
Exploiting Frame Coherence in Real-Time
Rendering for Energy-Efficient GPUs

Mart́ı Anglada Sánchez

Doctor of Philosophy

Department of Computer Architecture

Universitat Politècnica de Catalunya

Advisors: Joan-Manuel Parcerisa, Antonio González

March, 2020

Barcelona, Spain

2

Abstract

The computation capabilities of mobile GPUs have greatly evolved in the last generations,
allowing real-time rendering of realistic scenes. However, the desire for processing even more
complex environments clashes with the battery-operated nature of the devices integrating these
kind of GPUs, such as smartphones and tablets, for which users expect long operating times per
charge and a low-enough temperature to comfortably hold them. Consequently, improving the
energy-efficiency of mobile GPUs is paramount to fulfill both performance and low-power goals.
Previous works determined that the work of the processors from within the GPU and, notably, their
accesses to off-chip memory are the main sources of energy consumption in graphics workloads. Yet
most of this energy is spent in redundant computations, as the high frame rate required to produce
smooth animations results in a sequence of extremely similar images.

The goal of this thesis is to improve the energy-efficiency of mobile GPUs by designing micro-
architectural mechanisms that leverage frame coherence in order to reduce the redundant compu-
tations and memory accesses inherent in graphics applications.

Firstly, we focus on reducing redundant color computations. Mobile GPUs typically employ an
architecture called Tile-Based Rendering, in which the screen is divided into multiple tiles that are
independently rendered in on-chip buffers, thus reducing memory bandwidth. An analysis of popu-
lar Android applications reveals that it is common that more than 80% of the tiles produce exactly
the same output between consecutive frames. We propose Rendering Elimination, a mechanism
that accurately determines such occurrences by computing and storing signatures of the inputs
of all the tiles in a frame. If the signatures of a tile across consecutive frames are the same, the
colors computed in the preceding frame are reused, saving all computations and memory accesses
associated to the rendering of the tile. Using commercial Android applications and state-of-the-art
cycle-accurate simulators and models, we show that Rendering Elimination vastly outperforms re-
lated memoization schemes found in the literature, achieving a reduction of energy consumption of
37% and execution time of 33% with minimal overheads.

Next, we focus on reducing redundant color computations of fragments that will eventually
not be visible. In real-time rendering, objects are processed in the order they are submitted to the
GPU by the application, which usually causes that the results of previously-computed objects are
overwritten by new objects that turn out to be closer to the observer and, therefore, occlude them.
This phenomenon occurs because visibility is resolved on-the-fly along with the rendering process.
Consequently, whether or not a particular object will be occluded is not known until the entire
scene has been processed. Based on frame coherence and, therefore, the fact that visibility tends
to remain constant across consecutive frames, we propose Early Visibility Resolution, a mechanism
that predicts visibility based on information obtained in the preceding frame. Early Visibility

3

Resolution first computes and stores the depth of the farthest visible point after rendering each
tile. Whenever a tile is rendered in the following frame, primitives that are farther from the observer
than the stored depth are predicted to be occluded, and processed after the ones predicted to be
visible. Additionally, this visibility prediction scheme is used to improve Rendering Elimination’s
equal tile detection capabilities by not adding primitives predicted to be occluded in the signature.
With minor hardware costs, Early Visibility Resolution is shown to provide a reduction of energy
consumption of 43% and execution time of 39%.

Finally, we focus on reducing computations in tiles with low spatial frequencies. Current GPUs
produce pixel colors by sampling triangles once per pixel and performing color computations on
each sampling location. However, an analysis of popular Android applications reveals that most
regions of the screen do not include sufficient detail to require such high sampling rates, which leads
to a significant amount of energy wasted computing the same color for neighboring pixels. Given
that frame coherence implies that spatial frequencies are maintained across frames, we propose
Dynamic Sampling Rate, a mechanism that analyzes the spatial frequencies of tiles once they have
been rendered and determines the lowest sampling rate that maintains image quality, which is
applied in the following frame. Results show that Dynamic Sampling Rate significantly reduces
processor activity, yielding energy savings of 40% and speedups of 1.68x by only adding a small
hardware unit to evaluate the spatial variations of a tile.

4

Acknowledgements

Haré todo lo que pueda y un poco más de lo que pueda, si es que eso es posible. Y
haré todo lo posible e incluso lo imposible, si también lo imposible es posible.

– Mariano Rajoy

Even though I have read countless theses during the past few years, I have always smiled when
stumbling upon an acknowledgements section and experiencing the joy left in a few paragraphs
by a PhD candidate ecstatic to finish, dreaming of the day I would sit down to write such lines.
Unbelievably, the moment has finally come to say:

I am extremely grateful to have had Professors Antonio González and Joan-Manuel Parcerisa
as advisors. Thank you for everything you have taught me, for your motivation, for your guidance,
for your patience and for the opportunity to have worked with you.

I will always hold a special place in my mind for Professor Ramon Canal for introducing me to
the ARCO group and accompanying me in my first research steps and my first paper presentation.

I would also like to thank the colleagues with whom I have shared lab during these years.
Thank you to the ones that graduated before me (Gem, Mart́ı, Hamid and Reza) and showed me
all the different lights that there are at the end of the tunnel. Thank you Jose Maria for the titanic
task of having pioneered the graphics line of research in the group and thank you Enrique for being
my unofficial mentor and providing me with all the help I could have wished for. Thanks to the
colleagues that will graduate alongside me (Marc, Josué, Franyell and Albert) for having kept me
sane by sharing the same journey of ideas that do not work, painful rejects and the ying-yang of
research: coffee and beer. And a selfish thank you to the future of the group (Dennis, Raúl, Pedro,
Jorge and Mehdi) for putting a mirror in front of me and involuntarily revealing me all the road
I had already walked; I wish you a very successful PhD. Finally, I would like to thank Diya for
having taken over the baton of graphics research and having let me test the waters in the advising
world; I hope you manage to awe everyone with your work.

An endless thank you to the people that have cheered me and helped me evade from the PhD
routine: thanks to the amazing Barcelona MtG community for infusing me with the desire to
continuously thrive and discover, specially to my Nucli friends with whom I have shared victories,
lessons and banters. And thanks to Alberto and Àlex for our eye-opening symposiums, which
cemented the true purpose of research.

Thank you to my family for their unflinching support and care: none of this would have been

5

possible without your words of wisdom and esteem.

And the biggest thank you goes to the person who has done the most heavy lifting during these
years and, extraordinarily, a little bit of everything listed above. Kiona, you alone have managed
to turn the PhD years into the best years of my life. Now, let us enjoy the rest of the best years of
our lives.

6

7

Contents

1 Introduction 19

1.1 The mobile Graphics Processing Unit: the driving force behind contemporary enter-
tainment . 19

1.2 Problem statement . 21

1.3 Thesis objective and related work . 24

1.3.1 Reducing redundant colors across frames . 25

1.3.2 Reducing overshading . 27

1.3.3 Reducing redundant colors within a frame . 30

1.4 Thesis contributions . 32

1.4.1 Rendering Elimination . 32

1.4.2 Early Visibility Resolution . 33

1.4.3 Dynamic Sampling Rate . 33

2 Background: Tile-Based Rendering 35

2.1 The Application Stage . 36

2.2 The Geometry Stage . 37

2.3 The Raster Stage . 42

3 Experimental Methodology 49

3.1 Simulation Infrastructure . 49

3.1.1 Improvements to the baseline infrastructure 52

3.2 Benchmark Set . 53

9

CONTENTS

4 Rendering Elimination 59

4.1 Early Discard of Redundant Tiles . 60

4.1.1 Rendering Elimination Overview . 60

4.1.2 Implementation Requirements . 61

4.1.3 Incremental CRC Computation . 61

4.1.4 Table-Based CRC Computation . 62

4.1.5 Tile Inputs Bitstream Architecture . 62

4.2 Implementation . 64

4.2.1 Signature Unit Architecture . 64

4.2.2 Compute CRC Unit and Accumulate CRC Unit 66

4.2.3 Transaction Elimination . 68

4.3 Experimental Results . 69

4.3.1 Rendering Elimination compared to Fragment Memoization and Transaction
Elimination . 72

4.4 Conclusions . 74

5 Early Visibility Resolution 77

5.1 Early Detection of Occluded Primitives . 78

5.1.1 WOZ Primitives . 79

5.1.2 NWOZ Primitives . 79

5.1.3 Hybrid Scenes . 80

5.2 Removing Ineffectual Computations with EVR . 81

5.2.1 Overshading Reduction . 81

5.2.2 Rendering Elimination Improvement . 84

5.3 Implementation . 85

5.3.1 Layer Generator Table . 86

5.3.2 Layer Buffer . 87

5.3.3 FVP Computation and FVP Table . 87

10

CONTENTS

5.4 Experimental Results . 88

5.5 Conclusions . 92

6 Dynamic Sampling Rate 95

6.1 Sampling Rate Estimation . 95

6.1.1 Frequency Analysis . 95

6.2 Dynamic Sampling Rate . 98

6.3 Heuristic Parameter Selection . 100

6.4 Implementation . 103

6.4.1 Pipeline Integration . 103

6.4.2 Frequency Analysis Unit . 104

6.5 Experimental Results . 106

6.6 Conclusions . 110

7 Conclusions 111

7.1 Conclusions . 111

7.2 Open-Research Areas . 112

11

List of Figures

1.1 Performance evolution of the GPU in Apple’s iPhone smartphone series compared
to Sony’s Playstation and Microsoft’s Xbox console series. The release year of each
product is displayed in parentheses below its name. 21

1.2 Graphics Pipeline overview. 22

1.3 Overall average power consumption. GPU load is normalized by weighting it by the
ratio between operating and maximum GPU frequency. Data obtained using Trepn
Profiler [59] for a Snapdragon 636 with connections disabled (Wi-Fi and Cellular
Data) and minimum screen brightness. 22

1.4 Battery life and GFXBench score evolution of Apple’s iPhone smartphone series. . . 24

1.5 Average energy breakdown of a Tile-Based Rendering system executing the graphics
applications listed in Chapter 3. 25

2.1 Coarse view of the Graphics Pipeline. 36

2.2 Geometry Pipeline . 37

2.3 Examples of primitives represented by a vertex stream. The subindex in each vertex
corresponds to its submission order. 38

2.4 3D Model of a mountain hill. Vertex A is shared by 6 triangles. Vertex B is shared
by 2 triangles. 39

2.5 Matrix transform. 40

2.6 Vertex transforms. 40

2.7 Primitive A is clipped because it is completely outside the viewing volume. No change
occurs to primitive B, as it is completely inside the viewing volume. Primitive C is
partially outside, so new vertices are created, forming triangles C1 and C2. 41

2.8 Backface determination. 41

2.9 Raster Pipeline. 42

2.10 Possible tile traversal orders. 43

13

LIST OF FIGURES

2.11 Edge equations example. 44

2.12 Barycentric coordinates computation. 45

3.1 Overview of the Teapot simulation infrastructure. 50

3.2 Mali-400MP-like architecture modelled by the cycle-accurate simulator. 51

4.1 Percentage of tiles producing the same result (the color is equal for all their pixels)
as the preceding frame across 50 consecutive frames. 59

4.2 Graphics Pipeline including Rendering Elimination. 60

4.3 Example of input message. 63

4.4 Signature Unit block diagram. 64

4.5 Compute CRC Unit block diagram. 66

4.6 Accumulate CRC Unit block diagram. 67

4.7 Architecture of the Sign subunit. 67

4.8 Architecture of the Shift subunit. 68

4.9 Graphics Pipeline including TE. 69

4.10 Execution cycles of Rendering Elimination (RE) compared to the Baseline GPU. . . 70

4.11 Energy consumption of Rendering Elimination (RE) compared to the Baseline GPU. 70

4.12 Tiles with equal color and inputs, equal color and different inputs, and different color
and inputs across neighboring frames. 72

4.13 RE memory bandwidth compared to baseline: Parameter Buffer and Texel fetches
and Color Buffer flushes. 73

5.1 Effects of the baseline visibility resolution in the Graphics Pipeline. 78

5.2 FVP depth computation in tiles with both WOZ primitives (white) and NWOZ
primitives (striped). 81

5.3 Reordering algorithm example. 83

6.1 Difference in level of detail across a frame. a) Frame of the game Guns of Boom. b)
Region with low level of detail. c) Region with significant level of detail. 96

14

LIST OF FIGURES

6.2 Number of 16x16 tiles that can be sampled at a rate lower than one sample per pixel
without generating per-tile visible artifacts. Section 6.3 describes the methodology
employed for this categorization. 97

6.3 DCT basis functions for N=8 pixels. 97

6.4 MaxC determination example. 98

6.5 Dynamic Sampling Rate Finite-State Machine. 99

6.6 The five sampling rates considered in our experiments, from 1x (left) to 1/256x (right).100

6.7 Raster Pipeline with DSR. 103

6.8 Frequency Analysis Unit overview. 105

6.9 Energy consumption of DSR compared to the Baseline GPU. 106

6.10 Execution time of DSR compared to the Baseline GPU. 107

6.11 Breakdown of sampling rates. 107

6.12 Shader activity of Dynamic Sampling Rate compared to the Baseline GPU. 108

15

List of Tables

3.1 GPU Simulation Parameters. 52

3.2 Benchmarks set. 54

3.3 Characterization of the geometry workload processed by the considered benchmarks. 55

3.4 Characterization of the fragment workload processed by the considered benchmarks. 56

4.1 Parameters considered in the experiments for the structures of Rendering Elimina-
tion, Transaction Elimination and Fragment Memoization. 69

5.1 Visibility casuistry . 84

5.2 Parameters considered in the experiments for the structures of Early Visibility Res-
olution. 88

6.1 Additional benchmarks for the image quality experiment. 110

17

1
Introduction

This chapter presents the motivation behind the research interest in mobile GPUs and defines
the challenges in their energy-efficient designs. Then, the specific issues that this thesis addresses
are introduced, with an outline of the proposals to solve them and a comparison against state-of-
the-art approaches. Finally, the main contributions of the thesis are listed.

1.1 The mobile Graphics Processing Unit: the driving force behind
contemporary entertainment

Mobile devices have become essential for modern life [77]. They have greatly evolved in the past
two decades and the so-called Smartphones are no longer tools for just calling or sending e-mails.
Their broad connectivity, intuitive interfacing and remarkable computing capabilities allow for a
wide variety of use cases, such as navigation or taking high-resolution pictures [21].

One of the paramount keys to the mobile revolution have been the App Stores, digital platforms
to distribute third-party software to users [35]. These platforms tremendously streamlined the
process of installing new programs, reducing it to a few taps in a screen. New applications were
also extremely easy to discover, with clear browsing interfaces that sorted all the available offers into
descriptive categories. Consequently, smartphones could add a myriad of functionalities, tailored
to the individual needs of each user.

On the other side of the market, App Stores also provided advantages to developers, who expe-
rienced an abundant reduction in the overhead of releasing new applications: a centralized platform
completely handled the connection with customers, software updates and, more importantly, mon-
etization. Developers were rewarded for creating supply in a field full of user’s demands (more than

19

1. INTRODUCTION

100 billion dollars have been earned through Apple’s App Store [7]), which led to a rapid increase
in the number of available applications to download and purchase [78].

With an ever-increasing range of utilities, users began to perceive smartphones as tools that
provided value in their daily lives. Soon, they were not only seen as useful but a necessity and their
number of sales skyrocketed, becoming the technology that has been accepted the fastest in history
[62]. Nowadays, smartphones have more than an 80% penetration rate in the majority of developed
countries [19] and users prefer to carry out most of their ordinary activities on smartphone apps
[18].

As societies have become accustomed to wear devices always connected to high-speed internet,
their behavior has drastically changed, especially regarding entertainment [52]. In the smartphone
era, immediacy and availability are favored above classical yearnings, such as product ownership.
Consequently, streaming services are the way most of the media is consumed, from music to books
or movies [55]. In particular, the ubiquity of smartphones has affected the video game industry the
most.

The affordability and convenience of mobile devices in comparison with their console or PC
counterparts have made them a video gaming phenomenon. As of 2019, a third of the world
population plays games on their phones, spending more than 40% of their screen time on gaming
applications [75]. The demographics have been hugely widened in the last few years and the
traditional gender and age barriers have been blurred, with the average age of a mobile video
gamer being 34 years old and the distribution between male and female users being nearly identical
[76]. The video game market is extremely successful, responsible of the 76% of the overall app
earnings and generating triple the revenue of the box office worldwide [74].

The industry has quickly adapted to these trends. On the one hand, software developers are
continuously creating gaming mechanics that fit within what mobile technology provides. Smart-
phones have proven to be a very good interface thanks to their motion sensors and touch screens,
which are a great way for interacting in dynamic and intuitive ways. Ease of control along with level
designs that lend themselves to short bursts of gameplay have created the boom of the so-called
casual games [44]: games without complex rules systems that can be played in the midst of day-to-
day life, such as in the public transportation or in a break in the workplace. Developers have also
managed to integrate geolocalization and cameras, smartphone-only features that were originally
only functional, into completely revolutionary gaming experiences [61]. Nevertheless, studios have
begun to successfully translate the traditional video game concept to mobile devices: rich scenes
with detailed environments that can be interacted with intricate systems.

High-quality mobile graphics have become possible due to the incorporation of powerful Graph-
ical Processing Units (GPUs). The release of the original iPhone in 2007 popularized a user interface
design that required a dedicated graphics accelerator to enable its tactile direct manipulation in-
teractions, such as pinch-to-zoom or inertial scrolling [36]. With smartphones integrating GPUs,
a new era of mobile gaming started, where sophisticated applications could be rendered in real
time. Semiconductor companies have consistently improved the capabilities of GPUs, achieving a
performance evolution much faster than the one seen in previous decades with video game consoles.
Figure 1.1 shows the performance in GFLOPS of the yearly releases of the iPhone, and compares
them with the flagship consoles of Sony and Microsoft, the PlayStation and the Xbox. As can be

20

1.2. PROBLEM STATEMENT

0.01

0.1

1

10

100

1000

10000

iPhone 3G
(2008)

iPhone 3GS
(2009)

iPhone 4
(2010)

iPhone 4S
(2011)

iPhone 5
(2012)

iPhone 5S
(2013)

iPhone 6
(2014)

iPhone 6S
(2015)

iPhone 7
(2016)

iPhone 8
(2017)

iPhone XS
(2018)

iPhone 11
(2019)

G
P

U
 G

LO
P

S

PlayStation
(1994)

PlayStation 2
(2000)

Xbox
(2001)

Xbox 360
(2005)

PlayStation 3
(2006)

Xbox One
(2013)

PlayStation 4
(2013)

Xbox One X
(2017)

Figure 1.1: Performance evolution of the GPU in Apple’s iPhone smartphone series compared to Sony’s
Playstation and Microsoft’s Xbox console series. The release year of each product is displayed in paren-
theses below its name.

seen, smartphones have had the same GFLOPS increase in 10 years as video game consoles in 20.
The performance gap between the two platforms is now closer than ever, with the iPhone 11 having
an operation count similar to consoles at the start of the latest generation.

1.2 Problem statement

The Graphics Pipeline is the series of steps taken in real-time graphics to generate two-
dimensional images given a three-dimensional scene. Figure 1.2 gives an overview of the pipeline.
The geometry of the three-dimensional objects is modeled with a set of vertices, which are first
processed, assembled into flat polygons (normally triangles) and projected into the screen plane.
Triangles are then rasterized into fragments, pixel-sized regions of triangles, upon which a final
color is computed and written in main memory to be displayed.

The aforementioned stages of the pipeline are accelerated in current systems by a GPU, the
evolution of which has brought great improvements in visual quality. Increasing the performance
of the hardware has allowed for more vertices to be processed, which translates into more detailed
models. Additional computational power and memory bandwidth have been the basis for more
complex shading models to apply in each fragment, which create realistic light and texture effects.

However, being able to sustain a pleasant experience comes at a great energy cost. Current
mobile devices have adopted 1080p resolution, where screens are composed of 1920 pixels horizon-
tally and 1080 pixels vertically. This implies that the color of more than 2 million fragments needs
to be computed to render a single frame. Additionally, several tens of frames need to be displayed

21

1. INTRODUCTION

Vertices Triangles Pixel Colors

Figure 1.2: Graphics Pipeline overview.

0
10
20
30
40
50
60
70
80
90
100

0
500

1000
1500
2000
2500
3000
3500
4000
4500

N
o

rm
a
li

z
e
d

 G
P

U
 L

o
a
d

 (
%

)

A
v
e
ra

g
e
 P

o
w

e
r

(m
W

)

Average Power GPU Load

Figure 1.3: Overall average power consumption. GPU load is normalized by weighting it by the ra-
tio between operating and maximum GPU frequency. Data obtained using Trepn Profiler [59] for a
Snapdragon 636 with connections disabled (Wi-Fi and Cellular Data) and minimum screen brightness.

within a second for the human eye to perceive smooth motion. Nowadays, users expect games to
produce fluid animations, for which a frequency of at least 60 frames per second (FPS) is required
[51].

Figure 1.3 shows the average power consumption and GPU load for three types of applications.
The first is the Android homescreen (Idle Desktop), the main screen of the most popular mobile
operating system, consisting in stationary icons and widgets organized in a grid. Next, there is a
series of smartphone games (Angry Birds to Tigerball), selected as representatives of the mobile
landscape due to their large number of downloads in the App Stores and their game play diversity.
The last application shown is the Antutu benchmark [6], a well-known benchmarking tool to rank
smartphone performance in several categories, such as memory writing speed or multithreading.
Two different component benchmarks are selected from the suite: the CPU test (Antutu-CPU),
comprised of several tasks like FFT processing, and the GPU test (Antutu-GPU), which renders
a 3D scene containing multiple real-rime lights. As it can be seen, even applications with simple

22

1.2. PROBLEM STATEMENT

scenes such as the popular match-three game CandyCrush incur a substantial amount of GPU
load, which drives an amount of power comparable to a benchmark designed to stress the GPU.
Additionally, the amount of power that these games require is significantly higher than applications
that leave the GPU mostly idle, illustrated by the Android homescreen, and is twice as much as
an application that only stresses the CPU. Consequently, the design of energy-efficient GPUs is a
priority for smartphones.

Energy consumption is paramount in battery-operated devices, as it dictates their autonomy.
For instance, the Xiaomi Redmi Note 6 Pro, the smartphone used to obtain the numbers in Figure
1.3, has a battery capacity of 15Wh when supplied its typical voltage of 3.85V. If any of the listed
games, whose average power lies between 2.5W and 3.5W, were to be played in this device, its
battery would completely be drained in less than 5 hours.

While smartphones have seen a huge performance increase in the last generations, battery
technology has not improved at the same pace. The consequence has been a continuously-increasing
gap between the complexity of the scenes that can be rendered and the time they can operate
without needing a battery charge. This has put a lot of pressure into energy-efficient mobile GPU
designs in order to sustain the additional computational capabilities without affecting battery life,
one of the most desired smartphone features by consumers [25]. Figure 1.4 shows the battery life
and performance increase for the last installments of the popular line of Apple iPhone measured
by GFXBench’s T-Rex benchmark. In this test, a 56-second scene filled with modern effects such
as soft shadows or planar reflections is looped 30 times. Performance is measured by logging the
number of frames rendered in each loop and keeping the lowest one. On the other hand battery
life is measured by logging battery discharge across loops and extrapolating the number of minutes
it would take to completely drain the device’s battery. The results of these tests show that, while
graphics performance has increased by a factor of more than 6x in the last generations, the battery
life of the devices when executing these type of applications has remained somewhat constant.

Reaching the desired FPS goal at a low power budget is not only a requirement for battery life,
but also for temperature control. Packages have a thermal ceiling that cannot be surpassed before
they are destroyed [40]. However, the design of smartphones impedes the application of traditional
cooling mechanisms. They are made extremely thin and light to fit in pockets and be comfortably
worn, so they cannot incorporate the characteristic large fans present in desktop graphic cards.
Furthermore, they are devised to be held in the palm of a single hand, which greatly restricts the
area available to dissipate heat. The thermal constraints are also much stronger in mobile devices
than in other computing systems such as desktops because their typical use cases imply having
them in contact with the body and it must be guaranteed that their surface temperature is not
unpleasant [82].

Previous research has found the GPU and, in particular, fragment processing and its accesses to
main memory, to be the greatest source of energy consumption when running graphics applications
[3, 12, 54]. Figure 1.5 shows, using the simulation infrastructure described in Chapter 3, a detailed
breakdown of the contribution of the different components of the GPU-Memory system to the overall
energy consumption. The results match the literature statements by depicting communication with
main memory, and notably the texture fetches generated by the fragment processing stage as the
main reason for energy drain. From within the GPU, the fragment processors are the components
that consume the most, as the fragment workload generally exceeds the vertex and triangle workload

23

1. INTRODUCTION

0

50

100

150

200

250

300

350

iPhone 5S
(2013)

iPhone 6
(2014)

iPhone 6S
(2015)

iPhone 7
(2016)

iPhone 8
(2017)

iPhone XS
(2018)

iPhone 11
(2019)

Battery Life (Minutes) GFXBench Score (Frames per Second)

Figure 1.4: Battery life and GFXBench score evolution of Apple’s iPhone smartphone series.

by more than two orders of magnitude.

However, most of this energy is spent in redundant operations. The high frame rate involved
in creating smooth animations stems a succession of extremely similar images. This phenomenon,
known as frame coherence, implies that a significant fraction of the inputs and outputs traversing
the Graphics Pipeline in a particular frame are the same as in its preceding frame. In the next
section, we outline three proposals to improve the energy efficiency of mobile GPUs by leveraging
frame coherence to lessen redundancy in the most energy-consuming stage of the pipeline: fragment
processing.

1.3 Thesis objective and related work

The objective of this thesis is to improve the energy efficiency of mobile GPUs by reducing the
redundant computations and memory accesses inherent in graphics applications. The thesis presents
three approaches that leverage frame coherence by implementing simple hardware designs that
collect information in a frame to guide the execution of the following one in a way that the overall
energy consumption is lowered. The three techniques are applied on top of Tile-Based Rendering,
a common pipeline organization in mobile devices that divides the screen into rectangular sections
-tiles- and renders them in succession, allowing the storage of temporary values in on-chip buffers
and avoiding their corresponding accesses to main memory.

The following subsections describe inefficiencies in the pipeline of current mobile GPUs and
present the proposals of this thesis to enhance energy efficiency and their novelty over the existing

24

1.3. THESIS OBJECTIVE AND RELATED WORK

Fragment
Processing 15%

Vertex
Processing 3%

Other 1%

Textures 40%

Colors 10%

Input
Geometry 2%

Parameter Buffer
Writes 22%

Parameter Buffer Reads 7%

GPU 19%

Main Memory Communication GPU

Figure 1.5: Average energy breakdown of a Tile-Based Rendering system executing the graphics appli-
cations listed in Chapter 3.

solutions in the literature.

1.3.1 Reducing redundant colors across frames

The Graphics Pipeline in a TBR GPU is divided into two decoupled pipelines [49]: the Ge-
ometry Pipeline receives vertices and generates, after a set of transformations, output primitives
(triangles) that are sorted into tile bins and stored into the main memory Parameter Buffer. After
all the primitives have been sorted, the Raster Pipeline processes the tiles one at a time, fetching
each tile’s primitives, rasterizing each primitive into fragments, and shading and texturing each
fragment to obtain a final pixel color. Once all the primitives of a tile have been processed, its
resulting colors are stored in the Frame Buffer, the main memory region from which the image is
read to be displayed in the screen.

Frame coherence implies that the outcome of most tiles is exactly the same between two consec-
utive frames, which means that a significant portion of the operations devoted to render a frame are
redundant. Several previous works have attempted to exploit frame coherence in order to remove
these ineffectual computations and memory accesses to improve energy efficiency.

Transaction Elimination [41] (TE) is a bandwidth saving feature included in the ARM Mali
GPUs that detects identical tiles between the current frame being rendered and a previously ren-
dered frame. TE computes a Cyclic Redundancy Check signature of the output colors of a tile and
compares it with the signature of the same tile in the preceding frame. If the signatures are equal,
the tile is considered to be redundant and is not flushed to the Frame Buffer. As communication
with main memory is the greatest source of energy consumption, avoiding the color flushes to main
memory yields significant energy savings.

25

1. INTRODUCTION

Parallel Frame Rendering [9] (PFR) is another technique to reduce communication with main
memory, focused on texture bandwidth. Due to frame coherence, the same textures are likely to
be reused across frames. However, due to the large texture dataset within a frame, most textures
have been evicted from the caches by the time they are required again. PFR divides the Raster
Pipeline into clusters which process consecutive frames in parallel with a fraction of the original
GPU resources. Under this organization, a single texture fetch can be reused among all clusters,
typically 2, greatly reducing the number of memory accesses.

Arnau et al. proposed to employ memoization [8] to avoid not only the texture accesses but
the complete processing of redundant fragments. A small hardware lookup table stores the color
results of fragments along with a hash of their input as an address. Subsequent fragments form
their signatures and check them against the signatures of the memoized fragments. In case of a hit,
the fragment skips its processing and the color is reused. Because most redundancy resides between
consecutive frames, the huge reuse distance makes impractical to store a frame’s worth of signatures
and output values. To help reduce the reuse distance, the memoization scheme is build on top of
PFR, which unfortunately cuts in half the redundancy detection potential: even frames reuse values
cached by the previous (odd) frame, but odd frames cannot because their previous-frame values
are already evicted from the LUT by the time they are rendered.

Hardware memoization has also been used in Decoupled Shading [39], a proposal to separate
shading from visibility determination to reduce the cost of processing complex effects such as
motion and defocus blur, which require sampling over a 5D domain (lens aperture and shutter
interval besides the pixel area). Despite the large number of samples required to compute these
effects, the colors of the samples within the same aperture or interval are very similar. In this
approach, shading is sampled at a much lower rate than visibility by mapping visibility samples
to shading ones using a function that accounts for blurring effects. Additionally, by memoizing
previously-shaded results, the number of processed fragments is further reduced by reusing values
for the same location. However, decoupling visibility and shading requires significant changes in a
TBR architecture due to the synchronization point in the middle of the pipeline execution which
essentially couples the visibility determination and shading of pixels within a tile.

We make the observation that in a TBR GPU, primitives do not need to be discretized into
fragments to know that the final result will be the same as in the preceding frame. Instead,
by managing redundancy at a tile level, redundant tiles may be discovered much earlier than at
fragment level and bypass the whole Raster Pipeline. Note that the Raster Pipeline computes the
pixel colors using as inputs a set of primitives’ attributes generated by the binning stage of the
Geometry Pipeline plus a set of scene constants, so it knows all the input data required to render
a tile when it starts processing it.

Based on the above observation, we propose Rendering Elimination (RE), a novel technique
that employs the input data of a tile to anticipate if all of its pixels will have the same color as in
the preceding frame, and to bypass the complete rendering of the tile. Since an entire frame of these
input sets must be stored on-chip, they are compared by means of a signature. In parallel with the
sorting of a primitive into tiles, RE computes on-the-fly the signatures of the tiles it overlaps and
stores them in a local fixed-size on-chip buffer. Then, after the Geometry Pipeline has processed
the frame, tiles are dispatched to the Raster Pipeline. For each tile, RE compares its current and
preceding frame signatures and, if they match, all the rendering process is bypassed and the colors

26

1.3. THESIS OBJECTIVE AND RELATED WORK

in the Frame Buffer are reused. Otherwise, the tile is rendered as usual.

By working at a much coarser grain than Fragment Memoization, RE can store on-chip all the
frame signatures and detect all the available tile redundancy instead of just that of the even frames,
which more than compensates for the marginal undetected redundancy at sub-tile level (our results
show that RE almost doubles the amount of redundancy discovered). In addition, RE does not need
to store output results because tile colors are reused from the Frame Buffer, thus saving storage
and bandwidth. Besides this, while TE and Fragment Memoization each skip just a single stage
of the Raster Pipeline (Color Buffer flush and Fragment Processing, respectively), RE completely
skips all the Raster Pipeline stages. Additionally, unlike Decoupled Shading, implementing RE
requires minimal changes to the common mobile graphics pipeline.

1.3.2 Reducing overshading

The Graphics Pipeline is responsible for resolving the visibility problem: determining which
surfaces and parts of surfaces are not visible from a certain point. In current GPUs, visibility of
overlapping fragments is typically handled employing the Z Buffer, a memory region which stores
the depth of the closest fragment to the camera for every pixel in the frame. Fragments perform
an Early Depth Test before they are shaded: their depth is compared with the one stored in their
same position and are only processed and written to the Frame Buffer if they are closer than the
previously visible fragment. However, as GPUs process vertices in the order that they are submitted
by the application and do not perform any type of sorting, it is common for previously-computed
fragments to be occluded by newer fragments that turn out to be closer to the observer. This
phenomenon is known as overshading, and leads to an important energy waste as the color of pixels
is uselessly computed multiple times.

We propose Early Visibility Resolution (EVR), a mechanism to reduce overshading based on
a per-tile visibility estimation in early stages of the pipeline. Within a tile, occluded primitives are
the ones whose depth is farther away from the viewpoint than the farthest visible point in that
tile. By virtue of frame coherence, visibility tends to remain very similar across consecutive frames:
occluded primitives in a frame are prone to be occluded in the following frame as well. EVR obtains
the depth of the farthest visible points (FVP) of each tile in a frame after they have been rendered,
and uses these depths to predict the visibility of primitives in the next frame. Whenever a primitive
is binned into a tile, its closest point to the camera is compared against the depth of the farthest
visible point for that tile in the previous frame: if the former is farther, the primitive is predicted
to be occluded for that tile, whereas if it is closer, the primitive is predicted to be visible.

We leverage this early visibility prediction scheme to reduce redundancy in a TBR Graphics
Pipeline at two different granularities: First, at a fragment level, the effectiveness of the traditional
Early Depth Test hidden fragment rejection is improved by processing primitives predicted to be
occluded after those predicted to be visible. Second, at a tile level, the effectiveness of Rendering
Elimination’s redundant tile detection is significantly improved by ignoring primitives predicted
to be occluded when computing similarities between tiles. By construction of both Early Depth
Test and Rendering Elimination, mispredicting the visibility of a primitive does not generate any
errors: on the one hand, reordered primitives still have to perform the Depth Test, which maintains

27

1. INTRODUCTION

correctness of the result. On the other hand, a visibility change requires a change in the attributes
of one or more primitives, which results in different signatures between frames and, consequently,
the rendering of a tile.

Hidden surface removal, and an efficient solution to it in particular, is a fundamental problem
in computer graphics, with an extensive literature spanning more than three decades.

The Hierarchical Z Buffer [30] is a variation of the baseline Z Buffer technique in which a depth
pyramid is used to test visibility. The base level of the pyramid corresponds to the Z Buffer and
higher levels are constructed by combining the depth of four pixels at the next lower level, typically
by choosing the farthest one. Entire primitives can be discarded without accessing the Z Buffer
by comparing their nearest depth against the values in higher levels in the pyramid. Our EVR
proposal also compares the depth of primitives to a FVP depth, which would correspond to the
top of the pyramid of the Hierarchical Z Buffer. However, the FVP depth contains final visibility
information (the visibility after having shaded all the primitives in a frame) which allows, unlike the
Z pyramid, to detect primitives that will be occluded by others processed later. Moreover, the FVP
depth includes more information than just the top of the Z pyramid: the FVP abstraction allows
EVR to also predict the visibility of primitives that do not use the Depth Test and instead are
processed using the so-called Painter’s Algorithm [46], where objects are processed in back-to-front
order and displayed one over the other as if they were paint layers. EVR keeps track of the number
of overlapping primitives within each tile that are processed in that manner using a counter named
Layer identifier, which is used in the final FVP computation.

The concept of layers has been previously adopted in the context of occlusion culling, most
notably in Depth Peeling [22], an algorithm that renders geometry multiple times. Each render pass
processes only the fragments farther away from the closest depths in the previous pass and stores a
new set of closest depths and colors, effectively peeling off the surface layer at each pass. After all
the iterations have completed, all the generated layers are blended from back to front, guaranteeing
correct transparency even for intersecting objects without the need to sort geometry. Recently,
Andersson et al. [4] leveraged a two-layer representation of depths to avoid bandwidth spent in
updating the Hierarchical Z Buffer. In a traditional pipeline with a Hierarchical Z Buffer, the coarser
Depth Test is performed before rasterization to trivially accept or discard certain primitives, while
the finer per-fragment Depth Test is performed before shading for all the non-trivial primitives.
The results of the finer test may update one or more levels of the depth pyramid, which causes a
feedback loop in the pipeline. This communication is undesirable because there may be a significant
number of cycles of delay between the Hierarchical Buffer and the Depth Buffer, which increases
the number of primitives passing the coarse test and, therefore, reducing its culling efficiency. In
their approach, hierarchical tiles consist of one Zmin and a Zmax values per layer, which allows
for depth information to be updated only during the coarse test and removing the feedback loop.
In the work of Scheckel and Kolb [66], layers are used in combination with the alpha parameter
to completely cull transparent fragments. It is common in 2D graphics applications to use the
Painter’s Algorithm to successively display objects stored in rectangular image buffers, which have
their pixels completely transparent (their alpha component is set to 1) in areas outside the edges
of the objects. This implies a significant energy waste in rasterizing and processing transparent
fragments that do not contribute to the final color of the image. They propose to use min-max
mipmaps to cull the completely transparent fragments. A pixel in a layer is completely opaque if

28

1.3. THESIS OBJECTIVE AND RELATED WORK

its min value is 1 and it is completely transparent if its max value is 0. Every 4 consecutive pixels
within a layer are combined into one to generate the subsequent layer, and a hierarchical algorithm
classifies layer areas as opaque or transparent by recursively checking for maximum and minimum
pixel values. Starting from the coarser level, if a pixel represents a fully opaque rectangular region,
the related layer is processed by generating two triangles. Otherwise, the algorithm traverses
the hierarchy to the next finer level. Unlike EVR, these layer-based approaches cannot combine
visibility information of both primitives that use the Depth Test and ones that do not for a better
visibility determination.

Computing visibility at a fragment level (known as image-precision [71]) is useful to solve
certain problems, such as circular dependencies. However, resolving visibility at a coarser grain
could reduce the number of computations needed. Occlusion queries [67] are a feature supported
by modern GPUs in which the application asks for the number of visible fragments of simple
geometry (bounding volumes, for instance) and the hardware replies by testing it with the current
contents of the Depth Buffer. With Coherent Hierarchical Culling [11], queries are scheduled using a
hierarchical representation of the scene. The number of queries can be minimized by applying them
in large regions expected to remain occluded. Additionally, the entire hierarchy is not completely
traversed each frame: by taking advantage of temporal coherence, the traversal starts from the
visible regions in the preceding frame, which are predicted to be visible in the current one. N-
Buffers [17] are a different representation of the depth hierarchy which allows querying within a
shader program for the depth of a rectangular region of arbitrary size and position in constant time.
An N-buffer is a set of textures of identical resolution where a pixel p in the ith level corresponds
to the maximum depth within a square area of 2i x 2i pixels around p. With this organization, it
is possible to find the minimum depth in an arbitrary square area with only four texture accesses
corresponding to four overlapping squares. While having a great potential to avoid the shading of
occluded primitives, these queries involve a delay between issuing them and receiving the results,
which greatly hinders performance. Furthermore, as with the Early Depth Test, in order for
occlusion queries to perform well, both objects and queries must be sent in front-to-back order.
EVR is transparent to the application in both axes: it requires neither synchronization nor ordering.

Several works perform additional auxiliary render passes to compute the depth of visible frag-
ments and then execute the pass that shades them. Z-Prepass [14] is a software technique that
draws the scene in two steps: first the geometry is rendered using null fragment shaders, that do
not produce any color and are used to quickly fill the Z Buffer. Later, the geometry is rendered
again with proper shaders, but now with perfect visibility information in-place, so that all occluded
fragments can be discarded. The Hidden Surface Removal stage in PowerVR architectures [58] is
a hardware version of Z-Prepass for TBR architectures. The geometry is processed only once, in
order to bin all the primitives in the scene into tiles. Each tile is then rendered using two steps:
first, visibility is resolved by using simple shaders and obtaining the depths of the closest fragment
in each pixel. The second step fetches and rasterizes all the primitives of the tile again, but the
Early Depth Test is able to cull most of the workload sent to the Fragment Processors. Saito and
Takahashi [64] introduced the G-Buffer, per-pixel intermediate storage for geometry information,
such as normals or screen coordinates, used to enhance fragment shading. In particular, the G-
Buffer stores depth information, so a first render pass fills the G-Buffer while removing hidden
surfaces and a second pass reads the contents of the G-Buffer to compute the color of each pixel.
This additional render pass incurs in significant overheads, which may not always be offset by the

29

1. INTRODUCTION

increase in the fragments discarded in the Early Depth Test. By working at a coarser granular-
ity (primitive instead of fragment), EVR does not need to perform the pre-pass but still achieves
results comparable to having complete visibility information.

Multiple works reduce overshading by means of reordering the primitives that make up a scene.
Govindaraju et al. [29] propose an algorithm to sort objects in either front-to-back or back-to front
order from a given viewpoint. The algorithm uses the Depth Buffer and the GPU to perform the
image-space occlusion computations among objects. The work of Chen et al. [13] also creates a
depth-sorted list for every possible viewpoint, focused on static objects that do not intersect. A
preprocess creates back-facing duplicates for each input triangle in order to allow general triangle
orderings. Cycles within the obtained occlusion graph are broken by using a heuristic that divides
the space of viewpoints into a number of partitions and creating independent sorted lists for each
partition. In the approach of Han and Sander [32], the preprocessing is extended to consider
several key frames besides viewpoints, which generate sorted lists that can be indexed at runtime
to reduce the overdraw in animated scenes. Weber and Stamminger [84] use a graph representation
of dependencies in animated scenes with a fixed camera to sort primitives accordingly, and leverage
frame-to-frame coherence to merge different graphs and keep the overall structure manageable.
Unlike EVR, these approaches are not suited for interactive scenes in real-time rendering due to
their preprocessing needs, which is limited to certain camera angles, animations or frames. Visibility
Rendering Order [15] was proposed recently as an approach to dynamically sort objects in real
time. By taking advantage of temporal coherence, a visibility graph can be constructed entirely
in hardware after rendering each frame and use it as an approximation for the visibility of the
next one. Objects are thus sorted in front-to-back order and overshading is reduced by processing
objects predicted to be occluded after objects predicted to be visible. EVR is able to reduce the
overshading even further by working at a finer granularity (primitives instead of objects).

1.3.3 Reducing redundant colors within a frame

Primitives in the Raster Pipeline are discretized by sampling them across the screen and pro-
ducing a fragment for each sampling location that they cover. Sampling points are usually placed in
the center of pixels, which allows to capture the majority of details and avoid most aliasing effects
like jagged edges or flickering. However, many regions of the screen do not contain enough level of
detail to require such high sampling rates, leading to a significant amount of fragments wastefully
producing the same color as their neighbours.

Based on that observation, we propose Dynamic Sampling Rate (DSR): a hardware mechanism
that dynamically finds and applies, for each tile, the optimal sampling rate, i.e., the lowest sampling
rate that does not cause visible artifacts in the rendered image. After the rendering of a tile to
the on-chip color buffer finishes, DSR computes the 2D Discrete Cosine Transform of the resultant
tile image, analyzes the spatial frequencies present in it and decides, based on a simple heuristic,
the best sampling rate for the tile: whether it could have been sampled at a lower rate without
sacrificing image quality, whether it contains enough detail that the sampling rate needs to be
increased or whether the sampling rate is already optimal. Frame coherence implies that the level
of detail of a tile across consecutive frames will be very similar, so the estimated-best rates for all
the tiles are stored in a small on-chip Lookup Table and are queried during the rendering of each

30

1.3. THESIS OBJECTIVE AND RELATED WORK

tile in the following frame.

There is a lot of interest in the graphics community in sampling at coarser granularities than
pixels because it is a direct way to reduce the number of shading executions, which entails reductions
in execution time and energy consumption. DSR addresses the main shortcomings of prior work
on this area.

Several techniques dynamically detect regions of the screen that can be sampled at lower
rates by adding additional pipeline stages before or after the shading process. Deferred Adaptive
Compute Shading [43] divides the framebuffer into levels, subsets of pixels progressively denser, and
starts by shading the pixels in the coarsest level, the left corner in square regions of 4x4 pixels. The
levels in the hierarchy are then traversed in order, processing all the pixels in a level before advancing
to the subsequent level. Before shading a pixel, the values of the 4 closest, equidistant pixels from
the previous level are compared using a user-defined criterion, such as threshold between color
values combined with material identifiers. If the neighbor pixels are similar, the color of the pixel
is computed by averaging their results and all the shading computations and memory accesses
are avoided. Otherwise, the pixel is shaded as normal. Multi-Sampling Anti-Aliasing (MSAA)
emulates the quality of sampling more than once per pixel without having to shade all the samples.
Visibility is sampled many times per pixel, but the color computation is only performed once per
pixel and shared to all the visibility samples covered by the triangle in that pixel. MSAA improves
image quality especially around object silhouettes, where typically there are both color and depth
discontinuities. In the work of Sathe and Akenine-Möller [65], MSAA is extended to reuse shading
computations along internal edges from different primitives of the same object. They present a
unit that queues fragments before the processing stage and detects non-overlapping fragments from
neighbouring primitives using their coverage information and vertex identifiers. In Adaptive Image-
Space Sampling [69], the resolution is reduced in areas that contain less perceivable detail. Using
the information available after the geometry processing, a visual perception method based on the
human visual system evaluates the probability of a fragment being important to the final image.
Only the fragments labelled as necessary are shaded, while the color of the others is obtained by
interpolating other results. Unlike these approaches, DSR is architected to not introduce any time
overheads by completely overlapping the sampling rate estimation for a tile with the rendering of
the next one.

To avoid the runtime overhead of determining components with less detail, several works allow
the programmer to statically determine the sampling rate. In Coarse Pixel Shading [79], the sample
rate of a primitive can be controlled based on their vertex attributes. The sample rate may change
for a primitive across different regions of the screen and different attributes may also be sampled
at independent rates. He et al. [33] design new language abstractions that grant each shader
program the ability to sample different components of the shading function at different rates. The
rasterizer first generates coarse fragments, which execute their shader for effects that have low
spatial variation, like certain lights. These fragments are then partitioned into finer fragments,
which execute traditional shader programs for effects that have per-pixel variability. In the new
Turing GPUs, NVIDIA has introduced Variable Rate Shading, a feature that allows the programmer
to decide which sampling rate to apply in each 16x16-pixel region of the screen. DSR, on the other
hand is able to continuously adapt to changes in the scene by dynamically estimating the best
sampling rates in each tile using a hardware-only mechanism in a completely transparent manner

31

1. INTRODUCTION

to the programmer.

Frame coherence has been previously leveraged to reduce the number of samples to process. In
Checkerboard rendering [47], each frame shades an alternate half of the pixels in the screen. The
color of the non-shaded half is obtained by applying reconstruction filters to the results obtained
in the preceding frame. A large number of shading computations are avoided at the cost of some
visual artifacts, since the lossy nature of the reconstruction and the fixed undersampling cannot
perfectly reproduce neither motion nor visibility changes. In contrast, DSR estimates sampling
rates at the finer granularity of tiles, can render tiles at the small rate of only one fragment per tile
and does not affect image quality because it only reduces the sampling rate whenever a tile does
not contain high spatial frequencies.

1.4 Thesis contributions

This section presents the contributions and publications of this thesis’ research on energy
efficient mobile GPUs for graphics applications.

1.4.1 Rendering Elimination

Rendering Elimination (RE) is a coarse-grained memoization scheme that avoids the entire
processing of redundant tiles. The work has been published as:

Rendering Elimination: Early Discard of Redundant Tiles in the Graphics Pipeline.
Mart́ı Anglada, Enrique de Lucas, Joan-Manuel Parcerisa, Juan Luis Aragón, Pedro Marcuello
and Antonio González. In 2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA’19).

Its main contributions can be summarized as follows:

• The observation that frame redundancy can be discovered in a Tile-Based Rendering GPU
at the tile level much earlier in the pipeline than previous techniques do.

• An analysis of the large amount of tile-level redundancy in current graphics applications,
which leads to energy waste when computing again the same colors for a tile than in its
preceding frame.

• A detailed proposal of a mechanism to detect tile redundancy in early stages of the Graphics
Pipeline and avoid its processing.

• An architectural implementation of the tile redundancy detection that can be integrated into
the Graphics Pipeline with minimal hardware and performance overheads.

• An experimental evaluation of RE that shows that our proposal to discard redundant tiles
yields energy savings of 37% and an execution time reduction of 33% over a conventional
mobile GPU, and substantial improvements over previous works.

32

1.4. THESIS CONTRIBUTIONS

1.4.2 Early Visibility Resolution

Early Visibility Resolution (EVR) is a mechanism to avoid the processing of fragments belong-
ing to hidden surfaces. The work has been published as:

Early Visibility Resolution for Removing Ineffectual Computations in the Graphics Pipeline.
Mart́ı Anglada, Enrique de Lucas, Joan-Manuel Parcerisa, Juan Luis Aragón, and Antonio González.
In 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA’19).

Its main contributions can be summarized as follows:

• An analysis of the amount of overshading in current graphics applications, which leads to
energy waste when computing the colors of a primitive that will eventually be occluded.

• A detailed proposal for a mechanism to estimate visibility at tile level in early stages of the
Graphics Pipeline based on exploiting frame coherence.

• A mechanism to employ the visibility determination to reduce overshading by processing
primitives predicted to be visible before primitives predicted to be occluded.

• A mechanism to employ the visibility determination to improve Rendering Elimination’s re-
dundant tile detection by not including primitives predicted to be occluded in the memoization
scheme.

• An architectural implementation of a visibility prediction scheme that can be integrated into
the Graphics Pipeline with minimal hardware overhead and without any performance penalty.

• An experimental evaluation of EVR that shows great reduction in overshading and improve-
ments in redundant tile detection, yielding energy savings of 43% and an execution time
reduction of 39%.

1.4.3 Dynamic Sampling Rate

Dynamic Sampling Rate (DSR) is a technique that reduces the number of fragments generated
in tiles with low spatial frequencies. The work is currently under review as:

Dynamic Sampling Rate: Harnessing Frame Coherence in Graphics Applications for Energy-
Efficient GPUs. Mart́ı Anglada, Enrique de Lucas, Joan-Manuel Parcerisa, Juan Luis Aragón, and
Antonio González.

Its main contributions can be summarized as follows:

• An analysis of the number of tiles in current graphics applications that can be sampled at a
lower rate than the baseline without producing visual artifacts, which leads to energy waste
when processing the colors of fragments that do not improve image quality.

33

1. INTRODUCTION

• A new hardware technique, completely transparent to the programmer, that estimates the
lowest possible sample rate to which each tile may be rendered without producing visual
artifacts and applies it during the following frame by taking advantage of frame coherence.

• A dynamic mechanism based on the real-time analysis of the spatial frequencies, that con-
tinuously adapts the sample rate of each tile to track the image changes that occur over
time.

• An architectural implementation of the frequency analysis unit that can be integrated into the
Graphics Pipeline with minimal hardware overhead and without any performance penalty.

• An experimental evaluation of DSR that shows great reduction in redundant shader activity,
yielding energy savings of 40% and an execution time reduction of 36%.

34

2
Background: Tile-Based Rendering

This chapter provides a brief overview on the Graphics Pipeline. While the Pipeline is a
conceptual model that can be implemented in many ways, the focus of this chapter is set on
how data is transformed and transported across the different stages in Tile-Based Rendering, an
architecture designed with low power as a goal. The objective of the chapter is to give background
on the tasks that the GPU solves and introduce the terminology that will be used throughout the
document, in particular of Tile-Based Rendering, as it is the design that will be used as a baseline
in the proposals of the thesis.

The Graphics Pipeline is the process that obtains a two-dimensional image given a three-
dimensional scene and a camera position and orientation. Three-dimensional scenes usually consist
of light sources and three-dimensional objects, which are modelled by polygons. Rendering is a
complex operation consisting of many operations and is, consequently, pipelined to improve its
performance and throughput. All the required steps can be grouped in three coarse pipeline stages
where each stage requires the output of the previous one as its input: Application, Geometry and
Raster, as seen in Figure 2.1. The Application Stage corresponds to the program running on the
CPU, and is responsible to create the geometry that defines the scene, to adapt it according to
the user interaction and to send it to the GPU. The GPU implements the next two stages with
a mix of fixed-function and programmable hardware: the Geometry Stage, in which the geometry
is transformed and assembled into triangles in the screen plane, and the Raster Stage, in which
triangles are discretized into ”picture elements” (pixels) that are then shaded: a color is computed
for each of them.

35

2. BACKGROUND: TILE-BASED RENDERING

CPU

Application Geometry Raster

GPU

Figure 2.1: Coarse view of the Graphics Pipeline.

2.1 The Application Stage

The Application Stage is the collection of software instructions required to set the state of the
pipeline. This encompasses a plethora of operations, ones that manage interfacing and ones closer
to managing the hardware.

On the high-level side, the application controls how the scene reacts to the user inputs, estab-
lishing the motion of the objects and the camera and deciding which objects should be displayed.
The programmer also determines how objects interact with each other and the world by computing
the effect of forces upon them, particularly collisions.

On the low-level side, a wide variety of capabilities and optimizations can be enabled, such as
culling, depth test or blending, which will be discussed later in this chapter. The application also
manages memory resources and how data is stored and handled. The most important function
of the Application Stage is to load the objects belonging to the scene and transfer them to the
GPU. Objects are comprised of vertices, points in three-dimensional space to which the application
associates additional information known as attributes, such as normals or color. Attached to the
objects are also shaders, code defined by the application that computes how different types of light
interact with their surfaces, and textures, images that can be applied on top of polygons to add
high-frequency detail. The application communicates with the GPU the state of the pipeline for a
batch of vertices using Commands and triggers them using a Drawcall.

36

2.2. THE GEOMETRY STAGE

2.2 The Geometry Stage

Figure 2.2 shows a block diagram of the Geometry Stage, which receives input streams of
vertices from the GPU and transforms it into a series of 2D primitives.

Command

Processor

Vertex

Fetcher

Vertex

Processor

Primitive

Assembly

Primitive

Binning

Tile

Cache

Vertex

Cache

Instruction

Cache

L2 Cache

Main Memory

Figure 2.2: Geometry Pipeline

Command Processor

The Command Processor reads the commands sent by the application and configures the differ-
ent stages of the GPU. In particular, it parses how the vertex information of each Drawcall must be
interpreted: how do vertices form primitives and how their attributes are laid out in memory. The
ordered list of vertices that the GPU receives can represent a wide variety of primitives, depending
on the application specification. Figure 2.3 shows the different possibilities in which vertices can be
connected. The most used primitive types are triangles, in which every group of 3 vertices forms a
triangle, and triangle strips, in which successive vertices form triangles with the preceding two.

Vertex Fetcher

The Vertex Fetcher reads the vertices requested by a Drawcall and unpacks its attributes to
be used as inputs in the vertex shader. As illustrated in Figure 2.4, vertices in three-dimensional
objects tend to be shared by several triangles. Consequently, the Vertex Fetcher is aided by a
Vertex Cache to capture that reuse and reduce vertex communication with main memory.

Vertex Processor

Vertices fetched from memory are transformed by executing user-defined shader code in the
Vertex Processor. The main purpose of the vertex shader is to compute the 2D coordinate in
the screen corresponding to a vertex 3D position. The final location of a vertex is obtained by
performing a series of affine transformations to its position attribute:

37

2. BACKGROUND: TILE-BASED RENDERING

V1
V2

V3

V4

V5

V6

V7

V8

V1

V2

V3

V4
V5

V6

V7

V8

V1

V2

V3

V4

V5

V6

V7

V8

V1

V2

V3

V4
V5

V6

V7

V8

V1 V2

V3

V4

V5

V6V7

V8

V1

V2

V3

V4
V5

V6

V7

V8

V1 V3

V3V3
V3

V2

V2

V2V2

V4

V4V4

V4

V5V5

V5V5

V6

V6

V6

V6 V1

V1

V1 V7

Points Lines Line Strip Line Loop Triangles

PolygonQuad StripQuadsTriangle FanTriangle Strip

Figure 2.3: Examples of primitives represented by a vertex stream. The subindex in each vertex corre-
sponds to its submission order.

• Model Transform. Each object is initially placed in its own coordinate space, with the
position of its vertices relative to an individual origin. The model transform positions vertices
in a common coordinate system called world space.

• View Transform. Vertices are placed into view space, an auxiliary coordinate system where
the camera is at the origin looking at the negative Z-axis. The view transform orients the
world around the camera position to facilitate projection computations.

• Projection Transform. Vertices in the camera’s viewing volume, defined by the camera’s
field of view and by a near and far planes, are projected to the screen plane. The Projection
Transform defines the mapping between the 3D space and the 2D plane and yields coordinates
in clip space, a system useful for clipping, the next step in the pipeline that discards primitives
outside the viewing volume. The perspective projection, in which objects farther away from
the camera appear smaller and parallel lines converge to a single point, is the most widely
used projection.

These operations are implemented using transformation matrices in the homogeneous coordi-
nate system, where a 3D location (x,y,z) is represented as [x,y,z,w=1] and a 3D direction (x,y,z)
is represented as [x,y,z,w=0]. By representing vertices in homogeneous coordinates, all the afore-
mentioned transforms can be computed using a concatenation of 4x4 matrix multiplications, where
coordinates can be rotated, translated or scaled as shown in Figure 2.5.

The Vertex Processor is thus architected to quickly perform these transforms. It consists of a
simple, in-order pipeline composed by Fetch, Decode, Execute and Writeback stages built around
4-wide vector floating point units to compute results for each [x,y,z,w] component. The Single
Instruction Multiple Thread (SIMT) execution model is employed to tolerate latency and provide
high throughput: multiple threads are bundled in a warp and progress in lock-step by executing
the same shader instruction on different vertices, and several warps are running concurrently by
interleaving their execution. SIMT is a great fit for vertex workloads, as the same shader code is

38

2.2. THE GEOMETRY STAGE

B

A

Figure 2.4: 3D Model of a mountain hill. Vertex A is shared by 6 triangles. Vertex B is shared by 2
triangles.

shared with a large amount of vertices and shader invocations are independent: they do not need
information from other vertices and, therefore, their execution can be massively parallelized.

Shader code is written using C-like languages with their own programming model, and is
compiled to the specific ISA of the GPU by a driver. In essence, shaders produce outputs to be
consumed later in the pipeline using two types of inputs: values that change per shader invocation
(such as vertex attributes) and uniforms, values that remain constant throughout a Drawcall. In
particular, vertex shaders are required to output at least a 2D position, but they can also modify
other attributes that model the appearance of objects, such as color, normal or texture coordinates.
The number of registers used by a shader determines the maximum number of simultaneous warps
that can be executing concurrently, as the interleaving of warps is possible due to a big shared
register file that stores the state of all in-flight threads.

Primitive Assembly

The Primitive Assembly groups the shaded vertices that leave the Vertex Processors into the
primitives that the application used to define the geometry (Figure 2.3). Additionally, it performs
two visibility-related optimizations, clipping and culling, and a last transform to position vertices
into coordinates in the screen window. A visual summary of all the vertex transforms performed
in the Geometry Pipeline is shown in figure 2.6.

• Clipping. Primitives that lie fully outside the viewing volume are removed from further
processing, as they will not appear in the final image. For primitives that lie partially inside
the viewing volume, the portion that will not be visible is discarded by replacing vertices
located outside the viewing volume by vertices located at the intersection between the edge
of the primitive and the planes of the viewing volume. As shown in Figure 2.7, the clipping
process for these primitives discards some vertices, creates new ones and forms new primitives.
Primitives that lie fully inside the viewing volume are sent to the next step in the pipeline

39

2. BACKGROUND: TILE-BASED RENDERING

0 0 0 1

Translate Scale Rotate X Rotate Y Rotate Z

Figure 2.5: Matrix transform.

Model

Transform

View

Transform

Projection

Transform

Viewport

Transform

Figure 2.6: Vertex transforms.

without any processing. Vertex coordinates in clip space can be easily tested to be located
inside the viewing volume by checking if its (x,y,z) coordinates are within the range [-w, w].

• Viewport Transform. After the projection, an additional step called perspective divide
transforms coordinates in the clip space into normalized device coordinates by dividing their
(x,y,z) components by their w value. This results in (x,y,z) values in the (-1,1) range, which
can be easily scaled and translated by a final transform that maps vertices to actual pixel
coordinates taking into account the resolution of the display.

• Backface Culling. Triangles that face away from the camera are removed from further
processing, as the triangles that face towards the camera will occlude them. Detection of
backfacing triangles is done by analyzing the winding order of the vertices. Whenever triangles
are submitted to the pipeline, their front face is defined by sending their vertices in a specific
order, either clockwise or counter-clockwise, as shown in Figure 2.8a. After triangles are in
normalized device coordinates, if the winding order of a triangle is the same as the one that
was submitted, it is front-facing. Otherwise, it is a back-facing triangle and it is culled (Figure
2.8b).

40

2.2. THE GEOMETRY STAGE

A

B B

C

Figure 2.7: Primitive A is clipped because it is completely outside the viewing volume. No change occurs
to primitive B, as it is completely inside the viewing volume. Primitive C is partially outside, so new
vertices are created, forming triangles C1 and C2.

2

3 2

1 1 3

Counter-Clockwise Clockwise

(a) Winding orders for a primitive, defining its front-
face.

2

3 2

1 1 3

Counter-Clockwise Clockwise

(b) Primitives whose front-face looks toward the cam-
era have their vertices in counter-clockwise order, while
primitives whose back-face looks towards the camera have
their vertices in clockwise order.

Figure 2.8: Backface determination.

Primitive Binning

The traditional desktop GPU architecture is commonly known as Immediate Mode Rendering,
where primitives directly advance to the Raster Pipeline after being assembled. Immediate Mode
Rendering requires a lot of communication with main memory, as triangles in the stream could be
positioned anywhere in the screen and, consequently, the working set for temporary values is too
large to be conveniently cached.

Mobile GPUs usually employ another approach called Tile-Based Rendering, where the screen
space is divided into a regular grid of tiles which are independently processed. By rendering only a
small region of the scene at a time, a variety of computations in the Raster Stage can leverage local
on-chip memories for temporary results instead of using main memory. In Tile-Based Rendering,
the results of the Raster Stage (the colors of the pixels composing a tile) are only written to main
memory once, after the rendering of a tile is complete. Therefore, all the primitives that could
contribute to the colors of a tile must be known before starting its processing.

The Geometry and Raster Stages are decoupled by the Primitive Binning, a step that generates
a data structure that indicates which primitives overlap in each screen tile. Additionally, the output
of the Geometry Stage (the per-vertex transformed attributes of primitives) must also be stored so
that the Raster Stage can later operate on it after all the primitives in the scene have been binned.
This data structure is known as Parameter Buffer, and is stored in main memory. Accesses to
the Parameter Buffer are aided with a Level-1 cache called Tile Cache, as primitives assembled
consecutively tend to overlap a similar set of tiles.

41

2. BACKGROUND: TILE-BASED RENDERING

Tile-Based Rendering saves memory accesses during the Raster Stage at the expense of generat-
ing additional geometry-related memory accesses. It is generally a good trade-off in terms of energy
consumption, as the Raster workload is several times larger than the Geometry workload. However,
the decoupling process introduces a significant performance hit that high-end graphics applications
cannot tolerate. Thus, Tile-Based Rendering is normally confined to power-constrained GPUs.

2.3 The Raster Stage

Figure 2.9 shows a block diagram of the Raster Stage, which processes the screen one tile at a
time, identifying the pixels inside each primitive and determining their colors.

Primitive

Fetcher
Rasterizer

Early

Depth

Test

Fragment

Processor
Blending

Tile

Cache

Depth

Buffer

Instruction

Cache

L2 Cache

Main Memory

Texture

Cache

Color

Buffer

Figure 2.9: Raster Pipeline.

Primitive Fetcher

The Primitive Fetcher retrieves the primitives of a tile, stored in the Parameter Buffer. Accesses
to the Parameter Buffer are aided with a Tile Cache that allows the efficient reuse of fetched
attributes, as primitives tend to overlap several tiles close together in the screen. In order to
maximize the number of cache hits, tiles in the screen are not processed in scanline order (i.e.,
row-major order) and are instead rendered using traversals that increase locality, such as the z
order curve [50] (Figure 2.10).

Rasterizer

Rasterization is the process to determine which pixels in the screen are covered by each primi-
tive. In current GPUs, this is done by performing what is known as inside-outside test, which checks
whether the point in the center of a pixel is inside or outside the primitive. If that is the case, a
fragment is generated for that position: a set of data necessary to generate the color for a pixel,
obtained by interpolating the attributes of the primitive’s vertices in the location of the fragment.
The Rasterizaton of a primitive is, therefore, divided into two steps: Triangle traversal (finding

42

2.3. THE RASTER STAGE

(a) Scanline (b) Z Order

Figure 2.10: Possible tile traversal orders.

which pixels overlap the primitive, which is in the majority of cases a triangle) and Interpolation
(generating fragments to obtain the colors of the primitive).

• Triangle Traversal. Edge functions [57] are used to determine whether a point (generally
the center of a pixel) is inside a triangle. An edge function classifies points in a 2D plane
subdivided by a line into three regions: points to the “left” of the line (the function returns
a negative value), points to the “right” of the line (the function returns a positive value) and
points on the edge (the function returns 0). The three edges of a triangle formed by vertices
v0, v1 and v2 are the vectors (−−→v0v1), (−−→v1v2) and (−−→v2v0). If the edge function for the center
of a pixel (P) returns a positive value for the three edges, the pixel overlaps the triangle.
The edge function is linear, which has the implication that can be incrementally computed
for a pixel by adding the position displacement to a previously computed edge function for
another pixel. As position displacements are independent, edge functions can be computed
in parallel for several pixels at once if the edge equations for a reference point have previously
been computed, a step known as Triangle setup.

The edge function is computed using the sign of the cross product of an edge and another
vector defined by P and the first vertex of the edge (Figure 2.11). The cross product can be
interpreted as the signed area of the parallelogram formed by the two vectors, where the sign
of the area indicates the orientation of the vectors with respect to each other and has the
same behavior as the edge function.

• Interpolation. Barycentric coordinates are used to weight the contribution of each vertex in
a primitive to a particular location. A point P inside a triangle whose vertices are v0, v1 and v2
can be defined with the barycentric coordinates w0, w1 and w2 as P = w0∗v0+w1∗v1+w2∗v2,
with w0 +w1 +w2 = 1. With barycentric coordinates, any vertex attribute across the surface
of the triangle can be easily interpolated. The Barycentric coordinates of P with respect to
the triangle v0v1v2 are equivalent to the ratios of the area of the subtriangles Pv1v2, Pv2v0
and Pv0v1 with respect to the area of the base triangle v0v1v2 (Figure 2.12). The area of the
triangle is computed only once during Triangle setup, as it is constant for the computation
of the coordinates of all its pixels.

The area of each subtriangle corresponds to half of the area of the parallelogram formed by

43

2. BACKGROUND: TILE-BASED RENDERING

V1

V2V0

P

V1

V2V0

||V0P X V0V1 || ≥ 0

||V1P X V1V2 || ≥ 0

||V2P X V2V0 || ≥ 0

||V0P X V0V1 || < 0

||V1P X V1V2 || ≥ 0

||V2P X V2V0 || ≥ 0

P

(a) P is inside the triangle because the 3 areas formed
are positive.

V1

V2V0

P

V1

V2V0

||V0P X V0V1 || ≥ 0

||V1P X V1V2 || ≥ 0

||V2P X V2V0 || ≥ 0

||V0P X V0V1 || < 0

||V1P X V1V2 || ≥ 0

||V2P X V2V0 || ≥ 0

P

(b) P is outside the triangle because the area w.r.t.
V0 is negative.

Figure 2.11: Edge equations example.

an edge of the base triangle and the vector defined by P and the first vertex of the edge.
Therefore, barycentric coordinates are computed using half the value of the cross product
between the two vectors. A fragment is generated by computing the barycentric coordinates
for the center of a pixel and interpolating all vertex attributes.

Early Depth Test

The final image of a rendered scene only contains the visible primitives, that is, the color of
each pixel corresponds to the closest fragment from the camera’s point of view. Visibility in mobile
graphics applications is handled in one of two ways: the Painter’s Algorithm or the Depth Test.

The Painter’s Algorithm draws the scene from back to front, and newly-processed opaque
fragments in a position of the screen always occlude previously-rendered fragments in that position.
It requires that the application sorts all the objects in the scene so that they can be processed in
this order, a task that sometimes may require a lot of time due to the large amount of objects
needed to be sorted or that sometimes, as in the case of intersecting objects, may not even be
possible.

Therefore, visibility of overlapping fragments is typically and more conveniently handled em-

44

2.3. THE RASTER STAGE

V2V0

P

V1

𝑷 = ∗ + ∗ + ∗ = 𝑨𝒓𝒆𝒂 , , 𝑷𝑨𝒓𝒆𝒂 , ,

= 𝑨𝒓𝒆𝒂 , , 𝑷𝑨𝒓𝒆𝒂 , ,

= 𝑨𝒓𝒆𝒂 , , 𝑷𝑨𝒓𝒆𝒂 , ,

Powered by TCPDF (www.tcpdf.org)

Powered by TCPDF (www.tcpdf.org)

Figure 2.12: Barycentric coordinates computation.

ploying an order-agnostic approach, the Depth Buffer. The Depth Buffer is a memory region which
stores the depth of the closest fragment to the camera for every pixel in the frame. Before writing
the color of a new fragment into a pixel, the Depth Test is run: its depth is compared with the
one stored in the same position and the result is only written if it is closer than the previously
visible fragment. As the depth of a fragment corresponds to the interpolated z position attribute,
the Depth Buffer is also known as Z Buffer and the Depth Test is also known as Z Test.

In the conceptual model of the Graphics Pipeline the Depth Test is performed after computing
the colors of fragments, as such computation may imply modifying a fragment’s depth or even
discard it. However, most of the time this is not the case, and visibility could have been resolved
before color computation without affecting the final result. For this reason, most GPUs employ
the Early Depth Test functionality to test fragment visibility before proceeding down the pipeline,
thus saving time and energy wasted in fragments that will not be visible.

In Tile-Based Rendering, the working set of the Depth Buffer is restricted to only one tile at
a time. Therefore, its contents can be stored on an on-chip buffer of as many positions as pixels in
the tile and avoid accessing main memory to perform Depth Test operations.

Fragment Processor

The color of the rasterized fragments is computed by executing in the Fragment Processors user-
defined shader code that uses the interpolated vertex attributes as inputs. Additional inputs are
visible to the programmer and may be employed in the shader, such as constants or the fragment’s
screen position. Fragment shaders only operate on a single position and do not share temporary
information among other fragments. As with the vertex shaders, their execution is independent and
can be massively parallelized. The only operation that restricts the execution of fragment shaders
is texturing, which requires neighbouring fragments to be bundled into groups of four called quads.

Texturing is the process to apply an image to a polygon in order to modify its surface material.
Such images are composed of a rectangular grid of pixels called texels. Whenever a 3D model with
textures is created, a texture coordinate is assigned to each vertex, corresponding to the location
of a particular vertex in the image. Texture coordinates are an additional vertex attribute that are

45

2. BACKGROUND: TILE-BASED RENDERING

transformed along the other ones in the Geometry Stage and are interpolated for each fragment in
the Raster Stage. The transformations in the Geometry Stage might substantially change the sizes
of the triangles with respect to the original 3D models, such as when an object is placed far away
in the scene and displayed very small. This causes minification to occur, where several texels cover
a single fragment. Computing the color of a pixel integrating the effect of all texels influencing it
cannot effectively be realized in real time, as the number of texels covering a pixel may be very large.
Straightforward mechanisms that select a fixed subset of texels may cause aliasing effects whenever
a non-representative amount are sampled. The most popular approach to solve minimization is
called mipmapping, in which textures are stored along with several versions of the original one in
progressively lower resolutions. The original texture is called the Level 0 texture and textures in
subsequent levels are computed by downsampling the texture in the previous levels, usually just
by computing the value of a texel as the average of four neighbour texels. Mipmapping effectively
stores pre-computed approximations of the effect that a set of texels has on a pixel, thus reducing
aliasing effects caused by minification. Texels are fetched from the level that best approximates
a 1-to-1 texel-fragment ratio, known as the texture level of detail. The level of detail is computed
by checking the difference of the interpolated texture coordinates components across neighbouring
fragments in the X and Y axes. Fragments are sent to the processors grouped in 2x2 grids known
as quad fragments to ease the computation and communication of these gradients.

Texture accesses exhibit both temporal locality (adjacent fragments access adjacent texels) and
spatial locality (fragments that are covered by the same texel need to access the same address).
Additionally, to further remove aliasing effects, a single fragment tends to fetch several textures
(even from different mip levels) and interpolate their texels into a single color value. Consequently,
Fragment Processors contain a Texture Cache to exploit locality and reduce the number of accesses
to main memory.

Blending

The Blending stage writes the results of the Fragment processors into the Frame Buffer, the
region of memory that holds the final colors of the scene and is read by the display. The computed
color for a fragment is combined with the previous contents of the Frame Buffer for its position,
which allows for transparency effects. This is implemented using the alpha channel, an additional
value associated to each pixel besides its RGB color and depth. Alpha is a floating point value
in the [0,1] range that describes the degree of opacity of a fragment, with 0 representing complete
transparency and 1 representing that the fragment is opaque. Alpha blending creates the illusion of
transparency by rendering semitransparent fragments on top of the existing scene and attenuating
the colors of the fragments behind it. Alpha is used as the attenuating factor, combining the colors
in a position by weighting the semitransparent color by α and the previous colors by 1−α, as seen
in Equation 2.1:

ColorOut = ColorNew ∗ αNew + ColorPrevious ∗ (1− αNew) (2.1)

In the case that the new fragment is opaque (its alpha is 1), the new color simply replaces
the previously stored color. Although the usual way to combine these weighted colors is to add
them, the Blending stage can be configured to perform a wide variety of other operations, such as
multiplications, subtractions or maximums/minimums.

46

2.3. THE RASTER STAGE

In Tile-Based Rendering, the working set of the Frame Buffer is restricted to only one tile at a
time. Therefore, its contents are stored on the Color Buffer, an on-chip buffer of as many positions
as pixels in the tile, which avoids accesses to main memory for Blending operations. Once all the
primitives in a tile have been processed, the contents of the Color Buffer are flushed to the Frame
Buffer in main memory.

47

3
Experimental Methodology

This chapter describes the simulation infrastructure used in this thesis to estimate the execution
time and energy consumption of graphics applications on a mobile GPU and characterizes the
benchmarks used in the experiments.

3.1 Simulation Infrastructure

We employ the Teapot simulation framework [10] to evaluate the proposals described in Chap-
ters 4, 5 and 6. Among the wide variety of available academic GPU simulators, Teapot was selected
because of its target to mobile graphics applications, as it offers support for the OpenGL ES API
and it models a Tile-Based Rendering architecture in a cycle-accurate manner. Figure 3.1 shows
the three layers of the software stack employed by Teapot in order to provide performance and
energy consumption statistics.

Application Level

The first step in the Teapot framework logs into a trace all the OpenGL ES commands sub-
mitted by a graphics application to the GPU. This step can be performed using two different tools:

either Gapid [27] (1a in Figure 3.1) or the Android emulator [5] (1b). Gapid is an open-source

debugging tool for OpenGL ES applications that captures a trace of all API calls made by an
application to an Android device such as an smartphone. The Android emulator runs a hardware-
accelerated Android virtual device, which allows the execution of unmodified Android applications
on a desktop computer. Hardware acceleration enables two elements: on the one hand, the ap-
plication’s command stream is redirected to the host GPU driver, which allows to conveniently
intercept it and capture it into a trace file (2). On the other hand, applications are run on a ded-

49

3. EXPERIMENTAL METHODOLOGY

OpenGL ES Trace Generator Desktop GPU Driver

OpenGL ES

Trace

GPU Functional Simulator

(Gallium3D softpipe)

Instruction

and Memory

Trace

Frames
Frames

Frames

Frames
Frames

Frames

Cycle-Accurate Simulator
Power Model

(McPAT, DRAMSim2)

Timing

Statistics

Power

Statistics

Frames
Frames

Frames

Application Level

Driver Level

Hardware Level

Tools unmodified

Tools adapted

New tools

Generated files

Check

Check

Smartphone GPU

Gapid

1b

3

4

5 6

7

2

1a

Virtual GPU

Android Emulator

Figure 3.1: Overview of the Teapot simulation infrastructure.

icated graphics card, which eases pressure in the emulation environment and allows the execution
of state-of-the-art graphics application to have real-time frame rate and responsiveness. Regardless
of the method employed to capture the trace, the GPU renders a set of frames that are saved to
check the functionality of the subsequent levels in the framework (3).

Driver Level

The second step in the Teapot framework generates a trace containing all the necessary infor-
mation to be able to execute a cycle-accurate simulation. The intercepted command trace is fed to
Gallium 3D [80] (4), an open-source set of interfaces for developing GPU drivers, configured with
the OpenGL ES API as its frontend and a software renderer known as softpipe as its backend. The
software renderer executes in the CPU all the steps of the Graphics Pipeline that are normally run
by the GPU and, therefore, can be instrumented to get a trace of any kind of useful data in any
stage of the pipeline, such as transformed vertex attributes, number of fragments rasterized for a
primitive, or colors rendered in a position of the framebuffer. In particular, Gallium3D translates
the vertex and fragment shaders written in high-level code to an intermediate assembly represen-
tation called TGSI [81] and the trace file cointains all executed instructions and memory accesses

(5).

50

3.1. SIMULATION INFRASTRUCTURE

In addition, the instrumented software renderer generates and stores the frames corresponding
to the command trace (6). In this way, these images can be compared to the original ones
rendered by the GPU to check their correctness.

Hardware Level

The final step in the Teapot framework generates an execution time and energy consumption
estimation of the intercepted application by running the trace file in a cycle-accurate simulator
and collecting activity factors from all the stages in the pipeline (7). Figure 3.2 shows the
architecture modelled by the cycle-accurate simulator included in Teapot. It is a Tile-Based GPU
closely resembling an ARM Mali-400MP when configured with the parameters listed in Table 3.1.

Command

Processor

Vertex

Fetcher

Primitive

Assembly

Primitive

Binning

Tile

Cache

Vertex

Cache

Instruction

Cache

L2 Cache

Primitive

Fetcher
Rasterizer

Early

Depth

Test

Blending

Depth

Buffer

Color

Buffer

Vertex

Processor

Fragment

Processor

Texture

Cache

Instruction

Cache

Main

Memory

Geometry Unit

Tiling UnitRaster UnitProgrammable stage Fixed-function stage Memory

Figure 3.2: Mali-400MP-like architecture modelled by the cycle-accurate simulator.

These parameters are passed to the well-known McPAT power framework [38] when the simula-
tion launches to estimate the static power of every hardware structure (such as queues, processors,
caches or registers), as well as the dynamic power of their activations. When the simulation ends,
the activity factors of each component are combined with their corresponding individual activation
costs to obtain the overall dynamic power of the GPU. Then, the reported execution time is used
to compute the energy consumption.

Teapot employs the widely-used DRAMSim2 [63] to model timing and energy of the main
memory system. DRAMSim2 cycle-accurately models DRAM ranks, banks, memory channels and
the memory controller of DDR2 and DDR3 variants, and uses the model described by Micron [48]

51

3. EXPERIMENTAL METHODOLOGY

to compute the power consumption of each bank.

Table 3.1: GPU Simulation Parameters.

Baseline GPU Parameters

Tech Specs 400 MHz, 1 V, 32 nm
Screen Resolution 1196x768 (Chapters 4 and 5) 1920x1080 (Chapter 6)
Tile Size 16x16 pixels

Main Memory

Latency 50-100 cycles
Bandwidth 4 B/cycle (dual channel LPDDR4)
Size 1 GB

Queues

Vertex (2x) 16 entries, 136 bytes/entry
Triangle, Tile 16 entries, 388 bytes/entry
Fragment 64 entries, 233 bytes/entry

Caches

Vertex Cache 64 bytes/line, 2-way associative, 4 KB, 1 bank, 1 cycle
Texture Caches (4x) 64 bytes/line, 2-way associative, 8 KB, 1 bank, 1 cycle
Tile Cache 64 bytes/line, 8-way associative, 128 KB, 8 banks, 1 cycle
L2 Cache 64 bytes/line, 8-way associative, 256 KB, 8 banks, 2 cycles

On-Chip Buffers

Color Buffer 256 entries, 32 bits/entry
Depth Buffer 256 entries, 24 bits/entry

Non-programmable stages

Primitive Assembly 1 triangle/cycle
Rasterizer 16 attributes/cycle
Early Z test 32 in-flight quad-fragments

Programmable stages

Vertex Processor 1 vertex processor
Fragment Processor 4 fragment processors

3.1.1 Improvements to the baseline infrastructure

During the development of this thesis, the three layers of the Teapot infrastructure have been
adapted (listed chronologically):

1. Hardware Level: DRAMSim2 has been slightly extended to model the timing and energy
consumption of LPDDR4, the most extended SDRAM variant targeted at mobile devices.

52

3.2. BENCHMARK SET

2. Driver Level: The techniques described in Sections 4 and 5 require the cycle-accurate simu-
lator to use intermediate data resulting of the Geometry Pipeline. The original infrastructure
did not generate it because most of the cycle-accurate simulation does not reproduce func-
tional behavior. The software renderer has thus been instrumented to generate such data
(transformed vertex attributes and draw call uniforms) and include it in the final trace file.

3. Application Level: Gapid was launched in 2018 by Google and the Teapot infrastructure
was adapted to use it as its command trace interceptor. This change improved the ease to
acquire new benchmarks, as many tasks in the original interceptor (such as writing wrappers
for newly seen commands or splitting the stream into frames) had to be manually performed
for each benchmark to consider. Additionally, applications can be intercepted directly from a
smartphone and not the Android emulator, which increases the variety of input mechanisms
games can have (e.g., motion controls) and the resulting frame rate. The benchmarks used
in the technique described in Section 6 are intercepted using Gapid instead of the Android
Emulator.

3.2 Benchmark Set

The proposals in this thesis have been evaluated using a set of commercial Android applications.
While it is common to rank the performance of different GPUs by using the results that synthetic
benchmarks such as GFXBench provide, these kind of benchmarks test capabilities in a manner
that substantially deviates from the real use that mobile graphics applications have. They test
individual parts of the system by stressing them to see their theoretical peak performance without
taking a holistic approach (e.g. without regarding important contextual components such as the
operating system or the battery life), which do not represent the whole system’s behavior. In
particular, graphics benchmarks tend to compute the number of frames a GPU can render in a
given time period. Not only the result is generally uninteresting (being able to render 300 frames
instead of 200 does not affect user experience), but also the scenes present an unrealistic number of
small triangles in order to increase the workload, whereas the geometry-to-fragment ratio is much
more skewed towards the latter in daily-used applications. Therefore, it was decided to deviate from
synthetic benchmarks and instead use applications that are representative of the current mobile
gaming landscape. The selection criteria is based on two points: on the one hand, applications on
the set must have a large number of downloads in the App Stores, as popular games are more likely
to be played by the average user. On the other hand, applications in the set must be diverse in
terms of workload complexity (games that stress the GPU exist, but most of the games that are
played have rather simple graphics), graphics type (2D or 3D) and genre (from basic puzzle games
with still scenes to fast paced first person shooters) so that the presented proposals are validated
in a wide variety of scenarios.

Table 3.2 lists the benchmarks used throughout the experimental evaluations of this work. For
each application, 100 frames of archetypal execution have been captured (e.g. no loading or pause
screens) at a consistent frame rate of 20 to 30 frames per second. The benchmark suite is different
for Chapter 6 than for Chapters 4 and 5, since the infrastructure update allowed the use of more
contemporary applications. The table gives a summary of why these benchmarks have been chosen:
popularity and variety. It can be seen that most games have been downloaded tens of millions of

53

3. EXPERIMENTAL METHODOLOGY

times, with some applications being the most famous mobile games of all time, even surpassing the
half billion download mark. Furthermore, the suite is noticeably diverse in terms of gaming genres
and type of graphics.

The applications have been selected not only because of their genre variety, but also for they
workload variety. This can be seen in Tables 3.3 and 3.4 which show, respectively, some character-
ization of the Geometry and Raster Pipelines. On the Geometry side, Table 3.3 lists the averages
of: number of drawcalls per frame (the number of times the Application sends a collection of ver-
tices with an associated state to the GPU to render), number of vertices per drawcall, number of
attributes per vertex, number of assembly instructions executed by vertex shaders (static, as in
these benchmarks there are no loops), number of primitives per drawcall and number of assembled
primitives binned per tile.

Used in Benchmark Genre Type
Downloads in Google

Play (Millions)

300 Hack and Slash 3D 50
Air Attack Arcade 3D 1
Angry Birds Puzzle 2D 100
Army Men Strike Real-Time Strategy 2D 10
Avenger Legends Role-Playing Game 2D 1
Candy Crush Saga Match-Three Puzzle 2D 500
Castle Defense Tower Defense 2D 10
Clash of Clans MMO Strategy 2D 500
Crazy Snowboard Arcade 3D 5
Cut the Rope Puzzle 2D 100
Dude Perfect Puzzle 2D 10
Hay Day Simulation 2D 100
Hopeless: The Dark Cave Action Survival 2D 5
Magic Touch: Wizard for Hire Arcade 2D 5
Modern Strike First-Person Shooter 3D 50
RedSun Real-Time Strategy 2D 1
Temple Run Endless Runner 3D 100
Tigerball Puzzle 3D 10
Where’s my water Puzzle 2D 100

Chapters 4 and 5

World of goo Physics Puzzle 2D 1

Brawl Stars Beat’em Up 3D 100
Clash Royale Real-Time Strategy 2D 100
Dragon Ball Z: Dokkan Battle Role-Playing Game 2D 10
Guns of Boom First-Person Shooter 3D 50
Hearthstone Collectible Card Game 2D 10
Merge Dragons Puzzle 2D 10
Minecraft Sandbox 3D 50
Rise of Kingdoms: Lost Crusade Real-Time Strategy 2D 10
Sonic Dash Endless Runner 3D 100

Chapter 6

Toy Story Drop Match-Three Puzzle 2D 1

Table 3.2: Benchmarks set.

The benchmark suite covers a wide range of geometric complexity, with games such as Castle
Defense only processing a few hundred vertices per frame while Minecraft fetches and transforms

54

3.2. BENCHMARK SET

Benchmark
Drawcalls

per
Frame

Vertices
per

Drawcall

Attributes
per

Vertex

Vertex Shader
Instructions per

Vertex

Primitives
per

Drawcall

Primitives
per
Tile

300 133.47 336.08 3.30 25.57 299.98 19.80
Air Attack 21.10 139.87 2.67 7.60 275.97 4.50
Angry Birds 14.00 24.31 2.05 6.02 8.06 2.30
Armymen 78.53 20.09 2.99 7.99 10.05 4.00
Avenger Legends 132.43 33.97 3.00 8.00 32.52 5.70
Candy Crush Saga 13.45 99.20 2.99 12.83 49.60 3.30
Castle Defense 80.51 5.65 3.00 8.00 2.88 1.80
Clash of Clans 87.49 46.24 3.09 6.40 61.99 6.70
Crazy Snowboard 22.68 133.58 2.94 13.48 160.68 3.30
Cut the Rope 91.35 8.14 1.99 5.99 4.89 2.60
Dude Perfect 116.84 13.31 3.00 8.00 7.16 6.70
Hayday 28.75 64.85 2.52 5.15 88.73 3.10
Hopeless 84.59 106.11 2.95 3.95 35.37 5.40
Magic Touch 26.86 36.39 2.99 8.34 18.22 3.20
Modern Strike 24.31 422.20 2.13 8.58 352.75 4.80
Redsun 6.12 320.28 2.00 12.98 159.81 2.60
Temple Run 20.39 410.25 2.76 31.16 757.04 4.20
Tigerball 45.03 122.63 2.98 162.11 140.42 4.90
Where’s my Water 92.06 93.65 3.45 7.45 91.65 13.50
World of Goo 37.45 28.04 2.99 6.99 14.02 4.30
Brawl Stars 178.40 643.67 6.85 26.13 372.08 9.28
Clash Royale 71.40 48.95 2.65 5.52 65.02 6.47
Dragon Ball: Dokkan Battle 229.14 13.22 2.88 7.95 6.54 16.24
Guns of Boom 41.12 1160.24 2.94 29.53 996.89 8.4
Hearthstone 141.98 138.56 3.10 37.04 166.68 14.7
Merge Dragons 37.58 111.79 3.01 13.52 64.98 5.4
Minecraft 500.16 936.74 3.95 22.19 504.18 21.5
Rise of Kingdoms 61.83 247.11 3.01 33.18 106.42 3.3
Sonic Dash 87.84 1019.16 3.68 80.98 850.72 14.5
Toy Story Drop 45.20 125.55 4.48 58.87 124.89 5.5

Table 3.3: Characterization of the geometry workload processed by the considered benchmarks.

hundreds of thousands. The same behavior can be observed in the number of primitives assembled
and processed in a frame. Vertices are sent to the GPU in a myriad of ways: Redsun processes
very few drawcalls containing hundreds of vertices, while Dragon Ball parses hundreds of drawcalls
containing around a dozen vertices each. Games like Angry Birds receive very few amounts of
drawcalls and vertices, while 300 processes a large amount of both drawcalls and vertices. In
comparison with general purpose programs, the number of shader program instructions is very
small, with most benchmarks executing less than 20 instructions. A significant difference in shader
complexity can be observed between 2D and 3D games, with the shaders of most 2D games such
as Castle Defense or Armymen being composed by less than 10 instructions while the number of
instructions executed by the shaders of 3D games such as Sonic Dash or Tigerball is one or two
magnitudes larger. The overhead of tiling is modest in most games, requiring only the storage
and later fetch of only around 5 primitives per tile. However, in benchmarks such as 300 or
Merge Dragons that contain lots of small primitives, that number is increased 4 times, significantly
increasing the communication with main memory.

55

3. EXPERIMENTAL METHODOLOGY

Benchmark
Fragments

per
Primitive

Fragment Shader
Instructions per

Fragment

ALU to
TEX Ratio

Texels per
Fragment

Overshading

300 506.27 4.03 7.34 4.01 6.4
Air Attack 1580.97 3.26 4.00 7.00 2.6
Angry Birds 21999.40 4.09 5.84 3.03 3.1
Armymen 5409.53 4.83 5.15 4.13 3.2
Avenger Legends 663.46 4.13 5.92 3.14 3.1
Candy Crush Saga 2737.04 4.00 4.03 4.38 1.9
Castle Defense 5590.10 4.00 4.00 4.33 1.4
Clash of Clans 1158.47 3.45 3.45 4.43 3.9
Crazy Snowboard 2461.45 2.88 7.64 3.06 2.2
Cut the Rope 3756.69 3.99 4.01 4.32 1.8
Dude Perfect 5691.76 4.00 4.00 3.61 4.5
Hayday 1387.63 3.47 3.47 4.49 6.2
Hopeless 487.78 5.61 5.61 4.78 1.6
Magic Touch 5949.46 3.81 6.93 2.70 2.8
Modern Strike 994.08 3.41 5.40 3.89 5.2
Redsun 4236.86 5.83 4.57 5.61 2.8
Temple Run 1582.31 5.85 10.04 5.76 3.6
Tigerball 504.96 7.91 8.55 4.48 2.8
Where’s my Water 1202.97 4.02 4.15 4.75 7.5
World of Goo 7134.39 2.98 4.00 4.33 2.4
Brawl Stars 117.28 10.96 6.29 13.61 1.6
Clash Royale 12284.43 6.93 4.03 7.43 4.2
Dragon Ball: Dokkan Battle 23331.35 4.11 3.21 2.35 9.1
Guns of Boom 1157.35 1.79 1.16 3.73 4.1
Hearthstone 596.10 3.56 4.67 6.19 3.8
Merge Dragons 3295.82 7.62 5.87 5.66 3.4
Minecraft 156.07 3.04 5.91 4.93 1.6
Rise of Kingdoms 3108.12 5.09 10.57 4.66 2.4
Sonic Dash 870.54 11.40 1.89 6.39 4.2
Toy Story Drop 1515.73 5.33 5.47 4.34 3.5

Table 3.4: Characterization of the fragment workload processed by the considered benchmarks.

Regarding the Raster Pipeline, Table 3.4 lists the averages of: number of generated fragments
per primitive, number of static assembly instructions executed by fragment shaders, number of
ALU instructions per texture instructions in such programs, number of fetched texels (texture
elements) in a texture instruction and overshading (number of times a position in the Color Buffer
is overwritten by a newly processed fragment of the same frame).

It can be seen that the number of fragments is generally three orders of magnitude larger
than the number of vertices, which makes the Raster Pipeline a very significant contributor in
time and energy consumption for these benchmarks. The fragment shader programs contain even
less instructions than the vertex shader counterparts, with only a few 3D games such as Brawl
Stars or Sonic Dash executing more than 10. In this benchmark suite, fragment programs only
access memory through texture operations and thus, the column showing the ratio between ALU
and Texture instructions indicates how memory-intensive the programs are. Most of the shaders

56

3.2. BENCHMARK SET

executed by these benchmarks have a high ratio (in fact, only contain a single texture instruction),
allowing the processors to make progress for other warps while serving memory requests. Each
of those texture instructions fetches more than one texel, as reconstruction filters are employed
to obtain a color for a fragment not perfectly-aligned with the texture maps. The most common
used methods [31] are nearest-neighbor, bilinear filtering, trilinear filtering and anisotropic filtering
which require, respectively, 1, 4, 8 and 16 texels to be fetched per fragment. Different filters are
used across the benchmarks, from heavy uses of nearest-neighbor in Angry Birds and Armymen
to combinations of trilinear and anisotropic in World of Goo. Finally, Table 3.4 shows that most
benchmarks have an overshading factor much larger than 1, revealing that a significant amount of
energy and time is wasted on processing redundant fragments for the same position in the screen.

57

4
Rendering Elimination

The GPU and, in particular, Fragment Processing, is the biggest contributor to energy con-
sumption in real time rendering, as many memory accesses and computations need to be performed
to obtain a color for every pixel in the screen [3, 12, 54]. Due to frame coherence, many tiles
produce the same colors across consecutive frames, and current GPUs waste energy by computing
them. Figure 4.1 shows this phenomenon by plotting the average percentage of equal tiles between
two consecutive frames for a set of commercial Android games.

90

100
Equal Colors and Inputs Equal Colors Different Inputs

100

Equal Colors and Inputs Equal Colors Different Inputs

0

10

20

30

40

50

60

70

80

90

100

E
q

u
a
l
T

il
e
s
 (

%
)

Figure 4.1: Percentage of tiles producing the same result (the color is equal for all their pixels) as the
preceding frame across 50 consecutive frames.

In games with moderate camera movements (Avenger Legends to World of Goo), it is common
for more than 80% of tiles to produce the same color as in the preceding frame. This feature
can also be found, albeit less frequently, in games where the scene is in continuous motion (300 to

59

4. RENDERING ELIMINATION

Tigerball). This chapter presents Rendering Elimination, a technique that eliminates the processing
of such redundant tiles, and describes it at a micro-architectural level. Rendering Elimination is
applied on top of a Tile-Based Rendering GPU and shown to reduce energy consumption by 37%
and execution time by 33%, widely improving state-of-the art approaches to reduce redundant
computations.

4.1 Early Discard of Redundant Tiles

4.1.1 Rendering Elimination Overview

The Raster Pipeline takes as inputs the scene constants and the attributes of all the primitives
that overlap a tile, and produces a color for each pixel belonging to that tile. The execution of
the Raster Pipeline does not generate any side effects, i.e., it does not produce any changes in
state variables. Such changes are performed by API calls that can be easily tracked by the driver.
Consequently, redundancy for a tile can be determined in advanced by comparing its inputs for the
current frame against the inputs for the previous frame: if the two input sets match, the outputs
will also be equal.

Because of the large volume of these sets, storing them in main memory would be extremely
inefficient, even with the support of a cache, because the reuse distance between them is an entire
frame. Instead, a more efficient approach based on computing a signature for the inputs of the tile
and storing it in a local buffer is used. This buffer, called Signature Buffer, contains the signatures
of all the tiles of the previous frame and the current one. Figure 4.2 depicts the Graphics Pipeline
flow with the added Signature Buffer.

Primitive
Fetcher

Rasterizer
Depth
Test

Fragment
Processing

Blending

Color
Buffer

Tile
Cache

Depth
Buffer

Texture
Cache

Baseline
Hardware

Additional
Hardware

Baseline
Memory Structures

Additional
Memory Structures

Command
Processor

Vertex
Fetcher

Vertex
Processing

Primitive
Assembly

Primitive
Binner

Signature
Buffer

Signature
Unit

Figure 4.2: Graphics Pipeline including Rendering Elimination.

60

4.1. EARLY DISCARD OF REDUNDANT TILES

The Signature Unit computes the signatures employing the primitives that the Primitive Binner
produces and inserts them into the Signature Buffer. At the same time, the Primitive Binner fills
the Parameter Buffer with the data of such primitives, including identifiers of the tiles that contain
them. After the geometry of the frame has been processed, the Signature Buffer holds signatures
for the inputs of all the tiles. Hereafter, whenever a tile is scheduled in the Raster Pipeline, its
Signature Buffer entry is checked: if the current frame signature matches that of the previous
frame, the Raster Pipeline execution is skipped and the Frame Buffer locations for that tile are not
updated. Otherwise, the Raster Pipeline is executed normally.

4.1.2 Implementation Requirements

The signature of a tile is computed by hashing a list of all the inputs of a tile: this includes
the vertex attributes and scene constants associated to all the primitives that overlap the tile.
Such inputs are produced either by the Command Processor when setting scene constants for a
drawcall or by the Primitive Binner when sorting primitives and storing their vertex attributes into
the Parameter Buffer. The stream of primitives produced by the Geometry Pipeline, however, is
generated in the order that the GPU received the drawcalls, which is generally not the order in
which they appear in the screen. In fact, any primitive from the stream could overlap any number of
tiles. This causes that the complete list of inputs for a tile is not known until all the geometry of the
scene has been processed. A straightforward implementation that starts computing the signatures
when the Geometry Pipeline has processed the whole frame would not be practical. Since vertex
attributes are stored in the Parameter Buffer (residing in off-chip memory), retrieving them in
order to compute a signature for the tile would require significant time and energy overheads and
delaying the execution of the Raster Pipeline.

To be effective, Rendering Elimination computes the signatures for the current frame in an
incremental approach. Whenever a primitive is sorted, the temporary signatures for each tile that
it overlaps are read. The new signature for each tile is constructed by combining the temporary
signature with either the scene constants or the attributes of the vertices of the current primitive
and, afterwards, it is rewritten in the appropriate Signature Buffer entry. This on-the-fly signature
computation is overlapped with other Geometry Pipeline stages, resulting in minimal overheads in
execution time, as shown in Section 4.3.

The signature function employed by Rendering Elimination is CRC32 [56]. While a plethora of
other mechanisms exist, CRC32 outperforms well-known hashing approaches such as XOR-based
schemes, as will be shown in Section 4.3. When using CRC32, not a single instance of hashing
collisions have been observed. Moreover, as a widely-used error detection code, CRC has been
extensively researched in the literature and efficient techniques have been developed [70] that allow
for an incremental and parallel CRC computation based on Look-up Tables, as outlined below.

4.1.3 Incremental CRC Computation

As proven in [70], the CRC of a message can be computed even if its length is not known a
priori by breaking it down into several submessages and computing the CRC of those submessages

61

4. RENDERING ELIMINATION

independently. Given a message A, composed by concatenating submessages A1...An, of lenghts
b1...bn bits, the CRC of A can be computed as:

Algorithm 1 Incremental CRC Computation

CRCA = 0
for submessage Ai in A do

b = length(Ai)
CRCAi = ComputeCRC(Ai)
CRCTemporary = ComputeCRC(CRCA << b)
CRCA = CRCAi ⊕ CRCTemporary

end for

That is, the CRC of the first submessage A1 is computed. When the length b of the following
submessage A2 is known, the CRC of the two submessages (a bit string formed by concatenating
A1 and A2) is computed by first computing the CRC of A2, left-shifting the CRC of A1 by b bits,
computing the CRC of this shifted message, and combining both CRCs via an XOR function. By
means of this procedure, CRCs of partial messages of increasing length are computed: first, the
CRC of A1, then the CRC of the concatenation of A1 and A2, then the CRC of the concatenation
of A1, A2 and A3, and so on, until the last submessage An is reached and, therefore, the CRC of
the concatenation of the submessages corresponds to the CRC of the original message.

4.1.4 Table-Based CRC Computation

Each iteration in Algorithm 1 would require several cycles if the CRC computation was im-
plemented using the basic Shift Register mechanism [45]. A faster alternative is to use a Look-up
Table (LUT) loaded with precomputed CRC values for all possible inputs. However, this approach
is unfeasible in terms of storage requirements, since a message of length n requires a LUT of 2n

entries. As shown in [70], a message B of n bits, being n multiple of 8, can be broken into k 1-byte
blocks B1...Bk (n = 8× k) and use a small LUT to efficiently compute the CRC of each block.

Each LUT takes as input a block Bi and computes the CRC of a message corresponding to
left-shifting Bi by k − i bytes. Namely, the first LUT computes the CRC of a message consisting
of block B1 followed by k − 1 bytes of zeros, the second LUT computes the CRC of a message
consisting of block B2 followed by k − 2 bytes of zeros and the kth LUT computes the CRC of a
message consisting of block Bk. The results of the k LUTs are combined into one CRC via an XOR
function.

Since each LUT has 28 entries and each entry contains a precomputed CRC value, the size
of each LUT is 1 KB and, consequently, computing the CRC of a message of length n bits has a
storage cost of k KB.

4.1.5 Tile Inputs Bitstream Architecture

Rendering Elimination determines if the colors of two tiles are going to be the same by com-
paring the signature of their inputs. The inputs of a tile are the vertex attributes of the primitives

62

4.1. EARLY DISCARD OF REDUNDANT TILES

that overlap it and the set of scene constants associated to those primitives. In order to render
primitives, the GPU receives a series of commands that define the state of the pipeline (shaders,
textures, constants) and drawcalls, which contain a stream of vertices to be processed with the
defined state.

Each drawcall can generate any number of primitives and each primitive can overlap any number
of tiles. Therefore, the input of a tile consists of a sequence of blocks, one for every drawcall that
contains the primitives that overlap this tile. Each block is, in turn, composed of several subblocks:
a first subblock corresponding to the constants defined in the drawcall followed by a list of subblocks
that correspond to the attributes of the primitives that overlap this tile. Since both the number of
primitives overlapping a tile and the number of attributes of those primitives is not fixed, neither
are the lengths of the blocks nor is the length of the subblocks.

0

0 1

2 3

A BC

Constants F Attrs. CTile 0:

Constants S Attrs. A Attrs. BTile 1:

Tile 2:

Tile 3:

Attrs. C Attrs. AConstants F

Attrs. A Attrs. BConstants S

Constants S

Figure 4.3: Example of input message.

Figure 4.3 provides an example of the described tile inputs for four tiles and the primitives
of two drawcalls: Drawcall F (fill) and Drawcall S (stripes). Drawcall F generates Primitive C,
which overlaps Tiles 0 and 2. Therefore, the inputs of Tiles 0 and 2 contain the block of Drawcall
F, composed of a set of constants and the attributes of Primitive C. Drawcall S generates two
primitives, Primitives A and B. These two primitives overlap Tiles 1 and 3, so the inputs of Tiles
1 and 3 contain the block of Drawcall S, composed of a set of constants and the attributes of both
primitives. Note that, while two primitives of Drawcall S overlap Tiles 1 and 3, the set of constants
of the drawcall is only considered once for those tiles. Primitive A also overlaps Tile 2, so the set
of constants of Drawcall S as well as the attributes of Primitive A are added to Tile 2’s inputs.

Besides scene constants, primitives have other global associated data that affects the color of
a fragment: the shader program and the textures to be used within. Rendering Elimination does
not include these in the tile signature, since changes to such global data are not common. In our
benchmarks, we have observed that shaders and textures remain constant for thousands of frames.
Moreover, loading new shaders and textures is done through API calls (such as glShaderSource
and glTexImage2D, for instance) and, therefore, are registered by the driver. Whenever such
infrequent API calls occur, Rendering Elimination is disabled for the current frame. Besides this,
Rendering Elimination could also be disabled during one frame periodically to guarantee Frame
Buffer refreshing. Rendering Elimination should also be temporarily disabled by the driver for
scenes that use multiple render targets, as it is specifically targeted to an important segment of less
sophisticated applications that cover a large fraction of the mobile market.

63

4. RENDERING ELIMINATION

Command
Processor

Primitive
Binner

Compute
CRC Unit

Constants CRC

Primitive CRC

Constants Bitmap

Shift Amount P Shift Amount C

Compute
CRC Unit

Signature
Buffer

X
O

R

OT Queue

Tile
Identifiers

Figure 4.4: Signature Unit block diagram.

4.2 Implementation

4.2.1 Signature Unit Architecture

The message that has to be signed for a tile consists of a sequence of blocks, containing either
scene constant data or vertex attribute data. The number of blocks of a message is not known
until all the geometry of the frame is processed and, therefore, Rendering Elimination uses the
incremental signature computation described in Algorithm 1.

The Signature Unit (SU), the piece of logic responsible for the incremental computation of the
CRCs of tiles, is shown in Figure 4.4. Whenever the SU receives a new data block, it computes its
CRC and updates the CRC of all the tiles overlapped by the primitive associated to that block.

Let us consider first the case of vertex attributes, which are blocks sent to the SU by the
Primitive Binner. The SU computes the signature of all the vertex attributes of a primitive using
the Compute CRC unit, and the resulting CRC32 (CRCAi as described by Algorithm 1) is stored in
the Primitive CRC register. Since the number of attributes in a primitive is variable, the Compute
CRC unit stores the length of the signed block (b in Algorithm 1) in the Shift Amount P register.

64

4.2. IMPLEMENTATION

While the SU computes the CRC of a primitive, the Primitive Binner inserts into the OT Queue a
list of identifiers of the tiles overlapped by the primitive.

After computing the signature of a primitive, the SU traverses the list of overlapped tiles and
updates each tile signature by combining it with the primitive signature. It pops in sequence each
entry from the head of the OT Queue and uses this tile id to read the corresponding CRC from the
Signature Buffer, which is then sent to the Accumulate CRC unit. This unit receives as inputs the
previous CRC for a tile and the length of the primitive message signed by the Compute Unit. The
Accumulate CRC unit computes the CRC of the message that results by left-shifting the previous
CRC as many bits as the received length. This CRC corresponds to CRCTemporary in Algorithm
1. Finally, the results of the Compute and Accumulate units are bitwise xored to obtain the new
CRC for the tile (CRCA in Algorithm 1) and the new signature is written back to the Signature
Buffer.

The SU can also receive data blocks from the Command Processor, which correspond to scene
constants. The signature computation of the constants of a drawcall is done in the same form as
the signature computation of the vertex attributes of a primitive: the Compute Unit generates a
CRC32 and the length of the signed message and stores them in two registers: Constants CRC and
Shift Amount C, respectively. In order to combine the signature of the constants with the signature
of the attributes, several issues need to be addressed. First, every drawcall may define its own set
of constants which only affect to that drawcall. Consequently, the Constant CRC register only has
to be combined with the CRC of the tiles affected by that drawcall. Besides this, even though
multiple primitives of the same drawcall may overlap the same tile, the Constant CRC should be
considered only once per tile.

Rendering Elimination uses a bitmap to solve these issues. The bitmap has a length equal to
the number of tiles that the Frame Buffer is divided into. If a position of the bitmap is set, it means
that the Constant CRC has already been combined into the signature for that tile. Whenever the
GPU receives a new set of constants after having processed one or more drawcalls, the bitmap is
cleared and the constants are signed and stored in the Constant CRC register. For all the following
primitives, for every tile identifier popped from the OT Queue, the bitmap is queried to check
whether that tile has already combined the signature of the constants into its signature. If so,
the previous CRC of the tile is only updated with the value stored in the Primitive CRC register.
Otherwise, the bit in the bitmap position corresponding to that tile is set and the previous CRC
of the tile is updated twice: first with the contents of the Constants CRC, and second with the
Primitive CRC, by making the Accumulate CRC unit to select the appropriate shift amount in
each step.

All the structures in the Signature Unit have been modelled using McPAT components in order
to obtain an area and power estimation: the parameters of the SRAMs present in the framework
can be set to accurately describe the Signature Buffer, the Overlapped Tiles Queue, the constant
bitmap as well as the table-based CRC computation of the Compute CRC and Accumulate CRC
Units, which is explained in detail in the following section. McPAT also is able to model simpler
components such as logic gates and D flip-flops, which are used to account for the power and area
of the XOR gates and the registers present in the Signature Unit.

65

4. RENDERING ELIMINATION

64-bit Ai

Shift
Subunit

Shift
Subunit

Sign
Subunit

Sign
Subunit

CRCAi

CRC
OutCounterCounter

Shift
Amount

0 (Initial Value)

Figure 4.5: Compute CRC Unit block diagram.

4.2.2 Compute CRC Unit and Accumulate CRC Unit

Algorithm 2 Compute CRC Unit, Incremental Computation

CRCOut = 0
ShiftAmount = 0
for 64-bit subblock Ai in submessage A do

CRCAi = ComputeCRC(Ai)
CRCTemporary = ComputeCRC(CRCOut << 64)
CRCOut = CRCAi ⊕ CRCTemporary
ShiftAmount = ShiftAmount+ 1

end for

The Compute CRC unit implements the first two steps in the loop of Algorithm 1, computing
the CRC of a block consisting of a primitive or a set of constants and determining the length of
the block. Since the length of such blocks is not fixed, the Compute CRC unit is architected to
incrementally compute the CRC32 of a block by breaking it into subblocks of fixed length (64 bits)
and recursively applying Algorithm 1. The resulting procedure is detailed in Algorithm 2. Namely,
the Compute CRC unit has a similar internal structure as the SU, as shown in Figure 4.5. It
consists of two subunits and the CRCOut register (initialized to zero). The Sign subunit computes
the CRC32 of a fixed-length subblock and stores it into the CRCOut register after a bitwise XOR
with the result of the Shift subunit. In parallel, the Shift subunit computes the CRC32 of the
message resulting by left-shifting 64 bits the contents of the CRCOut register. This process is
repeated for each 64-bit subblock in the input data block received by the Compute CRC unit. The
control logic of the Compute CRC unit counts the number of signed subblocks and communicates
it to the Accumulate CRC unit using registers Shift Amount P (for Primitives) and Shift Amount
C (for Constants), shown in Figure 4.4.

The Accumulate CRC unit implements the third step in the loop of Algorithm 1, that
computes the CRC of a message consisting of the partial CRC of a tile (stored in the Signature
Buffer) left-shifted by as many zeros as the length of the block to accumulate (the one fed to the
Compute CRC unit). Since the length of this block is variable, it is also variable the amount to shift,

66

4.2. IMPLEMENTATION

Algorithm 3 Accumulate CRC Unit, Incremental Computation

CRCAccum = SignatureBuffer[tile]
for k ← 1 to ShiftAmount do

CRCAccum = ComputeCRC(CRCAccum << 64)
end for

Signature Buffer[Tile] (Initial Value)

Shift
Subunit

Shift
Subunit CRC

Accum

Shift
Amount

Figure 4.6: Accumulate CRC Unit block diagram.

hence the length of the resultant message to be signed by the Accumulate CRC unit. Therefore, this
unit follows an incremental procedure to compute the CRC, as detailed in Algorithm 3. Note that,
while the Accumulate CRC unit follows the same incremental approach as the Compute CRC unit,
the accumulated blocks are always zero (they come from a left shift). Therefore, each iteration only
requires to shift and re-sign the CRC32 computed on the preceding iteration and, consequently,
the Accumulate CRC unit only consists of a Shift subunit, as shown in Figure 4.6.

LUT7 LUT6 LUT5 LUT4 LUT3 LUT2 LUT1 LUT0

8-Byte Input

Data

XOR
CRCAi

Sign Subunit

Figure 4.7: Architecture of the Sign subunit.

Figure 4.7 shows the Sign subunit architecture, which computes the CRC32 of a 64-bit
subblock using the table-based approach described in Section 4.1.4. Each byte in the subblock is
independently processed by accessing a specific LUT. The output of the Shift subunit is the bitwise
XOR of the results of the 8 LUTs.

Figure 4.8 shows the Shift subunit architecture, which computes the CRC32 of the 64-bit
message that results from a 32-bit input block shifted with 32 zeros. The design is analogous to
the Sign subunit, and uses the table-based approach described in Section 4.1.4.

67

4. RENDERING ELIMINATION

LUT11 LUT10 LUT9 LUT8

CRCAccum
XOR

Shift Subunit
Previous CRC32

Figure 4.8: Architecture of the Shift subunit.

The choice of the subblock size for the Compute CRC unit is determined by several trade-
offs: the length of a submessage has to be multiple of the length of the whole message, but very
small submessages imply a larger number of cycles to compute the signature. Conversely, long
submessages require more LUT storage, which causes energy and area overheads.

Experimentally, it has been determined that subblocks of size 8 bytes signed with eight 1-KB
LUTs incur in small time and energy overheads, as shown in Section 4.3. The average command
that updates constants modifies 16 values. A subblock of length 8 bytes corresponds to 2 of those
values and, therefore, computing the signature for the average constant input data requires 8 cycles.
Regarding primitives, the size of the data of an attribute is 48 bytes, which correspond to 3 vertices
defined by four 4-byte components each. The average number of attributes per primitive is 3 and,
thus, computing the signature for the average primitive requires 18 cycles.

4.2.3 Transaction Elimination

Transaction Elimination (TE) [41] is a technique that reduces main memory bandwidth by
avoiding the flush of the Color Buffer in tiles that have the same color as in the preceding frame.
Since the reuse distance of two tiles is an entire frame, tile equality is not performed by comparing
the colors of all the pixels of a tile but rather signatures of those colors. Whenever a tile has
finished being rendered, its colors (the contents in the Color Buffer) are hashed into a signature
and compared to the signature of the same tile for the previous frame. If the two signatures are
equal, the newly generated colors are not written into the Frame Buffer. Although the exact details
of this technique in commercial systems are not fully disclosed, we have modified our cycle-accurate
simulator to model an efficient implementation and compare it with our proposed approach. Figure
4.9 presents the extra hardware added in the pipeline to perform Transaction Elimination.

Transaction Elimination is evaluated by only considering the energy overheads caused by the
Signature Buffer and the Compute CRC unit, but without taking into account their execution time
overheads: while the number of accesses are counted to report energy, it is ideally assumed that
the signature for a Color Buffer does not require any execution cycles.

68

4.3. EXPERIMENTAL RESULTS

Primitive
Fetcher

Rasterizer
Depth
Test

Fragment
Processing

Blending

Color
Buffer

Parameter
Buffer

Depth
Buffer

Textures

Baseline
Hardware

Baseline
Memory Structures

Transaction Elimination
Memory Structures

Command
Processor

Vertex
Fetcher

Vertex
Processing

Primitive
Assembly

Primitive
Binner

Signature
Buffer

Compute
CRC Unit

Memory
Controller

Transaction Elimination
Hardware

Figure 4.9: Graphics Pipeline including TE.

4.3 Experimental Results

This section presents the main results of Rendering Elimination over the baseline architecture,
described in Table 3.1. The parameters employed during the simulations are summarized in Table
4.1. For comparison purposes, Transaction Elimination [41] and Fragment Memoization [8] are also
evaluated.

Table 4.1: Parameters considered in the experiments for the structures of Rendering Elimination, Trans-
action Elimination and Fragment Memoization.

Rendering Elimination

Compute CRC Unit 12 KB (8 Sign LUTs, 4 Shift LUTs)
Accumulate CRC Unit 4 KB (4 Shift LUTs)
Signature Buffer 3588 entries/frame, 2 frames of signatures, 4 bytes/entry
Overlapped Tiles Queue 128 entries, 12 bits/entry
Constant Bitmap 3588 entries, 1 bit/entry

Transaction Elimination

Compute CRC Unit 12 KB (8 Sign LUTs, 4 Shift LUTs)
Signature Buffer 3588 entries/frame, 2 frames of signatures, 4 bytes/entry

Fragment Memoization

Frames rendered in parallel 2
Signature size 32
LUT Number of ways 4
LUT Number of sets 2048

69

4. RENDERING ELIMINATION

0.67

0

0.2

0.4

0.6

0.8

1

N
o

rm
al

iz
e

d
 e

xe
cu

ti
o

n
 t

im
e

Geometry cycles Baseline Geometry cycles RE

Raster cycles Baseline Raster cycles RE

Figure 4.10: Execution cycles of Rendering Elimination (RE) compared to the Baseline GPU.

0.63

0

0.2

0.4

0.6

0.8

1

N
o

rm
al

iz
e

d
 e

n
e

rg
y

co
n

su
m

p
ti

o
n GPU Baseline GPU RE

Memory Baseline Memory RE

Figure 4.11: Energy consumption of Rendering Elimination (RE) compared to the Baseline GPU.

Figure 4.10 shows execution cycles of Rendering Elimination for the set of benchmarks. The
total cycles are normalized to those of the Baseline and divided into cycles corresponding to Ge-
ometry and Raster Pipelines. RE achieves an average execution time reduction of 33%, yielding
reductions of up to 85% (Candy Crush). The execution of the Raster Pipeline using RE is 1.5x
faster than the Baseline GPU on average, with maximums of more than 4.5x. On the other hand,
the overheads introduced by the technique are almost negligible, since the signature computation is
overlapped by previous Geometry Pipeline stages. The pipeline is only stalled when computing sig-
natures for primitives that cover a large amount of tiles, resulting in an overflow of the Overlapped
Tiles Queue. These kind of primitives are rare, as can be seen by the fact that, on average, only an
additional 2% of geometry cycles are introduced. The overhead of comparing the signatures is even
smaller. Considering that accessing the corresponding Signature Buffer entry and performing a
simple comparison takes a few cycles while skipping the entire Raster Pipeline can save thousands,
these tiny overheads are more than offset by the large performance gains. Such overheads only

70

4.3. EXPERIMENTAL RESULTS

result in performance loss in benchmarks that lack redundant tiles and cannot leverage Rendering
Elimination at all. Even in those cases, the performance impact is small, with benchmarks such as
Air Attack or Modern Strike having an overhead of less than 1% of the cycles and 300 showing a
slowdown of 5%.

Figure 4.11 shows the GPU energy consumption (considering both static and dynamic) when
using RE for the set of benchmarks, normalized to the baseline. The total energy is split into two
parts: energy spent by the GPU in accessing main memory and energy spent in other activities.
As shown, RE brings about an average 37% reduction of the energy consumed by the system,
with a 33% reduction of the energy consumed by the GPU and 40% reduction of the energy
consumed by main memory. Moreover, RE provides enormous energy savings for benchmarks such
as Candy Crush, Castle Defense or Dude Perfect, reducing 80% of the overall energy consumed by
the baseline. In benchmarks that do not take advantage of RE, the energy overheads are smaller
than 5%. Regarding area, McPAT reports that the cost of the hardware added (CRC LUTs,
Signature Buffer, Overlapped Tiles Queue and bitmap) incurs in less than 1% area overhead.

These reductions in execution time and energy consumption are due to an important number of
tiles bypassing the execution of the Raster Pipeline and avoiding their corresponding main memory
accesses. Figure 4.12 shows the average percentage of tiles that, across neighboring frames, produce
the same color (the sum of bottom and mid bars) and the average percentage of tiles that change
colors (top bar). The bottom bar depicts the percentage of tiles that Rendering Elimination avoids
rendering, which is, on average 47% of the tiles of a frame and 78% of the total redundant tiles.
The mid bar shows the percentage of tiles that despite having different inputs end up with the
same color (13%). The top bar presents the percentage of tiles with different inputs and different
colors (40%). Note that there is not a single occurrence of a tile that changes the color while
maintaining the same inputs. Furthermore, Figure 4.12 reveals two different behaviors for the
benchmarks analyzed depending on camera movements. The first category, (Avenger Legends to
World of Goo) is composed of workloads with mainly static cameras, so their scenes contain lots of
redundant tiles. The second category (300 to Tigerball) is composed of workloads in which some
phases contain highly dynamic camera movements and in other phases the scene is static. It can
be seen that there is a strong correlation between the number of detected redundant tiles presented
on Figure 4.12 and the speedup and energy savings reported in Figures 4.10 and 4.11.

We refer to the above event, where the signature of two tile inputs does not match but the final
color of their pixels remains unchanged, as false negatives. False negatives do not generate errors,
but reveal a broader potential for tile reuse that RE is not capable to detect. On the other hand,
since tile inputs are compared using the result of a hash function, there exists the possibility of
collisions or false positives: pairs of different tile inputs that are mapped to the same signature. A
false positive means that the GPU incorrectly reuses a tile that has actually changed in the current
frame. However, the probability of such an event with a CRC32 signature is roughly one every 4
billion tiles, i.e., less than one tile per million frames (more than 4 hours playing). Moreover, it
would be extremely difficult, or impossible, to spot the incorrect tile by a human, since it would
last for only a single frame (less than 20 ms), and it would probably appear very similar to the
correct tile due to frame coherency. Actually, zero false positives were found when rendering these
benchmarks with CRC32 as a signature.

Eliminating redundant tiles not only reduces the activity of the GPU but it also eliminates all

71

4. RENDERING ELIMINATION

0
10
20
30
40
50
60
70
80
90

100

N
u

m
b

e
r

o
f

ti
le

s
(%

)

Equal Colors and Inputs Equal Colors Different Inputs Different Colors and Inputs

Figure 4.12: Tiles with equal color and inputs, equal color and different inputs, and different color and
inputs across neighboring frames.

the associated memory accesses. Figure 4.13 plots the amount of main memory traffic generated by
the Raster Pipeline, normalized to the baseline. The total traffic is split into three parts: accesses
generated by the Tile Cache when reading primitives from the Parameter Buffer, accesses generated
by the Texture Cache when fetching textures in the fragment shaders and accesses generated by
flushing the on-chip Color Buffer to the Frame Buffer. As it is shown, Rendering Elimination
achieves a significant drop in traffic to main memory (44% on average).

4.3.1 Rendering Elimination compared to Fragment Memoization and Transaction Elimination

Figure 4.14 compares the benefits in execution time and energy consumption of Rendering
Elimination over Transaction Elimination (TE) and Fragment Memoization. The TE implemen-
tation uses the same hardware structures as Rendering Elimination (see details in Section 4.2.3).
Fragment Memoization is modelled as originally proposed in the work of Arnau et al. [8], executing
2 frames in parallel and using a 32-bit hash that discards the screen coordinates, but their default
512-entry 4-way LUT has been augmented to 2048 entries to better compare to the chip area of
RE.

TE avoids only the Color Buffer flushes to main memory, while RE bypasses the whole Raster
Pipeline execution for redundant tiles. Therefore, while TE reduces by a 9% the energy consumption
with respect to the baseline GPU, RE outperforms it and achieves a reduction of 37%. Note that
in benchmarks with a large percentage of redundant tiles such as Castle Defense, RE achieves an
additional 60% energy savings compared with TE. Moreover, since the flush of the Color Buffer
represents a relatively small portion of the total time of the Raster Pipeline, RE far surpasses the
performance benefits of TE.

Rendering Elimination also provides a significant improvement when compared to Fragment
Memoization. One would expect that, by working at a fragment granularity, Memoization could
discover more redundancy than a technique working at tile level. However, such granularity also

72

4.3. EXPERIMENTAL RESULTS

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

N
o

rm
al

iz
e

d
 m

e
m

o
ry

 a
cc

e
ss

e
s

Color Buffer Flushes Baseline Color Buffer Flushes RE
Texel Fetches Baseline Texel Fetches RE
Parameter Buffer Fetches Baseline Parameter Buffer Fetches RE

Figure 4.13: RE memory bandwidth compared to baseline: Parameter Buffer and Texel fetches and
Color Buffer flushes.

requires a bigger storage and, as already pointed out in the original paper, a realistic space-limited
LUT only captures on average 60% of that potential, whereas RE captures all of the redundant
tiles with equal inputs, discarding all their corresponding activity and yielding an average of 10%
more energy and execution time savings than Memoization.

The only notable exceptions are Hopeless and World of Goo, two applications containing rather
rare cases in which a significant portion of the screen is black and, therefore, the pressure on the
LUT storage is heavily reduced by being able to render the scene with a small number of repeated
fragments. Moreover, because of the large reuse distance between redundant fragments, Fragment
Memoization requires significant modifications in the pipeline to enable rendering of multiple frames
in parallel. While executing two frames in parallel has benefits beyond Memoization, it has two
major drawbacks that RE does not. First, it implies a significant re-design of the whole GPU.
Second, it generates input response lag because of the parallel frame rendering process. To alleviate
this side effect it must be disabled during frames where the user introduces inputs.

Transaction Elimination and Memoization may also obtain savings for benchmarks in which
Rendering Elimination cannot. As Figure 4.12 presents, there is a subset of tiles whose rendering
outputs the same color as in the preceding frame but do not have the same inputs as in the preceding
frame (depicted in the mid bar). On average, this occurs for 12% of the tiles. This phenomenon may
occur, for instance, when the only differences between the two tiles happen on occluded fragments
that are eventually culled by the Depth Test and do not contribute to the final color of the tile, or
for scenes with quick camera panning movements where most of the background texture contains
a single plain color. Consequently, in benchmarks where RE detects a small percentage of equal
tiles, such as Angry Birds or in benchmarks where RE does not detect any equal tiles, such as 300,
TE and Memoization may obtain better energy savings than RE.

73

4. RENDERING ELIMINATION

0

0.2

0.4

0.6

0.8

1

N
o

rm
al

iz
e

d
 e

xe
cu

ti
o

n
 t

im
e

Transaction Elimination PFR+Memoization Rendering Elimination

(a) Execution cycles.

0

0.2

0.4

0.6

0.8

1

N
o

rm
al

iz
e

d
 e

n
e

rg
y

co
n

su
m

p
ti

o
n

Transaction Elimination PFR+Memoization Rendering Elimination

(b) Energy consumption.

Figure 4.14: Comparison of Transaction Elimination, Fragment Memoization with Parallel Frame Ren-
dering (PFR) and Rendering Elimination against the Baseline GPU.

4.4 Conclusions

This chapter has presented Rendering Elimination (RE), a novel micro-architectural technique
for Tile-Based Rendering GPUs that effectively reduces shading computations and memory accesses
by means of culling redundant tiles across consecutive frames. Since RE detects a redundant tile
before it is dispatched to the Raster Pipeline, the entire computation (which includes rasterization,
depth test, fragment processing, blending, etc.) is avoided, as well as all the associated energy-
consuming memory accesses to the Parameter Buffer, Textures and Frame Buffer.

Results show that RE outperforms state-of-the-art techniques such as Transaction Elimination
or Fragment Memoization, which are only able to bypass a single pipeline stage. Compared to the
baseline GPU, RE achieves an average execution time reduction of 33% and reduces the GPU and
main memory energy consumption by 33% and 40%, respectively. The hardware overhead of RE

74

4.4. CONCLUSIONS

is minimum, requiring less than 1% of the total area of the GPU, while its latency is hidden by
other processes of the graphics pipeline. In terms of energy, RE incurs a negligible overhead of less
than 0.5% of the total GPU energy. RE is especially efficient in benchmarks with small camera
movements, with execution time reductions as high as 86% and energy savings up to 80%. Even in
benchmarks without any significant amount of redundant tiles, the performance impact is small.

75

5
Early Visibility Resolution

This chapter presents Early Visibility Resolution, a mechanism that leverages the visibility
information obtained in a frame to speculatively determine the visibility in the following one much
earlier in the pipeline than traditional approaches.

When rendering a scene, it is normal that multiple objects overlap at each pixel and, conse-
quently, that the color for a pixel is computed multiple times, a phenomenon known as overshading.
If some of those objects are opaque, then a significant amount of processing is devoted to comput-
ing colors that will not be visible in the final image. Figure 5.1a shows the overshading factor for
several commercial Android applications. It can be seen that all applications shade their pixels
more than once, with the average application doing so 3.5 times and several applications having
an overshading factor larger than 5. Early Visibility Resolution reduces the overshading caused by
hidden primitives by identifying them well before they are rasterized, and scheduling them after
the visible ones, thus ensuring that they will be rejected by the Early Depth Test.

Additionally, in some cases hidden primitives may reduce the amount of work saved by Ren-
dering Elimination, the mechanism described in Chapter 4. Equal tiles cannot be identified as such
when the only changes between frames occur in hidden primitives that do not contribute to the final
colors of the tiles. Figure 5.1b shows the average percentage of tiles that, across consecutive frames,
change colors (top bar) and the average percentage of tiles that produce the same colors (the sum
of the three bottom bars). The bottom bar represents the percentage of tiles whose processing
can be avoided by Rendering Elimination, while the bar second from the bottom indicates the
additional tiles that can be detected as equal if occluded primitives are not included in Rendering
Elimination’s tile signature. It can be seen that by combining Rendering Elimination with Early
Visibility Resolution, the amount of skipped tiles increases by 12%, detecting 87% of the overall
redundant tiles.

77

5. EARLY VISIBILITY RESOLUTION

3.5

0

1

2

3

4

5

6

7

8

O
v
e
rs

h
a

d
in

g

(a) Overshading factor (number of shaded fragments per pixel).

3.5

0
10
20
30
40
50
60
70
80
90

100

N
u

m
b

e
r

o
f

ti
le

s
 (

%
)

Different Colors and Inputs Equal Colors Different Inputs

Equal Colors and Inputs (Excluding Occluded Primitives) Equal Colors and Inputs

(b) Tiles with equal color and inputs, equal color and inputs whenever occluded primitives are not considered, equal
color and different inputs, and different color and inputs across neighboring frames.

Figure 5.1: Effects of the baseline visibility resolution in the Graphics Pipeline.

5.1 Early Detection of Occluded Primitives

Detecting occluded primitives early in the pipeline can prevent their processing and avoid a
significant amount of ineffectual work. However, as visibility resolution is a complex problem, the
proposed solution relies on a simplification that estimates it with a low implementation cost. The
similarity between consecutive frames entails that visibility tends to remain constant: if a primitive
is occluded in a frame, it will most likely be occluded in the following one.

A sufficient -but not necessary- condition for a primitive to be occluded in a tile is that the
primitive is entirely located farther from the viewpoint than the farthest visible point in that tile.

78

5.1. EARLY DETECTION OF OCCLUDED PRIMITIVES

Based on that observation, primitives are labelled as occluded in a tile if they are farther than the
farthest visible point (hereafter named FVP) for that tile in the previous frame. Whenever a frame
finishes rendering, the visibility of the complete scene is known, so the depth of the FVP can be
extracted for each tile. As shown in Section 5.2, this visibility prediction scheme is implemented
so that redundant activity is reduced while maintaining the correctness of rendered images: the
reordering of primitives predicted to be occluded is only applied to the ones that use the Depth Test
to resolve their visibility, which avoids rendering errors in case of a misprediction. Additionally,
removing primitives predicted to be occluded from Rendering Elimination’s signature does not
generate rendering errors, since changes in visibility require changes in the attributes of one or
more primitives predicted to be visible, which results in different signatures across frames.

Visibility is usually determined at a fragment level using the Early Depth Test. However, a
large number of mobile 2D applications use the so-called Painter’s Algorithm [46], where objects in
the scene are drawn in back-to-front order. This way, a newly-processed opaque fragment always
occludes previously-rendered fragments in the position it maps to without the need of tracking
depth information using the Z Buffer. Consequently, to determine the FVP for a tile, a distinction
must be made between primitives that write on the Z Buffer (WOZ primitives) and primitives that
do not (NWOZ).

5.1.1 WOZ Primitives

All information regarding the visibility for these primitives is available in the Z Buffer when
the tile is rendered. The per-tile FVP depth is computed as the maximum depth value stored in
the Z Buffer (Zfar). A primitive is labeled as occluded in a given tile if its closest vertex (Znear) to
the viewpoint is farther than the FVP’s depth from the previous frame.

The coarse granularity caused by comparing to a single Zfar value combined with the conser-
vative Znear comparison (which requires that all primitive points are beyond the FVP, not just
those overlapping the tile) reduces the detection rate, since not all occluded primitives might be
labeled as such. However, this way the primitives can be labeled as occluded for a tile earlier in the
pipeline, with information available at the Primitive Binning stage (vertex depths and identifiers
of the tiles the primitive overlaps), without the need to either clip them to the boundaries of a tile
or rasterize them. Note that Zfar is a single value per tile, so it is stored in an on-chip memory
buffer at an acceptable energy and area overhead.

5.1.2 NWOZ Primitives

The visibility for these primitives is implicit in the rendering order and is, therefore, not
resolved using the Z Buffer. However, by using a different mechanism, occluded primitives can still
be detected in such scenes. During the sorting of primitives into tiles, the number of different draw
commands that have produced primitives that overlapped each particular tile is tallied and stored
in a layer identifier counter. The layer identifier of a tile starts at zero at the beginning of the
frame and is increased by 1 whenever a primitive that belongs to a new command is sorted to that
tile.

79

5. EARLY VISIBILITY RESOLUTION

When a primitive is sorted to a tile, it is assigned the current layer identifier of that tile. Since
opaque primitives in a layer partially or completely occlude layers laid under it, those identifiers
can be used as depth information: primitives with higher layer identifiers are closer to the observer
than primitives with smaller ones. Later on, after rasterization, layer identifiers are tracked for all
the opaque visible fragments of a primitive in the Layer Buffer, which is a local structure akin to
the Z Buffer.

When a tile is completely rendered, all the information concerning its visibility is available in
the Layer Buffer. The depth of the FVP corresponds to the minimum identifier stored in the Layer
Buffer (Lfar). A primitive is labeled as occluded in a tile if its assigned layer for the current tile is
smaller than the tile’s Lfar from the previous frame.

5.1.3 Hybrid Scenes

A 3D scene is mainly composed of primitives that write in the Z Buffer, but it may also include
primitives that do not. For instance, a batch of NWOZ primitives are sometimes drawn at the
beginning of the scene as a background or at the end as a HUD1. Besides, it is common to find
scenes with traditional alpha blending, where geometry is rendered in two steps. In the first one,
the opaque geometry is rendered. In the second step, the translucent primitives are processed in
back-to-front order. Translucent primitives are NWOZ because by definition they are not occluders,
so they must not update the Z Buffer.

WOZ primitives are also assigned a layer identifier to help compare its age relative to NWOZ
primitives. However, since resolving visibility among WOZ primitives themselves is not determined
by their relative age but by comparing their explicit depth values, we can assign the same layer
identifier to all of the WOZ primitives in a batch. If two primitives, one being a WOZ and the other
being an opaque NWOZ, overlap the same pixel, visibility is resolved by comparing their relative
age, i.e., by determining which one was rendered last.

The FVP depth of a tile may be either Zfar or Lfar, depending on whether the FVP belongs to
a WOZ or a NWOZ primitive, respectively. After computing Lfar, the type of primitive it belongs
to is determined and the proper FVP depth value for the tile (either Zfar or Lfar) is stored. A
boolean value termed FVP-type is then set to indicate whether the stored FVP corresponds to a
WOZ or a NWOZ primitive.

Figure 5.2 illustrates how the FVP of a tile is computed in the presence of both WOZ and
NWOZ primitives. A tile is viewed in a top-down perspective with the location of its primitives
represented as rectangles. The observer of the scene placed on the left, i.e., the right corner is
farther. The top of the figure displays the layer identifiers for all primitives as well as the Z value
for WOZ primitives.

In the scenario presented in Figure 5.2a, Layer 1 is completely occluded by Layer 2, whereas
Layer 2 is completely occluded by Layers 3 and 4. Layer 3 is visible, so the Lfar of the tile is 3. Since
Layer 3 belongs to NWOZ primitives, the FVP depth of the tile is its Lfar and a corresponding
FVP-type that indicates that the FVP is a layer is stored.

1HUD is short for Head-Up Display, a visual overlay used to present information to the user.

80

5.2. REMOVING INEFFECTUAL COMPUTATIONS WITH EVR

Layer 4 3 2

z=0.5 z=1

1

(a) FVP-type: Layer
FVP depth: 3

Layer 3 2 1

z=0z=0.5 z=1

(b) FVP-type: Z
FVP depth: 0.5

Figure 5.2: FVP depth computation in tiles with both WOZ primitives (white) and NWOZ primitives
(striped).

In the scenario presented in Figure 5.2b, Layer 1 is visible, so the Lfar of the tile is 1. Since
Layer 1 belongs to WOZ primitives, the FVP depth corresponds to the tile’s Zfar. Primitives with
a depth value of 1 are occluded by primitives with smaller depth values, while primitives with a
depth value of 0 do not completely occlude primitives with a depth value of 0.5. Thus, the Zfar, and
consequently the FVP depth, of the tile is 0.5. The FVP-type of the tile is set to indicate that the
FVP is a Z value. A primitive is labeled as occluded if one of the following two scenarios occurs:

• The FVP in the previous frame is NWOZ and the layer assigned to the primitive is lower
than Lfar

• The primitive and the FVP in the previous frame are WOZ, and the primitive’s Znear is
farther than Zfar.

5.2 Removing Ineffectual Computations with EVR

In this section, two optimizations that leverage the proposed EVR mechanism for early detec-
tion of occluded primitives are presented to avoid ineffectual computations and memory accesses
in the Graphics Pipeline.

5.2.1 Overshading Reduction

Overshading occurs when a pixel is shaded multiple times because several primitives overlap it.
If an opaque primitive writes into an already-shaded pixel, the resources devoted to the previous
color computation have been wasted because it has no effect in the final image. Note that some

81

5. EARLY VISIBILITY RESOLUTION

overshading cannot be avoided, such as the one produced by translucent primitives. As introduced
before, GPUs try to reduce overshading by employing an Early Depth Test which avoids shading
a fragment if a closer, opaque fragment has already been processed. Although this mechanism can
eliminate a significant fraction of overshading, it is heavily dependent on the order that fragments
are processed because it can only discard fragments which are hidden by those already processed. A
direct solution to the overshading problem would be for the application to sort the opaque primitives
in a front-to-back order. However, many of these software-based approaches require building costly
spatial hierarchical data structures to render the scene from any single viewpoint. They are only
effective on “walkthrough” applications where the entire scene is static and only the viewer moves
through it, because the overheads can be amortized over a large number of frames. Furthermore,
such application-level sorting is often challenging due to cyclic overlaps among objects or objects
containing geometry that occludes parts of the same object.

The speculative visibility determination mechanism described in Section 5.1 can be used to
dynamically reorder opaque primitives so as to render primitives that are likely to be occluded
after primitives that are likely to be visible without the need of an additional render pass. The
reordering is performed in the Primitive Binning stage, when primitives are sorted into tiles. In the
baseline configuration, for each primitive the Parameter Buffer is updated as follows: the primitive’s
attributes are stored in memory and a pointer to those attributes is written into the Display List
of each tile. Then, whenever a tile is rendered, its Display List is accessed and the pointers to
primitives are dereferenced to access their attributes to rasterize them.

The proposed reordering mechanism divides the Display List of every tile into two lists. Tiles
are rendered by fetching initially all the primitives from the first list and then the primitives from the
second list. Whenever a primitive is sorted into a tile, its attributes are stored into the Parameter
Buffer the same way as in the baseline. The pointer to those attributes, on the other hand, is
stored on one of the lists depending on the type of primitive and its predicted visibility, according
to Algorithm 4.

Algorithm 4 Reordering Algorithm based on FVP

if Primitive is WOZ then
if Predicted visible then

Append into First List
else

Append into Second List
end if

else . NWOZ Primitive
if Second List not empty then

Move Second List to the end of the First List
end if
Append into First List

end if

This algorithm only reorders opaque WOZ primitives among themselves, while preserving the
order of NWOZ primitives against themselves and against WOZ primitives. Reordering WOZ
primitives does not incur in rendering errors: NWOZ primitives are not reordered and all WOZ

82

5.2. REMOVING INEFFECTUAL COMPUTATIONS WITH EVR

primitives perform the depth test as usual, which maintains the correctness of the result produced
by such primitives regardless of the order in which they are rasterized.

Figure 5.3a illustrates the behavior of Algorithm 4 by showing 4 different batches of primitives
of a particular tile. The two WOZ batches include primitives that are predicted to be visible and
primitives that are predicted to be occluded. Figure 5.3b shows how they are reordered.

A F

NWOZ Primitives WOZ Primitives Predicted Occluded WOZ Primitives Predicted Visible

B C D E G H I J

1st Batch 2nd Batch 3rd Batch 4th Batch

(a) Primitives overlapping a tile, divided into 4 batches according to their primitive type

A

B

C DE

1st Batch

2nd Batch

3rd Batch

4th Batch

List 1 List 2

A

A

A

C E

C E B

D

D

F

F

B

G I H J

Ø

Ø

(b) WOZ primitives that are predicted occluded are stored on the Second List, while all other primitives are stored in
the First List

Figure 5.3: Reordering algorithm example.

The first processed batch is an NWOZ batch. No actions are performed with the second list
since it is empty, and all the primitives in the batch are appended to the first list. Next, there is
a WOZ batch, whose primitives are appended to the first list if they are predicted to be visible in
the tile and appended to the second list otherwise. When the following NWOZ batch arrives, all
the primitives in the second list are moved to the end of the first list and then the primitives of the
batch are appended to the first list. Finally, another WOZ batch is processed, whose primitives are
again appended to the two lists according to their predicted visibility.

This reordering technique is highly effective at reducing overshading because if the visibility
prediction is correct, the Early Depth Test is able to discard more fragments, which reduces the
amount of computation and memory accesses devoted to occluded fragments. Note that this scheme
does not introduce any error as commented above. Visibility mispredictions simply imply a loss of
culling effectiveness in the Early Depth Test.

83

5. EARLY VISIBILITY RESOLUTION

5.2.2 Rendering Elimination Improvement

Rendering Elimination, described in Chapter 4, is a technique that detects tiles that produce
the same color across adjacent frames. To do so, when primitives are sorted into tiles at the
end of the Geometry Pipeline, a signature per tile is incrementally computed on-the-fly with the
attributes of all primitives overlapping each tile. Then, when the Raster Pipeline starts processing
a tile, its signature computed for the current frame is compared against the signature computed in
the previous frame: if both signatures match, the tile is not rendered since it will produce the same
colors as in the previous frame. Rendering Elimination requires all attributes from all primitives
of a tile to be exactly the same as in the previous frame to detect redundancy. However, in the
case that only occluded primitives change their attributes, the tile’s colors will be the same as for
the preceding frame, making Rendering Elimination not able to detect and eliminate such frame-
to-frame redundancy. The approximate visibility resolution mechanism described in Section 5.1
can be used to compute signatures only with visible primitives so as to improve the effectiveness of
Rendering Elimination’s tile redundancy detection.

In the baseline operation of Rendering Elimination, a lookup table named Signature Buffer
stores one CRC32 per tile. Whenever a primitive is sorted, the CRC32 of the attributes of its
vertices is computed. Then, for all the tiles that the primitive overlaps, the corresponding Signature
Buffer entry is read and updated by combining the CRC32 value of the entry with the CRC32 value
of the sorted primitive.

Using the visibility prediction scheme proposed in Section 5.1, Rendering Elimination can
be extended as follows. For each sorted primitive, the depth of its closest-to-the-observer vertex
is compared against the depth of the FVP in the previous frame for each tile it overlaps. If the
primitive is predicted to be occluded in a tile, the Signature Buffer entry for that tile is not updated
with the CRC32 of the primitive. As it will be shown in the Results section, utilizing the FVP depth
allows for a significant increase in redundant tile detection. Moreover, the proposed optimization
does not produce any rendering errors. Table 5.1 presents the four possibilities regarding the
resolved visibility of a primitive (either visible or occluded) across two consecutive frames.

Table 5.1: Visibility casuistry

Scenario Frame i Frame i+1

A Visible Visible
B Visible Occluded
C Occluded Occluded
D Occluded Visible

For scenarios A and B the optimization behaves like the baseline Rendering Elimination: since
the primitive was visible in the tile in Frame i, it is considered for the signature of the tile in Frame
i+ 1, regardless of its final visibility. Note that, in scenario B, the primitive will be occluded and,
therefore, will not be considered in the signature in Frame i + 2. This is the case for scenarios C
and D.

Scenario C is the case that improves over the baseline: since the occluded primitive does not

84

5.3. IMPLEMENTATION

affect the final colors of the tile, not considering the primitive for the signature enhances redundancy
detection while not generating errors.

Finally, scenario D does not cause rendering errors because for a primitive P (occluded in
Frame i) to be visible in Frame i+ 1, at least one of the following two conditions must hold:

i) P has moved closer to the camera than the farthest depth of the tile in the previous frame.
In that case, P will be added to the signature of the tile. Since it was not included in the signature
of the previous frame, the signatures will differ and the tile will be rendered.

ii) All the primitives that occluded P have moved (or are not rendered) so that in Frame i+ 1
they do not totally occlude P . In that case, the attributes of the occluder primitives must have
changed and the signature will be different: even if P is not considered for the signature, the tile
will be rendered.

5.3 Implementation

This section describes the extra hardware required to implement the proposed early visibility
resolution mechanism, which basically consists of additional units to compute and store the FVP
(farthest visible point) for all the tiles in the frame. Figure 5.4 shows how they are integrated into
a TBR GPU.

Primitive
Fetcher

Rasterizer
Depth
Test

Fragment
Processing

Blending

FVP
Table

Depth
Buffer

Textures

Baseline
Hardware

Additional
Hardware

Baseline
Memory Structures

Additional
Memory Structures

Command
Processor

Vertex
Fetcher

Vertex
Processing

Primitive
Assembly

Primitive
Binner

Parameter
Buffer

Layer
Generator

Layer
Buffer

Color
Buffer

Figure 5.4: Graphics Pipeline including the structures needed to implement FVP computation.

85

5. EARLY VISIBILITY RESOLUTION

5.3.1 Layer Generator Table

As discussed in Section 5.1, layers are tracked to emulate depth among NWOZ primitives.
Assigning a layer identifier to a primitive requires to address the following issues.

First, since the layer identifier is intended to count the number of objects (Drawcalls) whose
primitives have overlapped a given tile so far, each tile must have its independent layer counter.
Of course, for a given tile, all the primitives of the same command are assigned the same layer
identifier, although that layer may differ from one tile to another.

Second, since WOZ primitives update their depth into the Z Buffer, layer identifiers do not
provide any information among primitives in a WOZ batch: the same identifier can be assigned to
all WOZ primitives in a batch for a given tile.

A small, on-chip LUT named Layer Generator Table is employed to manage the association
of layer identifiers to primitives. This table has one entry per tile, and each entry contains three
fields:

1. Last identifier of a command that produced a primitive that overlapped the tile.

2. Last layer assigned to a primitive that overlapped the tile.

3. Last type of primitive (WOZ/NWOZ) that overlapped the tile.

Using the Layer Generator Table (LGT) layers can be assigned to every primitive in all the
tiles it overlaps during the Primitive Binning stage. Whenever a primitive is sorted into a tile, the
LGT entry for that tile is checked. If the stored command identifier is the same as the primitive’s
command identifier, it means that the primitive belongs to the same layer as the last primitive
sorted into that tile. Consequently, the primitive is assigned the layer stored in the entry. After
sorting a primitive into a tile, it updates the last type of primitive field in the LGT (a binary value:
NWOZ or WOZ).

On the other hand, if the stored command identifier is different to the primitive’s command,
the layer may be increased depending on the type of primitive. NWOZ primitives always increase
the layer number whereas for WOZ primitives the layer is only increased if the previous primitive
was NWOZ. Finally, the LUT entry is updated with the new command identifier and the new layer
value if they have changed.

The layer identifier of a primitive is stored in the Parameter Buffer, as any other attribute. This
way, layers can be assigned to all the fragments of the primitive at rasterization time. Section 5.4
shows that minor energy overheads are produced by storing layer identifiers this way and generating
additional accesses to Main Memory.

The command and layer identifier fields have been dimensioned based on common performance
guidelines for mobile graphics applications. As it is advised that applications do not make hundreds
of drawcalls [20, 28], 12 bits are devoted to store command identifiers, supporting 4096 unique
drawcalls per frame. The worst case in which primitives from all commands can overlap a tile

86

5.3. IMPLEMENTATION

is assumed and, consequently, layer identifiers are also comprised of 12 bits. The LGT has been
modelled as a McPAT SRAM to obtain its power and area.

5.3.2 Layer Buffer

The farthest visible layer of a tile can be obtained by computing the minimum visible layer of
all its pixels. Since tiles are relatively small (e.g. 16x16 pixels) an on-chip buffer can be used to
keep track of per-pixel information for an entire tile. This buffer, called Layer Buffer, has one entry
for every pixel of the tile being rendered (just as the Z Buffer or the Color Buffer) that stores the
visible layer for that pixel.

The Layer Buffer is updated during the Blending stage, when the final fragment opacity is
already determined. The same alpha value that fragments employ to blend with colors previously
written in the Color Buffer is used to detect opacity. If the alpha factor is exactly 1, the fragment is
opaque and its layer is written into the Layer Buffer. Otherwise, since the fragment is translucent
and does not completely occlude layers behind it, the Layer Buffer is not updated.

During the Blending stage, each fragment of a WOZ primitive stores its layer identifier in a
register named ZR, so that it identifies the layer of the last visible WOZ primitive and may be
used to distinguish, at the end of rendering a tile, if its FVP corresponds to a WOZ or a NWOZ
primitive, i.e., the FVP-type of the tile. The value of ZR is compared to Lfar when the tile finishes
rendering: if the two values are equal, the FVP-type of the tile is WOZ. Otherwise, it is NWOZ.
McPAT components have been used in order to obtain an area and power estimation of the hardware
necessary to keep track of the visible layers and the FVP-type: an SRAM to model the Layer Buffer
and a D flip-flop for the ZR Register.

5.3.3 FVP Computation and FVP Table

The FVP depth of a tile in the previous frame is used in order to predict if a primitive is
likely to be visible, so the entire set of per-tile FVP depths must be stored. Such information is
maintained in a structure called FVP Table. The FVP Table has one entry per tile, with each
entry containing the previous frame’s FVP depth for that tile. Each entry in the table also stores
the FVP-type to indicate whether the type of data stored is a Z or a layer identifier. The FVP
for a tile is stored using 24 bits, since Z values are represented by 24 bits while layers only use
12. Consequently, each FVP Table entry contains 25 bits. The FVP Table has been modelled as a
McPAT SRAM to obtain its power and area.

Whenever a tile finishes rendering, Zfar and Lfar values are obtained by computing the maximum
value of the Z Buffer and the minimum value of the Layer Buffer, respectively. This computation
has been implemented using a comparator tree, a perfect binary tree with height 4, whose root
contains the maximum/minimum value of the 16 leafs of the tree, which correspond to a 16-element
row of either the Z or Layer Buffer. The nodes of the tree represent a comparator that computes the
maximum/minimum of its two children and a register to store the result of the comparison. The
comparator tree is, therefore, composed of 2l−1 comparators and registers at each level l (l > 0),

87

5. EARLY VISIBILITY RESOLUTION

amounting to 15 comparators and registers for the entire tree. This pipelined design allows the tree
to start processing a new Buffer row each cycle, for which its maximum/minimum value is obtained
and stored in an additional register after 4 cycles. The temporary maximum/minimum values for
all rows are obtained after 19 cycles, which are then fed to the comparator tree. Therefore, 23
cycles are required to obtain the maximum/minimum value for the entire Buffer. The comparator
tree and the temporary registers have been implemented in VHDL and synthesized to obtain its
delay and power using the Synopsys Design Compiler, the modules of the DesignWare library and
the 32/28nm technology library from Synopsys [73].

After computing Zfar and Lfar, the FVP-type for the tile is determined. If the FVP depth
belongs to a NWOZ primitive, the FVP Table entry for the tile is updated with Lfar, setting its
FVP-type bit. Otherwise, the FPV entry for the tile is updated with Zfar and the entry’s FVP-type
bit is cleared.

5.4 Experimental Results

This section presents the main results of Early Visibility Resolution over the baseline architec-
ture, described in Table 3.1, and the improvements over Rendering Elimination, whose parameters
are listed in Table 4.1. The parameters employed during the simulations are summarized in Table
5.2.

Table 5.2: Parameters considered in the experiments for the structures of Early Visibility Resolution.

Early Visibility Resolution Structures

Layer Generator Table 3588 entries, 25 bits/entry
Layer Buffer 256 entries, 12 bits/entry
FVP Table 3588 entries, 25 bits/entry

Figure 5.5 shows the energy consumption of the GPU-Memory system normalized to the Base-
line GPU for the set of benchmarks. The proposed optimizations that leverage an early prediction
of the visibility achieve a 43% reduction of energy consumption on average. Energy savings are
obtained in all benchmarks, with maximums of more than 80% (Castle Defense, Dude Perfect).
Figure 5.6 shows the execution time, divided into Geometry and Raster pipelines, normalized to
the baseline. On average, the proposed techniques achieve 39% execution time reduction, with
maximums of more than 70% (Candy Crush, Castle Defense, Dude Perfect).

The energy overheads are mainly due to additional writes to the Parameter Buffer to store the
layer identifiers. This overhead is quite moderate, 2.1% on average, as it can be seen in Figure 5.5.
Figure 5.5 also illustrates that the additional hardware added by the proposed mechanism incurs
in only 1.2% energy consumption overhead on average: the structures needed to manage the FVP
information (Layer Generator Table, Layer Buffer and FVP Table) generate 0.5% additional static
and dynamic energy consumption while the LUTs needed to implement Rendering Elimination
contribute to an additional 0.7% energy consumption. The computation of Rendering Elimination’s
tile signatures incurs in time overhead in the Geometry Pipeline whenever a primitive overlaps a

88

5.4. EXPERIMENTAL RESULTS

0.57

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
al

iz
e

d
 e

n
e

rg
y

co
n

su
m

p
ti

o
n

Overhead by additional accesses Overhead by additional hardware

Figure 5.5: Energy consumption of EVR normalized to the Baseline GPU.

0.61

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
al

iz
e

d
 e

xe
cu

ti
o

n
 t

im
e

Geometry cycles Geometry overhead Raster cycles

Figure 5.6: Execution time of EVR normalized to the Baseline GPU.

large number of tiles, since the pipeline is stalled waiting for all signatures to be sequentially
updated. Figure 5.6 reports such overheads in execution time which, on average, represents 0.5%
of the total.

These important reductions in energy consumption and execution time are mainly produced by
avoiding the processing of ineffectual fragments (fragments that are occluded or are the same as in
the previous frame). Figure 5.7 shows the number of fragments shaded per pixel using the proposed
Early Visibility Resolution mechanism to reorder primitives (EVR) compared to the baseline for

89

5. EARLY VISIBILITY RESOLUTION

300 Air Attack Crazy
Snowboard

Modern
Strike

Temple Run Tigerball Average

0

1

2

3

4

5

6
Sh

ad
e

d
 f

ra
gm

e
n

ts
 p

e
r

p
ix

e
l

Baseline EVR Oracle

Figure 5.7: Comparison of the number of shaded fragments per pixel among the baseline GPU, Early
Visibility Resolution (EVR) and an oracle.

the set of 3D benchmarks. EVR is also compared with an oracle approach, which ideally assumes
that the Z Buffer is initialized with the final visibility of the tile –the final depth values– before it
is executed. This oracle approach is equivalent in overshading to the PoweVR Tile-Based Deferred
Rendering architecture from Imagination Technologies [58]. The PowerVR architecture performs a
Hidden Surface Removal step, in which the primitives in a tile are rasterized only for position and
depth and the resulting fragments are Depth Tested. Once Hidden Surface Removal is complete, the
Depth Buffer contains in each position the depth of the closest opaque fragment. The primitives of
the tile are then fully rasterized and processed, with only visible fragments passing the Early Depth
Test and being shaded. EVR significantly reduces (20%) the number of vainly shaded fragments,
and its results are close to those obtained by an oracle approach without any need to perform any
Hidden Surface Removal pass. EVR cannot reach the oracle because of its approximate nature.
First, it uses visibility information of the previous frame, which may have changed. Second, it
estimates visibility at a primitive-level, while the oracle resolves visibility at the finest possible
granularity: fragment level.

Moreover, a large fraction of tiles are detected to be redundant and its execution is completely
bypassed, avoiding not only the Fragment Shader stage for all their fragments, but also the rest
of the stages of the Raster Pipeline for those tiles. Figure 5.8 shows the percentage of detected
redundant tiles –producing the same colors as the previous frame– for the set of benchmarks.
Results are shown for the baseline Rendering Elimination (RE), the proposed EVR-aided Rendering
Elimination (EVR), and an oracle setup that can perfectly identify all tiles of a frame that are equal
to those of the previous frame.

On average, EVR avoids the rendering of 54% of the tiles, reducing 5% more tiles than the
baseline RE. Predicting occluded primitives and not adding them to the tile’s signature allows the
detection of equal tiles in benchmarks in which RE was hardly effective, such as 300 or Modern
Strike. The majority of these tiles that are identified as redundant corresponds to portions of the
screen in which WOZ primitives are covered by NWOZ primitives in the form of a HUD. In most
cases the scene contains objects that are in motion but completely occluded by NWOZ geometry.
The layer-based visibility scheme allows EVR to identify additional redundant tiles in benchmarks

90

5.4. EXPERIMENTAL RESULTS

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

D
et

e
ct

e
d

 e
q

u
al

 t
ile

s

EVR RE Oracle

Figure 5.8: Percentage of detected equal tiles by Early Visibility Resolution (EVR), compared to Ren-
dering Elimination (RE) and an oracle.

with a high degree of redundancy detected by RE, such as Castle Defense or Magic Touch. In some
applications such as Hayday or Where’s My Water, the additional tiles eliminated exceeds 10%,
with a maximum of 30%.

0.9

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

En
e

rg
y

co
n

su
m

p
ti

o
n

 n
o

rm
al

iz
e

d
 t

o
 R

E Overhead by FVP Computation

Figure 5.9: Energy consumption of Early Visibility Resolution (EVR) normalized to Rendering Elimi-
nation (RE).

The additional redundant tiles detected results in an average 10% reduction of energy con-
sumption compared to the baseline RE, as presented in Figure 5.9. The early visibility resolution
incurs in some overheads, which are grouped together in the figure. In the Geometry Pipeline, the
Layer Generator and FVP tables are accessed to generate a layer identifier, which is stored in the
Parameter Buffer. In the Raster Pipeline, the layer identifiers are read and written into the Layer
Buffer. When a tile finishes its rendering, its FVP is computed by accessing the Z and Layer Buffers,
and the result is stored in the FVP Table. Although the required sequential check of the two tables
for each primitive and each tile to which it is mapped could incur in some time overhead, it is more

91

5. EARLY VISIBILITY RESOLUTION

0.60

0

0.2

0.4

0.6

0.8

1

N
o

rm
al

iz
e

d
 e

xe
cu

ti
o

n
 t

im
e

Geometry cycles Baseline Geometry cycles RE Geometry cycles EVR

Raster cycles Baseline Raster cycles RE Raster cycles EVR

Figure 5.10: Execution time comparison of Early Visibility Resolution (EVR) and Rendering Elimina-
tion (RE) against the Baseline GPU.

than offset by the reduction in number of primitives that can skip the signature computation step
since they are occluded. This is shown in Figure 5.10, which compares execution time, broken down
into Geometry and Raster Pipelines, for the Baseline GPU, RE and the proposed Early Visibility
Resolution approach. Note that RE has to read the temporary hashes held in the Signature Buffer
for all the tiles that a primitive overlaps, shift them as many bytes as the size of the primitive and,
finally, combine them with the hash of the primitive to produce a new signature for the tile. This
process is avoided in EVR if a primitive is determined to be occluded in a tile, since EVR marks
it not to be included into the tile’s signature. The only exception where the EVR scheme does
not reduce Geometry cycles is Hopeless, a benchmark that has very few primitives concentrated
in a reduced amount of tiles. Consequently, the average number of primitives to combine into the
signature of a tile is small, limiting the benefits of occluded primitive detection. On average, adding
Early Visibility Resolution reduces the execution time in the Geometry Pipeline by 4% with respect
to the baseline Rendering Elimination.

Moreover, Rendering Elimination may induce time and energy overheads in benchmarks where
not enough redundant tiles are detected to offset the signature computation, such as 300 or Modern
Strike. On the other hand, EVR is more effective at detecting redundant tiles and, for non-
redundant tiles specially in 3D benchmarks, the primitive reordering increases the efficiency of the
Early Depth Test, which reduces the amount of computations in the fragment processors. This
results in overall speedups for all benchmarks.

5.5 Conclusions

This chapter has presented a mechanism to determine visibility in early stages of the Graphics
Pipeline based on exploiting frame coherence. Since consecutive frames tend to be very similar,
the information of a frame is used to estimate the visibility for the following one.

92

5.5. CONCLUSIONS

The proposed technique collects the depth of the farthest visible fragment (FVP) of every tile
whenever its rendering process is complete. For each overlapped tile, the depth of the closest vertex
of a primitive is compared against the FVP depth stored for that tile in the preceding frame. If it
is farther, the primitive is predicted to be occluded.

This chapter demonstrates the benefits of early visibility prediction to remove ineffectual com-
putations, by increasing the effectiveness of the Early Depth Test, a commonly used technique
in contemporary GPUs, and Rendering Elimination, the technique presented in Chapter 4 to ex-
ploit redundant computations. The former works at pixel granularity and the latter works at tile
granularity.

Using the predicted visibility information, opaque primitives whose visibility is resolved using
the Z Buffer are reordered such that primitives predicted as visible are rendered first, which avoids
the shading of occluded fragments. Besides, primitives predicted to be occluded are not considered
when generating the signature used by Rendering Elimination to identify tiles that are equal to
the ones in the previous frame. That increases the number of tiles that are identified as redundant
and, consequently, whose rendering can be avoided.

The proposed technique provides average speedups of 39% and energy savings of 43% for a
set of commercial Android applications. The reorder mechanism achieves overshading reductions
comparable to having a Z Buffer filled with perfect visibility information without requiring any
additional render pass to compute depths. On the other hand, by improving the tile redundancy
detection of Rendering Elimination, the raster pipeline of the GPU skips the rendering of more
than half of the tiles on average.

93

6
Dynamic Sampling Rate

This chapter presents Dynamic Sampling Rate, a hardware mechanism that analyzes the spatial
frequencies of the scene once it has been rendered. Then, it leverages the temporal coherence in
consecutive frames to decide, for each region of the screen, the lowest sampling rate to employ in
the next frame that maintains image quality.

6.1 Sampling Rate Estimation

6.1.1 Frequency Analysis

In real-time rendering, triangles are usually discretized into fragments by sampling them at
the center of each pixel, hence at a rate of once per pixel. According to the Nyquist Sampling
Theorem [53], that sampling rate allows capturing changes in the image every two pixels or more.
However, not all tiles require such a sampling rate, because not all parts of the screen contain high
frequencies, or changes in the image in a short space.

Figure 6.1 illustrates this phenomenon by comparing two different regions of the screen in a
given frame: while 6.1c contains significant level of detail, 6.1b is homogeneous with a single color
and, therefore, does not require per-pixel sampling. Figure 6.2 quantifies, for a variety of mobile
graphics applications, the number of 16x16-pixel regions of the screen that do not contain enough
level of detail for them to require one sample per pixel. It shows that on average almost half of
the screen can be processed at a lower sampling rate without affecting image quality. Therefore, a
(much) lower sampling rate may be enough to represent the original signals. Properly identifying
and removing the large amount of resources devoted to these unnecessary computations can lead
to a substantial reduction in energy consumption.

95

6. DYNAMIC SAMPLING RATE

Figure 6.1: Difference in level of detail across a frame. a) Frame of the game Guns of Boom. b) Region
with low level of detail. c) Region with significant level of detail.

A well known method to obtain the frequency components of an image is the Discrete Cosine
Transform (DCT) [1]. As a Fourier-related transform, the DCT maps a function (an image) from
the spatial domain to a set of coefficients of basis functions localized in the frequency spectrum.
Those basis functions correspond to sinusoids of a certain frequency and are visually represented
in Figure 6.3. It can be seen that as either the x or y axis increase, the basis function is a sinusoid
with higher variation rate, i.e., with higher frequency. Applying a 2D DCT to a block of NxN pixel
colors results in a NxN matrix of values, the coefficients of the linear combination of basis functions
which represent the original image in the frequency domain. The coefficient present in each element
of the matrix indicates how much of that particular frequency is found in the original image.

The 2D DCT has several characteristics that make it an ideal choice for the type of real-time
frequency analysis required to find the optimal sampling rate for a tile:

• It assumes an even symmetry of the function: by construction, the image is mirrored in all
its borders, which avoids artificial high frequency components that other transforms (such

96

6.1. SAMPLING RATE ESTIMATION

0

10

20

30

40

50

60
P

e
rc

e
n

ta
ge

 o
f

ti
le

s

Figure 6.2: Number of 16x16 tiles that can be sampled at a rate lower than one sample per pixel without
generating per-tile visible artifacts. Section 6.3 describes the methodology employed for this categoriza-
tion.

Figure 6.3: DCT basis functions for N=8 pixels.

as the Discrete Fourier Transform) introduce by only considering a NxN pixel subset of the
image.

• It has very high energy compaction, which means that the great majority of frequency infor-
mation is summarized in the upper-left region of the result matrix. This allows us to make
sampling rate decisions only considering a subset of the NxN coefficients.

• It has a low complexity cost in comparison with other transforms as only cosines are computed.

Additionally, the 2D DCT is a separable function, which allows for the linear computation of all

97

6. DYNAMIC SAMPLING RATE

the elements in one dimension followed by the linear computation of all the elements in the second
dimension [60]. These characteristics allow us to implement a fast and energy efficient hardware
unit to analyze the frequency components of a tile, explained in more detail in Section 6.4.

6.2 Dynamic Sampling Rate

This section describes how the 2D DCT is used to estimate the optimal sampling rate for a
tile, i.e., the lowest sampling rate that does not introduce visible artifacts in the overall frame, and
how to dynamically adapt it to image changes over time.

When the rendering process of the tile finishes, the Color Buffer contains the final color for
all the pixels of the tile. A small hardware unit is added to the end of the pipeline to take these
colors as inputs and compute their 2D DCT. Then, it analyzes the resulting matrix of coefficients
to determine if the current sampling rate for the tile is optimal. All the DCT coefficients are
first aggregated into a single value that summarizes the amount of high-frequency information of
the tile. Although a plethora of metrics exist, it was empirically determined that the maximum
absolute value among the coefficients corresponding to high-frequency diagonals suffices, which will
be referred to it as MaxC (the diagonal k is defined as the set of all elements of the matrix whose row
index plus column index is equal to k: for instance, diagonal 3 consists of elements (0, 3), (1, 2), (2, 1)
and (3, 0)). The rationale under this choice is that, intuitively, a high sampling rate is dependant
on whether the largest high-frequency component is big enough rather than the effect of multiple
high-frequency components combined. The low-frequency components of the matrix are not taken
into account in the computation of MaxC.

10 -7 5 -4 1

8 6 4 2 -1

-4 5 -3 -1 1

3 -2.5 2 1 0.5

2 -1 1 0.5 0.5

Diagonal 0

Diagonal 1

Diagonal 2

Diagonal 3

Low-Frequency
Diagonals

High-Frequency
Diagonals

MaxC

Figure 6.4: MaxC determination example.

Figure 6.4 illustrates the determination of MaxC in a 5x5 coefficient matrix in which diagonals
0 through 3 are considered as low-frequency diagonals. As shown, MaxC is 3, since it is the
highest absolute value among all the high-frequency diagonals. Although larger values appear in

98

6.2. DYNAMIC SAMPLING RATE

Reduce SR
Increase SR

Always

1x 1/4x 1/16x 1/64x 1/256x

Maintain SR

Figure 6.5: Dynamic Sampling Rate Finite-State Machine.

the low-frequency diagonals, they are ignored.

Then, a simple test is conducted to decide the new sampling rate for the tile: MaxC is compared
against two different thresholds.

• The first threshold, labelled Reduce Threshold (TR), represents the maximum frequency a tile
can contain for it to be sampled at a rate lower than the current one. If MaxC is lower than
the Reduce Threshold, the sampling rate for the tile is reduced.

• The second threshold, labelled Increase Threshold (TI) represents the maximum frequency a
tile can contain for it to be sampled at the current rate. If MaxC is greater than the Increase
Threshold, the sampling rate for the tile is increased.

In the case that MaxC is neither lower than the Reduce Threshold nor greater than the Increase
Threshold, the sampling rate for the tile does not change. The new sampling rate for each tile is
stored and used to process it in the next frame. Because of the frame coherence property of graphics
animations, the frequencies of tiles tend to remain constant across frames, which allows to use the
estimated-best sampling rate for a tile in the following frame. The scene is, therefore, not sampled
uniformly neither in space nor time: each tile is rasterized with an independent sampling rate and
it may be modified across frames to adapt to image changes.

Figure 6.5 shows the FSM that manages the dynamic sampling rate determination. Five
different sampling rates are considered: sampling at the center of every pixel (baseline sampling
rate) and sampling at the center of every square block of 4, 16, 64 or 256 pixels (as shown in Figure
6.6). These sampling rates will be referred to as 1x, 1/4x, 1/16x, 1/64x and 1/256x, respectively,
and are motivated by the baseline GPU architecture employed in this work, which utilizes tiles of
16x16 pixels. Each state in the FSM corresponds to halving the previous sample rate in both X
and Y dimensions, and the lowest state only generates one sample per tile. The transitions among
states are controlled by the heuristic decision described above, based on a < T,D > tuple that
contains: the Thresholds (T) to which MaxC is compared to, and the number of low-frequency
matrix Diagonals that are ignored (D) for its computation. We label as < TR, DR > the tuples for
the Reduce transitions and as < TI , DI > the tuples for the Increase transitions.

99

6. DYNAMIC SAMPLING RATE

1x 1/4x 1/16x 1/64x 1/256x

Figure 6.6: The five sampling rates considered in our experiments, from 1x (left) to 1/256x (right).

As images generated with lower sampling rates have fewer high-frequency components and dif-
ferent sampling rate requirements, each transition in the FSM has individual values for < TR, DR >
and for < TI , DI >. Apparently, the FSM has 4 Increase and 4 Decrease transitions. However, at
1/256x rate, fragments are sampled just once and the resulting tile contains a single plain color.
As there is no spatial frequency in it, the heuristic cannot make decisions based on the coeffi-
cient matrix. Our FSM conservatively forces the 1/256x state to always transition back to 1/64x.
Consequently, parameter values for 3 Increase and 4 Reduce transitions in the FSM must be set.
Extensive experiments have been performed to empirically determine adequate values for these pa-
rameters that can be universally applied in mobile graphics applications and reduce GPU activity
(samples) while keeping the original image quality. Section 6.3 describes the methodology followed
to find such optimal < TR, DR >, < TI , DI > values for each sampling rate.

6.3 Heuristic Parameter Selection

This section describes the empirical methodology to find the best values for DSR parameters
such that frames are rendered at the lowest possible average sample rate (ASR) without producing
any visible error.

As depicted in Algorithm 5, an exhaustive parameter exploration is performed. For each
parameter combination under test all frames are rendered, adjusting the sample rate of each tile
according to the output of the heuristic. The 100-frame traces from the 20 applications employed
to evaluate the techniques described in Chapters 4 and 5 are used to fit the parameters. During
the search, any combination that produces even a single erroneous frame is directly discarded.
Otherwise, the achieved ASR across all frames is computed for that combination. Eventually, the
parameter combination that produces the lowest ASR is chosen.

Frame errors are computed by comparing the image quality of the produced frames with respect
to the frame rendered at baseline sampling rate using the Mean Structural Similarity Index (MSSIM
[83]), a widely adopted, perceptually-based quality metric that estimates the visual impact of
changes in image luminance and contrast caused by compression distortions. The MSSIM has been
shown to outperform other similarity metrics that just measure differences in pixel color, such as
PSNR and MSE, in terms of quality [24, 42] as it correlates better with the perception of the human
visual system. A frame error occurs whenever the obtained MSSIM is lower than 95, as it is the
point at which defects can be discerned by human beings [23].

100

6.3. HEURISTIC PARAMETER SELECTION

Algorithm 5 Basic parameter search

Input: Parameter combinations to explore, frames to consider.
Output: Values for the < TI , DI > and < TR, DR > tuples that produce the lowest ASR.

1: for each parameter combination do
2: for each frame do
3: for each tile do
4: DCT = compute dct(tile, frame)
5: if MaxC(DR, DCT) < TR then
6: next = SR[tile, frame]− 1 . Reduce
7: else if MaxC(DI , DCT) ≥ TI then
8: next = SR[tile, frame] + 1 . Increase
9: else

10: next = SR[tile, frame] . Stay
11: end if
12: SR[tile, frame+ 1] = next
13: end for
14: if contains errors(frame) then
15: discard parameter combination
16: end if
17: end for
18: compute ASR(parameter combination, SR)
19: end for

Each parameter combination contains a set of 14 different parameters (four < TR, DR > pairs
for the Reduce transitions and three < TI , DI > pairs for the Increase transitions). Even considering
just a few values for each parameter (say n), the sheer amount of combinations to consider (n14)
makes an exhaustive exploration unfeasible. We adopt instead a divide and conquer approach
in which we first only focus on finding the best parameters for the Increase transitions. Next,
those values are used and kept constant in Algorithm 5 to find the best parameters for the Reduce
transitions. By splitting the parameter search into two steps, we substantially limit the number of
combinations to explore and we can execute an exhaustive search.

Note however that during the first step Algorithm 5 cannot be applied: without values set for
the < TR, DR > pairs, the procedure lacks a mechanism to dynamically reduce the sample rates
and the FSM never reaches the lowest states. Consequently, an alternative sampling rate reduction
mechanism for this first step must be provided. Such mechanism should produce tiles at low
enough sampling rates that Increase transitions are required to prevent errors due to undersampling.
Otherwise (if Increase decisions were never required) the capabilities of the parameter combinations
to produce a low ASR while not producing frame errors would not be tested.

A simple preliminary experiment that finds near-optimal sample rates for each of the tiles in
all frames is first conducted to build an effective reduction mechanism. Those values will act as
references and will stay constant during the exploration of the Increase parameters. The reduction
mechanism consists in always choosing the lowest sampling rate between the reference value and

101

6. DYNAMIC SAMPLING RATE

the outcome of the heuristic (which either increases the sampling rate or keeps it the same).

This preliminary experiment first generates the images of all tiles in all frames at all five
sampling rates. It then sequentially analyzes tile by tile the five alternatives and selects the lowest
one that does not produce visible errors compared with the same tile at baseline sampling. These
sample rates are named Local Minimum, because image discrepancies are not analyzed at full frame
level but just at tile level. As such, they may not be the optimal sample rates (optimal values may
be lower when discrepancies are analyzed at frame level) but they are low enough to be used as a
reference in our reduction mechanism.

Algorithm 6 shows the procedure to find the best parameters for the Increase transitions (the
first step). Akin to Algorithm 5, for each tile it computes the DCT and decides whether or not
to increase the current sampling rate according to the < TI , DI > parameters under test (Lines
5-9). However, unlike Algorithm 5, it next considers overriding that decision by choosing instead
the stored Local Minimum sample rate for the next frame (Line 11) in case that it is lower. As
the algorithm can select a sampling rate lower than the Local Minimum, the found parameters
gravitate towards the optimal sampling rates.

Algorithm 6 LocMin parameter search

Input: LocalMinimum, < TR, DR >, parameter combinations to explore, frames to consider.
Output: Values for the < TI , DI > tuples that produce the lowest ASR.

1: for each parameter combination do
2: for each frame do
3: for each tile do
4: DCT = compute dct(tile, frame)
5: if MaxC(DI , DCT) ≥ TI then
6: next = SR[tile, frame] + 1 . Increase
7: else
8: next = SR[tile, frame] . Stay
9: end if

10: locmin = LocalMinimum[tile, frame+ 1]
11: SR[tile, frame+ 1] = min(next, locmin)
12: end for
13: if contains errors(frame) then
14: discard parameter combination
15: end if
16: end for
17: compute ASR(parameter combination, SR)
18: end for

102

6.4. IMPLEMENTATION

6.4 Implementation

This section describes the combinational logic and memory structures required to implement
Dynamic Sampling Rate, and how the frequency analysis and sample rate determination are inte-
grated within the Raster Pipeline.

6.4.1 Pipeline Integration

The Dynamic Sample Rate technique uses a FSM (see Figure 6.5) to dynamically determine
the sampling rate of each tile based on its current state and its MaxC. It requires a new hardware
structure called Sampling Rate Table (SRT), with one entry per tile, that holds the state of each
tile in a frame. Since the FSM has 5 different states, a state can be represented with 3 bits.
Consequently, for the frame resolution of 1080x1920 pixels used in our experiments, there are 8100
tiles and the storage overhead of the SRT is 2.96 KB. The SRT has been modelled as a McPAT
SRAM to obtain its power and area.

Other than the SRT, Dynamic Sampling Rate requires very minor modifications to the pipeline,
as shown in Figure 6.7. Tiles are scheduled and primitives are fetched in the same way as in the
baseline because the sampling rate only affects the discretization process. The Rasterizer still
produces Quads (square groups of four adjacent fragments), so they can be depth tested, shaded
and blended as in the baseline. The main difference is that the screen area covered by each
fragment is bigger than a pixel when the sampling rate is lower than 1x. Those fragments are
named Superfragments and a group of four Superfragments is named Superquad. Producing a
superfragment at a sampling rate of 1/NxN only requires sampling at the center of a grid of NxN
pixels.

Primitive
Fetcher

Rasterizer
Depth
Test

Fragment
Processing

Blending

Color Buffer

Frequency
Analysis

Unit

Tile Cache
Sample Rate

Table
Depth Buffer

Texture
Cache

Baseline
Pipeline Stages

Additional
Pipeline Stages

Baseline
Memory Structures

Additional
Memory Structures

Figure 6.7: Raster Pipeline with DSR.

Whenever a tile starts its processing, its state (hence the associated sampling rate) is fetched
from the Sampling Rate Table. The Rasterizer generates Superfragments according to the stored
state. The Depth and Color Buffers already have capacity to hold temporary values for the 256
pixels (16x16 pixel tiles) of the baseline resolution. Fragments within a Superfragment share depth
and color, so, only one read/write operation in the Depth Buffer is executed when depth testing a
Superfragment and only one read/write operation in the Color Buffer is executed when blending

103

6. DYNAMIC SAMPLING RATE

a Superfragment. This results in some entries of the Color Buffer not being initialized after a
tile finishes its processing. In the last pipeline stage, the final color value of a Superfragment is
upsampled by replicating a color to all pixels belonging to it. Afterwards, the contents of the Color
Buffer are transferred to main memory and the DCT computation of the tile starts

6.4.2 Frequency Analysis Unit

The 2D DCT is a separable function [60]. This property allows to transform a NxN Input image
into the frequency domain by successively applying 1D transforms, first along the rows and then
along the columns (or vice-versa). By considering separability, the well-known 2D-DCT formula
can be rearranged as shown in Equation 6.1:

DCT (p, q) = α(p)α(q)
∑N−1

m=0 cos
(2m+1)πp

2N

∑N−1
n=0 Inputmncos

(2n+1)πq
2N (6.1)

where 0 ≤ p, q ≤ N − 1 and the scale factors α are defined as:

αp = αq

1√
N

if p = 0 or q = 0√
2

N
otherwise.

(6.2)

The 2D-DCT formula is usually expressed in matrix notation as [68]:

DCT = KInputKT = (K(KInput)T)T (6.3)

where K is the so-called Kernel Matrix, that contains precomputed values for both the scale
factors and the cosine functions in the form of:

Kpq =

1√
N

if p = 0√
2

N
cos

(2q + 1)πp

2N
otherwise.

(6.4)

DSR’s frequency analysis scheme uses the Synopsys’s implementation of the 2D DCT transform
from their DesignWare library [72]. This module is based on the aforementioned Kernel Matrix pre-
computation and row-column decomposition. The computation of the 2D DCT shown in Equation
6.3 is divided in two steps, decoupled by an auxiliary buffer (Aux) that holds temporary results.
The first step computes the 1D-DCT of the rows (Aux = (KInput)T) and the second step com-
pletes the 2D computation (DCT = (KAux)T). In the Synopsys implementation, a single buffer is
used for storing both the temporary and final results. This buffer, named DCT Buffer, is written
by columns and read by rows to emulate the two transpositions.

104

6.4. IMPLEMENTATION

Figure 6.8 shows a block diagram of the Frequency Analysis Unit and its dataflow: the input
data is read from the Color Buffer 1 and is multiplied by the Kernel Matrix 2 using a series of
compute units. Each unit computes the 1D-DCT of a row and stores the result in the DCT Buffer
3 . Since the tiles in our modeled GPU are composed of 16x16 pixels and the frequency analysis

unit contains 4 compute units, each unit sequentially processes 4 rows. Once the 16 rows have
been processed, the second pass is performed: the temporary contents of the DCT Buffer 4 are

multiplied to the Kernel Matrix and stored back in the DCT Buffer 5 , four columns at a time,
until the final 2D DCT is computed.

The original Synopsys design operates sequentially in each row and column, as it does not
have hardware to compute multiple 1D-DCTs in parallel. This implies significant time overheads
to compute the entire 2D-DCT of 16x16 elements. The design has been slightly modified by
replicating the compute units. Experimentally, it has been determined that with 4 compute units
the frequency analysis and sampling rate determination do not cause stalls in the pipeline and the
energy and area overheads are minimal (results in Section 6.5). The Frequency Analysis Unit has
been implemented in VHDL and synthesized to obtain its delay and power using the Synopsys
Design Compiler, the modules of the DesignWare library and the 32/28nm technology library from
Synopsys [73].

Color Buffer

Kernel
Matrix

Sample
Rate Table

Sampling Rate
Determination

Frequency Analysis
 Unit

Combinational Logic Local Memory

1

3

2

5

7

DCT
Buffer

4

6

1D DCT
Compute Unit 0

1D DCT
Compute Unit 1

1D DCT
Compute Unit 2

1D DCT
Compute Unit 3

8

Figure 6.8: Frequency Analysis Unit overview.

Once the DCT computation ends, the hardware 6 estimates the best sampling rate for that
tile using the scheme presented in Section 6: it first uses the matrix of coefficients (ignoring the D
first diagonals) to compute MaxC ; then, following the FSM in Figure 6.5, it decides the new tile

state (hence a corresponding sampling rate), based on the current state 7 and the comparison

between MaxC and the T threshold. Finally, the new tile state is stored in the SRT 8 to indicate

105

6. DYNAMIC SAMPLING RATE

the sampling rate to be used in the following frame.

6.5 Experimental Results

This section presents the main results of Dynamic Sampling Rate over the baseline architecture,
described in Table 3.1. Results are reported over a different set of benchmarks than the ones used
to fit the heuristic parameters.

Figure 6.9 shows the energy consumption of the whole system (GPU plus memory) with the
proposed Dynamic Sampling Rate approach normalized to the baseline architecture. It can be
seen that having independent and dynamic sampling rates for each tile achieves an average 40%
reduction of energy, with savings up to 67% (for Dragon Ball). Figure 6.9 also shows the minor
costs of activating DSR: the static and dynamic energy consumption of the Sampling Rate Table,
and the logic and temporary memory required to compute the 2D DCT of the tiles (Figure 6.8).
All together, they represent less than 2% of the total energy consumption and less than 1% of the
area of the baseline GPU.

0.60

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

N
o

rm
al

iz
e

d
 e

n
e

rg
y

co
n

su
m

p
ti

o
n

Overhead

Figure 6.9: Energy consumption of DSR compared to the Baseline GPU.

Figure 6.10 shows the reduction in execution cycles of DSR normalized to the Baseline design
and broken down into Geometry and Raster cycles. On average, the presented proposal leads to 1.9x
speedup in the Raster Pipeline, with maximums of more than 4x (Dragon Ball). This translates
into a 36% global execution time reduction, since the Geometry Pipeline contains no modifications
with respect to the baseline. Note that DSR does not incur in any execution time penalty, as the
frequency analysis of the tiles and their sampling rate determination is completely overlapped with
the Raster Pipeline activity.

The benefits in energy consumption and execution time of DSR are provided by sampling most

106

6.5. EXPERIMENTAL RESULTS

0.64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
al

iz
e

d
 e

xe
cu

ti
o

n
 t

im
e

Geometry cycles Baseline Geometry cycles DSR

Raster cycles Baseline Raster cycles DSR

Figure 6.10: Execution time of DSR compared to the Baseline GPU.

0.36

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1x 1/4x 1/16x 1/64x 1/256x ASR

Figure 6.11: Breakdown of sampling rates.

tiles at lower rates, as shown in Figure 6.11. On average, less than half of the tiles are sampled
at the baseline rate, while almost 40% of the tiles are processed using the two lowest sampling
rates (1/64x and 1/256x). The Average Sample Rate across all benchmarks and frames is thus
reduced to 0.36 samples per fragment. This greatly reduces the activity of the Fragment Shaders,
as shown in Figure 6.12. DSR reduces the average number of processed fragments by 66% and
the number of texture accesses to main memory by 28% when compared to the Baseline. The gap
between both numbers is caused by an increase in sparsity: as samples are taken at larger intervals,
the likelihood of reusing a texture cache line is smaller than in the Baseline. However, the great

107

6. DYNAMIC SAMPLING RATE

0.34

0.72

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

N
o

rm
al

iz
e

d
 t

o
 B

as
e

lin
e

Shaded Quads Texture Accesses to Main Memory

Figure 6.12: Shader activity of Dynamic Sampling Rate compared to the Baseline GPU.

reduction in processed fragments still allows for significant savings in overall texture traffic.

Rendered scenes in real-time applications tend to smoothly vary across consecutive frames.
Therefore, the sampling rate requirements of tiles may evolve over time. As DSR analyzes the
frequencies of the scene after rendering each tile, it manages to dynamically capture such changes
and quickly adjust the sampling rates of all individual tiles accordingly. This process is illustrated
in Figure 6.13, which shows the changes in the sampling rate of 4 example tiles of benchmark Clash
Royale that exhibit different behaviors. DSR starts sampling all the tiles at the maximum rate,
1x (1). Tiles A,B and C can be sampled at a much lower sampling rate, and spend a small

transitory period of time continuously reducing their sampling rate (2) until their optimal rate

for their current spatial frequency is found (3). Tiles remain in their estimated-optimal sampling

rates (4) until the spatial frequencies in them change (e.g., 5). Note how every time that a tile

is sampled at 1/256x rate (e.g., 6), the sampling rate is immediately increased in the following
frame, as described in Figure 6.5. It can be observed that the scene is not sampled uniformly
neither in space (in a particular frame the sampling rate of the 4 tiles is normally different) nor in
time (the sampling rate of a particular tile changes across the frames).

In the performed experiments, DSR has not produced a single error in all the generated frames,
i.e., it has not rendered any frame with a MSSIM lower than 95 when compared with the frame
rendered at baseline sampling rate. Despite using benchmarks containing swift camera movements
and object displacements across the screen, the similarity between consecutive frames allows the
reuse of the estimated-best sampling rates without producing any visual artifacts. Albeit a sparse
phenomenon, more abrupt alterations may occur in a particular frame, such as in a change of
scene. The correctness of DSR cannot be guaranteed in these rare scenarios, as it is based on frame
coherency. We have performed an experiment to quantify the effect that DSR has on image quality
whenever there is a scene change. To do so, three additional 100-frame traces for the benchmarks

108

6.5. EXPERIMENTAL RESULTS

1

2
3 4

5

6

(a) Tile A.

1

2

3
4

5 6

(b) Tile B.

1

2

3 4

5

6

(c) Tile C.

1 4

5

(d) Tile D.

Figure 6.13: Evolution of the sampling rate of 4 different tiles over several frames.

listed in Table 6.1 have been generated. Each trace contains two different scene changes, emulated
by entering and exiting the pause or settings menu of the application. With the renderization of
these applications’ frames with DSR active, it has been observed that only the frame rendered im-
mediately after each of the six scene changes is erroneous. Subsequent frames are indistinguishable
from frames rendered at baseline sampling rate. It is well documented that the human eye requires
some time to construe visual information: if scenes are presented as rapid sequence of pictures, at
least 67ms are needed to identify large objects and recreate the essence of the scene [26] while at
least 40ms are required to identify an object in motion instead of two simultaneous objects [34].
These times are greater than what a single frame lasts in 30 frames per second, the frame rate which
is considered to be the minimum acceptable [37, 16], so it can be concluded that these potential
errors affect only a single frame and will not be perceived by the user.

109

6. DYNAMIC SAMPLING RATE

Table 6.1: Additional benchmarks for the image quality experiment.

Benchmark Genre

Alto’s Odyssey Endless Runner
PlayerUnknown’s Battlegrounds Battle Royale
Homescapes Puzzle

6.6 Conclusions

This chapter has proposed Dynamic Sampling Rate (DSR), a novel microarchitectural technique
to reduce shader executions by determining the lowest sampling rate for each tile in a frame that
does not reduce the overall quality of the rendered images. DSR analyzes the frequency components
of a tile once it has been processed and decides the rate in which the tile’s triangles will be sampled in
the following frame. The sampling rate prediction leverages the frame-to-frame coherence inherent
in animated graphics applications, which results in a high likelihood that the frequency components
of a tile are maintained across consecutive frames.

For a set of unmodified commercial Android applications, DSR reduces the fragment-level
redundancy by 66% on average with minimal hardware overhead, leading to an average speedup of
1.68x and energy savings of 40%.

110

7
Conclusions

This chapter presents the main contributions of this thesis and suggests some potential open-
research areas for future work.

7.1 Conclusions

This thesis has focused on improving the energy efficiency of mobile devices at running graphics
applications, one of the most popular types of use cases nowadays, which, unfortunately, requires
an unsustainable power supply for a battery-operated GPU.

An initial analysis was performed to pinpoint which stages of the graphics pipeline in a Tile-
Based Rendering architecture consume the most energy, revealing that fragment processing and
especially, its accesses to off-chip main memory is the main contributor. Three techniques have
been proposed to reduce the activity at the fragment processors by leveraging frame coherence, a
fundamental property of graphics applications that results in consecutive frames producing very
similar outputs.

In first place, frame coherence was employed to reduce the number of redundant tiles. It was
quantified in a variety of popular commercial Android applications that an average of 62% of the
tiles have exactly the same colors across consecutive frames. Given that Tile-Based Rendering
decouples geometry from fragment processing, all the inputs required to process a tile are known
before rendering it. Rendering Elimination has been presented as a mechanism to discard the
processing of a tile and reuse the result produced in the previous frame by means of comparing
the signatures of the entire set of the tile’s inputs between frames. Frame coherence ensures that a
significant portion of tiles will maintain the same inputs between frames. Rendering Elimination’s
implementation introduces very little overheads in energy, area and time, as it is designed to

111

7. CONCLUSIONS

incrementally compute tile signatures with a series of small lookup tables operating in parallel with
geometry processing. Results show that Rendering Elimination avoids the execution of 50% of the
tiles, yielding energy savings of 37% and an execution time reduction of 33%.

In second place, frame coherence was utilized to estimate visibility early in the pipeline. Visibil-
ity resolution is performed in current GPUs at the very end of the pipeline, which leads to substantial
energy waste in overshading, the processing of primitives which eventually do not contribute to the
final colors of the image. Early Visibility Resolution was presented as a mechanism to gather
the resolved visibility information of a frame in order to guide the execution of the following one, as
frame coherence ensures that the visibility of most primitives is maintained between frames. The
farthest visible point of a tile is computed and stored, and used as a visibility threshold: if the
nearest vertex of a primitive binned into a tile is farther than the farthest visible point for that
tile in the previous frame, it is considered that the primitive will be occluded in the current frame
as well. This estimation is used to remove ineffectual computations at two different granularities:
On the one hand, primitives predicted to be occluded are scheduled to be processed after prim-
itives predicted to be visible. Therefore, the effectiveness of the Early Depth Test increases and
fragment-level redundancy is reduced. On the other hand, primitives predicted to be occluded are
not included in Rendering Elimination’s tile signature. Therefore, the effectiveness of Rendering
Elimination increases and tile-level redundancy is reduced. Early Visibility Resolution’s implemen-
tation consists in three small on-chip buffers to compute, store and query visibility information,
introducing very little overheads in area and energy consumption. Results show that with Early
Visibility Resolution the Early Depth Test rejects 20% more fragments and Rendering Elimination
discards 5% more tiles, yielding energy savings of 43% and an execution time reduction of 39%.

In third place, frame coherence was leveraged to reduce the number of fragment shader exe-
cutions in tiles with low spatial frequencies. Current GPUs rasterize triangles by sampling them
once per pixel, but an analysis revealed that almost half of the screen can be processed at a
lower sampling rate without affecting image quality. Dynamic Sampling Rate was presented as
a mechanism to analyze the spatial frequencies of tiles once they have been rendered and decide,
based on a heuristic, the best sampling rate for them, which is applied in the following frame. Frame
coherence ensures that most tiles maintain the same spatial frequency between frames. Dynamic
Sampling Rate’s implementation consists in a small hardware unit that evaluates the spatial varia-
tions of a rendered Color Buffer in parallel with the processing of the subsequent tile, introducing
very little overheads in area and energy consumption. Results show that Dynamic Sampling Rate
reduces the fragment-level redundancy by 66%, yielding energy savings of 40% and an execution
time reduction of 36%.

7.2 Open-Research Areas

The three techniques presented during this thesis can be further developed in new directions:

• Rendering Elimination is able to discard most of the tiles that produce the same results
across consecutive frames, but not all of them. The restriction that all the input set must be
exactly the same is, seemingly, too restrictive. With Early Visibility Reduction, the number of

112

7.2. OPEN-RESEARCH AREAS

redundant tiles discarded was increased by removing occluded primitives from the considered
input set, but still a significant portion remain undetected. There is a wide variety of factors
that could contribute to different vertex attributes leading to the same colors for a tile, from
big and homogeneous textures to precision round-off errors. The impact of all these reasons
could be studied in order to devise an improved Rendering Elimination that considered them.

• Early Visibility Resolution was designed with several approximations to ensure a simple im-
plementation: visibility is estimated by comparing only the nearest vertex of a primitive to
only the farthest visible depth of the tile in the previous frame. While the processing of a large
amount of occluded fragments is avoided this way, applications still contain a non-negligible
amount of overshading. Finer granularity information could be used to enhance the visibility
prediction. For instance, multiple depths could be stored per tile and the depth of a primitive
could be compared to one or more values to predict its visibility. These additional depths
could represent a wide variety of concepts, such as the farthest visible point in sub-regions of
a tile, several representative depths between the closest and the farthest values in the tile, or
a hierarchy of depths.

• Dynamic Sampling Rate considered sampling once per fragment to be the highest possible
sampling rate. Some GPUs allow higher sampling rates, a technique known as Supersampling
Antialiasing, which generates images of improved quality by means of sampling triangles
multiple times per pixel. Supersampling Antialiasing is normally not applied in graphics
applications because increasing the sampling rate for the entire scene has a major performance
impact. Dynamic Sampling Rate could be employed to selectively apply Supersampling in
the regions of the screen that really require it. Additionally, the energy savings gained from
undersampling could be estimated so that Supersampling is applied in a number of tiles so
that the Baseline energy consumption is not exceeded. Current GPUs employ a technique to
reduce aliasing artifacts without increasing shading costs known as Multisampling Antialiasing
(MSAA) [2]. MSAA decouples coverage from shading by sampling only depth at several points
in the pixel and sharing the shader results of a single shader execution sampled at the center of
the pixel with all the coverage samples that pass the Depth Test. Dynamic Sampling Rate can
be combined as is with MSAA, but MSAA could also be extended with information received
from the frequency analysis in order to dynamically adjust the number of coverage samples
in each tile and both make a better use of resources and produce higher-quality images.

This thesis has shown that frame coherence can be leveraged to reduce the workload of the
fragment shaders by means of eliminating redundant activity. There are a plethora of additional
ways to use knowledge gained in a previous frame to influence the execution of the following one to
improve energy efficiency. For instance, it is expected that the memory access pattern of the entire
scene will be very similar between frames. Such memory accesses include, in the Geometry Pipeline,
the vertices that are fetched and the primitives that are stored and, in the Raster Pipeline, the
primitives and textures that are fetched. The access pattern in any of these pipeline stages could
be inspected and noted in a frame in order to schedule the subsequent frame’s workload in a more
cache-friendly manner to reduce main memory accesses and, consequently, energy consumption.

The proposals of this thesis have been developed on a GPU architecture compliant with the
OpenGL ES 2.0 specification. Newer, backwards-compatible versions of the API have been released

113

7. CONCLUSIONS

by the Khronos Group, which include powerful features to enhance the visual quality of graphics
applications. Several of these features are ideal candidates for research in energy efficiency, as they
imply a significant increase of the workload:

• Multiple Render Targets. Modern GPUs allow the scene to be rendered differently at several
intermediate buffers that can later be used as inputs to the fragment shaders. A common use
of this feature is deferred shading, where a geometry pass stores attributes such as normals,
diffuse colors and depths in different buffers and then the fragment processing uses that
information to compute the direct and indirect lightning effects at each pixel. Multiple Render
Targets allow for more realistic effects at the cost of more memory accesses and complex
shaders that are able to produce multiple results and later consume them. A potential line
of research could be to analyze these memory accesses and localize areas to reduce them.

• Tesselation. Geometric models are designed with a static polygon count, which is a trade-off
between the desired level of detail and the cost of transferring the model to the GPU. Mod-
ern GPUs allow the hardware to generate primitives by subdividing triangles into smaller
triangles, dynamically regulating the level of detail in regions or objects specified by the pro-
grammer. While tesselation heavily alleviates vertex fetching and processing, it increases the
number of generated primitives which, in turn, increases the number of writes and posterior
reads in the parameter buffer. Tile-Based Rendering is currently employed as a low-power de-
sign because the overhead of using the Parameter Buffer to decouple the Geometry and Raster
pipelines is heavily offset by the benefits obtained by processing raster workload one tile at a
time. However, if the reads and writes to the Parameter Buffer were to dramatically increase,
architectural solutions would need to be found in order to keep the GPU energy-efficient.

• Compute Shaders. Older generations of GPUs had specific-purpose cores with a relatively
low complexity, as the graphics pipeline greatly limits the computational capabilities of vertex
and fragment shader programs with restrictions such as the specific timing in which they are
executed or the data types they must output. On the other hand, cores in current GPUs can
be used for general purpose computing, where a task sent to the GPU by the application is
divided into small chunks which are executed in parallel and independently of the graphics
pipeline. As flexibility is added to the programming model, the design of the GPU cores
becomes more intricate and their microarchitecutre must undergo substantial changes that
may affect the overall balance of the graphics pipeline. In particular, and unlike vertex and
fragment shaders, the results of compute shaders are communicated to other stages of the
pipeline by writing them into memory, which may greatly increase memory pressure and
energy consumption if not properly considered.

114

Bibliography

[1] Nasir Ahmed, T. Natarajan, and Kamisetty Rao. “Discrete cosine transform”. In: IEEE
transactions on Computers 100.1 (1974), pp. 90–93.

[2] Kurt Akeley. “Reality engine graphics”. In: Proceedings of the 20th annual conference on
Computer graphics and interactive techniques. ACM. 1993, pp. 109–116.

[3] Tomas Akenine-Möller and Jacob Ström. “Graphics for the masses: a hardware rasterization
architecture for mobile phones”. In: Transactions on Graphics. Vol. 22. 3. ACM. 2003, pp. 801–
808.

[4] Magnus Andersson, Jon Hasselgren, and Tomas Akenine-Möller. “Masked depth culling for
graphics hardware”. In: Transactions on Graphics 34.6 (2015), pp. 1–9.

[5] Android. Android Studio. 2019. url: https://developer.android.com/studio/index.
html.

[6] Antutu. Antutu Benchmark. 2018. url: https://antutu.com.

[7] Apple. Apple Worldwide Developers Conference Keynote. 2018. url: https://developer.
apple.com/videos/play/wwdc2018/101/.

[8] Jose-Maria Arnau, Joan-Manuel Parcerisa, and Polychronis Xekalakis. “Eliminating redun-
dant fragment shader executions on a mobile gpu via hardware memoization”. In: ACM/IEEE
41st Intl. Symp. on Computer Architecture. IEEE. 2014, pp. 529–540.

[9] Jose-Maria Arnau, Joan-Manuel Parcerisa, and Polychronis Xekalakis. “Parallel frame ren-
dering: Trading responsiveness for energy on a mobile gpu”. In: Proceedings of the 22nd
international conference on Parallel architectures and compilation techniques. IEEE. 2013,
pp. 83–92.

[10] Jose-Maria Arnau, Joan-Manuel Parcerisa, and Polychronis Xekalakis. “TEAPOT: a toolset
for evaluating performance, power and image quality on mobile graphics systems”. In: Pro-
ceedings of the 27th International ACM Conference on Supercomputing. ACM. 2013, pp. 37–
46.

[11] Jǐŕı Bittner, Michael Wimmer, Harald Piringer, and Werner Purgathofer. “Coherent hier-
archical culling: Hardware occlusion queries made useful”. In: Computer Graphics Forum.
Vol. 23. 3. Wiley Online Library. 2004, pp. 615–624.

[12] Aaron Carroll, Gernot Heiser, et al. “An Analysis of Power Consumption in a Smartphone.”
In: USENIX annual technical conference. Vol. 14. Boston, MA. 2010, pp. 21–21.

[13] Ge Chen, Pedro V Sander, Diego Nehab, Lei Yang, and Liang Hu. “Depth-presorted triangle
lists”. In: ACM Transactions on Graphics 31.6 (2012), 160:1–160:9.

115

https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://antutu.com
https://developer.apple.com/videos/play/wwdc2018/101/
https://developer.apple.com/videos/play/wwdc2018/101/

BIBLIOGRAPHY

[14] Intel Corporation. Early Z Rejection. 2012. url: https://software.intel.com/en-us/
articles/early-z-rejection-sample.

[15] Enrique De Lucas, Pedro Marcuello, Joan-Manuel Parcerisa, and Antonio Gonzalez. “Visibil-
ity rendering order: Improving energy efficiency on mobile gpus through frame coherence”.
In: IEEE Transactions on Parallel and Distributed Systems 30.2 (2018), pp. 473–485.

[16] Kurt Debattista, Keith Bugeja, Sandro Spina, Thomas Bashford-Rogers, and Vedad Hulusic.
“Frame rate vs resolution: A subjective evaluation of spatiotemporal perceived quality under
varying computational budgets”. In: Computer Graphics Forum. Vol. 37. 1. Wiley Online
Library. 2018, pp. 363–374.

[17] Xavier Décoret. “N-Buffers for efficient depth map query”. In: Computer Graphics Forum
24.3 (2005), pp. 393–400.

[18] Deloitte. Global mobile consumer survey. 2018. url: https://www2.deloitte.com/content/
dam/Deloitte/ch/Documents/technology-media-telecommunications/ch-deloitte-

en-global-mobile-consumer-survey-2018.pdf.

[19] Deloitte. Global mobile consumer trends, 2nd edition. 2018. url: https://www2.deloitte.
com/content/dam/Deloitte/us/Documents/technology-media-telecommunications/

us-global-mobile-consumer-survey-second-edition.pdf.

[20] ARM Developer. ARM Mali GPU OpenGL ES Application Optimization Guide. 2019. url:
https : / / developer . arm . com / docs / dui0555 / latest / api - level - optimizations /

minimize-draw-calls/about-minimizing-draw-calls.

[21] Flaunt Digital. The evolution of mobile phones: 1973 to 2019. 2018. url: https://flauntdigital.
com/blog/evolution-mobile-phones/.

[22] Cass Everitt. Interactive order-independent transparency. 2001. url: https://www.nvidia.
com/en-us/drivers/Interactive-Order-Transparency.

[23] Jeremy R Flynn, Steve Ward, Julian Abich, and David Poole. “Image quality assessment
using the ssim and the just noticeable difference paradigm”. In: International Conference on
Engineering Psychology and Cognitive Ergonomics. Springer. 2013, pp. 23–30.

[24] Xinbo Gao, Wen Lu, Dacheng Tao, and Xuelong Li. “Image quality assessment based on mul-
tiscale geometric analysis”. In: IEEE Transactions on Image Processing 18.7 (2009), pp. 1409–
1423.

[25] GlobalWebIndex. Which smartphone features really matter to consumers? 2019. url: https:
//blog.globalwebindex.com/chart-of-the-week/smartphone-features-consumers/.

[26] E. Bruce Goldstein and James Brockmole. Sensation and perception. Cengage Learning, 2016.

[27] GAPID. 2019. url: https://developers.google.com/vr/develop/unity/gapid.

[28] Google. How to ptimize an application using Gapid. 2019. url: https : / / gapid . dev /

tutorials/optimize.

[29] Naga K Govindaraju, Michael Henson, Ming C Lin, and Dinesh Manocha. “Interactive visi-
bility ordering and transparency computations among geometric primitives in complex envi-
ronments”. In: Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games.
ACM. 2005, pp. 49–56.

116

https://software.intel.com/en-us/articles/early-z-rejection-sample
https://software.intel.com/en-us/articles/early-z-rejection-sample
https://www2.deloitte.com/content/dam/Deloitte/ch/Documents/technology-media-telecommunications/ch-deloitte-en-global-mobile-consumer-survey-2018.pdf
https://www2.deloitte.com/content/dam/Deloitte/ch/Documents/technology-media-telecommunications/ch-deloitte-en-global-mobile-consumer-survey-2018.pdf
https://www2.deloitte.com/content/dam/Deloitte/ch/Documents/technology-media-telecommunications/ch-deloitte-en-global-mobile-consumer-survey-2018.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/technology-media-telecommunications/us-global-mobile-consumer-survey-second-edition.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/technology-media-telecommunications/us-global-mobile-consumer-survey-second-edition.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/technology-media-telecommunications/us-global-mobile-consumer-survey-second-edition.pdf
https://developer.arm.com/docs/dui0555/latest/api-level-optimizations/minimize-draw-calls/about-minimizing-draw-calls
https://developer.arm.com/docs/dui0555/latest/api-level-optimizations/minimize-draw-calls/about-minimizing-draw-calls
https://flauntdigital.com/blog/evolution-mobile-phones/
https://flauntdigital.com/blog/evolution-mobile-phones/
https://www.nvidia.com/en-us/drivers/Interactive-Order-Transparency
https://www.nvidia.com/en-us/drivers/Interactive-Order-Transparency
https://blog.globalwebindex.com/chart-of-the-week/smartphone-features-consumers/
https://blog.globalwebindex.com/chart-of-the-week/smartphone-features-consumers/
https://developers.google.com/vr/develop/unity/gapid
https://gapid.dev/tutorials/optimize
https://gapid.dev/tutorials/optimize

BIBLIOGRAPHY

[30] Ned Greene, Michael Kass, and Gavin Miller. “Hierarchical Z-buffer visibility”. In: Proceedings
of the 20th Annual Conference on Computer Graphics and Interactive Techniques. ACM.
1993, pp. 231–238.

[31] Markus Hadwiger. GPU Texturing. 2015. url: https://faculty.kaust.edu.sa/sites/
markushadwiger/Documents/CS380_spring2015_lecture_12.pdf.

[32] Songfang Han and Pedro V Sander. “Triangle reordering for reduced overdraw in animated
scenes”. In: Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games. ACM. 2016, pp. 23–27.

[33] Yong He, Yan Gu, and Kayvon Fatahalian. “Extending the graphics pipeline with adaptive,
multi-rate shading”. In: Transactions on Graphics 33.4 (2014), pp. 1–12.

[34] Michael H Herzog, Thomas Kammer, and Frank Scharnowski. “Time slices: what is the du-
ration of a percept?” In: PLoS biology 14.4 (2016), e1002433:1–e1002433:12.

[35] Innospective. The Smartphone Revolution: Why the App Store Was More Important Than
the iPhone. 2018. url: https://flauntdigital.com/blog/evolution-mobile-phones/.

[36] Apple Insider. How AMD and NVIDIA lost the mobile GPU business to Apple. 2015. url:
https://appleinsider.com/articles/15/01/23/how-amd-and-nvidia-lost-the-

mobile-gpu-chip-business-to-apple-with-help-from-samsung-and-google-.

[37] Benjamin F Janzen and Robert J Teather. “Is 60 FPS better than 30?: the impact of frame
rate and latency on moving target selection”. In: Proceedings of the extended abstracts of the
32nd annual ACM conference on Human factors in computing systems. ACM. 2014, pp. 1477–
1482.

[38] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and Nor-
man P. Jouppi. “McPAT: An Integrated Power, Area, and Timing Modeling Framework for
Multicore and Manycore Architectures”. In: Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture. 2009, pp. 469–480.

[39] Gábor Liktor and Carsten Dachsbacher. “Decoupled deferred shading for hardware rasteriza-
tion”. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games. 2012, pp. 143–150.

[40] Arm Limited. How low can you go? Building low-power, low-bandwidth ARM Mali GPUs.
2013. url: https://community.arm.com/developer/tools-software/graphics/b/blog/
posts/how-low-can-you-go-building-low-power-low-bandwidth-arm-mali-gpus.

[41] Arm Limited. Transaction Elimination. 2014. url: https://developer.arm.com/technologies/
graphics-technologies/transaction-elimination.

[42] Qi Ma, Liming Zhang, and Bin Wang. “New strategy for image and video quality assessment”.
In: Journal of Electronic Imaging 19.1 (2010), 011019:1–011019:14.

[43] Ian Mallett and Cem Yuksel. “Deferred adaptive compute shading”. In: Proceedings of the
Conference on High-Performance Graphics. 2018, pp. 1–4.

[44] Mobile Marketing. Tapping into the boom in hyper-casual games. 2019. url: https : / /

mobilemarketingmagazine.com/tapping-into-the-boom-in-hyper-casual-games.

[45] James Massey. “Shift-register synthesis and BCH decoding”. In: Transactions on Information
Theory 15.1 (1969), pp. 122–127.

117

https://faculty.kaust.edu.sa/sites/markushadwiger/Documents/CS380_spring2015_lecture_12.pdf
https://faculty.kaust.edu.sa/sites/markushadwiger/Documents/CS380_spring2015_lecture_12.pdf
https://flauntdigital.com/blog/evolution-mobile-phones/
https://appleinsider.com/articles/15/01/23/how-amd-and-nvidia-lost-the-mobile-gpu-chip-business-to-apple-with-help-from-samsung-and-google-
https://appleinsider.com/articles/15/01/23/how-amd-and-nvidia-lost-the-mobile-gpu-chip-business-to-apple-with-help-from-samsung-and-google-
https://community.arm.com/developer/tools-software/graphics/b/blog/posts/how-low-can-you-go-building-low-power-low-bandwidth-arm-mali-gpus
https://community.arm.com/developer/tools-software/graphics/b/blog/posts/how-low-can-you-go-building-low-power-low-bandwidth-arm-mali-gpus
https://developer.arm.com/technologies/graphics-technologies/transaction-elimination
https://developer.arm.com/technologies/graphics-technologies/transaction-elimination
https://mobilemarketingmagazine.com/tapping-into-the-boom-in-hyper-casual-games
https://mobilemarketingmagazine.com/tapping-into-the-boom-in-hyper-casual-games

BIBLIOGRAPHY

[46] Jeffrey J McConnell. Computer graphics: theory into practice. Jones & Bartlett Learning,
2005. Chap. 5.2.1.

[47] Trapper Mcferron and Adam Lake. Checkerboard Rendering for Real-Time Upscaling on In-
tel Integrated Graphics. 2018. url: https://software.intel.com/en- us/articles/

checkerboard-rendering-for-real-time-upscaling-on-intel-integrated-graphics.

[48] Micron. TN-41-01: Calculating Memory System Power for DDR3. 2007. url: https://www.
micron.com/~/media/Documents/Products/Technical%5C%20Note/DRAM/TN41_01DDR3_

Power.pdf.

[49] Steven Molnar, Michael Cox, David Ellsworth, and Henry Fuchs. “A sorting classification of
parallel rendering”. In: IEEE computer graphics and applications 14.4 (1994), pp. 23–32.

[50] Jae-Ho Nah, Yeongkyu Lim, Sunho Ki, and Chulho Shin. “Z2 traversal order: An interleaving
approach for VR stereo rendering on tile-based GPUs”. In: Computational Visual Media 3.4
(2017), pp. 349–357.

[51] Mozilla Developer Network. Frame Rate and responsiveness. 2019. url: https://developer.
mozilla.org/en-US/docs/Tools/Performance/Frame_rate.

[52] Notesmatic. Factors that affect demand for smartphones and tablets in the global market. 2019.
url: https://notesmatic.com/2018/02/factors-affecting-demand-for-smartphones-
and-tablets/.

[53] Harry Nyquist. “Certain topics in telegraph transmission theory”. In: Transactions of the
American Institute of Electrical Engineers 47.2 (1928), pp. 617–644.

[54] Jorn Nystad et al. “Adaptive scalable texture compression”. In: Proc. of the Fourth ACM
SIGGRAPH/Eurographics Conf. on High-Performance Graphics. 2012, pp. 105–114.

[55] PayPal. Digital media consumer study. 2017. url: https://www.paypalobjects.com/

digitalassets / c / website / marketing / global / shared / global / media - resources /

documents/paypal-digital-media-consumer-study-pt2.pdf.

[56] William Wesley Peterson and Daniel T Brown. “Cyclic codes for error detection”. In: Pro-
ceedings of the IRE 49.1 (1961), pp. 228–235.

[57] Juan Pineda. “A parallel algorithm for polygon rasterization”. In: Proceedings of the 15th
annual conference on Computer graphics and interactive techniques. 1988, pp. 17–20.

[58] Imagination Technologies Group plc. A look at the PowerVR Graphics Architecture: Deferred
Rendering. 2016. url: https://www.imgtec.com/blog/the- dr- in- tbdr- deferred-

rendering-in-rogue/.

[59] Qualcomm. Trepn Power Profiler. 2015. url: https://developer.qualcomm.com/software/
trepn-power-profiler.

[60] Kamisetty Ramamohan Rao and Ping Yip. Discrete cosine transform: algorithms, advantages,
applications. Academic Press Professional, 2014.

[61] Philipp A Rauschnabel, Alexander Rossmann, and M Claudia tom Dieck. “An adoption
framework for mobile augmented reality games: The case of Pokémon Go”. In: Computers in
Human Behavior 76 (2017), pp. 276–286.

118

https://software.intel.com/en-us/articles/checkerboard-rendering-for-real-time-upscaling-on-intel-integrated-graphics
https://software.intel.com/en-us/articles/checkerboard-rendering-for-real-time-upscaling-on-intel-integrated-graphics
https://www.micron.com/~/media/Documents/Products/Technical%5C%20Note/DRAM/TN41_01DDR3_Power.pdf
https://www.micron.com/~/media/Documents/Products/Technical%5C%20Note/DRAM/TN41_01DDR3_Power.pdf
https://www.micron.com/~/media/Documents/Products/Technical%5C%20Note/DRAM/TN41_01DDR3_Power.pdf
https://developer.mozilla.org/en-US/docs/Tools/Performance/Frame_rate
https://developer.mozilla.org/en-US/docs/Tools/Performance/Frame_rate
https://notesmatic.com/2018/02/factors-affecting-demand-for-smartphones-and-tablets/
https://notesmatic.com/2018/02/factors-affecting-demand-for-smartphones-and-tablets/
https://www.paypalobjects.com/digitalassets/c/website/marketing/global/shared/global/media-resources/documents/paypal-digital-media-consumer-study-pt2.pdf
https://www.paypalobjects.com/digitalassets/c/website/marketing/global/shared/global/media-resources/documents/paypal-digital-media-consumer-study-pt2.pdf
https://www.paypalobjects.com/digitalassets/c/website/marketing/global/shared/global/media-resources/documents/paypal-digital-media-consumer-study-pt2.pdf
https://www.imgtec.com/blog/the-dr-in-tbdr-deferred-rendering-in-rogue/
https://www.imgtec.com/blog/the-dr-in-tbdr-deferred-rendering-in-rogue/
https://developer.qualcomm.com/software/trepn-power-profiler
https://developer.qualcomm.com/software/trepn-power-profiler

BIBLIOGRAPHY

[62] MIT Technology Review. Are Smart Phones Spreading Faster than Any Technology in Human
History? 2012. url: https://www.technologyreview.com/s/427787/are-smart-phones-
spreading-faster-than-any-technology-in-human-history/.

[63] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. “DRAMSim2: A cycle accurate mem-
ory system simulator”. In: IEEE Computer Architecture Letters 10.1 (2011), pp. 16–19.

[64] Takafumi Saito and Tokiichiro Takahashi. “Comprehensible rendering of 3-D shapes”. In:
Proceedings of the 17th annual conference on Computer graphics and interactive techniques.
1990, pp. 197–206.

[65] Rahul Sathe and Tomas Akenine-Möller. “Pixel Merge Unit”. In: Eurographics (Short Papers).
2015, pp. 53–56.

[66] Simon Scheckel and Andreas Kolb. “Min-max mipmaps for efficient 2D occlusion culling”. In:
Conference on Computer Graphics, Visualization and Computer Vision. 2016, pp. 13–16.

[67] Dean Sekulic. Efficient Occlusion Culling. GPU Gems, 2005. Chap. 29.

[68] Tero Sihvo and Jarkko Niittylahti. “Row-column decomposition based 2D transform opti-
mization on subword parallel processors”. In: International Symposium on Signals, Circuits
and Systems, 2005. ISSCS 2005. Vol. 1. IEEE. 2005, pp. 99–102.

[69] Michael Stengel, Steve Grogorick, Martin Eisemann, and Marcus Magnor. “Adaptive image-
space sampling for gaze-contingent real-time rendering”. In: Computer Graphics Forum.
Vol. 35. 4. Wiley Online Library. 2016, pp. 129–139.

[70] Yan Sun and Min Sik Kim. “High Performance Table-based algorithm for Pipelined CRC
calculation”. In: Journal of Communications 8.2 (2013), pp. 128–135.

[71] Ivan E Sutherland, Robert F Sproull, and Robert A Schumacker. “A characterization of ten
hidden-surface algorithms”. In: ACM Computing Surveys 6.1 (1974), pp. 1–55.

[72] Synopsys. DesignWare 2D DCT. 2019. url: https://www.synopsys.com/dw/ipdir.php?
c=DW_dct_2d.

[73] Synopsys. Synopsys 32/28nm Generic Library. 2019. url: https://www.synopsys.com.

[74] Techcrunch. Videogame revenue tops 43 billion in 2018. 2019. url: https://techcrunch.
com/2019/01/22/video-game-revenue-tops-43-billion-in-2018-an-18-jump-from-

2017/.

[75] Techjury. 14 Mobile Gaming Statistics, 2020 – Insights Into $2.2B Gamers Market. 2019.
url: https://techjury.net/stats-about/mobile-gaming/.

[76] Techjury. How many people play mobile games around the world in 2020. 2019. url: https:
//techjury.net/stats-about/mobile-gaming-demographics.

[77] Government Technology. How Smartphones Revolutionized Society in Less than a Decade.
2014. url: https://www.govtech.com/products/How-Smartphones-Revolutionized-
Society-in-Less-than-a-Decade.html.

[78] TheTool. Infographic: The Evolution of The App Stores. 2017. url: https://thetool.io/
2017/evolution-app-stores-infographic.

[79] Karthik Vaidyanathan et al. “Coarse pixel shading”. In: Proceedings of High Performance
Graphics. Eurographics Association. 2014, pp. 9–18.

119

https://www.technologyreview.com/s/427787/are-smart-phones-spreading-faster-than-any-technology-in-human-history/
https://www.technologyreview.com/s/427787/are-smart-phones-spreading-faster-than-any-technology-in-human-history/
https://www.synopsys.com/dw/ipdir.php?c=DW_dct_2d
https://www.synopsys.com/dw/ipdir.php?c=DW_dct_2d
https://www.synopsys.com
https://techcrunch.com/2019/01/22/video-game-revenue-tops-43-billion-in-2018-an-18-jump-from-2017/
https://techcrunch.com/2019/01/22/video-game-revenue-tops-43-billion-in-2018-an-18-jump-from-2017/
https://techcrunch.com/2019/01/22/video-game-revenue-tops-43-billion-in-2018-an-18-jump-from-2017/
https://techjury.net/stats-about/mobile-gaming/
https://techjury.net/stats-about/mobile-gaming-demographics
https://techjury.net/stats-about/mobile-gaming-demographics
https://www.govtech.com/products/How-Smartphones-Revolutionized-Society-in-Less-than-a-Decade.html
https://www.govtech.com/products/How-Smartphones-Revolutionized-Society-in-Less-than-a-Decade.html
https://thetool.io/2017/evolution-app-stores-infographic
https://thetool.io/2017/evolution-app-stores-infographic

BIBLIOGRAPHY

[80] VMWare. Gallium3D. 2011. url: https://www.freedesktop.%20org/wiki/Software/
gallium.

[81] VMWare. Tungsten Graphics Shader Infrastructure. 2012. url: https://gallium.readthedocs.
io/en/latest/tgsi.html.

[82] G Wagner and William Maltz. “Too hot to hold: Determining the cooling limits for handheld
devices”. In: Advancements in Thermal Management 2013 (2013).

[83] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. “Image quality assess-
ment: from error visibility to structural similarity”. In: IEEE transactions on image processing
13.4 (2004), pp. 600–612.

[84] Christoph Weber and Marc Stamminger. “Topological triangle sorting for predefined camera
paths”. In: Proceedings of the Conference on Vision, Modeling and Visualization. Eurograph-
ics Association. 2016, pp. 153–160.

120

https://www.freedesktop.%20org/wiki/Software/gallium
https://www.freedesktop.%20org/wiki/Software/gallium
https://gallium.readthedocs.io/en/latest/tgsi.html
https://gallium.readthedocs.io/en/latest/tgsi.html

	Introduction
	The mobile Graphics Processing Unit: the driving force behind contemporary entertainment
	Problem statement
	Thesis objective and related work
	Reducing redundant colors across frames
	Reducing overshading
	Reducing redundant colors within a frame

	Thesis contributions
	Rendering Elimination
	Early Visibility Resolution
	Dynamic Sampling Rate

	Background: Tile-Based Rendering
	The Application Stage
	The Geometry Stage
	The Raster Stage

	Experimental Methodology
	Simulation Infrastructure
	Improvements to the baseline infrastructure

	Benchmark Set

	Rendering Elimination
	Early Discard of Redundant Tiles
	Rendering Elimination Overview
	Implementation Requirements
	Incremental CRC Computation
	Table-Based CRC Computation
	Tile Inputs Bitstream Architecture

	Implementation
	Signature Unit Architecture
	Compute CRC Unit and Accumulate CRC Unit
	Transaction Elimination

	Experimental Results
	Rendering Elimination compared to Fragment Memoization and Transaction Elimination

	Conclusions

	Early Visibility Resolution
	Early Detection of Occluded Primitives
	WOZ Primitives
	NWOZ Primitives
	Hybrid Scenes

	Removing Ineffectual Computations with EVR
	Overshading Reduction
	Rendering Elimination Improvement

	Implementation
	Layer Generator Table
	Layer Buffer
	FVP Computation and FVP Table

	Experimental Results
	Conclusions

	Dynamic Sampling Rate
	Sampling Rate Estimation
	Frequency Analysis

	Dynamic Sampling Rate
	Heuristic Parameter Selection
	Implementation
	Pipeline Integration
	Frequency Analysis Unit

	Experimental Results
	Conclusions

	Conclusions
	Conclusions
	Open-Research Areas

