4,829 research outputs found

    Self-Organizing Information Fusion and Hierarchical Knowledge Discovery: A New Framework Using Artmap Neural Networks

    Full text link
    Classifying novel terrain or objects from sparse, complex data may require the resolution of conflicting information from sensors woring at different times, locations, and scales, and from sources with different goals and situations. Information fusion methods can help resolve inconsistencies, as when eveidence variously suggests that and object's class is car, truck, or airplane. The methods described her address a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an object's class is car, vehicle, and man-made. Underlying relationships among classes are assumed to be unknown to the autonomated system or the human user. The ARTMAP information fusion system uses distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierachical knowlege structures. The fusion system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. The procedure is illustrated with two image examples, but is not limited to image domain.Air Force Office of Scientific Research (F49620-01-1-0423); National Geospatial-Intelligence Agency (NMA 201-01-1-2016, NMA 501-03-1-2030); National Science Foundation (SBE-0354378, DGE-0221680); Office of Naval Research (N00014-01-1-0624); Department of Homeland Securit

    Information Fusion and Hierarchical Knowledge Discovery by ARTMAP Neural Networks

    Full text link
    Mapping novel terrain from sparse, complex data often requires the resolution of conflicting information from sensors working at different times, locations, and scales, and from experts with different goals and situations. Information fusion methods help resolve inconsistencies in order to distinguish correct from incorrect answers, as when evidence variously suggests that an object's class is car, truck, or airplane. The methods developed here consider a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an objects class is car, vehicle, or man-made. Underlying relationships among objects are assumed to be unknown to the automated system of the human user. The ARTMAP information fusion system uses distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierarchial knowledge structures. The system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. The procedure is illustrated with two image examples.Air Force Office of Scientific Research (F49620-01-1-0397, F49620-01-1-0423); Office of Naval Research (N00014-01-1-0624

    Application of Spatial Bayesian Hierarchical Models to fMRI Data

    Get PDF
    Bayesian modelling has attracted great interest in cognitive science and offered a flexible and interpretable way to study cognitive processes using functional magnetic resonance imaging data. In this chapter, a spatial Bayesian hierarchical model is applied to an event-related fMRI study of cognitive control using the Simon test. We consider a sparse spatial generalized linear mixed-effects model to capture the spatial dependence among activated voxels and temporal parameters and to benefit computationally by reducing dimensionality. We demonstrate that the proposed model has the capability of identification of the brain areas related to cognitive tasks. Moreover, the reduction in the false positive rate is observed in the simulation study, and the relevant brain regions involved in processing cognitive control are clearly detected in a real-life fMRI example

    Metastable Resting State Brain Dynamics

    Get PDF
    Metastability refers to the fact that the state of a dynamical system spends a large amount of time in a restricted region of its available phase space before a transition takes place, bringing the system into another state from where it might recur into the previous one. beim Graben and Hutt (2013) suggested to use the recurrence plot (RP) technique introduced by Eckmann et al. (1987) for the segmentation of system's trajectories into metastable states using recurrence grammars. Here, we apply this recurrence structure analysis (RSA) for the first time to resting-state brain dynamics obtained from functional magnetic resonance imaging (fMRI). Brain regions are defined according to the brain hierarchical atlas (BHA) developed by Diez et al. (2015), and as a consequence, regions present high-connectivity in both structure (obtained from diffusion tensor imaging) and function (from the blood-level dependent-oxygenation—BOLD—signal). Remarkably, regions observed by Diez et al. were completely time-invariant. Here, in order to compare this static picture with the metastable systems dynamics obtained from the RSA segmentation, we determine the number of metastable states as a measure of complexity for all subjects and for region numbers varying from 3 to 100. We find RSA convergence toward an optimal segmentation of 40 metastable states for normalized BOLD signals, averaged over BHA modules. Next, we build a bistable dynamics at population level by pooling 30 subjects after Hausdorff clustering. In link with this finding, we reflect on the different modeling frameworks that can allow for such scenarios: heteroclinic dynamics, dynamics with riddled basins of attraction, multiple-timescale dynamics. Finally, we characterize the metastable states both functionally and structurally, using templates for resting state networks (RSNs) and the automated anatomical labeling (AAL) atlas, respectively.SR would like to acknowledge Ikerbasque (The Basque Foundation for Science) and moreover, this research is supported by the Basque Government through the BERC 2018-2021 program and by the Spanish State Research Agency through BCAM Severo Ochoa excellence accreditation SEV2017-0718 and through project RTI2018-093860-B- C21 funded by (AEI/FEDER, UE) and acronym MathNEURO. JC acknowledges financial support from Ikerbasque, Ministerio Economia, Industria y Competitividad (Spain) and FEDER (grant DPI2016-79874-R) and the Department of Economical Development and Infrastructure of the Basque Country (Elkartek Program, KK-2018/00032). Finally, PG acknowledges BCAM’s hospitality during a visiting fellowship in fall 2017

    Using Machine Learning to Analyze Brain Activity During a Short-Term Memory Task

    Get PDF
    Käesolev töö uurib ahvi prefrontaalse ajukoore neuronite elektrilist aktiivsust, kui ahv osaleb lühimälu nõudvas katses. Analüüsi esimeses osas kasutatakse juhendatud masinõpet, et näha, kas aju aktiivsuse põhjal on võimalik ennustada ahvi käitumist. Leitakse, et kuigi enne käitumist ei suudeta seda ennustada, on 69% tõenäosusega võimalik see õigesti välja lugeda käitumisejärgsest neuronite aktiivsusest. Analüüsi teises osas uuritakse, kuidas neuronite aktiivsus sadu katseid sisaldava päeva jooksul muutub. Leitakse, et enamasti püsib aktiivsus sama, kuid osadel neuronitel tõuseb või langeb. Samuti leitakse, et neuroni muutus päeva jooksul ei ole seotud sellega, kuidas see katse jooksul käitub. Need leiud võivad viia parema arusaamiseni prefrontaalse ajukoore ja lühimälu omadustest.We analyze the electrical activity of neurons in the prefrontal cortex of a monkey while it performs a task requiring short-term memory. In the first part of the analysis we use supervised machine learning to see if we can predict the monkey's behavior from its brain activity. We find that, while unable to predict the behavior before it occurs, we are able to correctly determine it based on post-behavior brain activity 69% of the time. In the second part of the analysis we investigate how the activity of neurons changes during a day of repeating the task hundreds of times. We find that for many neurons it remains the same, but for some it increases or decreases. In addition, we find that how the activity of a neuron changes over the day is not related to how the neuron behaves during the task. These findings can lead to a better understanding of the properties of the prefrontal cortex and short-term memory

    Changes in structural network topology correlate with severity of hallucinatory behavior in Parkinson's disease

    Get PDF
    Inefficient integration between bottom-up visual input and higher order visual processing regions is implicated in visual hallucinations in Parkinson's disease (PD). Here, we investigated white matter contributions to this perceptual imbalance hypothesis. Twenty-nine PD patients were assessed for hallucinatory behavior. Hallucination severity was correlated to connectivity strength of the network using the network-based statistic approach. The results showed that hallucination severity was associated with reduced connectivity within a subnetwork that included the majority of the diverse club. This network showed overall greater between-module scores compared with nodes not associated with hallucination severity. Reduced between-module connectivity in the lateral occipital cortex, insula, and pars orbitalis and decreased within-module connectivity in the prefrontal, somatosensory, and primary visual cortices were associated with hallucination severity. Conversely, hallucination severity was associated with increased between- and within-module connectivity in the orbitofrontal and temporal cortex, as well as regions comprising the dorsal attentional and default mode network. These results suggest that hallucination severity is associated with marked alterations in structural network topology with changes in participation along the perceptual hierarchy. This may result in the inefficient transfer of information that gives rise to hallucinations in PD. Author SummaryInefficient integration of information between external stimuli and internal perceptual predictions may lead to misperceptions or visual hallucinations in Parkinson's disease (PD). In this study, we show that hallucinatory behavior in PD patients is associated with marked alterations in structural network topology. Severity of hallucinatory behavior was associated with decreased connectivity in a large subnetwork that included the majority of the diverse club, nodes with a high number of between-module connections. Furthermore, changes in between-module connectivity were found across brain regions involved in visual processing, top-down prediction centers, and endogenous attention, including the occipital, orbitofrontal, and posterior cingulate cortex. Together, these findings suggest that impaired integration across different sides across different perceptual processing regions may result in inefficient transfer of information

    Altered functional and structural brain network organization in autism.

    Get PDF
    Structural and functional underconnectivity have been reported for multiple brain regions, functional systems, and white matter tracts in individuals with autism spectrum disorders (ASD). Although recent developments in complex network analysis have established that the brain is a modular network exhibiting small-world properties, network level organization has not been carefully examined in ASD. Here we used resting-state functional MRI (n = 42 ASD, n = 37 typically developing; TD) to show that children and adolescents with ASD display reduced short and long-range connectivity within functional systems (i.e., reduced functional integration) and stronger connectivity between functional systems (i.e., reduced functional segregation), particularly in default and higher-order visual regions. Using graph theoretical methods, we show that pairwise group differences in functional connectivity are reflected in network level reductions in modularity and clustering (local efficiency), but shorter characteristic path lengths (higher global efficiency). Structural networks, generated from diffusion tensor MRI derived fiber tracts (n = 51 ASD, n = 43 TD), displayed lower levels of white matter integrity yet higher numbers of fibers. TD and ASD individuals exhibited similar levels of correlation between raw measures of structural and functional connectivity (n = 35 ASD, n = 35 TD). However, a principal component analysis combining structural and functional network properties revealed that the balance of local and global efficiency between structural and functional networks was reduced in ASD, positively correlated with age, and inversely correlated with ASD symptom severity. Overall, our findings suggest that modeling the brain as a complex network will be highly informative in unraveling the biological basis of ASD and other neuropsychiatric disorders
    corecore