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CHAPTER 1

INTRODUCTION

1.1 Motivation

Fractures of the ankle joint rank among the most common fractures of the lower extrem-

ities and can be associated with injury of the syndesmotic complex (WARNER et al. 2015).

Figure 1: Clinical workflow: Following pre-operative diagnosis, the ankle is
exposed to examine the fracture and the syndesmotic complex. The fracture
is re-positioned and fixated with metal implants e.g. screws and a plate. A
syndesmotic screw is inserted to connect the tibia and fibula so that the syn-
desmotic complex can heal. Afterward, a C-arm scan is usually acquired to eval-
uate the reduction result. If a malreduction is identified, the screw position is
modified and the scan is repeated.

Usually, patients experienced accidental forced external rotation of the ankle causing

a fracture of the fibula bone (SAXENA 2012). Diagnosed with a pre-operative X-ray (as

illustrated in the clinical workflow in Fig. 1), the fractured fibula is carefully restored

and relocated. Hence, this process is referred to as reduction. It is widely assumed that

incorrect re-positioning, termed malreduction, of the fibula in the incisural notch of the

tibia is a major reason for revision surgery. An undetected malreduction can lead to early

chondral degeneration with osteoarthritis (VETTER et al. 2019a).
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Motivation Chapter 1. Introduction

Figure 2: Appearance of the ankle joint in C-arm images: Inter-individual varia-
tion for 16 patients (left) and the intra-individual variation for one patient (right)
shown on the axial slice at the level of the incisura.

Recent advances in 3D imaging technology allow novel insights into the bone anatomy.

As shown in Fig. 1, an intra-operative C-arm device can be used to acquire a 3D image

of the ankle immediately after screw insertion and carefully evaluate the reduction re-

sult afterward. FRANKE et al. 2012 showed that fibular malreduction was detected more

often when 3D imaging was used for acute unstable syndesmotic injuries but remained

undetected with 2D standard fluoroscopy. This is accompanied by a significantly in-

creased need for intra-operative revisions. If a malreduction is identified, the reduction

of the fibula in the incisural notch is modified before image acquisition is repeated. Thus,

malreduction and implant malposition can be detected more easily and post-operative

Computed Tomography (CT) becomes obsolete.

Intra-operative evaluation of the reduced fibula is a time-consuming process that is

prone to errors since bone reduction is patient-specific and no reliable gold standard

exists for reducing the fibula to achieve an optimal result. In a worst case scenario, intra-

operative revision is repeated several times and significantly increases the intervention

time as well as the cumulative radiation dose. Even with 3D imaging, the reduction pro-

cess remains very challenging as the high inter-individual variability of the position and

shape of the of the tibiofibular joint impedes verification of a correct reduction result.

However, the intra-individual variability between symmetrical left and right ankles is

significantly lower than the inter-individual variability (ELGAFY et al. 2010; VETTER et

al. 2019a) as shown in Fig. 2. A study by MUKHOPADHYAY et al. 2011 suggests that si-
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multaneous visualization of both ankles, e.g. by acquiring a pre-operative CT, provides

the most reliable verification method, especially for difficult cases or inexperienced sur-

geons. This elicits safer and more assured treatment for the patient and also gives the

reassurance of standardized quality. Despite this, standard clinical protocols typically

suggest that only two pre-operative X-ray radiographs of the injured ankle be used for

diagnosis and a pre-operative 3D Magnetic Resonance Imaging (MRI) or CT scan is usu-

ally not available. An additional intra-operative 3D C-arm scan of the contralateral side is

not routinely acquired for the intervention due to concerns regarding radiation exposure

for the surgical team and the patient and in order to avoid time-consuming and costly

procedures.

Obviating the need for a second 3D scan and providing the option of using the infor-

mation of the contralateral side could improve the surgical outcome, decrease the num-

ber of intra- and post-operative revisions and the patient’s time under anesthetic while

simultaneously reduce the cumulative radiation dose. Surgeons wish to have more use-

ful information for assessing the syndesmotic region since the quantitative ankle mea-

surements have a high inter-individual variability and are not standardized for the pro-

cedure.

To date, there is no intra-operative assistance available to guide surgeons during the

reduction process. This thesis aims to develop methods to provide the surgeon with ad-

ditional visual aid gained from the uninjured ankle of the patient without the need for an

additional 3D scan while carefully considering intra-operative requirements.

1.2 Objectives

The main focus of this thesis is computer-assisted contralateral side comparison veri-

fying reduction results during ankle surgeries. With the elaboration of software-based

methods, an assistance system for surgeons, which can also be integrated into mobile C-

arm systems, should be designed. The main objective of this thesis was the development

of a system that should meet the following requirements:

• Requirements regarding the benefits for the patient: The assistance system should

be tailored to help the surgeon in his decision process and improve the quality of

the procedure in order to avoid post-operative complications or revision surgery

which would potentially be harmful to the patient. The software should work with-

out requiring an additional 3D scan of the contralateral side which prevents the

patient from being exposed to additional radiation. The methods should be as fast

as possible in order to decrease the time the patient would potentially spend under
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anesthetic.

• Requirements regarding the benefits for the surgeon: The developed methods

should offer a high level of automation and obviate any additional interaction steps

for the surgeon in order to reduce the risk of contamination. The proposed work-

flow should limit the number of additional image acquisitions so that the surgeon

is not exposed to additional radiation. The developed software should be compat-

ible with the clinical workflow and meet the requirements of the current clinical

protocol. The assistance system should visualize the extracted information to the

surgeon in a concise way and easy to interpret.

• Further technical requirements regarding the usability and accuracy: The com-

puted overall result should be as precise as possible. An error of less than 1 mm

is regarded for achieving the required clinically relevant accuracy. All methods ap-

plied to C-arm images of the injured ankle should be robust for different fracture

types and metal artifacts, which are often visible in intra-operative images. The

whole pipeline should be implemented as a modular system so that the individual

methods can be interchangeable and evaluated independently of each other.

1.3 Approach

The stated clinical need for a contralateral side comparison of the ankle joint was ap-

proached by the conceptual design and algorithmic development of an image-based as-

sistance system. Fig. 3 shows an overview of the technical components and their inte-

gration in the clinical workflow. In order to develop a prototype capable of contralateral

side comparison and to achieve the aforementioned objectives, the following steps were

conducted which are visualized in Fig. 3:

(A) A precise 3D model representation of the injured ankle was created by applying

Statistical Shape Model (SSM) segmentation on the 3D C-arm image (Section 4.2).

(B) Relevant image information was extracted from fluoroscopic projection images of

the contralateral uninjured ankle using an approach based on deep learning (Sec-

tion 4.3).

(C) An automatic coarse initialization was performed to align the 3D model with the

projection images (Section 4.4).

(D) The 3D model and the 2D image information were combined for a 2D-3D multi-

bone reconstruction of the uninjured ankle (Section 4.4).
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(E) The contralateral reconstruction result was matched with the injured ankle model

using 3D-3D registration to provide an interpretable visualization of both 3D sur-

faces (Section 4.5).

Figure 3: Technical overview: Components of the proposed automatic con-
tralateral side comparison embedded in the clinical workflow

1.4 Outline

The remainder of this thesis is structured as follows: Chapter 2 provides the relevant

information on the medical and technical background. Thereafter, the state of the art

of assistance systems for orthopedic surgery, medical image segmentation and 2D-3D

reconstruction is summarized in chapter 3.

All methods developed in the scope of this thesis are presented in chapter 4. An

overview of the chosen approach and details on design choices and error propagation

is given in section 4.1. Following on from the approach, section 4.2 introduces model-

based 3D segmentation of the injured ankle using statistical shape models and convo-

lutional neural networks. In section 4.3, the semantic interpretation of fluoroscopic 2D

images using convolutional neural networks and basic image processing techniques are

5



Outline Chapter 1. Introduction

investigated. Section 4.4 presents methods for 2D-3D multiple bone reconstruction of

the ankle joint. Section 4.5 combines all of the developed methods and provides an in-

sight into the overall integration of all components along with methods for the final vi-

sualization.

In chapter 5, a systematic evaluation of the different experiments conducted for this

thesis is elaborated. Chapter 6 discusses the findings of the thesis, draws final conclu-

sions and gives directions for future work. The thesis is concluded with a summary of

the work presented herein (Chapter 7).
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CHAPTER 2

FUNDAMENTALS

The following chapter is intended to describe the required background knowledge of

both, the medical and the technical field. In the first section (2.1), background informa-

tion on the anatomy of interest and the surgical intervention is presented. In the second

section (2.2), insights are given on relevant radiological imaging modalities helpful for

understanding the content of this thesis.

2.1 Medical background

The human body has a variety of bilateral anatomically symmetric regions regarding

bones and joints. Among others, the wrist, proximal humerus, proximal femur, knee,

ankle and foot would all be suitable for contralateral side comparison. In this work, the

ankle is the chosen joint of interest, since related interventions are highly challenging

and frequent. In this chapter, the anatomy of the ankle joint (2.1.1) and the standard

radiographic measurements (2.1.2) are described. Furthermore, an overview is given of

frequent injuries (2.1.3) and corresponding interventions (2.1.4).

2.1.1 Anatomy of the upper ankle joint

The ankle joint is defined as the joint connecting the foot with the lower limb. It involves

three osseous structures, namely the distal part of the tibia, the distal part of the fibula

and the talus. As shown in Fig. 4, the medial malleous, which is a part of the tibia, and

the lateral malleolus, which is composed of the fibula, together form a deep recess for the

talus (STANDRING et al. 2015). Tibia and fibula are two adjacent bones that are connected

by multiple tibiofibular ligaments. This complex is referred to as the syndesmosis.
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Figure 4: The upper ankle joint with syndesmotic ligaments: a) shows the ven-
tral (front to back) and b) shows the dorsal (back to front) view. Reprinted from
SCHÜNKE et al. 2018 with kind permission of Thieme.
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Figure 5: Tubercles of the ankle joint at the level of the incisura

The tibia is the second largest bone of the body. It bears the weight transmitted

through the femur and knee joint at the proximal end and together with the fibula com-

prises the ankle joint at the distal end (STANDRING et al. 2015). The tibia builds a concave

triangle at the level of the syndesmosis (cf. Fig. 5) referred to as the incisura fibularis tib-

iae, henceforth abbreviated with incisura. Described by HERMANS et al. 2010 for adult

patients, the lateral ridge of the tibia bifurcates caudally to the incisura approx. 6 to 8

cm above the lowermost level of the talocrural joint. One of the margins becomes the

anterior tubercle (Chaput) whereas the other margin builds the posterior tubercle (Volk-

mann). The Chaput’s tubercle is more distinctive and prevents the fibula from forward

slipping. The posterior tubercle forms the pivot point during external rotation, in which

the fibula rotates along its main axis.

The fibula is the much thinner but likewise tubular counterpart of the tibia (STAN-

DRING et al. 2015). The ridge on the medial aspect of the distal fibula also bifurcates into

two margins and forms a respective convex triangle located right above the articular facet

of the lateral malleolus (HERMANS et al. 2010). The anterior tubercle (Wagstaffe-Le Fort)

and the, rather negligible, posterior tubercle form the base of the fibular triangle (illus-

trated in Fig. 5). The apices of the fibula and the tibia triangle are situated at the same

level. The shape of the fibula smoothly matches the shape of the incisural notch of the

tibia. ELGAFY et al. 2010 found that the incisura can be divided into two types, which is

either deep as in 67% of the cases or more shallow as in all other cases. Different studies

showed that a rather shallow incisura might increase the risk of recurrent ankle sprains

(YILDIRIM et al. 2003) or fracture dislocation (EBRAHEIM et al. 1998).

The syndesmosis is a ligamentous complex consisting of the following components

(labeled in Fig. 4): The anterior inferior tibiofibular ligament (AITFL) ranges from the
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Chaput’s tubercle to the anterior distal fibula. The posterior inferior tibiofibular liga-

ment (PITFL) is located on the Volkmann’s tubercle, and connects at the posterior part

of the distal fibula (SAXENA 2012). Between fibula and tibia, 0.5 to 2 mm above the tibio-

talar joint, the interosseous ligament blends with the interosseous membrane. All these

ligaments together provide stability to the ankle joint.

The ankle joint not only bears most of the bodyweight but is also essential for hu-

man gait. The human skeleton provides different sorts of joint types differentiated by

their size, location and their degrees of freedom. The ankle joint is a hinge joint which

implies that the joint movement is restricted to one plane. The rotation axis is dynamic

with main movements of plantar flexion (about 10◦) and dorsiflexion (about 30◦) (STAN-

DRING et al. 2015). Other movements like eversion and inversion of the whole extremity

are caused by e.g. the subtalar joint, which is formed by talus and calcaneus. The an-

kle allows a small degree of fibula excursion in healthy subjects. The syndesmotic lig-

aments maintain the integrity between tibia and fibula at the distal end by sustaining

translational, axial and rotational forces. However, if two or more of those ligaments are

compromised, the ankle joint may face significant mechanical laxity.

2.1.2 Radiographic anatomical parameters

The ankle joint can be described by different anatomical measurements although their

significance and correct definition remains controversial among different studies (NIEL-

SON et al. 2005; BEUMER et al. 2004; EBRAHEIM and ELGAFY 2003).

2D measurements of anatomical parameters can be either performed on plain ra-

diographs or by using intra-operative standard fluoroscopy (FRANKE et al. 2012). Fluo-

roscopy is an imaging modality that is often used in surgery since it allows to show con-

tinuous low-dose X-ray images. There are specific view directions defined for 2D image

acquisition in clinical routine. In general, Anterior-posterior (AP) describes the view from

front to back and lateral describes the view from left to right of the patient. SCHNETZKE

et al. 2016 describe three 2D standard projections for diagnostics of the ankle joint: mor-

tise, AP and lateral (shown in Fig. 6). AP is obtained by placing the foot with toes pointing

upward and by directing the central beam of the C-arm or X-Ray source towards the joint.

In this view, the anterior tibial tubercle overlaps with the fibula and the talus is slightly

externally rotated. HAHN and C. L. COLTON 2018 describe the so-called ankle mortise

as the articulation of three bones, in particular, the distal aspect of the tibia, the distal

aspect of the fibula and the talus. Hence, to obtain the mortise view, the foot is internally

rotated by approximately 20◦. With the talus in its true AP position, the talar dome is

fully visible and the clear spaces of the lateral and medial malleoli are clearly exposed.
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Figure 6: Radiographic 2D measurements of the ankle joint on fluoroscopic im-
ages: The top row shows the AP and mortise (M) view with medial clear space
(MCS), tibiofibular clear space (TFCS) and tibiofibular overlap (TFO). The bot-
tom row shows the lateral view and an illustration of different C-arm acquisition
angles. For mortise view, the ankle is tilted by approximately 20◦.

The lateral view is obtained sideways by superposition of both malleoli.

Different quantitative measurements can be found in literature to assess the ankle

joint in 2D images. E.g. HARPER et al. 1989 defined the following for mortise and AP view

(indicated in Fig. 6):

• Medial clear space (MCS)

• Tibiofibular clear space (TFCS)

• Tibiofibular overlap (TFO)

HARPER et al. 1989 concluded that the tibiofibular clear space is a more reliable mea-

surement for diagnosis compared to other measurements since it is independent of talar

rotation.

Measurements in 3D are obtained most commonly on Computed Tomography (CT) or

Magnetic Resonance Imaging (MRI) scans (NIELSON et al. 2005). Tomographic imaging

has the advantage that interpretation is not biased by the superposition of bones. Differ-

ent methods exist to estimate quantitative measurements of the syndesmosis. Most of

the parameters are measured on a selected image plane, approximately 10 mm proximal

to the tibial plafond. E.g. MUKHOPADHYAY et al. 2011 measure the anterior and posterior
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Figure 7: Radiographic measurements of the ankle joint on 3D C-arm images:
Approximately 10 mm proximal the tibial plafond a) shows the TFO (tibiofibular
overlap), ATF (anterior tibiofibular interval) and TFCS (tibiofibular clear space).
b) shows distance measurements a, b and c and the angle between tibia and
fibula. c) Approximately 6 mm distal the tibial plafond, at the talar dome level,
the angle between tibia and fibula is measured to assess the rotation of the
fibula. Measurements in a) are defined after DIKOS et al. 2012 and b) and c)
are defined after NAULT et al. 2013.

clear space of the tibia and fibula on that particular plane and compare the deviation. On

the same plane, DIKOS et al. 2012 measure the TFO (tibiofibular overlap), ATF (anterior

tibiofibular interval) and TFCS (tibiofibular clear space) as shown in Fig. 7a. In addition,

they assess the fibular rotation by measuring the angle between two lines, in particular,

the tangent between both tibia tubercles and a line connecting both fibula tubercles (cf.

α in Fig. 7b). ELGAFY et al. 2010 conducted a study based on 100 subjects and suggested

to use four standardized points at the level of the distal tibiofibular syndesmosis, 9-12

mm above the tibia plafond, for both, the shallow and deep incisura type. As shown in

Fig. 7b, the posterior measurement is defined by two points, more specifically, one point

is located at the medial edge of the fibula and the second represents the closest point at

the lateral edge of the posterior tibial tubercle (annotated with a). The anterior measure-

ment is defined by a point located at the tip of the anterior tibial tubercle and the nearest

point of the fibula (annotated with c).

NAULT et al. 2013 adapted and extended the existing measurement techniques to an

overall of eight measurements on the level 9.45 mm proximal to the tibial plafond. Simi-

lar to ELGAFY et al. 2010, they annotated the outermost anterior point of the incisura and

estimated the length to the closest point of the fibula as well as connected the most pos-

terior point of the incisura with the outermost posterior point of the fibula. Additionally,

they measured the distance of both bones at the center of the incisura (annotated as b

in Fig. 7b). They connected both fibula and both tibia points to measure the length of

the fibula and the incisura as well as the angle between both lines (cf. Fig. 7b). Different
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from other measurement techniques, NAULT et al. 2013 also measured the angle of the

two malleoli on the level of the talar dome (annotated as β in Fig. 7c) to assess the fibular

rotation. VETTER et al. 2019b demonstrated in their study that the most convenient and

reproducible level to measure the fibular rotation is 4 mm or 6 mm below the talar joint

line.

All of the conducted studies in literature that included ankle pairs have in common

that a high inter-individual but a significantly lower intra-individual anatomical variabil-

ity of the syndesmotic measurements was observed among different patients (VETTER et

al. 2019a). DIKOS et al. 2012 and MUKHOPADHYAY et al. 2011 investigated the variation

between contralateral ankles in different patients and observed no significant differences

for most of the parameters. Dikos et al. observed a range of 0.5◦ to 29.5◦ for the internal

rotation (annotated as α in Fig. 7) of the fibula with a mean of 12.7◦±6.7◦ for different

healthy subjects. Comparing the fibular rotation of the same patient, a mean deviation

of 2.9◦±1.8◦ (max 6.5◦) was found between the left and right ankle.

In summary, different measurements are defined to assess the ankle joint in 2D and

3D images. But due to the high anatomical variation, some of them are considered un-

reliable for a precise reduction control in ankle fractures. All of the studies agreed on the

hypothesis that intra-individual variability is most often significantly lower than inter-

individual variability.

2.1.3 Syndesmotic injuries and diagnosis

One of the most common causes of syndesmotic injuries is an extreme forced rotational

dislocation of the foot. Sport activities are considered a risk factor since those injuries

are often reported in sports like skiing, ice hockey, football or basketball (SAXENA 2012).

Sometimes, the injury is pure ligamentous but more frequently associated with fractures

of the malleoli.

To decide on an adequate treatment, most frequently, the Danis-Weber classification

after WEBER and C. COLTON 1991 is used to categorize different syndesmotic injuries

related to the fibula fracture level (indicated in Fig. 8):

• Weber A: A fracture of the lateral malleolus occurs distal to the syndesmosis’ lig-

aments. The medial malleolus is usually intact or sheared. In most cases, the

tibiofibular syndesmosis remains intact and the joint stable.

• Weber B: A fracture of the lateral malleolus occurs right at the level of the syn-

desmosis complex. The fracture might extend upwards or backwards. The syn-

1Medical Imaging and Interaction Toolkit (MITK) workbench, www.mitk.org/wiki/MITK
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Figure 8: Weber fracture classification: Classifications are based on the location
of the fibular fracture in relation to the syndesmosis. Created using MITK1.

desmosis complex can be either intact but also partially torn or detached without

widening of the distal tibiofibular articulation. A fracture of the medial malleolus

might be possible and involved ligaments might be torn. This might further reduce

stability.

• Weber C: A fracture occurs proximal to the syndesmosis above the ankle joint be-

tween the syndesmosis and the head of the fibula. The syndesmosis is most likely

disrupted with widening of the distal tibiofibular articulation. Smaller to fairly

large fragments can be present. Furthermore, a medial malleolus fracture or an

injury of other ligaments is present.

Additionally, two other types of injuries are often associated with unstable syndesmosis:

• Maisonneuve: Maisonneuve refers to a fracture of the upper third part of the prox-

imal fibula accompanied with a disruption of the distal tibiofibular syndesmosis

(KALYANI et al. 2010). The fracture is mainly caused by a pronation combined with

external rotation mechanism and should be treated operatively.

• Ankle sprain: A distal tibiofibular syndesmostic rupture occurs without the pres-

ence of a bone fracture (HERMANS et al. 2010). Joint instability is believed to origi-

nate in a widening of the ankle mortise.

FRANKE et al. 2012 reported that 11% of all investigated 2286 ankle fractures had an

unstable syndesmosis. 60.2% were fractures of type Weber C, 20.7% Maisonneuve frac-

tures, 14.7% of type Weber B and the remaining 4.4% were isolated ankle sprains without

a fracture. HERMANS et al. 2010 observed that a syndesmotic injury occurred in about

50% of type Weber B and in all type Weber C fractures. An injury of the distal tibiofibular

syndesmosis occurs without any fractures in approximately 1-11% of all ankle sprains.
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According to NIELSON et al. 2005, a syndesmotic injury is the single most predictive fac-

tor for long-term disability and chronic ankle pain if mis- or undiagnosed regardless of

the grade of injury.

The level of the fibula fracture can be identified quite easily using standard radio-

graphs. More difficult is the identification of a syndesmotic instability. In general, SAX-

ENA 2012 suggest an intervention if an indication is given for two or more syndesmotic

ligaments being compromised regardless of the fibula position. Furthermore, an indi-

cation is given if the syndesmotic widening is greater than 2 mm and the medial space

widening of the ankles’ mortise is greater than 4 mm. On the contrary, DIKOS et al. 2012

concluded that a variation of 2 mm can be found among healthy subjects and thus does

not serve as a reliable threshold for identifying abnormalities.

Different researchers claimed that 2D measurements on plain radiographs are not

sufficient for assessing the syndesmosis (DIKOS et al. 2012; ELGAFY et al. 2010; MUKHOPAD-

HYAY et al. 2011; HARPER et al. 1989) and that a CT scan is more sensitive in detecting

smaller syndesmotic widening. EBRAHEIM et al. 1997 showed that a widening of up to 3

mm can only be detected by a CT scan. MUKHOPADHYAY et al. 2011 claimed that even

a minor imperfect placement of the fibula, referred to as malreduction may result in

large changes to the tibiotalar joint. Thus, diagnostic imaging needs to be able to de-

tect small differences reliably. BUCKLEY et al. 2011 further showed that a fibular rotation

is even more difficult to detect using standard fluoroscopy and observed that external ro-

tations of up 30◦ can remain undetected. Different authors conclude that the acquisition

of the contralateral side for comparison is the most reliable source of information to as-

sess the syndesmosis (MUKHOPADHYAY et al. 2011; DIKOS et al. 2012; HARPER et al. 1989;

EBRAHEIM et al. 1997) since the intra-individual variability is significantly smaller than

inter-individual variability as described in section 2.1.2. All of the studies comparing

both ankles acquired post-operative CT scans of the ankle. SZEIMIES et al. 2012 recom-

mend contralateral side comparison of X-ray images in evidence of chronic instabilities.

SCHREIBER et al. 2013 conducted a study on the feasibility of contralateral side com-

parison with 2D standard fluoroscopy. In their study, they only measured translational

variation of the fibula compared to the uninjured counterpart and showed the benefits

of the comparison.

In conclusion, the significance of pre- or intra-operative measurements to assess a

potential injury of the syndesmosis and give a reliable diagnosis remains controversial

due to the high anatomical variation. To this date, a volumetric comparison to the con-

tralateral side of the patient is believed to give the best indication. However, a routine

contralateral side comparison is still not implemented as standard procedure.
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Figure 9: OR setup during ankle surgery: The OR is equipped with a Cios Spin®

C-arm scanner for intra-operative imaging (BG Trauma center Ludwigshafen).
Image courtesy of Siemens Healthcare GmbH.

2.1.4 Surgical treatment

Pre-operatively, besides different manual rotation and stabilization tests performed by

the trauma surgeon, diagnostic imaging is performed in clinical routine. As stated before,

radiographs can help to diagnose fractures but often fail to identify occult syndesmo-

sis injuries. Most commonly, the height of the fracture and the position of the involved

bones are examined to decide whether a potential indication for syndesmotic instability

is given.

Procedure: In case of positive indication, the standard procedure in syndesmotic reduc-

tion is called Open reduction and internal fixation (ORIF), which implies that the proce-

dure is not minimal invasive but open and fracture fixation is done by inserting interior

plates and screws. Fractures classified as Weber C always require a ORIF intervention.

Intra-operatively, a small incision is performed after positioning and anesthetics of the

patient to expose the fracture. Instability of the syndesmosis can be diagnosed during

the intervention e.g. by using a bone hook to pull the distal fragment of the fibula un-

der continuous fluoroscopy of the ankle joint in mortise view (Hook test) as described

by FRANKE et al. 2012. Depending on fracture type and occurrence, different stabiliza-

tion methods and metal implants are chosen for the treatment. The treatment of Weber

B and Weber C fractures commonly involves the placement of a one-third tubular plate

for osteosynthesis. Smaller fractures (e.g. if a larger Volkmann fragment is identified) are

stabilized with a lag screw or less frequent using a band wire. For a more detailed descrip-

tion of different fracture treatments, the reader is referred to the Arbeitsgemeinschaft für

Osteosynthesefragen (AO) manual of HAHN and C. L. COLTON 2018.
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FRANKE et al. 2012 describe one possible approach for syndesmotic reduction after

osteosynthesis as follows: A reduction clamp can be placed across the medial and lateral

malleoli. After tightening the clamp, the reduction is verified by using fluoroscopy. Af-

terward, mortise reduction is performed by inserting one or two 3.5 mm small-fragment

positioning screws from lateral to medial as well as from posterior to anterior at the angle

of 30◦ applying standard AO techniques.

SORA et al. 2004 stated that the greatest problem in this kind of injury, even when

treated surgically, is a correct alignment of the fibula, namely, the reduction of the fibula

in the incisural notch. According to FRANKE et al. 2012, a so-called malreduction of the

fibula and as a consequence thereof an intra-operative revision rate was observed in

32.7% of all cases although no malpositioning was visible using standard fluoroscopy.

GARDNER et al. 2006 measured the distance between the fibula and the anterior and pos-

terior facet of the incisura and regarded a discrepancy of 2 mm between the anterior and

posterior measurement as malreduction. HERMANS et al. 2010 state that a widening of

the ankle mortise by 1 mm already decreases the tibiotalar contact area by 42%, which

may lead to joint instability and may be associated with early osteoarthritis.

Intra-operative imaging: FRANKE et al. 2012 recommend to use intra-operative 3D imag-

ing in clinical routine and stated that a post-operative discovery of a malreduction may

require an undesired revision surgery. Instead, they showed that a malreduction was

revealed using an intra-operative 3D C-arm imaging device but remained overseen in

standard fluoroscopy in 32.7% of the patients treated with an unstable syndesmosis. Af-

ter fibular reduction, a mobile 3D C-arm can be used to acquire a 3D image of the re-

duction result to verify screw placement and bone alignment (the setup is shown in Fig.

9).

The resulting 3D image is displayed to the surgeon after applying a Multi-planar re-

construction (MPR) reconstruction. The method allows the generation of slices through

the 3D image from arbitrary viewpoints and orientations (HANDELS 2009). With MPR,

the volume is usually approached by three standard viewing planes. The axial plane

allows the surgeon to view the volume from proximal to distal, the sagittal plane con-

ventionally passes from lateral to medial and the coronal plane from ventral to dorsal.

The surgeon adjusts those MPR viewing planes of the reconstructed C-arm 3D vol-

ume to alternative viewing planes, hereinafter referred to as standard planes, suitable for

an accurate evaluation. An overview of the standard plane adjustment for the ankle joint

is given in Tab. 1. The axial plane is oriented orthogonal to the tibial shaft and centered

between both malleoli at the level of the tibial plafond. The coronal standard plane is
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Plane Definition
Axial Orthogonal to the tibia shaft at the level of

the tibia plafond with the center in the mid-
dle between the medial and lateral malleoli.

Coronal Orthogonal to the axial plane and building
the angle bisector of tibia and fibula at 6 mm
below the tibial plafond.

Sagittal Orthogonal to the axial plane oriented 90◦

towards the sagittal plane.

Table 1: Standard plane definition for the ankle joint

orthogonal to the axial plane and builds the angle bisector between the medial contour

of the fibula and the tibia at the level of the talar dome approximately 6 mm below the

tibial plafond. All planes intersect in the middle of the articular surface of tibial plafond.

By scrolling along the axial plane the surgeon can analyze the reduction result at two lev-

els - approximately 10 mm above the tibial plafond to examine the fibula in the incisural

notch and 6 mm below to examine tibia and fibula at the talar dome level (the most prox-

imal surface of the talus). If a malreduction is identified, the fibula position is modified

and the screws are adjusted accordingly before the image acquisition is repeated until

the surgeon is satisfied with the reduction result.

Evaluation: FRANKE et al. 2012 suggested to evaluate a potential malreduction on the 3D

image based on following criteria:

1. In the ideal case, the anterior border of the fibula forms a harmonical elliptical line

with the tibial plafond.

2. The fibula is positioned adequately in the incisura with respect to the syndesmosis

topography and width.

3. The joint space width between the talus both malleoli is equal.

4. The correct rotation of the lateral malleolus (fibula) is reflected by the congruent

positioning of the malleoli with respect to the talus.

5. In coronal direction, the width of the joint space between the talus and the malleoli

is identical to the syndesmosis.

Recommendations for the intra-operative imaging of the contralateral side are given

by FRANKE et al. 2012 although they state that an additional scan increases the cumula-

tive radiation dose. HAHN and C. L. COLTON 2018 advise using contralateral side com-
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parison at least for the pre-operative planning of complex cases, e.g. in case the fibula is

multi-fragmentary.

2.1.5 Conclusion

The ankle joint comprises of tibia, fibula and talus as well as several ligaments and forms

an important part of the human musculoskeletal system. Often, ankle joint fractures are

accompanied by a compromised syndesmotic complex that requires an surgical inter-

vention. The fracture reduction process benefits from 3D intra-operative imaging, how-

ever, syndesmotic reduction remains a challenging procedure. A widening of the ankle

mortise by more than 1 mm is regarded as malreduction. An overseen malreduction can

lead to poor clinical outcome. The high inter-individual variance of the bone shape and

pose impedes the correct evaluation of the reduction result since there is no reliable gold

standard available. Contralateral side comparison is recommended in the literature to

provide a more reliable reference but has not been integrated into the clinical routine as

it requires the acquisition of an additional 3D image and increases the cumulative radi-

ation dose and intervention time.

2.2 Technical background

The use and analysis of radiological images is an essential part of this thesis. Without

technical advances of X-ray imaging in the last decades, neither pre-, intra- nor post-

operative observations would be possible. This chapter gives a brief overview and com-

pares different imaging devices utilized in the diagnosis and treatment of syndesmotic

injuries.

2.2.1 2D Radiography

Radiography enables visualization of the interior parts of the body and can be used to

diagnose major pathologies like trauma, joint disease and structural changes of osseous

tissue (PETTERSSON 1998). Acquiring 2D radiographic images is the standard procedure

in clinical routine for the detection of any kind of fractures in the human body. A ra-

diograph is an X-ray imaging device, which emits radiation through the body without

incision. It consists of a detector and an X-ray tube, which are placed around the pa-

tient to allow the rays to travel right through the region of interest. The tube, consisting

of a cathode and anode, creates photons with high energy in the kilovoltage (kV) range,

which are collimated by a beam-limiting device (AICHINGER et al. 2012) and send in di-

rection of the detector. The X-ray spectra vary and the penetration ability increases with
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the potential or applied voltage between cathode and anode (BERGER et al. 2018). When

interacting with material, X-rays can either be scattered, absorbed or remain unaffected.

The underlying physical principle of X-ray imaging is the varying attenuation of radi-

ation when interacting with tissue. The intensity of the attenuated rays captured by the

detector varies depending on the density and structural composition of the intersected

tissue (HANDELS 2009). The intensity I depends on the base intensity I0, the linear at-

tenuation µ as well as the thickness d of the intersected material which can be simplified

to

I = I0 ·e−µ·d (1)

for one energy and more general for all energies and different tissue z

I =
∫
E

I0 ·e
−∫

Z
µ(z,E)dz

dE (2)

Osseous tissue has a high electron density accompanied by a high absorption and is

surrounded by tissue with less density, which makes it highly visible on radiographs. Soft

tissue with a weaker density is often not well distinguishable.

A differentiation is made between conventional and interventional radiographs. Con-

ventional radiographs are static systems used for pre-operative diagnosis. Interventional

radiographs, also referred to as interventional fluoroscopic systems or C-arms, can be

static or mobile and are used in the Operating room (OR) during interventional proce-

dures. Regarding trauma surgery, the use of mobile C-arms serves as the gold standard

for planning, navigation and validation of surgical procedures (FRANKE and GRUTZNER

2013). Mobile C-arms comprise an X-ray source and a detector, which are connected

through a C-shape linkage explaining its name. The C-arm base is capable of horizontal

and vertical movements and allows to position the C-arm in an arbitrary position and

orientation towards the OR table.

The contrast of fluoroscopic images is inherently weak compared to images of con-

ventional radiographs. Lower energies are applied to reduce radiation exposure during

continuous radiation. In the case of a constant tube exposure, this results in a lower

Signal-to-Noise ratio (SNR). Fluoroscopic systems provide static images and real-time

image sequences, but on the other hand, suffer from motion-related artifacts.

In modern fluoroscopic systems, either image intensifier or flat panel detectors are

deployed. Although still many image intensifier systems can be found in the clinics,

flat panel detector systems are the state of the art technology for interventional imaging

(BERGER et al. 2018). Flat panel detectors are designed to deliver better spatial resolution

while reducing noise. Furthermore, they do not suffer from distortion effects compared
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to image intensifiers and the spatial resolution depends on the dimension of the detec-

tor, not the Field of View (FOV).

Since it is only possible to examine the patient from a limited number of directions,

the view direction must be chosen considerately. The most suitable direction varies with

the anatomical region and the indication of the examination. Most commonly lateral

and AP projections are acquired (SZEIMIES et al. 2012). In general, it is recommended to

intersect the examined bone areas perpendicular to the surface and - if not impeded by

pathologies - parallel to the plane of the detector medium.

Plain 2D radiographs are useful to show internal anatomical structures but lack any

depth information since intersected tissue absorption is summed along each X-ray. De-

pending on the indication, the use of a complementary examination with a 3D imaging

device like MRI or CT is recommended to reveal findings often overseen in planar radio-

graphs (PETTERSSON 1998) as already addressed in section 2.1.3.

2.2.2 Computed Tomography

The mathematical principle of CT (greek tomos = slice, graphein = to write) goes back

to 1917, where Radon proved that it was possible to reconstruct a 3D image from sum-

mation images (CASSAR-PULLICINO 1998). The key idea was to acquire various summa-

tion images from different directions and to perform a back-projection of the attenua-

tion signals. To acquire a 3D image, which allows separation of superimposed tissue and

provides information on the internal structure of the body, Hounsfield applied the recon-

struction principles to the medical domain and introduced the first commercial CT scan-

ner in 1971 (HANDELS 2009). Nowadays, different methods for CT reconstruction exist,

the most widely known being filtered back-projection and the algebraic reconstruction

technique (HSIEH 2003).

Conventional CT scanners are mostly used for complementary pre- and post-operative

imaging and still show superiority in the depiction of osseous tissue. However, due to the

ionized radiation and potential harm to the patient, benefits must be weighed against

costs. The static systems consist of an X-ray source and a detector component hidden

behind a rotating gantry and a patient table (Fig. 10). Different generations of scanner

systems have been developed with either rotating both, source and detector (third gen-

eration) or only the source (fourth generation). The latest generation of scanners are

spiral multi-slice CTs, which rotate the source continuously, translate the patient table

simultaneously and have a multi-beam collimator. As an advantage, the patient can be

scanned in one single breath on a spiral path.

The detector converts incoming X-ray photons into visible light, which in turn is con-
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verted into electrical signals that can be transformed into digital information by AD con-

version (CASSAR-PULLICINO 1998). The resulting gray values are called Hounsfield Unit

(HU) and cover more than 4000 values. HUs are standard values used in CT image in-

terpretation and are normalized to the reference of attenuated water being 0 HU, bone

roughly 1000 (depending on the density) and air -1000 HU.

HUtissue = 1000 ·
(µtissue −µwater

µwater

)
(3)

In the equation of Hounsfield, µtissue describes the linear attenuation coefficient for a

specific tissue and µwater describes the linear attenuation coefficient for water. This re-

sults in unimpeded rays travelling only through air represented as parts of the image with

lower HU whereas osseous tissue usually has much higher HU. The human eye is capable

of distinguishing between 700-900 shades of gray (KIMPE and TUYTSCHAEVER 2007). To

benefit from the large HU range, an intensity windowing can be applied to narrow down

the entire range to the range of interest. The window center is set to the average value of

the Region of interest (ROI) and the width of the window can limit the range. CT values

below or above the window range are set to the minimum and maximum, respectively.

The image quality of CT images is influenced by different factors. Scanner-related

factors include the voltage of the detector tube (kV), tube current, pitch, scan rotation

time, flying focal spot as well as beam filtration and collimation among others. Detector-

related factors are the pixel size and electron noise. Reconstruction-related factors com-

prise slice thickness, slice increment and the chosen reconstruction algorithm. Besides,

the scanned anatomy influences the image quality by its size, the organs’ density and

patient motion.

Furthermore, the image quality can be affected by image artifacts, which cause errors

in the CT image that are unrelated to the actual information of the studied subject and

might impede diagnostics (HSIEH 2003). Most common artifacts are volume averaging,

in which two tissue types with a different intensity are averaged in the same voxel. This

so-called partial volume effect occurs when the diameter of structures is smaller than

the pixel size or slice thickness. Blooming occurs if the boundary shifts with the change

of window center and width and might result in inaccurate tissue measurements e.g. for

estimation of cortical thickness. Beam hardening artifacts occur due to energy shifts in

the spectrum along the intersected object. The energy change is influenced by the length

of the traveled trajectory as well as the varying attenuation of different materials. Since

high energy photons are less likely to get absorbed, the average energy changes and leads

to artifacts in the image (BERGER et al. 2018).

The reconstruction is affected in areas with varying beam intensities e.g. if a long-
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Figure 10: Computed Tomography systems: C-arm scanner (left), conventional
spiral CT (right), created using Blender2.

shaft bone is cut from the FOV. Streak artifacts are present when external objects like

metal implants or instruments of high density are present in the FOV and cause streaks

in which the radiation is absorbed resulting in a star-shaped superimposition. Depend-

ing on the studied anatomy, motion artifacts from breathing or long scanning times can

occur and cause streaks of blurred duplicated objects.

2.2.3 Intra-operative C-arm imaging

Besides its application in conventional static systems, the idea of using radiodensity for

information gain has been also transferred to the OR. Intra-operative imaging has been

used in a variety of different procedures and different surgical fields i.e. cardiology, or-

thopedics, vascular surgery, trauma surgery and radiotherapy. 3D fluoroscopy enables

more rapid and accurate placement of needles, instruments, prosthetics and interven-

tional devices (A. M. DAVIES et al. 2012). The 3D C-arm belongs to the so-called Cone-

beam Computed Tomography (CBCT) systems (illustrated in Fig. 10). The main differ-

ence to a conventional CT is the acquisition of X-ray images to be used in the reconstruc-

tion process. A CBCT system uses a cone-shaped beam radiating from the X-ray source

covering a large volume with one single motorized rotation about the patient instead

of a spiral path as performed by conventional CTs. After the acquisition, the projection

images are reconstructed in the same manner as static CT images usually using filtered

back-projection.

Besides its great mobility, a CBCT has quicker motion in comparison to the spiral

motion of a traditional CT scanner thus making it applicable in the OR. Furthermore,

the radiation dose is less compared to a conventional CT, which is important because

2Blender version 2.8, Blender foundation, www.blender.org
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not only the patient but also the staff is exposed to radiation. One huge advantage of the

iso-centric design is that the central beam always remains in the iso-center, which elim-

inates the need for re-positioning while reducing time and dose consumption (SIEMENS

HEALTHCARE 2016). Mobile C-arm systems have a much smaller size than CT scanner,

which allows integration into limited OR space. The availability of recently developed

intra-operative CT scanner systems remains very limited in clinics.

On the contrary, the mobility of the C-arm not only provides advantages but at the

same time leads to the disadvantage that no patient-to-device orientation is established.

Therefore, the resulting images can vary significantly from patient to patient w.r.t the

orientation and position of the present anatomical region. Furthermore, a low radia-

tion dose implies a lower SNR and weak contrast. Compared to systems with flat panel

technology, C-arms with image intensifiers have lower image quality and no absolute ra-

diodensity, which means that the resulting values depend on all objects in the FOV and

their relative positions. As a consequence, reconstructed volumes cannot be normalized

based on HUs which hampers image interpretation. Furthermore, the image quality of

image intensifier systems is affected by geometric distortion. Additionally, all CBCT sys-

tems are more prone to image artifacts like beam hardening and streak artifacts.

2.2.4 Conclusion

In summary, tomographic imaging modalities like the conventional CT or CBCT can be

used for diagnostics, treatment and evaluation in trauma surgery. Since mobile systems

managed their way into the operation room due to their compact dimensions and lower

radiation exposure, the surgeon can visually inspect the operative treatment. Mobile sys-

tems allow an arbitrary placement of the device towards the patient but at the same time

do not provide knowledge on how the acquired images are oriented. Image understand-

ing for diagnostics can be impeded, especially by image artifacts e.g. caused by metal im-

plants often present in images that are acquired during trauma surgery. Compared to the

acquisition with flat panel detectors, images acquired with image intensifiers are more

affected by geometrical distortion, artifacts and noise. Another notable difference is the

lack of normalized HU that in the case of image intensifier systems result in different ap-

pearances of the anatomy depending on the relative position and the surrounding tissue

of the object of interest. This circumstance further complicates image analysis. All of the

described methods have in common that they produce ionization radiation potentially

harmful to the patient and in the case of mobile systems also to the surgeon. Therefore,

one aim for the development of intra-operative assistance systems should be to reduce

the cumulative radiation dose and always weigh potential benefits against harms.
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Many systems for intra-operative assistance in trauma surgery have been developed in

the last decades with arising imaging technologies and software development. To this

date, however, no systems for intra-operative analysis of the ankle joint have been in-

troduced neither in the market nor in the literature. This chapter reviews the develop-

ment of intra-operative assistance systems for orthopedic surgery and gives an overview

of different aspects required for the application (section 3.1). The developed system is

a composition of different image processing methods covering the fields of image seg-

mentation in 3D (section 3.2) and 2D (section 3.3) as well as 2D-3D bone reconstruction

(section 3.4).

3.1 Assistance systems in orthopedic and trauma surgery

Assistance systems are designed specifically to help the surgeons during all phases of the

surgery, either in planning before the procedure (pre-operative), navigation, monitor-

ing and inspection during the procedure (intra-operative) or verification of the outcome

after the procedure (post-operative).

Most of the systems proposed for orthopedic or trauma surgery focus on pre-operative

planning of fracture assessment or prosthesis selection. E.g. FÜRNSTAHL et al. 2012 de-

veloped a pre-operative assistance system based on the comparison of anatomies that

have a symmetric counterpart in the body. They performed the reconstruction of com-

plex proximal humerus fractures by mirroring and registration of the uninjured and the

injured humerus using CT images with both humeri present in the FOV. EHLKE et al. 2015

use 3D models of pelvis and femur to estimate anatomical measurements from 2D radio-

graphs for the correct positioning of an osteosynthesis plate. The software iLeg (ZHENG
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2013b) and iJoint (ZHENG 2013a) developed at the University of Bern offer a pre-operative

planning to model different parts of the lower extremity and allow patient-specific 3D

measurements based on 2D radiographs.

Intra-operative assistance systems are specifically designed for the application dur-

ing surgery and can help the surgeons with navigation, augmented visualization and

workflow monitoring. All systems have in common that they underlie strict require-

ments concerning time consumption (ZHENG and NOLTE 2018), limited OR-space and

patient safety restrictions like the avoidance of additional radiation exposure following

the As Low As Reasonably Attainable (ALARA) principle (STIEHL et al. 2007). Often, a reg-

istration step is required to either align the involved intra-operative components or to

apply a pre-operative plan. The most widely known group of intra-operative assistance

systems belong to the so-called Computer-Assisted Orthopedic Surgery (CAOS) systems.

They consist of a Virtual Object (VO), e.g. a pre-operative CT, that serves as a virtual

reference. This reference can be used for an enhanced visualization as well as for plan-

ning a drilling path, a screw location or a suitable prosthesis size. Another important

component is the intra-operative data that can either originate from an intra-operative

imaging device, the end-effector of a robotic system or any other external tool with a

known position within an established coordinate system in the operation room. The

most important step is to establish the relation between the VO and intra-operative data

so that both share the same coordinate systems. Once the relation is established, the

system can visualize any tracked instruments or manipulators in combination with the

VO. In the same manner, a tracked robotic system can execute predefined plans based

on the reference data. In the last decades, commercial CAOS systems have been devel-

oped for various types of surgeries. Currently available systems are mainly specialized

in pedicle screw placement, using either tracked handheld instruments (e.g. Brainlab1)

or robotic systems (e.g. Mazor Robotics2), and partial or total knee and hip replacement

(e.g. Stryker3).

For enhanced visualization, augmented reality has been deployed in intra-operative

assistance systems. NAVAB et al. 2010 supplemented a C-arm with a video camera and

a double mirror system to overlay camera and radiographic images and investigated

performance and knowledge gain for pedicle screw placement, vertebroplasty, and in-

tramedullary nail locking procedure. Recently, FOTOUHI et al. 2019 presented a geometry-

aware visualization of virtual 2D C-arm images augmented on the real patient anatomy

to enable intuitive surgical guidance.

1Brainlab, Muinch, Germany, www.brainlab.com/surgery-products/
2Mazor Robotics,Caesarea Maritima, Israel, www.mazorrobotics.com
3Stryker, Kalamazoo, USA, www.stryker.de/
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Acquiring the VO pre-operatively is always dependent on the clinical indication and

the procedure. Hence, other intra-operative assistance systems exist that do not re-

quire any pre-operative reference data. Instead, they rely on prior knowledge about the

anatomy of interest. Related previous work on foot and ankle surgery concentrate on

intra-operative analysis and improved visualization of calcaneus fractures. BREHLER et

al. 2015 developed an assistance system for the automatic adjustment of MPR viewing

planes using feature-based atlas registration and the analysis of fracture reduction qual-

ity along the computed planes. GÖRRES et al. 2016 proposed 3D segmentation method

to be applied on the reduced calcaneus, cuboid and talus using a multi-bone statistical

shape model. Furthermore, they developed a method for the detection of intra-articular

screws since the metal implants are present in the 3D image after reduction. The meth-

ods were customized for 3D C-arm images acquired during calcaneal fracture surgery

without any patient-specific pre-operative data.

Post-operatively, assistance systems are most commonly used to assess the quality

of the outcome. E.g. ZHENG et al. 2012 employed a model-based 2D-3D reconstruction

method to validate the correct cup orientation of the pelvic implant after performing a

Total hip arthroplasty (THA).

In summary, many well-established assistance systems exist for pre-, intra- and post-

operative applications. In comparison, intra-operative systems have the most restric-

tive requirements concerning execution time and data acquisition, especially if no pre-

operative reference data is available. Intra-operative assistance systems usually com-

prise a number of processing steps that include image segmentation and analysis as well

as the registration of images with different modalities and dimensions. In the follow-

ing sections, an overview is given of the state of the art of individual components and

technical approaches relevant for this thesis that as well build the foundation of many

assistance systems for orthopedic surgery.

3.2 3D anatomical shape representation

The shapes of anatomical organs show a large variation (KOBATAKE and MASUTANI 2017),

just like the human exterior appearance, and can be influenced by different factors such

as age, size, sex, ethnicity, physical activity or pathologies. The extraction of 3D shapes

from medical images to analyze anatomical variation has been extensively studied in the

literature. A common shape representation is a voxel grid classifying each voxel as either

belonging to a specific structure of interest or the background. This process is referred to

as voxel-wise segmentation that partitions an image volume I ⊂R3 into pairwise disjoint
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sub-regions Ik .

I =
K⋃

k=1
Ik with Ii ∩ I j =; ∀i 6= j ∈ {1, . . . ,K } (4)

Segmentation results can hold binary labels (single class with K = 2) or a label for each

object class (multi-class with K > 2). All voxels belonging to a sub-region Ik share e.g.

the same spatial or textural properties. The classification criteria to create sub-regions

ranges from manual selection based on visual inspection to automatic determination.

Although many automatized segmentation techniques have been developed to this date,

segmentation in the medical domain is still most commonly performed manually trough

labeling pixels in a slice-by-slice manner. If applicable, semi-automatic methods like re-

gion growing or thresholding approaches can be applied e.g. a histogram-based thresh-

old selection using Otsu’s method (OTSU 1979). However, manual segmentation is error-

prone for difficult cases and can be dependent on the experience level of the operator

resulting in disambiguity (KOHL et al. 2018) and a high inter-rater or even intra-rater

variance (WARFIELD et al. 2006). Most importantly, manual labeling is tremendously

time-consuming (GREENSPAN et al. 2016), especially in case of large or many data sets,

which often makes it inapplicable for the clinicians to integrate into their daily workflow.

Thus, the development of automatic segmentation methods remains an important field

of research. In recent years, the field has undergone great advances by incorporating

supervised machine learning techniques. Segmentation methods include the extraction

and learning of task-specific computed features (NORAJITRA and MAIER-HEIN 2017), the

registration and warping to templates or atlas images (SOTIRAS et al. 2013) and the use

of active, deformable shape models (HEIMANN and MEINZER 2009) adapting their shape

to the target organ. The choice of methods is always task-dependent. The current state

of the art for voxel-wise segmentation are Convolutional Neural Network (CNN)-based

methods outperforming almost all former segmentation techniques (LITJENS et al. 2017).

Section 3.2.1 describes recent developments in this field. Nonetheless, in some specific

cases, i.e. shape analysis, shape registration and anatomical reconstruction, a voxel grid

provided by the segmentation is not sufficient. Instead, a more high-level representation

with shape descriptors on the anatomical regions’ boundary is required. Therefore, in

section 3.2.2 an overview is given on model-based segmentation.

3.2.1 Deep learning approaches

A deep learning approach is different from other machine learning approaches, in which

hand-crafted feature representations are learned. Instead, a deep neural network can
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learn the feature representation implicitly by updating and optimizing its network pa-

rameters. By learning an intensity representation of the underlying image data distribu-

tion, deep learning methods are capable of applying the learned task on unseen images.

Originating from the recent success of image classification in computer vision, deep

learning approaches have evolved that not only provide one label per entire image but

instead create a pixel- or voxel-wise classification referred to as segmentation. Recently,

CNN based approaches have received a lot of attention due to their ability to solve var-

ious segmentation problems surpassing previous methods (GREENSPAN et al. 2016). A

typical CNN architecture consists of a stack of so-called layers, each performing a spe-

cific mathematical operation like convolution or pooling. Convolutions are performed

on the input of the layer with different convolutional matrices, also referred to as ker-

nels. Pooling is defined as the aggregation of pixel neighborhoods by computing the

maximum or mean value (LITJENS et al. 2017). Each layer receives the input from the pre-

ceding layer and outputs a different representation followed by a non-linear activation

function. This way, the input is projected onto different feature spaces with decreasing

dimensions for each layer to build an abstract and more meaningful representation. The

first layers rather emphasize low-level features like edges, blobs and corners (GREENSPAN

et al. 2016). CNNs used for classification are often supplemented with a fully connected

layer at the end of the convolution layer assembly without shared weights. This layer has

a fixed size and therefore limits the spatial resolution of the output since the spatial in-

formation is lost at this position. Segmentation tasks in the medical domain, however,

need to be solved on a pixel- or voxel-based level. This requires the CNN to be applied in

a computationally expensive ’sliding window’ approach by processing the image patch-

wise.

One solution to the problem was provided by the Fully Convolutional Network (FCN)

introduced by LONG et al. 2015 for image segmentation. In their work, they replaced all

fully connected layers of the CNN with fully convolutional layers and supplemented the

network by upsampling operations and skip connections to combine the semantic in-

formation of the final prediction layers with appearance information of the lower layers.

With a fully convolutional architecture, the FCN can take an image with arbitrary size

and produces an output with the same resolution (cf. Fig. 11). Building upon the idea

of FCNs, the most prominent approach in the medical domain is the U-Net architecture

introduced by RONNEBERGER et al. 2015. The original architecture is a symmetric FCN.

It consists of a downsampling path, namely the encoder, and an upsampling path,

namely the decoder path. The symmetry creates a much higher number of feature maps

in the upsampling path compared to a classical FCN. The main difference towards other
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(a) FCN (b) U-Net

Figure 11: Network architectures

architectures are concatenating skip connections linking each layer of the two paths

to provide additional spatial information during upsampling. In the original publica-

tion, the downsampling path is composed of blocks as illustrated in Fig. 11b. Each

of the blocks consists of two convolution layers with an activation function and a nor-

malization layer at the end substituted with a maximum pooling layer. Therewith, the

contextual information of the image can be captured. The upsampling path comprises

the same number of blocks with a deconvolutional layer each. The upsampled feature

maps are concatenated with the corresponding feature maps from the downsampling

layer to combine spatial with contextual information. The input size is variable since no

dense layers are involved and the output is a segmentation map with one output chan-

nel for each class. The U-Net can be trained by comparing the output of the network

to the ground truth class and calculating an appropriate loss metric. This loss is back-

propagated through the network by an optimizer to update the weights in the individual

layers.

Many different variations of the U-Net architecture have been proposed in the liter-

ature. Particularly interesting for the medical domain, ÇIÇEK et al. 2016 and MILLETARI

2016 were among the first to extend the 2D U-Net to 3D by replacing all 2D convolu-

tion and pooling operation by their 3D counterparts. The V-net by Milletari et al. not

only extends the vanilla U-Net to allow the input of volumetric data but also introduces

residual blocks as well as a different loss function based on the Dice score (DICE 1945).

Although many modifications to the architecture have been proposed in the literature,

their significance remains controversial. ISENSEE et al. 2019 recently showed the superi-

ority of the vanilla U-Net architecture in an international challenge on a variety of differ-

ent anatomies, suggesting that changes in the network architecture do not significantly
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improve the performance. They recommended to rather focus on assemblies and adap-

tive pre-processing as well as a profound selection of hyperparameters.

The amount of training data needed for learning the underlying distribution is one

major drawback of learning-based methods (GREENSPAN et al. 2016). In other research

areas of computer vision, deep neural networks are trained using millions of data sam-

ples. In medical image analysis, however, often only a small data set is available due to

ethics and legal regulations, limited possibilities of data transfer or lack of annotated and

meaningful data (UNBERATH et al. 2018). Researchers have developed different strate-

gies to overcome this limitation. Besides techniques like pre-training on large-scale data

sets, domain adaptation and transfer learning, data augmentation is one of the methods

most often applied when dealing with limited training data. Data augmentation aims at

increasing the number of training images while avoiding the need for annotation and,

as a result, helps the network to generalize to a larger set of image characteristics. It is

usually performed by applying basic image operations on both, the images and the an-

notations. Images can be modified and data set variation extended either by applying a

spatial transformation, such as translation or rotation and pixel-wise enhancement such

as contrast augmentation.

CNN segmentation of the musculoskeletal regions has been employed in a variety of

projects. Some authors like KLEIN et al. 2019 concentrate on the general segmentation

of bone areas. Other groups rather focus on specific bones like the spine. X. LI et al. 2018

proposed a method to segment and localize intervertebral discs in MR images. PRA-

SOON et al. 2013 used a 2.5D CNN for segmentation of knee cartilage. 2.5D denotes the

segmentation of a 3D image by applying a 2D-CNN on slices in all three orthogonal 3D

image planes and aggregating the results. ZENG et al. 2017 employed deep supervision

in a 3D U-Net like architecture to segment femoral bone tissue in MR images.

Besides the need for a huge amount of training data, one other drawback of CNNs

is that the result is a voxel-based classification of the image. Some medical properties

like volume or size can be directly computed and used for medical analysis. However, a

voxel-wise segmentation as such does not hold any low-dimensional feature represen-

tation nor any semantic correspondences necessary for more complex shape analysis or

comparison. Up to this date, learning a statistical shape model representation is the most

prominent approach for shape correspondence estimation. Since the establishment of

corresponding landmarks plays an important role in the remainder of this thesis, the fol-

lowing sections provide a detailed description of the state of the art in statistical shape

modeling.
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3.2.2 Statistical shape modeling

As opposed to pure voxel-based segmentation methods, model-based methods integrate

semantic a-priori knowledge of certain anatomy-specific properties and statistics (HAN-

DELS 2009). Those models can help to gain insights on similarities and dissimilarities

among a population or be used for segmentation, registration and reconstruction of new

unknown images. Statistical models capture the variance and prior knowledge of the

shape and appearance of an anatomical structure given annotated training data. Fol-

lowing notations are used for the remainder of this thesis: If the model is comprising the

statistics of an objects’ shape, for example by describing the surface as a set of anatomi-

cal landmarks and their distribution, instances are named Statistical Shape Model (SSM).

If also image-related properties like the intensity are modeled, instances are referred to

as Statistical Shape and Intensity Model (SSIM).

A broad overview of fundamentals and modifications of shape and appearance mod-

els can be found in the reviews by HEIMANN and MEINZER 2009 for medical image seg-

mentation and SARKALKAN et al. 2014 for bone modeling in particular. In the follow-

ing, the major aspects of statistical shape models and some variations beneficial for the

project are described in detail.

Model representation

Analyzing the underlying training data distribution is the key step towards building a

model representation. The morphological variance is most commonly modeled by a

distribution of landmarks on the structures’ boundary, the so-called Point Distribution

Model (PDM). The PDM is a versatile, simple method which can be used to model ob-

jects of arbitrary topology. Each training sample can be described by a landmark vector

Xtraining =
{

xk |k = 1, . . . , N
}

with N corresponding Euclidean landmarks xk = (xk , yk , zk )T ∈
R3. Those landmarks are either selected based on unique anatomical landmarks or by

voxel-wise segmentation of the medical image and applying a surface extraction algo-

rithm like Marching Cube developed by LORENSEN and CLINE 1987. This iso-surfacing

algorithm results in a polygonal mesh with a varying number of landmarks. Conse-

quently, the latter approach requires an additional correspondence building step, since

a PDM requires an equal number of distinct landmarks across all training shapes.

Besides the PDM, other shape feature representations have been investigated in the

literature. STAIB and DUNCAN 1992 transfer the principle of Fourier transformation to

the surface domain to model shape descriptors. SZEKELY et al. 1996 build a paramet-

ric model for segmentation of spherical objects by mapping the surface on a sphere and

parametrizing spherical harmonics (SPHARMs). A different approach to model shape
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variation is called shape-DNA introduced by REUTER et al. 2006, in which the shape rep-

resentation is transferred to the Laplace-Beltrami space. Alternatively, M-reps (Medial

representation) introduced by PIZER et al. 2003 model the object as a compact mesh or

chain of so-called medial atoms. Medial atoms are defined as a discretized collection of

landmarks on the medial axis of an organ with vectors directing at the outer surface. M-

reps were successfully applied in bone segmentation e.g. by ANAS et al. 2016 to extract

the wrist joint in ultra-sound images. However, applications are limited by high compu-

tation times and therefore not widely used. Another approach found in the literature is

based on level-sets (MALLADI et al. 1995). Level-sets can be used to model the object’s

boundary with implicit functions by embedding it in a higher dimensional surface rep-

resentation. Due to their simplicity and computational efficiency, PDMs are still widely

used in shape analysis and build the basis of many segmentation algorithms in the med-

ical domain. All developments in this thesis are based on the PDM, since the represen-

tation meets the requirements for this project in terms of high computational efficiency

and adaption to bone segmentation and reconstruction. Therefore, the further sections

emphasize on different shape model related aspects all based on PDMs.

Several steps are necessary for the construction of a PDM. The training shapes are

aligned and transferred into a common coordinate system. Afterward, corresponding

landmarks are established. Finally, the dimensionality of the landmark distribution is

reduced to derive a more compact representation of the models’ statistical distribution.

The following paragraphs describe the steps in more detail.

Shape alignment and correspondence optimization

One major drawback of PDMs is the required registration of landmarks to establish a

meaningful distribution. In the medical domain, training images are not necessarily

aligned towards each other, can contain different anatomical sizes and do not share the

same coordinate system. As a consequence, the landmarks in the PDM vector do not

yet correspond to the same anatomical landmarks. A common approach to align the in-

dividual shapes is General Procrustes Analysis (GPA), firstly introduced by GOWER 1975.

Procrustes analysis as such offers a solution in closed form that aligns two shapes by

translation, rotation and uniform scaling to minimize the Euclidean distance of the land-

marks. The GPA is an extension of the Procrustes analysis that allows the alignment of

multiple shapes. One essential pre-requisite of the GPA is that the number of landmarks

does not vary among the shapes. Therefore, correspondences must be established and

may also be optimized and changed during optimization.

The definition of well-defined corresponding landmarks among the training shapes is
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the most challenging, nonetheless crucial, part of the shape model construction accord-

ing to HEIMANN and MEINZER 2009. The statistical variation of the anatomical shape can

only be analyzed if corresponding points represent the same anatomical landmarks on

the surface for all shapes. In simple point-based correspondence building methods like

the Iterative Closest Point (ICP) by PAUL BESL 1992, the Euclidean distance between two

shapes is minimized iteratively. Applying a similarity transform based on the minimum

Euclidean distance may cause inaccuracies in correspondence selection, especially in

case of large shape variation. To overcome that limitation, more flexible, deformable

methods have been introduced like e.g. the Coherent Point Drift (CPD) algorithm intro-

duced by SONG and XUBO 2010. Instead of using the minimum Euclidean distance, an

optimization criterion can be defined with respect to the determinant of the covariance

matrix to find correspondence points among the dense meshes of the training shapes.

R. H. DAVIES et al. 2002 were the first to apply a now widely adapted approach, in which

optimization was performed based on the Minimum description length (MDL). The MDL

is inspired by the Occam’s Razor principle which claims that the simpler the model is, the

better it performs, which in terms of the SSM implies that it can be described by fewer

variational modes. To reduce the computation time and make it more applicable in the

model construction, THODBERG 2003 presented a simplified version of the MDL, which

is based on a gradient descent optimization. After successful correspondence building,

the resulting landmark distribution captures the shape variation.

Model building

Under the assumption that the corresponding landmarks of Xtraining are normally dis-

tributed, the model can be described by the mean X̄

X̄ = 1

M

M∑
m=1

Xtraining,m (5)

built over landmarks of all M training shapes and the corresponding covariance matrix

C:

C = 1

M −1

M∑
m=1

(Xtraining,m − X̄)(Xtraining,m − X̄)T (6)

The mean model describes the extent of a principal mode along the training samples. To

reduce the dimensionality of the data and find the set of modes that best describes the

underlying shape variation, dimensionality reduction is performed. The most promi-

nent approach is using a Principal Component Analysis (PCA) on the resulting landmarks

and performing an eigendecomposition on the covariance matrix to compute eigenvec-

tors and their corresponding eigenvalues. The eigenvectors are sorted by their corre-
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sponding eigenvalues, which resemble the shape variance along each vector. The eigen-

vectors with the highest eigenvalues reflect the largest shape variations and are there-

fore most relevant for statistical shape analysis. Eigenvectors with lower eigenvalues,

on the other hand, reflect small shape variations which may be mostly caused by noise

(HEIMANN and MEINZER 2009). After Singular Value Decomposition (SVD) each training

sample xm can be approximated using

xm ≈ X̄+Pbm with P = {pi |1, . . . , t } (7)

P contains t eigenvectors, b is a t dimensional vector of the eigenvalues and X̄ denotes

the mean landmark vector. By altering eigenvalues b of the SSM, new shape representa-

tions can be created.

Besides the standard PCA, different variations of dimensionality reduction have been

used for shape modeling in recent years. LUTHI et al. 2018 propose a reformulation of

the PCA by applying Gaussian morphable models (GPMM) to model the shape varia-

tion with a Gaussian process. Recently, MA et al. 2017 proposed a more robust method,

the so-called kernel-regularized robust PCA (KRPCA) to model the anatomy of the ankle

in healthy subjects of MRI. They claim that the model is more robust towards out-of-

distribution samples and showed promising results in the presence of pathologies. How-

ever, the method was not evaluated with regard to the presence of metal artifacts or time

consumption.

Appearance Modeling

To allow the SSM to be used in image segmentation and create correspondences be-

tween the model and new unseen images, not only the shape characteristics but also

the appearance of an anatomical structure is modeled. The first and simplest approach

proposed in the literature by COOTES et al. 1995 was the adaption of the model to the

strongest gradient or distinct edge features. Those features, however, might be influ-

enced by noise and artifacts or do not necessarily resemble the true boundaries of the

anatomy. Therefore, more complex and specialized appearance models have been de-

veloped (HEIMANN and MEINZER 2009).

Appearance models can be categorized in profile-based and region-based models.

Profile-based models were originally proposed by COOTES et al. 1995 who modeled a

Gaussian distribution of profiles sampled at landmarks of the training data. During seg-

mentation, the Mahalanobis distance between a current landmark profile in the unseen

image and the learned distribution is compared. It was shown that normalized profiles

or the normalized derivative profiles of the samples served best for comparison as op-
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posed to comparing plain intensity values. The main pre-condition of the training data is

the assumption that the intensity value distribution is Gaussian, which is not necessarily

the case according to BRUIJNE and NIELSEN 2004. To overcome this limitation, they in-

troduced a kNN-classifier sampling both, true boundary landmarks and non-boundary

landmarks, to build profiles that afterward classify the current landmark and provide a

goodness of fit.

Due to its simplicity and efficiency, profile-based methods modeled solely along the

shape boundary are most commonly found in SSM segmentation applications. Region-

based models capture a wider range of intensity values by building a feature vector, in

which all intensity or gradient values are stored. This can be either done on the whole

region of the shape model by transforming the sample images to the mean shape and

then perform a PCA on the textures or by sampling only a region of interest to cope with

general higher computational costs.

HEIMANN and MEINZER 2009 state that clustering of appearance model landmarks

improves the generalizability of the model. BREJL and SONKA 2000 were the first to intro-

duce a c-means clustering for reducing the complexity and combing appearance profiles

with similar properties.

3D model-based segmentation

Besides shape analysis of anatomical structures, a main application of SSMs is model-

based segmentation. Given an initial estimate of the shape parameters b (often the mean

shape b=0) and an initial placement of the SSM described by transformation T, param-

eters of the SSM are iteratively updated to fit the SSM to the image and obtain a model

presentation Xfinal of the anatomy.

argmin
T,b

∣∣∣Xfinal −T(X̄+
t∑

p=1
Pp bp )︸ ︷︷ ︸

X

∣∣∣ (8)

T represents a similarity transformation aligning the mean model to the target structure.

The modifiable range of shape parameters b is usually constrained to create more plau-

sible shape variations by allowing the different modes to deviate by |bp| ≤ 3 σp . The

optimization is performed by iteratively estimating the best local displacement of each

landmark x ∈ X. For this purpose, the local image intensity information at the landmark

positions is analyzed. Intensity profiles are evaluated at different probe positions per-

pendicular to the surface boundary with varying probe spacing to estimate their good-
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ness of fit. The iterative optimization process is twofold: First, all optimal local landmark

displacements are computed and the GPA algorithm is applied on the resulting displace-

ments to determine an update of T. Secondly, the displacements are projected in shape

space to obtain shape deviation db. Thus, b of the SSM is globally altered to resemble the

prior learned representation based on the estimated landmark adjustments. The steps

are repeated until the model converges at the local optimum. Most works found in the

literature employ a multi-resolution strategy with appearance models trained for each

resolution (LINDNER 2017). This approach is said to be more robust towards initializa-

tion and can speed up the adaption process.

Optimal surface integration

One major disadvantage of SSMs is the sensitivity towards unexpected appearance val-

ues as they occur in the presence of image artifacts, especially whenever metal implants

are involved. A step to overcome this limitation was proposed by HEIMANN et al. 2007.

They integrated an optimal surface approach, firstly introduced by K. LI et al. 2006, to

improve the quality of the model adaption, especially in areas affected by noise and ar-

tifacts. The approach complements a global shape prior during the evaluation of local

appearances. This way, the overall landmark displacements lead to smoother surface de-

formation. The optimal surface algorithm solves the shape adaption efficiently by trans-

forming the task into a graph problem. A directed graph G = (N ,D) consists of N nodes

and D connecting edges with a source ns ∈ N and a sink nt ∈ N . The graph is constructed

comprising a node n ∈ N for each landmark profile position of the mesh. Each node is

assigned with the fitting cost of the respective appearance model and a sink and source is

supplemented and connected to each node. Additionally, the nodes of the neighboring

profile positions are connected. By applying the graph cut algorithm in a maximum flow

and minimum cut manner as described by BOYKOV and KOLMOGOROV 2004, the optimal

landmark displacements can be computed while ensuring a certain smoothness of the

overall shape. KAINMUELLER et al. 2008 were among the first to extend the optimal sur-

face approach for the use of multi-object segmentation by introducing inter-mesh inten-

sity profiles. GÖRRES et al. 2016 extended the graph optimization approach of HEIMANN

et al. 2007 to multi-object SSMs by connecting the individual graphs with interconnect-

ing edges.

Model initialization and robustness

Another main drawback of SSM segmentation is the potential convergence into local

minima. Model-based segmentation methods often require at least an approximate prior

37



3D anatomical shape representation Chapter 3. State of the art

knowledge about the position of the anatomical structure. FRIPP et al. 2006 applied an

affine intensity-based pre-registration before the actual correspondence optimization.

ECABERT and THIRAN 2004 employed a generalized Hough transformation to estimate

the coarse transformation between the model and the data set. Recently, NORAJITRA

and MAIER-HEIN 2017 presented an SSM approach with appearance modeling based on

random forests and majority voting that alleviates the need for initialization and covers

large translation offsets and rotations up to 30◦. One often mentioned disadvantage of

shape model approaches is their lack of generalizability towards pathologies and image

artifacts. MA et al. 2017 showed that the kernel-regularized robust PCA can cope with

pathologies but did not compare to classical PCA. In their study, no image artifacts were

present in the data. GÖRRES et al. 2016 developed several methods to improve multi-

object segmentation of the calcaneotalar joint in C-arm images. The work addressed the

presence of metal implants and was designed in particular to cope with the challenges of

image artifacts in C-arm data as well as intra-operative requirements and therefore built

the basis of this work.

3.2.3 Combining shape model segmentation and deep learning

In the last few years, authors have combined the high accuracy that CNN-based ap-

proaches can offer with the capability of SSMs to incorporate semantic relations. A junc-

tion of both approaches can be manifold and integrated on different levels. The SSM can

be used as a shape prior in the network training to create meaningful representations

in a semantic manner. The predictions of a CNN can be used for initialization and de-

tection of the anatomical structure to be utilized as a starting point for the local search

of the SSM. AVENDI et al. 2016 presented a method in which CNN-based methods are

applied to localize and initialize a deformable model for ventricle segmentation in MRI

images. The predictions can be further used, not for mere pre-alignment of the model,

but also during the actual segmentation process. MA et al. 2018 proposed a Bayesian

model combining shape model segmentation with CNN-based predictions for pancreas

segmentation. KOREZ et al. 2016 use a 3D CNN to localize vertebral bodies and use the

networks’ outcome during the segmentation process. Very recently, few researchers, as

e.g. BHALODIA et al. 2018 with DeepSSM, have worked on alleviating the need for lo-

cal model adaption by directly inferring shape parameters from images using a neural

network.
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3.3 Image understanding of radiological summation images

Conventional X-ray or fluoroscopy images differ from images of other medical image

modalities in their nature of being summation images as already described in detail in

section 2.2.1. Independent from the used technology, challenges include overlapping

anatomical structures and external objects superimposing the region of interest. The

literature on analysis of summation images mainly includes segmentation and feature

extraction. The segmentation task of summation images differs to the classical 3D seg-

mentation in the way that one pixel can hold more than one class since two or more

anatomical structures can be superpositioned at a pixel location. Thus, this particular

pixel-wise segmentation partitions the image I ⊂ R2 in a union of non-disjoint subsets

Ik .

I =
K⋃

k=1
Ik (9)

Traditional image processing methods applied on X-rays include simple semi-automatic

thresholding and region-based approaches like region growing (ADAMS and BISCHOF

1994). Class affiliation is determined by analyzing neighboring pixels with respect to

a uniformity or connectivity criteria. Those methods often require a manual seed or

threshold selection and cannot fully adapt to varying intensities in case of superposition

of structures or noise. Edge-based methods extract distinct edges rather than regions

by applying convolution operators on the image. Besides simple operators like Prewitt,

Sobel, Roberts and Laplacian of Gaussian (BOZEK et al. 2009), the most prominent edge

detector is the so-called the Canny edge detector (CANNY 1986). Successfully applied

in many segmentation and registration applications (BAKA et al. 2012; BENAMEUR et al.

2003; ZHENG et al. 2009), the Canny edge detector computes intensity gradients on the

smoothed image and applies non-maximum suppression and hysteresis to extract strong

edges. All of the mentioned traditional contour and region extraction methods can solve

simple segmentation task efficiently but are often not capable to adapt to image noise

or artifacts, especially, when being applied on fluoroscopic images instead of standard

radiographs.

For complex segmentation problems and inhomogeneous medical images, more ad-

vanced methods like deformable-, atlas- or learning-based methods seem to be more

appropriate. The use of SSM is not limited to 3D surfaces but can just as well be em-

ployed to learn the shape characteristics of contours. XIE et al. 2014 applied a 2D-SSM

to segment the proximal femur in AP projection images. In the last decade, the quality

of segmentation or feature extraction tasks on summations images has been improved

by incorporating machine learning approaches. One popular approach is the use of ran-
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dom forests for landmark classification. Random forests consist of several decision trees

which are trained on subsets of features and data. During training time, the algorithm

splits branches according to a split rule separating positive and negative samples. LIND-

NER et al. 2013 apply random forest regression voting in a sliding window approach to

extract potential landmark positions in an AP radiograph. Those landmark candidates

are used to initialize the local search of a 2D-SSM. CHEN and ZHENG 2013 also employed

random forest regression to directly derive potential 2D-SSM landmark positions for the

2D segmentation of the pelvis and femur.

Earlier work on neural networks for segmentation of X-rays by CERNAZANU-GLAVAN

and HOLBAN 2013 already used back-propagation and feed-forward neural networks

with rather mixed, cluttered results on ribcage segmentation. Recently, CNN-based 2D

segmentation of summation images has been introduced e.g. by BOHM et al. 2018. An

U-Net was implemented to extract cell boundaries in microscopic images. CNN-based

2D bone segmentation of radiological images, in particular, has been presented in the

literature. Among others, NOVIKOV et al. 2018 compare different network architectures

and achieved best results by using an U-Net inspired CNN for segmentation of clavicles

in chest radiographs. KORDON et al. 2019 showed a comparison of different augmen-

tation methods for the segmentation of the knee joint in lateral X-rays and fluoroscopic

images. AL ARIF et al. 2018 showed that an U-Net inspired CNN with a specific shape loss

function outperforms traditional SSM based approaches when being applied on verte-

bral bodies present in lateral X-rays.

In conclusion, learning-based methods have shown their superiority in fluoroscopic

image segmentation tasks. However, all of the mentioned learning-based methods re-

strict the learned representation to one particular viewport and do not generalize to ar-

bitrary views.

3.4 2D-3D Reconstruction

Three-dimensional reconstruction from medical images has been proven to be very use-

ful for pre-operative planning and computer-aided orthopedic surgeries. However, con-

ventional techniques for image reconstruction of a 3D model from a modality like CT

have the drawback that they entail additional costs and time consumption during imag-

ing (REYNEKE et al. 2018). Furthermore, such imaging devices often cause high radia-

tion or pre-operative or intra-operative data is simply not available. Especially during

musculoskeletal surgery, only 2D images are acquired routinely for navigation, guidance

and verification. Therefore, researchers have started to investigate how to obtain a 3D

model from a limited number of 2D images. This approach, known as 2D-3D recon-
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struction, also often referred to as deformable, model-to-modality or atlas-to-modality

registration, has become a quite large but still highly challenging research field due to its

ill-posed nature (MARKELJ et al. 2012).

The problem can be formulated as follows: Let A be 3D data defined over the domain

ΩA ⊂ R3 and B j 2D intra-operative data defined over ΩB ⊂ R2 with j = 1, . . . , N images.

Then, 2D-3D registration can be formulated as the mapping f (θ) :ΩA 7→ΩB that aligns

data points x ∈ΩA to y ∈ΩB such that a certain comparison criterion ε is minimized.

θopt = argmin
θ

ε(A,B) (10)

In classical rigid 2D-3D registration, the 3D data A is patient-specific and corresponds

to the object present in B . The mapping f can be a rigid transformation parametrized

by T comprising three translational parameters tx , ty , tz and three rotational parameters

α, β and γ. During registration, the parameter vector T for the rigid transformation, nec-

essary to align the 3D image to the 2D images, is established by transforming the data

set A until it is best aligned with B j . As opposed to that, 2D-3D reconstruction lacks a

corresponding 3D reference image of the same patient, but instead uses a 3D model or

morphable atlas/template image of the anatomy. In consequence, not only the spatial

relationship defined by parameters T but also shape deformation parameters b are op-

timized to fit A(x3D ) to B j (y2D ). The combined set of parameters is denoted by θ := [T,b].

Different reconstruction methods found in the literature can be characterized by their 3D

data representation, their reconstruction strategy, the type of optimizer and the nature

of the input. An overview of the different aspects is given in the following.

3.4.1 3D Model type

The 3D reference can be a deformable model encoding prior learned knowledge and

assumptions about the anatomical variation, either based on a representative atlas, a

statistical representation or parametric relations (examples are shown in Fig. 12).

• A template or atlas image can be e.g. a mean intensity representation of an anatom-

ical structure or a 3D image of one sample patient. These images can be deformed

during optimization to the effect that the corresponding simulated projection im-

ages fit to the reference projections. YU and ZHENG 2018 used a template image of

the distal femur and tibia as well as three thigh muscles. The template is warped

by computing a local deformation field and applying a thin-plate b-spline trans-

formation.
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Figure 12: Different model types

• SSM is a pure shape-based statistical model as described in section 3.2.2 encoding

transformation and shape parameters of the bone anatomy. The model is either

deformed by modifying the shape b and transformation parameters T or by free-

form deformation.

• SSIM is an extended version of the SSM complementing the shape with intensity-

related information. For a comprehensive overview of SSIM based bone recon-

struction, in particular, the reader is referred to the review of REYNEKE et al. 2018.

EHLKE et al. 2013 created a tetrahedral SSM by supplementing the boundary sur-

face model with landmarks within the anatomical object. By incorporating the en-

tire volume density distribution, they aim to create more realistic simulated 2D im-

ages. BONARETTI et al. 2014 applied an alternative approach by warping all training

data to a reference image and directly perform the PCA on the voxel grid to create

an image-based SSIM.

• Parametric models are based on mathematical relationships approximating the

anatomy by primitive geometrical parameters. E.g. DONG and ZHENG 2008 de-

fined the femoral head as a circle and the corresponding shaft as a cylinder shaft

in a Bayesian inference network to define the initial position of the femur.

3.4.2 Reconstruction strategy and definition of cost function

2D-3D reconstruction can be approached with two different strategies: Intensity-based

and feature-based reconstruction, which differ in the definition of the cost function ε.

Intensity-based approaches apply a forward projection on the 3D model or template

to create simulated reference 2D images. The real and simulated 2D images are com-

pared to each other to maximize a similarity-based cost function εsi m . Feature-based

methods most commonly establish correspondences between 3D model landmarks and

computed features of the 2D images and minimize a distance-based cost function εdist.
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Figure 13: Non-convex objective function: The capture range defines an inter-
val, in which the objective function is considered to show a convex behavior.

In all optimization problems, a cost function ε with a collection of variables θ is for-

mulated and the optimization aims at minimizing the function value by altering θ. Cost

functions with a convex nature have the advantage that the local optimum also resem-

bles the global optimum. Thus, even local optimizers are guaranteed to converge into

the global optimum. However, especially intensity-based cost functions tend to be highly

non-convex and most likely possess local minima and a small capture range (REYNEKE et

al. 2018; SOTIRAS et al. 2013). The capture range describes the range, in which the func-

tion has a quasi-convex shape and can be formulated by constraining the value range of

θ (shown in Fig. 13). The choice of cost function depends on the type of reconstruction

and a distinction is made between feature-based and intensity-based reconstruction.

Feature-based reconstruction

Feature-based reconstruction finds correspondence pairs between the landmarks of the

3D model x ∈ΩA and features y ∈ΩB j computed on the 2D projection images. Those 2D

features can be distinct anatomical landmarks, contours, edges, points or the result of

a neighborhood operator. Fig. 14a depicts an example of feature-based reconstruction,

in which the segmentation is used for feature creation and the deformable model is a

3D-SSM learned from training data. Feature-based reconstruction seeks to iteratively

minimize the distance between the features in the respective spatial space. The required

correspondence building can be either performed by transforming the 3D model and

projecting it onto 2D space using a perspective projection matrix P and calculating the

distances between the geometrical features (MARKELJ et al. 2012).

x2D = P (T(y3D )) (11)
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Figure 14: Reconstruction strategies: a) Feature-based reconstruction with a
3D deformable model and features computed from the fluoroscopic image. b)
Intensity-based reconstruction with the generation of simulated DDRs.

An alternative approach is the back-projection and triangulation of 2D features in 3D

space and calculating the 3D distance to the 3D model landmarks (ZHENG and SCHU-

MANN 2009; BAKA et al. 2012).

x3D = T(P−1(y2D )) (12)

Correspondence building always depends on the quality of the extracted features

(MARKELJ et al. 2012) and is the most important part of the reconstruction. Most com-

monly, the cost function εdist is the Euclidean distance between model landmarks and

the assigned corresponding points or lines in the least square manner. Instead of the Eu-

clidean distance, BENAMEUR et al. 2003 employed the Mahalanobis distance that allows

accounting for the correlation between variables.

Intensity-based reconstruction

As opposed to feature-based approaches, intensity-based reconstruction methods di-

rectly employ the pure pixel information of the 2D projection images and the correspon-

dence building step can be omitted. In general, those approaches have higher accuracy,

since they are not biased by feature extraction inaccuracies and exploit all information of

the projection images (REYNEKE et al. 2018). On the contrary, without any pre-processing

or feature extraction, the reconstruction is more sensitive to noise and external struc-

tures that are not present in both compared images. A widely used approach includes

the generation of simulated 2D fluoroscopic images, called Digital Reconstructed Ra-

diograph (DRR), from the 3D model or atlas and the comparison of the simulated with

the real fluoroscopic images (cf. Fig. 14b). Correspondences, as they are established in
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feature-based reconstruction, are assumed to be given implicitly at every pixel location

in which the respective images overlap. This approach seeks to minimize the difference

between the simulated and the real image based on pixel-wise similarity measures. Re-

search has mainly focused on how to improve the computationally expensive step of the

DRR generation in terms of efficiency by e.g. integrating GPU computing (EHLKE et al.

2013) and quality by selecting adequate similarity measures. Different measures, specif-

ically for intensity comparison, are employed in 2D-3D reconstruction like e.g. mutual

information (SADOWSKY et al. 2006; YU et al. 2016), gradient correlation and difference

(PENNEY et al. 1998; OTAKE et al. 2015), normalized cross-correlation (KLIMA et al. 2016)

and gradient direction (DE SILVA et al. 2016). A brief description of the different metrics

can be found in the comparative study of PENNEY et al. 1998. They concluded that the

performance of metrics incorporating spatial information, like gradient difference, were

superior to metrics purely based on intensity values.

3.4.3 Optimization strategies

Optimization aims at minimizing or maximizing a cost function by selecting the best

set of parameters θopt . An optimizer can be defined as a certain strategy to select the

parameters for the next iteration to lead to the optimum of the cost function. Optimizers

used in 2D-3D bone reconstruction can be characterized in two categories: derivative-

based and derivative-free optimizers.

Gradient descent is a first-order iterative algorithm that takes steps proportional to

the negative gradient of the current function value (BENAMEUR et al. 2003). According to

KLIMA et al. 2016, the classical gradient descent is outperformed by the Levenberg-Mar-

quardt, which extends the former by a Gauss-Newton behavior in areas close to the opti-

mum. Other derivative-based optimizers found in the literature are the non-linear con-

jugate gradients and an extension of the original gradient descent called stochastic gra-

dient descent used by YU et al. 2016.

The derivative-free Down-Hill Simplex optimizer, used by SADOWSKY et al. 2007,BOUS-

SAID et al. 2011 and FLEUTE and LAVALLÉE 1999, iteratively refines sampled function val-

ues without differentiation. Another derivative-free algorithm is the Powell optimizer,

successfully applied by KADOURY et al. 2009, based on a bi-directional search and iter-

ative refinement of a search vector by a linear combination of former search vectors.

More recently, HANSEN 2006 introduced the Covariance Matrix Adaptive Evolutionary

Strategy (CMAES), a stochastic derivative-free optimizer, which is based on the biologi-

cal principle of evolution. In each iteration, new candidate solutions are sampled based

on the parent solution and selected as new parents based on their fitness. The algorithm

45



2D-3D Reconstruction Chapter 3. State of the art

is said to be highly suitable for non-convex optimization problems with a medium large

dimensionality and was applied for 2D-3D reconstruction by CERVERI et al. 2017 and

GONG 2011. FLEUTE and LAVALLÉE 1999 presented an alternative approach similar to the

widely known ICP (PAUL BESL 1992) adapted to 2D-3D registration. The iterative proce-

dure alternates between correspondence building and transformation estimation. In the

corresponding step, point correspondence updates are determined, while in the trans-

formation step the transformation parameters of the model are updated by performing

a closed-form least-square registration of the corresponding point pairs obtained in the

first step.

3.4.4 Setup and image data

Besides the chosen algorithm and model type, the input data highly affects the perfor-

mance of the application. The size, number and the anatomical object of interest can be

different for each task. Besides, settings like the number of images or the initial align-

ment of the model may influence accuracy, computation time and convergence. For the

development of a 2D-3D reconstruction application, different design choices should be

considered, which are illuminated in the following.

Number of 2D projection images: Most of the work found in the literature works with

two or more calibrated 2D images taken from quasi-orthogonal directions. TOMAŽEVI

2008 investigated the impact on the number of X-ray views and concluded that the accu-

racy gain flattens with more than two images. LANGTON et al. 2009 were among the first

to show a successful femur reconstruction from a single conventional X-ray. However,

according to REYNEKE et al. 2018, 2D-3D reconstruction of both shape and intensity in-

formation from a single image remains an unsolved problem.

Degree of interaction: In all reconstruction applications, the 3D model has to be placed

within the coordinate system of the X-ray images. Especially in intensity-based recon-

struction, the impact on the convergence is highly dependent on an adequate initial-

ization. Different strategies range from manual landmark selection to fully automatic

approaches. For intra-operative applications, effort is made to make the method as au-

tomatized as possible to reduce human-computer interaction, potentially accompanied

by a harmful effect on the surgical workflow. Earlier methods for initialization rely on the

manual annotation of geometrical parameters on the anatomy (CHAIBI et al. 2012), by

placing distinct stereo-corresponding landmarks (AUBERT et al. 2016) or by manual con-

touring the outer boundary (ZHENG and SCHUMANN 2009). For a fully automated feature

46



Chapter 3. State of the art 2D-3D Reconstruction

extraction and initialization, YU et al. 2016 used random forest regression and achieved

accurate results but only tested their approach on simulated X-ray images. ZHENG et al.

2007 proposed a representation of the proximal femur based on geometrical primitives

and employed a particle filter for fully automatic initialization. KARADE and RAVI 2015

initialize the template by performing a 2D ICP algorithm on the extracted contour and

the projected template.

Anatomy: The musculoskeletal system of an adult human comprises of 206 bones ac-

cording to HOMBACH-KLONISCH et al. 2019. However, 2D-3D reconstruction applica-

tions have been proposed for a limited number of bones only. A large number of ortho-

pedic applications for various bones have been developed and evaluated under simu-

lated or clinical conditions. But some applications were not investigated further because

they failed in terms of accuracy or robustness or transpired to be too complex to be used

within intra-operative setups (ZHENG and NOLTE 2018). Most of the methods are suc-

cessfully applied to the proximal or distal femur (BAKA et al. 2012; SADOWSKY et al. 2007;

KLIMA et al. 2016; STEININGER et al. 2008; EHLKE et al. 2013; ZHENG and YU 2017) or the

pelvis (JIANHUA YAO and TAYLOR 2003; SADOWSKY et al. 2007). Other work focus on the

spine and ribcage (BENAMEUR et al. 2003; BOISVERT et al. 2008; AUBERT et al. 2016) and

the humerus (MUTSVANGWA et al. 2017). The most related anatomy to the ankle joint,

the wrist was investigated by GONG 2011. Multi-bone reconstruction has been applied

mostly on adjacent bones with small overlap. EHLKE et al. 2013 investigated the perfor-

mance of articulated SSIMs, in which the femur is connected to the pelvis by a rotational

and translational constraint inspired by their biomechanical relation. ZHENG and YU

2017 applied their reconstruction method simultaneously on pelvis and femur. The only

work on parallel adjacent bone compounds was conducted by GONG 2011. REYNEKE et

al. 2018 claimed that the success of a reconstruction algorithm on one specific bone does

not guarantee the translation to other bones.

View port dependency: JIANHUA YAO and TAYLOR 2003 concluded that the best registra-

tion accuracy is obtained with an orthogonal angle between two perspectives and least

correlated with a view angle between 75 and 105. However, they neither investigated the

performance on different anatomical structures nor on cases of partial occlusion. Fur-

thermore, they showed that a calibration error of more than 5◦ can significantly increase

the reconstruction error. REYNEKE et al. 2018 mentioned that the correlation between

accuracy and orthogonality is not given in case of symmetric shapes like the pelvis with

a large superposition and concluded that the best imaging direction remains anatomy
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specific.

Computation time: A comparison of run times for bone reconstruction is difficult since

existing methods are neither implemented within the same software framework, exe-

cuted with the same hardware nor performed on the same data. In general, intensity-

based optimization is more computational expensive (MARKELJ et al. 2012) due to the

time-consuming DRR calculation step, which has to be repeated numberless times. GPU-

based DRR calculation helps to significantly speed up the optimization process as pro-

posed by EHLKE et al. 2013. Most of the authors do not mention any specific time mea-

surements for the reconstruction. Computation times found in the literature range from

less than 1 minute to 5 minutes (YU et al. 2016; KARADE and RAVI 2015; ZHENG and

SCHUMANN 2009). CERVERI et al. 2017 reported a computation time of 45 minutes for

the 2D-3D reconstruction of the distal femur when using the C-MAES and elastic 2D-2D

registration for correspondence building.

In conclusion, many different approaches for the 2D-3D reconstruction of bones have

been introduced in the literature and applied to various bone compounds. The main dif-

ference is made between feature-based and intensity-based reconstruction. The intensity-

based reconstruction is assumed to be more accurate but also more time-consuming.

There is no approach that provides an optimal solution for all problems, hence, the se-

lection of an appropriate algorithm remains task-specific.

3.5 Discussion

Assistance systems in orthopedic surgery are all targeted at improving the clinical work-

flow by providing the surgeon with useful additional information on the anatomy. Intra-

operative assistance systems have more strict requirements since their application is

dependent on the OR environment including the often very limited time frame of the

surgery, the changing appearance of the anatomy and the limited OR space. To date, no

assistance systems for ankle surgery are available. Although many other applications can

be found in literature, there are only a few that managed their way into clinical routine.

This might be also explained by the high accuracy demands of the clinical application

and the complexity of the developed systems. Assistance systems often comprise a con-

junction of several complex components. The sections in this chapter reviewed the state

of the art with respect to the different components essential for the development of the

proposed application. Transferring the findings in the literature to the specific applica-

tion of contralateral side comparison, different conclusions could be drawn.
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3D anatomical shape representation: Different methods for shape analysis and seg-

mentation have been introduced in the literature. The main criteria for selecting an ap-

propriate approach to meet intra-operative restrictions are robustness towards arbitrary

initialization and metal-induced artifacts, compatibility with time requirements and a

sufficient accuracy. The PDM model has been successfully applied in many SSM based

segmentation tasks since construction and application is computationally efficient and

allows for correspondence comparison and shape analysis. Other shape representations

like m-reps were not further investigated since the time consumption does not meet the

time requirements of intra-operative applications. GÖRRES et al. 2016 presented an ap-

proach that yielded a high accuracy for the segmentation task of the calcaneus in C-arm

images, which is closely related to the task addressed in this thesis. They investigated the

impact of metal-induced artifacts and arbitrary SSM placement. It has to be noted that

their work did not address the effect of varying metal implant positions on the SSM per-

formance. In all images, the metal plate was roughly placed at the same position relative

to the calcaneus.

CNN-based methods have set the state of the art in image segmentation outperform-

ing SSM-based approaches. However, CNNs jointly learn the appearance and shape of

the anatomy that not necessarily leads to anatomical plausible shapes. Consequently,

the segmentation can contain holes or mislabeled isolated regions. Furthermore, a pure

voxel-based segmentation lacks unique corresponding landmarks to derive shape de-

scriptors. The SSM is learned by decoupling shape and appearance. This leads to anatom-

ical plausible shapes with corresponding points that can be used for the subsequent 2D-

3D reconstruction. On the contrary, the SSM is more sensitive towards changes in ap-

pearance and requires an initialization. Therefore, a combination of the shape prior of

an SSM with the highly accurate CNN-based segmentation might be beneficial to over-

come limitations of both approaches.

Image understanding of radiological summation images: CNN-based methods, espe-

cially the U-Net architecture, are well suited for both, 2D and 3D segmentation tasks.

One of the main requirements of those learning-based methods is the availability of an

acceptable number of training data to cover a large variation of the input. Especially

fluoroscopic images show a high degree of freedom but suffer from a sparse sampling

limited by the C-arm rotation angle.

2D-3D bone reconstruction: Different possible 3D model types can be found in the liter-
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ature, namely SSM, SSIM, templates and parametric models. All approaches developed

for 2D-3D bone reconstruction establish the 3D model based on CT volumes. Accord-

ing to MARKELJ et al. 2012 other modalities like MRI are not suitable for DRR generation

from the SSIM or template due to the lack of normalization. The same problems arise,

if the training data is built based on C-arm images acquired with an image intensifier

as described in section 2.2.2. The use of C-arm data for SSIM generation has not yet

been investigated in the literature. Also, parametric models, e.g. applied on the femur

by DONG and ZHENG 2008 can not be transferred to the ankle joint since there are no

unique landmarks or mathematical relations to describe the bones.

Fluoroscopic images, especially when acquired with an image intensifier, entail im-

age noise, device-specific geometrical distortion, intensity inhomogeneities and exter-

nal objects. Obstacles like the operating room table, additional screws or tubes present

in the field of view may impede the performance of the reconstruction.

Possible reasons for the lack of any bone reconstruction methods applied on the ankle

joint could originate in the bones completely superpositioned on all 2D images. Recent

approaches for multi-bone reconstruction were applied on adjacent bones with little to

no contact area with respect to the bone size. If the bone overlap is high, intensity-based

methods might not be applicable since the appearance on the DRRs are dependent on

both models which may not necessarily correlate in their variation. Similar to the ap-

plication concerning the femur bone, varying shaft length and out-of-field areas have to

be taken into account. Another challenge is the rotation-symmetric nature of the distal

fibula. Even minor deviations during feature calculation can cause the model to rotate

along its shaft axis. Other anatomies provide more distinct anatomical landmarks and

may be less likely to fall into local minima.

Similar to the highly varying computation time, there is a controversy on the valida-

tion of bone reconstruction algorithms. Hardly any work is reported on real fluoroscopic

data although most of the researchers propose that their approach could also be used

during surgery, in which calibrated conventional X-ray images are often not available.

This might be explained by the lack of reference data to evaluate the algorithm quan-

titatively. A comparison of different proposed algorithms is tedious because the used

settings and data sets differ and usually test data sets are of limited size that does not

guarantee generalizability to other anatomies or image modalities (REYNEKE et al. 2018).

Summarizing, although many different approaches have been developed, there is no ap-

proach, which can serve all applications and must be adapted to the specific anatomy,

the nature of the input data and intra-operative restrictions. The proposed work aims to
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create an intra-operative assistance system to be used in ankle joint surgery by carefully

considering all aforementioned challenges. Those challenges include the strict time re-

quirements that do not allow to use computational expensive methods, the limitations

given by the image intensifier C-arm device such as inhomogeneities and metal artifacts,

and the complexity of the ankle joint.
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CHAPTER 4

METHODS

4.1 Approach

In this work, a prototype for a contralateral side comparison for the ankle joint was devel-

oped. This chapter gives an overview of the medical workflow implied by the proposed

prototype (section 4.1.1) and presents design choices based on the state of the art (sec-

tion 4.1.2). The chapter is concluded by a description of potential sources of error and

their relations within the system (section 4.1.3).

4.1.1 Clinical workflow

As already described in section 2.1.4, ORIF is one of the state of the art approaches in

upper ankle surgery. The fractured fibula is relocated and reduced using e.g. a one-third

tubular plate and screws during open surgery. Hereinafter, an overview of a commonly

used clinical workflow is provided (see Fig. 15, colored in blue):

1. Diagnosis: A pre-operative X-ray image is acquired and an indication for the surgery

is given depending on the height of the fracture (cf. section 2.1.3).

2. ORIF procedure: The ankle is exposed and the dislocated fragments are relocated

and stabilized with metal implants using standard AO techniques.

3. Screw placement: A syndesmotic screw is inserted to connect fibula and tibia for

the syndesmotic compound to heal properly.

4. 3D image acquisition: An intra-operative scan of the injured ankle is acquired us-

ing a mobile 3D C-arm device.
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Figure 15: Medical workflow: Different steps of the procedure with (green) and
without (blue) the proposed automatic contralateral side comparison

5. Evaluation: The 3D image is examined at relevant regions to decide whether the

fibular reduction result is sufficient.

In the event of malreduction, the fibula position is modified, and steps 4 and 5 are re-

peated until the surgeon is satisfied with the result. This may lead to repeated intra-

operative revision scans and high cumulative radiation dose. To date, manual contralat-

eral side comparison is only performed in rare cases, in which there is an indication given

that the anatomy of the ankle appears to be suspicious or the reduction process is com-

plicated impeding an appropriate evaluation. Even if the surgeon is certain about the

reduction result, there is still a chance of overlooking natural anatomical pose variation.

The main research question of this project was to answer whether and how it is possible

to perform an automatized contralateral side comparison. As the main prerequisite, the

volumetric data of both ankle joints need to be available for a successful profound 3D

comparison. But up to date, C-arm scanners in clinical routine are mostly limited by

their detector size and only capable of fitting one ankle joint in the FOV.

Summarized in Tab. 2, there are three approaches for evaluating the reduction result:

No comparison, 3D-3D comparison and 2D-3D comparison. In this thesis, 2D-3D com-

parison was elaborated after considering the advantages and disadvantages of each ap-

proach. Compared to the standard procedure without any comparison, a full scan of the

contralateral side and a direct 3D-3D comparison can show intra-individual differences
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Evaluation
Method

Acquisition
Injured ankle

Acquisition
Uninjured ankle

Remarks

No
comparison

3D C-arm scan None

+ Less images
- Decision based on surgical skills
- No inter-individual variability
- Revision-related scans with
additional radiation

3D-3D
comparison

3D C-arm scan 3D C-arm scan

+ Inter-individual variability
+ Less revision-related scans
- More radiation exposure
- Increased OR time

2D-3D
comparison

3D C-arm scan
2D C-arm
projections

+ Inter-individual variability
+ Less revision-related scans
- Lack of 3D information

Table 2: Overview on different approaches for evaluation of the reduction result

and may avoid further revision-related scans. On the contrary, a full scan of the con-

tralateral side not only causes additional radiation but also requires a time-consuming

resetting of the scanner and an increase of OR duration due to additional C-arm acquisi-

tion. Instead of acquiring a full 3D scan, one possible solution is to acquire low-dose 2D

projection images and compute a 3D model to perform a 2D-3D comparison. The pro-

posed workflow requires additional 2D fluoroscopic projections from the contralateral

side of the patient, which can either be acquired before starting the fibular reduction or

after acquiring the 3D image of the reduced fibula. Providing the surgeon with an overlay

of the reconstructed surface on top of the fractured volume allows an instant compari-

son between both ankles (as illustrated in Fig. 15, colored in green). The main problem

to consider was that reconstructing 3D information from 2D is always an ill-posed prob-

lem so that the algorithm needs to perform the reconstruction as precise as possible to

meet the accuracy requirements.

4.1.2 System design choices

The main objective of this project was to design and implement a clinically compatible

concept for automatized contralateral side comparison, which can be integrated into the

current workflow for syndesmotic interventions.

Most relevant in translating the prototype to the operating room was the considera-

tion of intra-operative requirements. All developed methods should only add reasonable

time to the intervention time to avoid costs and risks for the patient. Furthermore, the

cumulative radiation exposure to the patient and staff should not significantly exceed

the currently used.
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With the intra-operative C-arm as designated imaging modality, a 2D-3D reconstruc-

tion method was developed that avoids a full 3D scan of the uninjured ankle and aims

at reducing the number of revision scans. Regarding time requirements, all proposed

methods needed to be designed to be computationally efficient.

Figure 16: Technical overview: Different components of the proposed auto-
matic contralateral side comparison

2D-3D reconstruction is not an end-to-end method but a complex pipeline involving

a number of pre-processing and intermediate steps. Design choices of the different com-

ponents were made based on the findings of the state of the art in 2D-3D reconstruction

in section 3.5. Fig. 16 shows the technical workflow that comprises of five major steps:

Segmentation in 3D using a statistical shape model (SSM), 2D segmentation of the fluo-

roscopic projections, coarse alignment of both data sets leading to a fine 2D-3D recon-

struction and finalized by a model-to-model back-registration. The embedding of the

components in the clinical workflow is labeled in Fig. 15 (corresponding alphanumeric

symbols). Hereinafter, design choices for the single components are described in detail:

(A) 3D shape model segmentation of the injured ankle:

The injured ankle is scanned after performing ORIF using an intra-operative C-arm. The

acquired 3D images have the following common properties:

• All bone fragments are re-positioned to resemble the ankle before the fracture. In

most cases, thin fracture lines indicate the fracture but no extremely dislocated

fragments are present.

• Metal implants are visible on the 3D image and the osseous tissue is superimposed

by metal-related artifacts. Especially, the fibula shaft is affected since it is fixated

with the plate covering a large section of the bone.
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• The visible area of the tibia and fibula shaft varies for each scan depending on the

position of the ankle relative to the scanner’s iso-center and ankle size.

• The intensity value range of the reconstructed volume varies with each image and

3D images are not normalized with HU.

To analyze the shape and pose of the injured ankle after fibular reduction, the bones

need to be extracted from the 3D image first. A simple segmentation allows to extract the

bones, but to compare both ankles, corresponding landmarks are desired. With those

landmarks, shape variation can be modeled by a more compact representation. For the

proposed prototype, a 3D-SSM segmentation approach is employed. The 3D-SSM must

be implemented and trained so that it can handle varying shaft lengths and is robust

towards metal-induced artifacts. Furthermore, the 3D-SSM segmentation must be exe-

cuted in a reasonable time frame to meet intra-operative requirements and create accu-

rate surfaces of the bones. One important advantage of a model representation of the

injured ankle is that the obtained shape parameters closely resemble shape parameters

of the final uninjured model. Thus, the reference model of the uninjured model for the

2D-3D reconstruction can be initialized with those parameters accordingly.

(B) 2D-CNN segmentation and feature extraction of the uninjured ankle:

For the proposed prototype, additional 2D projection images of the contralateral ankle

are acquired. C-arm projection images of the uninjured ankle have the following com-

mon properties:

• Projection images only show the uninjured ankle. Metal implants, bone fragments

or fractures are not present in the image under the assumption that the uninjured

ankle is not affected by previous injuries or pathologies.

• In some viewports, the ankle can be superimposed by external objects like the OR

table or the second foot.

• The ankle is acquired from different rotational angles in a range of 190◦ around the

scanner’s iso-center which is not necessarily the center of the ankle.

• The different projection images are calibrated towards each other by their respec-

tive calibration matrices.

• Each projection image is taken with a different kV resulting in different contrasts

and different value ranges. Projection images suffer from noise and inhomogeneities

towards the projection border and are not normalized.
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In all projection images, multiple bones are overlapping and impeding the reconstruc-

tion quality. The first step is to extract only valuable and bone-specific information dis-

tinguishing between the relevant bones. Since the ankle is shown from different view-

ports, a method is required that is generalizable and not limited to specific anatom-

ical landmarks. Therefore, the prototype uses a CNN-based segmentation approach,

because it is fast and can create an accurate segmentation of each single bone. When

trained on a reasonable amount of data, the method should be neither dependent on

the viewport nor the number of bones.

(C) Initialization of model with projection images

2D-3D reconstruction is an ill-posed optimization problem, especially, if the SSM is placed

far from the global optimum. Therefore, after pre-processing of the 3D image and the

projections, one component of the pipeline must be an initialization step, in which the

model is coarsely pre-aligned with all the projection images. The projection images are

acquired from different viewports that intersect at the iso-center of the C-arm. The pro-

posed method needs to be fully automatic, reasonably fast and independent from the

viewport (e.g. not dependent on viewport-specific features). The method should pro-

vide a coarse but sufficient initialization for the preceding fine reconstruction step. Since

2D segmentations are computed in the preceding step, the method can use the prior in-

formation as features and encode landmarks in the mean model representation of the

3D-SSM. This way no extensive computation is required.

(D) 2D-3D Reconstruction

In this step, the shape and transformation parameters of the 3D-SSMs must be altered

to reconstruct the uninjured ankle. As already discussed in section 3.5, intensity-based

reconstruction is difficult to apply to image-intensifier-based 3D images. Thus, the pro-

posed method is based on extracted features. This has the advantage that a multi-bone

reconstruction can be performed that is not biased by the bone overlap. The method is

variable in terms of the number of viewports and bones and can be improved steadily by

using more training data. The number of images is set to the number of standard pro-

jections taken in the clinical routine. Preliminary experiments showed that two images

might not allow revealing enough spatial information to fit the model to the contours.

Since no anatomical landmarks are available, the reconstruction must rely on automatic

assignment of correspondence points. The choice of a suitable optimizer is influenced

by the number of the parameters, the nature of the objective function and the efficiency

of the calculation. The number of parameters is reasonably low if the number of shape
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parameters is restricted. The objective function is not convex and might contain many

local minima depending on the start position. Instead of a global optimizer that would

not take into account local shape deviation of the bones, a multi-resolution ICP-inspired

approach with an adaptive update strategy is used to solve the problem.

(E) 3D-3D Registration and Visualization

The last step comprises an adequate visualization of the reconstruction result. The re-

constructed 3D-SSMs of the uninjured ankle must be aligned with the injured ankle and

displayed as an overlay. The aim of the overall pipeline is the identification of the fibula

deviation. Thus, the alignment must be performed while remaining the spatial relation

between the bones. Furthermore, the surgeon must be provided with utility methods to

ease the reduction evaluation process. This includes an automatic standard plane ad-

justment to the standard planes described in section 2.1.4. In addition, the workflow can

be improved by providing methods to switch between the two levels relevant for the eval-

uation.

The following section presents an overview of possible sources of error and influencing

factors of all components used in the proposed workflow.

4.1.3 Sources of error

The proposed system is comprised of several individual components and all of them in-

troduce an uncertainty contributing to the overall error. To allow for a systematic evalu-

ation, this section presents a hierarchical representation of the different sources of error.

As shown in Fig. 17, their influencing factors are either based on the input data, the im-

plemented algorithm, the quality of the learning-based method or on the output(s) of

preceding steps.

At the bottom of the hierarchy, components are situated that only depend on the im-

plementation of the component itself and the input images. At the top, components are

affected by all preceding steps. The 3D-SSM segmentation creates the 3D model of the

injured ankle and is influenced by the output of the CNN that in turn highly depends on

the training data. The acquisition of the 3D image of the injured ankle is influenced by

user interaction and image quality. The operator chooses the anatomy of interest, the

laterality and the C-arm configuration. Errors in the settings are severe and lead to a

failure of the software. Furthermore, the operator has to position the ankle in the iso-

center with the shaft lines of tibia and fibula orthogonal to the C-arm. Any misalignment

can influence the result of the system. Concerning the anatomy and image quality, the
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Figure 17: Hierarchical representation of different sources of error and their in-
fluencing factors. The arrows indicate the dependency between different com-
ponents.

main influencing factors are misaligned and isolated bone fragments as well as artifacts

from metal implants impeding the 3D segmentation result. The SSM error reflects the

discrepancy between the actual shape of the injured ankle and the 3D model. The out-

put of the 2D-CNN segmentation step depends on the input data and the quality of the

trained CNN network. The image acquisition of the contralateral ankle is affected by the

patient positioning towards the C-arm scanner and influences the performance of the

2D segmentation result. The surgeon acquires all projection images from certain view-

ports that may also affect the result. The projection images are related to each other by

perspective projection matrices provided by device calibration. Thus, not only the selec-

tion of the viewports but also calibration inaccuracies influence the result as shown by

JIANHUA YAO and TAYLOR 2003.

The 2D-3D initialization is influenced by the 2D segmentation and the 3D-SSM accuracy
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and in turn, its outcome affects the 2D-3D reconstruction, which is dependent on all of

the three components. Consequently, uncertainties of all components are propagated.

Finally, the last component, namely the 3D-3D registration between the injured and the

reconstructed uninjured model, depends on the shape deviation of the tibia models.

Registration errors during rigid registration are induced by a deviation between the in-

jured and uninjured tibia models. This discrepancy can be caused either during 3D-SSM

segmentation and reconstruction or, on the other hand, originate from a natural intra-

individual variance between the left and right ankle.

The experiments presented in chapter 5 were specifically designed to assess the com-

bined overall error as well as different sources of error independently.
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4.2 3D bone segmentation

Segmentation of multiple bones with metal artifacts in C-arm images has already been

tackled in previous research projects. However, problems arise when transferring the

methods to the anatomy of the ankle joint given the limitations of intra-operative imag-

ing (examples are depicted in Fig. 18). One challenge of the segmentation task is the

varying bone shaft length. As described in section 4.1.2, fibula and tibia are tubular

bones that are not fully visible in the 3D image due to their length. The visible shaft pro-

portion highly varies and depends on the ankle position relative to the C-arm iso-center

during acquisition. Furthermore, metal implants cause image artifacts, often in large ar-

eas along the fibula shaft. Since different fracture types lead to a variety of treatments in

which the placement of metal implants can highly differ, statistical appearance modeling

is challenging. The following sections describe different methods for bone segmentation

used in this project as well as extensions to previous methods to cope with arising chal-

lenges. The statistical shape model has been complemented with a deep learning-based

approach that is presented in section 4.2.2.

Figure 18: 3D C-arm images of the ankle joint after fibular reduction: Examples
show different fracture treatments of the ankle and 3D images with different
contrasts and metal implants. The second row shows the corresponding seg-
mentations of tibia (red), fibula (yellow) and talus (cyan).

4.2.1 Statistical shape and appearance model

Statistical shape models (SSM) incorporate prior learned knowledge and provide a com-

pact representation of the anatomy of interest. An anatomy can be described in terms of

its shape characteristics and in terms of its appearance. Shape information can be de-

rived from the training data represented by polygonal meshes of the structure’s bound-

ary. In addition, the pure image intensity of the training data can be analyzed to derive
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the appearance of the anatomy represented by image characteristics. In this project,

intensity-based modeling is used in combination with shape modeling, such that image

intensities are evaluated at each position of the polygonal mesh. The mesh is updated

based on a new expectation of point locations. All point expectations are then evaluated

as a whole to determine a new plausible shape for the mesh. This is solved by maximiz-

ing the fit of the SSM to the expected point locations. The following sections provide the

reader with an overview of how to get from annotated data of the ankle joint towards a

statistical shape and appearance model resembling the anatomical variation by solving

task-specific challenges.

SSM creation

The underlying model representation forms the basis of the 3D-SSM. The PDM has been

proven to be very successful in many segmentation applications due to its simplicity and

efficient computation (HEIMANN and MEINZER 2009). A PDM consists of a distribution

of landmarks and represents the mean shape geometry as well as descriptive modes of

the shape variation. For model creation, each annotated patient data is described as a

collection of k Euclidean landmarks for each bone.

Xbone,patient =
{

xi | i ∈ 1, . . . ,k
}

with xi = [xi , yi , zi ] (13)

The first step towards the PDM is the conversion from a voxel-based representation to a

valid surface mesh with respective landmarks.

Mesh creation

Manual segmentation of patient data results in a binary voxel grid for each bone. Seg-

mentation inaccuracies might provoke holes or isolated voxels in the binary image, which

are not related to the actual shape. In a first step, small holes are removed by apply-

ing basic image processing operations like binary closing or hole filling (SOILLE 2004).

To eliminate isolated voxels, only the largest connected component is considered for

mesh generation by analyzing the neighborhood of each voxel. The Marching Cube algo-

rithm is applied to all remaining voxels to create a polygonal mesh from the iso-surface

(LORENSEN and CLINE 1987). For each voxel, the algorithm builds a polygon based on

the configuration of adjacent voxel positions. Manual segmentations may appear chis-

eled due to the limited spatial resolution of the image. Edges at image boundaries may

impede the creation of natural shapes. Hence, the mesh generation step is finalized by a

Gaussian smoothing after surface generation. In addition, a surface reduction can help
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to accelerate the consecutive steps of the SSM generation by reducing the number of

mesh vertices. The resulting triangle mesh is a closed, non-manifold surface.

PDM creation

All polygonal meshes are created independently and not based on distinct anatomical

landmarks. The PDM, however, is based on the assumption that all landmarks corre-

spond to each other. Hence, a crucial step of the PDM creation is an accurate correspon-

dence building. Successful in many segmentation applications, the widely used GPA

(GOWER 1975) is employed for the efficient alignment of the training shapes. GPA com-

putes the pairwise alignment of shapes iteratively to optimize a mean shape that mini-

mizes the distances to all other samples. To ease the convergence of the GPA, the scale

of the mean shape is normalized and all other shapes are scaled to the tangent space of

the mean shape for convergence. One pre-requisite of the GPA is that an equal num-

ber of corresponding landmarks are provided that are distributed well over each train-

ing surface. This can be ensured by a simultaneous correspondence optimization step.

The optimization of landmark correspondences is conducted following the approach of

HEIMANN et al. 2005, who used the MDL as optimization criteria. In their work, they

chose Gradient descent as optimization method since it allows the derivation of the ob-

jective function and can be computed time efficiently and automatically. Prior to op-

timization, a spherical parametrization is employed by mapping the meshes to a unity

space for initial correspondence placement to ease the distribution of surface landmarks.

This parametrization presumes closed, non-manifold surfaces that need to be guaran-

teed during foregone pre-processing steps.

Given a successful optimization, the PDM comprises an equal number of correspond-

ing landmarks. As described in the state of the art (section 3.2) in detail, the final SSM

is a concise representation of the PDM with reduced dimensionality. For that particu-

lar purpose, a PCA is applied to the landmark distribution X. The resulting SSM can be

described by

Xbone = X̄bone +Pb (14)

where X̄bone denotes the mean landmark vector. Instead of using all eigenvectors and

eigenvalues retrieved by the PCA, it is sufficient to rely on the largest eigenvalues to cover

the majority of the shape variation. Consequently, P = (p1, . . . , pt ) contains the respective

t eigenvectors associated with the largest t eigenvalues b.

For the particular case of ankle segmentation, one major challenge is the cut contact

zone of the fibula and tibia shaft with the image border. Tibia and fibula exceed the FOV

of the scanner. As a consequence, a manual segmentation can only be performed up to
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the area where the bones blur with the border of the image. At segmentation borders,

surfaces suffer from sharp edges with high curvature. To make the model independent

from highly varying shaft lengths, all tibia and fibula segmentations are cut along the

shaft to a common length before 3D-SSM creation. It has to be noted, however, that this

does not alleviate the problem completely since the respective shafts are cut absolute

and scale-based differences are not taken into consideration. Another anatomy-specific

characteristic is the quasi-rotation symmetric shape of the fibula. Since 3D-SSM gen-

eration and correspondence building is optimized for sphere-shaped objects with rather

distinct morphology, the 3D-SSM generation of the fibula is prone to misalignment along

the rotational axis. Therefore, one pre-processing step is the pre-registration of the seg-

mentation volumes. This ensures the correspondence optimization process to converge

into the local optimum.

After PCA, the variation of the bone morphology is incorporated in b and can be used

for statistical analysis by investigating the impact of b among the population as well as

for segmentation by finding a set of b that fits the 3D-SSM to an unseen target image.

Appearance model generation

One possibility to train an appearance model follows the approach proposed by HEIMANN

2009b. During training phase, intensity profiles along the surface normal of each land-

mark x ∈ Xtraining are sampled and an appearance model with mean and principal modes

is created for each landmark. By altering the profile sample number and the spacing be-

tween two consecutive samples, the capture range can be increased. This allows training

the model on different resolutions by creating models for different spacings. The defi-

nition of the appearance model can be manifold e.g. based on the sampling of image

intensities or gradient values. In the thesis of HEIMANN 2009b, an extensive comparison

of different sampling methods was conducted for a variety of applications and best re-

sults were achieved by using non-linear profiles. For this project, the gradient magnitude

of the directional derivative is sampled which yielded good results in other related appli-

cations on C-arm images (GÖRRES et al. 2016). Furthermore, the approach of BRUIJNE

and NIELSEN 2004 is employed in order to train a k-NN classifier from positive samples

on the actual boundary and negative samples on distant profile locations. Learning the

appearance for single landmarks leads to a rather sparse distribution since training data

is usually limited. In medical images, neighboring landmarks are likely to show a profile

similarity, thus, a landmark clustering can be performed on the resulting profiles. Several

landmarks with similar appearances are combined to train a more compact shared ap-

pearance model with more samples that may improve generalization (HEIMANN 2009a).
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Shape Analysis

Since a 3D-SSM describes the statistical distribution of a shape, it can be used for com-

parison and variation analysis. The PCA creates a compact representation, in which the

shape is defined only by the shape parameters b modifying the mean model X̄. Two

shapes are considered to be equal if they can be transformed into each other only by

applying rotation, translation and scaling operations without modifying b. For a pure

shape analysis, different b of all N shapes in a population can be compared directly.

δbp =
N∑

i=1

N∑
j=1, j 6=i

|bp, j −bp,i |
N

(15)

One disadvantage of this approach is that the parameters are altered globally which im-

plies that the comparison is not capable of a spatial local encoding of the global devi-

ation. The alternative approach is based on the assumption that dependencies related

to translation, rotation and scaling are invariant for the used 3D-SSM representation.

Hence, the spatial landmark distribution can be employed directly to evaluate the local

deviation at each landmark xn of all N shapes.

δxn =
N∑

i=1

N∑
j=1, j 6=i

|xn, j −xn,i |
N

(16)

This evaluation allows to identify regions of high anatomical variance within each model

and to compare intra- and inter-individual differences.

3D-SSM segmentation

As the main purpose besides shape analysis, the generated 3D-SSM can also be used for

image segmentation on unseen patients. A new shape not contained in the training data

can be approximated by:

Xnew ≈ X̄+Pbnew (17)

During image segmentation, the 3D-SSM is fitted to the target anatomy by estimating

shape parameters b as well as a similarity transformation T aligning the shape with the

target anatomy. The task can be formulated as an optimization problem

argmin
T,b

|Xnew −T(X̄+
t∑

p=1
Pp bp )| (18)

The first step is to place the initial shape instance e.g. the mean shape of the created 3D-

SSM at an initial position in the image desirably close to the target. At starting position
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Ti=0, the intensity is evaluated at each landmark position x ∈ X. A profile perpendicular

to the surface is sampled from x with profile spacing s. The aforementioned optimization

problem is solved by minimizing the fitting costs for each profile and compute optimal

landmark displacements. The fitting costs are based on the output of the trained appear-

ance model for each landmark.

After determining local landmark displacements, a graph-cut algorithm is used to es-

timate final displacements following the approach of HEIMANN et al. 2007. The graph

comprises nodes that resemble all profile positions as well as a sink and a source. Fitting

costs are translated to edges and the graph is optimized in a maximum flow and mini-

mum cut manner. It outputs an optimal solution of landmark updates based on global

shape priors. A transformation update of Ti+1 can be computed by applying a GPA on

the updated landmark positions. Alternating with the transformation update, estimated

landmark adjustments are then projected onto shape space. A shape update bi+1 is com-

puted by altering eigenvalues bi of the 3D-SSM globally. This process is performed iter-

atively until an optimal solution is found.

Different approaches exist to increase the robustness of the 3D-SSM segmentation

such as multi-resolution and multi-object optimization. The segmentation process is

implemented as a multi-stage process, in which the profile spacing and the resolution

of the image is decreased in each stage starting with a coarse resolution to roughly fit

the model. To further increase robustness and to prevent the 3D-SSM from drifting to-

wards false contours, a multi-object GPA is applied as suggested by GÖRRES et al. 2016.

Instead of updating T for each bone, a transformation Tcomposite is defined, which simul-

taneously updates the transformation of all 3D-SSMs and preserves the relative position

among the models. The single GPA is usually performed on the displacement vector of

each model, while for the multi-object GPA all displacement vectors are concatenated

first and Procrustes analysis is performed on the entire displacement vector. In a finer

resolution stage, the 3D-SSMs are optimized separately with a finer-grained profile spac-

ing.

Transferring the approach to the specific application of ankle surgery, some remarks

have to be taken into consideration. During surgery and before image acquisition, the

fibula is surgically restored in most cases. It can be assumed that the C-arm image does

not contain any large bone fragments. The occurrence of smaller isolated bone frag-

ments does not influence the 3D-SSM segmentation significantly. However, the sheer

amount and the varying position of metal implants induced in surgery can lead to strong

differences between expected image appearance and actual appearance, thus challeng-

ing the 3D-SSM segmentation. To overcome limitations caused by the classical appear-
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ance modeling, the 3D-SSM is complemented with convolutional neural networks which

are introduced in the following sections.

4.2.2 3D-CNN-based segmentation

Recent developments in medical image processing showed that convolutional neural

networks (CNN) can be successfully employed for the task of image segmentation and

outperform previous methods (LITJENS et al. 2017). This section gives an overview of the

specific task of 3D multiple bone segmentation in C-arm images.

Network architecture

Figure 19: 3D U-Net architecture: Symmetric CNN for multi-class bone seg-
mentation.

The original 2D U-Net architecture by RONNEBERGER et al. 2015 has already been intro-

duced in section 3.2.1. It consists of a symmetric down- and upsampling path. Fig. 19

shows the architecture for the task of 3D segmentation which is similar to the 2D U-Net

w.r.t the general structure. In the following, the different components of both paths are

described in detail.

Downsampling path: As depicted in Fig. 19, each level of the downsampling path con-

sists of two convolution layers with a kernel size of 3x3 and a stride of 1. A stride can be

defined as the number of pixels, by which the convolutional filter is shifted over the in-

put. Zero padding is applied to the convoluted image. Adding zeros around the border of
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the input image ensures that the convolutional filter is performed on all pixels so that the

resolution of in- and outputs remain the same (GERON 2017). In the original architecture,

the aggregation of convolutional layers is supplemented by a batch normalization layer

that normalizes the input across the entire batch and spatial locations. Here, a batch

describes the number of input images that can be processed at a time. In the proposed

architecture, this particular layer is replaced by an instance normalization layer, which

normalizes each image independently and only across the spatial locations. Each level of

the downsampling path is completed by an activation function, which introduces non-

linearity to the network and decides whether an output feature is activated. Different

non-linear activation functions can be employed in those so-called hidden layers of the

network. In the proposed architecture, the Rectified Linear Unit (ReLU) of the original

U-Net is replaced by Exponential Linear Unit (ELU) that in comparison to the former

can produce negative outputs by adding a constant α and have a smoother transition

whereas ReLUs sharply smooth with input values y < 0. As stated by CLEVERT et al. 2015,

ELUs accelerate network training while maintaining a more robust and stable represen-

tation due to their clear saturation plateau.

fReLU(y) =
 y for y > 0

0 for y ≤ 0
, fELU(y) =

 y for y > 0

α · (e y −1) for y ≤ 0
(19)

The different levels of the downsampling paths are connected with a maximum pooling

operation, which downsamples the input to half of the size for each dimension with a

stride of 2.

Upsampling path: The bottommost layer with two more 3x3 convolution layers medi-

ates between the downsampling and the so-called upsampling path. This path consists

of an identical number of levels to build a fully symmetric composition. It consists of

three convolutional layers, in particular, two strided convolutions with kernel size 3x3

and one transposed convolution with kernel size 2x2 to upsample and double the spa-

tial dimension of the current feature map. Most importantly, the input of each layer is

concatenated by the corresponding feature maps of the downsampling path through

so-called skip-connections (see gray connections in Fig. 19) and further propagated

through the subsequent convolutions. This ensures that the network retrieves the spatial

information that is lost during maximum pooling layers otherwise. On the highest level,

the transposed convolution layer is replaced by a convolution with kernel size 1x1. This

final layer outputs a prediction map with the size of the input image times the number

of the target classes.
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The architecture is modified to allow a third dimension in the input path. This way,

the whole volume can be proceeded at a time and volumes of arbitrary sizes can be in-

serted so that the processing is only limited by the GPU memory. There are several ways

to deal with limited GPU memory capacity, which is a common issue in the field of 3D

segmentation. The volume can be downsampled, cropped to the region of interest or

proceeded through overlapping patches and aggregated afterward.

In summary, the proposed architecture is designed so that it can forward an unseen

3D image through the network and output a segmentation mask for each class once it is

trained accordingly.

Optimization

The resulting network architecture has got an enormous number of weight parameters

which influence the network output. An essential part of training the CNN is the ad-

justment and optimization of those parameters. The image segmentation task can be

formulated as an optimization problem that requires the definition of an objective func-

tion. Similar to the original U-Net paper, the widely applied cross-entropy loss is used as

an objective function to measure the discrepancy between the output y and the ground

truth reference ŷ . In each iteration, the network is predicting a probability distribution

over all classes C for each input. To interpret the outcome y as probabilities, a softmax

classifier is used for normalization prior to loss calculation.

σsoftmax(yc ) = exp(yc )
C∑

c’=1
exp(yc ′)

(20)

It has to be noted that the softmax is not applied independently for each class but ac-

counts for all classes. The cross-entropy loss can be defined as

Loss( f ) =−
C∑

c=1
ŷc log(yc ) (21)

In multi-class segmentation, the ground truth labels are usually one-hot-encoded im-

plying that only one class element cp of the ground truth ŷ is not zero. Disregarding all

other elements, softmax activation and cross-entropy can be combined and the loss can

be reformulated for the given task to

Loss( f ) =− 1

BXYZ

BXYZ∑
b,i,j,k

log(σsoftmax(yc=cp ,bi j k )) (22)

The loss function returns a scalar loss value by averaging over all dimensions includ-
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ing the batch b = {1, . . . ,B} and all three spatial dimensions i ⊂ΩX , j ⊂ΩY and k ⊂ΩZ .

During optimization, the network parameters are altered with the aim of minimizing

the loss function value. In each iteration, the input data is forward-propagated through

the network. The output of each consecutive layer is computed and until the final out-

put layer is reached to compute the loss. The algorithm also computes to which extent

each neuron in the previous layer has contributed to that error. The computation is

performed in a reversed manner until the input layer is reached. This so-called back-

propagation step measures the error gradient across all network weights and allows to

update the weights in a gradient descent manner (GERON 2017). For weight optimiza-

tion, the Adaptive Moment Estimation Algorithm (ADAM) optimizer (KINGMA and BA

2015) is widely used in image segmentation tasks due to its minimal memory consump-

tion and computational efficiency. ADAM is a combination of the gradient descent with

momentum and the Root mean square (RMS) that optimizes the moments of the given

objective function. The algorithm calculates an exponential weighted moving average

and then squares the computed weight gradients. It has got two decay parameters that

control the decay rates of these calculated moving averages and can be modified for the

network training.

Network training

The training process is not only influenced by architecture design choices, like the layer

composition or the optimizer with the respective learning rate, but also by so-called hy-

perparameters set prior to the learning process. During training, the network is shown

different input data to optimize network weights. Per iteration, the network is fed with

a batch of images simultaneously. The training is conducted for a certain number of

epochs. An epoch denotes the number of training iterations to optimize the network.

The exact definition of an epoch varies among different projects. The epoch should be

designed so that each training image is shown to the network once in each epoch. If the

training data collection is augmented, often a pre-defined number of images are inserted

randomly instead to statistically cover the entire data. For training purpose, the available

data sets are usually split into training, validation and test sets. Training sets are used to

modify the networks’ floating weights. The validation set is used to estimate the qual-

ity of the learned network weights and to adjust the hyperparameters. The test set is a

separate set, which must not be used during any of the training steps but solely for the

final evaluation. After each epoch, the performance of the network with the current set

of weight parameters is tested on the validation set to compute an additional loss. For

detecting occurrences like overfitting this validation loss can be observed and compared
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to the training loss. Overfitting describes the behavior that occurs whenever the valida-

tion loss starts to increase while the training data loss continues to decrease. It happens

when the network is too complex in relation to the variation of the training data and not

capable of generalization (GERON 2017).

The choice of hyperparameters is important but the key factor for the success of a neu-

ronal network remains the reasonable choice of input data. Since the amount of an-

notated C-arm images is sparse, it is essential to enlarge the training data set by data

augmentation before training the network.

Input data augmentation

Figure 20: Data augmentation strategies on 3D C-arm images: (a) Original im-
age, (b) reflection, (c) translation, (d) rotation, (e) scaling, (f) deformation and
(g) contrast enhancement.

To derive and learn a meaningful representation of the underlying image intensity distri-

bution, a reasonable amount of annotated training data is required, which remains one

of the major challenges in the medical domain (UNBERATH et al. 2018). For the given

task, only a limited number of training data is available and must be enlarged by apply-

ing data augmentation. As already mentioned in section 3.2.1, the methods used for data

augmentation remain application-specific and based on the nature of the input. In the

case of C-arm volumes of the ankle joint, useful augmentation methods mainly aim at an

invariance of the training data towards spatial transformation and changes in intensity.

The following data augmentation operations are applied:
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Figure 21: Cropping and image translation for data augmentation: The image
is cropped randomly (colored rectangles) by sparing a border margin (transpar-
ent rectangle). Only two axes are displayed for better illustration although the
augmentation is performed on all three axes.

Reflection: The input data contains left and right ankles. To attain invariance towards

laterality, all input volumes are reflected along all spatial axes x, y and z.

Cropping and translation: Each image is cropped to ensure that the segmentation of

the bones does not reach the outer boundaries of the volume. In the ideal case, the ankle

would be placed in the iso-center of the C-arm, but real clinical data shows deviations

from the ideal placement. Therefore, a random crop with a margin of 15 voxels from the

center is allowed which omits the need of any other translational transformation (cf. Fig.

21).

Rotation: The starting angle of C-arm 3D acquisition is not restricted. This flexibility

introduces rotational variance, which can be further increased by the tilting angle of

the foot relative to the scanner. To be invariant against different rotation angles, a ro-

tation transformation is applied to the image The rotation can be described by α, β and

γ around each image axis x, y and z in the interval of [−180◦,180◦].

Scaling: The input consists of ankles of different sizes and proportions depending e.g.

on age and sex of the patient. Therefore, an isotropic scaling is applied to the data by

applying a scaling factor s ∈ [0.9,1.1] to obtain independence from varying sizes.

Deformation: A slight deformation was also applied but reduced to a minimum since

the bones are rigid objects and only have minor local deformations due to the anatomi-
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cal shape variance.

Normalization and contrast variation: As pre-normalization, a min-max normalization

is applied to each 3D image.

ynormalized = y · max(y)−min(y)

max(y)
(23)

The normalization linearly transforms the input values to the range of 0 to 1 based on the

minimum and maximum intensity value. In literature, often z-scoring can be found as an

alternative normalization method, which transforms the input values to a zero mean and

unit variance distribution. However, this approach is not feasible whenever the intensity

values of the input do not follow a Gaussian distribution. The contrast of each image

varies depending on the intersected material density. To account for varying contrasts

and brightness, contrast augmentation was applied to the image by modifying each in-

put value of y according to y′ = (y−µ) ·c +µ with factor c ∈ [0.8,1.2], where µ denotes the

mean of the entire 3D image.

4.2.3 Combined approach: Deep learning-driven 3D-SSM segmentation

Although SSMs have been proven to be very useful, pure 3D-SSM-based segmentation

has two disadvantages, namely its sensitivity towards variation from the learned inten-

sity appearance as well as its dependence on a well-chosen starting position. CNN-based

segmentation, on the other hand, can be more accurate even in the presence of metal

implants but do not force a closed surface boundary. Hence, mislabeled voxels can lead

to holes or non-realistic boundaries. Furthermore, a segmentation alone cannot replace

the model representation since landmark correspondences are required for the succes-

sive 2D-3D reconstruction step.

In this project, the advantages of both approaches are combined and used in a re-

ciprocal manner. The semantic knowledge, derived from CNN predictions, is first used

for initialization of the 3D-SSM. Then, the 3D-SSM uses the predictions as underlying

appearance. This way the 3D-SSM accuracy can be improved by providing a sufficient

starting position and distinct binary edges. The following sections give a detailed de-

scription of modifications regarding 3D-SSM initialization and segmentation.

Model initialization

In general, conventional SSMs are sensitive towards initialization and depend on a suf-

ficiently good starting point to find the global optima during the local search. The ini-
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tialization of the 3D-SSM can be improved by incorporating the predictions from the

U-Net based bone segmentation. For each predicted binary volume, the largest con-

nected component is extracted and the center of mass is calculated. Simultaneously, the

center of mass of all single 3D-SSMs is calculated. All resulting centers are used as land-

marks for a landmark-based registration. The resulting transform Tinitial resembles the

best mapping between the two landmarks sets in a least-square sense. To further refine

the initial starting position, a surface is created from all voxels belonging to the tibia. A

fine transformation is established by applying an ICP (PAUL BESL 1992) on the predicted

tibia surface and the tibia 3D-SSM. The resulting transformation matrix is used to trans-

form all 3D-SSMs. This way the 3D-SSM is positioned close to the target position and

independent towards patient positioning.

SSM segmentation using CNN predictions

Similar to the original 3D-SSM workflow, a global graph-cut based optimization is used

to determine the final local landmark displacements. Instead of using the pure intensity

values, the proposed method uses the CNN predictions for the model fitting. At first, an

unsigned distance transform fdist(x) is applied to the predicted segmentations S.

fdist(x) = d(x,δΩS) if x ∈ΩS (24)

d(x,δΩS) := min
y∈δΩS

d(x, y) (25)

whereΩS denotes the boundary of the segmentation S. This way, a 3D image is created,

in which each voxel is mapped to its Euclidean distance towards the closest boundary

with zero resembling the border itself. A local landmark shift can be calculated for each

landmark position by identifying the minimum value of the distance image along a land-

mark profile. This shift can be directly used as fitting costs for the optimization. The

proposed method creates intact shape representations and reliable landmark correspon-

dences combined with high segmentation quality as produced by the CNN method.

The segmentation algorithm as a whole

The modifications described in the previous chapters can be included in the training and

segmentation process. Fig. 22 illustrates the whole training and segmentation pipeline.

3D images and corresponding annotated manual segmentations are used to train not

only an SSM for each bone but also an U-Net. In the online segmentation phase, the U-

Net creates segmentation masks for each bone. With those, the SSM can be pre-aligned
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to a position close to the optimal position. A distance transform on the segmentation

masks serves as input for the final SSM adaption.

Figure 22: The segmentation algorithm as a whole: 3D-SSM segmentation in-
corporating CNN prediction during initialization and optimization. The figure
was adapted from THOMAS et al. 2019.
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4.3 Fluoroscopic image understanding

In this project, a semantic analysis of the fluoroscopic projection images is an essential

part of the proposed workflow. Unique features, derived from the images, serve as an-

chor points for the subsequent steps. The following chapter provides technical details on

image segmentation and contour extraction (section 4.3.1). The resulting segmentations

can be utilized to compute anatomical landmarks that are necessary for an automatic

and reliable coarse 2D-3D registration. Section 4.3.2 provides details on the landmark

extraction in 2D C-arm images of the ankle joint acquired from varying viewports.

4.3.1 2D image segmentation

In the specific task of bone segmentation applied to 2D C-arm images, major challenges

include noise and inhomogeneities as well as artifacts from superpositioned tissue and

external objects (cf. Fig. 23).

Figure 23: Fluoroscopic projection images of the ankle joint: Different exam-
ples show varying viewports on the ankle that are affected by different contrasts,
noise or external objects. The second row shows the corresponding segmenta-
tions of tibia (red), fibula (yellow) and talus (cyan).

The aforementioned can often not be handled by classical image processing algorithms,

which only provides features that are not distinguishable with regards to single bones.

In the case of the ankle joint, each fluoroscopic projection image shows three or more

bones with highly overlapping regions. Those particular multiple bone areas and the re-

spective overlap proportion varies with the pose of the single bones and can be different

for each patient. Superimposing areas usually contain diffuse image boundaries that fur-

ther impede feature extraction. This results in ambiguous and miss-classified features

with undesired background noise (THOMAS et al. 2017a). Furthermore, the viewport is
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not limited with respect to the C-arm pose towards the ankle during the orbital rotation.

This circumstance causes a highly varying appearance of shape and intensity.

To prevent the 3D-SSM from adapting its boundaries to false contours, unique fea-

tures need to be extracted for each of the bones. A CNN-based segmentation method

is applied to label the three partly overlapping bones tibia, fibula and talus. The seg-

mentation masks can be used in turn to compute edge features for the next algorithmic

steps. This comes with the advantage that the approach can be performed on each bone

separately without any noise or false features resulting from overlap or external objects.

Network architecture

Segmentation of superpositioned bones can only be performed under the assumption

that each pixel may potentially belong to more than one class as described in section

3.3. A modified version of the original U-Net developed by RONNEBERGER et al. 2015 is

employed to address this multi-label, multi-class problem. Details of the network ar-

chitecture can be taken from section 4.2.2. The main difference to the aforementioned

architecture is the dimensionality of the input. While the proposed 3D U-Net is designed

to segment the 3D images, the U-Net for fluoroscopic image segmentation is provided

with a 2D input like proposed in the original architecture. Similar to the proposed mod-

ifications made to the 3D U-Net, instance-wise normalization and ELU activation layers

are employed as opposed to the original implementation.

Figure 24: 2D U-Net architecture
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Optimizer and loss function

The weight optimization of the 2D segmentation task is conducted in the same fashion

as the 3D segmentation task. Network parameters are optimized by comparing the net-

works’ output to the 2D ground truth segmentation for each bone separately. The output

feature maps with one layer per class contain probabilities for each class and each pixel.

The final layer comprises of a sigmoid layer as opposed to a softmax layer in the original

architecture to account for overlapping labels.

σsig(y) = exp(y)

exp(y)+1
(26)

The sigmoid function produces a "S-like" shape and maps the logits of the output layer

to [0,1]. The softmax function returns a probability per class and the target class should

have the highest value since all probabilities cumulate to 1. As opposed to the softmax

output, resulting probabilities of the sigmoid function do not necessarily cumulate to 1.

Hence, the target class is not determined by identifying the maximum probability but by

applying a threshold of σsigmoid(y) ≥ 0.5. The pixel-wise difference between the binary

ground truth segmentation and the resulting logits used as loss metric.

To allow an assignment to multiple classes, a binary cross-entropy loss is applied as

opposed to the original U-Net implementation. The computed loss between prediction

y and ground truth ŷ should not be influenced by the output of other classes. The name

of the loss originates in its reformulation of the classical cross-entropy loss as a binary

classification problem for each class with C = 2. If the number of classes C is greater

than 2, the sum over all classes is built and can be applied in multi-class and multi-label

segmentation tasks.

Loss( f ) = 1

BXY

BXY∑
b,i,j

C∑
c=1

−ŷc,bij · log(σsig(yc,bij))− (1− ŷc,bij) · log(1−σsig(yc,bij)) (27)

Again, the loss is averaged over all dimensions including the batch b = {1, . . . ,B} and both

spatial dimensions i ⊂ΩX and j ⊂ΩY .

In literature, e.g. elaborated in the original U-Net paper (RONNEBERGER et al. 2015),

overlapping regions were handled differently by the loss function. A weighting scheme

can be added to penalize under-represented labels like overlapping segmentations or

border regions. This way, under-represented labels can be given more impact by in-

creasing the weight and penalizing the error in those regions. However, in the case of

images of the ankle joint, all classes are represented almost equally (examples are given

in Fig. 25). The potential bone overlap varies with each image and can not be handled as
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Figure 25: 2D segmentation of fluoroscopic images of the upper ankle joint:
Overlapping regions vary among the different viewports.

an under-represented label. Thus, a weighting scheme to emphasize overlapping struc-

tures is rather unfeasible and not further elaborated.

The ADAM optimizer is selected for weight optimization since it shows good perfor-

mance for the proposed 3D segmentation and has been applied successfully in many

recent CNN optimization tasks. For details on optimization and network training, the

reader is referred to section 4.2.2. After weight optimization trough back-propagation of

the loss, the network can be used to perform a segmentation on a fluoroscopic projection

image and create a segmentation mask for each of the bones.

Data augmentation on 2D fluoroscopic projections

Figure 26: Data augmentation methods on fluoroscopic images: (a) Original
image, (b) reflection, (c) translation, (d) rotation, (e) scaling, (f) deformation
and (g) contrast enhancement.

Since one limitation of all machine learning-based approaches is the need for enough
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training data, data augmentation is essential for the diverse fluoroscopic images espe-

cially considering the degree of freedom and the variability of the presentation. Different

strategies have been already elaborated in section 4.2.2 for enlargement of the 3D train-

ing data set and are modified for the 2D case. Analogously to 3D data augmentation,

operations like reflection, rotation and scaling operations are applied to all image axes

i ∈ [0,1]. The size of the input image is reduced by a random crop with a deviation of 50

pixels from the image center in both dimensions. Slight deformation, contrast enhance-

ment and min-max normalization are applied similarly to the 3D case. Fig. 26 shows

examples for all different augmentation strategies.

4.3.2 Landmark extraction

A sufficiently well-chosen starting position is essential for the success of a 2D-3D recon-

struction. The preceding segmentation already distinguishes between different bones

and reveals their relative spatial location. To benefit from this prior semantic knowledge,

landmarks are extracted from the segmentation masks directly instead of the intensity

image.

In a first step, the tilting angle of the ankle joint is extracted taking advantage of the

assumption that bone shafts can be approximated by straight line segments in 2D. Since

the shaft lines highly vary with the viewport, the amount of data in this project is rather

insufficient for applying machine learning approaches for shaft line detection. Instead,

classical image processing methods are applied to the segmentation images S. First, a

Sobel operator extracts binary edges on Sfibula and Stibia. A Hough transformation, intro-

duced by DUDA and HART 1972, is applied to each edge image to extract all straight lines.

Each pixel p = [x1, x2] can be represented by a curve in a space spanned by angle α and

radius r following the parametric equation:

x2 =−cosα

sinα
· x1 − r

sinα
(28)

Every line in the edge image corresponds to a point cluster in theα-r space given thatα is

restricted to [0,π]. Thus, point clusters allow extracting even disconnected line segments

with the same slope. Long line segments have a high probability of belonging to a bone

shaft. By computing the mean angle of all long line segments, the tilting angle of the

ankle can be estimated.

In the next step, all tibia and fibula points are projected 1) along and 2) orthogonal

to the estimated tilting angle. With this, the width and the length of the ankle can be

estimated (cf. Fig. 27). One landmark, denoted as p2D
intersect resembles the lowermost

point of the tibia. It is defined as the first intersection point of the tibia with the talus
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Figure 27: Landmarks of fluoroscopic images: Shaft line vectors for tibia (red)
and fibula (yellow) and intersection point of tibia and talus (cyan).

segmentation. To derive the shaft line vectors of tibia and fibula, a 2D PCA is applied to

the pixel grid of each S. Since tibia and fibula are tubular bones, the first eigenvector of

the PCA is most likely orientated along the shaft line and can be directly used as a shaft

vector. Thus, the landmarks can be defined by a center point p2D
intersect and a shaft line

vector for fibula denoted as v2D
fibula and tibia denoted as v2D

tibia (as illustrated in Fig. 27).
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4.4 2D-3D multiple bone reconstruction

2D-3D multiple bone reconstruction forms the basis of the proposed pipeline and aims

at the creation of a 3D anatomical surface model by fitting a 3D-SSM as precisely as

possible to a set of 2D images. In the proposed work the 3D-SSM of the injured ankle

Xinjured,bone serves as a reference and is mapped to 2D segmentations extracted from flu-

oroscopic images of the uninjured ankle. This way, an anatomical surface model of the

uninjured ankle can be created without the need of acquiring an additional 3D image.

The previous chapters provide the reader with the required pre-processing steps like the

creation of the 3D-SSM and the semantic segmentation of fluoroscopic images. For a

successful feature-based 2D-3D reconstruction, two core requirements need to be con-

sidered, namely, a well-chosen initial placement of the 3D-SSM and an accurate, robust

optimization of the 3D-SSM parameters θ := [T,b]. In the initialization step, described in

section 4.4.1, the 3D-SSM is aligned to the coordinate system spanned by the virtual in-

tersection of the projection images in 3D space to obtain an initial starting position. After

initialization, 3D-SSM optimization is performed iteratively by altering the transforma-

tion parameters Tuninjured ∈ θ and the shape parameters buninjured ∈ θ to fit the model to

the contours of the projection images, which is elaborated in section 4.4.2. Xinjured,bone

denotes the 3D-SSM of the injured ankle and Xuninjured,bone denotes the 3D-SSM of the

uninjured ankle. In the following chapter, the subscript ’bone’ is left out for simplicity

unless the method is explicitly applied to a specific bone instead of all bones.

4.4.1 Coarse model initialization

A well chosen set of initial starting values θ0 is essential for the success of a non-convex

optimization. The preceding 3D segmentation of the injured ankle, described in chapter

4.2, results in a 3D-SSM Xinjured with parameters θ̂injured. The 3D-SSM of the uninjured

ankle Xuninjured can be initialized with that θ̂injured, in particular with the transforma-

tion T̂injured and the shape parameters b̂injured. Under the assumption that the intra-

individual variation of the patients’ left and right ankle is considerably low, shape pa-

rameters b̂injured should not deviate significantly from the desired buninjured. However,

the transformation parameters T̂injured and Tuninjured are likely to show a substantial dis-

crepancy. This circumstance is based on the independent acquisition of the acquired

3D image of the injured ankle A and the projection images B j with j ∈ {1, ...,n} of the

uninjured ankle. For both acquisitions, the mobile C-arm system offers a large num-

ber of possible device-to-patient orientations. Thus, both modalities do not share the

same coordinate system. The goal of a coarse initialization established by transforma-

tion Tinitialization is to provide a good estimate for T0,uninjured by aligning both coordinate
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systems.

T0,uninjured = Tinitialization · T̂injured (29)

Figure 28: Acquisition of the 3D image V and projection images B : Both image
modalities do not share the same coordinate system since the C-arm is moved
during acquisition.

The injured and uninjured ankle of one patient is always assumed to be symmetric,

which implies that in order to compare or align them, one ankle needs to be mirrored.

This problem can be solved by applying a 3D reflection transformation Treflection on

Xuninjured prior to initialization.

T0,uninjured = Tinitialization ·Treflection · T̂injured (30)

In the previous chapter 4.3.2, a method is described to calculate landmarks in the pro-

jection images, in particular the lower intersection point of the tibia (p2D
intersect,j), the tibia

shaft direction vector (v2D
tibia,j) and the fibula shaft direction vector (v2D

fibula,j). Assuming

that at least two projection images are provided, the landmarks can be triangulated by

back-projection of the points with the inverse projection matrix P−1 to obtain p3D
intersect,

v3D
tibia and v3D

fibula. Given j > 2 , the points can be pairwise triangulated and averaged after-

ward to refine the result.

Prior to reconstruction, the upper- and lowermost points of the shafts in the SSM

mean representation of tibia X̄tibia and fibula X̄fibula are annotated as landmarks to build

two respective SSM shaft vectors. The initialization is conducted by the following steps:

• The lowermost point of Xtibia,uninjured is translated to the 3D intersection point

p3D
intersect,j and a rotation matrix R is computed to rotate the SSM tibia shaft vec-
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Figure 29: 2D-3D initialization procedure: Triangulation of 2D landmarks and
mapping to 3D-SSM landmarks

tor to the triangulated 2D shaft line.

R = I+ [υ]x + [υ]2
x

1

1+cos(∠(s1, s2))
with υ= s1 × s2 , [υ]x =

∣∣∣∣∣∣∣∣
0 −υ3 υ2

υ3 0 −υ1

−υ2 υ1 0

∣∣∣∣∣∣∣∣
(31)

where s1 and s2 denote the shaft line vectors. As a result, both, the triangulated

2D and the 3D vectors related to the tibia are aligned according to their position.

The only remaining degree of freedom is given by the angle of rotation α along the

triangulated 2D shaft axis.

• The fibula vector is rotated along the computed tibia shaft axis and for each angleα

the distance to the 3D fibula shaft axis is determined. The 3D-SSM is transformed

according to the rotation angleαmin with the shortest distance to obtain the coarse

alignment Tinitialization.

After initialization, the 3D-SSMs are located closely within the boundaries of the corre-

sponding segmented bone contours and the actual reconstruction process can be started.

4.4.2 Optimization

The optimization aims to find transformation parameters T and shape parameters b to

fit the initialized SSM to the 2D images as precisely as possible. In order to solve the

optimization problem, 2D-3D correspondence pairs between the 3D model defined over

ΩA ∈R3 and a set of 2D images B = {
B j | j ∈ 1, . . . , NB

}
need to be established.
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The optimization problem can be solved by minimizing the following distance-based

cost function εdist:

argmin
θ

NB∑
j=1

εdist

(
AT (x), P−1

j (B j (y j )
)

(32)

where x ∈ ΩA denote landmarks of the 3D-SSM Xinjured = {
xi ∈ R3 | i ∈ 1, . . . ,k

}
. Feature

points y j ∈ΩB j are extracted from 2D images B j and are back-projected in 3D space by

the inverse perspective projection matrix P−1.

In feature-based reconstruction, unique correspondence pairs are usually not avail-

able (MARKELJ et al. 2012). Instead, corresponding feature subsets x∗j ⊆ x and y∗j ⊆ y j

have to be searched iteratively for each projection by minimizing the distance between

both subsets. Shown in Fig. 30, the correspondence building step is performed by

Figure 30: 2D-3D reconstruction overview: From all 2D images, segmentation
masks and distance maps are extracted (top). The 3D-SSM is initialized using
the 3D image of the injured ankle and projected onto the respective projection
planes (bottom). Optimal landmark displacements of the 3D-SSM are com-
puted and used to update shape and pose parameter in each iteration (right).
The figure was adapted from THOMAS et al. 2019.

projecting Xinjured onto each projection plane of B j first so that both modalities share the

same dimension. The iterative optimization alternates between correspondence build-

ing in 2D, back-projection of the established corresponding points y∗j in 3D space and

updating of pose and shape parameters. Hereinafter, details are given on the correspon-

dence estimation for both modalities as well as optimization strategies.
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Figure 31: 3D-SSM projection and silhouette generation

Correspondence building and optimization metric

The feature set x∗j holds a landmark subset of the 3D-SSM Xuninjured and will be defined

for each projection j . Shown in Fig. 31, the subset resembles the 2D silhouette of the SSM

once it is projected onto the projection plane of B j using the corresponding projection

matrix Pj. To extract the subset, a silhouette can be computed based on the assump-

tion that silhouette edges have the following property: Both adjacent face normals of the

edge have a differently signed direction towards the normal nB j of B j (illustrated by the

red and green arrow in Fig. 31). A disadvantage of this approach is the creation of inner

contours, which hamper the comparison to the closed segmentation mask. To eliminate

all inner contours, the entire triangle mesh of the 3D-SSM is projected to create an im-

age stencil. Projected landmark candidates are omitted if they are distant to the outer

boundary of the stencil. Each candidate in x∗j of the resulting silhouette has a 2D pixel

location on the image plane B j .

The reference features y∗j are derived from the CNN segmentations Sj of image B j

(described in section 4.3.1) for each bone and projection j . First, segmentation image S j

is pre-processed by applying a Sobel edge filter to extract contours Cj from the segmen-

tations. A subsequent dilation operation ensures that no small holes occur by morpho-

logical increasing the width of the contour. On the resulting binary contour images an

unsigned distance function fdist(x) is applied.

fdist(x) = d(x,δCj) if x ∈ Cj ∀x ∈ΩC j (33)

d(x,δCj) := min
y∈δCj

d(x,y) (34)

The output is a distance map, also referred to as Chamfer distance (BARROW et al. 1977),

in which each pixel corresponds to the distance d(x,δCj) to the closest border of con-
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tour Cj with zero resembling the border itself. Hence, the distance of each pixel to the

contour is directly mapped to the image which allows to guide the 3D-SSM towards the

bone boundary efficiently. For each projection image B j all Nx silhouette points in x∗j
are translated to pixel positions and sampled on the distance map. The resulting sam-

pled distances can be used as y∗j in the cost function εdist (cf. Eq. 32).

Multi-resolution pose optimization

Figure 32: Sampling of profile points: Points are sampled along the contour nor-
mals with the green arrow indicating the displacement to the minimal distance
of the distance map.

A multi-resolution approach akin to the segmentation phase described in chapter 4.2.1

is implemented and applied to each bone. Inspired by the profile sampling procedure,

not only the actual contour points x∗j =
{

x∗j ,k | k ∈ 1, . . . , Nx
}

are sampled but also Nprofile

points along the contour point normal nx∗
j,k

in positive and negative direction with a

probe spacing sprobe (cf. Fig. 32). By also comparing the neighborhood, optimal local

adjustments can be calculated in each iteration. Along the contour point normal nx∗
j,k

,

the distance map is re-sampled and the minimal distance is estimated for each profile.

This way, local optimal corresponding points y∗j =
{

y∗j ,k | k ∈ 1, . . . , Nx
}

can by computed

by:

y∗j ,k = min
(

fdist(x∗
j,k + i · sprobe ·nx∗

j,k
)
∣∣∣i =−Nprofile, . . . , Nprofile

)
∀ j ∈ {1, . . . , NB } ∀k ∈ {1, . . . , Nx }

(35)

Since x∗j only comprises points perpendicular to the 3D-SSM boundary, the sampled

points y∗j along the contour normal correspond to 3D points along the surface normal

and can be back-projected easily. By changing sprobe, the distance between sampled po-

sitions can be varied to realize a multi-resolution approach. The optimization can be
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started with a high value of sprobe to reach a fast convergence and can be decreased to-

wards a smaller value to ensure an accurate adaption during fine adjustment.

With this approach, optimal local landmark adjustments can be computed based on

the correspondence pairs. Subsequently, a GPA is applied exclusively on the feature sets

x∗j and back-projected adjustments y∗j for all B j . This way, an iterative update of trans-

formation Tuninjured can be obtained.

Multi-object procrustes pose optimization

To increase the robustness and accuracy of the proposed approach and to cope with in-

accuracies of the preceding initialization step, the multi-object GPA described in 4.2.1 is

integrated into the reconstruction step. In coarse reconstruction steps, where larger pro-

file distances are sampled and analyzed, a composite transformation Tcomposite helps to

ensure that the 3D-SSMs migrate to a common location. The multi-object GPA uses the

correspondence pairs of all bones simultaneously and establishes a common transfor-

mation update, which is applied to each bone. This is useful, particularly to prevent the

quasi-rotation symmetric fibula and tibia 3D-SSM from an early ill-posed rotation along

the corresponding shaft axis. Since the pose of the single bones varies for each patient,

the multi-object GPA can only be applied during an early, coarser stage. It is necessary to

decouple the pose adaption in finer stages and optimize each bone separately.

Landmark-specific adaption

One drawback of the 3D-SSM trained on cut bone shafts is that the varying length is not

fully covered in the model representation. Xuninjured is initialized with binjured and the

assigned shaft length may be different from the visible shaft length in the fluoroscopic

projection images B. During reconstruction, landmark subset xshaft ⊂ x ⊂ Xuninjured close

to the upper bound might let Xuninjured drift towards the proximal end of the bone in-

stead of focusing on the more relevant distal part. Therefore, it can be helpful to reduce

the influence of the shaft related landmarks. For that purpose, the upper 30% of the shaft

landmarks are identified and tagged in the mean representation of the 3D-SSM by mea-

suring the distance from each landmark to the tibial plafond, in other words, the most

distal point of the tibia shaft. For that purpose, the axial standard plane (definition given

in Tab. 1) can be used as a reference plane. All landmarks of the subset xshaft are ignored

during GPA.
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Shape optimization

Since the reference 3D-SSM with b̂injured is assumed to already closely resemble the de-

sired uninjured ankle, shape parameters buninjured and b̂injured should only deviate slightly.

Thus, in a coarse resolution stage, only transformation Tuninjured is optimized to avoid lo-

cal minima resulting from early shape adaption. Shape parameters buninjured are globally

altered in a second finer resolution stage. The local adjustments, denoted as δx∗ are used

to project the shape model onto shape space. In shape space, an update of the shape pa-

rameters δb can be calculated by rearranging the SSM definition taken from Eq. 14.

δb = PT T̃−1(δx∗) (36)

where T̃ denotes the transformation T without the translational part and P denote eigen-

vectors of the SSM. Since the shape deviation between buninjured and binjured should not

differ significantly, the shape space is constrained to a range of b±2 ·σb .
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4.5 Visualization and clinical workflow integration

The focus of this work is the realization of an assistance system that enables an intra-

operative contralateral side comparison for ankle surgery based on C-arm imaging. A

description of the proposed workflow can be found in chapter 4.1 and the individual

components are introduced in chapter 4.2, 4.3 and 4.4. This chapter describes the inte-

gration and visualization of the computed 3D surface models into the workflow. Section

4.5.1 depicts the alignment of the uninjured and injured surface models. The chapter

also gives insights on the automatic adjustment of the viewing planes (section 4.5.2) and

methods to provide a sound visualization of the results (section 4.5.3). 2D-3D recon-

struction leads to the creation of a 3D model representation of the uninjured ankle. In

order to assist the surgeon during the fibular reduction process, the surface models must

be visualized together with the injured ankle. To bridge the gap between the computa-

tion and visualization and to enable a direct comparison, the computed surface models

need to be transferred into the coordinate system of the 3D image of the injured ankle.

Furthermore, the developed system must allow the surgeon to display specific areas of

the ankle decisive for the evaluation.

4.5.1 3D-3D model-based registration

After obtaining two 3D-SSMs, Xbone,injured and Xbone,uninjured, a contralateral side com-

parison can be performed in 3D space. To enable the comparison, the two SSMs need to

be aligned towards each other, which requires two steps: Reflection and 3D-3D registra-

tion. After reconstruction, Xbone,uninjured does not share the same laterality (left or right)

with Xbone,injured and needs to be back-reflected first. Afterward, a rigid registration can

be performed. One advantage of the 3D-SSMs is their ability to capture meaningful cor-

respondence points. This allows an instant assignment of correspondence pairs in both

3D-SSMs to simplify the registration. The contralateral side comparison is targeted at

revealing the pose deviation of the fibula between the two ankles. Hence, a composite

transformation of all 3D-SSMs is established to retain the relative positions of the in-

dividual bones. The composite transformation can be computed by a landmark-based

least-square optimization of Xtibia,injured and Xtibia,uninjured. This way only the tibia bones

are optimally aligned and the relative spatial arrangement of all other bones is preserved.

4.5.2 Automatic standard plane adjustment

Intra-operative imaging allows the surgeon to visually verify the surgical outcome dur-

ing all phases of an intervention. The surgeon is usually only interested in a specific
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anatomical ROI and a profound visualization of those relevant structures is most essen-

tial for a comprehensive evaluation. One possibility to achieve a suitable visualization is

the anatomy-specific adjustment of the MPR viewing planes of the 3D C-arm image. A

detailed description of the so-called standard planes for the ankle joint is given in sec-

tion 2.1.4. The adjustment of the standard planes must be repeated for each scan and

increases the intervention time. The work of BREHLER et al. 2015 allows to calculate the

standard planes automatically for calcaneus fractures based on a pre-defined atlas im-

age. This approach relies on two assumptions: The spatial inter-relations between the

respective bones do not significantly vary and standard planes are defined in relation to

one specific bone. Furthermore, the approach is limited to rigid registrations between

features derived from the 3D image and the atlas. Transferring the approach to the ankle

joint is not readily applicable since the positional and rotational relation between fibula

and tibia varies, especially in the event of fibular fractures, and the definition of the stan-

dard planes depends on both bones. Therefore, an alternative approach is proposed, in

which the standard planes are derived from the 3D-SSM for each bone separately.

Figure 33: Automatic standard plane adjustment: Standard planes are anno-
tated in the mean SSM and transferred to the image after SSM segmentation.

In the mean 3D-SSM representation X̄, standard planes are adjusted to resemble the ideal

plane adjustment (cf. Fig. 33). The affine transformation parameters of all 3D-SSMs

are extracted twice, before 3D segmentation T0,bone of the ankle and after segmentation

T̂final,bone. Afterward, the relative transformation can be established.

Trelative,bone = T0,bone · T̂
−1
final,bone (37)

Using the relative transformation, the standard planes can be transformed independently.

The axial standard plane is transformed using the resulting transformation Trelative,tibia of
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the tibia and the sagittal standard plane is transformed by the resulting transformation

Trelative,fibula of the fibula. The coronal standard plane is orthogonal to the axial and sagit-

tal standard plane and thus can be derived automatically.

As a result, the standard planes of the 3D image can be calculated considering not

only the pose of the tibia but also the relative pose between tibia and fibula.

4.5.3 Visualization

An exact adjustment of the standard planes is necessary for an adequate visualization

and evaluation of the reduction result. However, the axial plane located at the level of

the tibial plafond does not reveal any clinical relevant information. It provides the correct

orientation of the planes but is not set to the correct image slice. Hence, the manual clin-

ical workflow requires the surgeon not only to adjust the standard planes. Instead, the

surgeon uses the adjusted axial standard plane to scroll along the image stack and to ap-

proach the two relevant evaluation planes. This process can be automatized by comput-

ing the standard planes and then translating the axial plane along its normal. Either the

plane is translated δs = 10mm (superior) for a clear view on the incisura or δs =−6mm

(inferior) for evaluating the internal or external rotation of the fibula at the talar dome

level. The values are recommended for clinical evaluation as already described in detail

in section 2.1.2. The software allows to alternate between both views. Furthermore, the

application provides an overlaid and a side-by-side view. In the overlaid view, both sur-

faces are displayed together with the 3D input image. The side-by-side view shows the

reconstructed surface reflected along a utility plane, which is built by intersecting the

image border of the 3D image with the axial plane. Fig. 34 shows the two visualization

modes implemented as a plugin for the MITK workbench (NOLDEN et al. 2013).
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Figure 34: Visualization of the reconstruction results: The prototype allows to
visualize the computed surfaces in a side-by-side view (top, 10 mm above the
tibial plafond) and as overlays (bottom, 6 mm below the tibia plafond). The
blue surfaces resemble the injured ankle whereas the red surfaces resemble the
reconstructed contralateral uninjured ankle.
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CHAPTER 5

EXPERIMENTS & RESULTS

The proposed workflow was carefully validated for a potential successful integration into

the clinical environment. The quality and performance of the prototype were investi-

gated on different levels following the error hierarchy introduced in section 4.1.3. The

individual components, such as e.g. the 3D-SSM segmentation, were tested with differ-

ent setups to examine the accuracy and robustness of each component. Once the indi-

vidual components were evaluated, the overall pipeline was tested with clinical data of

both ankles to assess the overall uncertainty. The following sections provide the reader

with details of data material used in the conducted experiments (section 5.1) as well as an

overview of all different experiments and their motivation (section 5.2). For a meaningful

and interpretable evaluation of the results, different image-based and point-based met-

rics are introduced in section 5.3. Afterward, a detailed description is given on the dif-

ferent experiments assessing the quality of 3D bone segmentation (section 5.4), 2D fluo-

roscopic segmentation (section 5.5), 2D-3D reconstruction (section 5.6) and the overall

system (section 5.7). Results are presented directly after the respective experiment de-

scription.

5.1 Data acquisition

All data sets used in this project were acquired in the BG Trauma Center Ludwigshafen

between 2011 and 2018 and anonymized for the retrospective evaluation. The device

used in this project was an Arcadis® Orbic 3D (Siemens Healthcare GmbH), a mobile 3D

C-arm system with an image intensifier, an isocentric design and 190◦ orbital movement.

During intra-operative acquisition, the operator uses the interface of the device to select

the respective anatomical region, in case of bilateral osseous regions the laterality, the
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pose of the C-arm with respect to the OR table as well as whether the scan is taken with

reduced (50) or full amount (100) of images. The images were acquired with a pulse rate

of 66 at a kV range of 59-65.

Each data set consisted of one 3D image, 100 fluoroscopic 2D images and their re-

spective projection matrices. The volume was reconstructed from all 100 fluoroscopic

images generated by an orbital rotation of 190◦ around the device’s iso-center. All vol-

umes had an isotropic voxel spacing ranging from 0.475 to 0.5 mm and a size of 2563

voxels. The fluoroscopic images had 10242 pixels and covered a detector FOV of 23 cm.

In most of the images, the tibiofibular joint is located in the image center and always

contains tibia, fibula and talus. In all cases, tibia and fibula were only partially visible

limited by the FOV. Some images showed only a proportion of the talus in case the ankle

was not placed in the iso-center.

Hereinafter, an overview of the different data sets is given. The data sets can be cat-

egorized in three groups: Sclinical,injured including clinical images of the injured ankle,

Sclinical,pairs comprises clinical images of both ankles and Scadaver,uninjured includes im-

ages of the uninjured ankle acquired within the context of a cadaver study. Hereinafter,

a detailed description is provided.

Figure 35: C-arm volumes of injured ankle: Weber B and C fractures with an
one-third tubular plate (1-3) plus the medial malleolus stabilized with a band
wire (1) or with a lag screw (2), Maisonneuve fracture with syndesmotic screw
(4) and uninjured ankle without metal implants (5).

1. Sclinical,injured comprised 42 ankles which are clinical cases after ORIF and with

metal implants scanned during intervention for the purpose of visual evaluation of

the reduction result. The acquired 3D images were acquired right after reduction

and relocation of the bone fragments so that no isolated fragments were present.

The data set collection contained different fracture types and treatments ranging

from the insertion of a plate and screws, additional screws for fixating small bone

fragments to the mere insertion of a syndesmotic screw. Weber B, Weber C and

Maisonneuve fractures were included. Fig. 35 shows representative examples of

the different treatment types.
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2. Scadaver,uninjured consisted of 30 ankles without isolated bone fragments or any metal

implants. The subjects in this study were received from the Institute for Anatomy

and Cell Biology, University of Heidelberg, Germany. A written informed consent

was provided by the deceased to allow the use of their bodies for research purpose.

The cadaver study was carried out at the BG Trauma Center Ludwigshafen, Ger-

many. It got approved by the ethical review committee in Heidelberg, Germany

with the registration number S-013/2014. For the conducted experiments in this

thesis, 30 ankles were selected. Besides 12 bilateral ankle pairs, the cadaver study

was conducted with unilateral ankles.

3. Sclinical,pairs comprises a collection of 11 ankle pairs acquired during intervention

for the purpose of manual contralateral side comparison. One pair includes one

ankle with metal implants after reduction and one corresponding uninjured ankle

without metal implants.

3D ground truth segmentations: Manual segmentations of all 3D images were obtained

by a medical expert. All segmentations were validated by an orthopedic surgeon. The

MITK workbench (NOLDEN et al. 2013) was used to segment the images by manually

contouring the bone boundary in a slice-by-slice manner and converting the binary seg-

mentations to surface representations. MITK was further used to annotate an evaluation

plane for each volume. The axial plane was defined as orthogonal to the shaft of the tibia

with the origin at the tibial plafond. This plane is later used to cut the shafts to avoid

uncertainties resulting from varying shaft lengths.

3D standard planes: A manual adjustment of standard planes was performed by a sur-

geon using the MITK workbench. Axial, sagittal and coronal planes were adjusted follow-

ing the definition given in Tab. 1. These adjustments were used for defining the reference

plane for cutting the tibia and fibula shaft as well as served as a reference when evaluat-

ing the automatic standard plane adjustment.

2D ground truth segmentations: Manual segmentations are only available for 3D im-

ages since the process of 2D fluoroscopic image segmentation is tremendously time-

consuming and at the same time highly challenging due to unreliable, noisy contours

at overlapping bones. To create 2D ground truth segmentations, it was taken advan-

tage of the relation between the 3D image and the respective 2D images. The 3D ground

truth segmentations and the respective projection matrices were used to project all bi-

nary voxels onto each of the 2D image planes. This way, 2D segmentation masks could

be generated for all single fluoroscopic images. It must be noted, however, that those
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segmentations did not cover the entire visible shaft of tibia and fibula since manual 3D

segmentations were likewise constrained by the FOV. Furthermore, the resulting 2D

segmentations merely approximated manual 2D segmentations. Uncertainties in the

computation of projection matrices, which are generated during device calibration, can

translate to segmentation uncertainties.

Selection of standard projections: For all experiments, three projection images were se-

lected by a trauma surgeon from all 100 projection images for each patient. The selection

approximated the radiological standard projections of the ankle joint: Lateral, mortise

and anterior-posterior view (FRANKE et al. 2012) as depicted in Fig. 36. For Sclinical,pairs

the selection of the real standard projections was not always possible due to the super-

position of the contralateral ankle. In those cases, the nearest projection image with one

visible ankle was selected instead.

Figure 36: Standard projections of the ankle joint: lateral view (L), mortise view
(M) and anterior-posterior view (AP).

5.2 Overview and purpose of the experiments

The proposed workflow consists of a variety of individual components and all induce

a certain uncertainty to the system. A variety of different experiments were conducted

to assess certain aspects and error sources. This section provides a brief description of

the experiments and their incorporation in the overall context. Fig. 37 represents an

overview of all components, the conducted experiments and indicates the dependencies

on each other.

A systematic evaluation was performed in two stages: First, the uncertainties of all

components, which are solely dependent on the image data were assessed under differ-

ent aspects:

• 3D-SSM segmentation: The method was evaluated under different setups compar-

ing the pure intensity based SSM method, the CNN segmentation and the CNN-

complemented SSM segmentation. The segmentation quality is influenced by the
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Figure 37: Overview of conducted experiments: Experiments were designed to
cover error sources resulting from 2D segmentation, 3D segmentation and 2D-
3D initialization as well as the overall reconstruction error. The arrow indicate
that the respective component serves as input for another component.

performance of the trained 3D-SSM and 3D-CNN as well as the input 3D image.

The SSM as such is also dependent on the initial placement. Therefore, the robust-

ness and accuracy of the different methods were investigated.

• 2D-CNN segmentation: The accuracy of the method was assessed by training on all

data sets as opposed to training on a limited viewport since the CNN is influenced

by the training and the input data.

• 2D landmark extraction: The quality of the landmarks was computed on the CNN

predictions and compared to landmarks extracted from ground truth segmenta-

tions.

In the second stage of the evaluation, components were evaluated that are affected by

preceded pipeline components. The results of all former methods function as inputs for

the 2D-3D reconstruction so that their uncertainties get accumulated. The influence of

each uncertainty was estimated by replacing the output of the component by the perfect

result, e.g. using the ground truth instead of the computed 2D-CNN segmentation.

• 2D-3D reconstruction: The reconstruction was compared in different stages by

systematically replacing inputs by their respective ground truth to eliminate dif-

ferent error sources.

• Overall evaluation: The accuracy of the overall pipeline was assessed before and

after 3D-3D registration to investigate the performance on real clinical data. The

overall evaluation is not only affected by the 2D-3D reconstruction but also by the

3D-3D registration of Xtibia,injured and Xtibia,uninjured.
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• Further experiments: The quality of the standard plane adjustment was evaluated

on the clinical pairs.

5.3 Evaluation metrics

The conducted experiments resulted either in 2D or 3D segmentation results or respec-

tive surfaces. Evaluation of the results can either be performed by mathematically quan-

tifying the discrepancy between the result and the reference. Alternatively, the results

can be examined in a qualitative manner by visually inspecting challenging regions and

main problems of the different approaches relevant to the overall pipeline.

Segmentation results can be compared to the ground truth segmentation of each

bone using different metrics for shape comparison. Evaluation can be either based on

the outer surface of the SSM or the segmentation. For the former, the final landmark

positions of the SSM can be compared to a surface generated from the ground truth seg-

mentation. In case of 2D segmentations, not the surfaces but the contours are used and

the metrics are based on a pixel-wise comparison.

A widely used metric is the Average symmetric surface distance (ASD) that measures

the reciprocal euclidean distance between two surfaces or contours in mm (HEIMANN

et al. 2009).

ASD(XResult, XGT) = 1

|XResult|+ |XGT|
∫

x∈XGT

δ(x, XResult)d x +
∫

x∈XResult

δ(x, XGT)d x (38)

where |XResult| and |XGT| denote the area of the surfaces.

A popular volume-based metric to measure the segmentation quality is the Sørensen-

Dice coefficient by JACCARD 1912. The overlap of the segmentation result XResult and the

ground truth XGT segmentation can be measured by:

Dice(XResult, XGT) = 2 · |XResult ∩XGT|
|XResult|+ |XGT|

(39)

where |XResult| and |XGT| are the measured volumes of the binary segmentations.

Another commonly applied metric is the Jaccard index also referred to as Intersection

Over Unit (IOU) introduced by JACCARD 1912.

Jaccard(XResult, XGT) = |XResult ∩XGT|
|XResult|+ |XGT|− |XResult ∩XGT|

(40)

Dice and Jaccard have in common that their value is influenced by the overlapping region
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Figure 38: Voxel-/pixel-based overlap metrics for shape comparison: a) Dice
score and b) the Jaccard are illustrated by two circular sets, the result (green)
and the ground truth (blue). c) shows the confusion matrix for the metrics sen-
sitivity, specificity, precision and accuracy.

and approaches 1 in case of perfect overlap. An illustration of both metrics is provided in

Fig. 38 a) and b).

In machine learning applications, other metrics are commonly used to assess the per-

formance based on the assumption that the segmentation is a pixel-/voxel-wise classi-

fication task. Fig. 38 c) displays a confusion matrix introduced by FAWCETT 2006 that

distinguishes between positive and negative labels being classified as either positive or

negative. The following metrics are all based on the decisions drawn from the confusion

matrix:

Sensitivity = TP

TP+FN
Specificity = TN

TN+FP
(41)

Precision = TP

TP+FP
Accuracy = TP+TN

TP+FP+FN+TN

where TP denotes true positives, FP false positives, TP true negatives and FN false

negatives.

The voxel-wise comparison is affected by the divergent shaft lengths of computed

and manual segmentation. As pre-condition for a reliable evaluation independent from

the shaft lengths, all segmentations are cropped w.r.t. the shortest shaft first. The cut is

performed using the axial standard plane perpendicular to the shaft which is translated
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towards the shortest of the shafts lshaft1 and lshaft2.

pcut = paxial +naxial ·min{lshaft1, lshaft2} ncut = naxial (42)

There are areas of the ankle, like e.g. the incisura, that are more important than others

for the clinical application. The previous mentioned metrics are global measures that do

not emphasize or distinguish specific areas. Besides 3D measurements like ASD, Jaccard

and Dice score, slice-wise 2D measurements on specific relevant slices are introduced

to quantify the quality of the result. The two 2D planes are depicted in Fig. 39. The

Hausdorff distance is a common quantitative measure in shape comparison to estimate

the distance between two point sets A and B (HUTTENLOCHER et al. 1993).

dH (A,B) = max

{
sup
a∈A

inf
b∈B

d(a,b),sup
b∈B

inf
a∈A

d(a,b)

}
(43)

The function dH (A,B) is referred to as the symmetric Hausdorff distance of A and B. It

evaluates the distance of each point A to the nearest point of B as well as the distance

of each point B to the nearest point of A. The largest of these distances determines the

value of dH (A,B).

Figure 39: 2D slices relevant to the clinical evaluation: Position 1 shows the
fibula in the incisura approximately 10 mm above the tibia plafond. Position
2 shows the tibia and fibula approximately 6 mm below the tibia plafond at the
talar dome level.

Experiments in section 5.5.4 require a quantitative evaluation of landmarks. The land-

marks were computed for ground truth and predicted segmentations. The 2D landmark

positions can be compared by computing the pixel distance between both computed

landmarks p1 and p2 and the rotational deviation can be estimated by the angle between

normal landmark vectors v1 and v2.

δ(p1, p2) = ‖p1 −p2‖2 ∠(v1, v2) = arccos(v1 · v2) (44)
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5.4 3D bone segmentation

All methods described in chapter 4.2 are tailored to perform an accurate bone segmen-

tation of C-arm images under the presence of metal implants. The 3D segmentation is

influenced by the trained 3D-SSM, its initial placement in the image and the input im-

age itself. The described task requires the 3D-SSM to cope with arbitrary initialization

since the ankle position and orientation varies for each patient and 3D-SSM is known

to be sensitive towards initialization. Thus, it was essential to investigate not only the

accuracy but also the robustness of the methods if the 3D-SSM is not placed close to

the final position. Segmentation performance of all three approaches, namely, the pure

intensity-based 3D-SSM segmentation, the CNN-based segmentation and the 3D-SSM

segmentation incorporating the CNN complement were compared.

5.4.1 Training data and 3D-SSM creation

Experiments were conducted with a six-fold cross-validation on the data sets of

Sclinical,injured. The data set collection was split into training and test subsets with 35 and

7 data sets, respectively. All images in the training set were reflected to correspond to

the same laterality as the respective test set. A 3D-SSM was created using the methods

described in section 4.2.1. The tibia and talus 3D-SSM consist of 2000 landmarks and the

fibula 3D-SSM of 1500 landmarks. Prior to training, the segmentations were pre-aligned

in a pre-processing step using the center of mass of all segmentations as landmarks and

tibia and fibula shafts were cut to roughly match the same bone length.

The chosen parameters for the 3D-SSM segmentation were inspired by the selection

of GÖRRES et al. 2016 for the calcaneus and experimentally modified for the ankle joint.

The probe spacing was set to s = 0.5, which equals the largest possible voxel size of the in-

put images. The number of sampled probes for each landmark profile was set to 3 probes

per side and not changed during the procedure. The segmentation procedure was exe-

cuted in 5 iterations with varying parameters (cf. Tab. 3). In the first iteration, only the

first two shape parameters were altered whereas in the consecutive iterations the num-

ber of shape parameters was increased. In addition, the resolution was increased during

iterations and implied that e.g. resolution 2 refers to the image being downsampled with

factor 2 and the probe spacing was multiplied by 2. The maximum point movement of

landmarks between two consecutive steps was chosen as convergence criterion and also

altered among iterations. The SSM segmentation was stopped when the maximum point

movement of all meshes was less than the predefined threshold. The multi-object GPA

was only applied in the first two iterations before the SSMs were optimized indepen-

dently.
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Iteration 1 2 3 4 5
Num. of shape parameters 2 2 20 20 20
Resolution 2 2 1 0 0
Max. move threshold 0.8 0.3 0.3 0.5 0.2
Multi-object GPA yes yes no no no

Table 3: SSM parameter selection

5.4.2 Evaluation method

Prior to the 3D-SSM segmentation, the 3D-SSM had to be placed at a certain position in

the 3D image. The ideal position could be derived from the ground truth segmentation

by initializing the 3D-SSM with Ttrain. For a simultaneous evaluation of accuracy and

robustness, the position and orientation of the SSM were varied following the systematic

approach of GÖRRES et al. 2016. A rigid transformation Toffset was applied to the 3D-SSM

to create a translational or rotational displacement as illustrated in Fig. 40.

Tstart = Ttrain ·Toffset (45)

The translational offset was increased by 2 mm intervals to a maximum of 12 mm in six

perpendicular directions. The rotational angle was increased by 5◦ intervals to a max-

imum of 25◦ for all rotation axes. The shape parameters were set to b = 0 to resemble

the mean model representation X̄bone. Afterward, the actual 3D-SSM segmentation was

executed at the current location and the ASD was measured. The evaluation scheme was

performed on the pure intensity based and the CNN complemented SSM method. On

the contrary, the evaluation of the CNN network was conducted by directly comparing

the output segmentation to the ground truth segmentations since the network is fed by

the entire volume independent from pre-initialization.

5.4.3 Evaluation 3D-CNN segmentation

The aim of the experiment was to evaluate whether an accurate segmentation of tibia,

fibula and talus can be created using the U-Net approach described in section 4.2.2. A

summary of network hyperparameters can be taken from Tab. 4. In a pre-processing

step, the volumes were downsampled to 1803 voxels and cropped to an input size of 128.

Data augmentation strategies included cropping, rotation, mirroring, deformation and

scaling. A detailed description of the different strategies can be found in section 4.2.2.
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Figure 40: SSM initialization scheme: The 3D-SSM is placed at different posi-
tions in the image by applying a translation or rotation.

For augmentation, a publicly available in-house framework1 was used. The U-Net was

trained for approx. 300 epochs for each fold with a learning rate of 10−3, a learning decay

of 10−4 and a batch size of 8.

Data augmentation was not only applied to enlarge the training data during training

but also during test time. This approach referred to as test time augmentation, performs

modifications to a test image so that the network is shown the image several times. Since

the modifications can be reversed, prediction results can be aggregated and averaged

with to increase the accuracy. In the conducted experiments, each image was reflected

along all axes similar to the conventional training data augmentation.

Parameter Value
Downsampled image size 180
Cropped image size 128
Batch size 8
Optimizer ADAM
Loss 3D cross entropy
Activation function ELU
Normalization Instance
Learning rate 10−3

Learning decay 10−4

Epochs 300

Table 4: Network hyperparameter selection for the 3D U-Net

Since the images were center cropped before used as input for the network, the eval-

uation was performed on the full image as well as a cropped ROI. The cropping was

1Batchgenerators https://github.com/MIC-DKFZ/batchgenerators
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performed solely along the z-axis by 70 pixels in each direction to account for the influ-

ence of the center crop in the training as well as the influence of the varying shaft lengths

and the partial visible talus.

5.4.4 Evaluation of the 3D-SSM segmentation

With this experiment, the approach by HEIMANN 2009b described in section 4.2.1 was

evaluated using the parameters in Tab. 3 and served as a baseline for the subsequent

experiments. The main question to answer was whether a pure intensity-based 3D-SSM

can create an accurate segmentation robust to metal-related artifacts and independent

from an initial model placement.

5.4.5 Evaluation of the new combined 3D-SSM segmentation approach

In the last experiment, the proposed CNN complement was combined with the 3D-SSM

segmentation to examine whether the resulting SSM representation achieves a similar

segmentation accuracy compared to the CNN-based segmentation. After initial place-

ment and misalignment of the SSM, the landmark-based pre-initialization, described in

4.2.3, was performed using the CNN-based predictions. This pre-processing step should

ideally assure the segmentation result to be independent to initialization. Network pa-

rameters remained constant and can be taken from the previous experiment.

5.4.6 Results

Tibia Fibula Talus
Full ROI Full ROI Full ROI

Dice 0.939± 0.025 0.959± 0.021 0.883± 0.048 0.905± 0.044 0.910± 0.028 0.958± 0.019
Jaccard 0.886± 0.432 0.922± 0.036 0.794± 0.072 0.830± 0.067 0.836± 0.046 0.919± 0.033
Precision 0.938± 0.428 0.956± 0.034 0.889± 0.069 0.916± 0.054 0.940± 0.043 0.958± 0.024
Sensitivity 0.942± 0.038 0.963± 0.023 0.887± 0.080 0.902± 0.077 0.885± 0.052 0.959± 0.030
Specificity 0.999± 0.001 0.992± 0.007 0.999± 0.000 0.993± 0.005 0.999± 0.000 0.995± 0.002
Accuracy 0.997± 0.001 0.987± 0.007 0.999± 0.000 0.985± 0.006 0.997± 0.001 0.992± 0.004

Table 5: Comparison of different metrics for different bones and image seg-
ments

3D-CNN segmentation: The results of the 3D-CNN segmentation method on the six

folds of Sclinical,injured are displayed in Fig. 42. The boxplots in light grey show the eval-

uation of the entire 3D image whereas the dark blue boxplots show the evaluation per-

formed on a cropped ROI. The cropped region yielded better results since it was not
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affected by segmentation errors at image borders. In Tab. 5 the mean and standard de-

viation of all metrics are displayed. The best performance was achieved by the CNN ap-

plied to the tibia. Visual inspection of the segmentation results for different cases (cf. Fig.

43) confirms that the errors were mainly attributed to inaccuracies along the fibula shaft.

Fig. 43c depicts the example with the worst performance caused by the high number of

metal implants present in the image.

(a) Tibia (b) Fibula

(c) Tibia (d) Fibula

Figure 41: 3D segmentation error evaluation: Segmentation error (log. scale)
with translational and rotational offset without (light green) and with using
CNNs (middle green). The segmentation error of the 3D-CNN (dark green) is
shown for comparison. Mean surface distance (ASD) is measured in mm.

Comparison of all three segmentation approaches: Fig. 41 compares the performance

of the pure intensity based 3D-SSM with the CNN complemented 3D-SSM segmentation

for different starting positions. Fig. 41a) and Fig. 41b) show the results for the transla-

tional offset whereas Fig. 41c) and Fig. 41d) show the rotational offset. The CNN (in-

dicated in dark green) yielded the best results. The 3D-SSM segmentation (light green)

provided the required corresponding landmarks but, on the other hand, resulted in a

higher ASD that increased with a larger displacement. Combining the 3D-SSM and the

CNN complement achieved nearly as good results as the CNN segmentation and at the

same time was independent of any rotational or translational displacement while pro-

107



3D bone segmentation Chapter 5. Experiments & Results

(a) Dice (b) Jaccard

Figure 42: Segmentation quality of the 3D-CNN: Comparison of Dice score and
Jaccard for the whole segmentation and the cropped region of interest to make
the result independent from the partly segmented bone shafts.

viding the benefits of the SSM. In general, a lower ASD was observed for the tibia in

comparison to the fibula for all methods. The talus was left out for the evaluation since

it was only partially visible on a number of images.

Figure 43: Visual comparison of different 3D-CNN predictions: Three segmen-
tation examples of tibia (red), fibula (yellow) and talus (cyan) are presented
(third row) in comparison to the ground truth segmentation (second row). Ex-
amples a) and b) mainly show a discrepancy along the fibula shaft. c) shows an
input image containing many metal implants at different positions for which
the CNN yielded the worst performance.
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5.5 Fluoroscopic image understanding

2D bone segmentation of the fluoroscopic images is a crucial part of the proposed work-

flow since segmentation inaccuracies may directly affect the reconstruction error ad-

versely. This section gives an overview of conducted experiments to assess the accuracy

of the CNN-based segmentation and landmark calculation under different settings.

5.5.1 Training data and network parameters

Experiments were conducted by performing a four-fold cross-validation on all 30 data

sets of Scadaver,uninjured. The resulting data set collection was split into 19 training, 3 vali-

dation and 6 to 8 test subsets respectively. One data set comprised 100 2D images each.

The projected 3D ground truth segmentations were used for training the network and as

a reference for comparison. Hyperparameters of the 2D U-Net are shown in Tab. 6. In a

pre-processing step, the images were downsampled from 10242 to 5122 pixels and nor-

malized with min-max normalization. All images were cropped to an input size of 384.

The U-Net was trained for 150 epochs for each fold with a learning rate of 10−3, a learning

decay of 10−4 and a batch size of 12. Different types of data augmentation were applied

based on the variance of the data. A detailed description of the different strategies can

be found in section 4.3.1.

Parameter Value
Downsampled image size 512
Cropped image size 384
Batch size 12
Optimizer ADAM
Loss Binary cross entropy
Activation function ELU
Normalization Instance
Learning rate 10−3

Weight decay 10−4

Epochs 150

Table 6: Network parameter selection for the 2D U-Net

Test time augmentation was applied by reflecting each image along all image axes

similar to the 3D-CNN segmentation described in section 5.4.

109



Fluoroscopic image understanding Chapter 5. Experiments & Results

5.5.2 2D segmentation accuracy

The accuracy of the 2D-CNN directly affects the performance of the pipeline since the

outcome is used as features for the reconstruction. Hence, it was important to investigate

the accuracy of the resulting segmentations. The method, assuming that the architecture

design is established and the hyperparameters are chosen, is dependent on the training

data used to optimize the network weights as well as the input images. For each fold, the

network was trained on the training set, validated on the validation set and accuracy was

measured on the test set. The accuracy was quantified by measuring the overlap metrics

described in section 5.3. Since the test data was center cropped with a margin of 128

pixels, the comparison was only performed on the cropped image.

5.5.3 Viewport restriction

One challenge in segmentation of fluoroscopic images is that the super-positioned ap-

pearance of the bones is highly dependent on the C-arm viewport. This offers infinite

possibilities that can barely be covered in the training data unless it is enlarged by simu-

lated training data. However, a simulation of training data with C-arm volumes could not

be realized in a preliminary experiment due to artifacts and inhomogeneities attributed

to the image intensifier technology. As a consequence, the acquisition of training data

was constrained to a single orbital rotation of the C-arm. Rotation angles were sampled

in 1.9◦ steps and volume acquisition diverged for each patient in terms of the starting po-

sition of the C-arm and the patient positioning. Therefore, the training data contained

a sparse representation of the anatomical variance. One possible solution to reduce the

variability was to train the network only on specific viewports and restrict the variabil-

ity. In this experiment, the accuracy and sensitivity of three different configurations were

compared:

a) Training is performed on all subjects of Scadaver,uninjured.

b) Training data is limited to three specific viewports SSP ∈ Scadaver,uninjured with SP ∈
[AP,Mortise,Lateral] corresponding to the standard projections AP, mortise and

lateral.

c) Training and testing is performed for each SSP ∈ Scadaver,uninjured with

SP ∈ [AP,Mortise,Lateral] individually.

Ideal standard projections were not available and had to be approximated by the most

similar projection chosen by an orthopedic surgeon from all 100 fluoroscopic images. To

enlarge the training data set, 8 images were sampled in a range of approx. ±8◦ around the

110



Chapter 5. Experiments & Results Fluoroscopic image understanding

selected standard projection. Analogous to the previous experiment, the overlap metrics

were used to assess the accuracy of all images in each fold.

5.5.4 Landmark detection

A sufficiently well-chosen initialization plays an important role in bone reconstruction

since the method is often prone to get stuck in local minima. One essential part of the

proposed initialization is the accurate detection of corresponding 2D landmarks in the

fluoroscopic images. In this experiment, all landmarks, described in section 4.3.2, were

computed on the CNN-based segmentations and compared to the landmarks derived

from the corresponding ground truth segmentations. The translational and rotational

deviation between the landmarks was measured to investigate the influence of segmen-

tation inaccuracies on landmark detection. For landmark detection, the Hough space is

spanned with a resolution of 5 pixels and 1 degree. To extract meaningful contour lines

with a higher probability of belonging to the shaft, the minimum line length is set to 30

pixels and the minimum line gap to 20 pixels.

5.5.5 Results

2D-CNN segmentation: The best performance could be achieved when applying the 2D-

CNN on the tibia with a Dice score of 0.965±0.016 averaged over all 100 images and all

data sets (see Tab. 7). Slightly worse results were yielded for the fibula (0.937± 0.041)

and the talus (0.937±0.059). The performance evaluated only on the selected standard

projections yielded better results for the fibula and reduced the number of outliers (see

Fig. 44). The mean run time of the CNN prediction for a single fluoroscopic projection

was 50 ms.

Tibia Fibula Talus
All SP All SP All SP

Dice 0.965±0.016 0.965± 0.013 0.937 ± 0.041 0.946± 0.021 0.937± 0.059 0.937± 0.550
Jaccard 0.932±0.029 0.933± 0.024 0.883 ± 0.062 0.898± 0.037 0.887± 0.090 0.886± 0.087
Precision 0.969±0.023 0.970± 0.019 0.950 ± 0.045 0.956± 0.029 0.940± 0.093 0.941± 0.090
Sensitivity 0.962±0.029 0.961± 0.027 0.926± 0.056 0.938± 0.035 0.941± 0.039 0.939± 0.038
Specificity 0.992±0.007 0.992± 0.005 0.993± 0.985 0.994± 0.004 0.990± 0.016 0.990± 0.014
Accuracy 0.985±0.008 0.985± 0.006 0.985± 0.009 0.987± 0.006 0.982± 0.014 0.983± 0.012

Table 7: Comparison of different metrics for different bones and image seg-
ments computed for all images (All) and three standard projections (SP)

Viewport restriction: Fig. 45 depicts the results when the network training was restricted

to the specific viewports AP, lateral and mortise. The Dice score indicates that the per-

formance of the CNN could not be improved by limiting the viewport compared to the
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(a) Dice (b) Jaccard

Figure 44: 2D-CNN segmentation evaluation: Comparison of Dice score and
Jaccard for tibia, fibula and talus. The evaluation was performed on all 100 fluo-
roscopic images (All, light grey) and on three selected standard projections (SP,
dark blue).

training on all training images (All).

Landmark extraction: Evaluating the accuracy of the extracted landmarks from the flu-

oroscopic projections using the ground truth segmentations as opposed to the 2D-CNN

predictions shows that the mean intersection point deviation is 39 pixels. 39 pixels roughly

translate to 5 mm.

Intersection point
error [px]

Angular deviation
fibula [◦]

Angular deviation
tibia [◦]

38.74±31.88 0.94±0.87 4.23±5.07

Table 8: 2D landmark extraction

5.6 2D-3D bone reconstruction

The experiments conducted in this section all focused on the main research question,

whether an accurate 3D multiple bone model can be reconstructed from a limited num-

ber of 2D images. 2D-3D reconstruction is dependent on a variety of aspects either re-

garding the quality of the input or individual components of the algorithm. The series

of experiments described in this section investigated how influencing factors affect the

accuracy and robustness of the approach. After performing the 2D-3D reconstruction
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(a) Tibia (b) Fibula

Figure 45: Comparison of different viewport restrictions: Dice scores for the
three standard projection images mortise, AP and lateral. Training was per-
formed on all images (All, white), on all three standard projections (SP, light
blue) and on each standard projections separately (Single SP, dark blue).

under different configurations, the resulting 3D surface models were validated against

the 3D ground truth segmentation. The accuracy was measured using the ASD.

5.6.1 Training data and 3D-SSM parameters

A four-fold cross-validation on Scadaver,uninjured was conducted for this experiment. A

3D-SSM was created using the methods described in section 4.2.1. The tibia and talus

3D-SSM comprised of 2000 landmarks and the fibula 3D-SSM of 1500 landmarks. Seg-

mentations were pre-aligned and tibia and fibula shafts were cut as already described in

section 5.4. All data sets were reflected to correspond to right ankles.

The reconstruction was performed in 4 iterations with varying parameters. The number

of sampled probes per side was reduced from 6 to 3 probes after iteration 2 to increase the

robustness of the coarse alignment step. The multi-object GPA was applied in the first

two iterations to further assist the SSM towards the global optimum solution. As con-

vergence criterion, a maximum movement threshold of 0.1 was applied together with a

maximum number of iterations. If one of the criteria was reached, the reconstruction

was stopped. The spacing between two sampled probes was set to s = 0.5 for all iter-

ations and the maximum number of altered shape parameters b was set to the first 20

parameters. The shape parameters were only modified in the last iteration since they

were only expected to change slightly.

Besides the input image, the method was provided with the laterality of the presented
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ankle. Since the SSM was only trained on right ankles, it was reflected in case the image

showed a different laterality.

Iteration 1 2 3 4
Num. of probes per side 6 6 3 3
Resolution 2 1 0 0
Multi-object GPA yes yes no no
Shape adaption no no no yes
Max. number of iterations 50 50 10 30

Table 9: Reconstruction parameter selection

5.6.2 Performance evaluation under ideal conditions

In the first experiment, the 2D-3D reconstruction was performed under ideal conditions.

For that purpose, shape parameters b of Xbone,uninjured were initialized with the shape

parameters of the corresponding training image btrain. Additionally, the transformation

Ttrain of the training shape was used to place the 3D-SSM at the ground truth location.

The ground truth 2D segmentations were used in the actual reconstruction step to elim-

inate any errors resulting from segmentation inaccuracies. This way, the reconstruction

result was not biased by any input errors and served as a baseline for comparison.

5.6.3 Influence of the 3D-SSM

In the proposed workflow, the initial 3D-SSMs should closely resemble the reconstructed

3D-SSMs given that the prior 3D-SSM segmentation worked well and left and right an-

kle did not show any intra-individual shape deviations. Under realistic conditions, the

proposed 2D-3D reconstruction method should cope with shape deviations. Therefore,

the 3D-SSM was first initialized with btrain of the respective training image and then per-

turbed by adding random Gaussian noise with σ=σb to the first six shape parameters.

5.6.4 Influence of initialization

Depending on the chosen optimization method, 2D-3D reconstruction can be sensitive

towards an erroneous initial model placement. This experiment was designed to elabo-

rate whether the proposed initialization method affects the overall reconstruction accu-

racy. For that purpose, the proposed initialization method was applied to pre-initialize

the 3D-SSM with the 2D ground truth segmentation before executing the 2D-3D recon-

struction. The result was compared to the baseline, in which the 3D-SSM was placed at

the ground truth location of the test image.
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5.6.5 Influence of the 2D segmentations

Feature-based reconstruction methods are known for the dependence on the quality of

the features. In this work, contours extracted from CNN-based 2D segmentations of the

bones serve as features for the 2D-3D reconstruction. Falsely predicted labels lead to

inaccuracies and disturb the reconstruction process. The accuracy of the reconstruction

was examined using predicted CNN segmentations and compared to the baseline using

ground truth 2D segmentations to investigate the influence of the features.

5.6.6 Number of projection images

As elaborated in section 3.4.4, the number of fluoroscopic images varies in literature

ranging from one single image to several images. Most commonly, bones are recon-

structed from two well-defined viewports. In this experiment, the number of fluoro-

scopic images was varied to assess how many images are sufficient for the application.

Since the initialization and the reconstruction method depend on triangulation, the min-

imal number of images is set to two.

5.6.7 Results

Comparison of different influencing factors: As depicted in Fig. 46, the influence of the

different components was compared by measuring the ASD. The boxplot in the first col-

umn serves as baseline given optimal conditions and yielded the best result by using an

SSM initialized with Ttrain and btrain and ground truth 2D segmentations. The proposed

initialization (second column) did not increase the ASD for the tibia and only slightly

increased the ASD of the fibula in comparison to the ground truth position. The third

column simulated the impact of shape perturbation on the performance and resulted

in a slight increase of the ASD for both bones. The fourth column shows how the ASD

changed when the predicted CNN segmentations were used instead of the 2D ground

truth segmentations. The ASD of the resulting 3D model shown in Fig. 46 for the tibia

and the fibula is higher when being compared to the former experiments due to 2D-CNN

segmentation errors influencing the result in a negative way. The CNN segmentations

seem to have the greatest impact on the accuracy. The fifth experiment simulated the

error of a defective shape model segmentation and actual 2D deep learning predictions

after initialization (Fig. 46, fifth column). The results show that the proposed 2D-3D re-

construction method was capable of adapting well to the shape variation for the fibula

and slightly increased the ASD for the tibia. As depicted in Fig. 47, inaccuracies were

mainly attributed to a local shape deviation at the incisura.
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(a) Tibia (b) Fibula

Figure 46: 2D-3D reconstruction accuracy of tibia and fibula: Errors were sys-
tematically added to assess the influence of the respective error source: Ground
truth 2D segmentation with ground truth initialization (baseline, first column),
ground truth 2D segmentation with proposed initialization (second column),
ground truth 2D segmentation with proposed initialization and shape perturba-
tion (third column), 2D-CNN segmentation with proposed initialization (fourth
column) 2D-CNN segmentation with proposed initialization and shape pertur-
bation (fifth column). Results show that the quality of the 2D-CNN segmenta-
tions influenced the outcome most.

Figure 47: Visual inspection of the 2D-3D reconstruction using 2D-CNN predic-
tions: Visual results of different quality are presented. Local inaccuracies in b)
and c) are most prominent at the convex incisura.

Number of projection images: By increasing the number of projection images, the ac-

curacy was improved for the fibula bone (Fig. 48). The accuracy of the tibia even slightly

decreased with the number of 2D images.

116



Chapter 5. Experiments & Results System evaluation

(a) Tibia (b) Fibula

Figure 48: Influence of the number of images: 2D-3D reconstruction accuracy
of tibia and fibula with a varying number of 2D images.

The time consumption depicted in Tab. 10 increases almost linearly with the number of

2D images by 10 seconds per additional image. The time measurements were averaged

over all 30 executions of the reconstruction method. The C++ based MITK implemen-

tation was executed using an Intel® Core™i7-7820HQ CPU at 2.90GHz with 32 GB of

RAM.

Number of 2D images 2 3 5 7
Time [s] 28.74±1.61 38.77±1.90 61.92±2.92 81.23±4.84

Table 10: Time consumption for 2D-3D reconstruction

5.7 System evaluation

The following experiments were designed to evaluate the entire pipeline on a limited

number of realistic clinical cases for which 3D and 2D images were available for the in-

jured and uninjured ankle. The overall performance was evaluated in terms of 3D accu-

racy, 2D accuracy for specific slices of relevant regions and computation time.

5.7.1 Adjustment of standard planes

With the proposed standard plane adjustment method, the three standard viewing planes

are adjusted automatically. The proposed method was applied to all injured ankles of

Sclinical,pairs. A trauma surgeon manually adjusted the standard planes according to the

definition described in Tab. 1 to create a reference adjustment. After applying the 3D-

SSM segmentation, the angle deviation of the axial and sagittal plane and the positional
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deviation of the crosshair position between the computed and the reference planes were

measured. The term crosshair position refers to the 3D intersection point of all three

planes.

5.7.2 Overall error estimation

The purpose of this experiment was to test the whole pipeline under realistic settings on

the eleven clinical pairs of Sclinical,pairs in a retrospective study. The 3D U-Net and SSMs

were trained using all ankles in Sclinical,injured. The 2D U-Net was trained on all data sets

in Scadaver,uninjured. To enlarge the number of training data, the 2D-CNN was trained in

a leave-one-out cross-validation. For each patient, the 2D-CNN was trained on all other

data sets in Sclinical,pairs and Scadaver,uninjured. 3D-SSM, CNN and reconstruction parame-

ters remained constant and can be taken from Tab. 3, 4 and 9. The proposed workflow,

shown in 4.1.2, was conducted on the entire data set corresponding to each ankle pair.

First, the 3D-SSM with the CNN-complement was used to perform a segmentation on

the 3D image of the injured ankle. Next, the 2D-3D reconstruction was performed using

the 3D-SSM Xbone,injured and the 2D projection images of the respective uninjured ankle.

The resulting 3D-SSM Xbone,uninjured was compared to the 3D ground truth segmentation

of the uninjured ankle. Afterward, both, Xbone,uninjured and the reference ground truth

were registered to Xbone,injured and comparison was repeated.

Figure 49: Two configurations used for the overall evaluation: Configuration 1
consists of projection images lateral, AP and mortise (left). Configuration 2 con-
sists of projection images lateral, lateral+57◦ and mortise.

Preliminary experiments already indicated that using the three standard projections might

not be the optimal selection for the 2D-3D reconstruction. To examine whether a differ-

ent selection is beneficial, two configurations were chosen (cf. Fig. 49):

1 The overall pipeline was conducted using three standard projections, namely AP,

mortise and lateral view.
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2 Instead of using the AP view as third standard projection, the overall pipeline was

conducted using mortise, lateral and a third projection image between mortise and

lateral with B3 = lateral+57◦.

With this experiment, not only the overall error for two configurations but also the influ-

ence of the 3D-3D registration could be assessed. In clinical routine, the surgeon exam-

ines the result of the reduction at two levels, in particular, approximately 10 mm above

the tibia plafond to evaluate the fibula in the incisural notch and 6 mm below to evaluate

the fibular rotation (cf. Fig. 39). Besides conducted 3D measurements before and after

the 3D-3D registration, these two slices were considered for a more specific comparison

most relevant to the surgeon. The Hausdorff distance was used to measure the largest

deviation between the two shapes.

5.7.3 Clinical evaluation

The computation of shape metrics is a common and adequate way to quantify errors

of the pipeline. However, those metrics are not easy to interpret in the clinical context.

Therefore, another experiment was conducted to assess the qualitative and quantitative

error from a surgeons’ perspective. The surgeon was asked to examine the reconstruc-

tion result Xbone,uninjured overlaid on the 3D image of the injured ankle and to decide

whether and how the reduction result must be modified. Then, the surgeon was shown

the real 3D intensity image of the uninjured ankle as an overlay and asked, whether the

same decision would have been made given the entire information of both ankles. Fur-

thermore, the surgeon was asked to report, whenever the shape of the reconstructed

Xbone,uninjured appeared suspicious or irregular.

5.7.4 Results

Standard plane adjustment: Tab. 11 presents the mean deviation of the computed stan-

dard planes compared to the ground truth standard planes adjusted by an orthopedic

surgeon. Results were averaged over all 11 patients. The mean angle deviation of the

axial standard plane is smaller than the mean sagittal standard plane deviation.

Positional deviation [mm] Deviation axial plane [◦] Deviation sagittal plane [◦]
2.34±0.75 2.47±1.74 7.44±2.71

Table 11: Standard plane deviation
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Overall evaluation

Tab. 12 and 13 show the 3D and the 2D results for eleven clinical cases evaluated on the

two evaluation planes (cf. section 5.2 for a definition). The results in Tab. 13 refer to

configuration 2 in which a third projection image halfway between mortise and lateral

view was chosen. All measures show an improvement when compared to the results

achieved with the conventional selection (mortise, lateral, AP).

3D-SSM segmentation 2D-3D reconstruction
µ σ min max µ σ min max

3D surface evaluation tibia
ASD [mm] 0.653 0.151 0.446 0.942 0.890 0.113 0.731 1.053

3D surface evaluation fibula
ASD [mm] 0.879 0.534 0.498 2.417 1.014 0.345 0.682 1.691

2D-3D reconstruction-
induced error

Overall error after
3D-3D registration

µ σ min max µ σ min max
2D Position 1 (10 mm above tibial plafond)

Dice 0.913 0.027 0.857 0.956 0.882 0.060 0.748 0.945
Jaccard 0.842 0.045 0.750 0.915 0.794 0.060 0.598 0.895
Hausdorff [mm] 1.70 0.39 1.08 2.50 2.09 0.52 1.11 2.97

2D Position 2 (6 mm below tibial plafond)
Dice 0.918 0.033 0.846 0.954 0.892 0.047 0.784 0.954
Jaccard 0.849 0.056 0.733 0.913 0.807 0.074 0.645 0.912
Hausdorff [mm] 2.45 0.87 1.49 4.14 2.76 0.93 1.49 4.78

Table 12: Quantitative evaluation of the whole pipeline for configuration 1

The first column compares the reconstruction result directly to the ground truth segmen-

tation. The second column depicts the result after the reconstruction result and ground

truth segmentation are mapped to the injured ankle. The mean Hausdorff distance of

configuration 2 is 1.65±0.48 mm before registration and slightly increases to 1.72±0.57

mm after 3D-3D surface registration at 10 mm above the tibial plafond (position 1). In

addition, the mean Dice score decreases after registration. At 6 mm below the tibial pla-

fond (position 2), the mean Hausdorff distance is higher before and after registration.

This might be attributed to the smaller contour size at that position that is more sensi-

tive to shape deviations. The Dice score decreases similar to the score at position 1. The

visual results depicted in Fig. 50 (third column) show that in most cases ground truth

segmentation (green) and reconstruction of the uninjured side (red) overlap reasonably.

Some cases e.g. patient 2 show a shape deviation due to errors of the workflow mainly

attributed to inaccuracies in the 2D deep learning segmentation.
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3D-SSM segmentation 2D-3D reconstruction
µ σ min max µ σ min max

3D surface evaluation tibia
ASD [mm] 0.653 0.151 0.446 0.942 0.873 0.150 0.704 1.269

3D surface evaluation fibula
ASD [mm] 0.879 0.534 0.498 2.417 0.935 0.301 0.578 1.536

2D-3D reconstruction-
induced error

Overall error after
3D-3D registration

µ σ min max µ σ min max
2D Position 1 (10 mm above tibial plafond)

Dice 0.917 0.018 0.8777 0.941 0.898 0.045 0.834 0.957
Jaccard 0.848 0.031 0.781 0.888 0.753 0.110 0.495 0.863
Hausdorff [mm] 1.65 0.48 1.08 2.61 1.72 0.57 0.99 3.11

2D Position 2 (6 mm below tibial plafond)
Dice 0.919 0.032 0.855 0.960 0.910 0.064 0.731 0.934
Jaccard 0.852 0.053 0.747 0.923 0.836 0.064 0.731 0.934
Hausdorff [mm] 2.32 0.63 1.49 3.43 2.35 0.64 1.49 3.43

Table 13: Quantitative evaluation of the whole pipeline for configuration 2

Method Time [s]
3D-CNN segmentation 1.65±0.48
3D-SSM segmentation 22.60±0.78
2D-CNN segmentation <0.06
2D-3D initialization 1.24±0.06
2D-3D reconstruction 38.27±2.89
3D-3D reconstruction 5.25±0.49

Table 14: Mean time consumption: Pipeline methods

Tab. 14 shows the mean time consumption for the different components measured for

all 11 cases. The C++ based MITK implementation was developed and executed using an

Intel® Core™i7-7820HQ CPU at 2.90GHz with 32 GB of RAM. All CNN based methods

were implemented with the python based framework PyTorch and trained as well as ex-

ecuted using an Intel® Core i7-3930K™CPU at 3.2 GHz with 32 GB of RAM. The results

show that the 2D-3D reconstruction and the 3D-SSM segmentation are the most time-

consuming methods of the pipeline. All individual components were executed in less

than a minute.
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Figure 50: Visual comparison of the overall pipeline: Results are depicted for all
eleven clinical cases after executing the whole pipeline including the 3D-3D reg-
istration. In the background, the 3D image of the injured ankle is displayed at
evaluation position 1 (10 mm above the tibia plafond). The blue surface refers to
the segmentation of the injured ankle. The red surface resembles the computed
reconstruction result of the uninjured ankle mapped to the segmentation of the
injured ankle. For comparison, also the ground truth segmentation of the unin-
jured ankle is mapped to the injured ankle (green surface). Column 3 shows the
discrepancy between the computed and the ground truth segmentation.

Clinical evaluation

Tab. 15 depicts the results of the visual inspection performed by two trauma surgeons.

Both were asked to decide whether they would perform a correction of the reduction

result given the information of the computed reconstruction result (left) and the real

intensity image of the contralateral side (right). In case of an optional correction (Tab.

15,(O)), the deviation between the injured and uninjured fibula was almost small enough

so that the surgeon would not necessarily have performed an intra-operative revision

of the reduction result. Surgeon 1 made the same decision in ten out of eleven cases.
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Correction based on
Reconstruction result Contralateral image

Patient Surgeon LT MT AT PT IR ER LT MT AT PT IR ER
1 1 X O

2
2 1

2 X
3 1 X X

2
4 1 X X X X

2 X X
5 1 (O) (O)

2
6 1 O O O O

2 O
7 1 X

2 X X
8 1 (O) (O)

2
9 1 O O

2
10 1 X X

2 (X) X
11 1 X X X X

2 O X O X

LT = Lateral translation MT = Medial translation AT = Anterior translation
PT = Posterior translation IR = Internal rotation ER = External rotation

X = Correction O = Slight correction (O) = Optional correction

Table 15: Clinical evaluation performed by two orthopedic surgeons

Surgeon 2 agreed in seven out of eleven cases with the reconstruction result. In one case

(patient 10, (X)), he graded the reconstruction result as not valid, although he stated that

- if he had trusted the result - both would have led to the same decision. In half of the

cases, both surgeons disagree in their decision whether and how the reduction result

needed to be corrected.
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CHAPTER 6

DISCUSSION

This chapter discusses general remarks (section 6.1) as well as the different methods pre-

sented in this thesis with respect to the findings of the conducted experiments and re-

sults (section 6.2-6.5). Section 6.6 gives an overview of conclusions drawn from the con-

ducted work, section 6.7 summarizes the main contributions and section 6.8 provides

future directives in the field of computer-assisted ankle surgery.

6.1 Intra-operative assistance system for ankle surgery

In this work, a novel approach for intra-operative assistance in ankle surgery was pro-

posed. To enable a translation into the surgical workflow, the methods must follow strict

time constraints. Often, advanced methods found in the literature (e.g. M-reps men-

tioned in section 3.2) can not be transferred into real clinical scenarios since their ex-

ecution is too time-consuming. Thus, in this work time-efficient methods were devel-

oped and employed. Comparable systems found in the literature often are trained on

normalized pre-operative CT images that allow to employ intensity-based reconstruc-

tion approaches (BONARETTI et al. 2014; EHLKE et al. 2013; ZHENG 2011). The conducted

work was limited to feature-based reconstruction since C-arm images contain inhomo-

geneities and artifacts. A simulation of the required realistic DRRs is not feasible. Fur-

thermore, all of the experiments conducted in the scope of this thesis were trained on

a limited amount of data that especially in the case of learning-based approaches can

highly affect the performance.

The proposed workflow relies on the assumption that the intra-individual variance

of ankle pairs is significantly lower than the inter-individual variance among the pop-

ulation. An evaluation was conducted to verify the hypothesis by examining the shape
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deviation of pairs as opposed to the whole population. For this particular purpose, all

ankle pairs from data set collection Scadaver,uninjured were selected. Those data sets were

not affected by fractures or pathologies and serve the purpose of a direct shape compar-

ison. A 3D-SSM was trained on all 24 subjects of the respective 12 pairs. Afterward, the

variance of each landmark of the 3D-SSM was calculated using Eq. 16. The results de-

picted in Fig. 51 could substantiate the clinical hypothesis that intra-individual variation

is smaller than inter-individual variation.

Figure 51: Mean landmark variation of tibia and fibula: Inter-individual varia-
tion between each ankle and a) all other ankles b) all other contralateral ankles
from the population. c) shows the intra-individual variation between all twelve
pairs. The intra-individual variation is lower compared to the inter-individual
variation. The deviation at the proximal end of the fibula is caused by cutting
the shafts. The figure was adapted from THOMAS et al. 2019.

6.2 3D bone segmentation

The results presented in section 5.4 showed that two main limitations of the state of the

art methods when being applied to the ankle joint could be alleviated to enable an accu-

rate and robust model-based segmentation of the ankle joint in C-arm images.

Errors of the SSM were mainly attributed to its sensitivity in terms of initialization

or significant changes in appearance. Those changes, e.g. caused by metal artifacts at

different locations can only be incorporated during SSM training when the occurrence

of metal implants can be modeled by a statistical distribution. The training and testing

data included different fracture types. Sinjured,clinical contained 3D images of the injured

ankle after fibula reduction and showed a large variety of different metal implants that

not only varied in terms of location (different positions of the plate at the fibula shaft)

but also implant type (single syndesmotic screw or plate and multiple screws). The most

notable variance appeared to be the height of the plate fixated to the fibula.
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With the limited number of training data it was challenging for the SSM to generalize.

A visual inspection of the results revealed that errors were mainly caused by an initial-

ization outside of the capture range of the SSM so that it failed to converge into local

minima. The fibula is a tubular slim bone that was prone to failures whenever the SSM

and the real fibula in the image did not overlap. A common observation was that the

fibula SSM did not reach to the distal end of the real fibula and was rather guided by the

location of the metal implant.

The 3D-CNN segmentation yielded accurate results. Occasionally surface bleeding,

dislocated voxels or holes were observed. The approach is further limited by the varying

shaft. To reduce the impact of the cut shaft, a comparison to the ground truth segmenta-

tions was performed on the cropped image. This induces a certain bias, however, it only

affects areas that are less relevant for the subsequent pipeline. The performance of the

CNN network might be further improved in the future by performing a more advanced

hyperparameter search since the parameters used in the conducted experiments were

selected by manual search starting from recommendations found in the literature.

Results in section 5.4.6 clearly demonstrate the superiority of the proposed method

over the pure intensity-based SSM. The accuracy of the segmentation could be sus-

tained for arbitrary initial placements of the model. The segmentation quality is inde-

pendent of the initial position. This robustness is attributed to the coarse registration

of the model to the semantic segmentations. The results further demonstrated that the

proposed method could even outperform the pure intensity-based segmentation in case

of an ideal SSM placement.

The proposed hybrid segmentation comes with the advantage of providing corre-

sponding landmarks at the cost of only a slight reduction of accuracy compared to the

3D-CNN segmentation. The CNN-complemented SSM method was capable of handling

the varying positions of the one-third tubular plate. One patient of the data set collec-

tion was treated using a one-third tubular plate and additionally multiple, large screws

(cf. Fig. 52). This sample yielded one of the highest errors in the SSM evaluation which

can be explained by its out-of-distribution appearance that has not been learned. In that

particular case, the subsequent SSM segmentation is dependent on the CNN and failed

to perform a valid segmentation. A solution would be to re-train the SSM and CNN with

more training data to cover a larger variety of treatment types.

Another advantage of the proposed hybrid SSM method is the possibility to transfer to

different modalities. Since shape and appearance are completely decoupled, the SSM

is independent from the modality and can be applied to e.g. MRI data by training an
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additional neural network.

(a) Accurate segmentation of the ROI (b) Outlier with worst performance

Figure 52: Accurate 3D-SSM segmentation of the ROI versus the outlier with
worst performance: The 3D-CNN is shown on the left and 3D-SSM with CNN
complement on the right side. The worse example shows a 3D image with larger
and more metal implants that were not fully represented in the training.

The talus was only considered for the CNN experiment since its SSM segmentation

was often hampered by being only partially visible on the C-arm image. The pure-intensity

based method completely fails if a large proportion of the mesh is outside of the image.

The CNN-complemented method only relies on the segmented sections that allows the

model to remain at the desired position but fails to establish the correct shape appear-

ance. Still, it can be useful for the initialization of the multi-object model. By training

and applying the SSM only on images with the talus fully present this limitation can be

eliminated. However, to transfer the method into the clinical workflow, one pre-requisite

would be to ensure that the ankle is placed with the tibia plafond in the iso-center.

6.3 2D fluoroscopic image understanding

2D-CNN segmentation plays an important role in the pipeline. Experiments were con-

ducted on the data sets of Sclinical,pairs since the task requires the segmentation of unin-

jured ankle joints in C-arm images.

The conducted cross-validation results showed mixed results for the different bones

(examples are provided in Fig. 53). The accuracy was impeded by obstacles like the table

or other external objects that could not be sufficiently represented in the training data

and visual inspection showed that the table and the fibula were very similar in intensity

and shape which further hampered especially fibula segmentation.

One other explanation for the segmentation performance might be based on the creation

of the ground truth data. Since there was no ground truth data for the fluoroscopic im-

ages, it was derived by projecting the 3D ground truth segmentations onto the projection

planes using the projection matrices. Hence, the created segmentations were influenced
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Figure 53: Visual inspection of the 2D-CNN segmentation applied to data of the
cadaver study: The left image shows an accurate 2D segmentation comparing
the result (red) with the ground truth segmentation (green). The right image
shows an example that contains an external fixation plate used for the study
in the FOV. Since plate and bone had similar intensity values, the plate was
mislabeled as fibula.

by potential calibration errors.

A sampling from only 100 images that are acquired by an orbital rotation around the an-

kle and different for each subject results in a sparse sampling of the overall distribution

and naturally did not cover all degrees of freedom. It is therefore expected to contain

out-of-distribution data in the test set.

The experiment conducted in section 5.5.3 was designed to investigate whether the

segmentation accuracy could be increased by limiting the viewport. Viewport restriction

should naturally decrease the intensity variation while increasing the prediction accu-

racy. However, results indicate the opposite. The reason for this rather contradictory re-

sult might be based on the circumstance that a viewport restriction also highly reduced

the number of training data. The CNN seems to be not unable to generalize well towards

unseen data when trained on less training data even if the appearance of the data in

terms of the shape of the bone is more similar.

The data sets of the cadaver study have the additional limitation that they do not com-

pletely resemble the variation of the clinical data. One reason is the positioning of the

limbs, which were separated from the body of the donor. This allowed to place the foot

in different positions from a realistic configuration. Both cadaver studies entail different

limb positions and different C-arm configurations. Furthermore, 18 of the limbs were

fixated by a plastic plate to ensure an even positioning. This plate is visible in the 2D im-

ages and might have added additional errors to the CNN training. A C-arm of identical
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construction and type was used for the clinical experiment and the cadaver study. How-

ever, both devices were calibrated independently and might have different calibration

errors. This has to be taken into account for the ground truth 2D segmentation creation.

It must be noted that all images were center cropped before CNN segmentation. Thus,

the image borders were not taken into account for training and evaluation. However,

the relevant part of the ankle joint is most likely located in the image center and there-

fore a sparing of image borders should not affect the pipeline adversely. Similar to the

3D-CNN training, hyperparameter search was performed manually and could be further

improved by more advanced search methods.

The landmark extraction showed reasonably good results. Even the maximal ob-

served deviation of 110 pixels (approximately 14 mm) placed the model close enough to

its final position as shown in the subsequent experiments. However, the performance is

again dependent on the CNN segmentation and therefore can be improved accordingly.

As observed in the results of the 2D-3D reconstruction-related experiments, the ac-

curacy of the 2D segmentation plays the most important role in the pipeline. 2D seg-

mentation inaccuracies have the greatest impact on the reconstruction result. Thus, it

is essential to further improve performance. In conclusion, the limitations of the pro-

posed methods are explainable and can probably be addressed using a larger amount of

training data with accurate ground truth segmentations.

6.4 2D-3D reconstruction

Different assumptions about the 2D-3D reconstruction can be derived from the con-

ducted systematic experiments. The proposed initialization scheme provides a sufficient

pre-alignment of the 3D-SSM. No significant differences could be observed for the recon-

struction accuracy compared to the perfect initialization. Perturbing the shape parame-

ters with the variance of the SSM slightly increased the ASD. It has to be noted that the

evaluation is limited because the noise added to the 3D-SSM changed the shape globally

and probably with a higher variance than the error induced by the 3D-SSM segmenta-

tion of the injured ankle. To evaluate realistic model deviations, the 3D-SSM would have

to be altered locally. The results indicate that the quality of the 2D segmentation has the

greatest impact on the performance of the 2D-3D reconstruction. Hence, to improve the

overall performance, attention has to be given to the improvement of the 2D-CNN seg-

mentation that, as already stated, can be achieved by increasing the amount of training

data.

Increasing the number of fluoroscopic images could only improve the accuracy of the

fibula but slightly decreased the accuracy of the tibia. This rather contradictory result
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Figure 54: Reconstruction results with a varying number of projection images:
Visual inspection of the tibia when reconstruction is performed using 2 projec-
tion images (left) and 7 projection images (right). When using 7 projection im-
ages, the outer contour is reconstructed more accurately but adversely affects
concave areas of the incisura.

can be explained by visual inspection (cf. Fig. 54). The fibula 3D-SSM benefits from the

increase of contours points on the outer surface. The tibia 3D-SSM is also guided to the

contour points and, in case of 7 projections, closely approaches the bone surface (Fig.

54, right). On the contrary, the 3D-SSM alters its global shape parameters to reach the

surface and deforms in areas in which the model lacks any contour points. The recon-

struction method only employs the outer surface which means that concave areas like

the tibia plafond or the incisura will never add information to the reconstruction. This

explains that the error increases in concave areas of the tibia.

This unwanted behavior could be reduced by tagging areas of the incisura and the

tibia plafond and make them independent of any shape deformation in the last step of

the reconstruction. A similar approach has been shown by GÖRRES et al. 2016 for the 3D-

SSM segmentation. Another solution would be to integrate inner contours or intensity

values in the reconstruction process. The fibula is a convex bone that is not affected

by this behavior and improves with more standard projections. Using more standard

projections naturally increases the run time of the reconstruction and would increase

the cumulative radiation exposure.

6.5 Clinical integration and visualization

The overall pipeline can be executed by providing 2D and 3D image data as well as the

laterality and the corresponding projection matrices. No further human-machine inter-

action is necessary.

The current state of the art in ankle surgery is the manual adjustment of the single

standard planes. The presented approach automatically derives standard planes from

3D images of the upper ankle joint after 3D-SSM segmentation. It is an easy and fast
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method and does not require any user-interaction. The method is adaptable to differ-

ent anatomies like lower ankle joint, wrist or shoulders and allows to compute standard

planes defined with inter-bone relations. The method is limited by the prior 3D-SSM

segmentation as an additional step but is applied as part of the overall pipeline in any

case.

The overall pipeline evaluation revealed that the reconstruction as such provides ac-

curate surface models in most cases. It could be shown that the error increases with the

3D-3D registration even though the reconstruction worked well. The 3D-3D registration

is influenced not only by the reconstruction result but also by shape deviations for the

previous step and the natural anatomical variance of both ankles. One possible solu-

tion would be to provide the surgeon only with the side-by-side view of both results to

eliminate the bias by the registration. It could be shown that the viewport of the third

standard projections influences the performance of the reconstruction. Since the stan-

dard projections AP and mortise view are relatively close to each other the 3D-SSM does

not gain distinct spatial information.

The results presented in THOMAS et al. 2019 for the overall evaluation could be further

improved as depicted in section 5.7. Three main differences explain the discrepancy be-

tween both evaluations. The 2D-CNN was trained in a leave-one-out cross-validation

using all data sets except the test set. This increased the amount of training data and

supplemented the training data with clinical cases that were more similar in appear-

ance than the data of the cadaver study. The increased robustness and accuracy of the

2D-CNN substantiate the assumption that the results can be strongly improved by more

training data.

In addition, a multi-object GPA was used to globally optimize the pose of the bones

and make the model more robust towards initialization. The results could be further

improved by using a third standard projection different from the AP view.

Comparing the results for both configurations lead to the conclusion that selecting a

third standard projection with a high angular margin between the other two yields better

results. This can be naturally explained by a better spatial distribution of anchor land-

marks for the reconstruction. However, all conclusions drawn from the experiment must

be interpreted with caution, since the examined clinical cases were very limited and may

not reflect the entire distribution.

The entire pipeline can be executed in an average time frame of 69 s. The computa-

tion of all components except the 3D-CNN and 2D-CNN predictions are implemented

for execution on the CPU only. Leveraging GPU computation power for more steps of

the pipeline would make it even more efficient and most probably result in a sufficient
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performance increase for typical clinical usage scenarios.

The clinical evaluation showed that the opinion of both surgeons disagreed not only

in terms of the comparison between the computed reconstruction result and the real

intensity image. Their decision also varied in terms of their decision whether and how

they would correct the reduction result given the intensity image. Surgeon 1 agreed with

the reconstruction result in all cases except in one case for which it was not possible to

measure the fibula rotation. Surgeon 1 reported that the reason for that rather severe

misinterpretation was attributed to the shape of the distal part of the computed fibula

that was more and unnaturally convex compared to the real fibula. A convex shape in

this particular region made it difficult to measure a correct rotation. In addition, Surgeon

2 reported that the talus bone looked suspicious in two cases. As stated in the previous

section, the reconstruction of the talus was often hampered when it was only partially

visible on the 2D images. Surgeon 2 further mistrusted the computed reconstruction

result whenever the reconstructed tibia bone appeared to be shifted compared to the

injured tibia. This behavior might be explained by inaccuracies in the 3D-3D registration

or intra-individual variance of the left and right ankle.

6.6 Conclusion

With recent advances in technology and data science, many intra-operative assistance

systems have been developed but not many of them are integrated into the clinical rou-

tine as yet. One reason is that the feasibility of intra-operative assistance systems is often

constrained by high demands concerning the accuracy, patient safety, execution time

and robustness. Furthermore, an assistance system often comprises a complex conjunc-

tion of several methods. This work concentrated on the development of robust and fast

methods to enable direct clinical translation.

Assistance systems for orthopedic surgery can be found for many surgical applica-

tions, mainly concentrating on the femur, pelvis and knee. The current state of the art in

ankle surgery, however, is the manual visual inspection of the reduction result using an

intra-operative C-arm device. A standardized verification of the result is challenging due

to inter-individual differences of the fibula shape and pose and rather based on the expe-

rience of the surgeon. Only if a strong indication is given, a 3D scan of the contralateral

side is performed for comparison. In this thesis, a novel approach is presented that pro-

vides an automatized objective assistance while avoiding additional intervention time

and radiation dose caused by a full 3D scan. The prototype implementation of this ap-

proach showed good results on the available data in reconstructing the contralateral side

of the patient using only three projection images.
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The predefined objectives of this thesis concerned time consumption, radiation dose

and accuracy relevant to successful clinical integration. Most of the predefined objec-

tives were carefully revised and fulfilled although a prospective clinical evaluation is nec-

essary to investigate the potential integration into the clinical workflow, the usability and

the robustness of the approach.

An assistance system was designed to help the surgeon during ankle surgery. The

presented approach does not require any additional 3D C-arm images and thus avoids

further harm to the patient. Instead, the system works with low-dose projection images

of the uninjured ankle joint which is beneficial to patient and surgeon.

All methods were automatized and can be executed within one step so that the sur-

geon does not risk any contamination or induce time-consuming re-sterilization result-

ing from manual user-interaction. The technical workflow is compatible with the clini-

cal workflow and can be integrated without additional hardware. The proposed software

provides a visualization of the results with colored contour overlays that were designed

in collaboration with trauma surgeons to be intuitive and easy to interpret.

The proposed system consists of time-efficient and interchangeable methods. A 3D-

SSM approach was used to create a reference surface model from C-arm images of the

injured ankle after fixation and reduction from 3D C-arm images. Those images were

challenging in terms of the arbitrary position and orientation of the ankle in the 3D image

and the sheer amount and varying position of metal implants leading to a high variance

in appearance. By incorporating CNN based predictions in the initialization and SSM

adaption process, the accuracy and robustness of the method could be improved. The

2D-3D multi-bone reconstruction method was targeted at providing a fast and robust

estimate of the contralateral uninjured ankle by global optimization of all SSMs and an

efficient sampling of distance maps.

The mean execution time of 69 s does not increase the intervention time by a large

margin. The execution time can be even further reduced by the employment of GPUs to

facilitate the 2D-3D reconstruction. The methods are trained on data comprising differ-

ent fracture types and metal implants and thus are robust towards implant placement.

A number of potential limitations need to be considered. First, the prototype trained

by using the available training data could not as yet fulfill the high accuracy standards

needed for ankle surgery. In literature, clinical evidence for a malreduction is given by

a discrepancy ranging from 1 mm according to HERMANS et al. 2010 to 2 mm according

to GARDNER et al. 2006. The proposed system achieves a mean Hausdorff distance of

1.74 mm for the reconstructed contour after 3D-3D reconstruction. To meet both clini-

cal assumptions, the accuracy would have to be further improved. In the future, special
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attention has to be given to the local shape adaption. Concerning the tibia, the convex

shape of the incisura should be reconstructed more accurately since it plays an impor-

tant part in the evaluation.

The proposed pipeline consists of several components inducing certain inaccuracies

to the system. All individual inaccuracies are propagated and accumulate to the overall

error. This thesis provided a systematic evaluation of all different components and cor-

relation of associated sources of error to identify possible bottlenecks of the approach

and give further directions. By eliminating the influence of the 2D-CNN segmentation,

it could be shown that the pipeline has a high probability of computing an accurate esti-

mate of the uninjured ankle. There is evidence, that the inaccuracies of the CNN-driven

methods can be significantly reduced with more training data. Besides algorithmic lim-

itations, the quality of the images acquired with the image intensifier is influenced by

geometric distortion, artifacts and calibration errors that need to be taken into consider-

ation to gain further improvement.

Nevertheless, the first prototype showed that the results already provide a good esti-

mate of the injured ankle, even with the limitations described in this section. The pro-

posed approach can help to provide a non-biased view on the ankle that would be ben-

eficial especially for inexperienced surgeons. However, the pipeline should be evaluated

with more clinical cases to validate its benefits for surgeons and patients.

In conclusion, the novel concept for automatized contralateral side comparison has

a high potential for clinical transfer in the future, because it can assist the orthopedic

surgeon during the reduction process and enables an objective visual verification of the

surgical outcome without increasing radiation dose or time consumption.

6.7 Summary of contributions

In this thesis, a novel assistance system has been designed, implemented and validated,

which comprises different components. All of the components were either customized

for the application or newly engineered. The main contribution of this thesis was to

compute a 3D surface of the contralateral uninjured ankle from 2D fluoroscopic images

to enable an intra-operative assistance method for ankle surgeries. The following para-

graphs give a brief summary of all contributions:

Concept design for contralateral side comparison: In this thesis, the first autom-

atized assistance in ankle surgery was proposed by designing a workflow that is

capable of a contralateral side comparison. Current pitfalls like ethical concerns

and economical costs were alleviated by developing a workflow based on 2D
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fluoroscopic projections instead of a full 3D scan.

3D segmentation on C-arm images of the injured ankle: A method was devel-

oped that combines the shape prior of a 3D-SSM with the accurate segmentation

results of a 3D-CNN. By bridging the gap between statistical shape models and

convolutional neural networks, the 3D-SSM could be made more robust in terms

of initialization and more accurate in the presence of metal artifacts.

2D segmentation on C-arm fluoroscopic projections of the uninjured ankle: A

2D-CNN was employed to create accurate 2D bone segmentations from fluoro-

scopic images addressing problems like the highly varying viewport, superposi-

tioned bones and the sparse training data.

Multi-bone 2D-3D reconstruction: This thesis presents the first 2D-3D recon-

struction applied to the ankle joint. A feature-based reconstruction method was

introduced based on CNN segmentations of fluoroscopic images. The method op-

timizes the shape and pose of multiple 3D-SSMs jointly to increase efficiency and

robustness. Furthermore, an initialization method was proposed to automatically

place the 3D-SSMs close to the final position.

Visualization: A new approach was proposed to give a visual representation and

guideline for evaluation and correction of fracture reduction. An automatic visual

inspection tool was developed that automatically adjusts the viewing planes of the

3D image to clinically important standard planes. In addition, the surgeon is di-

rected towards the region of interest by automatically computing and switching

between two evaluation planes. The prototype provides the surgeon with a simul-

taneous side-by-side and overlay view on the ankle to ease the clinical evaluation.

6.8 Future work

The assistance system is a conjunction of different methods and components. Some

components may be further evaluated to benefit from possible optimizations:

Hybrid appearance learning: Complementing the 3D-SSM with CNN predictions al-

ready improved the segmentation performance. However, it would be interesting to

combine the information gained from both learned representations. In presence of metal-

induced artifacts, the SSM should rather trust the CNN prediction. The intensity varia-

tion in these areas is extremely high due to training samples without metal implants.

By evaluating the classifier output of the appearance model with the predicted label e.g.
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using cross correlation, suspicious areas might be identified during the segmentation.

Furthermore, a second CNN targeted at segmenting metal implants in images could be

used to directly classify suspicious regions. Alternatively, landmarks with high variance

could be tagged and handled separately inspired by the approach of GÖRRES et al. 2016.

Hybrid intensity and feature-based 2D-3D reconstruction: For this work, the 2D-3D

reconstruction is purely based on the SSM shape and corresponding features extracted

from the fluoroscopic images. This has the advantage that the SSM is independent of

the modality once the CNN is trained and could be transferred to other anatomies easily.

But since intensity-based approaches are assumed to be more accurate than feature-

based approaches, the incorporation of intensity values would be beneficial for the fine

adaption of the SSM. One possible hybrid approach would employ intensity-based re-

construction only in the final stage to improve the results in a reasonable time. The idea

of assigning different landmarks with weights or tags presented in section 4.4.2 could be

also transferred to the reconstruction step. This would allow emphasizing certain regions

while reducing the impact of others.

CNN-based 2D-3D reconstruction: Recent results from TOTH et al. 2018 showed that

2D-3D registration could be solved using CNNs to regress the transformation parame-

ters. But so far no work has been published on CNN-based 2D-3D reconstruction. Look-

ing into the field of computer vision, KUNDU et al. 2018 showed that a 3D voxel grid could

be created using a Generative Adversarial Network (GAN) to compare rendered artificial

from real 2D images. They claim that even eigenvalues of a PCA on aligned voxel grids

could be derived by only analyzing 2D images. An interesting future research question

would be if those aforementioned principles could be transferred to the medical domain

and applied to projection images to recover the shape parameters of a mesh representa-

tion. Compared to photographic images, 3D information cannot be inferred by analyzing

the perspective. On the other hand, there is no occlusion but only superposition of pixels

that still contain all the information.

Flat panel detector technology: 3D C-arm systems used in clinical routine are either

based on image intensifiers (e.g. Arcadis® Orbic 3D, Siemens Healthcare GmbH) or flat

panel detectors (e.g. Cios© Spin, Siemens Healthcare GmbH). The latter offers several

advantages w.r.t. the system used in this work. Recent improvements in C-arm image

quality might further improve the reconstruction quality. Furthermore, the new system

offers a motorized adjustment of the C-arm that could allow a standardized acquisition
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of standard projections to ensure quality and reproducibility. In section 2.2, differences

of both technologies have been briefly introduced. Notable are the elimination of geo-

metric distortion, less noise and inhomogeneities and the possibility to normalize the

gray values to resemble HU similar to a CT. This offers a variety of new directions such as

the simulation of more 2D training data would be possible to improve the quality of the

2D-CNN. The creation of simulated DRRs from a volume acquired by a C-arm with an

image intensifier was not feasible due to image artifacts and blurring. With the next gen-

eration of flat panel detectors, a DRR simulation from volume data could create more re-

alistic training images. The 2D-CNN segmentation could greatly benefit from simulated

training data that could be further enhanced by employing the DeepDRR generation pro-

posed by UNBERATH et al. 2018. Additionally, the flat panel system would allow develop-

ing intensity-based or hybrid reconstruction methods that cannot be implemented yet

due to the inhomogeneities and noise of the 3D images.

Also worth mentioning is the FOV of the Cios© Spin that is much larger than of the

previously used system. If both ankles are placed within the FOV, simultaneous com-

parison of both ankles could be realized by merely reflection and registration of both

images. A direct comparison between both intensity images would be the most reliable

method to compare the injured and uninjured ankle. Preliminary experiments on body

donors did already indicate that the acquisition of both ankles at the same time is possi-

ble with the new system. Since the image intensifier system is still widely installed, the

proposed approach remains applicable and might even benefit from the new system by

using evaluation data with simultaneous acquisition of both ankles.

The proposed concept has only been applied to images of the ankle joint. However, the

human body has a variety of different bilateral bone compounds, for which the con-

cept would only need to be slightly modified in terms of the landmark calculation during

2D-3D initialization. All other methods are not anatomy-specific and allow to general-

ize. One potential application would be fracture reduction of the wrist and the distal

humerus.
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Open reduction and internal fixation is a standard procedure in ankle surgery for treating

a fractured fibula. Since fibula fractures are often accompanied by an injury of the syn-

desmosis complex, it is essential to restore the correct relative pose of the fibula relative

to the adjoining tibia for the ligaments to heal. Otherwise, the patient might experience

instability of the ankle leading to arthritis and ankle pain and ultimately revision surgery.

Incorrect positioning referred to as malreduction of the fibula is assumed to be one of

the major causes of unsuccessful ankle surgery. 3D C-arm imaging is the current stan-

dard procedure for revealing malreduction of fractures in the operating room. However,

intra-operative visual inspection of the reduction result is complicated due to high inter-

individual variation of the ankle anatomy and rather based on the subjective experience

of the surgeon. A contralateral side comparison with the patient’s uninjured ankle is

recommended but has not been integrated into clinical routine due to the high level of

radiation exposure it incurs.

This thesis presents the first approach towards a computer-assisted intra-operative

contralateral side comparison of the ankle joint. The focus of this thesis was the design,

development and validation of a software-based prototype for a fully automatic intra-

operative assistance system for orthopedic surgeons. The implementation does not re-

quire an additional 3D C-arm scan of the uninjured ankle, thus reducing time consump-

tion and cumulative radiation dose.

A 3D statistical shape model (SSM) is used to reconstruct a 3D surface model from

three 2D fluoroscopic projections representing the uninjured ankle. To this end, a 3D-

SSM segmentation is performed on the 3D image of the injured ankle to gain prior knowl-

edge of the ankle. A 3D convolutional neural network (CNN) based initialization method

was developed and its outcome was incorporated into the SSM adaption step. Segmen-
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tation quality was shown to be improved in terms of accuracy and robustness compared

to the pure intensity-based SSM. This allows us to overcome the limitations of the pre-

viously proposed methods, namely inaccuracy due to metal artifacts and the lack of

device-to-patient orientation of the C-arm.

A 2D-CNN is employed to extract semantic knowledge from all fluoroscopic projec-

tion images. This step of the pipeline both creates features for the subsequent recon-

struction and also helps to pre-initialize the 3D-SSM without user interaction. A 2D-

3D multi-bone reconstruction method has been developed which uses distance maps

of the 2D features for fast and accurate correspondence optimization and SSM adap-

tion. This is the central and most crucial component of the workflow. This is the first

time that a bone reconstruction method has been applied to the complex ankle joint

and the first reconstruction method using CNN based segmentations as features. The

reconstructed 3D-SSM of the uninjured ankle can be back-projected and visualized in a

workflow-oriented manner to procure clear visualization of the region of interest, which

is essential for the evaluation of the reduction result. The surgeon can thus directly com-

pare an overlay of the contralateral ankle with the injured ankle.

The developed methods were evaluated individually using data sets acquired during

a cadaver study and representative clinical data acquired during fibular reduction. A hi-

erarchical evaluation was designed to assess the inaccuracies of the system on different

levels and to identify major sources of error. The overall evaluation performed on eleven

challenging clinical data sets acquired for manual contralateral side comparison showed

that the system is capable of accurately reconstructing 3D surface models of the unin-

jured ankle solely using three projection images. A mean Hausdorff distance of 1.72 mm

was measured when comparing the reconstruction result to the ground truth segmenta-

tion and almost achieved the high required clinical accuracy of 1-2 mm. The overall error

of the pipeline was mainly attributed to inaccuracies in the 2D-CNN segmentation. The

consistency of these results requires further validation on a larger data set.

The workflow proposed in this thesis establishes the first approach to enable auto-

matic computer-assisted contralateral side comparison in ankle surgery. The feasibil-

ity of the proposed approach was proven on a limited amount of clinical cases and has

already yielded good results. The next important step is to alleviate the identified bot-

tlenecks in the approach by providing more training data in order to further improve

the accuracy. In conclusion, the new approach presented gives the chance to guide the

surgeon during the reduction process, improve the surgical outcome while avoiding ad-

ditional radiation exposure and reduce the number of revision surgeries in the long term.
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Die offene Reposition und die anschließende osteosynthetische Versorgung gelten als

Standardverfahren zur operativen Behandlung von Sprunggelenksfrakturen. Da diese

Frakturen oft mit einer Verletzung der Syndesmose einhergehen, ist es unerlässlich, die

korrekte Lage zwischen Fibula und Tibia operativ wiederherzustellen. Eine Fehlstellung

der Fibula kann zu einer Instabilität der Syndesmose führen und damit einhergehend

eine frühzeitige Arthritis und Schmerzen am Sprunggelenk begünstigen oder gar eine

Revision der Operation erfordern.

Der Einsatz intra-operativer 3D C-Bögen ermöglicht eine räumliche Interpretation

und umfassende Analyse des Repositionsergebnisses. Die objektive Beurteilung wird je-

doch durch die hohe inter-individuelle Varianz der Form und Lage der am Sprunggelenk

beteiligten Knochen erschwert. Ein kontralateraler Seitenvergleich mit dem unverlet-

zten Sprunggelenk des Patienten wird zwar empfohlen, aber aufgrund der zusätzlichen

Strahlenbelastung und dem erhöhten Zeitaufwand bisher nicht in der klinischen Rou-

tine eingesetzt. Ziel dieser Arbeit war es, Methoden für ein Computer-gestütztes intra-

operatives Assistenzsystem zum kontralateralen Seitenvergleich des Sprunggelenks zu

entwickeln. Die vorliegende Arbeit umfasst das Design, die Entwicklung und die Vali-

dierung eines softwarebasierten automatisierten Prototyps. Der entwickelte Ansatz er-

fordert keinen zusätzlichen 3D C-Bogen Scan des unverletzten Sprunggelenks, um sowohl

die Zeit des Eingriffs als auch die Strahlenbelastung zu reduzieren.

Um ein 3D Oberflächenmodell des gesunden Sprunggelenks aus drei 2D Projektions-

bildern zu rekonstruieren, wird ein 3D Statistisches Formmodell (SSM) verwendet. Zu

diesem Zweck wird zunächst eine 3D-SSM Segmentierung des 3D Volumens des ver-

letzten Sprunggelenks durchgeführt, um eine gute erste Annäherung des zu rekonstru-

ierenden Modells zu erhalten. Die 3D-SSM Segmentierung wird mit einem 3D Convo-
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lutional Neural Network (CNN) kombiniert, welches zum einen zur Initialisierung des

Formmodells und zum anderen zur Anpassung während der Segmentierung eingesetzt

wird. Somit können zwei wesentliche Herausforderungen des konventionellen 3D-SSMs,

die Anfälligkeit gegenüber Metallartefakten und Ungenauigkeiten aufgrund einer ungün-

stigen Initialisierung, gelöst werden. Die Qualität der Segmentierung kann so im Vergle-

ich zu einer rein auf Bildintensitäten basierenden Segmentierung verbessert werden.

Ein 2D-CNN wird verwendet, um Konturen und Landmarken aus allen 2D Projek-

tionsbildern zu extrahieren. Dieser Schritt ermöglicht eine automatische Initialisierung

des Formmodells und generiert gleichzeitig Landmarken für den nachfolgenden Rekon-

struktionsschritt. Es wurde eine 2D-3D Rekonstruktionsmethode entwickelt, welche aus

den 2D Landmarken generierte Distanzkarten verwendet, um eine simultane, schnelle

und genaue Korrespondenzoptimierung und Formanpassung aller beteiligten Knochen

zu ermöglichen. Die Rekonstruktion ist der zentralste und wichtigste Schritt des vorgestell-

ten Ansatzes. Dies ist das erste Mal, dass eine Rekonstruktionsmethode auf das kom-

plexe Sprunggelenk angewendet wird. Die Arbeit stellt gleichzeitig die erste Rekonstruk-

tionsmethode vor, die CNN-basierte Segmentierungen in den Rekonstruktionsschritt in-

tegriert. Das rekonstruierte Formmodell des unverletzten Sprunggelenks kann nach der

Rekonstruktion rückprojiziert und mit dem frakturierten Sprunggelenk überlagert darge-

stellt werden. Dieser Schritt ermöglicht einen direkten Vergleich des kontralateralen und

des frakturierten Sprunggelenks, um eine mögliche Fehlstellung der Fibula zu identi-

fizieren.

Die entwickelten Methoden wurden mit Hilfe von Datensätzen aus einer Kadaver-

studie und repräsentativen klinischen Daten ausgewertet. Eine systematische Evalu-

ation wurde durchgeführt, um die Ungenauigkeiten des Systems und seiner Teilkom-

ponenten zu bewerten und wesentliche Fehlerquellen zu identifizieren. Eine Auswer-

tung des Gesamtsystems wurde auf elf Datensätzen durchgeführt, die im Rahmen eines

manuellen kontralateralen Seitenvergleichs in der klinischen Routine akquiriert wur-

den. Die Auswertung zeigte, dass das System in der Lage ist, 3D-Oberflächenmodelle

des unverletzten Sprunggelenks aus drei Projektionsbildern zu rekonstruieren. Das Sys-

tem zeigte vielversprechende Ergebnisse auf den verfügbaren Daten. Beim Vergleich des

Rekonstruktionsergebnisses mit der Referenzsegmentierung wurde ein mittlerer Haus-

dorffabstand von 1,72 mm gemessen, welcher die geforderte hohe klinische Genauigkeit,

die zwischen 1 - 2 mm angegeben wird, bereits fast erreicht. Der Gesamtfehler konnte

hauptsächlich auf Ungenauigkeiten in der 2D-CNN-Segmentierung zurückgeführt wer-

den.

Die in dieser Arbeit entwickelten Methoden stellen den ersten Ansatz für den automa-
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tischen Computer-gestützten kontralateralen Seitenvergleich in der Sprunggelenkschirur-

gie dar. Es konnte gezeigt werden, dass eine gute Annäherung der Oberfläche mit nur

drei kontralateralen Projektionsbildern erreicht werden kann. Die Realisierbarkeit des

vorgeschlagenen Ansatzes wurde an einer begrenzten Anzahl von klinischen Fällen nach-

gewiesen und hat bereits zu vielversprechenden Ergebnissen geführt. Der nächste wich-

tige Schritt besteht darin, die identifizierten Fehlerquellen zu reduzieren. Durch die

Erweiterung der Trainingsdatenmenge und der Auswertung auf einer größeren Daten-

menge soll das Verfahren in Zukunft weiter verbessert und validiert werden.

Zusammenfassend lässt sich sagen, dass der vorgestellte neue Ansatz die Möglichkeit

bieten kann, den Chirurgen während des Reduktionsprozesses zu unterstützen und

gleichzeitig eine zusätzliche Strahlenbelastung zu vermeiden mit dem Ziel die Qualität

der Operation zu verbessern und die Anzahl der Revisionseingriffe langfristig zu

reduzieren.
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fibular incisura of the tibia with magnetic resonance imaging”. In: Foot and Ankle

International 24.5, pp. 387–391. DOI: 10.1177/107110070302400502.

YU, W., C. CHU, M. TANNAST, and G. ZHENG (2016). “Fully automatic reconstruction of

personalized 3D volumes of the proximal femur from 2D X-ray images”. In: Interna-

tional Journal of Computer Assisted Radiology and Surgery 11.9, pp. 1673–1685. DOI:

10.1007/s11548-016-1400-9.

YU, W. and G. ZHENG (2018). “Atlas-based 3D intensity volume reconstruction from 2D

long leg standing X-rays: Application to hard and soft tissues in lower extremity”. In:

Advances in Experimental Medicine and Biology. DOI: 10.1007/978-981-13-1396-

7_9.

ZENG, G., X. YANG, J. LI, L. YU, and P.-a. HENG (2017). “3D U-net with Multi-level Deep

Supervision : Fully Automatic Segmentation of Proximal Femur in 3D MR Images”. In:

Wang Q., Shi Y., Suk HI., Suzuki K. (eds) Machine Learning in Medical Imaging. MLMI

159

https://doi.org/10.1007/978-3-030-00937-3_12
https://doi.org/10.1371/journal.pone.0217737
https://doi.org/10.1007/s00068-019-01120-6
https://doi.org/10.1007/s11548-013-0932-5
https://doi.org/10.1177/107110070302400502
https://doi.org/10.1007/s11548-016-1400-9
https://doi.org/10.1007/978-981-13-1396-7_9
https://doi.org/10.1007/978-981-13-1396-7_9


Bibliography

2017. Lecture Notes in Computer Science. Vol. 10541, pp. 274–282. DOI: 10.1007/978-

3-319-67389-9.

ZHENG, G., J. VON RECUM, L. P. NOLTE, P. A. GRÜTZNER, S. D. STEPPACHER, and J. FRANKE

(2012). “Validation of a statistical shape model-based 2D/3D reconstruction method

for determination of cup orientation after THA”. In: International Journal of Com-

puter Assisted Radiology and Surgery 7.2, pp. 225–231. DOI: 10.1007/s11548-011-

0644-7.

ZHENG, G. (2011). “Personalized X-ray reconstruction of the proximal femur via intensity-

based non-rigid 2D-3D registration”. In: Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

DOI: 10.1007/978-3-642-23629-7_73.

— (2013a). iJoint - 2D/3D reconstruction of patient-specific hip joint from conventional

X-ray radiographs. URL: https://www.istb.unibe.ch/research/information_

processing_in_medical_interventions/ijoint/index_eng.html (visited on

03/04/2019).

— (2013b). iLeg. 2D/3D reconstruction of patient-specific hip joint from clinically avail-

able X-ray. URL: https://www.istb.unibe.ch/research/information_processing_

in_medical_interventions/ileg/index_eng.html (visited on 03/04/2019).

ZHENG, G., X. DONG, and M. A. BALLESTER (2007). “Unsupervised Reconstruction of a

Patient-Specific Surface Model of a Proximal Femur from Calibrated Fluoroscopic Im-

ages”. In: Proceedings - Medical Image Computing and Computer-Assisted Interven-

tion (MICCAI). February. DOI: 10.1007/b12345.

ZHENG, G., S. GOLLMER, S. SCHUMANN, X. DONG, T. FEILKAS, and M. A. GONZÁLEZ BALLESTER

(2009). “A 2D/3D correspondence building method for reconstruction of a patient-

specific 3D bone surface model using point distribution models and calibrated X-

ray images”. In: IEEE Transactions on Medical Image Analysis 13.6, pp. 883–899. DOI:

10.1016/j.media.2008.12.003.

ZHENG, G. and L.-P. NOLTE (2018). “Computer-Aided Orthopaedic Surgery: State-of-the-

Art and Future Perspectives”. In: Advances in Experimental Medicine and Biology 1093

- Intelligent Orthopaedics. Ed. by G. ZHENG, W. TIAN, and X. ZHUANG. Springer Nature

Singapore.

ZHENG, G. and S. SCHUMANN (2009). “3D reconstruction of a patient-specific surface

model of the proximal femur from calibrated x-ray radiographs: A validation study”.

In: Medical Physics 36.4, pp. 1155–1166. DOI: 10.1118/1.3089423.

ZHENG, G. and W. YU (2017). “Statistical Shape and Deformation Models Based 2D-3D

Reconstruction”. In: Statistical Shape and Deformation Analysis: Methods, Implemen-

160

https://doi.org/10.1007/978-3-319-67389-9
https://doi.org/10.1007/978-3-319-67389-9
https://doi.org/10.1007/s11548-011-0644-7
https://doi.org/10.1007/s11548-011-0644-7
https://doi.org/10.1007/978-3-642-23629-7_73
https://www.istb.unibe.ch/research/information_processing_in_medical_interventions/ijoint/index_eng.html
https://www.istb.unibe.ch/research/information_processing_in_medical_interventions/ijoint/index_eng.html
https://www.istb.unibe.ch/research/information_processing_in_medical_interventions/ileg/index_eng.html
https://www.istb.unibe.ch/research/information_processing_in_medical_interventions/ileg/index_eng.html
https://doi.org/10.1007/b12345
https://doi.org/10.1016/j.media.2008.12.003
https://doi.org/10.1118/1.3089423


Bibliography

tation and Applications, pp. 329–349. DOI: 10.1016/B978-0-12-810493-4.00015-

8.

161

https://doi.org/10.1016/B978-0-12-810493-4.00015-8
https://doi.org/10.1016/B978-0-12-810493-4.00015-8


Publications

162



PUBLICATIONS

Some ideas, figures and tables shown in this thesis have appeared previously in the fol-

lowing publications:

Peer-reviewed international conference proceedings and journals

THOMAS, S., F. ISENSEE, S. KOHL, M. PRIVALOV, N. BEISEMANN, B. SWARTMAN, H. KEIL,

S. Y. VETTER, J. FRANKE, P. GRUETZNER, L. MAIER-HEIN, M. NOLDEN, and K. MAIER-

HEIN (2019). “Computer-assisted intra-operative verification of surgical outcome for

the treatment of syndesmotic injuries through contralateral side comparison”. In:

International Journal of Computer Assisted Radiology and Surgery. DOI: 10.1007/

s11548-019-02043-8.

THOMAS, S., M. SCHNETZKE, M. BREHLER, B. SWARTMAN, S. VETTER, J. FRANKE, P. A.

GRÜTZNER, H.-P. MEINZER, and M. NOLDEN (2017a). “Upper ankle joint space detec-

tion on low contrast intraoperative fluoroscopic C-arm projections”. In: Proc. SPIE

10135, Medical Imaging 2017: Image-Guided Procedures, Robotic Interventions, and

Modeling. Ed. by R. J. WEBSTER and B. FEI. DOI: 10.1117/12.2255633.

Peer-reviewed national conferences

THOMAS, S., M. SCHNETZKE, J. FRANKE, S. VETTER, B. SWARTMAN, P. A. GRÜTZNER, H.-P.

MEINZER, and M. NOLDEN (2017b). “Abstract: Detektion des tibiotalaren Gelenkspaltes

in intraoperativen C-Bogen Projektionen”. In: Bildverarbeitung für die Medizin 2017.

Ed. by K. H. MAIER-HEIN GEB. FRITZSCHE, T. M. DESERNO GEB. LEHMANN, H. HAN-

DELS, and T. TOLXDORFF. Berlin, Heidelberg: Springer Berlin Heidelberg, p. 217.

163

https://doi.org/10.1007/s11548-019-02043-8
https://doi.org/10.1007/s11548-019-02043-8
https://doi.org/10.1117/12.2255633


Publications

164



CURRICULUM VITAE

Personalien

Name: Sarina Thomas

Geburtsdatum: 09.09.1987

Geburtsort: Herborn

Nationalität: Deutsch

Akademische Ausbildung

Seit 07/2017 Doktorandin am

Deutsches Krebsforschungszentrum (DKFZ),

Abteilung für Medizinische Bildverarbeitung

(PD Dr. Klaus Maier-Hein)

09/2015-07/2017 Doktorandin am

Deutsches Krebsforschungszentrum (DKFZ),

Abteilung für Medizinische und Biologische Informatik

(Prof. Dr. Hans-Peter Meinzer)

10/2012-07/2015 Master of Science Visual Computing, Master of Science Autonome

Systeme

Technische Universität Darmstadt, Fakultät für Informatik

Durchschnitt: sehr gut (1,3 Visual Computing,

1,4 Autonome Systeme)

03/2009-09/2012 Bachelor of Science Medizintechnik

Hochschule Mannheim, Fakultät für Informationstechnik

Durchschnitt: sehr gut (1,3)

165



Curriculum vitae

07/2007 Abitur

Johanneum Gymnasium Herborn

Durchschnitt: gut (2,1)

Berufliche Erfahrung

03/2012-09/2012 Praktikum und Bachelorarbeit

KUKA Laboratories GmbH, Augsburg

03/2010-06/2010 Tutorin für Digitaltechnik 1

Hochschule Mannheim

02/2010-03/2010 Praktikum in der Strahlentherapie

Universitätsklinikum Mannheim

09/2008-10/2008 Laborpraktikum

Hessisches Landes Prüfungs- und Untersuchungsamt (im Gesund-

heitswesen), Dillenburg

02/2010-03/2010 Technisches Grundpraktikum

CLOOS Schweisstechnik, Haiger

Ausland

08/2013-12/2013 Auslandssemester Computer Science Department

Simon Fraser University, Vancouver, Kanada

08/2011-10/2011 Software Praktikum in der Robotics Group

Accuray Inc., Sunnyvale, Silicon Valley, USA

08/2010-02/2011 Praxissemester Biomedical Engineering Department

College of Engineering, Peking University, Peking, China

Stipendien

2015 Helmholtz Stipendium

2013 PROMOS Reisestipendium Canada

2009 GIZ Stipendium

15. Oktober 2019

166



ACKNOWLEDGMENTS

There are many people I would like to acknowledge in this section. First of all, I thank PD

Dr. Klaus Maier-Hein for all his useful comments, fruitful discussions and his patience

with me. I further want to thank Dr. Marco Nolden for his supervision especially during

the concept building phase of the project.

I enjoyed the inspiring research environment and I am thankful for the possibility to

collaborate with partners from industry and hospitals, which was essential for this the-

sis. Therefore, I want to thank all partners within the context of this project, Dr. Hol-

ger Kunze, Dr. Alexander Gemmel and Gerhard Kleinszig from Siemens Healthineers for

their technical instructions and for partly funding this project. Not to forget all highly

motivated clinicians from the BG Ludwigshafen, especially Dr. Jochen Franke, for giving

me insights to the OR and the clinical practice in trauma surgery.

I want to thank all my CAMIC co-workers and of course all my roommates, who showed

great team spirit throughout the entire time in the department as well as a helping hand

whenever or for whatever I needed it. I thank Lisa Kausch for all the knowledge exchange

and many peculiar but mostly amusing excursions to clinical studies. Furthermore, a

special thanks goes to the "Mädels", Esther and Jasmin for all their life saving support

by any means. I would like to thank the members of my most favorite "Waschbären-

party" running group, who not only discussed work-related topics during our practise

but also kept me motivated to achieve my goals. I also want to thank all my amazing

proof-reading angels, Andre, Ralf, Lisa, Christoph, Christian, Joseph, Maxim, Clemens,

Michel and Matthias for their constructive feedback during the writing of this thesis.

At the end of this section a truly deep "Thank you" goes to my family and friends, who

always believed in and supported me in good but -even more important- in rough times.

Finally, I want to thank Leonard for his unconditional support, for always encouraging

me and for sharing the best moments with me. This thesis is dedicated to all of you!

167


	Title Page
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Objectives
	Approach
	Outline

	Fundamentals
	Medical background
	Anatomy of the upper ankle joint
	Radiographic anatomical parameters
	Syndesmotic injuries and diagnosis
	Surgical treatment
	Conclusion

	Technical background
	2D Radiography
	Computed Tomography
	Intra-operative C-arm imaging
	Conclusion


	State of the art
	Assistance systems in orthopedic and trauma surgery
	3D anatomical shape representation
	Deep learning approaches
	Statistical shape modeling
	Combining shape model segmentation and deep learning

	Image understanding of radiological summation images
	2D-3D Reconstruction
	3D Model type
	Reconstruction strategy and definition of cost function
	Optimization strategies
	Setup and image data

	Discussion

	Methods
	Approach
	Clinical workflow
	System design choices
	Sources of error

	3D bone segmentation
	Statistical shape and appearance model
	3D-CNN-based segmentation
	Combined approach: Deep learning-driven 3D-SSM segmentation

	Fluoroscopic image understanding
	2D image segmentation
	Landmark extraction

	2D-3D multiple bone reconstruction
	Coarse model initialization
	Optimization

	Visualization and clinical workflow integration
	3D-3D model-based registration
	Plane adjustment
	Visualization


	Experiments & Results
	Data acquisition
	Overview and purpose of the experiments
	Evaluation metrics
	3D bone segmentation
	Training data and 3D-SSM creation
	Evaluation method
	Evaluation 3D-CNN segmentation
	Evaluation of the 3D-SSM segmentation
	Evaluation of the new combined 3D-SSM segmentation approach
	Results

	Fluoroscopic image understanding
	Training data and network parameters
	2D segmentation accuracy
	Viewport restriction
	Landmark detection
	Results

	2D-3D bone reconstruction
	Training data and 3D-SSM parameters
	Performance evaluation under ideal conditions
	Influence of the 3D-SSM
	Influence of initialization
	Influence of the 2D segmentations
	Number of projection images
	Results

	System evaluation
	Adjustment of standard planes
	Overall error estimation
	Clinical evaluation
	Results


	Discussion
	Intra-operative assistance system for ankle surgery
	3D bone segmentation
	2D fluoroscopic image understanding
	2D-3D reconstruction
	Clinical integration and visualization
	Conclusion
	Summary of contributions
	Future work

	Summary
	Zusammenfassung
	Bibliography
	Publications
	Curriculum Vitæ
	Acknowledgments

