot’s ability to move 

close to the desired location. For example, the robots that work with circuit boards require 

often good repeatability and accuracy. The robots must handle small parts repeatedly to 

exactly same location unlike for example welding tasks. [11, 19, 21, 32, 34, 40] 

Speed has different importance with different tasks. For example, packing tasks usually 

requires the robots with high speed. In some situation even fast delta robots are required 

just because of the speed. When considering the robots’ speed, it is important to find out 

actual working speed of the robot: Some manufacturers inform speed of their robots with 

maximum acceleration rate so the given maximum speed cannot be reached with every 

task. The speed is given in degrees/second in most of cases. [11, 19, 32] 

An inertia of the robots should also be checked when selecting the robot. All tasks require 

certain amount of torque. All the robot manufacturers inform maximum torques of their 

robots. If the robot faces overload, it can even shut down. [11, 32, 40] 

The robots have different amount of brakes. Some of the industrial robots even have the 

brakes in every axes. The brakes might be helpful when avoiding collisions. [11, 40] 
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2.2.2 Environment-driven robot selection 

The environment causes requirements to the robots. In some situations, the environment 

can be designed around the robot but in some situations this is not possible. The robot 

might be required to reach a task point in the narrow environment. The environment can 

also cause limitations with a robot mounting or require extra protection against dust, water 

or flammable materials. [11, 16, 34] 

The environment can also cause the robot to reach tricky task points. Even if the points 

are in the work space of the robot, the environment may constrain the robot to complex 

position when evading the environment. Less the robot has degrees of freedom, harder it 

is for the robot to reach the task point in the restrictive environment. More joints allow 

more different ways to avoid the objects. [11, 16, 19] 

Number of axes of the robot is related to the robot’s degrees of freedom. The different 

environments and the different tasks requires different amount of axes. Product move-

ment does not require large amount of axes except if the robot is in a cramped environ-

ment. However, few extra axes are not a problem. Actually the extra axes increase flexi-

bility of the robot increasing the robot’s degrees of freedom and redundancy of the robot. 

The redundancy of the robots is discussed in more detailed later in this chapter. [11, 16, 

19] 

The robots should always have some kind of collision avoidance. Usually the robots are 

programmed to reach predetermined points with a predetermined orientation. This works 

until the environment is changed. Machine vision is also used for the collision avoidance. 

In some solution the environment is modeled and the robot is programmed to avoid the 

collisions based to the environment model. [11] 

Mass of the robot can be important in some situations. If the robot is mounted to for 

example to rails, a ceiling, a wall, a custom bench or any unusual way. 

Some of the environments can require for right IP rating of the robot. The robot may 

require protection for example against dust, water or flammable environment. 

2.2.3 Robot ranking methods in robot selection 

Different kinds of industrial robot ranking methods are developed for the robot selection 

problem. For example, multiple multi-criteria decision-making (MCDM) methods are 

created for the robot selection problem. In these methods, the robots are ranked based on 

their attributes such as cost, payload, size, degrees of freedom, programming flexibility 

and velocity. The attributes can be subjective or objective meaning numerically express-

ible or not numerically expressible. The different attributes have different importance in 
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each application. The attributes are used to rank the robots and calculating the most suit-

able robot. [32, 34, 35] 

As an example, in graph theory and matrix approach (GTMA) method the robots are first 

collected in a table. The robot table includes robot names and different robot attributes. 

In a next phase, data of the table is normalized. This means that for example if the greatest 

payload value is 60kg, it is turned to value of 1. The payloads of the other robots are 

indicated as percentage of this maximum value. Then an attribute matrix is generated for 

the normalized data. The robots can be arranged using a robot index number calculated 

from the matrix. [35] 

The different robot ranking methods use different weight of importance to the attributes. 

This results different robots as being the best choice with the different selection methods. 

[35] 

However, the robot ranking methods are not suitable for the problem of this thesis. The 

robot selection problem is not solved using ranking methods since they do not consider 

environment. However, these methods may be utilized for ranking the robots if multiple 

robots are suitable for the task and environment. 

2.2.4 Existing tools 

Nowadays there are few tools for selecting an industrial robot. However, none of them 

takes environment and task an account. Most of the tools are simply taking into account 

only robot size or application. In Figure 2.2 one of the robot sizing tools is shown. The 

particular tool is mostly based for the robot’s mounting. 

 

Figure 2.2 Robot sizing tool [18] 

Most of the manufacturers’ robot selectors are especially robot sizing tools. There are 

also robot programming and modelling tools. These tools are able to import an environ-

ment model. After importing the environment, these tools can often detect robot collisions 

when executing the robot task with the selected robot. 
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Catia and Delmia are an example of a tool that is used for plan, manage and optimize 

robots. Catia is the tool for 3D-modeling. With Catia, a user can model robot parts or any 

other 3D parts. After a modeling phase, the modelled parts can be assembled into the 

robot model.  

In Delmia, the robots can be defined in more detailed. For example, joint rotation limits 

can be set. The environment of the robot can also be assembled. After finishing the robot 

and the environment, the robot task can be made. The robot can be commanded to execute 

the created task. For example, the robot task can be picking an object and placing it to 

another location. This is done in the robot environment so Delmia is able to detect all 

collisions. Figure 2.3 shows ABB robot executing a task in its working environment. 

 

Figure 2.3 ABB robot in Delmia [12] 

However, Delmia is not suitable tool for the robot selection even it can be used for check-

ing suitability of the robot for the task and the environment. Delmia is an expensive pro-

gram and it also requires to select the robot first before executing the task in the environ-

ment. In the robot selection process user needs to know which robots are suitable for the 

certain environment and task. Selecting the industrial robot with this kind of tools is time 

consuming and ineffective way to select the right industrial robot.  

Some of the robot manufacturers have a tool for selecting robots. However, these tool are 

simple. Most of the tools made by robot manufacturers are designed only for robot sizing. 

For example, ABB has a tool for selecting the industrial robots. This tool is shown in 

Figure 2.4. The robot selecting tool asks application, payload and reach of the robot. After 

selecting the right values, the tool lists the suitable robots. This kind of tool is a simple 
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way to select right ABB robot. However, this type of tools does not consider the environ-

ment. As result of this thesis, the outcome may be similar type of tool that also considers 

the environment. [1] 

 

Figure 2.4 ABB's robot selector [1] 

The manufacturers’ robot selecting tools are limited to models of the manufacturer. It is 

obvious that no manufacturer includes the robots to the tool by other manufacturers. 

These tools are also limited with the robot selection criteria because the robot selection is 

based to size and application of the robot.  

2.3 Summary of existing robot selection methods 

After making the research on the internet and literature, the only way to select the indus-

trial robots considering the environment and the task appears to be by modeling the envi-

ronment of the robot and the robot itself by using an expensive software and modeling 

the robot executing the task. Then it can be seen if the robot collides to the environment 

and then the robot or the environment can be changed and remodeled if necessary. This 

is time consuming task. In addition to this, other requirements must also be checked man-

ually like payload limits of the robot. 

  



10 

 

Table 2.1 Summary of robot selection tools and methods 

Method Solves problems Description 

Robot ranking methods Robot sizing and task eligi-

bility 

Robot ranking methods is 

made for list robots in order 

of suitability with self-de-

fined importance of robot 

attributes. 

Robot sizing tools Robot sizing and task eligi-

bility 

Simple tool mostly created 

by robot manufacturers for 

finding suitable robot with 

right size for selected ap-

plication. 

Robot programming envi-

ronments 

Robot task and environ-

ment eligibility 

Tools used for program-

ming robots can be used for 

checking robot suitability 

for given task in custom en-

vironment. 

 

Table 2.1 summarizes the current methods and tools for selecting industrial robots. Only 

the robot programming environments can be used for testing the robot task and the envi-

ronment eligibility. However, this is a slow method for finding the suitable robot and the 

tools like Delmia are often expensive. As we can see from the table, there are no tool or 

method for the task- and environment-driven robot selection problem except the robot 

programming environments. 

It appears that collision avoidance has not yet been combined with the robot ranking or 

robot selection. We can now conclude that the problem is not yet solved at the formulated 

level. There is currently no decent tool or method for selecting the suitable robots out of 

a robot library (a set of robot models) for the task taking the environment into account.  

2.4 Modeling robot manipulators 

Before we can select the suitable industrial robots for a certain task, the robots must be 

modeled. Utilizing the robot models, we can test the suitability of the robots for the envi-

ronment by checking collisions. 
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Robot kinematics focuses robot joint movements and locations without considering 

causes of the forces. The robot kinematics includes joint positions, velocities and accel-

erations. In this thesis we focus to the robot position and orientation kinematics. [11, 19] 

The industrial robot can in most cases be thought of as chain of links. There are joints 

between the links. There are six different joint types: revolute, prismatic, cylindrical, pla-

nar, screw and spherical joints. This chain type robot structures are called serial manipu-

lators and they are the most common industrial robots. Most of the serial manipulators 

have an anthropomorphic structure. This structure includes shoulder, elbow and wrist 

type joints. Some of the serial manipulator industrial robots are shown in Figure 2.5. As 

we can see, these robots are serial manipulators with open loop structures, because there 

is only one link leading to each joint and therefore no parallel structures. [11, 19, 21] 

 

Figure 2.5 KUKA industrial robot with serial manipulator structure [23] 

Other type of the industrial robots is a closed loop robot. The parallel robots have multiple 

links from the robot base to the robot tool. This limits workspace and degrees of freedom 

of the robot, but significantly increase speed and precision of movement of the robot. The 

parallel robot type is shown in Figure 2.6. As we can see from the figure, the particular 

delta robot has three identic serial links connected to the tool. This enables fast accelera-

tions and accuracy because of three motors are sources of force. [11, 19] 
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Figure 2.6 Delta robots with parallel structure [10] 

Because this thesis focuses to the environment- and task-driven robot selection, the par-

allel robots are not included. The parallel robots have limited workspace and limited 

amount of degrees of freedom so they are not capable for example avoiding obstacles. 

2.4.1 Robot degrees of freedom 

Degrees of freedom (DOF) relates the robot’s capability to reach a point in X, Y and Z 

coordinates and orientations. For example, a six DOF robot can reach any point in its 

workspace with any orientation along X, Y and Z axes. All the robots with over six DOF 

are always called redundant robots. [19] 

DOFs can be counted by counting the joints of the robot. Usually each actuator increases 

DOFs of the robot. Some of the joints may have multiple DOFs. For example, human 

shoulder has three DOFs. [11] 

DOF has its limits called a configuration space. Most of the joints have their own move-

ment limits. These limitations can be ensured for example from wires, actuator limits or 

servo max angles. [11] 

2.4.2 Robot DH parameter table 

Generally, a base of the robot is called link0. The next link is called link1 and so on until 

the end-effector. Most of the manipulators have five or six joints. In this thesis, we con-

sider only the serial link manipulators ignoring the parallel robots. [11, 19] 

Denavit-Hartenberg notation is a mechanism for defining the serial links. There are four 

parameters for each link in Denavit-Hartenberg notation. These parameters are called DH 

parameters. Two parameters are for defining adjacent joint axes and the another two pa-

rameters are for defining the adjacent links. [11, 19, 38, 40] 
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Relationship between the joint axes can be defined with two parameters: a link twist α 

and a link length a. The link twist α is an angle between the adjacent joint axes. The link 

twist is measured along a plane whom normal is the adjacent links mutual perpendicular. 

The link length a is measured along a line that is mutually perpendicular to the both joint 

axes. The link length is also known as r to avoid confusing to the link twist α. [11, 19, 38, 

40] 

The adjacent links have one common joint axis. Parameter d is a distance along this com-

mon axis from the previous link to the next one. This parameter d is called link offset. 

Another parameter defining relationship between the neighbor links is a joint angle θ. The 

joint angle is amount of rotation between the adjacent links from their common joint axis. 

With the revolute joints joint angle is often a variable that changes with the robot move-

ment and with the prismatic joints, d is a variable. Figure 2.7 clarifies the robot DH pa-

rameters. [11, 19, 38, 40] 

 

 

Figure 2.7 Robot DH-parameter clarification [19] 

In Robotic Toolbox, there is also a fifth parameter Σ. This parameter defines a type of the 

joint. Value 0 is for the revolve joint and 1 for the prismatic joint. However, this is not an 

original DH parameter. Now we can summarize the DH parameters: 

θ = Joint angle (The angle between an adjacent links measured from their common 

joint axis). 

d = Link offset (The distance between an adjacent links measured along their com-

mon joint axis). 
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a = Link length (The distance between an adjacent joints measured along a mutual 

perpendicular). 

α = Link twist (The angle between an adjacent joint axes measured from a plane 

whom normal is adjacent links mutual perpendicular). 

Now we are able to model the whole serial link industrial robot using the DH parameters. 

The DH parameters for each link of the robot can be combined to a table. This table is 

called DH table. In Figure 2.8 there is modeled Mitsubishi RV-3SD robot using the DH 

parameters. The parameter θ is variable in the every joint, because each joint is revolved. 

If the joint would be prismatic, θ would be a value and a would be the variable. [11, 19, 

31, 38, 40] 

 

Figure 2.8 An example of robot DH-table [29] 

MATLAB can build a model of serial link utilizing Robotic Toolbox according to the DH 

parameters. We will consider more later about modeling the robots with MATLAB.  

2.5 Robot redundancy 

Obstacle avoidance can be implemented utilizing redundancy of the robot. If the robot 

collides to an environment, it is possible that other inverse kinematic solutions do not 

collide. The robot can be suitable to the task only if the robot does not collide to the 

environment. 

Amount of the robot’s joints can be compared to task dimensionality. If the robot has 

same amount of joints that it is required for the task’s dimensionality, the system is called 

perfectly constrained. In overconstrained system the robot has lower dimensionality that 

is needed. If the robot dimensionality is greater what is required for the task, the system 

is called underconstrained. In this situation the robot is called redundant. [11, 16, 19] 

Robot redundancy is always depending the task of the robot. The robot is simply redun-

dant in certain task, if the robot’s amount of DOF is greater than the requirement of the 
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task. For example, 4-DOF SCARA robot is redundant for a task that requires only posi-

tioning tasks in xyz-coordinates, but non-redundant for a task that requires positioning 

with certain orientation along x and y axes. [11] 

Even the robot’s redundancy is task depending, 7-DOF robots are widely called redundant 

robots. This can be explained because maximum task DOF requirement is 6: coordinates 

x, y and z and orientations along x, y and z (α, β and γ). It can be concluded that if the 

robot’s DOF is equal to or greater than 7, the robot is always redundant. [11] 

The robot is redundant if it has more degrees of freedom than is required for executing 

the task. Redundancy of the robot increase the robot’s ability to reach a target point with 

demand orientation in a restrictive environment. The robot redundancy increases the 

amount of solutions in the inverse kinematic problem. [11, 16, 19] 

Robot redundancy and larger amount of solution to inverse kinematics can be utilized in 

multiple ways. The robot redundancy can be used to avoid singularities. The singularity 

is a tricky position of the robot. For example, in the singularity position, the robot may 

have infinite amount of inverse kinematic solutions that causes the robot spinning or an-

other uncontrolled movement. The robot redundancy can be utilized also for avoiding 

joint limits. Obstacle avoidance also improves by the robot redundancy because of in-

creased dexterity of the robot. Larger amount of the inverse kinematic solutions can be 

utilized by removing solutions that would result collision. [11, 16] 

2.6 Rotation and transformation matrices 

Before we are able to model the robot manipulators, rotation and transformation matrices 

must be understood. Transformation matrix is a matrix that is used to move and rotate 

frames. In the transformation matrix a rotation matrix and a translation vector are com-

bined. [11, 19, 38, 40] 

The rotation matrix is a 3x3 sized matrix. Let’s assume that we have two coordinate sys-

tems {A} and {B}. The rotation matrix is 

 𝑅 = [ 𝑋̂ 
𝐴

𝐵    𝑌̂ 
𝐴

𝐵  𝑍̂ 
𝐴

𝐵]𝐵
𝐴 , (2.1) 

where  𝑋̂ 
𝐴

𝐵, 𝑌̂ 
𝐴

𝐵 and 𝑍̂ 
𝐴

𝐵 are unit vectors defining a relation between coordinate systems 

of frames {A} and {B}. We get the transformation matrix by adding a translation vector 

Q and the rotation matrix 𝑅𝐵
𝐴  together in a following way: 

 
𝑇 =  [ 𝑅𝐵

𝐴 𝑄ᵀ

0 0 0 1
]𝐵

𝐴 . 
(2.2) 

We can now display a clarification of the transformation matrix: 



16 

 

𝑇 =𝐵
𝐴  [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

𝑞𝑥

𝑞𝑦

𝑞𝑧

0 0 0 1

], 

(2.3) 

where q are coordinates and r the rotation components. [11, 19, 21, 38, 40] 

We can now make the rotation matrices for rotation along each axis. In these following 

rotation matrices only the variable angle changes. Changing the angle, we can rotate a 

frame along any axis x, y or z using the pre-defined matrices. The pre-defined rotation 

matrices are 

 
𝑅𝑧𝐵

𝐴 =  [
𝑐α −𝑠α
𝑠α 𝑐α

0
0

0 0 1
], 

(2.4) 

 
𝑅𝑦𝐵

𝐴 =  [
𝑐β 0
0 0

𝑠β
0

−𝑠β 0 𝑐β
], 

(2.5) 

 

𝑅𝑥𝐵
𝐴 =  [

1 0
0 𝑐γ

0
−𝑠γ

0 𝑠γ 𝑐γ
]. 

(2.6) 

By changing variables α, β and γ, point can be rotated corresponding amount of degrees 

in coordinate system. Cosine and sine are shortened to c and s. Now we can combine the 

rotation matrices to following formula: 

 

𝑅𝑧𝑦𝑥𝐵
𝐴 =  [

𝑐α𝑐β 𝑐αsβsγ − sαcγ
𝑠αcβ sαsβsγ + cαcγ

cαsβcγ + sαsγ
sαsβcγ − cαsγ

−sβ                  cβsγ cβsγ
]. 

(2.7) 

Almost every transformation in this thesis is based in this rotation matrix. This form of 

the rotation matrix applies in almost every situation since it includes rotation along all 

axes x, y and z. [11, 19, 21, 38, 40] 

2.7 Forward kinematics 

In order to know if a serial manipulator is suitable to an environment, it is essential to 

know if the robot collides to the environment. Before we can detect the collisions, a po-

sition of the robot must be known. Location and orientation of each link and joint must 

be known in order to check if it collides to the environment. Forward kinematics solves 

this problem.  

In forward kinematics the robot is in a pose. The problem is to know the coordinates of 

an end-effector of the robot. The values of each joint is known. For revolved joints these 

variables are θ and for a prismatic joint a. However, in forward kinematics all the θ and a 
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are known. The solution to forward kinematics problem is the transformation matrices. 

[11, 19] 

When solving the forward kinematics problem, we need a general transformation matrix 

for any link. Using the DH parameters, we only have the transformation along X and Z 

axes. This includes the rotation 𝑅𝑋 along X axis, the translation 𝐷𝑋 along X axis, the 

rotation 𝑅𝑍 along Z axis and the translation 𝐷𝑍 along Z axis multiplied together. So we 

get  

 𝑇𝑖
𝑖−1 =  𝑅𝑋(α𝑖−1)𝐷𝑋(𝑎𝑖−1)𝑅𝑍(θ𝑖)𝐷𝑍(𝑑𝑖). (2.8) 

Now we can calculate the general link transformation matrix utilizing formulas 2.2, 2.4 

and 2.6: 

𝑇𝑖
𝑖−1 =

[

1 0 0 0
0 𝑐α𝑖−1 −𝑠α𝑖−1 0
0 𝑠α𝑖−1 𝑐α𝑖−1 0
0 0 0 1

] [

1 0 0 𝑎𝑖−1

0 1 0 0
0 0 1 0
0 0 0 1

] [

𝑐θ𝑖 −𝑠θ𝑖 0 0
𝑠θ𝑖 𝑐θ𝑖 0 0
0 0 1 0
0 0 0 1

] [

1 0 0 0
0 1 0 0
0 0 1 𝑑𝑖

0 0 0 1

]. (2.9) 

After double-checked the result with MATLAB, we get the transformation matrix for any 

link: 

 

𝑇𝑖
𝑖−1 =  [

𝑐θ𝑖 −𝑠θ𝑖 0 a𝑖−1

sθ𝑖𝑐α𝑖−1 cθ𝑖cα𝑖−1 −sα𝑖−1 −sα𝑖−1𝑑𝑖

𝑠θ𝑖𝑠α𝑖−1 cθ𝑖sα𝑖−1 cα𝑖−1 cα𝑖−1𝑑𝑖

0 0 0 1

].  

(2.10) 

If the calculation had been made with the Z transformation first and then X, we would 

have got different matrix. The alternative transformation matrix is called Denavit-Harten-

berg matrix: 

 

𝑇𝑖
𝑖−1 =  [

𝑐θ𝑖 −𝑠θ𝑖cα𝑖−1 𝑠θ𝑖sα𝑖−1 cθ𝑖𝑎
𝑠θ𝑖 cθ𝑖cα𝑖−1 −cθ𝑖scα𝑖−1 sθ𝑖𝑎
0 sα𝑖−1 cα𝑖−1 𝑑𝑖

0 0 0 1

].  

(2.11) 

Utilizing either one of these general solutions of the link transformations, we are able to 

calculate the transformation of the serial link manipulator multiplying the link transfor-

mations: 

 𝑇𝑁
0 =  𝑇1

0 𝑇2
1 𝑇3

2 … 𝑇𝑁
𝑁−1 . (2.12) 

This transformation matrix informs us an orientation and a location of the end-effector of 

our robot. Forward kinematic problem is now solved. [11, 19, 38, 40] 
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2.8 Inverse kinematics 

With inverse kinematics, the problem is opposite compared to forward kinematics. In the 

inverse kinematic problem, we know end-effector location and orientation, but joint val-

ues of the robot are unknown. Inverse kinematics finds a solution with which joint values 

the robot’s end-effector is located in the predetermined location and orientation. In the 

inverse kinematic problem, it is possible that no solution exists, one solution exists or 

multiple solution exist. Figure 2.9 shows a simple example of the inverse kinematic prob-

lem with two link manipulator with two solutions. The complexity of the inverse kine-

matic problem is exponential in the robot DOF and polynomial in the number of obsta-

cles. In the real world, the robots usually have at least six DOF and at least hundreds of 

points to avoid. This makes the problem challenging. [11, 19, 28, 40] 

 

Figure 2.9 Inverse kinematics example 

There are many different approaches for the inverse kinematics. The inverse kinematic 

problem can be solved for example with analytic or numerical approach. Different ways 

to solve the inverse kinematic problem and new methods are invented all the time. The 

most important and the most established methods are review in the next chapter. [11, 19, 

38] 

2.9 Solving the inverse kinematic problem 

Methods for the inverse kinematic problem finds a solution to nonlinear sets of equations. 

In the inverse kinematic problem, it is possible that there is large amount of solutions or 

no solutions exists. [11] 

The inverse kinematic problem can be solved with many different ways. The inverse kin-

ematics solving methods can be sort into categories. Most of the methods can be catego-

rized to closed-form solutions or numerical solutions. [11] 
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2.9.1 Closed-form solutions 

The closed-form solutions are faster than numerical solvers and easily able to find all the 

solutions. On the other hand, the closed-form solutions are depending on the robot’s struc-

ture and must be generated for each robot separately. [11] 

Generally, the closed form solutions can be used only for 6 DOF robots with certain struc-

ture. However, large amount of the industrial robot has this specified type of structure. 

So called ad hoc techniques are the most efficient closed-form methods for finding the 

solutions to inverse kinematic problem utilizing geometric features of particular mecha-

nisms. The closed-form solutions can be divided to algebraic and geometric methods. [11] 

With the algebraic method, equations with the joint variables are created. The equations 

will be modified into a soluble form to get the joint values. In the algebraic methods few 

different strategies are used. An equation pair is often a suitable solution instead of mul-

tiple transcendental equations.  [11] 

The geometric methods are based on idea, that includes reducing set of joint variables 

into functions. This method splits the problem into parts. The separated problems are then 

solved with the algebraic methods. For example, some of the robots with articulated struc-

ture allows solving the inverse kinematics with the geometric methods splitting the prob-

lem to inverse position kinematics and inverse orientation kinematics. Both problems are 

then solved separately. [11]  

2.9.2 Numerical methods 

Numerical solutions are not depending on the robot’s kinematic structure. This means 

that the numerical methods are not robot depending and they can be used for any robot. 

On the other hand, the numerical methods are slower than the closed-form solutions. 

However, this thesis will focus to the numerical inverse kinematic methods since the robot 

structures can vary significantly. The numerical inverse kinematic solving methods can 

be divided into three different categories. These categories are called symbolic elimina-

tion, continuation and iterative methods. [11]  

The symbolic elimination method utilizes analytical manipulation to reduce amount of 

equations by eliminating variables. With using this method, it is possible to find all the 

possible solutions. Multiple improvements have been made to this method. Manocha, 

Canny, Roth and Raghavan are known for improving the symbolic elimination method. 

[11] 

Continuation methods uses a tracking principle. A solution path is tracked from a start 

system with known solution. A target system’s solutions are solved transforming the start 

system. This method can be used to solve all the possible solutions. [11]  
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Most of the iterative methods results to a single solution. This solution is based to an input 

called initial guess. The initial guess is a guess of joint values that are estimated to be near 

to the solution. A solution time is greatly depending on quality of the initial guess. Most 

well-known iterative methods are Newton-Raphson, Pieper, modified predictor-correc-

tor, interval analysis, damped least-square and optimization approaches. Especially the 

interval analysis is promising because it can find all the possible solutions and it uses fast 

convergence to the solution. [11] 

2.9.3 Jacobian matrices 

Utilizing a Jacobian matrix is perhaps the most used technique for inverse kinematics. If 

the forward kinematic problem is stated 

 𝒙 = 𝑓(𝒒), (2.13) 

the Jacobian matrix can be defined as  

 𝐽 =  
∂f

∂𝐪
. (2.14) 

Then the inverse kinematic problem can be solved with formula 

 𝒙̇ = 𝐽𝒒̇, (2.15) 

where 𝒙̇ =
𝒅𝒙

𝒅𝒕
, 𝒙 is an end-effector vector,  𝒒̇ =  

𝑑𝑞

𝑑𝑡
 and 𝒒 is the joint variable vector. [11, 

19] 

Inverse kinematic can be solved with several different ways utilizing the Jacobian matrix: 

Pseudoinverse of Jacobian that gives least-squares solution with redundant system and 

matrix transpose for resolving the closed-loop inverse kinematic. [20] 

2.9.4 Other methods  

Also other methods are developed. These methods cannot be classified to any previous 

approaches. A few other methods are reviewed in this chapter.  

Lagrangian methods can be used to solve the inverse kinematic problem. This method 

utilizes an objective function. Lagrangian multipliers can be used to extend an undercon-

strained system to a perfectly constrained system. [20] 

Reach hierarchy is a method by James Korein and Norman Balder that tries to solve in-

verse kinematics with utilizing workspaces of each joint. The method tries to find an in-

tersection between a goal trajectory and a workspace boundary. This method is difficult 
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to use since the workspaces of the robots can be complex and the method requires a lot 

of precomputation. [20] 

Triangulation is a method for solving the inverse kinematic problem by rotating joints 

one by one. The triangulation is an improved method based to Cyclic-Coordinate Descent 

(CCD). The joint movement is implemented different way compared to the CCD. The 

rotation continues until an angle θ between lines 𝑝𝑐 to 𝑝𝑡 and 𝑝𝑐 to 𝑝𝑒 is zero. Principle 

of the triangulation is shown in Figure 2.10. [33] 

 

Figure 2.10 Triangulation principle [33] 

The joints are rotated with the order of importance. The algorithm avoids the joint rotation 

as much as possible utilizing cost function to find a simple solution. This method guaran-

tees to find the solution if one exists. [33] 

2.10 Joint limit avoidance methods 

The inverse kinematic problem must be solved within joint limits of a robot. Otherwise 

the robot is not suitable for the task. All inverse kinematic solvers do not include the joint 

limits, so this may be implemented with other methods. 

Multiple approaches can be used for robot joint limit avoidance. First of the methods is 

to ignore the joint limits. After solving the inverse kinematic problem, all results that 

violates the joint limits are discarded. Then the rest of the results are within the joint 

limits. 

While making the obstacle avoidance, the same functions can be used also for the joint 

limit avoidance. For example, functions like cost-, objective- and task priority -functions 

can be used to implement the joint limit avoidance. 

2.11 Collision detection methods 

The robot can be suitable for the task only if the robot does not collide with the environ-

ment. Therefore, it is essential to avoid collisions. Before we can avoid the collisions, we 
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should be able to detect collisions. Collision detection methods can be divided into four 

categories: space-time volume intersection, swept volume interface, multiple interface 

detection and trajectory parametrization. The most suitable collision detection methods 

for this thesis are reviewed in this chapter. [30] 

Collision detection consumes a lot of CPU resources. The amount of collision tests is 

large and after each movement of any object, the collisions must be checked. For these 

reasons it is important to make the collision detection as efficient as possible. [24] 

2.11.1 Distance calculation 

In distance calculation method, a distance between (in this case) the robot and other ob-

jects is measured. If the distance is smaller than a given collision distance, collision oc-

curs.  

This method has few problems: It is required to define closest points of the robot and the 

environment. Then the distance between the robot and the object is the distance between 

these points. It may require a lot of computing if a distance between all points of the robot 

model is measured to all points of the object model. All this calculation has to be made 

after every movement. However, the idea itself if simple and it does not require to gener-

ate other collision model shapes. 

2.11.2 Bounding volumes 

Bounding shapes is a method that makes the collision detection more efficient. This 

method uses rectangles or spheres to surround objects (Figure 2.11). Then an intersection 

between these shapes are checked. If there are no intersections between the bounding 

shapes, then there are no collisions. Otherwise, there may be collisions and further tests 

are required. [5, 30, 41] 

 

Figure 2.11 Bounding shapes [15] 

Multiple shapes can also be used for one object. Figure 2.12 shows a robot manipulator 

with sphere subdivision. A set of spheres forms the robot collision model. Collisions are 

not checked between these spheres. Instead, the collisions are checked between these 

spheres to any spheres constructing an obstacle collision model. [5, 30, 41] 
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Figure 2.12 Sphere subdivision [5] 

The rectangle or sphere intersection test is simple and therefore efficient to use. This 

makes it possible to check the collisions after every step of movement. 

2.11.3 Triangle intersection 

Triangle intersection is a method for checking triangle mesh collisions. 3D objects are 

mainly generated from triangle-shaped polygons. The Collisions can be checked by 

checking an intersection of these triangles. Figure 2.13 shows an example of the triangle 

intersection check. 

 

Figure 2.13 Triangle intersection 

An intersection of the triangles can be checked by making planes for both triangles. The 

planes are defined by vertices of the triangles. The collision occurs only if the triangles 

overlaps each other along an intersection line of the planes. Otherwise, the collision does 

not occur. As it can be seen from Figure 2.13 the collision does not occur, since the tri-

angles do not overlap along the intersection line of the planes. [24, 45] 
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This method may be too slow with large amount of polygons. Kun Qian, Xiaosong Yang 

and Jianjun Zhang compared this method to the bounding sphere method in 2015. This 

method was slower than the bounding sphere method. Other drawback is also the fact that 

this method only works with the polygons. This requires also a 3D model of the robot to 

test collision. [24] 

2.11.4 Spatial partitioning 

Spatial portioning is a method for making the collision detection more efficient. This 

method includes dividing a space into cells. [30] 

The method counts a number of objects in each cell after every step of movement. If one 

cell contains more than one object, more tests are required with other methods. Otherwise, 

no collision occurs. [30] 

2.12 Obstacle avoidance methods 

Multiple methods can be used for the robot manipulator’s obstacle avoidance. Most of 

the reviewed method are optimization functions that can be implemented to the collision 

avoidance. Some of the methods serves more than one tasks simultaneously. The first task 

is always reaching towards the goal and a secondary task is avoiding the obstacles. 

2.12.1 Cost function 

Cost function is an optimization function. The cost function increases a variable after 

system changes. Optimal system status is at local minimum of the cost function. In inverse 

kinematic -case the cost function can be used for example directly as distance from end-

effector to the goal. As the robot joint values change, the lowest cost is the joint value 

that results the end-effector closest to the goal. [7] 

In the obstacle avoidance, the cost function can be utilized with multiple ways. The cost 

function can be utilized with an inverse relation of distance between the robot and the 

obstacle. Other method is for example, if the robot violates the collision distance, the cost 

function can be set to increase. Otherwise the cost function can be set to 0. In this case, 

the robot avoids to move to the collision distance, since being outside the collision dis-

tance results to the lowest cost function. The joint limit avoidance is simple to add to the 

cost function method: If the robot violates the joint limits, the cost function increases 

significantly. [7] 

2.12.2 Task priority 

Task priority is a technique that can be used to the collision avoidance. Aurel Fratu, Jean-

Francois Brethe and Mariana Fratu implemented the collision avoidance with this method 
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in 2010. This method serves two tasks. The task priority can be implemented to the col-

lision avoidance for example in the following way: The first step is to determine the clos-

est point of the robot manipulator to the obstacle (critical point). Second step is to calcu-

late the distance from the obstacle to the critical point. [6, 8, 9] 

The primary task includes only the end-effector’s velocity towards the goal and secondary 

task is the critical point’s velocity away from the obstacle. This method cannot be used 

in this thesis since this is point-to-point problem and therefore the velocities are not con-

sidered. [6, 8, 9]  

2.12.3 Objective function 

Objective function can be used in the obstacle avoidance with several ways. The function 

has primary and secondary objectives. The primary objective is obviously reaching the 

goal. [13] 

Secondary objective can vary depending on a situation. For example, the secondary ob-

jective can be maximizing the distance between the obstacle and the manipulator or max-

imizing the area between the manipulator links and the obstacle. 

2.12.4 The kinematic roadmap 

The kinematic roadmap is a method by Juan Ahuactzin and Kamal Gupta in 1999-2000 

for inverse kinematics and collision avoidance. The method is based on Ariadne’s Clew 

algorithm. [2, 3] 

The method is an inverse kinematic solver that avoids collisions. The algorithm consists 

of two sub-algorithms called Explore and Search. Explore is an algorithm that explores 

the robot’s free configuration space and places landmarks in it. Search-algorithm finds 

the robot joint movement limits and moves each joint to a position where the end-effector 

is closest to the goal frame. With this method the robot can be moved without checking 

the collisions, since collision avoidance is taken into account in the limit search phase. 

This saves a lot of CPU recourses. The cost function is used in the search algorithm. [2, 

3]  

2.12.5 Potential field 

Potential field method is widely used in the robot’s obstacle avoidance. Dae-Huyng Park, 

Heiko Hoffmann, Peter Pastor and Stefan Schaal implemented collision avoidance with 

the potential fields in 2008. The potential fields are also utilized in the collision avoidance 

by Cornel Secara and Luigi Vladareanu. With this technique, a predefined potential field 

is determined around obstacles. While the robot touches to the field, it causes repellent 

force to the robot link. [13, 14]  
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This method is also based to the robot velocities. Therefore, it is not suitable for in this 

thesis.  
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3. APPROACH 

Before starting an implementation, it is essential to define working environment, methods 

to use and design the implementation. In this case, the working environment was already 

selected. All the methods for solving the main problem are selected in this chapter. 

In this thesis there were several choices to do before starting the implementation. 3D 

format had to be chosen for modeling the environment. Tools of the thesis had to be de-

fined and distribution channel of tools had to be chosen. In this chapter the approach of 

the implementation is rationalized.  

3.1 Selected method for inverse kinematics 

When selecting the method for the inverse kinematic problem, one method was more 

suitable in this thesis than any other. The selected method solves point-to-point inverse 

kinematic problem and avoids collisions and robot joint limits. However, many changes 

must be done to make the solution work with any robot and any environment.  

The main problems of this thesis is solved with a similar algorithm with Ariadne’s Clew 

algorithm. The method solves the inverse kinematic problem within joint limits and with 

collision avoidance. The selected method is fast when compared to the other methods, so 

it is suitable for executing multiple times for different robots in complex environment to 

find suitable industrial robots. This method does not require an initial guess since the 

robot will start from random orientation.   

The selected method to solve inverse kinematics is based the Ariadne’s Clew algorithm. 

The algorithm is a path planning algorithm that can be used to solve the inverse kinematic 

problem. The algorithm was selected as inspirited by Triangulation method by R. Muller-

Cajar and R. Mukundan. The Ariadne’s Clew algorithm is similar to RRT-algorithms 

(Rapidly-exploring Random Tree): It rapidly explores the configuration space. [22, 27, 

28, 33] 

The Ariadne’s Clew algorithm consists of two sub-algorithms: Search and explore. 

Search is an algorithm that checks with an iterative method if the goal is reachable from 

any known position. Search is similar to the triangulation method. The explore algorithm 

explores the configuration space with increasing resolution and adds landmarks for search 

algorithm. [27, 28, 33] 

In 1999 Juan Ahuactzin and Kamal Gupta made successful implementation of Ariadne’s 

Clew algorithm to solve the point-to-point inverse kinematic problem. This thesis utilizes 

that implementation and extends it to general robot- and environment solutions. [2, 3]  
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3.1.1 Explore 

Explore is one of the two sub-algorithms. Explore algorithm explores the configuration 

space and places landmarks in it. Each time explore is executed, it generates a number of 

embryos. Originally in the Ariadne’s Clew algorithm the embryos were generated sys-

tematically as far from each other as possible. However, to speed up the algorithm, Juan 

Ahuactzin and Kamal Gupta used quasi-random method to create the embryos. The em-

bryo furthest from the closest landmark is selected as the new landmark. The embryos are 

created by making random robot joint movements from each previous landmark. Figure 

3.1 clarifies the landmark creation method. The figure shows an example of two-dimen-

sion configuration space with 10 previous landmarks. In the figure black X corresponds 

the previous landmarks, green O are the new embryos and red X is the embryo that is 

selected to the new landmark since it is the furthest embryo away from the other land-

marks. [2, 3] 

 

Figure 3.1 Landmark creation clarification 

Figure 3.2 Shows the same example with 100 landmarks. This method spreads the land-

marks evenly even if it is based randomly placed embryos. The landmarks are marks of 

explored free configuration space. The embryos cannot be placed if it leads the robot to 

collision. This method rapidly explores the free configuration space of the robot. 
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Figure 3.2 Explore with 100 landmarks 

This method tries to approach the goal from as different directions as possible. As we can 

see from Figure 3.2, as number of the landmarks increases, the resolution of the explored 

configuration space increases. This is suitable approach for the research problem, since 

the environment of the robot is always unknown. The method explores the environment 

during each iteration by placing the landmarks. The structure of the robot does not matter 

with explore. Even prismatic joints can easily be implemented. However, some modifi-

cations have to be made to make the algorithm work with different number of joints. The 

algorithm must detect the joint type and number of joints before randomizing the joint 

values. Also the fact that an initial guess is always random instead of constant is suitable 

for a variable environment. 

3.1.2 Search 

Search sub-algorithm is executed each time after explore. Search tries to move the robot 

to the goal from the newly placed landmark. All the landmarks are searched only once. 

Then the landmark is left to the configuration space to represent an explored place. [2, 3] 

Search consists of two phases. The first phase is a joint limit search. The limit search 

moves the robot joint until collision occurs or the joint limit is exceeded. When this oc-

curs, the direction of the movement is reversed and the joint value is saved. When the 

other limit is found with same manner, the joint limits 𝛥𝑙
𝑚𝑖𝑛 and 𝛥𝑙

𝑚𝑎𝑥 are then found. 

Other joint values stay fixed while the robot is searching the limits. This phase requires 
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largest amount of computation in the whole algorithm, since forward kinematics and col-

lision detection must be calculated after every step of movement. Figure 3.3 shows a 

clarification of the joint limit search phase. [2, 3] 

 

Figure 3.3 Joint limit search of search sub-algorithm [2] 

Now the algorithm knows the rotation interval for the joint, where the joint is safely able 

to move without collisions. After the joint limits are found, the second phase of search-

algorithm is executed. This phase searches the local minimum of the cost-function from 

𝛥𝑙
𝑚𝑖𝑛 to 𝛥𝑙

𝑚𝑎𝑥. The cost-function is the sum of three Euclidean-distances. 

 𝑐𝑜𝑠𝑡 =  √𝑑𝑥
2 + 𝑑𝑦

2 + 𝑑𝑧
2 , (3.1) 

where 𝑑𝑥
  is the distance from endpoint of the robot end-effector’s frame 𝐹𝑎 unit vector i 

to an endpoint of the goal frame’s 𝐹𝑏 unit vector i,  𝑑𝑦
  is the distance from an endpoint 

of the robot end-effector’s frame 𝐹𝑎 unit vector j to an endpoint of the goal frame’s 𝐹𝑏 

unit vector j and 𝑑𝑧
  is the distance from the endpoint of the robot end-effector’s frame 𝐹𝑎 

unit vector k to the endpoint of the goal frame’s 𝐹𝑏 unit vector k. This is clarified in Figure 

3.4. Adding the sum of distances of the unit vectors instead of single point provides the 

robot to move desired orientation and location instead of location only. [2, 3] 
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Figure 3.4 Cost-function clarification [2] 

After the local minimum of the cost function is found between 𝛥𝑙
𝑚𝑖𝑛 and 𝛥𝑙

𝑚𝑎𝑥, the robot 

sets the joint value to the value where the local minimum is found and proceeds to the 

next joint executing the same two phases. After all the joints are passed the cycle, search 

function is ended. It must be noticed that with the general solution, the robots may have 

any number of joints. The new cycle starts until the goal is reached, an iteration limit is 

exceeded or the change in the final cost function drops below a given limit (the progress 

of moving closer to goal is ended). [2, 3] 

The inverse kinematic function repeats explore and search functions until a solution is 

found or the iteration limit is exceeded. When the solution is found, the function returns 

joint values leading to the goal. [2, 3] 

In this thesis, there may exist any number of goal frames. The robot must reach all the 

goal frames in order to be suitable robot. This must be noted when implementing the 

solution. 

3.2 Selected method for collision detection 

The selected method for collision detection is the sphere intersection (bounding spheres 

2.11.2). It can also be classified to distance calculation method (2.11.1). The idea of this 

method is taken from research “Optimization of robot links motion in inverse kinematics 

solution considering collision avoidance and joint limits” by S. Mitsi, K.-D. Bouzakis, G. 

Mansour in 1994. This method is simple enough to be repeated with short interval, like 

after every degree of movement of the robot, and with complex obstacles. Sphere inter-

section is the method that models the robot and obstacles with spheres. If the sphere from 

the robot model intersects with the sphere from the obstacle model, collision occurs.  

If 𝑟𝑖 is a radius of the sphere from the robot model and 𝑟𝑗 is a radius of the obstacle model 

sphere, collision occurs if a distance between the center of those spheres is 𝑟𝑖 + 𝑟𝑗 or 

smaller. The spheres can be set to equal size with each other to make the collision detec-

tion calculation more simple and therefore faster. Any shape can be modeled with spheres 

when adjusting amount of the spheres and size of the spheres, since MATLAB is powerful 
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calculating large matrices. It is reasonable to model collision detection with identical 

spheres instead of set of different sized spheres. In this case 𝑟𝑖 = 𝑟𝑗. Therefore, the colli-

sion occurs when the distance between the center of the spheres is equal or smaller than 

 2 ∗ 𝑟𝑖. This distance is called collision distance. An example of the collision models is 

shown in Figure 3.5. 

 

Figure 3.5 Collision detection principle [36] 

The robot and the obstacles can be modeled with sufficient accuracy using the identical 

collision spheres. However, density of the spheres must be adjustable. The collision dis-

tance must also be adjustable since it directly corresponds size of the spheres. 

The challenges with this method are with the placement of the spheres. The models must 

be filled with the spheres regularly and the solution must be general and work with any 

model. Other challenge is to optimize the amount of the spheres to avoid unnecessary 

calculation. 

3.3 Selected method for obstacle avoidance 

The approach of obstacle avoidance is included in the search sub-algorithm. At the first 

phase of the search function includes a limit searching. This phase includes collision 

avoidance component. After each degree of movement, the collision will be checked be-

tween the robot and the obstacle. If the collision occurs, the joint movement limit is set. 

Otherwise the movement is continued until the joint limit exceeds or the collision occurs. 

[2, 3] 
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Since the robot limits are searched before every movement, the collisions do not have to 

be taken into account later in any other phase. This method is fast enough to be calculated 

with every movement in the complex environment with large amount of collision model 

spheres. 

3.4 Challenges of the main algorithm 

Main challenges of the selected approach might be making the solution general. The so-

lution must work with any serial manipulator robot model and with any environment 

model. The solution should work with the different sized robots and with prismatic and 

revolved joints. 

Other challenges are with processing time of the algorithm. The goal is to make as effi-

cient and as fast algorithms as possible and avoid unnecessary calculation. With narrow 

environments it may require large amount of landmarks so it is essential to have fast al-

gorithms. It is interesting to find out how the robots will find the way through hole-shaped 

obstacles with this approach. 

Challenges may also occur with placing the bounding spheres regularly. Bugs and mis-

takes in source code will also cause minor challenges in the beginning of implementation. 

3.5 Selecting working environment 

When starting this project as a special assignment, it was allowed to select any program-

ming environment comfortable for a student. My clear choice was MATLAB, which was 

known from previous assignments. 

MATLAB is a strong fourth generation matrix-based programming language especially 

handling matrices. Matrix handling is useful feature in robotics. MATLAB is also good 

at numerical computing, that is needed especially when solving the inverse kinematic 

problem. MATLAB is mostly used for math, graphics, programming and simulating. [26] 

With MATLAB graphical user interfaces (GUI) can be done easily. GUI is a window that 

can include for example push buttons, sliders, checkboxes, plots or editable text fields. 

GUI is the interface that the user manipulates and where the results are displayed. 

MATLAB also has code converters to many languages. Finished MATLAB code can be 

turned to java, C++ or even an application. After finishing a programming phase, a built 

application can be distributed to the users and no MATLAB are then needed for executing 

the tool except MATLAB runtime. [26]  
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3.6 Robotic Toolbox 

Robotic Toolbox is a robot related open source function pack for MATLAB. Robotic 

toolbox provides many functions for robotics. For example, kinematics-, dynamics- and 

trajectory –related functions are provided. Robotic toolbox is especially for serial link 

manipulators. [31]  

With Robotic Toolbox, it can be easily defining a serial manipulator using the DH pa-

rameters. After definition of the robot, it can be plotted and moved. 

3.7 Modeling environment in MATLAB 

3D objects can be modeled with several different ways in MATLAB. All the different 

methods are made for different situations. In this chase, the main reason for selecting one 

above others is the fact that it works best with 3D file format chosen. 

First way to model the environment is a mesh-command. Mesh draws a wireframe mesh 

based from the given data. This command is not used in this thesis.  [25] 

Command for drawing surfaces is called surf. Surface is a three-dimensional filled mesh. 

Different variants of surf commands exist. Trisurf-command creates surface from trian-

gles. This command is useful when creating a single pre-defined object that consists of 

large amount polygons. [25] 

For drawing single polygon, there is a fill3-command. The command creates a three-di-

mensional polygon and fills it with defined color. Fill3-command is used in this thesis to 

create single polygons. This can be utilized for example when removing the single poly-

gons without clearing whole graph. Especially the environment modelling tool utilizes 

fill3 drawing the polygons one by one. [25] 

In MATLAB, there are also pre-defined shape commands. For example, a sphere-com-

mand creates a sphere with defined size. The created sphere can be plotted for example 

with surf-command. Different shapes have their own commands. [25] 

MATLAB is a versatile programming language, so there are many other ways to create 

3D objects. However, these reviewed methods are probably the most common ones. 

3.7.1 Chosen 3D format 

There are many types of 3D-files. In this project, it was required to import models to 

MATLAB, so it is essential to be able to easily draw the shapes of the file using MATLAB 

functions. Because there are many ways to draw polygons in MATLAB, it was reasonable 

to select polygon mesh -based format. 
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The polygons are triangles that are defined by three corner points. There are many quite 

similar polygon mesh formats, because the idea behind the polygon definition is simple. 

Most simple polygon mesh format was found is called Raw mesh (.raw). In the raw-for-

mat each line consists of three vertices defining the triangle (X1 Y1 Z1 X2 Y2 Z2 X3 Y3 

Z3). However, raw-format is not so widely used. In this project a user should be able to 

model the environment with any 3D-modeling tool, so more common format is required. 

Wavefront OBJ –format is the polygon mesh format developed by Wavefront Technolo-

gies. OBJ-files are in common use and almost every 3D-modeling software can save pol-

ygon meshes in obj-files. OBJ consists of two parts. The first part of the file is the vertices 

part. Lines defining the vertices starts with character v. After v, there are X, Y and Z 

coordinates of the point separated with whitespaces. Each vertex lines defines a corner 

point of the polygon. [43] 

After the vertex part, there is a polygon face element. The face element defines the poly-

gon by connecting three corner points to each other. A line in the face element starts with 

character f. Then the line includes three numbers separated by whitespaces. Numbers in 

the face element lines are corresponding to the line numbers of the vertices being con-

nected. In Figure 3.6 an example of OBJ-file is shown in Notepad2. The represented 

object is a cube with side length of 100 units. A unit type is not defined in the obj-format. 

[43] 

 

Figure 3.6 Cube in obj-format viewed in Notepad2 
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Obj-format includes many optional features. Lines starting with # are comment lines and 

therefore are skipped. The format also supports textures, vertex normal and parameter 

space vertices. [43] 

3.7.2 Modeling obj-files in MATLAB 

Modeling obj-files in MATLAB can be done with several steps. First the file must be 

opened and read. Then vertices and faces must be saved to separate matrices. Then a 

shape can be drawn.  

The first phase is to get data when drawing the obj-file in MATLAB. The data can be 

imported from GUI of the obj-file. For example, if a user wants to draw a cube in 

MATLAB from the obj-file. The data must be read from the file. 

The vertices are read first. As long as lines starts with character v, numbers from the line 

can be saved to a vertices matrix. The vertices matrix can be defined to be a 3 ∗ 𝑛 size 

matrix, where X, Y and Z coordinates have own columns. Each line defines one vertices 

point. After reading the vertices, face lines are read as long as the lines starts with char-

acter f. The faces can be saved to own matrix similar to the vertices.  

When drawing the shape, fill3 or trisurf –commands can be used. For example, when 

using fill3, the function requires matrices for X, Y and Z and color of the polygon. X, Y 

and Z are matrices with 3 rows and n columns. The rows are coordinates to the corre-

sponding axis of the different polygons. The columns define different corners of that pol-

ygon in the corresponding axis. For example, the first column of matrix X consists all X 

coordinates of the first polygon. The second column includes X coordinates of the second 

column. The matrices X, Y and Z can be generated from the face matrix taking the cor-

responding coordinates from the vertices matrix and saving them to the X, Y and Z ma-

trices. Then the shape can be drawn with the command fill3(X, Y, Z, C), where C is the 

color of the polygon. 

3.8 Modeling robots in MATLAB 

Robots can be modeled in MATLAB utilizing the Robotic Toolbox. Modeling the robot 

is based to the robot DH parameters. In Robotic toolbox, each link is defined separately. 

In the link definition, a link name and the DH parameters of the link are given. Additional 

parameter is Σ indicating a joint type. Value 0 equals a revolved joint and value 1 a pris-

matic joint. The links are then connected to each other with SerialLink-function. Option-

ally a robot base can be defined. Figure 3.7 shows Mitsubishi RV-3SD robot with code 

of the model. [31] 
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Figure 3.7 Robot model with model code 

Serial link manipulators can be modeled in this way. Parallel robot structures can be made 

using multiple serial links and connecting them together. 

3.9 Designing the tools 

When designing the tool of the thesis, it can be noted that the tool can be divided into 

three parts. There are three main uses for the tool. The first part of the tool is for modeling 

an environment of the robots. Second part is for modeling the robots. Third use of the tool 

is to test the modeled robots in the modeled custom environment. Figure 3.8 shows the 

UML (Unified Modeling Language) use case diagram of the tools. Tool this versatile may 

easily become too confusing and complicated for the user. Therefore, it is reasonable to 

make three separate tools for keeping the tools user friendly. 
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Figure 3.8 UML use case diagram for the tools 

The robot modeling and the environment modeling tools are actually assistance tools for 

the robot selecting tool. It should be possible to use the robot selecting tool without other 

tools. The environment and the robot modeling tools are only for making files for the 

robot selector. However, the robot selecting tool should be capable to open the environ-

ment files made with any 3D modeling tool instead of the environment modeling tool. 

Common file formats must be selected between the tools. The environment model file 

format has already selected. OBJ format is selected as the environment model format. 
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Therefore, the environment modeling tool should be simple 3D modeling tool that saves 

the models as obj-files. 

For the robot modeling tool, new format must be created. This format should include a 

list of robots, their DH parameters and other specifications. This custom robot library data 

format can be implemented as a txt-format. 

The robot selecting tool should be capable to open the obj-files and the robot library files. 

Then the tool should build the robot models and the environment models from the selected 

files. After this, the user will be able to select task requirements and run the algorithm. 

After calculation, the tool will list the suitable custom robots for the selected task in the 

modeled custom environment. Phases of the robot selection process for each tool is shown 

in UML architecture diagram in Figure 3.9.  

 

Figure 3.9 UML activity diagram about robot selection process with the tools 
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As we can see from the Figure 3.9 above, the robot and the environment models are built 

first using the Environment Builder and the Robot Builder. The robot model and the en-

vironment model procedures are described in this chapter. After the models have been 

made, the Robot Selector is used to find the suitable industrial robots for the task and the 

environment.  

3.9.1 Tool for modeling an environment 

For fulfilling requirements of the thesis, the tool for modeling the environment is required. 

The environment modeling tool will be able to model the environment with a user friendly 

interface. The user will be able to build the robot working environment model, for exam-

ple, a robot cell. Figure 3.10 shows the environment modeling procedure. The model 

must be measured before it can be modeled. After the measurements, the model can be 

created by covering all the obstacles with rectangles. Then the model can be saved. The 

actual modeling procedure will be explained in more detail in the next chapter. 

Measure the environment Open the modeling tool Model all the obstacles Save the model

 

Figure 3.10 UML activity diagram for modeling environment 

Models can be done using rectangles with sufficient precision. The rectangles will be 

easily placed, scaled and rotated. The models are only for collision avoidance. Therefore, 

it is not necessary to model the environment with exact precision. However, almost any 

shapes can be done with rectangles small enough or inserting multiple rotated rectangles 

in same location. 

When modeling the environment with the rectangles, it is necessary to have a decent in-

terface. The model must be displayed while modeling and the rectangles will be preview 

before placing them. The user friendly interface also requires features like an undo-button 

for keeping the tool usable. 

After finishing modeling, the user can save the model as obj-file. The obj-file can then be 

opened in the robot selecting tool.   

3.9.2 Tool for modeling industrial robots 

Robot modeling is also required in this thesis. With the robot modeling tool, the user can 

model and design own robots with the user friendly interface. Basic knowledge of robot-

ics is required for this tool (especially DH parameters). Figure 3.11 shows the robot mod-

eling procedure. Before the modeling, the user needs to get the robot attributes (such as 

DH table) which can be found for example from robot manuals and drawings. The robot 

attributes can then be filled into the robot modeling tool. The actual modeling procedure 

will be explained in more detail in the next chapter. 
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Get robot attributes Open the modeling tool Insert robot information Save the model

 

Figure 3.11UML activity diagram for modeling robots 

The robot modeling tool is based on the DH parameters. The user can model the robots 

filling the robot DH parameter table while monitoring the current robot model. The user 

can define robot basic information, like name, maximum payload, the DH parameters and 

joint limits. Since this thesis is environment- and task-driven robot selection, environment 

and task details are also defined including task types, temperature range and noise level. 

With the robot modeling tool, the user should also be able to test the modeled robots. This 

ensures that the robot moves as it is designed. 

The robot models will be stored in the custom file format. Txt-files are useful for storing 

this type of data. These files can be called robot library files. These files include all the 

data for each robot model. The user will be able to create new robot library files. In the 

robot library, the user is able to view the robots, create new robots, delete robots and edit 

robots. 

The robot libraries can be opened in the robot selecting tool. The robot selecting tool then 

runs an algorithm that finds the suitable robots from the selected robot library in the cus-

tom environment. 

3.9.3 Tool for selecting industrial robots 

Tool for selecting industrial robots is the main tool. This tool will run the main algorithm 

utilizing inverse kinematics and collision avoidance. Then the tool will list all the suitable 

robots for given task in the custom environment. 

The tool must be able to open the environment and the robot library files. The environ-

ment files are in OBJ-format and made with the environment modelling tool. However, 

the tool will be able to open OBJ-files made with another tools and make a collision model 

regardless the tool that is used to model the environment. Environment details such as 

room average temperature or robot maximum noise can also be filled in a GUI of the tool. 

These details affect the robot selection. The robot can be placed to any location in the 

environment. The robot can also be rotated along any axis to any orientation. Therefore, 

it is possible to mount the robot for example to a ceiling or a wall. 

Task can also be adjusted. Task type can be selected from a task list. The task types can 

be for example welding, painting, assembly, tending or any. Task payload can also be 

selected. This means for example weight of an object being moved. A location of the task 

will be implemented with adding goal frames. These frames can be for example start- and 

endpoints of a welding task or picking and placing points of an assembly task.  
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The user can also adjust other options to avoid long and unnecessary processing. These 

options include roadmap options (landmark- and iteration limits) and collision options 

such as a collision distance. 

After selecting a robot search, the tool will test the robots from the selected robot library 

to the required task. The inverse kinematic algorithm is used with the collision- and joint 

limit avoidance. Then all the succeeded robots are listed and showed to the user.    

3.10 Distribution of tools 

Contact was made to several companies. The thesis was well explained and co-operation 

was offered. Some of the companies were interested about the thesis but still no deal was 

made. This led to free distribution of the tools. 

In the present days it is obvious to select internet as the distribution channel of the tools. 

Internet provides great availability of the tools for everyone. 

When selecting a web content management environment, WordPress was the best choice. 

Over 26% of internet pages is made with WordPress and 50 000 new web pages are cre-

ated every day. WordPress is free and open-source system and it supports mobile devices 

and it was easy to learn. WordPress was obviously the best selection as website platform. 

[42, 44] 

The source code is also distributed. The selected channel to distribute the code is GitHub. 

GitHub is made for distributing and developing especially open source code so it is a 

good choice for this project allowing anyone to edit it after finishing the thesis. 
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4. IMPLEMENTATION 

In this chapter an implementation of the tools and the webpage is discussed. Three tools 

were created: Environment Builder for modeling the robot environments, Robot Builder 

for the robot modeling and Robot Selector for solving the main problem. Webpage was 

created for distributing the tools. 

4.1 Environment Builder 

Tool for modeling the robot environments is named Environment Builder. Environment 

Builder is a tool for building 3D-models for another tool called Robot Selector. This tool 

saves the models to obj-files. The environments can be modeled with any other 3D-mod-

elling tool as long as the format of the environment is obj. 

Environment Builder is simple and good enough for modeling the robot environments 

like robot cells. Environment Builder is based on rectangles. The user can choose start 

and end points for each axis. These six values define the rectangle. The rectangles can 

also be rotated with any amount of degrees along any axis. The user sees a preview of the 

current rectangle all the time while filling the values in GUI. A shape adding algorithm 

is described in Algorithm 4.1. 
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1. get values from GUI 

2. calculate and save midpoint 

3. get rotation values from GUI 

4. select corners of the rectangle and save to new matrix 

5. create variable matrix for rotated coordinates 

6. while loop for all corner points of rectangle: 

a. reduce object midpoint from coordinates to rotate 

object along itself, not with origin 

b. rotate coordinates using transformation matrix 

and save rotated coordinates 

c. add coordinates to midpoint to move point back 

to original location but rotated 

d. select next point 

7. create rectangle matrices X, Y and Z 

8. create and update vertices and face matrices 

9. remove preview shape 

10. draw new shape to figure 

Algorithm 4.1 Add shape 

Each time after adding the rectangle, vertex and face matrices are updated. The vertex 

matrix simply includes coordinates of corners of the rectangle. The matrix is 3 ∗ 8 sized 

since the rectangle has 8 corners. The face matrix is used to connect the vertices to each 

other to construct the polygons. Size of the face matrix is 3 ∗ 𝑛 depending on a number 

of the rectangles. For each rectangle, 12 rows are required since the rectangle can be 

created with minimum of 12 triangle-shaped polygons. The face matrix has a constant 

pattern and it always uses the pattern numbers and sums the multiplication of 8 and num-

ber of shapes to the pattern. 

The user can also undo the shapes. An undo-button removes the latest rectangle. The 

button can be used as many times in a row as user wants. Algorithm 4.2 shows the prin-

ciple of undo-function. 

1. continue if number of shapes > 0 

2. delete shape i (newest shape) 

3. while loop for all faces and vertices of rectangle 

a. delete face of shape i from face matrix 

b. delete vertices of shape I from vertices matrix 

c. increase counter 

4. decrease shape counter i 

5. update figure 

Algorithm 4.2 Undo 
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The user is also able to clear all and start the modeling all over again. This removes all 

the rectangles. The finished model can be saved with a save-button. The save-function 

simply prints the vertex and face matrices to txt file and names it as obj-file.  

Graphical user interface (GUI) of the Environment Builder is simple. The GUI of Envi-

ronment Builder is shown in Figure 4.1. The GUI includes only the preview image of the 

current environment, location fields, rotation fields and four buttons. 

 

Figure 4.1 Environment Builder GUI 

Six location fields are used to determine the rectangle. Fields are for start- and endpoints 

of the rectangle in X, Y and Z coordinates. Three rotation fields are used for rotating the 

rectangle along the X, Y and Z axes. 

The four buttons are included. The add shape –button creates a currently previewed (red) 

rectangle. The undo-button removes the latest rectangle and converts it to the preview-

shape. The clear all –button removes all the rectangles. The save model –button creates 

the obj-file and saves the rectangles to the file. 

When modeling the environment with Environment Builder. The first thing is to measure 

the environment, which can be done for example by creating drawings of the environ-

ment. The user can simply get the dimensions of the environment utilizing already exist-

ing CAD models. Alternative method is simply to go in front of the environment and 

select any point as the origin and then measure the distances and dimensions of the ob-

stacles with a ruler. After the measurement, the user should be able to locate the obstacles 

in the coordinate system of the modeling tool. The most important part is to measure 

location of the obstacles. All the obstacles must be located, which may cause collisions.  
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After the measurement phase the modeling can be started. When using the Environment 

Builder, all the obstacles are covered by rectangles. The rectangles are defined with co-

ordinates of two opposite corners. When all the obstacles are covered, the model is ready 

and it can be saved. The environment modeling procedure is shown in Figure 4.2. 

 

Figure 4.2 The environment modeling procedure 

When creating the environment model. The most important thing is to locate the shapes 

at right place. The number of the shapes or looks of the model does not matter, since the 

model is only used for the collision avoidance. For example, if the model includes a table, 

the table can be covered with single rectangle if the robot does not have to reach under 

the table. Multiple obstacles can also be covered with single rectangle, if the robot is not 

required to reach between the obstacles. Actually small amount of the shapes decreases 

processing time of the robot selection process. Figure 4.3 shows an example of robot 

model and a sufficient model. 

 

Figure 4.3 Robot environment (left) and a sufficient collision model (right) 

For example, if the task of the robot is to pick up an item from a table and place it to a 

conveyor, the required model does require only a few rectangles to cover all the obstacles. 

Figure 4.3 show the robot environment and the sufficient model of the corresponding task 

for Robot Selector. 

When creating the models, the most time consuming phase is to measure the location of 

the obstacles. The modeling phase usually takes only dozen minutes. 

4.2 Robot Builder 

Robot Builder is the tool for modeling the robots and creating the robot model libraries. 

Robot Builder includes a preview image, so the user can all the time observe the robot 

being modeled. The tool has fields for basic robot information like robot name, maximum 
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payload and suitable applications. The GUI also has fields for the robot DH-parameter 

table. The user models the robots filling the DH-table. Joint limits must also be filled. 

While modeling, the user can move robot joints using sliders in the GUI. The tool will 

update the preview image with new joint values. Therefore, the user can double-check 

that the robot model works the way the user wanted. Robot Builder also allows the user 

to browse and edit the robots in the robot library. The robots in the robot library are listed 

at listbox in the GUI. 

The user can save the robots with a save robot –button. An algorithm behind the button 

is presented below as Algorithm 4.3. 

1. get some values from GUI 

2. read strings from robot task list 

a. add identifier character for each identified task 

3. get robot name from GUI and remove whitespaces 

4. save line: robotname jointnumber taskchars payload 

mintemp maxtemp noise 

5. for each joint 

a. if sigma = 0 

i. save line: theta d a alpha sigma min-

limit(rad) maxlimit(rad) 

b. else 

i. save line: theta d a alpha sigma min-

limit(mm) maxlimit(mm) 

6. delete robot 

7. update robot 

Algorithm 4.3 Save robot 

A delete robot –button executes an algorithm that deletes the current robot. The algorithm 

is described below as Algorithm 4.4. 
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1. get variables from GUI 

2. scan file with 8 strings 

3. loop while i = 0 

a. try (continue if no errors occur) 

i. find next robot name and joint number 

ii. if robot names match selected robot 

1. read lines amount equal of robot joints 

2. read rest of the lines and save them 

to temp file 

iii. else 

1. for all lines of current robot 

a. read and save line to temp file 

b. catch (error occurred) 

i. set i to 1 

4. copy temp file to original file 

Algorithm 4.4 Delete robot 

The tool also has buttons for creating new robots in the robot library, creating new robot 

libraries and saving the robot library as. 

Adding a new robot to the robot library follows a robot modeling procedure. The user 

must execute six steps in order to add the robot to the library. The modeling procedure is 

shown in Figure 4.4. 

 

Figure 4.4 Robot modeling procedure 

When modeling a new robot, the modeling procedure starts by getting a required infor-

mation of the robot. The information consists of DH table and other details of the robot. 

Robot sheets, manual and drawings can be used as source of the information. Robot DH 

parameters can be found on robot manuals. If the manuals do not include the DH param-

eter table, the user can create one by utilizing robot drawings. In this phase, the skill to 

generate the parameters from the drawings are required. Alternative method to model the 



49 

robot is to use trial and error technique when filling robot DH parameters into Robot 

Builder. When the user gets accessed to the information, Robot Builder can be opened. 

The user then selects a robot library which the new robot will be added by clicking “select 

robot library file”. Then the new robot can be added by clicking “add new robot”. The 

user is now able to fill the robot information fields. When the fields are filled, the library 

can be saved by clicking “save robot”, which updates the robot data to the selected library 

file. 

4.2.1 Robot library format 

Robot library format includes data of the robots in the library. Robot names, suitable 

applications, payloads, DH-table and joint limits are stored in the library. The library file 

can include any number of robots.  

The robot library format was implemented in txt-format. The data is stored in a matrix 

manner: the data is stored in rows and columns. Cells are separated from each other with 

whitespaces. Table 4.1 shows the structure of the library files. 

Table 4.1 Robot library format 

robot 

name 

number of 

joints 

suitable 

tasks 

maximum 

payload 

minimum 

tempera-

ture 

maximum 

tempera-

ture 

maximum 

noise 

theta 1 d 1 a 1 alpha 1 sigma 1 joint 1 

limit 

(min) 

joint 1 

limit 

(max) 

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

theta n d n a n alpha n sigma n joint n 

limit 

(min) 

joint n 

limit 

(max) 

 

The first row of the library contains a main data of the first robot: robot name, number of 

joints, suitable tasks, payload limit, temperature range and noise limit is defined. Robot 

name is the name of the robot. Number of joints is an amount of joints in the robot model. 

This value is also used to keep track while reading the file since the number indicates how 

many rows will be read until the next robot model. Suitable tasks -cell is a string contain-

ing a set of task id characters. For example, if the cell contains the task id characters 1wa, 

the robot would be suitable for tasks any (1), welding (w) and assembly (a). Each task 

type has its own id character. Maximum payload is the robot’s maximum payload in kg. 

Two next cells are for a temperature range in °C. Maximum noise is a maximum noise 

limit in dB that the robot is able to cause. All the remaining rows of the current robot 

model contains a data of the robot joints. The rows repeat the following structure as many 
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times as number of joints -cell indicates: θ, d, a, α, Σ, minimum limit of the current joint 

and maximum limit of the current joint. θ, d, a, α and Σ are the values of the robot’s DH-

table. 

After the whole DH-table is read of the current robot, the robot model is finished and the 

library continues with the next robot. The structure of the Table 4.1 is repeated as long as 

there are robots in the library.  

4.2.2 Robot Builder GUI 

The GUI of the Robot Builder (Figure 4.5) displays the robot library data and allows the 

user to edit and add robots to the library. Understanding of the robot DH table is required 

to model the robots and use the interface.  

 

Figure 4.5 Robot Builder GUI 

List of the robots in the library is located at top of the GUI. By clicking the robot in the 

list, data in the GUI automatically updates with the selected robot’s data and a preview 

figure. The selected robot is editable. The DH-parameters, suitable applications, payload 

limits, temperature range, joint limits and the name of the robot can be edited. The joints 

can also be moved within the joint limits. 

At the right side of the GUI, four buttons are located. With the buttons a new robot or a 

new library can be created, the selected robot can be saved or deleted or the robot library 

can be saved as another library file. 
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4.3 Robot Selector 

The tool for selecting the suitable robots from the robot library in the custom environment 

is called Robot Selector. This tool includes the algorithms for the main problem (an in-

verse kinematic solver with obstacle avoidance). 

With the Robot Selector, the user selects an environment model for the robot and a library 

of robots being tested. An algorithm for opening the OBJ-file into MATLAB was taken 

from Alec’s Web Log website [4]. After selecting the files, task requirements are filled 

(payload of the task, application etc.). Goal frames are then created which includes posi-

tions and orientations of the task. When all the requirements are filled in, the user starts 

the robot selection process. Principle of the robot selection procedure is shown in Figure 

4.6 as UML activity diagram. 

 

Figure 4.6 UML activity diagram of the robot selection procedure 

The procedure simply tests one robot at time from the robot library. At first, the environ-

ment and task conditions are checked. Then an inverse kinematics problem is solved 

within joint limits and while avoiding collisions. If the robot fulfills the environment and 

task condition or any goal frame is not reachable, the robot is not suitable. Otherwise, the 

robot is suitable. This process is repeated until all the robots are tested. Then the results 

are shown to the user. 

After the inverse kinematic solver was finished, the GUI of Robot Selector and all the 

code of the tool was completely remade. The tool was started almost year ago as a special 

assignment so the code was tangled after many changes and tests of different inverse 
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kinematic methods. The GUI and the code was then designed and programmed all over 

again to get an understandable, efficient and reliable code. 

4.3.1 Inverse kinematics 

In this implementation, the inverse kinematic problem is solved with Ariadne’s Clew al-

gorithm –based solution. Juan Ahuactzin and Kamal Gupta have made successful imple-

mentation of solving a point-to-point inverse kinematic problem utilizing the Ariadne’s 

Clew algorithm in 1998-2000. This method was carefully studied and modified for getting 

a general solution with any serial manipulator in any environment. [2, 3] 

In this method, the inverse kinematic function simply repeats explore and search -phases. 

The repeating continues until cost function reaches selected accuracy or an iteration limit 

exceeds. Algorithm 4.5 shows the principle of the inverse kinematic solver. 

1. Initialization 

2. While cost-function > cost resolution and counter < 

landmark limit 

a. EXPLORE 

b. SEARCH 

c. Update closest solution 

d. Increase counter 

3. Return results  

Algorithm 4.5 Inverse kinematics solver 

Explore sub-algorithm have been modified to speed up the calculation time and extended 

to work in any environment and with any robot. The first modification in the algorithm 

creates the robot with correct amount of joints from input data. The robot DH-table is 

required in order to calculating forward kinematics. The second modification is that each 

embryo is created by setting the joint values to random between the joint limits. The orig-

inal method of explore creates random movements from each previous landmark. The 

difference between the methods is that the random movements are designed to “bounce” 

at collisions. In my method the robot is set to the random orientation and if collision 

occurs, the embryo is discarded. My method is designed in this thesis to speed up the 

algorithm since it does not need to save the joint movements. Also the original method 

requires a constant robot starting position, which causes multiple disadvantages since the 

structure of robot and the environment is unknown. It is also empirically noted that this 

method is faster than the original one. Third modification to the original algorithm is that 

always 10 embryos are created instead of one for each landmark. As it is noted in Figure 

3.2 at chapter 3.1, the landmarks are set regularly even with this method. 10 embryos are 

empirically selected number that is large enough to create the landmarks far away from 
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each other and still prevent the algorithm to slow down with large amount of the land-

marks. The Explore algorithm is shown below as Algorithm 4.6. [2, 3] 

1. Create robot 

2. Set initial values 

3. While ii <= 10 

a. For i = 1 to number of joints 

i. Select link i 

ii. rand1 = set random number between joint lim-

its 

iii. q0(i) = rand1 

iv. Calculate forward kinematics 

b. Initialization 

c. Check collision 

d. If collision does not occur 

i. For i = 1 to amount of landmarks 

1. Calculate distance to landmark i 

2. If distance < markdistance, set this 

distance as markdistance 

ii. If markdistance > markmaxdist 

1. set markmaxdist as markdistance and 

set this embryo as landmark 

2. qi = q0 

iii. Increase ii by 1 

4. Update landmark matrix 

5. Return landmark matrix and qi vector 

Algorithm 4.6 Explore 

The Search algorithm has also been under large modification. Many changes were made 

to make this iterative algorithm as fast and as accurate as possible. Three different ver-

sions were made, and one of them was faster and more accurate than others beyond any 

doubt. The first search algorithm was accurate, but also slow, since for each joint, the 

robot moved one joint for one degree in a limitsearch phase and a cost function phase and 

then made calculations (collision detection or cost function depending on the phase). 

Therefore, there was a lot of unnecessary calculation.  

The second implementation was a mix of the first and the third method. But the third one 

was most efficient. The principle of this method is presented in Figure 4.7. From the 

another joint limit, cost function is calculated for every 10 degrees of robot joint move-

ment (red sample). Then the result of the function is compared to the previous result. If 

the cost function keeps decreasing, the sampling frequency stays constant and next sam-

ple is taken after next 10 degrees of movement. However, if the cost function is increased 

from the previous sample, the pointer moves 2 samples backwards (to make sure that the 
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local minimum is not passed) and increases the sampling frequency to 1 degree (blue 

samples). When the cost function of blue samples starts to increase, the previous sample 

is set, as the local minimum and the frequency is then decreased back to the red sample’s 

frequency. Then the process is continued until the other joint limit is reached.  

 

Figure 4.7 Search iteration principle 

The Search algorithm is complex. The principle of the algorithm is explained below in 

Algorithm 4.7.  
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1. Create robot 

2. Set initial values 

3. While counter < iteration limit 

a. Set joint iteration direction 

b. For each joint: 

i. Find joint limits: 

1. Move forward 

2. Test collision 

3. If collision occurs or limit is found, 

set previous value as limit and change 

direction until both limits are found. 

Otherwise continue movement 

ii. Find local minimum: 

1. Move joint 

2. Calculate cost function 

3. If cost function starts to increase, 

return back and increase frequency. 

4. If cost function is lower than before, 

set this position as local minimum 

5. If cost function is increasing, de-

crease sample frequency 

c. End search if position found, cost function is 

not decreased enough compared to previous iter-

ation or iteration limit is exceeded. 

4. Return joint values and cost function value 

Algorithm 4.7 Search 

4.3.2 Collision detection 

Collision detection is implemented with the distance measurement method. The algorithm 

measures the distance between the robot and the environment after each time the robot is 

moved. If the distance reaches a given limit, collision occurs. This limit is called collision 

resolution. 

When implementing the collision detection, we need to know the distance between robot 

and the environment. In this implementation, it is a distance between closest point of the 

robot to a polygon of the environment. 

The environments are built from the polygons. The first problem is to fill all the polygons 

with points at regular intervals. After this phase, the closest point can be found and the 

distance from the robot to the environment can be calculated. When solving the polygon 

filling problem, the most optimal solution found is to utilize vectors. Any of the polygon’s 
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vertices can be selected as point1. From the point1, one of the polygon’s edges can be 

selected as a vector 𝑣1 and another edge as a 𝑣2. These vectors can be calculated reducing 

point1’s coordinates from the destination point’s coordinates. When adding a point inside 

the polygon, it is first needed to add the coordinates of the point1. Then when adding the 

vectors 𝑣1 and 𝑣2 multiplied with variables 𝑚 and 𝑛. The new point will end up inside 

the polygon, if  

 𝑚 + 𝑛 ≤ 1. (4.1) 

The vectors are clarified in Figure 4.8.  

 

Figure 4.8 Polygon vector clarification 

Next problem is to calculate the variables 𝑚 and 𝑛 to get the points inside the polygon 

with regular intervals. Each polygon in the model can be different sized and shaped com-

pared to the other polygons of the model. The length of the 𝑣1 and 𝑣2 can also be different. 

This causes problems when having constant values as point interval. Two methods were 

developed for the problem. 

The first method modifies the values of 𝑚 and 𝑛 for each polygon to modify the point 

intervals. The optimal values for 𝑚 and 𝑛 can be calculated to get decent interval between 

the points for each polygon. A variable for controlling the point interval is called accur 

(environment model accuracy). The point interval for each polygon can be calculated 

utilizing lengths of the vectors. If accur1 is a point interval factor for a certain polygon, 

we can generate a formula 

 
𝑎𝑐𝑐𝑢𝑟1 =

𝑙𝑒𝑛𝑔ℎ𝑡 𝑣1

𝑙𝑒𝑛𝑔ℎ𝑡 𝑣2
∗ 𝑎𝑐𝑐𝑢𝑟 

(4.2) 

or as 
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𝑎𝑐𝑐𝑢𝑟1 =

√(𝑥𝑣1)2 + (𝑦𝑣1)2 + (𝑧𝑣1)2

√(𝑥𝑣2)2 + (𝑦𝑣2)2 + (𝑧𝑣2)2
∗ 𝑎𝑐𝑐𝑢𝑟 

(4.3) 

to calculate the point interval for the polygon. The maximum value for the accur1 can be 

set to 1,3 ∗ 𝑎𝑐𝑐𝑢𝑟 and the minimum value to 0,3 ∗ 𝑎𝑐𝑐𝑢𝑟. 

Now the variables 𝑚 and 𝑛 can be calculated using formulas 

 
𝑛 =  

𝑙𝑒𝑛𝑔ℎ𝑡 𝑣1

𝑎𝑐𝑐𝑢𝑟1
 

(4.4) 

and 

 
𝑚 =  

𝑙𝑒𝑛𝑔ℎ𝑡 𝑣2

𝑎𝑐𝑐𝑢𝑟1
 

(4.5) 

to get the point intervals corresponding to accuracy of the selected environment model. 

Differences between lengths of the 𝑣1 and 𝑣2 causes some of the polygons to have points 

with decent intervals and some the polygons only with few points even if area of the 

polygon is large. Figure 4.9 shows an environment before and after the point interval 

optimization. Some of the polygons have few points while some of the polygons are filled 

decently. 

 

Figure 4.9 Before and after a point interval optimization 

The point interval optimization is required to prevent collisions. If the environment point 

model is not accurate enough or it includes caps, the tool could interpret sparse points as 

free space. 

Adding the points in the polygon is implemented with while-loop. The loop keeps the 

point interval regular utilizing values 𝑚 and 𝑛. The counters 𝑐1 and 𝑐2 are used for filling 

the polygon. The loop lasts while  
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 𝑐1 ∗ 𝑎𝑐𝑐𝑢𝑟1 < 𝑙𝑒𝑛𝑔ℎ𝑡 𝑣1. (4.6) 

The counter 𝑐1 starts from 0. At the beginning of the loop the counter 𝑐2 is set to 0. Then 

starts another loop that lasts while  

 𝑐1

𝑛
+

𝑐2

𝑚
< 1  (4.7) 

to keep the points inside the polygon. In the loop coordinates x, y and z are saved to 

matrices X, Y and Z. The counter 𝑐2 is then increased by 1 and the second loop ends. 

After the second loop, one row of points is filled in the polygon. Then the counter 𝑐1 is 

increased by 1 and filling of another row is started. After these two loops are executed for 

each polygon. The environment model is filled with the points with the given accuracy. 

Figure 4.10 shows an environment built with Environment Builder and converted to 

points with this algorithm utilizing the point interval optimization. 

 

Figure 4.10 Environment conversion to set of points 

Several obj-files were tested. Results were good with different sizes of polygons. Amount 

of the polygons was also varied. The problem was gaps in the polygons caused by differ-

ent sized edges of the polygons. Depending which vertex is chosen as the point1, gaps 

may occur even with the point interval optimization. For narrowing the gaps, the point 

interval must be set low. This leads to large amount of the collision model points, which 

causes lot of calculation in the collision detection algorithm and slows the robot selection 

tool.  

The second method is developed later to prevent the unnecessary calculation and make 

the code faster and more efficient. This method discards the idea of setting point intervals 

separately for each polygon. The method is based for selecting optimal vertex as the 

point1. The optimal vertex is always opposite of the longest polygon edge. This can be 

implemented with simple if-conditions. Figure 4.11 shows an environment filled with the 

second method. 
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Figure 4.11 Results of point1 selection method 

The environment collision model point generating algorithm is shown below (Algorithm 

4.8).  

1. Set initial values 

2. Import an environment model and generate vertices and 

faces matrices 

3. For each line in faces matrix: 

a. Get corresponding vertices from the vertices ma-

trix 

b. Calculate lengths of each edge 

c. Set vertex opposite to longest edge as point1 

d. Set vectors and point intervals  

e. Set counter c1 to 0 

f. while c1*accur< length 

i. Set counter c2 to 0 

ii. while c1/n+c2/m<1 

1. Save coordinates of the point to ma-

trices X, Y and Z 

2. Increase c2 by 1 

iii. Increase c1 by 1 

4. Return X, Y and Z 

Algorithm 4.8 Environment model point generator 

After the points have been saved to matrices X, Y and Z, it can be easily calculated the 

distance to the closest point. For all values from X, Y and Z, the Euclidean distance will 

be calculated from desired point using the Pythagorean formula. The distance is first set 

to infinite. If the calculated distance is shorter than previously, the current distance is 
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saved to the variable. Then the distance to the next point is measured. When the distance 

to all the points have been calculated, the point with shortest distance is the closest one 

and the distance to that point is the distance to the environment. The distance calculation 

algorithm is shown in Algorithm 4.9. Note that many coordinates can be set to input of 

the distance calculator algorithm. 

1. Set initial values, k = 1 

2. While k <=size(X) 

a. i = 1 

b. While I <= size(P) 

i. Get coordinates from matrix P 

ii. Calculate distance from current point of 

matrix P and coordinate from matrices X, Y 

and Z at row k. 

iii. If distance < mindist distance 

1. mindist = distance 

2. Save current coordinates of P and XYZ 

to matrix S 

iv. Increase i by 1 

c. Increase k by 1 

3. Return matrix S and minimum distance 

Algorithm 4.9 Distance calculator 

The points from the robot model are generated regularly for each link. Algorithm 4.10 

shows the robot model point generation. For all the points of the robot, the distances are 

measured to the environment points.  

1. Set initial values, i to 1 and counter count to 0 

2. While i = 1 

a. Calculate location of next joint of the robot  

b. Measure distance between previous and current 

joint 

c. Set point interval to distance/accur and counter 

c to 1 

d. While counter c*accur<distance 

i. Add point to matrix P and increase counter 

e. Set current point to previous point 

f. If count = amount of joints 

i. Set i to 2 

g. Increase counter count by 1 

3. Return matrix P 

Algorithm 4.10 Robot model point generator 
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A point with shortest distance to the environment is the closest point to the environment. 

Now the distance between the robot and the environment can be measured. Figure 4.12 

shows the result of the distance measurement algorithm from the robot to the environment 

model. 

 

Figure 4.12 Measuring distance between robot and environment 

In the figure, the closest distance to the environment is between an end-effector of the 

robot and a table in the environment. A floor should be left from the model if the robot is 

mounted to it. Otherwise shortest distance will be from the robot mounting point to the 

floor. That might disturb collision avoidance since the robot distance to the environment 

is always constant and may be within the collision distance.   

4.3.3 Obstacle avoidance 

Collision avoidance components are included in the Search and Explore algorithms so no 

separate collision avoidance algorithm is needed. In the limitsearch part of the Search 

function, the collisions are detected and the robot joint limits are modified to avoid colli-

sions. The explore function discards an embryo if it causes collision.  

These methods ensure that no collision are able to occur in any case when robot joint 

values are modified. The collision is defined as a distance between the robot collision 

model point to the environment collision model point. If this distance is smaller than the 

collision distance, then collision occurs. This situation cannot happen in Explore or 

Search algorithms. 
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4.3.4 GUI of Robot Selector 

Robot Selector’s GUI was developed gradually from the special assignment. As more 

features was made, the required fields were added to the GUI. Therefore, the GUI was 

never really designed. After finishing the inverse kinematic solver, the final requirements 

for the GUI was understood. The code of the Robot Selector and the GUI was then de-

signed and recreated. Figure 4.13 shows the previous GUI in a left side and the current 

GUI in a right side.  

 

Figure 4.13 Previous (left) and current (right) GUIs of Robot Selector 

The current GUI (Figure 4.14) has three panels in it. The first panel is an environment 

panel. It includes a button for selecting an environment model file, a robot location and 

an orientation table, average temperature of an environment and a maximum noise the 

robot is able to cause. Second panel is a task panel. It includes a button for selecting a 

robot library file, a task application selector and a payload field. In the second panel, goal 

frames are also created. Coordinates and orientation values of the frames for each axis is 

filled. The frame is shown in a preview image in real time. Add goal frame –button creates 

the selected goal frame. Clear goal frames –button removes all the created goal frames. 

The final panel is search options –panel. It includes a button for starting the selection 

process. Under the button, a status bar is displayed. A goal error –field is for selecting an 

accuracy for a distance between the robot’s end-effector and the goal frame. A collision 

distance –field is for setting a minimum distance between the environment model and the 

robot. A collision model accuracy is a frequency for the collision model points. The model 

can be displayed by selecting a checkbox “show collision model”. Advanced iteration 

options include a landmark limit of the Explore-algorithm, an iteration limit for the Search 

algorithm, a factor for a Search function’s sustainability for a single landmark (iteration 

sustainability). A large number continues the iteration even if the Search does not pro-

gress significantly. A checkbox “iterate from both directions” iterates with a normal di-

rection and a reversed direction (moves a last joint first) for each landmark.  
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Figure 4.14 Robot Selector GUI with carline-environment 

The current GUI appears to be understandable and easy to use even for new users. Several 

test-persons have tried without guidance. 

4.4 Robotselection website 

Website for the tools was created. The main requirements of the website were ability to 

share the tools, professional look and ease of use.  

When defining the “professional look”, many websites of large brands was visited. Some 

notes were made that was common with look of the websites. The websites used large 

images and backgrounds. The amount of text was low and the main sites were simple, but 

it was easy to learn more. A navigation was also easy in the websites. Based on the find-

ings, the professional look consists of the large background or front images, the simple 

pages with small amount of text and the easy navigation.   

WordPress was used for creating the website. Free website plan was used with WordPress 

that caused a few limitations (limited customization and address must end with “word-

press.com”. WordPress websites automatically supports mobile devices. This feature 

saves a lot of work. The professional look was easy to create with editing pre-made 

themes. Theme “Radcliffe” was selected as a base of the website. The finished website 

can be seen in Figure 4.15. A video presentation was also created for these tools.  

The finished website can be found at: http://robotselection.wordpress.com 

http://robotselection.wordpress.com/
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Figure 4.15 A front page of the robotselection website 
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Problems with a file sharing occurred since no exe-files was allowed to upload at the site. 

The problem was solved using Dropbox. A new dropbox-folder was created and shared 

to public. The tools were added to the dropbox-folder. By editing a link to the shared 

dropbox-file, an automatic download can be done. For an example, by editing 

“www.dropbox.com/...” to a following form “dl.dropboxusercontent.com/…” the direct 

download link is created. [39] 

The website was then finished. Other problems did not occur. Creating the website was a 

straightforward process that was implemented in less than a week.  

4.5 Distribution of the source code 

Distribution of the source code was implemented via GitHub. GitHub is the largest source 

code host of the world.  

Distributing the source code via GitHub allows many useful features for extending the 

code later. These features are for example bug tracking, feature request, task management 

and wikis of the code. 

All the generated algorithms and the files are uploaded to GitHub https://github.com/ro-

gasus/robotselector. Therefore, no code is attached to this document. 

 

https://github.com/rogasus/robotselector
https://github.com/rogasus/robotselector
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5. RESULTS 

The main algorithms were tested with custom environments and robots. Complex and 

narrow environments were tested and goal frames was placed to tricky locations. Also 

different types of robots were tested: 6-DOF serial manipulators, SCARA-robots and 

even a PPP-robot. An experiment was also made with 100 samples. 

The tools were also tested by modeling a real robot and robot environment at FAST-

laboratory. User experiences were tested with three subjects and by observing while they 

use the tools.  

5.1 Experiment 

An experiment was made for testing the collision avoidance and the inverse kinematic 

solver. In the experiment, a random goal frame was generated in a robot’s free configu-

ration space. Then the inverse kinematic -algorithm was executed and the results was 

saved in a MS Excel file. A testing environment is shown in Figure 5.1. The experiment 

included 100 random goal frames. 

 

Figure 5.1 Experiment environment 
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The experiment was executed with two different devices (a powerful desktop computer 

and an average laptop). Statistics of the devices is shown in Table 5.1. 

Table 5.1 Experiment devices 

 Desktop PC Laptop PC 

Processor Intel® i5-4670K 3.40 GHz  AMD A10-8700O Radeon R6, 10 

Compute cores 4C+6G 1.80GHz 

RAM 16 Gt 12 Gt 

System type 64-bit operating system, 

x64-based processor 

64-bit operating system, x64-

based processor 

 

After programming the experiment, the code was executed. The collision distance was 

set to 100mm. A landmark limit was set to 50 and a search iteration limit to 100. Table 

5.2 shows the results with desktop PC. 

Table 5.2 Results of the experiment with desktop PC 

 Elapsed time 

(sec) 

Collision   

distance 

(mm) 

Number of 

landmarks 

Number of 

search itera-

tions 

Average 

Minimum value 

Maximum value 

3.88 

1.43 

21.47 

221 

82 

270 

1.16 

1 

4 

2.48 

1 

13 

 

The same experiment was made with the second device (laptop PC). The results with the 

laptop is shown below in Table 5.3. 
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Table 5.3 Results of the experiment with laptop PC 

 Elapsed time 

(sec) 

Collision   

distance 

(mm) 

Number of 

landmarks 

Number of 

search itera-

tions 

Average 

Minimum value 

Maximum value 

11.5 

4.46 

58.3 

221 

111 

270 

1.19 

1 

4 

2.53 

1 

13 

 

The inverse kinematic solver found a solution in all 100 cases with both devices. Elapsed 

time was short especially compared to the original research result (34.5sec and 11.5sec). 

However, the original research was made in 1999 when CPU processing power was way 

lower. The algorithm found the solution mostly from the first landmark with average 2.5 

search iterations. However, the collision distance was set to 100. With the desktop PC in 

1 case out of 100, the robot violated the collision distance. A reason for this exception 

was found after checking the algorithm code and the code was fixed between the experi-

ments. The experiment was not repeated with desktop PC because the difference of the 

results between the devices is only the elapsed time, which is not affected by the changes 

in the code. Otherwise the robot always avoids collisions and keeps the distance to the 

environment greater than the collision distance.  

5.2 Results of collision avoidance 

The collision avoidance was tested with several different ways. The experiment tested 

100 random goal frames in the robot’s free configurations space. The collisions were also 

empirically tested with different environment models and robots (5.3 Results of inverse 

kinematics). In order to test completely the collision avoidance, a collision model creation 

was also tested and analyzed with different environment files. 

5.2.1 Results of collision model creation 

The results of this point1 selection method were good. The points are set with given in-

terval regularly. Several obj-files are tested again. The method works well also with long 

polygons. Figure 5.2 shows two test files. Environment in left side was generated with 

MeshLab from a SolidWorks model. The long and narrow polygons are filled regularly. 

A shuttle (right) came with MS 3D Builder. It consists of large amount of small polygons. 

This method works well even in this case. However, the algorithm always places points 
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to each corners of the polygon. This leads to dense point sets with small polygons (notice 

how pieces at the right side of the shuttle and tip of the shuttle are almost completely red 

for the points). However, in this case such details are unnecessary and therefore models 

with large amount of small polygons are not recommended for the Robot Selector. 

 

Figure 5.2 Testing point1 selection method with wide polygons (left) and small poly-

gons (right) 

With the previous method, the collision model points were created in some cases too 

frequently, which slow the program or too seldom to make the robot not to detect an 

obstacle. However, the current method works perfectly. Overall the collision model cre-

ation works with this method well. 

5.2.2 Results of obstacle avoidance 

The obstacle avoidance is tested with empirical way and with the test algorithm. The 

obstacle avoidance seems to be effective. The robots are not allowed to approach points 

in the collision model within the collision distance. Complicated objects were tested. 

Later in this chapter (5.3 Results of inverse kinematics) a wall with a hole -test is dis-

cussed. The robot avoided the obstacles while solving the inverse kinematic problem.  

In rare cases, the algorithm violated the collision distance little bit (one search step). After 

checking the code, the error was found in a while-loop in the code. After adjusting the 

loop, the collision violation did not occur again (after 200 runs). We can assume that the 

problem is now fixed. The experiment was not repeated since with laptop PC (tested after 

fixing the error) there was no collision distance violation and only the processing time 

changes with the different devices. 

Otherwise, the collision avoidance works well. In more than 99% of cases the robots 

avoided obstacles and after fixing the code, it never violated the collision distance limit 

again. Overall obstacle avoidance appears to work well. 
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5.3 Results of inverse kinematics 

The inverse kinematic solver was tested with the experiment and with several custom 

environments. 6-DOF robots were tested as a default setting. Also prismatic joints were 

tested. The prismatic joint tests included a SCARA-robot and a PPP robot in a warehouse 

environment. The inverse kinematic solver was tested also with tricky tasks and environ-

ments including a wall with a hole -test and reaching under a table (Figure 5.3). 

 

Figure 5.3 Robot reaching under a table 

In most of the cases, the robot appears to find an inverse kinematic solution if one exists. 

In some cases, the robot was not able to find the solution because of tricky task location 

and a landmark maximum limit exceeded. With 100 as the landmark limit, the algorithm 

succeeded to find the solution almost every time. The landmark and search iteration limits 

appears to greatly correlate with robot’s ability to solve the inverse kinematics in the 

complex environment. 

The search function appears to be effective. With the warehouse-environment the Search 

in most cases found the solution from the first landmark for the PPP robot (3 prismatic 

joints). The Search function seems to succeed even with a very bad landmark as Explore’s 

result. Figure 5.4 shows one of the situations: 2 landmarks was used to find the solution. 

Green circles present an embryos of the latest landmark. 
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Figure 5.4 Explore and search with PPP robot 

The Explore function can be tested with the tricky environments. The Search function 

mostly requires a line of sight to the goal. Explore function’s ability to place the land-

marks in the narrow environment was tested especially with the wall with a hole -exper-

iment. The Explore function seems to succeed even with these tricky and narrow envi-

ronments. The wall with a hole -environment was created and tested (Figure 5.5).  
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Figure 5.5 Wall with a hole -environment 

Only few of the landmarks ended up another side of the wall (Figure 5.6). However, it 

was enough for the solution since the Search algorithm is effective and finds the solution 

from wide range in most cases. 

 

Figure 5.6 Wall with a hole -obstacle in test 
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Overall, the inverse kinematic solver appears to be effective and find the solution even in 

the narrow environment. Search is the most effective part of the tool. Even with a bad 

initial guess (landmark), the robot finds a way to the goal frame in common robot cell -

type environments. With the narrow environments, it takes longer to find the solution 

since a larger part of embryos will be discarded because of collisions. Additionally, it is 

often required to increase the landmark limit with the tricky environments. In an ordinary 

environment, inverse kinematic problem is solved quickly with default settings. 

5.4 Testing the tools with FAST-laboratory’s robot 

The tools were tested by modeling a robot environment and testing the robot selection 

algorithm in the real environment. The actual robot and the environment are located in 

FAST-laboratory (Factory Automation Systems and Technologies Laboratory), which is 

a laboratory by Department of Automation Science and Engineering in Tampere Univer-

sity of Technology. 

Multiple robot environments were viewed. Mitsubishi RV-2AJ and its environment was 

selected for the modeling and testing. At the front of the environment, a corner of the 

table was selected as the origin of the environment. For next, the location and dimensions 

of the obstacles were measured with a ruler. The robot was modeled with Robot Builder 

utilizing drawings of the robot from Mitsubishi website. The environment was modeled 

with Environment Builder utilizing the self-made drawings. The modeling procedures 

followed the steps shown in Figure 4.2 and Figure 4.4. Figure 5.7 shows the selected 

robot environment and the environment model. 

 

Figure 5.7 Mitsubishi robot in FAST-lab (left) and the corresponding environment 

model (right) 
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The Mitsubishi RV-2AJ model was tested with the environment model. Three goal frames 

were used in the test. The robot reached all the frames and was suitable for the task. Figure 

5.8 shows the Mitsubishi RV-2AJ robot in the environment. 

 

Figure 5.8 Testing Mitsubishi RV-2AJ with the environment model 

The Mitsubishi RV-2AJ robot model was added to the robot library. Then the robot se-

lection algorithm was started. All three goal frames were used in the robot selection. Fig-

ure 5.9 shows the results of the robot selection process. 

 

Figure 5.9 The results of the robot selection algorithm in the Mitsubishi RV-2AJ's envi-

ronment 
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Making the drawings of the environment took around half an hour. It took about one hour 

to find manuals of the robot and generate the DH table, model the robot and model the 

environment utilizing the drawings. The processing time of the Robot Selector took about 

220 seconds with the desktop PC of Table 5.1. Four robots were found suitable for the 

task and the environment. Mitsubishi RV-2AJ was one of the suitable robots. The other 

robots of the results were Mitsubishi RV-3SD, Puma 560 and ABB IRB 140. In this case 

the robot was already selected. Otherwise, these four robots could be compared and one 

of them could be selected. The whole process took under two hours. 

5.5 User experiences 

The point of the user experience experiment was to find out a directive amount of time, 

that it takes to model robots, environment and find out the suitable robots in the custom 

environment. The usability of the user interface was reviewed and all other issues were 

searched.  

The user experiences were tested by observing three subjects. All the subjects were 6th 

year students at Tampere University of Technology. One of the subjects has factory au-

tomation as the major. The subjects were given access to the tools for getting familiar 

with the interface without guidance. Notes were made while the subjects were using the 

tools. After the subjects were familiar with the tools, an assignment was given. The as-

signment was to model a simple environment shown in Figure 4.3 with environment 

builder, Mitsubishi RV-2AJ with robot builder and add the model into default robot li-

brary. Then the subjects tested the robot in the modeled environment with Robot Selector. 

The task of the robot was to reach on the center of a conveyor. Dimensions of the envi-

ronment and DH-table of the robot was given to the subjects.  

Few issues were found for each tool that caused problems. The Environment Builder 

draws a preview shape before adding it. One of the subjects saved the model assuming 

that the preview shape is included in the model. With all the subjects, it took dozen 

minutes to understand how to model multiple shapes with the Environment Builder. 

With Robot Builder the main problems occurred with robot joint limits and while saving 

the robot. One of the subjects did not save the robot after modeling. The subject assumed 

that the tool was saving the progress automatically after making changes. All the subjects 

tried to move joints of the robot before setting the joint limits. 

With Robot Selector, the main problems were with placing the robot or the goal frame 

into illegal position. Two of the subjects wondered, why the tool does not let to add the 

goal frames. The reason was that the frames was within collision distance. For adding the 

goal frame, the frame must be moved further away from the obstacle or decreasing the 

collision distance. Similar problems occurred with placing the robot. All the subjects 

faced the problem with placing the robot too close to the environment. Reason for this 
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was that the robot was mounted into a table causing a collision with the robot base and 

the table. This issue was fixed after the experiment. The tool now informs if the robot is 

in the collision distance. 

After the subjects were familiar with the tools, the actual assignment was fluent. The time 

of the modeling and time of robot selection was measured with a stopwatch for all three 

tools. The average time of the environment modeling with Environment Builder was 

around 7 minutes. The average time of the robot modeling assignment with Robot Builder 

was around 5 minutes and the average time of the robot selection assignment with the 

Robot selector was around 4 minutes. The results of the experiment are shown on Table 

5.4. 

Table 5.4 Results of the user experience experiment 

 Elapsed time with 

Environment 

Builder (min) 

Elapsed time with 

Robot Builder 

(min) 

Elapsed time with 

Robot Selector 

(min) 

Subject 1 

Subject 2 

Subject 3 

7:03 

1:44 

11:07 

6:56 

2:43 

4:50 

4:34 

5:06 

2:57 

Average 6:38 4:49 4:12 

 

After the user experience experiment, it can be deduced that the tools are usable after 

getting familiar with the tools. Getting familiar to all the tools takes around dozens of 

minutes. After users know how to use the tools, it takes several minutes to model envi-

ronment or a robot. The subject with the robotics background (subject 2) performed con-

siderably faster than the others. However, the Robot Selector have few issues with the 

robot and goal frame placing that caused the problems and slows the learning process, but 

it was made more clear after the experiment. The tools are not as user friendly as was 

expected, but the tools are usable after all. 
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6. DISCUSSION 

The produced tools work for the given purpose. The main goal of the thesis is achieved 

and the tools work great for solving the robot selection problem. The inverse kinematic 

problem is solved within joint limits while avoiding obstacles. The results are good: The 

inverse kinematic solver succeeded to find a solution in every iteration and a collision 

distance is avoided in more than 99% of the situations in the experiment and it can be 

assumed that the one exception with the collision distance violation is now fixed. 

The state of art got extended after this thesis. As it was said in the background chapter 

2.3, engineers had only robot sizing tools, ranking methods and modeling tools to aid the 

robot selection problem. After the thesis, the new method was created for selecting in-

dustrial robots while considering the environment and the task of the robot.  

Environment Builder is simple and accurate enough to model most of robot environments 

like robot cells. Other tools can be used to create the models. However, to keep the model 

simple enough, it is recommended to use small amount of large polygons instead of large 

amount of small polygons. As noted earlier with the shuttle-test, large amount (>10 000) 

of small polygons (polygon edge less than collision model accuracy) causes unnecessary 

computation and may slow the program. These details are not needed and therefore it is 

recommended to use Environment Builder or rough models. It takes only a dozen minutes 

to model the robot environment with Environment Builder. 

Robot Builder is the only tool for creating robot libraries. Robot Builder utilizes the DH-

parameter table, so basic knowledge of robot modeling is recommended (instead of using 

the tool with trial and error technique). When modeling the robot, drawings or at least 

dimensions of the robot is required. Unfortunately, all the robots must be modeled before 

testing. The default robot library contains only a few example robots. This limits the uti-

lization of the tools. It is recommended at least in this phase that user models only already 

selected few robots and uses these tools to double check the robot’s suitability for the 

environment and the task. The ideal situation is that the user has multiple pre-modeled 

robot libraries for each robot types. It is not efficient to mix for example SCARA-robots 

and large 6-DOF manipulators in the same library to avoid unnecessary computation. The 

ideal situation contains the robot library for the different robot sizes. 

Robot Selector is simply the tool for using the robot library and the environment model. 

Environment and task options are simple to use and understand. With these options, only 

“issue” left was with a robot mounting: If an environment floor is modeled (or any other 

plane robot is mounted to), the robot and the plane where robot is mounted to causes a 

collision. To avoid this, the tool simply does not allow to set the robot too close to the 

environment. The mounting plane can be left out of the model or the collision distance 
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can be adjusted. Task options appears to be understandable according to my friends that 

tested the tool. On the other hand, the search options may require a knowledge of the 

algorithm. However, the settings were marked as “advanced iteration options”. These set-

tings contain for example iteration limits and a factor that maintains the iteration even if 

it does not progress significantly. The default values were set for as versatile situations as 

possible. The values were selected with empirical manner. To get correct results, the user 

should be able to adjust the basic settings, like goal error, collision distance and collision 

model accuracy. To make the collision model accuracy more understandable to the user, 

the checkbox is added to display the collision model. Increasing the accuracy processing 

time also increases. The ideal settings have sufficient accuracy and decent progression 

duration. The tool is also designed to be as user friendly as possible. The status bar will 

always display the reason why the selection is not allowed to start. The tools were not as 

user friendly as was designed. However, the tools are usable after getting familiar with 

the tools. 

The website became better than expected. The website works with mobile devices and is 

easy to navigate. Additionally, the website has professional look that was defined in Ap-

proach chapter. Problem with the website is the fact that users do not end up in the site. 

Even with good keywords does not result decent listing at Google search. 

These tools can be used as tool for selecting the suitable industrial robots and especially 

for double-checking the selected robot’s suitability for the environment and the task. The 

main problem may be the fact that the user must model the robots by self, and it requires 

a knowledge of defining DH parameters. Pre-modeled robot libraries would help the robot 

selection process and make it faster and easier. The other disadvantage of these tools may 

be the MATLAB. Downloading unknown applications may be limitation for many users. 

The MATLAB Runtime is a quite large file. It would be way better solution for utilization 

if the program was made with C++. In my mind the ideal solution is that the tools can be 

used with only browser without downloading anything. However, this requires MATLAB 

server for computation. If this work is continued in any form, it would be suggested to 

make these tools as browser application.  

Overall the research and the produced tools are successful. The tools are helpful solution 

even now for the robot selection problem. The reason for collision distance violation is 

now fixed. The work also has potential opportunities for further work.   
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7. CONCLUSIONS 

The environment- and task-driven industrial robot selection methods were examined. It 

was found out, that there is currently no tool or method for selecting industrial robot tak-

ing into account simultaneously task and environment. All the tools or methods are made 

for robot ranking or sizing. Only way to take the environment into account is to simulate 

the task into robot programming environment or estimate robot’s suitability.  

To solve the environment- and task-driven industrial robot selection problem, a tool for 

selecting robots was created. In order to create the tool, the main research problems be-

came inverse kinematics, collision avoidance and joint limit avoidance. Methods for solv-

ing these main problems were reviewed utilizing literature. 

The inverse kinematic problem was solved within joint limits while avoiding obstacles. 

The solution algorithm was based to Juan Ahuactzin’s and Kamal Gupta’s successful re-

search “The Kinematic Roadmap: A Motion Planning Based Global Approach for Inverse 

Kinematics of Redundant Robots”. The solution utilizes Ariadne’s Clew algorithm that 

consists of two sub-algorithms: Explore, which explores free configuration space of a 

robot, and Search, which tries to reach a goal frame utilizing cost-function. 

The problem was solved using MATLAB and Robotic Toolbox by Peter Corke. As a 

result, three tools was created. The first tool is called Robot Selector, which is designed 

for testing the robots in custom environment with custom task requirements. Second tool 

is called Environment Builder. It allows user to create 3D-models of the robot environ-

ments and save it as Wavefront’s OBJ-files for the Robot Selector. Third tool is Robot 

Builder, which is designed for creating custom robot libraries including models of custom 

robots. EXE-files was created for all these three tools to let anyone to use created tools 

without MATLAB. Then a website (robotselection.wordpress.com) was designed and 

created for distributing the tools. The source code was uploaded to GitHub. 

Tools were tested with a quantitative experiment and empirically qualitative way. The 

experiment included 100 executions of the robot selection algorithm with 2 devices. With 

all of the cases, inverse kinematic solver found a solution. Collision avoidance worked 

with more than 99% of the cases. In 1 out of 200, a robot violated collision distance. 

However, the error that caused the collision got fixed after the experiment. Processing 

time of the algorithm was short (average 3.88 sec) with desktop PC, with laptop the av-

erage processing time was 11.5 sec. The tools were tested with empirical way by making 

challenging environments. The algorithm succeeded to find a solution when iteration limit 

was increased. Prismatic joints were also tested with a PPP-robot, that found goal frame 

mostly from the first iteration. A graphical user interfaces were tested by few of my 

file:///D:/Dropbox/dippa/robotselection.wordpress.com


80 

friends without any instructions. The interfaces appeared to be usable after getting famil-

iar with the tools.  

The tools have few problems. It is hard to end up into the website even if user tries to 

search solutions for industrial robot selection problem. Other problem is small robot 

model library. This leads the user to model robots by self, which requires downloading 

my another tool (Robot Builder) and time to model the robots for Robot Selector. Third 

problem is that the tools are in EXE-format. All users do not want to download EXE-files 

from an unknown developer. The tools also require MATLAB runtime to run.   

The project of this thesis leaves promising future work. The tools could be converted for 

example to C# or Java to reach better expandability. It would also be better solution to 

make these tools as a web browser application so the user does not have to download any 

files. The tools can be distributed also to other websites. The user interface can be im-

proved, especially with Robot Builder, for example by creating a new interface, which 

allows the user to model robots without a knowledge of DH parameters. 

This thesis solves the main problems with the kinematic roadmap -method. As a result, 

three tools were created for solving the environment- and task-driven robot selection 

problem also leaving promising opportunities for future work.  



81 

REFERENCES 

[1] ABB Robot Selector, http://new.abb.com/products/robotics/robot-selector, [Ac-

cessed: August 2016] 

[2] Ahuactzin Juan, Gupta Kamal. 1998. The Kinematic Roadmap: A Motion Plan-

ning Based Global Approach for Inverse Kinematics of Redundant Robots. IEEE. 

Transaction on Robotics & Automation 

[3] Ahuactzin Juan, Gupta Kamal. 1999. Completeness Results for a Point-to-Point 

Inverse Kinematics Algorithm. IEEE. International Conference on Robotics & 

Automation 

[4] Alec’s Web Log. Website. http://www.alecjacobson.com/weblog/?p=917. [Ac-

cessed: August 2016] 

[5] Alex Visser, Zengxi Pan, Stephen van Duin. 2015. Bounding Sphere CAD Model 

Simplification for Efficient Collision Detection in Offline Programming. IEEE. 

International Conference on Cyber Technology in Automation, Control, and Intel-

ligent Systems 

[6] Anthony A. Maciejewski, Charles A. Klein. 1985. Obstacle Avoidance for Kine-

matically Redundant Manipulators in Dynamically Varying Environments. Interna-

tional Journal of Robotics Research 

[7] Ashkan M. Jasour, Mohammad Farrokhi. 2009. Path Tracking and Obstacle Avoid-

ance for Redundant Robotic Arms Using Fuzzy NMPC. American Control Confer-

ence 

[8] Auerl Fratu, Laurent Vermeiren, Antonie Dequidt. 2010. Using the redundant in-

verse kinematics system for collision avoidance. ISEEE. International Symposium 

on Electrical and Electronics Engineering 

[9] Aurel Fratu, Jean-Francois Brethe, Mariana Fratu. 2010. Redundant inverse kine-

matics system for obstacles avoidance. 

[10] Automation.com website. http://www.automation.com/library/articles-white-pa-

pers/robotics/industrial-robots-with-image-processing-in-the-photovoltaic-indus-

try. [Accessed: August 2016] 

[11] Bruno Siciliano, Oussama Khatib. 2008. Handbook of Robotics. Springer 

[12] Cenit website. http://www.cenit.com/en_EN/plm/digital-factory/services/develop-

ments-for-catiadelmia-v5-and-v6.html. [Accessed: August 2016] 

http://new.abb.com/products/robotics/robot-selector
http://www.alecjacobson.com/weblog/?p=917
http://www.automation.com/library/articles-white-papers/robotics/industrial-robots-with-image-processing-in-the-photovoltaic-industry
http://www.automation.com/library/articles-white-papers/robotics/industrial-robots-with-image-processing-in-the-photovoltaic-industry
http://www.automation.com/library/articles-white-papers/robotics/industrial-robots-with-image-processing-in-the-photovoltaic-industry
http://www.cenit.com/en_EN/plm/digital-factory/services/developments-for-catiadelmia-v5-and-v6.html
http://www.cenit.com/en_EN/plm/digital-factory/services/developments-for-catiadelmia-v5-and-v6.html


82 

[13] Cornel Secara, Luigi Vladareanu. Iterative strategies for obstacle avoidance of a 

redundant manipulator. Wseas Transactions on Mathematics 

[14] Dae-Huyng Park, Heiko Hoffmann, Peter Pastor, Stefan Schaal. Movement repro-

duction and obstacle avoidance with dynamic movement primitives and potential 

fields. Humanoids 2008 - 8th IEEE-RAS. International Conference on Humanoid 

Robots 

[15] Euclidean space website. http://www.euclideanspace.com/threed/animation/colli-

siondetect/. [Accessed: August 2016] 

[16] Farbod Fahimi. 2009. Autonomous Robots Modeling, Path Planning and Control. 

Springer 

[17] GitHub website. http://www.github.com. [Accessed: August 2016] 

[18] GUDEL robot sizing tool. http://www.gudel.com/service/productservice/robot-

sizing-tool. [Accessed: August 2016] 

[19] John J Craig. 2005. Introduction to Robotics Mechanics and Control. Third edition. 

Pearson Prentice Hall 

[20] Kang, Teresa. 2000. Solving inverse kinematics constraint problems for highly ar-

ticulated models. University of Waterloo 

[21] Karl Mathia. 2010. Robotics for Electronics manufacturing. Cambridge 

[22] Kuffner James, LaValle Steven. 2000. IEEE. RRT-Connect: An Efficient Ap-

proach to Single-Query Path Planning. International Conference on Robotics & 

Automation 

[23] KUKA robotics website. http://www.kuka-robotics.com/usa/en/products/indus-

trial_robots/low/kr6_2/start.htm. [Accessed: August 2016] 

[24] Kun Qian, Xiaosong Yang, Jianjun Zhang. 2015. An Adaptive Spherical Collision 

Detection and Resolution Method for Deformable Object Simulation. 14th Interna-

tional Conference on Computer-Aided Design and Computer Graphics 

[25] MathWorks. 2016. Website. http://se.mathworks.com/help/. [Accessed: August 

2016] 

[26] MathWorks. 2016. Website. http://se.mathworks.com/products/matlab/. [Ac-

cessed: August 2016] 

http://www.euclideanspace.com/threed/animation/collisiondetect/
http://www.euclideanspace.com/threed/animation/collisiondetect/
http://www.github.com/
http://www.gudel.com/service/productservice/robot-sizing-tool
http://www.gudel.com/service/productservice/robot-sizing-tool
http://www.kuka-robotics.com/usa/en/products/industrial_robots/low/kr6_2/start.htm
http://www.kuka-robotics.com/usa/en/products/industrial_robots/low/kr6_2/start.htm
http://se.mathworks.com/help/
http://se.mathworks.com/products/matlab/


83 

[27] Mazer Emmanuel, Ahuactzin Juan, Bessière Pierre, Talbi El-Ghazali. 1993. The 

“Ariadne’s Clew” Algorithm: Global Planning with Local Methods. IEEE/RSJ. 

International Conference on Intelligent Robots and Systems 

[28] Mazer Emmanuel, Ahuactzin Juan, Bessière Pierre. 1998. The Ariadne’s Clew Al-

gorithm. Journal of Artificial Intelligence Research 9 

[29] Mitsubishi robotics. Robot catalog. Website. http://mitsubishirobot-

ics.com/pdf/MEAU_product_catalog.pdf. [Accessed: August 2016] 

[30] P. Jimènez, F. Thomas, C. Torras. 2001. Computers & graphics 25. 3D collision 

detection: A Survey. Elsevier 

[31] Peter Corke. 2016. Website. http://petercorke.com/Robotics_Toolbox.html. [Ac-

cessed: August 2016] 

[32] Prasenjit Chatterjee, Viajay Athawale, Shankar Chakraborty. 2010. Selection of in-

dustrial robots using compromise ranking and outranking methods. Elsevier 

[33] R. Muller-Cajar and R. Mukundan. 2007. Triangulation: A new algorithm for in-

verse kinematics. Proceedings of Image and Vision Computing  

[34] R. V. Rao, B. K. Patel, M. Parnichkun. 2011. Industrial robot selection using a novel 

decision making method considering objective and subjective preferences. Elsevier 

[35] R. Venkata Rao. 2007. Decision Making in the Manufacturing Environment. 

Springer 

[36] S. Mitsi, K.-D. Bouzakis, G. Mansour. 1994. Optimization of robot links motion in 

inverse kinematics solution considering collision avoidance and joint limits. Mech-

anism and Machine Theory. Elsevier 

[37] Shiqi Ou, Dehong Qui. 2009. A Novel Bounding Sphere Scheme to Compute In-

tersection of Subdivision Surfaces. CiSE. International Conference on Computa-

tional Intelligence and Software Engineering 

[38] Tadej Bajd, Matjaz Mihelj, Marko Munih. 2013. Introduction to Robotics. Springer. 

[39] TechApple website. Website. http://techapple.net/2014/04/trick-obtain-direct-

download-links-dropbox-files-dropbox-direct-link-maker-tool-cloudlinker/. [Ac-

cessed: August 2016] 

[40] Thomas R. Kurfess. 2005. Robotics and Automation Handbook. CRC Press 

http://mitsubishirobotics.com/pdf/MEAU_product_catalog.pdf
http://mitsubishirobotics.com/pdf/MEAU_product_catalog.pdf
http://petercorke.com/Robotics_Toolbox.html
http://techapple.net/2014/04/trick-obtain-direct-download-links-dropbox-files-dropbox-direct-link-maker-tool-cloudlinker/
http://techapple.net/2014/04/trick-obtain-direct-download-links-dropbox-files-dropbox-direct-link-maker-tool-cloudlinker/


84 

[41] Wei Zhao, Ru Wen. 2012. The Algorithm of Fast Collision Detection Based on 

Hybrid Bounding Box. ICCSEE. International Conference on Computer Science 

and Electronics Engineering 

[42] Wikipedia article: WordPress. https://en.wikipedia.org/wiki/WordPress. [Ac-

cessed: August 2016] 

[43] Wikipedia. 2016. Website. https://en.wikipedia.org/wiki/Wavefront_.obj_file. 

[Accessed: August 2016] 

[44] WordPress homepage. www.wordpress.com. [Accessed: August 2016] 

[45] Xiufen Ye, Le Huang, Lin Wang, Huiming Xing. 2015. An improved Algorithm 

for Triangle to Triangle Intersection Test. IEEE. International Conference on In-

formation and Automation 

 

https://en.wikipedia.org/wiki/WordPress
https://en.wikipedia.org/wiki/Wavefront_.obj_file
file:///D:/Dropbox/dippa/www.wordpress.com


85 

APPENDIX 1: LINKS 

 

Robotselection website: 

https://robotselection.wordpress.com/ 

 

Source code: 

https://github.com/rogasus/robotselector 

 

Video presentation: 

https://www.youtube.com/watch?v=8M0BSGviIRM 

 

https://robotselection.wordpress.com/
https://github.com/rogasus/robotselector
https://www.youtube.com/watch?v=8M0BSGviIRM

