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Abstract

Structural magnetic resonance imaging (MRI) is a very popular and effective technique used to 

diagnose Alzheimer’s disease (AD). The success of computer-aided diagnosis methods using 

structural MRI data is largely dependent on the two time-consuming steps: 1) nonlinear 

registration across subjects, and 2) brain tissue segmentation. To overcome this limitation, we 

propose a landmark-based feature extraction method that does not require nonlinear registration 

and tissue segmentation. In the training stage, in order to distinguish AD subjects from healthy 

controls (HCs), group comparisons, based on local morphological features, are first performed to 

identify brain regions that have significant group differences. In general, the centers of the 

identified regions become landmark locations (or AD landmarks for short) capable of 

differentiating AD subjects from HCs. In the testing stage, using the learned AD landmarks, the 

corresponding landmarks are detected in a testing image using an efficient technique based on a 

shape-constrained regression-forest algorithm. To improve detection accuracy, an additional set of 

salient and consistent landmarks are also identified to guide the AD landmark detection. Based on 

the identified AD landmarks, morphological features are extracted to train a support vector 

machine (SVM) classifier that is capable of predicting the AD condition. In the experiments, our 

method is evaluated on landmark detection and AD classification sequentially. Specifically, the 

landmark detection error (manually annotated versus automatically detected) of the proposed 
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landmark detector is 2.41mm, and our landmark-based AD classification accuracy is 83.7%. 

Lastly, the AD classification performance of our method is comparable to, or even better than, that 

achieved by existing region-based and voxel-based methods, while the proposed method is 

approximately 50 times faster.

Index Terms

Alzheimer’s disease (AD); regression forest; landmark detection; magnetic resonance imaging 
(MRI)

I. Introduction

Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders, with its 

financial and social burdens being compounded by the increase in the average lifespan [1], 

[2]. Early detection of AD is of great importance because treatments are most effective if 

performed during the earliest stages [3]. Currently, clinical diagnosis of AD depends largely 

on clinical history and clinical assessments that show neuropsychological evidence of 

cognitive impairment [4], [5]. Neurological experts, with years of experience, are able to 

identify the disorder and then make the correct diagnosis. However, the diagnosis procedure 

is time-consuming and requires extensive clinical training and experience, which makes it 

difficult for new or less experienced neurologists. Therefore, an efficient automatic 

computer-aided diagnosis system could help guide them throughout the diagnosis process.

The non-invasive structural magnetic resonance imaging (MRI) modality provides good soft 

tissue contrast and high spatial resolution, which is important for AD diagnosis [6]. For 

example, the volume of the hippocampus was found to be smaller in AD subjects, and the 

volume of the ventricle was found to be larger in AD subjects. When compared to the age-

matched healthy controls (HCs), these abnormal sizes may come from cell dysfunction, cell 

death, or both. Therefore, structural abnormalities in the brain of AD subjects are important 

diagnosis criteria when neuroimaging studies are performed [7], [8]. It is important to point 

out that, in most structural imaging studies, the accuracy of the computer-aided diagnosis 

system largely depends on the accuracy of tissue or structural segmentation, e.g., white 

matter (WM) or gray matter (GM) tissue segmentations, as well as the structural 

segmentations of cortical and subcortical limbic shape structures. For example, Zhang et al. 
[9] segmented the MR images into 93 regions-of-interest (ROIs), and then extracted GM 

concentrations based on these ROIs for AD diagnosis. Gerardin et al. [10] extracted 

hippocampal shape features based on a parametric boundary description. Aguilar et al. [11] 

applied a multivariate analysis technique on 57 MRI measures (e.g., regional volume and 

cortical thickness) that were used to train an AD classifier. Traditionally, volume/density 

measures have been used for AD diagnosis, but recently, cortical thickness [12] appears to 

be a more stable measure. In particular, cortical thickness is a better measure of GM atrophy 

due to the cytoarchitectural feature of the GM [13], [14], [15], [16], [17]. Although those 

methods have been proven to be effective in AD classification, the tissue and shape structure 

segmentation steps typically rely on nonlinear registration, which is a very time-consuming 

process. Moreover, manually-defined measurements (e.g., hippocampal volume, ventricular 
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volume, whole brain volume, and cortical thickness) are usually unable to capture all 

morphological abnormalities that are related to AD.

Several studies [18], [19], [20] have also focused on automatically identifying anatomical 

differences between AD subjects and age-matched HCs using group comparisons. For 

example, voxel-based morphometry (VBM) [21] was designed to identify group differences 

in local compositions in different brain tissues. To identify these differences, a common step 

is to warp individual MRI images to the same stereotactic space (or template image) using a 

nonlinear image registration technique. Once mapped to the template image, brain regions 

that show statistically significant between-group differences in brain tissue morphometry 

(e.g., gray matter density) are identified using a group comparison technique. Beside VBM, 

other methods, such as deformation-based morphometry (DB-M) and tensor-based 

morphometry (TBM) that focus on brain shapes estimated using a nonlinear deformation 

field, have also been proven to be useful [22]. In these methods, nonlinear image registration 

is an inevitable process. In addition to the group-comparison-based method as mentioned 

above, Rueda et al. [23] introduced a fusion strategy that used salient tissue/shape features 

by combining both bottom-up and top-down information flows to reveal complex brain 

patterns. Although this method is novel, the calculation of saliency maps and kernel matrices 

requires extensive computations.

To avoid these computationally expensive and time-consuming steps introduced by 

nonlinear image registration methods, here we develop a more efficient landmark-based AD 

diagnosis system. Importantly, nonlinear image registration and/or segmentation is not 

required for AD diagnosis in the proposed method. To achieve this, we first define a large set 

of discriminative landmarks whose local morphologies show statistically significant 

between-group differences. Then, we can extract morphological features according to the 

local regions around those discriminative landmarks for AD diagnosis. Now the problem 

becomes two-fold: 1) Landmark definition. That is, how to identify significant landmarks 

among millions of voxels in an image? And 2) fast landmark localization. How to efficiently 

identify landmarks in new testing images?

To address these issues, a novel landmark-based framework is proposed that only includes a 

nonlinear image registration step in the training stage in order to identify corresponding 

voxels across the training population. Specifically, in the training stage, group comparisons 

based on local morphological features are performed first to identify brain regions that have 

significant group differences. In general, the centers of the identified regions become 

landmark locations (or AD landmarks for short) capable of differentiating AD subjects from 

HCs. In the testing stage, for a new image (not included in the training data set), the 

identification of its AD landmarks becomes an automatic landmark detection problem. To 

solve this problem, a fast regression-forest-based landmark detection method that includes a 

shape constraint is developed. Since AD landmarks are found in local regions with 

significant group differences, accurate landmark detection is very difficult. To improve 

detection accuracy, additional landmarks with salient and consistent features, called active 

landmarks, are also identified to guide the AD landmark detection. Finally, a support vector 

machine (SVM) classifier (with a linear kernel) is trained using morphological features 

around the detected AD landmarks that can be used for AD diagnosis.
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In summary, our major contribution is two-fold: First, neither nonlinear image registration 

nor brain tissue segmentation is needed to apply the proposed method because of our 

landmark-based diagnosis framework. Therefore, our method is computationally more 

efficient, and accuracy is comparable, or better than, other frameworks that require nonlinear 

image registration. Second, a two-layer shape constraint regression forest model is 

developed, which provides a more efficient and accurate approach to detect AD landmarks. 

Here, a parametric shape constraint is added to the regression forest model to construct a 

robust model, and active landmarks that are salient and consistent, are defined to extract 

contextual features for guiding the AD landmark detection.

II. Method

Figure 1 illustrates the general framework of the proposed method. In particular, the 

framework defines three sequential steps: landmark definition, landmark detection, and 

AD/HC classification. In the landmark definition step, AD landmarks that have statistically 

significant differences between AD and HC in the training images are identified. In the 

landmark detection step, a pre-trained landmark detection model is used to automatically 

and efficiently detect AD landmarks in each testing image. In the classification step, a linear 

SVM classifier that is trained with landmark-based morphological features from the training 

images is applied to classify a testing image as HC or AD.

A. AD landmark definition

In order to discover the landmarks that differentiate AD from HC, a group comparison 

between AD and HC is performed on the training images. Specifically, a nonlinear 

registration is used to locate the corresponding voxels across all training images. Then, a 

statistical method, Hotelling’s T2 statistic [24], is adopted for voxel-wise group comparison. 

Finally, a p-value map is obtained after group comparison to identify the AD landmarks. The 

pipeline for defining AD landmarks is shown in Fig. 2.

1) Voxel correspondence generation—Since the linearly-aligned images are not 

voxel-wisely comparable, nonlinear registration is used for spatial normalization [21]. After 

spatial normalization, the warped images lie in the same stereotactic space, compared with 

the common template image. In particular, the Colin27 template is used, which refers to the 

average of 27 registered scans for a single subject [25]. In general, image registration 

includes a linear and a nonlinear registration step. The linear registration step simply 

removes global translation, scale, and rotation differences, and also resamples the images to 

have the same spatial resolution (1 × 1 × 1 mm3) as the template image. The nonlinear 

registration step creates a deformation field that estimates highly nonlinear deformations that 

are local to specific regions in the brain.

2) Group comparison—In order to identify local morphological patterns that have 

statistically significant between-group differences, local morphological features are 

extracted. Here, we extract morphological features based on the statistics of low-level 

features from a cubic patch. Specifically, the oriented energies [26], which are invariant to 

local inhomogeneity, are extracted as low-level features. Instead of using N-ary coding [26] 
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for vector quantization (VQ), we adopt a bag-of-words strategy [27] for VQ to obtain the 

final histogram features with relatively low feature dimensionality.

However, it is not appropriate to extract morphological features from the warped images 

because the morphological differences we are interested in may not be significant after 

nonlinear registration, i.e., the warped images are very similar to each other. On the other 

hand, linear registration only normalizes global shapes and scales of all brain images, thus, 

internal local differences are still kept and local distinct structures are reserved. In this way, 

it is reasonable to extract morphological features from linearly-aligned images.

By using the deformation field from nonlinear registration, we can build the correspondence 

between voxels in the template and each linearly-aligned image. For instance, for each voxel 

(x, y, z) in the template image, we can find its corresponding voxel (x + dx, y + dy, z + dz) in 

each linearly-aligned image, where (dx, dy, dz) is the displacement from the template image 

to the linearly-aligned image defined by the deformation field. In order to reduce the impact 

of potential registration errors and also expand the number of samples for statistical analysis, 

a number of supplemental voxels are further sampled in a Gaussian probability w.r.t. the 

distance to the corresponding voxel, within a limited spherical region. Therefore, for each 

voxel in the template, we can extract two groups of morphological features from its 

corresponding voxels and supplemental voxels in all training images that include both AD 

subjects and HCs. Finally, the Hotelling’s T2 statistic [24] is adopted for group comparison. 

Accordingly, each voxel in the template is assigned with a p-value, thus obtaining a p-value 

map w.r.t. every voxel in the template.

3) AD landmarks—Based on our obtained p-value map, discriminative AD landmarks can 

be identified among all voxels in the template. In particular, any voxels in the template, 

whose p-values are smaller than 0.01, are regarded as showing statistically significant 

between-group differences. To avoid large redundancy, only local minima (whose p-values 

are also smaller than 0.01) in the p-value map are defined as AD landmarks in the template 

image. Lastly, the landmarks for each training image can be easily identified by mapping 

these landmarks in the template using the deformation field estimated by nonlinear 

registration. Finally, the morphological features can be extracted according to the mapped 

landmarks and further used for AD/HC classification.

B. Active landmark definition

Since AD landmarks are associated with regions of statistically significant between-group 

differences, it is often very challenging to accurately identify them. To improve AD 

landmark detection accuracy, we define another type of active landmarks, which are salient 

and consistent, to guide the AD landmark detection. In the following paragraphs, both 

saliency and inconsistency, based on local patches, are defined and formulated.

1) Saliency—Similar to [28], [29], the term saliency is estimated by an entropy function 

that measures the complexity of the image intensities in a brain region. Because the goal is 

to identify informative regions in the entire brain, a saliency map is computed using the 

template image only. Specifically, the entropy at a voxel x in the template is defined as
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(1)

where i is a possible intensity value, and pi(s, x) is the probability distribution of intensity i 
defined in a spherical region Ω(s, x) centered at x with radius s. Here, different region sizes 

are used to calculate the entropies for each voxel in the template image, and hence, each 

voxel is assigned with several entropy values. We select the maximum value as the entropy 

for that voxel, and then obtain an entropy map corresponding to the template. An example of 

the saliency map is shown in Fig. 3 (a), where a large value implies that the region is very 

complex (i.e., rich with information).

2) Inconsistency—The term inconsistency is defined to describe the inconsistent degree 

in local structures across subjects. We adopt the variance of voxel’s local appearances across 

all training images as a measurement of the inconsistency. Similar to the definition of AD 

landmarks, we have the corresponding voxels from all training images (linearly-aligned) for 

each voxel in the template. For the corresponding voxel in a training image, we extract a 

local region Ω(s, x), which is a spherical region centered at the corresponding voxel x with a 

radius of s. Therefore, for a voxel in the template image, we can extract a local region from 

each training image and then calculate the mean intensity variance Var(s, x) across all 

images as

(2)

where N is the number of all training images and In(x) is the image intensity at x from the n-

th training image. In order to measure inconsistency from both coarse and fine scales, we 

use the mean variance of different sizes of regions to measure the inconsistency of each 

voxel. The inconsistency map is shown in Fig. 3 (b), where a large value implies that the 

region is inconsistent across subjects.

3) Active landmarks—An active map is estimated using the saliency and inconsistency 

equations in Eq. (1) and Eq. (2), respectively. In particular, for each voxel x in the template 

image, an active value Act(x) is defined as

(3)

where M is the number of scales, and α is a tuning coefficient to balance the two 

components of saliency and consistency. Each voxel x in the template is assigned an active 

value Act(x). Thus, we obtain an active map corresponding to the template. Here, we select 
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the local maxima as active landmarks. Note that the active landmarks for each training 

image (before nonlinear registration) can be mapped back from the active landmarks in the 

template, using its estimated corresponding deformation field.

C. Regression-forest-based landmark detection

Here, we automatically detect landmarks in a new testing image using existing landmark 

information in the training images. Similar to the generation of landmarks in training 

images, a straightforward method for landmark detection can be conducted using a 

registration approach. However, it is time-consuming and does not satisfy the purpose of our 

work.

Regression-forest-based methods have demonstrated their efficacy in anatomical detection of 

different organs and structures [30], [31], [32], [33]. Unlike classification-based methods 

[34], [35], [36], which determine each landmark location based only on the local patch 

appearance surrounding the landmark, regression-forest-based methods utilize the contextual 

appearance to help localize each landmark. Specifically, in the training stage, a regression 

forest is used to learn a non-linear mapping between the area surrounding the voxel, e.g., 
patch, and its 3D displacement to the target landmark (see Fig. 4 (a)). Since a multi-variate 

regression forest is used, the mean variance of the targets become the splitting criteria. 

Generally, morphological features, such as Haar-like features [37], scale invariant feature 

transform (SIFT) features [38], histogram of oriented gradient (HOG) features [39], and 

local binary pattern (LBP) features [40], can be used to describe a voxel’s local appearance. 

In this study, we employ the same morphological features as those used for AD landmark 

definition.

In the testing stage, the learned regression forest can be used to estimate a 3D displacement 

from every voxel in the testing image to the potential landmark position, based on the local 

morphological features extracted from the neighborhood of this voxel. There are several 

trees for a regression forest, so we use the mean prediction value from all trees as the output 

of regression forest. Therefore, by using the estimated 3D displacement, each voxel can cast 

one vote to the potential landmark position. Through aggregating all votes from all voxels 

(see Fig. 4 (b)), a voting map can finally be obtained (see Fig. 4 (c)), from which the 

landmark position can be easily identified as the location with the maximum vote.

Generally, the landmarks can be jointly detected using a joint trained regression forest, 

whose targets are the displacements to multiple landmarks. Therefore, multiple landmarks 

can be jointly predicted, instead of individual detection. However, there are two problems for 

the joint regression-forest-based landmark detection method in our application. 1) The 

dimensionality of targets for the regression forest is so high, making it too time-consuming 

to build a regression model. 2) The joint model may create an overly-strong spatial 

constraint to the targets, since landmarks in the whole brain may have large shape variations. 

To address these two problems, we propose a shape-constrained regression forest model.

D. Shape-constrained landmark detection

Instead of using multiple displacements as targets, a shape constraint is added to the targets 

in order to decrease dimensionality. As shown in Fig. 5 (a), traditional targets are [d̃1, … , d̃i, 
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… , d̃n] for n landmarks, where d̃i is a 3D displacement from the voxel to the ith landmark. 

On the other hand, the relationship from a voxel to all landmarks can also be described by 

the displacement from the voxel to the landmark center and a star-like shape constraint from 

all landmarks to the landmark center, as shown in Fig. 5 (b). The targets can then be 

represented as [d0̃, c̃1, … , c̃i, … , c̃n], since d̃i = d̃0 + c̃i, where c̃i is the offset from the 

landmark center to the ith landmark. Motivated by statistical shape model [41], [42], we 

perform principal component analysis (PCA) [43] for the shape constraint part (i.e., [c̃1, … , 
c ̃i, … , c̃n]) on the whole training dataset, and the shape constraint is represented by the top 

m principal components [λ1, … , λi, … , λm]. As a result, [d̃0, λ1, … , λi, … , λm] are used 

as new targets to train the regression forest model.

In the testing stage, a voxel’s targets can be predicted as [ ], and we 

can reverse them back to [ ] using the PCA coefficients. Then, the 

original displacements to multiple landmarks [ ] can be calculated. Finally, 

the voting process is performed to localize the final landmark positions, which is the same as 

the traditional voting strategy.

To address the second problem about the overly-strong shape constraint, the landmarks are 

clustered into different groups, and then each group is detected separately. To achieve this, 

we adopt a spectral clustering method named normalized cuts [44]. Landmark clustering is 

based on a dissimilarity matrix, where each entry is the variance of pair-wise landmark 

distances across subjects. In doing so, the shape constraint for each group is considered 

relatively stable, thus the regression forest model could be accurately constructed.

One major contribution of our landmark detection method is that we integrate a parametric 

shape constraint to the regression forest model. In the past, several studies have used shape 

constraints to increase landmark detection accuracy. For example, Cootes et al. [30] adopted 

regression forest to calculate a cost map, where a statistical shape model is applied for 

landmark matching. They proved that the regression forest can be used to generate high 

quality response maps quickly. Chu et al. [33] adopted regression forest to obtain the initial 

landmark positions and used sparse shape composition to correct the initial landmark 

positions. However, the shape constraints for these two methods are used after the regression 

based voting, which are different from our method that uses the constraint within the 

regression forest model. On the other hand, Cao et al. [45] and Chen et al. [46] also 

integrated shape constraints to their models and successfully detected landmarks robustly 

and accurately. Cao et al. [45] proposed a two-level boosted regression-based approach 

without using any parametric shape models. Chen et al. [46] proposed a landmark detection 

and shape segmentation framework by jointly estimating the image displacements in a data-

driven way. Without any parametric shape models, the geometric constraints were added to 

the testing image in a linear way. Since both above methods used nonparametric constraints, 

they are different from our parametric shape constraint.
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E. Active-landmark guided AD landmark detection

All active landmarks and AD landmarks are aggregated together and clustered into several 

groups. Then, the active landmarks for each group are separately detected using the 

proposed shape-constrained regression-forest-based method, and finally the AD landmarks 

are detected with the guidance of the detected active landmarks in the same group. In this 

study, we use active landmarks as priors for the AD landmark detection by adding auxiliary 

features based on active landmarks used to train the regression forest model, instead of 

solely using morphological features.

Specifically, not only morphological features, but also auxiliary features, such as the 

displacements from the voxel to the active landmarks, are extracted for each voxel, as shown 

in Fig. 6. The detection framework can also be viewed as a two-layer regression forest. In 

particular, the first layer is to obtain accurate active landmarks, and the output of the first 

layer is used as the input to the second layer regression forest for detecting AD landmarks. 

In doing so, the spatial constraints between AD landmarks and active landmarks are 

automatically added to the two-layer model. This is similar to the auto-context idea [47] that 

uses feedback of the first layer model to guide the second layer model. Note that the targets 

for regression forest in Fig. 6 is the 3D displacements from a voxel to multiple landmarks 

(not the parametrical coefficients from PCA). We show the original 3D displacements in Fig. 

6 for understanding the two-layer model more easily. But, in our method, we use the shape-

constrained targets as introduced in the above section.

F. SVM-based classification

Using the afore-mentioned landmark-based morphological features, we further perform 

classification to identify AD subjects from HCs, by adopting the linear SVM as the 

classifier. As shown in many existing AD diagnosis studies [4], [23], [48], SVM has good 

generalization capability across different training data, due to its max-margin classification 

characteristic. For more details about using linear SVM to classify AD subjects from HCs, 

please refer to the study in [4]. Specifically, we first normalize the landmark-based 

morphological features using the conventional z-score normalization method [49]. Then, the 

normalized features are fed into a linear SVM classifier for AD diagnosis.

III. Experiments

Subjects used in this study are from the ADNI database1. In this paper, we employ all screen 

MR images from ADNI-1, including 199 AD subjects and 229 age-matched HCs. We then 

randomly split the data into two sets, named as D1 (100 AD and 115 HC) and D2 (99 AD 

and 114 HC), and we perform a two-fold cross validation.

In our experiments, the size of each image is 256×256×256 with a voxel resolution of 1 × 1 

× 1 mm3. For generating an active map, we fix α = 0.5 to combine the saliency map and the 

inconsistency map, and the multiple radii are used in this study (i.e., s = [10, 20, 30]). The 

dimensionality of the morphological features is 50, which is defined by the number of 

1www.adni-info.org
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clustering groups when applying the bag-of-words method. For landmark detection, we use 

40 principal components for shape constraint regression forest, to preserve more than 97% 

information. Besides, we use 10 trees, and the depth of each tree is 25. For the linear SVM, 

we fix the margin parameter C as 1 for both our method and those competing methods.

In the following experiments, we first illustrate the group comparison results and then 

evaluate the landmark detection performance. Finally, AD/HC classification results are also 

provided.

A. Group comparison

Figure 7 illustrates 2D slices of the p-value map after a group comparison is performed. It 

clearly indicates significant group differences in the ventricles in both D1 and D2. It is well 

known that the ventricular volume in AD subjects is significantly different from that in the 

age-matched HCs [50], [51], [52]. Because brain ventricles are surrounded by gray and 

white matter structures typically different than that in AD subjects, any volume or shape 

changes that occur in these structures will affect the volumes and shapes of the ventricles. 

Because of the data-driven property of our method, the p-value map for each fold is slightly 

different from each other (see Fig. 7). This leads to different numbers of landmarks for the 

two folds. In our experiment, 1741 and 1761 AD landmarks are automatically selected for 

D1 and D2, respectively. Meanwhile, 451 and 488 active landmarks are automatically 

selected for D1 and D2, respectively.

B. Landmark detection evaluation

Unlike traditional landmark detection problems, we do not have the benchmark (i.e., ground-

truth) landmarks to evaluate the detection accuracy of our method. The reason is that both 

active landmarks and AD landmarks are automatically learned, and they cannot be manually 

annotated. As a result, it is impossible to directly evaluate the landmark detection accuracy, 

compared with manually annotated benchmark landmarks. To overcome this limitation, 1) 

we conduct an experiment based on manually annotated landmarks to evaluate the detection 

performance of our landmark detection method, and 2) we create “benchmark” landmarks to 

evaluate the landmark detection performance of AD landmarks.

1) Landmark detection based on manually annotated landmarks—We manually 

annotate 20 landmarks for all images based on two criteria. First, landmarks are placed at 

locations that can generally be identified on every individual in the study. Second, the 

landmarks are scattered throughout the entire brain in different tissues (the locations of 

landmarks are shown in the online Supplementary Materials). In our experiment, we use 

two-fold cross validation to evaluate the detection performance. We compare our landmark 

detection method with two other landmark detection methods based on (a) simple affine 

registration, and (b) classification forest. The implementations of these two methods are 

provided in the online Supplementary Materials. For our method, these landmarks are 

clustered into 5 landmark groups. The detection results are shown in Table I. As shown, the 

result of affine registration-based method has a relatively large mean detection error and a 

large standard deviation, since no local information is further considered. The classification 
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forest based method improves detection performance significantly, but both the detection 

error and standard deviation are still larger than that obtained for the proposed method.

2) Detection results of the active landmarks and the AD landmarks—Similar to 

the process of identifying landmarks in the training images, landmarks in the testing images 

are mapped from template using the deformation fields obtained by nonlinear registration. 

Then, these landmarks are used as the “benchmarks”, when calculating the detection error in 

our landmark detection method. In the online Supplementary Materials, we provide 

extensive experimental results based on a series of synthetic experiments to evaluate the 

landmark detection performance using the created “benchmark” landmarks.

Figure 8 shows the detection results of both active landmarks and AD landmarks compared 

with the created “benchmark” landmarks. The mean detection errors with different numbers 

of partition groups (i.e., landmark clusters) are presented in Fig. 8 (a). From Fig. 8 (a), we 

can observe that the active landmarks can be accurately detected, primarily because the 

active landmarks are all located on the salient and consistent regions. On the other hand, the 

AD landmarks have much larger errors, but errors decrease after using the active landmarks 

as guidance. Moreover, the detection error decreases, along with increases in the number of 

groups within appropriate ranges. In our experiments, 10 groups are enough to avoid the 

over-strong shape constraint. In addition, the cumulative density functions (CDFs) of the 

error are shown in percentage in Fig. 8 (b), demonstrating that most of the landmarks are 

located within reasonable errors.

C. AD/HC classification

After automatic AD landmark detection, we extract morphological features for each 

landmark from its local patch. The features for all landmarks are concatenated together to 

represent the subject. The AD classification is performed using SVM, where two-fold cross 

validation is conducted using D1 and D2 as the training and the testing alternately. In our 

experiment, four classification performance measures are used, namely 1) accuracy (Acc): 

the number of correctly classified samples divided by the total number of samples; 2) 

sensitivity (Sen): the number of correctly classified positive samples (AD) divided by the 

total number of positive samples; 3) specificity (Spe): the number of correctly classified 

negative samples (HC) divided by the total number of negative samples; and 4) balanced 

accuracy (BAC): the mean value of sensitivity and specificity.

Additionally, we compare our method with two GM-based feature extraction methods: using 

1) ROI-based GM and 2) voxel-based GM. Implementations of these two methods are based 

on a single-atlas-based registration, with details provided in the online Supplementary 

Materials. In order to give more reliable classification evaluation, we repeat our two-fold 

cross validation 20 times by randomly splitting the dataset. As shown in Table II, our 

method achieves a very competitive classification accuracy of 83.7 ± 2.6%, which is slightly 

higher than the baseline methods using ROI-based GM (81.8 ± 2.7%) and voxel-based GM 

(82.0 ± 2.9%). Note that the evaluation here is about the feature extraction, not the design of 

classifiers, so the results may be lower than some reported classification methods [53], [54], 

[55]. Some feature selection methods or existing AD/HC classification methods can be 
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potentially applied to our extracted features. Moreover, our framework does not require any 

nonlinear registration or segmentation to classify a new testing image.

In order to evaluate the generalization ability of our method, we conduct an additional 

experiment on an independent dataset, i.e., ADNI-2. To ensure the independence of samples, 

subjects that appear in the ADNI-1 dataset are removed from the ADNI-2 dataset. A total of 

159 AD subjects and 201 HCs from ADNI-2 are obtained. Specifically, we first train the 

landmark detection model and AD/HC classification model using all the data from ADNI-1 

dataset, and then test the performance on the ADNI-2 dataset. The experimental results are 

given in Table III. As shown, classification performance of all three methods is slightly 

decreased. It is worth noting that our method achieves a classification accuracy of 83.1% 

which is still better than the two baseline methods.

Moreover, we also conduct an additional experiment of classifying MCI from HC. Similarly, 

we still use the data from ADNI-1 as training, while the data from ADNI-2 is used as 

independent testing. Thus, we have a total of 346 MCI subjects from ADNI-1 and 485 MCI 

subjects from ADNI-2. The experimental results are shown in Table IV. Our method 

achieves superior classification performance, indicating its potential capability of diagnosing 

MCI.

D. Computational cost

Since all training steps are off-line operations, we only analyze the on-line computational 

cost. In our implementation, we first linearly align all images to the same template with 

landmark-based registration. The detailed description is provided in the online 

Supplementary Materials.

Second, we extract morphological features of the brain images, and then sample parts of 

features to predict active landmarks and AD landmarks sequentially. After obtaining the AD 

landmarks, the morphological features for those AD landmarks can be pinpointed from 

previously extracted morphological features, making it an efficient procedure. As a 

comparison, we also calculate the computational time for ROI-based method (Since we use 

same registration and segmentation strategies for voxel-based method, its computational 

time is similar to that of ROI-based method). In our experiment, we use nonlinear 

registration method to map segmentations of GM and the 90 ROIs from template image to 

all images. The computational costs are summarized in Table V using a computer with the 

processor of Intel(R) Core(TM)2 i7-4700HQ 2.40GHz. The total computational cost for the 

ROI-based method is about half an hour, which is about 50 times slower than our method 

(36.05 s). For precise segmentations of some specific ROIs, e.g., hippocampus, the ROI-

based methods require even greater computational costs.

E. Parameter analysis

We conduct experiments to evaluate the sensitivity of important parameters, when 

performing AD/HC classification. The indirect parameters for selecting active landmarks 

and AD landmarks are analyzed in the online Supplementary Materials.
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One important parameter in our method is patch size for extracting morphological features. 

Figure 9 (a) shows the classification results achieved by our method using different patch 

sizes. The figure shows that our method is not very sensitive to the patch size, so the 

parameter can be selected within a relatively wide range.

In addition, Fig. 9 (b) shows the classification results achieved by our method using different 

number of landmark groups, as well as the result of using registration-based landmark 

mapping. Generally, 10 groups achieve good classification accuracy, which is better than the 

result of using registration-based landmark mapping. This result also illustrates the 

effectiveness of our landmark detection method and the landmark-based feature extraction. 

The underlying reason could be that the landmarks detected by our method are more 

accurate than those in the registration-based landmark mapping method.

IV. Discussions

A. Feasibility of landmark-based feature extraction

In Tables II and III, competitive classification accuracies are achieved by comparing our 

method with the conventional methods that use ROI-based GM or voxel-based GM. The 

primary reason for such performance may be due to local variations in morphological 

patterns that are more pronounced in AD subjects than in HCs. Since the proposed method 

takes advantage of these group differences, it is able to discover and detect local 

morphological differences. In Table V, the computation efficiency of the proposed landmark-

based morphological feature extraction method is about 50 times higher than the 

conventional ROI-based method. It is worth noting that the proposed morphological feature 

extraction method requires more training time. However, once training is finished, our 

approach is extremely efficient during the testing stage.

B. Shape constraint for regression forest

In general, the primary purpose of the shape-constrained regression forest is to decrease the 

dimensionality of targets. This approach increases the efficiency to jointly train hundreds or 

thousands of landmarks in one regression model. In addition, unlike traditional methods that 

adjust the locations of landmarks after obtaining the initial positions, our method adds shape 

constraint into the regression forest model during training. The experimental results 

demonstrate that the proposed landmark detection method is very accurate, i.e., with small 

detection errors as shown in Fig. 8, and computationally efficient, only requiring 

approximately 36 seconds to complete.

C. Active landmarks for AD landmarks detection

Because active landmarks are located near the salient (or the most notable) and consistent 

regions, they can be quickly detected, and as a result, the proposed method has small 

detection errors. Using displacement measures as auxiliary features, the spatial relationship 

between active landmarks and AD landmarks are also exploited in the training stage. 

Although AD landmarks are located in the regions with statistically significant between-

group differences, the spatial relationship to the most related active landmarks is more 
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predictable. This spatial relationship (i.e., AD landmarks to active landmarks) increases 

consistency, which in turn improves overall performance of the proposed method.

D. Limitations and future directions

In this paper, a novel landmark-based feature extraction method is proposed by introducing 

1) a two-layer shape-constrained regression forest for landmark detection, 2) active 

landmarks for guiding AD landmark detection, and 3) landmark-based morphological 

features for automatic AD classification. Various experiments are conducted, and the 

performance of the proposed method is then compared with a state-of-the-art ROI-based and 

voxel-based methods. Results show that the proposed method has similar or better AD/HC 

classification accuracy and is roughly 50 times faster than the ROI-based method. But there 

are also several limitations in our method. 1) Noting the data-driven property, our method 

relies much on the scale of training dataset. Less training subjects will adversely affect 

accuracy of identifying landmarks so that the learned landmarks may not significant enough 

for a new subject. 2) In the current study, we also simply concatenate features obtained from 

all landmarks. One possible solution for further improving the classification performance is 

to design an advanced classification model to fully take advantage of features from different 

landmarks. For example, we may be able to design certain hierarchical classifiers to achieve 

better performance. In particular, each landmark or each small group of landmarks can be 

designed with its individual classifier for initial AD classification, and then their obtained 

classification scores can be aggregated gradually for obtaining the final AD classification 

result. 3) Moreover, we do not consider the combination of the clusters for constructing an 

overall shape when detecting landmarks. It would be beneficial to construct a “sensible” 

overall shape. 4) Furthermore, instead of using a single template, the group-wise or multi-

atlas registration can be also used to reduce registration error in the training stage. Thus, 

more accurate training landmarks would be identified. 5) A potential application of our 

method is that it can be utilized for large-scale subject indexing or retrieval. For example, for 

a given patient, several similar cases can be efficiently found in the large-scale database, and 

the treatment plan of the subject can be established by the lights of the previous successful 

therapeutic strategies. All these will be our future work.
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Fig. 1. 
Diagram illustrating the steps in the proposed landmark detection and AD classification 

framework. In general, the proposed framework defines three sequential steps: 1) landmark 

definition, 2) landmark detection, and 3) AD/HC classification.
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Fig. 2. 
AD landmark definition pipeline.
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Fig. 3. 
Saliency, inconsistency and active maps. Each map is linearly stretched to [0,1] for clear 

visualization. (a) Saliency map, where regions with larger values are more salient than those 

with smaller ones. (b) Inconsistency map, where regions with larger values are more 

inconsistent than those with smaller ones. (c) Combined active map, where regions with 

larger values are more active than those with smaller ones.
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Fig. 4. 
Framework of regression-forest-based landmark detection. (a) Definition of displacement 

from a voxel to a target landmark. (b) Regression voting. (c) Voting map.
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Fig. 5. 
Targets for regression forest. (a) Targets using traditional displacements to multiple 

landmarks. (b) Targets using a shape constraint.
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Fig. 6. 
Active-landmark guided AD landmark detection. (a) Definition of displacements to the 

active landmarks and AD landmarks. (b) Framework of two-layer regression-forest-based 

landmark detection.
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Fig. 7. 
Group comparison results for two datasets, D1 and D2. Regions with very small p-values 

(i.e., having statistically significant difference) are shown in blue.
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Fig. 8. 
Detection errors for active landmarks and AD landmarks. (a) Detection errors with different 

numbers of partition groups. (b) Cumulative distribution with different error intervals where 

10 groups are clustered.
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Fig. 9. 
AD/HC classification accuracy on ADNI-1. (a) Classification accuracy with respect to 

different patch sizes, where the horizontal axis means the side length of the cubic patch. (b) 

Classification accuracy with respect to different landmark detection strategies and group 

numbers, where the red star is the result of registration-based landmark mapping.
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TABLE I

Comparison with other landmark detection methods for manually annotated landmarks.

Method Affine registration Classification forest Proposed method

Mean error (mm) 3.98 ± 3.37 2.65 ± 1.82 2.41 ± 1.42
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TABLE II

Classification results with two-fold cross validation on ADNI-1 dataset. The results shown are averaged over 

20 repeats, and that plus-minus gives the standard deviation.

Method Acc Sen Spe BAC

ROI-based GM 81.8±2.7% 75.2±3.8% 87.9±3.1% 81.5±2.8%

Voxel-based GM 82.0±2.9% 76.0±3.8% 87.6±3.2% 81.8±2.9%

Our method 83.7±2.6% 80.9±3.5% 86.7±2.2% 83.8±2.5%
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TABLE III

Classification results of AD vs. HC on ADNI-2 dataset.

Method Acc Sen Spe BAC

ROI-based GM 79.7% 73.6% 84.6% 79.1%

Voxel-based GM 80.6% 76.1% 84.1% 80.1%

Our method 83.1% 80.5% 85.1% 82.8%
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TABLE IV

Classification results of MCI vs. HC on ADNI-2 dataset.

Method Acc Sen Spe BAC

ROI-based GM 69.1% 70.1% 66.7% 68.4%

Voxel-based GM 70.7% 73.0% 65.2% 69.1%

Our method 73.6% 75.3% 69.7% 72.5%
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TABLE V

Computational costs.

Method Procedure Implementation Individual time Total time

Our Method

Linear alignment C++ 5 s

36.05 s

Morphological features Matlab 9 s

Active landmarks C++ 10 s

Auxiliary features Matlab 1 s

AD landmarks C++ 11 s

Landmark-based features Matlab Almost 0

SVM prediction Matlab 0.05 s

ROI-based Method

Linear alignment C++ 5 s

32 mins

GM segmentation
HAMMER [56] 32 mins

90 ROIs segmentation

Feature generation Matlab 3 s

SVM prediction Matlab 0.02 s
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