333 research outputs found

    Automatic Craniomaxillofacial Landmark Digitization via Segmentation-Guided Partially-Joint Regression Forest Model and Multiscale Statistical Features

    Get PDF
    The goal of this paper is to automatically digitize craniomaxillofacial (CMF) landmarks efficiently and accurately from cone-beam computed tomography (CBCT) images, by addressing the challenge caused by large morphological variations across patients and image artifacts of CBCT images

    Deformable Multisurface Segmentation of the Spine for Orthopedic Surgery Planning and Simulation

    Get PDF
    Purpose: We describe a shape-aware multisurface simplex deformable model for the segmentation of healthy as well as pathological lumbar spine in medical image data. Approach: This model provides an accurate and robust segmentation scheme for the identification of intervertebral disc pathologies to enable the minimally supervised planning and patient-specific simulation of spine surgery, in a manner that combines multisurface and shape statistics-based variants of the deformable simplex model. Statistical shape variation within the dataset has been captured by application of principal component analysis and incorporated during the segmentation process to refine results. In the case where shape statistics hinder detection of the pathological region, user assistance is allowed to disable the prior shape influence during deformation. Results: Results demonstrate validation against user-assisted expert segmentation, showing excellent boundary agreement and prevention of spatial overlap between neighboring surfaces. This section also plots the characteristics of the statistical shape model, such as compactness, generalizability and specificity, as a function of the number of modes used to represent the family of shapes. Final results demonstrate a proof-of-concept deformation application based on the open-source surgery simulation Simulation Open Framework Architecture toolkit. Conclusions: To summarize, we present a deformable multisurface model that embeds a shape statistics force, with applications to surgery planning and simulation

    Multi-Surface Simplex Spine Segmentation for Spine Surgery Simulation and Planning

    Get PDF
    This research proposes to develop a knowledge-based multi-surface simplex deformable model for segmentation of healthy as well as pathological lumbar spine data. It aims to provide a more accurate and robust segmentation scheme for identification of intervertebral disc pathologies to assist with spine surgery planning. A robust technique that combines multi-surface and shape statistics-aware variants of the deformable simplex model is presented. Statistical shape variation within the dataset has been captured by application of principal component analysis and incorporated during the segmentation process to refine results. In the case where shape statistics hinder detection of the pathological region, user-assistance is allowed to disable the prior shape influence during deformation. Results have been validated against user-assisted expert segmentation

    Accurate Segmentation of CT Pelvic Organs via Incremental Cascade Learning and Regression-based Deformable Models

    Get PDF
    Accurate segmentation of male pelvic organs from computed tomography (CT) images is important in image guided radiotherapy (IGRT) of prostate cancer. The efficacy of radiation treatment highly depends on the segmentation accuracy of planning and treatment CT images. Clinically manual delineation is still generally performed in most hospitals. However, it is time consuming and suffers large inter-operator variability due to the low tissue contrast of CT images. To reduce the manual efforts and improve the consistency of segmentation, it is desirable to develop an automatic method for rapid and accurate segmentation of pelvic organs from planning and treatment CT images. This dissertation marries machine learning and medical image analysis for addressing two fundamental yet challenging segmentation problems in image guided radiotherapy of prostate cancer. Planning-CT Segmentation. Deformable models are popular methods for planning-CT segmentation. However, they are well known to be sensitive to initialization and ineffective in segmenting organs with complex shapes. To address these limitations, this dissertation investigates a novel deformable model named regression-based deformable model (RDM). Instead of locally deforming the shape model, in RDM the deformation at each model point is explicitly estimated from local image appearance and used to guide deformable segmentation. As the estimated deformation can be long-distance and is spatially adaptive to each model point, RDM is insensitive to initialization and more flexible than conventional deformable models. These properties render it very suitable for CT pelvic organ segmentation, where initialization is difficult to get and organs may have complex shapes. Treatment-CT Segmentation. Most existing methods have two limitations when they are applied to treatment-CT segmentation. First, they have a limited accuracy because they overlook the availability of patient-specific data in the IGRT workflow. Second, they are time consuming and may take minutes or even longer for segmentation. To improve both accuracy and efficiency, this dissertation combines incremental learning with anatomical landmark detection for fast localization of the prostate in treatment CT images. Specifically, cascade classifiers are learned from a population to automatically detect several anatomical landmarks in the image. Based on these landmarks, the prostate is quickly localized by aligning and then fusing previous segmented prostate shapes of the same patient. To improve the performance of landmark detection, a novel learning scheme named "incremental learning with selective memory" is proposed to personalize the population-based cascade classifiers to the patient under treatment. Extensive experiments on a large dataset show that the proposed method achieves comparable accuracy to the state of the art methods while substantially reducing runtime from minutes to just 4 seconds.Doctor of Philosoph

    Detecting Anatomical Landmarks for Fast Alzheimer’s Disease Diagnosis

    Get PDF
    Structural magnetic resonance imaging (MRI) is a very popular and effective technique used to diagnose Alzheimer’s disease (AD). The success of computer-aided diagnosis methods using structural MRI data is largely dependent on the two time-consuming steps: 1) nonlinear registration across subjects, and 2) brain tissue segmentation. To overcome this limitation, we propose a landmark-based feature extraction method that does not require nonlinear registration and tissue segmentation. In the training stage, in order to distinguish AD subjects from healthy controls (HCs), group comparisons, based on local morphological features, are first performed to identify brain regions that have significant group differences. In general, the centers of the identified regions become landmark locations (or AD landmarks for short) capable of differentiating AD subjects from HCs. In the testing stage, using the learned AD landmarks, the corresponding landmarks are detected in a testing image using an efficient technique based on a shape-constrained regression-forest algorithm. To improve detection accuracy, an additional set of salient and consistent landmarks are also identified to guide the AD landmark detection. Based on the identified AD landmarks, morphological features are extracted to train a support vector machine (SVM) classifier that is capable of predicting the AD condition. In the experiments, our method is evaluated on landmark detection and AD classification sequentially. Specifically, the landmark detection error (manually annotated versus automatically detected) of the proposed landmark detector is 2.41mm, and our landmark-based AD classification accuracy is 83.7%. Lastly, the AD classification performance of our method is comparable to, or even better than, that achieved by existing region-based and voxel-based methods, while the proposed method is approximately 50 times faster

    Image Registration Workshop Proceedings

    Get PDF
    Automatic image registration has often been considered as a preliminary step for higher-level processing, such as object recognition or data fusion. But with the unprecedented amounts of data which are being and will continue to be generated by newly developed sensors, the very topic of automatic image registration has become and important research topic. This workshop presents a collection of very high quality work which has been grouped in four main areas: (1) theoretical aspects of image registration; (2) applications to satellite imagery; (3) applications to medical imagery; and (4) image registration for computer vision research

    Efficient inference and learning in graphical models for multi-organ shape segmentation

    Get PDF
    This thesis explores the use of discriminatively trained deformable contour models (DCMs) for shape-based segmentation in medical images. We make contributions in two fronts: in the learning problem, where the model is trained from a set of annotated images, and in the inference problem, whose aim is to segment an image given a model. We demonstrate the merit of our techniques in a large X-Ray image segmentation benchmark, where we obtain systematic improvements in accuracy and speedups over the current state-of-the-art. For learning, we formulate training the DCM scoring function as large-margin structured prediction and construct a training objective that aims at giving the highest score to the ground-truth contour configuration. We incorporate a loss function adapted to DCM-based structured prediction. In particular, we consider training with the Mean Contour Distance (MCD) performance measure. Using this loss function during training amounts to scoring each candidate contour according to its Mean Contour Distance to the ground truth configuration. Training DCMs using structured prediction with the standard zero-one loss already outperforms the current state-of-the-art method [Seghers et al. 2007] on the considered medical benchmark [Shiraishi et al. 2000, van Ginneken et al. 2006]. We demonstrate that training with the MCD structured loss further improves over the generic zero-one loss results by a statistically significant amount. For inference, we propose efficient solvers adapted to combinatorial problems with discretized spatial variables. Our contributions are three-fold:first, we consider inference for loopy graphical models, making no assumption about the underlying graph topology. We use an efficient decomposition-coordination algorithm to solve the resulting optimization problem: we decompose the model’s graph into a set of open, chain-structured graphs. We employ the Alternating Direction Method of Multipliers (ADMM) to fix the potential inconsistencies of the individual solutions. Even-though ADMMis an approximate inference scheme, we show empirically that our implementation delivers the exact solution for the considered examples. Second,we accelerate optimization of chain-structured graphical models by using the Hierarchical A∗ search algorithm of [Felzenszwalb & Mcallester 2007] couple dwith the pruning techniques developed in [Kokkinos 2011a]. We achieve a one order of magnitude speedup in average over the state-of-the-art technique based on Dynamic Programming (DP) coupled with Generalized DistanceTransforms (GDTs) [Felzenszwalb & Huttenlocher 2004]. Third, we incorporate the Hierarchical A∗ algorithm in the ADMM scheme to guarantee an efficient optimization of the underlying chain structured subproblems. The resulting algorithm is naturally adapted to solve the loss-augmented inference problem in structured prediction learning, and hence is used during training and inference. In Appendix A, we consider the case of 3D data and we develop an efficientmethod to find the mode of a 3D kernel density distribution. Our algorithm has guaranteed convergence to the global optimum, and scales logarithmically in the volume size by virtue of recursively subdividing the search space. We use this method to rapidly initialize 3D brain tumor segmentation where we demonstrate substantial acceleration with respect to a standard mean-shift implementation. In Appendix B, we describe in more details our extension of the Hierarchical A∗ search algorithm of [Felzenszwalb & Mcallester 2007] to inference on chain-structured graphs.Cette thèse explore l’utilisation des modèles de contours déformables pour la segmentation basée sur la forme des images médicales. Nous apportons des contributions sur deux fronts: dans le problème de l’apprentissage statistique, où le modèle est formé à partir d’un ensemble d’images annotées, et le problème de l’inférence, dont le but est de segmenter une image étant donnée un modèle. Nous démontrons le mérite de nos techniques sur une grande base d’images à rayons X, où nous obtenons des améliorations systématiques et des accélérations par rapport à la méthode de l’état de l’art. Concernant l’apprentissage, nous formulons la formation de la fonction de score des modèles de contours déformables en un problème de prédiction structurée à grande marge et construisons une fonction d’apprentissage qui vise à donner le plus haut score à la configuration vérité-terrain. Nous intégrons une fonction de perte adaptée à la prédiction structurée pour les modèles de contours déformables. En particulier, nous considérons l’apprentissage avec la mesure de performance consistant en la distance moyenne entre contours, comme une fonction de perte. L’utilisation de cette fonction de perte au cours de l’apprentissage revient à classer chaque contour candidat selon sa distance moyenne du contour vérité-terrain. Notre apprentissage des modèles de contours déformables en utilisant la prédiction structurée avec la fonction zéro-un de perte surpasse la méthode [Seghers et al. 2007] de référence sur la base d’images médicales considérée [Shiraishi et al. 2000, van Ginneken et al. 2006]. Nous démontrons que l’apprentissage avec la fonction de perte de distance moyenne entre contours améliore encore plus les résultats produits avec l’apprentissage utilisant la fonction zéro-un de perte et ce d’une quantité statistiquement significative.Concernant l’inférence, nous proposons des solveurs efficaces et adaptés aux problèmes combinatoires à variables spatiales discrétisées. Nos contributions sont triples: d’abord, nous considérons le problème d’inférence pour des modèles graphiques qui contiennent des boucles, ne faisant aucune hypothèse sur la topologie du graphe sous-jacent. Nous utilisons un algorithme de décomposition-coordination efficace pour résoudre le problème d’optimisation résultant: nous décomposons le graphe du modèle en un ensemble de sous-graphes en forme de chaines ouvertes. Nous employons la Méthode de direction alternée des multiplicateurs (ADMM) pour réparer les incohérences des solutions individuelles. Même si ADMM est une méthode d’inférence approximative, nous montrons empiriquement que notre implémentation fournit une solution exacte pour les exemples considérés. Deuxièmement, nous accélérons l’optimisation des modèles graphiques en forme de chaîne en utilisant l’algorithme de recherche hiérarchique A* [Felzenszwalb & Mcallester 2007] couplé avec les techniques d’élagage développés dans [Kokkinos 2011a]. Nous réalisons une accélération de 10 fois en moyenne par rapport à l’état de l’art qui est basé sur la programmation dynamique (DP) couplé avec les transformées de distances généralisées [Felzenszwalb & Huttenlocher 2004]. Troisièmement, nous intégrons A* dans le schéma d’ADMM pour garantir une optimisation efficace des sous-problèmes en forme de chaine. En outre, l’algorithme résultant est adapté pour résoudre les problèmes d’inférence augmentée par une fonction de perte qui se pose lors de l’apprentissage de prédiction des structure, et est donc utilisé lors de l’apprentissage et de l’inférence. [...

    Segmentation of pelvic structures from preoperative images for surgical planning and guidance

    Get PDF
    Prostate cancer is one of the most frequently diagnosed malignancies globally and the second leading cause of cancer-related mortality in males in the developed world. In recent decades, many techniques have been proposed for prostate cancer diagnosis and treatment. With the development of imaging technologies such as CT and MRI, image-guided procedures have become increasingly important as a means to improve clinical outcomes. Analysis of the preoperative images and construction of 3D models prior to treatment would help doctors to better localize and visualize the structures of interest, plan the procedure, diagnose disease and guide the surgery or therapy. This requires efficient and robust medical image analysis and segmentation technologies to be developed. The thesis mainly focuses on the development of segmentation techniques in pelvic MRI for image-guided robotic-assisted laparoscopic radical prostatectomy and external-beam radiation therapy. A fully automated multi-atlas framework is proposed for bony pelvis segmentation in MRI, using the guidance of MRI AE-SDM. With the guidance of the AE-SDM, a multi-atlas segmentation algorithm is used to delineate the bony pelvis in a new \ac{MRI} where there is no CT available. The proposed technique outperforms state-of-the-art algorithms for MRI bony pelvis segmentation. With the SDM of pelvis and its segmented surface, an accurate 3D pelvimetry system is designed and implemented to measure a comprehensive set of pelvic geometric parameters for the examination of the relationship between these parameters and the difficulty of robotic-assisted laparoscopic radical prostatectomy. This system can be used in both manual and automated manner with a user-friendly interface. A fully automated and robust multi-atlas based segmentation has also been developed to delineate the prostate in diagnostic MR scans, which have large variation in both intensity and shape of prostate. Two image analysis techniques are proposed, including patch-based label fusion with local appearance-specific atlases and multi-atlas propagation via a manifold graph on a database of both labeled and unlabeled images when limited labeled atlases are available. The proposed techniques can achieve more robust and accurate segmentation results than other multi-atlas based methods. The seminal vesicles are also an interesting structure for therapy planning, particularly for external-beam radiation therapy. As existing methods fail for the very onerous task of segmenting the seminal vesicles, a multi-atlas learning framework via random decision forests with graph cuts refinement has further been proposed to solve this difficult problem. Motivated by the performance of this technique, I further extend the multi-atlas learning to segment the prostate fully automatically using multispectral (T1 and T2-weighted) MR images via hybrid \ac{RF} classifiers and a multi-image graph cuts technique. The proposed method compares favorably to the previously proposed multi-atlas based prostate segmentation. The work in this thesis covers different techniques for pelvic image segmentation in MRI. These techniques have been continually developed and refined, and their application to different specific problems shows ever more promising results.Open Acces

    Automatic image analysis of C-arm Computed Tomography images for ankle joint surgeries

    Get PDF
    Open reduction and internal fixation is a standard procedure in ankle surgery for treating a fractured fibula. Since fibula fractures are often accompanied by an injury of the syndesmosis complex, it is essential to restore the correct relative pose of the fibula relative to the adjoining tibia for the ligaments to heal. Otherwise, the patient might experience instability of the ankle leading to arthritis and ankle pain and ultimately revision surgery. Incorrect positioning referred to as malreduction of the fibula is assumed to be one of the major causes of unsuccessful ankle surgery. 3D C-arm imaging is the current standard procedure for revealing malreduction of fractures in the operating room. However, intra-operative visual inspection of the reduction result is complicated due to high inter-individual variation of the ankle anatomy and rather based on the subjective experience of the surgeon. A contralateral side comparison with the patient’s uninjured ankle is recommended but has not been integrated into clinical routine due to the high level of radiation exposure it incurs. This thesis presents the first approach towards a computer-assisted intra-operative contralateral side comparison of the ankle joint. The focus of this thesis was the design, development and validation of a software-based prototype for a fully automatic intra-operative assistance system for orthopedic surgeons. The implementation does not require an additional 3D C-arm scan of the uninjured ankle, thus reducing time consumption and cumulative radiation dose. A 3D statistical shape model (SSM) is used to reconstruct a 3D surface model from three 2D fluoroscopic projections representing the uninjured ankle. To this end, a 3D SSM segmentation is performed on the 3D image of the injured ankle to gain prior knowledge of the ankle. A 3D convolutional neural network (CNN) based initialization method was developed and its outcome was incorporated into the SSM adaption step. Segmentation quality was shown to be improved in terms of accuracy and robustness compared to the pure intensity-based SSM. This allows us to overcome the limitations of the previously proposed methods, namely inaccuracy due to metal artifacts and the lack of device-to-patient orientation of the C-arm. A 2D-CNN is employed to extract semantic knowledge from all fluoroscopic projection images. This step of the pipeline both creates features for the subsequent reconstruction and also helps to pre-initialize the 3D-SSM without user interaction. A 2D-3D multi-bone reconstruction method has been developed which uses distance maps of the 2D features for fast and accurate correspondence optimization and SSM adaption. This is the central and most crucial component of the workflow. This is the first time that a bone reconstruction method has been applied to the complex ankle joint and the first reconstruction method using CNN based segmentations as features. The reconstructed 3D-SSM of the uninjured ankle can be back-projected and visualized in a workflow-oriented manner to procure clear visualization of the region of interest, which is essential for the evaluation of the reduction result. The surgeon can thus directly compare an overlay of the contralateral ankle with the injured ankle. The developed methods were evaluated individually using data sets acquired during a cadaver study and representative clinical data acquired during fibular reduction. A hierarchical evaluation was designed to assess the inaccuracies of the system on different levels and to identify major sources of error. The overall evaluation performed on eleven challenging clinical datasets acquired for manual contralateral side comparison showed that the system is capable of accurately reconstructing 3D surface models of the uninjured ankle solely using three projection images. A mean Hausdorff distance of 1.72 mm was measured when comparing the reconstruction result to the ground truth segmentation and almost achieved the high required clinical accuracy of 1-2 mm. The overall error of the pipeline was mainly attributed to inaccuracies in the 2D-CNN segmentation. The consistency of these results requires further validation on a larger dataset. The workflow proposed in this thesis establishes the first approach to enable automatic computer-assisted contralateral side comparison in ankle surgery. The feasibility of the proposed approach was proven on a limited amount of clinical cases and has already yielded good results. The next important step is to alleviate the identified bottlenecks in the approach by providing more training data in order to further improve the accuracy. In conclusion, the new approach presented gives the chance to guide the surgeon during the reduction process, improve the surgical outcome while avoiding additional radiation exposure and reduce the number of revision surgeries in the long term

    Cloud-Based Benchmarking of Medical Image Analysis

    Get PDF
    Medical imagin
    corecore