59 research outputs found

    Visual Importance-Biased Image Synthesis Animation

    Get PDF
    Present ray tracing algorithms are computationally intensive, requiring hours of computing time for complex scenes. Our previous work has dealt with the development of an overall approach to the application of visual attention to progressive and adaptive ray-tracing techniques. The approach facilitates large computational savings by modulating the supersampling rates in an image by the visual importance of the region being rendered. This paper extends the approach by incorporating temporal changes into the models and techniques developed, as it is expected that further efficiency savings can be reaped for animated scenes. Applications for this approach include entertainment, visualisation and simulation

    Discontinuity Edge Overdraw

    Get PDF
    Aliasing is an important problem when rendering triangle meshes. Efficient antialiasing techniques such as mipmapping greatly improve the filtering of textures defined over a mesh. A major component of the remaining aliasing occurs along discontinuity edges such as silhouettes, creases, and material boundaries. Framebuffer supersampling is a simple remedy, but 2x2 supersampling leaves behind significant temporal artifacts, while greater supersampling demands even more fill-rate and memory. We present an alternative that focuses effort on discontinuity edges by overdrawing such edges as antialiased lines. Although the idea is simple, several subtleties arise. Visible silhouette edges must be detected efficiently. Discontinuity edges need consistent orientations. They must be blended as they approach the silhouette to avoid popping. Unfortunately, edge blending results in blurriness. Our technique balances these two competing objectives of temporal smoothness and spatial sharpness. Finally, the best results are obtained when discontinuity edges are sorted by depth. Our approach proves surprisingly effective at reducing temporal artifacts commonly referred to as "crawling jaggies," with little added cost.Engineering and Applied Science

    Image synthesis based on a model of human vision

    Get PDF
    Modern computer graphics systems are able to construct renderings of such high quality that viewers are deceived into regarding the images as coming from a photographic source. Large amounts of computing resources are expended in this rendering process, using complex mathematical models of lighting and shading. However, psychophysical experiments have revealed that viewers only regard certain informative regions within a presented image. Furthermore, it has been shown that these visually important regions contain low-level visual feature differences that attract the attention of the viewer. This thesis will present a new approach to image synthesis that exploits these experimental findings by modulating the spatial quality of image regions by their visual importance. Efficiency gains are therefore reaped, without sacrificing much of the perceived quality of the image. Two tasks must be undertaken to achieve this goal. Firstly, the design of an appropriate region-based model of visual importance, and secondly, the modification of progressive rendering techniques to effect an importance-based rendering approach. A rule-based fuzzy logic model is presented that computes, using spatial feature differences, the relative visual importance of regions in an image. This model improves upon previous work by incorporating threshold effects induced by global feature difference distributions and by using texture concentration measures. A modified approach to progressive ray-tracing is also presented. This new approach uses the visual importance model to guide the progressive refinement of an image. In addition, this concept of visual importance has been incorporated into supersampling, texture mapping and computer animation techniques. Experimental results are presented, illustrating the efficiency gains reaped from using this method of progressive rendering. This visual importance-based rendering approach is expected to have applications in the entertainment industry, where image fidelity may be sacrificed for efficiency purposes, as long as the overall visual impression of the scene is maintained. Different aspects of the approach should find many other applications in image compression, image retrieval, progressive data transmission and active robotic vision

    Dynamic sampling rate: harnessing frame coherence in graphics applications for energy-efficient GPUs

    Get PDF
    In real-time rendering, a 3D scene is modelled with meshes of triangles that the GPU projects to the screen. They are discretized by sampling each triangle at regular space intervals to generate fragments which are then added texture and lighting effects by a shader program. Realistic scenes require detailed geometric models, complex shaders, high-resolution displays and high screen refreshing rates, which all come at a great compute time and energy cost. This cost is often dominated by the fragment shader, which runs for each sampled fragment. Conventional GPUs sample the triangles once per pixel; however, there are many screen regions containing low variation that produce identical fragments and could be sampled at lower than pixel-rate with no loss in quality. Additionally, as temporal frame coherence makes consecutive frames very similar, such variations are usually maintained from frame to frame. This work proposes Dynamic Sampling Rate (DSR), a novel hardware mechanism to reduce redundancy and improve the energy efficiency in graphics applications. DSR analyzes the spatial frequencies of the scene once it has been rendered. Then, it leverages the temporal coherence in consecutive frames to decide, for each region of the screen, the lowest sampling rate to employ in the next frame that maintains image quality. We evaluate the performance of a state-of-the-art mobile GPU architecture extended with DSR for a wide variety of applications. Experimental results show that DSR is able to remove most of the redundancy inherent in the color computations at fragment granularity, which brings average speedups of 1.68x and energy savings of 40%.This work has been supported by the the CoCoUnit ERC Advanced Grant of the EU’s Horizon 2020 program (Grant No. 833057), Spanish State Research Agency (MCIN/AEI) under Grant PID2020-113172RB-I00, the ICREA Academia program, and the Generalitat de Catalunya under Grant FI-DGR 2016. Funding was provided by Ministerio de Economía, Industria y Competitividad, Gobierno de España (Grant No. TIN2016-75344-R).Peer ReviewedPostprint (published version

    Ray Tracing Gems

    Get PDF
    This book is a must-have for anyone serious about rendering in real time. With the announcement of new ray tracing APIs and hardware to support them, developers can easily create real-time applications with ray tracing as a core component. As ray tracing on the GPU becomes faster, it will play a more central role in real-time rendering. Ray Tracing Gems provides key building blocks for developers of games, architectural applications, visualizations, and more. Experts in rendering share their knowledge by explaining everything from nitty-gritty techniques that will improve any ray tracer to mastery of the new capabilities of current and future hardware. What you'll learn: The latest ray tracing techniques for developing real-time applications in multiple domains Guidance, advice, and best practices for rendering applications with Microsoft DirectX Raytracing (DXR) How to implement high-performance graphics for interactive visualizations, games, simulations, and more Who this book is for: Developers who are looking to leverage the latest APIs and GPU technology for real-time rendering and ray tracing Students looking to learn about best practices in these areas Enthusiasts who want to understand and experiment with their new GPU

    Exploiting frame coherence in real-time rendering for energy-efficient GPUs

    Get PDF
    The computation capabilities of mobile GPUs have greatly evolved in the last generations, allowing real-time rendering of realistic scenes. However, the desire for processing complex environments clashes with the battery-operated nature of smartphones, for which users expect long operating times per charge and a low-enough temperature to comfortably hold them. Consequently, improving the energy-efficiency of mobile GPUs is paramount to fulfill both performance and low-power goals. The work of the processors from within the GPU and their accesses to off-chip memory are the main sources of energy consumption in graphics workloads. Yet most of this energy is spent in redundant computations, as the frame rate required to produce animations results in a sequence of extremely similar images. The goal of this thesis is to improve the energy-efficiency of mobile GPUs by designing micro-architectural mechanisms that leverage frame coherence in order to reduce the redundant computations and memory accesses inherent in graphics applications. First, we focus on reducing redundant color computations. Mobile GPUs typically employ an architecture called Tile-Based Rendering, in which the screen is divided into tiles that are independently rendered in on-chip buffers. It is common that more than 80% of the tiles produce exactly the same output between consecutive frames. We propose Rendering Elimination (RE), a mechanism that accurately determines such occurrences by computing and storing signatures of the inputs of all the tiles in a frame. If the signatures of a tile across consecutive frames are the same, the colors computed in the preceding frame are reused, saving all computations and memory accesses associated to the rendering of the tile. We show that RE vastly outperforms related schemes found in the literature, achieving a reduction of energy consumption of 37% and execution time of 33% with minimal overheads. Next, we focus on reducing redundant computations of fragments that will eventually not be visible. In real-time rendering, objects are processed in the order they are submitted to the GPU, which usually causes that the results of previously-computed objects are overwritten by new objects that turn occlude them. Consequently, whether or not a particular object will be occluded is not known until the entire scene has been processed. Based on the fact that visibility tends to remain constant across consecutive frames, we propose Early Visibility Resolution (EVR), a mechanism that predicts visibility based on information obtained in the preceding frame. EVR first computes and stores the depth of the farthest visible point after rendering each tile. Whenever a tile is rendered in the following frame, primitives that are farther from the observer than the stored depth are predicted to be occluded, and processed after the ones predicted to be visible. Additionally, this visibility prediction scheme is used to improve Rendering Elimination’s equal tile detection capabilities by not adding primitives predicted to be occluded in the signature. With minor hardware costs, EVR is shown to provide a reduction of energy consumption of 43% and execution time of 39%. Finally, we focus on reducing computations in tiles with low spatial frequencies. GPUs produce pixel colors by sampling triangles once per pixel and performing computations on each sampling location. However, most screen regions do not include sufficient detail to require high sampling rates, leading to a significant amount of energy wasted computing the same color for neighboring pixels. Given that spatial frequencies are maintained across frames, we propose Dynamic Sampling Rate, a mechanism that analyzes the spatial frequencies of tiles and determines the best sampling rate for them, which is applied in the following frame. Results show that Dynamic Sampling Rate significantly reduces processor activity, yielding energy savings of 40% and execution time reductions of 35%.La capacitat de càlcul de les GPU mòbils ha augmentat en gran mesura en les darreres generacions, permetent el renderitzat de paisatges complexos en temps real. Nogensmenys, el desig de processar escenes cada vegada més realistes xoca amb el fet que aquests dispositius funcionen amb bateries, i els usuaris n’esperen llargues durades i una temperatura prou baixa com per a ser agafats còmodament. En conseqüència, millorar l’eficiència energètica de les GPU mòbils és essencial per a aconseguir els objectius de rendiment i baix consum. Els processadors de la GPU i els seus accessos a memòria són els principals consumidors d’energia en càrregues gràfiques, però molt d’aquest consum és malbaratat en càlculs redundants, ja que les animacions produïdes s¿aconsegueixen renderitzant una seqüència d’imatges molt similars. L’objectiu d’aquesta tesi és millorar l’eficiència energètica de les GPU mòbils mitjançant el disseny de mecanismes microarquitectònics que aprofitin la coherència entre imatges per a reduir els càlculs i accessos redundants inherents a les aplicacions gràfiques. Primerament, ens centrem en reduir càlculs redundants de colors. A les GPU mòbils, sovint s'empra una arquitectura anomenada Tile-Based Rendering, en què la pantalla es divideix en regions que es processen independentment dins del xip. És habitual que més del 80% de les regions de pantalla produeixin els mateixos colors entre imatges consecutives. Proposem Rendering Elimination (RE), un mecanisme que determina acuradament aquests casos computant una signatura de les entrades de totes les regions. Si les signatures de dues imatges són iguals, es reutilitzen els colors calculats a la imatge anterior, el que estalvia tots els càlculs i accessos a memòria de la regió. RE supera àmpliament propostes relacionades de la literatura, aconseguint una reducció del consum energètic del 37% i del temps d’execució del 33%. Seguidament, ens centrem en reduir càlculs redundants en fragments que eventualment no seran visibles. En aplicacions gràfiques, els objectes es processen en l’ordre en què son enviats a la GPU, el que sovint causa que resultats ja processats siguin sobreescrits per nous objectes que els oclouen. Per tant, no se sap si un objecte serà visible o no fins que tota l’escena ha estat processada. Fonamentats en el fet que la visibilitat tendeix a ser constant entre imatges, proposem Early Visibility Resolution (EVR), un mecanisme que prediu la visibilitat basat en informació obtinguda a la imatge anterior. EVR computa i emmagatzema la profunditat del punt visible més llunyà després de processar cada regió de pantalla. Quan es processa una regió a la imatge següent, es prediu que les primitives més llunyanes a el punt guardat seran ocloses i es processen després de les que es prediuen que seran visibles. Addicionalment, aquest esquema de predicció s’empra en millorar la detecció de regions redundants de RE al no afegir les primitives que es prediu que seran ocloses a les signatures. Amb un cost de maquinari mínim, EVR aconsegueix una millora del consum energètic del 43% i del temps d’execució del 39%. Finalment, ens centrem a reduir càlculs en regions de pantalla amb poca freqüència espacial. Les GPU actuals produeixen colors mostrejant els triangles una vegada per cada píxel i fent càlculs a cada localització mostrejada. Però la majoria de regions no tenen suficient detall per a necessitar altes freqüències de mostreig, el que implica un malbaratament d’energia en el càlcul del mateix color en píxels adjacents. Com les freqüències tendeixen a mantenir-se en el temps, proposem Dynamic Sampling Rate (DSR)¸ un mecanisme que analitza les freqüències de les regions una vegada han estat renderitzades i en determina la menor freqüència de mostreig a la que es poden processar, que s’aplica a la següent imatge..

    Foveated Path Tracing with Fast Reconstruction and Efficient Sample Distribution

    Get PDF
    Polunseuranta on tietokonegrafiikan piirtotekniikka, jota on käytetty pääasiassa ei-reaaliaikaisen realistisen piirron tekemiseen. Polunseuranta tukee luonnostaan monia muilla tekniikoilla vaikeasti saavutettavia todellisen valon ilmiöitä kuten heijastuksia ja taittumista. Reaaliaikainen polunseuranta on hankalaa polunseurannan suuren laskentavaatimuksen takia. Siksi nykyiset reaaliaikaiset polunseurantasysteemi tuottavat erittäin kohinaisia kuvia, jotka tyypillisesti suodatetaan jälkikäsittelykohinanpoisto-suodattimilla. Erittäin immersiivisiä käyttäjäkokemuksia voitaisiin luoda polunseurannalla, joka täyttäisi laajennetun todellisuuden vaatimukset suuresta resoluutiosta riittävän matalassa vasteajassa. Yksi mahdollinen ratkaisu näiden vaatimusten täyttämiseen voisi olla katsekeskeinen polunseuranta, jossa piirron resoluutiota vähennetään katseen reunoilla. Tämän johdosta piirron laatu on katseen reunoilla sekä harvaa että kohinaista, mikä asettaa suuren roolin lopullisen kuvan koostavalle suodattimelle. Tässä työssä esitellään ensimmäinen reaaliajassa toimiva regressionsuodatin. Suodatin on suunniteltu kohinaisille kuville, joissa on yksi polunseurantanäyte pikseliä kohden. Nopea suoritus saavutetaan tiileissä käsittelemällä ja nopealla sovituksen toteutuksella. Lisäksi työssä esitellään Visual-Polar koordinaattiavaruus, joka jakaa polunseurantanäytteet siten, että niiden jakauma seuraa silmän herkkyysmallia. Visual-Polar-avaruuden etu muihin tekniikoiden nähden on että se vähentää työmäärää sekä polunseurannassa että suotimessa. Nämä tekniikat esittelevät toimivan prototyypin katsekeskeisestä polunseurannasta, ja saattavat toimia tienraivaajina laajamittaiselle realistisen reaaliaikaisen polunseurannan käyttöönotolle.Photo-realistic offline rendering is currently done with path tracing, because it naturally produces many real-life light effects such as reflections, refractions and caustics. These effects are hard to achieve with other rendering techniques. However, path tracing in real time is complicated due to its high computational demand. Therefore, current real-time path tracing systems can only generate very noisy estimate of the final frame, which is then denoised with a post-processing reconstruction filter. A path tracing-based rendering system capable of filling the high resolution in the low latency requirements of mixed reality devices would generate a very immersive user experience. One possible solution for fulfilling these requirements could be foveated path tracing, wherein the rendering resolution is reduced in the periphery of the human visual system. The key challenge is that the foveated path tracing in the periphery is both sparse and noisy, placing high demands on the reconstruction filter. This thesis proposes the first regression-based reconstruction filter for path tracing that runs in real time. The filter is designed for highly noisy one sample per pixel inputs. The fast execution is accomplished with blockwise processing and fast implementation of the regression. In addition, a novel Visual-Polar coordinate space which distributes the samples according to the contrast sensitivity model of the human visual system is proposed. The specialty of Visual-Polar space is that it reduces both path tracing and reconstruction work because both of them can be done with smaller resolution. These techniques enable a working prototype of a foveated path tracing system and may work as a stepping stone towards wider commercial adoption of photo-realistic real-time path tracing

    Feature Adaptive Ray Tracing of Subdivision Surfaces

    Get PDF
    abstract: Subdivision surfaces have gained more and more traction since it became the standard surface representation in the movie industry for many years. And Catmull-Clark subdivision scheme is the most popular one for handling polygonal meshes. After its introduction, Catmull-Clark surfaces have been extended to several eminent ways, including the handling of boundaries, infinitely sharp creases, semi-sharp creases, and hierarchically defined detail. For ray tracing of subdivision surfaces, a common way is to construct spatial bounding volume hierarchies on top of input control mesh. However, a high-level refined subdivision surface not only requires a substantial amount of memory storage, but also causes slow and inefficient ray tracing. In this thesis, it presents a new way to improve the efficiency of ray tracing of subdivision surfaces, while the quality is not as good as general methods.Dissertation/ThesisMasters Thesis Computer Science 201

    Exploiting frame coherence in real-time rendering for energy-efficient GPUs

    Get PDF
    The computation capabilities of mobile GPUs have greatly evolved in the last generations, allowing real-time rendering of realistic scenes. However, the desire for processing complex environments clashes with the battery-operated nature of smartphones, for which users expect long operating times per charge and a low-enough temperature to comfortably hold them. Consequently, improving the energy-efficiency of mobile GPUs is paramount to fulfill both performance and low-power goals. The work of the processors from within the GPU and their accesses to off-chip memory are the main sources of energy consumption in graphics workloads. Yet most of this energy is spent in redundant computations, as the frame rate required to produce animations results in a sequence of extremely similar images. The goal of this thesis is to improve the energy-efficiency of mobile GPUs by designing micro-architectural mechanisms that leverage frame coherence in order to reduce the redundant computations and memory accesses inherent in graphics applications. First, we focus on reducing redundant color computations. Mobile GPUs typically employ an architecture called Tile-Based Rendering, in which the screen is divided into tiles that are independently rendered in on-chip buffers. It is common that more than 80% of the tiles produce exactly the same output between consecutive frames. We propose Rendering Elimination (RE), a mechanism that accurately determines such occurrences by computing and storing signatures of the inputs of all the tiles in a frame. If the signatures of a tile across consecutive frames are the same, the colors computed in the preceding frame are reused, saving all computations and memory accesses associated to the rendering of the tile. We show that RE vastly outperforms related schemes found in the literature, achieving a reduction of energy consumption of 37% and execution time of 33% with minimal overheads. Next, we focus on reducing redundant computations of fragments that will eventually not be visible. In real-time rendering, objects are processed in the order they are submitted to the GPU, which usually causes that the results of previously-computed objects are overwritten by new objects that turn occlude them. Consequently, whether or not a particular object will be occluded is not known until the entire scene has been processed. Based on the fact that visibility tends to remain constant across consecutive frames, we propose Early Visibility Resolution (EVR), a mechanism that predicts visibility based on information obtained in the preceding frame. EVR first computes and stores the depth of the farthest visible point after rendering each tile. Whenever a tile is rendered in the following frame, primitives that are farther from the observer than the stored depth are predicted to be occluded, and processed after the ones predicted to be visible. Additionally, this visibility prediction scheme is used to improve Rendering Elimination’s equal tile detection capabilities by not adding primitives predicted to be occluded in the signature. With minor hardware costs, EVR is shown to provide a reduction of energy consumption of 43% and execution time of 39%. Finally, we focus on reducing computations in tiles with low spatial frequencies. GPUs produce pixel colors by sampling triangles once per pixel and performing computations on each sampling location. However, most screen regions do not include sufficient detail to require high sampling rates, leading to a significant amount of energy wasted computing the same color for neighboring pixels. Given that spatial frequencies are maintained across frames, we propose Dynamic Sampling Rate, a mechanism that analyzes the spatial frequencies of tiles and determines the best sampling rate for them, which is applied in the following frame. Results show that Dynamic Sampling Rate significantly reduces processor activity, yielding energy savings of 40% and execution time reductions of 35%.La capacitat de càlcul de les GPU mòbils ha augmentat en gran mesura en les darreres generacions, permetent el renderitzat de paisatges complexos en temps real. Nogensmenys, el desig de processar escenes cada vegada més realistes xoca amb el fet que aquests dispositius funcionen amb bateries, i els usuaris n’esperen llargues durades i una temperatura prou baixa com per a ser agafats còmodament. En conseqüència, millorar l’eficiència energètica de les GPU mòbils és essencial per a aconseguir els objectius de rendiment i baix consum. Els processadors de la GPU i els seus accessos a memòria són els principals consumidors d’energia en càrregues gràfiques, però molt d’aquest consum és malbaratat en càlculs redundants, ja que les animacions produïdes s¿aconsegueixen renderitzant una seqüència d’imatges molt similars. L’objectiu d’aquesta tesi és millorar l’eficiència energètica de les GPU mòbils mitjançant el disseny de mecanismes microarquitectònics que aprofitin la coherència entre imatges per a reduir els càlculs i accessos redundants inherents a les aplicacions gràfiques. Primerament, ens centrem en reduir càlculs redundants de colors. A les GPU mòbils, sovint s'empra una arquitectura anomenada Tile-Based Rendering, en què la pantalla es divideix en regions que es processen independentment dins del xip. És habitual que més del 80% de les regions de pantalla produeixin els mateixos colors entre imatges consecutives. Proposem Rendering Elimination (RE), un mecanisme que determina acuradament aquests casos computant una signatura de les entrades de totes les regions. Si les signatures de dues imatges són iguals, es reutilitzen els colors calculats a la imatge anterior, el que estalvia tots els càlculs i accessos a memòria de la regió. RE supera àmpliament propostes relacionades de la literatura, aconseguint una reducció del consum energètic del 37% i del temps d’execució del 33%. Seguidament, ens centrem en reduir càlculs redundants en fragments que eventualment no seran visibles. En aplicacions gràfiques, els objectes es processen en l’ordre en què son enviats a la GPU, el que sovint causa que resultats ja processats siguin sobreescrits per nous objectes que els oclouen. Per tant, no se sap si un objecte serà visible o no fins que tota l’escena ha estat processada. Fonamentats en el fet que la visibilitat tendeix a ser constant entre imatges, proposem Early Visibility Resolution (EVR), un mecanisme que prediu la visibilitat basat en informació obtinguda a la imatge anterior. EVR computa i emmagatzema la profunditat del punt visible més llunyà després de processar cada regió de pantalla. Quan es processa una regió a la imatge següent, es prediu que les primitives més llunyanes a el punt guardat seran ocloses i es processen després de les que es prediuen que seran visibles. Addicionalment, aquest esquema de predicció s’empra en millorar la detecció de regions redundants de RE al no afegir les primitives que es prediu que seran ocloses a les signatures. Amb un cost de maquinari mínim, EVR aconsegueix una millora del consum energètic del 43% i del temps d’execució del 39%. Finalment, ens centrem a reduir càlculs en regions de pantalla amb poca freqüència espacial. Les GPU actuals produeixen colors mostrejant els triangles una vegada per cada píxel i fent càlculs a cada localització mostrejada. Però la majoria de regions no tenen suficient detall per a necessitar altes freqüències de mostreig, el que implica un malbaratament d’energia en el càlcul del mateix color en píxels adjacents. Com les freqüències tendeixen a mantenir-se en el temps, proposem Dynamic Sampling Rate (DSR)¸ un mecanisme que analitza les freqüències de les regions una vegada han estat renderitzades i en determina la menor freqüència de mostreig a la que es poden processar, que s’aplica a la següent imatge...Postprint (published version
    • …
    corecore