11,789 research outputs found

    Duality and free energy analyticity bounds for few-body Ising models with extensive homology rank

    Get PDF
    We consider pairs of few-body Ising models where each spin enters a bounded number of interaction terms (bonds) such that each model can be obtained from the dual of the other after freezing k spins on large-degree sites. Such a pair of Ising models can be interpreted as a two-chain complex with k being the rank of the first homology group. Our focus is on the case where k is extensive, that is, scales linearly with the number of bonds n. Flipping any of these additional spins introduces a homologically nontrivial defect (generalized domain wall). In the presence of bond disorder, we prove the existence of a low-temperature weak-disorder region where additional summation over the defects has no effect on the free energy density f(T) in the thermodynamical limit and of a high-temperature region where an extensive homological defect does not affect f(T). We also discuss the convergence of the high- and low-temperature series for the free energy density, prove the analyticity of limiting f(T) at high and low temperatures, and construct inequalities for the critical point(s) where analyticity is lost. As an application, we prove multiplicity of the conventionally defined critical points for Ising models on all { f, d} tilings of the infinite hyperbolic plane, where df/(d + f) \u3e 2. Namely, for these infinite graphs, we show that critical temperatures with free and wired boundary conditions differ, Tc(f)T(f)

    New Classes of Partial Geometries and Their Associated LDPC Codes

    Full text link
    The use of partial geometries to construct parity-check matrices for LDPC codes has resulted in the design of successful codes with a probability of error close to the Shannon capacity at bit error rates down to 10−1510^{-15}. Such considerations have motivated this further investigation. A new and simple construction of a type of partial geometries with quasi-cyclic structure is given and their properties are investigated. The trapping sets of the partial geometry codes were considered previously using the geometric aspects of the underlying structure to derive information on the size of allowable trapping sets. This topic is further considered here. Finally, there is a natural relationship between partial geometries and strongly regular graphs. The eigenvalues of the adjacency matrices of such graphs are well known and it is of interest to determine if any of the Tanner graphs derived from the partial geometries are good expanders for certain parameter sets, since it can be argued that codes with good geometric and expansion properties might perform well under message-passing decoding.Comment: 34 pages with single column, 6 figure

    Commutative association schemes

    Full text link
    Association schemes were originally introduced by Bose and his co-workers in the design of statistical experiments. Since that point of inception, the concept has proved useful in the study of group actions, in algebraic graph theory, in algebraic coding theory, and in areas as far afield as knot theory and numerical integration. This branch of the theory, viewed in this collection of surveys as the "commutative case," has seen significant activity in the last few decades. The goal of the present survey is to discuss the most important new developments in several directions, including Gelfand pairs, cometric association schemes, Delsarte Theory, spin models and the semidefinite programming technique. The narrative follows a thread through this list of topics, this being the contrast between combinatorial symmetry and group-theoretic symmetry, culminating in Schrijver's SDP bound for binary codes (based on group actions) and its connection to the Terwilliger algebra (based on combinatorial symmetry). We propose this new role of the Terwilliger algebra in Delsarte Theory as a central topic for future work.Comment: 36 page
    • …
    corecore