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ABSTRACT

Subdivision surfaces have gained more and more traction since it became the stan-

dard surface representation in the movie industry for many years. And Catmull-Clark

subdivision scheme is the most popular one for handling polygonal meshes. After its

introduction, Catmull-Clark surfaces have been extended to several eminent ways, in-

cluding the handling of boundaries, infinitely sharp creases, semi-sharp creases, and

hierarchically defined detail. For ray tracing of subdivision surfaces, a common way is

to construct spatial bounding volume hierarchies on top of input control mesh. How-

ever, a high-level refined subdivision surface not only requires a substantial amount

of memory storage, but also causes slow and inefficient ray tracing. In this thesis, it

presents a new way to improve the efficiency of ray tracing of subdivision surfaces,

while the quality is not as good as general methods.
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Chapter 1

INTRODUCTION

In computer graphics, ray tracing is one of the most well-known algorithms for

rendering photorealistic pictures. The concept of ray tracing is quit simple. All you

need to do is to find the intersection of a line with an object and then to shade the

point of intersection. It is very powerful. You can render almost any type of object.

However, a chief drawback of ray tracing is that it requires much more computa-

tional resources than the current rasterization based approach for real-time rendering.

Over the past decades, tons of researchers have tried to realize real-time ray tracing.

Many improved algorithms, libraries and more efficient ray tracing supported hard-

ware have been presented, e.g., Embree Wald et al. (2014) and OptiX Parker et al.

(2010). But despite the impressive algorithms and a brilliant improvement of hard-

ware performance, the current situation is far away from satisfaction. Without doubt,

full-featured real-time ray tracing will be a main challenge for many years to come.

And recently, subdivision surfaces have been a new trend for representing a smooth

surface. Catmull-Clark subdivision scheme Catmull and Clark (1978) is a famous

subdivision scheme that can handle polygonal meshes. It has been the standard

surface representation in the movie industry for many years. For example, it has

been used in Pixar’s short film Geri’s Game DeRose et al. (1998) and in Toy Story 2,

and in all following feature films from Pixar. Since the introduction in 1978, Catmull-

Clark surfaces have been extended to several eminent ways, including the handling

of boundaries Nasri (1987), infinitely sharp creases Hoppe et al. (1994), semi-sharp

creases DeRose et al. (1998), and hierarchically defined detail Studios (2005). The

semi-sharp creases are especially important as they can handle realistic edges while

1



using less memory.

For ray tracing of subdivision surfaces, a common way is to construct spatial

bounding volume hierarchies on top of input primitives. However, a high-level refined

subdivision surface not only requires a substantial amount of memory storage, but

also causes slow and inefficient ray tracing. According to recently research on this

field, there are two categories for ray tracing of subdivision surfaces: pre-tessellation

and direct intersection. The basic idea of pre-tessellation is to use a caching scheme to

avoid memory bottleneck. Christensen et al. (2003) first introduced using ray differ-

entials to construct a multi-resolution geometry cache (MRGC) for tessellated faces,

which combines adaptive multi-resolution techniques and caching to avoid redundant

subdivision. Benthin et al. (2015) proposed a fixed sized lazy-build evaluation cache

specifically designed for ray tracing subdivision surfaces on many-core architecture.

In contrast to pre-tessellation, direct intersection approaches require very little

memory for storing additional data. However, a major problem of these approaches is

that they cannot directly support displacement mapping, which is very important for

industry. Benthin et al. (2007) presented the efficient direct ray tracing of subdivision

surfaces using packet. Tejima et al. (2015) proposed a direct ray tracing method for

feature adaptive Catmull-Clark subdivision surfaces using fast and robust Bzier patch

intersection.

2



Chapter 2

GEOMETRY

Linear algebra is the foundation of computer graphics; hence I start with a section

on this area to introduce the basic math. It will make you feel comfortable with those

ideas in order to understand the rest of this thesis.

2.1 Points, Vectors, Matrices and Normals

In computer graphics world, a vector usually means a direction in three-dimensional

space. And a point, on the other hand, is a position in a three-dimensional space.

The representation of point and vector are of course similar:

v = 〈x,y, z〉,

where x, y, z are real numbers.

Figure 2.1 shows an example of two points and one vector.

Figure 2.1: Point and Vector Example.

A normal is a term to describe the orientation of a surface of an object at a point

on that surface. It is a vector with special meaning.

Matrix is a two-dimensional array of numbers which uses the standard notation

3



m×n where m and n are two numbers that represent rows and columns of the matrix.

Here is an example of 4× 4 matrix:

M =

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

,

For computer graphics, we are interested in 3×3 or 4×4 matrices and the following

sections will introduce how to use matrices multiplication to do linear transformation.

2.2 Basic Math Operation

A vector not only can be seen as the direction from A to B but also can represent

the distance between A and B. This is given by computing the length of a vector:

L =

√
Vx ∗Vx + Vy ∗Vy + Vz ∗Vz,

the vectors length is sometimes also called magnitude.

Figure 2.2: Dot Product

Dot product between two vectors is an important concept and common operation

in computer graphics because the result of this operation relates to the angle between

the two vectors. You can get the dot product by the following equation:

A ·B = Ax ∗Bx + Ay ∗By + Az ∗Bz,

or

A ·B = ‖A‖ ∗ ‖B‖ ∗ cos θ,

where θ is the angle between A and B.

4



Figure 2.2 shows an example of dot product.

The cross product is also an operation on two vectors, but unlike the dot product

which returns a number, the cross product returns a vector. And this vector is

perpendicular to the other two vectors(need picture). You can use the following

formula to calculate the cross product:

A×B = 〈Ay ∗Bz − Az ∗By, Az ∗Bx − Ax ∗Bz, Ax ∗By − Ay ∗Bx〉

Figure 2.3 shows an example of cross product.

Figure 2.3: Cross Product

2.3 Transformation

In this part, I will start to combine all the things we have learned on points, vectors

and matrices together, and I will show you how matrices work. The most important

role the matrices play in computer graphics is to do linear transformations, which

include scaling, rotation and translation. For all of those transformations, we will

need the matrix multiplication.
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2.3.1 Multiplication

In mathematics, matrix multiplication is a binary operation that generates a ma-

trix from two matrices, which need to have compatible sizes in order to multiplied

with each other. For example, the matrices of size m x p and p x n can be multi-

plied with each other. And in computer graphics world, we primarily focus on 4× 4

matrices.

Here is what this multiplication looks like:

[x y z] ∗

[
m11 m12 m13

m21 m22 m23

m31 m32 m33

]
=

[
x ∗m11 + y ∗m21 + z ∗m31

x ∗m12 + y ∗m22 + z ∗m32

x ∗m13 + y ∗m23 + z ∗m33

]

2.3.2 Identity Matrix

The identity matrix, or unit matrix, is a n × n square matrix with ones on the

main diagonal and zeros elsewhere. It is denoted by In:

In =

[
1 0 0
0 1 0
0 0 1

]
The result of a matrix multiplied by the identity matrix is itself.

2.3.3 Scaling Matrix

If you have noticed the formula for multiplication above, you can see that the

coordinates of the point are respectively multiplied by the coefficients m11 for x, m22

for y, and m33 for z. When we set those coefficients to 1 and all the others to 0, we

get the identity matrix. However, when these coefficients other than 1, they act as a

multiplier on the point’s coordinates. The scaling matrix can be written as:

S =

[
Sx 0 0
0 Sy 0
0 0 Sz

]
,

where Sx, Sy, and Sz are real numbers.

For example, we have a point P at position (1, 3, 5). If we set Sx = 1, Sy = 2,
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and Sz = 3, then the new generated point will be at position (1, 6, 15).

2.3.4 Rotation Matrix

For the rotation matrix, I just simply present the three matrices for rotating

around three axises, respectively. I won’t spend too much time on how they come out

and the logic behind those matrices. The only thing we need to know is how to use

those matrices to transform the 3D points and vector. Here are what these matrices

look like:

Rx(θ) =

[
1 0 0
0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)

]

Ry(θ) =

[
cos(θ) 0 − sin(θ)

0 1 0
sin(θ) 0 cos(θ)

]

Rz(θ) =

[
cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

]
Now you know how to rotate points around individual axis, and it is also possible

to put three matrices together to create more complex rotations. For example, if you

want to rotate a point around the y-axis first, and then the z-axis, we can create two

matrices using Ry and Rz and combine them using matrix multiplication Ry ∗ Rz to

create a Ryz matrix:

Ryz = Ry ∗Rz.

2.3.5 Translation Matrix

For translation matrix, it is a little bit complex, which needs a 4× 4 matrix. The

transformation looks like that:

P = [x y z 1]∗

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

 =

x ∗m11 + y ∗m21 + z ∗m31 +m41

x ∗m12 + y ∗m22 + z ∗m32 +m42

x ∗m13 + y ∗m23 + z ∗m33 +m43

x ∗m14 + y ∗m24 + z ∗m34 +m44


The upper 3 × 3 matrix will be used to scale and rotate points, and the fourth row

will be used to translate point.
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2.3.6 Transpose and Inverse

The transpose of a matrix is an operator which reflects a matrix over its diagonal.

It usually denotes like: MT . And formally, the i th row, j th column element of MT

is the j th row, i th column element of M:

[MT ]ij = [M ]ji

If M is an m× n matrix, MT is an n×m matrix. Let’s take a 4× 4 matrix as an

example:

M =

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44


Then:

MT =

m11 m21 m31 m41

m12 m22 m32 m42

m13 m23 m33 m43

m14 m24 m34 m44


In linear algebra, an n× n square matrix M is called invertible if there exists an

n× n square matrix N that:

AB = BA = In,

where In denotes the n× n identity matrix.

If there is such equation, the matrix N is called the inverse of A, denoted by

A−1. Matrix inversion is very useful when you want to move something back into its

original place. For example, you have a point P, and a transformation matrix M. You

want to move P to a new position P1 with this matrix M. You will get:

P1 = PM ,

then you want to cancel this movement, you can simply multiply an inverse of

this matrix:

P = P1M
−1 = PMM−1 = PI = P .
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Chapter 3

RAY TRACING

In computer graphics, ray tracing is one of the most well-known algorithms for

rendering photorealistic pictures. The concept of ray tracing is quit simple. All you

need to do is to find the intersection of a line with an object and then shading the

point of intersection. It is very powerful. You can render almost any type of object.

The following sections briefly introduce the basic concept of ray tracing.

3.1 Viewing

The viewing part is quite of straightforward. It is just like that you stand in front

of a window, which has size of n×m centimeters . And you are viewing the outside

from this window. The image you can see is the image our ray tracing algorithm

tries to simulate. Figure 3.1 shows how to use mathematical symbol to represent this

process

3.2 Intersection

The intersection finds the closest object between the ray and all of the objects in

the world. What we need are the ray direction and the ray start position. And what

we want are the distance to the closest intersection and the color of the object at the

point of intersection. It will return null if the ray doesn’t hit any object.

3.2.1 Triangle

For triangle intersection, the Moller-Trumbore ray-triangle intersection algorithm

Möller and Trumbore (2005) has been used. It is considered today a fast method
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Figure 3.1: Viewing

for calculating the intersection of a ray and a triangle in three dimensions without

needing precomputation of the plane equation of the plane containing the triangle.

Here just presents the pseudocode of the algorithm and does not go into details about

how it works.

Figure 3.2 shows an example of ray triangle intersection.

Figure 3.2: Ray Triangle Intersection

bool r a y t r i a n g l e i n t e r s e c t i o n (
const Vec3f v0 ,
const Vec3f v1 ,
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const Vec3f v2 // Tr iang le V e r t i c e s
const Vec3f rayor ig ,
const Vec3f raydi r , // Ray i n f o
f loat &t , f loat , &u , f loat &v // Output v a l u e ) {

// two edges from v0
Vec3f e0 = v1 − v0 ;
Vec3f e1 = v2 − v0 ;
// c a l c u l a t e determinant
Vec3f P = cro s s p roduc t ( rayd i r , e1 ) ;
f loat det = dot prodcut (P, e0 ) ;
// i f de t i s near zero , ray l i e s in the p lane o f t r i a n g l e
// or ray i s p a r a l l e l to the p lane o f t r i a n g l e
// i f de t i s nega t i ve , no c u l l i n g
I f ( det > −EPSILON && det < EPSILON ) return fa l se ;
f loat i nv de t = 1 .0 f / det ;
Vec3f T = r ay o r i g − v0 ;
// c a l c u l a t e u
u = dot product (T, P) ∗ i nv de t ;
// check i f i t l i e s o u t s i d e the t r i a n g l e
I f ( u < 0 . f | | u > 1 . f ) return fa l se ;
Vec3f Q = dot product (T, e0 ) ;
v = dot product (D, Q) ∗ i nv de t ;
// check i f i t l i e s o u t s i d e the t r i a n g l e
I f ( v < 0 . f | | u + v > 1 . f ) return fa l se ;
// d i s t a n c e between ray o r i g i n and t r i a n g l e
t = dot product ( e1 , Q) ∗ i nv de t ;
return true ;

}

3.2.2 Axis Aligned Bounding Box

The box is aligned with the axis of the coordinate system is called axis aligned

box. And it is also called bounding box because it is often used for a bounding box as

an accelerated structure. Williams et al. (2005) have presented an efficient and robust

ray-box intersection algorithm. You can check the details about their algorithm and

here just shows the pseudocode:

class Ray {
public :

Ray( Vector3 &o , Vector3 &d) {
o r i g i n = o ;
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d i r e c t i o n = d ;
i n v d i r e c t i o n = Vector3 (1/d . x ( ) , 1/d . y ( ) , 1/d . z ( ) ) ;
s i gn [ 0 ] = ( i n v d i r e c t i o n . x ( ) < 0 ) ;
s i gn [ 1 ] = ( i n v d i r e c t i o n . y ( ) < 0 ) ;
s i gn [ 2 ] = ( i n v d i r e c t i o n . z ( ) < 0 ) ;

}
Vector3 o r i g i n ;
Vector3 d i r e c t i o n ;
Vector3 i n v d i r e c t i o n ;
int s i gn [ 3 ] ;

} ;

// Optimized method
bool Box : : i n t e r s e c t ( const Ray &r , f loat t0 , f loat t1 ) const {

f loat tmin , tmax , tymin , tymax , tzmin , tzmax ;
tmin = ( bounds [ r . s i gn [ 0 ] ] . x ( ) − r . o r i g i n . x ( ) )

∗ r . i n v d i r e c t i o n . x ( ) ;
tmax = ( bounds [1− r . s i gn [ 0 ] ] . x ( ) − r . o r i g i n . x ( ) )

∗ r . i n v d i r e c t i o n . x ( ) ;
tymin = ( bounds [ r . s i gn [ 1 ] ] . y ( ) − r . o r i g i n . y ( ) )

∗ r . i n v d i r e c t i o n . y ( ) ;
tymax = ( bounds [1− r . s i gn [ 1 ] ] . y ( ) − r . o r i g i n . y ( ) )

∗ r . i n v d i r e c t i o n . y ( ) ;
i f ( ( tmin > tymax ) | | ( tymin > tmax) ) return fa l se ;
i f ( tymin > tmin ) tmin = tymin ;
i f ( tymax < tmax) tmax = tymax ;
tzmin = ( bounds [ r . s i gn [ 2 ] ] . z ( ) − r . o r i g i n . z ( ) )

∗ r . i n v d i r e c t i o n . z ( ) ;
tzmax = ( bounds [1− r . s i gn [ 2 ] ] . z ( ) − r . o r i g i n . z ( ) )

∗ r . i n v d i r e c t i o n . z ( ) ;
i f ( ( tmin > tzmax ) | | ( tzmin > tmax) ) return fa l se ;
i f ( tzmin > tmin ) tmin = tzmin ;
i f ( tzmax < tmax) tmax = tzmax ;
return ( ( tmin < t1 ) && (tmax > t0 ) ) ;

}

Figure 3.3 shows an example of ray box intersection.

3.3 Shading

Shading is to calculate the color of a point on an objects face. For a basic ray

tracer, ambient, diffuse, specular, reflection and refraction are included, and all lights

are white light for simplifying the calculation. The shading calculation needs the

12



Figure 3.3: Ray Box Intersection

point of intersection on the object, the surface property of intersected object, the

ray origin and direction, distance to the intersection, and the normal at the point.

For the surface property of an object, there are surface ambient color, surface diffuse

color, surface specular color, reflection factor, refraction factor, etc.

Figure 3.4: Surface Property

3.3.1 Ambient, Diffuse, and Specular

The ray showing in Figure 3.4 and the object surface property determine the color

of the point being shaded. The intersection ray and the surface normal determine
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the reflection ray. The formula is that the angle between the intersection ray and the

surface normal equals to the angle between the surface normal and the reflection ray.

In the first place, ambient color of this object is the initial color for the point being

intersected. For each light source, the shading method will compute the diffuse color

and specular color and add them to the color of the point being intersected. At each

iteration, the diffuse color and specular color are added to the color of the surface.

The color of the surface becomes brighter as each iteration is processed.

Figure 3.5 shows an example of specular shading.

Figure 3.5: Specular Example

3.3.2 Shadow, Reflection, and Transparency

Shadows can give very impressive depth cues and make realistic image. Shading

means to find the color at a point on one object’s surface, while shadows refers to

blocking the light which would have fallen on the surface.

14



It is very easy to integrate shadows into the ray tracer. For each intersected point,

if there is at least one object stay between the point and the light source, this light

source does not contribute to the shading process of this point.

For reflection and transparency, the Figure 3.6 shows the relationship with original

ray, reflection ray and transparency ray.

Figure 3.6: Reflection and Transparency

Unlike the original ray whose start position is at the camera, the start position

of both reflection ray and transparency ray is at the point being intersected. The

formula for reflection color looks like it:

Colorp = Colorp +R ∗ Colorr

where

Colorp is the color already calculated for the intersected point hit by original ray.

R is the reflect factor of the surface being intersected, which ranges from 0.0 for

nonreflecting to 1.0 for perfect reflecting.

Colorr is the color of the intersected point hit by reflection ray. It will use back-

ground color, which is defined by user, if the reflection ray didnt hit any object.

Figure 3.7 shows an example of reflection. Transparency works in a similar way
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to reflection.

Figure 3.7: Reflection Example

3.4 Space Subdivision and Bounding Volume

Checking every ray for intersection with every triangle of objects becomes ex-

tremely expensive for a scene with tons of objects. One way to deal with this problem

is to put bounding volume around complex objects. If the ray hit the bounding vol-

ume, it continues checking the intersection of the object within this bounding volume.

There are some common types of bounding volume.

A bounding box is a cuboid that contains the object. In many cases, the bounding

box is aligned with the axes of the coordinate system, which is known as an Axis-

Aligned Bounding Box (AABB). And an Oriented Bounding Box (OBB) is called

when it refers an arbitrary bounding box. AABBs are much easier to test for in-

tersection than OBBs, but it cant deal with the situation that when the model is

rotated, which requires it to be recomputed.

Axis-Aligned Bounding Box is used here and the intersection of ray-box is intro-

duced above in intersection section. There are other types of bounding volume like
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bounding cylinder, bounding sphere, minimum bounding rectangle, etc, which are

not introduced in detail due to the limited space.

Figure 3.8 shows an example of bounding box.

Figure 3.8: Bounding Box Example

Algorithms for the generation of bounding volumes led to the idea of space sub-

division. Even though each object has its bounding volume, it is also inefficient to

check the intersection with all objects in the scene. The idea of space subdivision is

that objects are checked for intersection with a ray only when the object and the ray

are in the same region of the space.

A k-dimensional (k-d) tree Bentley (1975) is used here as a space-partitioning data

structure. The k-d tree is a binary tree, and the k value depends on the objects it

contains. And here the k value equals to three because the objects in real world are

three dimensional objects. Each node in k-d tree has a list of objects, the bounding

volume including all of those objects, left child node and right child node.

Figure 3.9 shows an example of k-d tree.

The algorithm for building a k-d tree is that on the top node, it has all the objects

in the scene and a bounding volume as a space that includes all objects. Then it

recursively subdivides the node space into two parts, known as half-spaces. The basic
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Figure 3.9: K-D Tree Example

rule for subdividing the space is that every node in the tree is associated with one

of the k-dimensions, and the node space is subdivided according to that dimensions

axis. For example, in 3-D world, if x axis is chosen, the objects whose center points

x coordinate is smaller than the x coordinate of the average of center points of all

objects go to the left child node, and others go to the right child node. Then how

to choose which axis to subdivide is the problem. In this case, a simplest method is

used that it depends on the depth. For example, for depth 1, 2, 3, 4, it chooses x, y,

z, and x respectively because three dimension is used here. Below is the pseudocode
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for the data structure:

struct KDNode{
AABB box ;
KDNode∗ l e f t c h i l d ;
KDNode∗ r i g h t c h i l d ;
vector<ob j e c t∗> ob j s ;

}

and the pseudocode for build k-d tree:

void b u i l d k d t r e e ( vector<ob j s ∗> objs , int depth ) {
i f ( depth > max depth | | ob j s . s i z e ( ) == 1) return ;
node . box = build AABB ( ob j s ) ;
node . ob j s = ob j s ;
int a x i s = depth mod 3 ;
c a l c u l a t e average by a x i s from obj s ;
node . l e f t c h i l d = b u i l d k d t r e e ( o b j e c t s . a x i s < average ,

depth + 1 ) ;
node . l e f t c h i l d = b u i l d k d t r e e ( o b j e c t s . a x i s >= average ,

depth + 1 ) ;
}
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Chapter 4

SUBDIVISION SURFACES

Subdivision surfaces are very useful in defining smooth, continuous, crackless sur-

faces. In addition, it also provides infinite level of detail, which means you can

generate as many triangles as you wish. Figure 4.1 shows an example of a surface

being subdivided. There are many other advantages that the subdivision rules are

very simple and the implementation is straightforward.

Figure 4.1: Subdivision
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There is a two-phase process for the subdivision of surfaces. The first phase,

called refinement phase, starts with a coarse input mesh, called the control mesh.

It generates new vertices and connects them to create new, smaller triangles. The

second phase, called smoothing phase, computes the new positions for some of all

vertices in the mesh. Figure 4.2 shows an example of the two-phase process. This

is how a subdivision scheme works by these two phases. For different subdivision

schemes, in the first phase, the control mesh can be split in different ways, and in the

second phase, the subdivision rules for placing new positions for the vertices will give

different characteristics like the level of continuity.

A subdivision scheme can be differentiated by whether it is stationary, where it

is uniform, and whether it is triangle-based or polygon-based. A scheme uses the

same rules at every subdivision step is a stationary scheme, while a nonstationary

may change the rules depending on the current step. A uniform scheme use the same

rules for every vertex and edge, while a nonuniform scheme may use different rules for

different vertices and edges. A triangle-based scheme only works on triangle meshes

which only generates triangles, while a polygon-based schemes operates on arbitrary

polygons.

Figure 4.2: Two-Phase Process

In this chapter, it will first introduce some basic concepts about curves and sur-

faces, like Bézier and B-spline. Then several subdivision schemes will be presented.

21



4.1 Curve and Surface Representation

A curve in 3D can be expressed in the parametric form as:

x = x(t), y = y(t), z = z(t), t1 ≤ t ≤ t2,

where the point (x, y, z) of the curve can be expressed as functions of a parameter

t within a closed interval t1 ≤ t ≤ t2.

Similar to the curve, a parametric representation of the surface patches can be

expressed as functions of the parameters u and v in a closed rectangle:

x = x(u, v), y = y(u, v), z = z(u, v), u1 ≤ u ≤ u2, v1 ≤ v ≤ v2.

The parametric representation is mainly used, and there are other two ways to

represent surfaces: implicit and explicit methods.

An implicit surface is defined as:

f(x, y, z) = 0.

And if an implicit surface can be solved for one of the variables as a function of

the other two, the explicit surface is obtained:

z = F (x, y).

There are many disadvantages and advantages of different methods of surface

representation. And in this thesis, I won’t go into detail about the difference among

those representation methods, and I will focus on parametric form throughout this

chapter.

4.2 Bézier Curves and Surfaces

Before introducing the Bézier curves/surfaces, it is important to know Bernstein

polynomials first. The Bernstein polynomials are defined as:

Bi,n(t) = n!
i! (n− i)!(1− t)

n−iti, i = 0,...,n.

The Bernstein polynomials have several important properties:
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• Non-negativity: Bi,n ≥ 0, 0 ≤ t ≤ 1, i = 0, ..., n

• Partition of unity:
∑n

i=0Bi,n(t) = 1

• Symmetry: Bi,n(t) = Bn−i,n(1− t).

Figure 4.3 shows an example of Bernstein polynomials with a degree equals to

three. The x axis stands for t, and y axis is the value of Bernstein polynomials.

Figure 4.3: Bernstein Polynomials with Degree N = 3

A Bézier curve is a parametric curve that uses Bernstein polynomials as a basis.

A degree of n Bézier curve is defined as:

x(t) =
∑n

i=0 biBi,n(t),

where the coefficients bi are the Bézier control points which form the Bézier poly-

gon.

Figure 4.4 shows an example of cubic Bézier curve.

And a Bézier surface is formed by the similar formula:

x(u, v) =
∑m

i=0

∑n
j=0 bijBi,m(u)Bj,n(v), 0 ≤ u, v ≤ 1.

Figure 4.5 shows an example of cubic Bézier patch.

Bézier curves and surfaces have the following properties:
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Figure 4.4: Bézier Curve

Figure 4.5: Bézier Patch
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• Geometry invariance property: the invariance of Bézier curve and surface under

rotation and translation of its control points is assured by the Partition of unity

property of Bernstein polynomials.

• End points geometric property: the first and last control points are the endpoints

of the curve. It is the same like b0 = x(0), bn = x(1).

• Convex hull property: the Bézier curves and surfaces are in the convex hull of

the control polygon.

4.3 B-spline Curves and Surfaces

The Bézier curves and surfaces have some disadvantages. First, the degree is

directly related to the number of control points. Therefore, it requires a high degree

in order to have a more complexed curve or surface. Second, changing any control

point changes the shape of the entire curve or surface. Those disadvantages lead to

the introduction of B-spline curve and surface.

B-spline curves is defined by piecewise polynomial basis functions. A set of non-

descending breaking points defines a knot vector:

T = (t0, t1, ..., tK−1), t0 ≤ t1 ≤ t2 ≤ ... ≤ tK−1.

And given a know vector T, the B-spline basis functions, Nk
i (t), are defined as:

N1
i (t) =


1 for ti ≤ t < ti+1

0 otherwise

,

for k = 1, and

Nk
i = t− ti

ti+k−1 − tiN
k−1
i (t) +

ti+k − t
ti+k − ti+1

Nk−1
i+1 (t),

for k > 1 and i = 0, 1, ..., n.

A B-spline curves is defined as follow:

x(t) =
∑i=0

D−1 diN
n
i (t),

where di is called de Boor points or control points, and D = K − n+ 1.
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Figure 4.6: B-Spline Basis Functions

Parameter values within range tn−1 and tK−n used for evaluating a B-spline curve.

And Figure 4.7 shows an example of B-spline curve.

Figure 4.7: B-Spline Curve

B-spline surface x(u, v) is defined as:
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x(u, v) =

[
Nm

0 (u) · · · Nm
D−1(u)

]
d0,0 · · · d0,E−1

...
...

dD−1,0 · · · dD−1,E−1



Nn

0 (v)

...

Nn
E−1(v)

,

where D is defined by a set of knot vector and control points along the u direction,

while E is defined along v direction.

For information about this field, please refers to Farin (2002).

4.4 Catmull-Clark Subdivision

Catmull-Clark subdivision scheme is a famous subdivision scheme that can handle

polygonal meshes. It is a generalization of a recursive bicubic B-spline patch subdivi-

sion algorithm. It has been the standard surface representation in the movie industry

for many years. The example of Catmull-Clark subdivision is shown in Figure 4.8. It

takes a control mesh as input and generate a new refined mesh containing more faces,

edges, and vertices. A smooth limit surface is obtained by repeating this process.

Figure 4.8: Catmull Clark 1

The subdivision rules of this algorithm are quite simple. The following notations

are used to describe this algorithm. A vertex vk with n surrounding edge points

eki , where i = 0 ... n − 1. The k means the subdivision depth. For example, the

control mesh has all vertices with k = 0. After it executes the subdivision rules for
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the control mesh once, all vertices has k = 1. Then for each face, a new face point

fk+1 is generated at the center of the face. Given this, the rules for vertices and edges

are:

— vk+1 =
n− 2

n
vk +

1

n2

∑n−1
j=0 e

k
j +

1

n2

∑n−1
j=0 f

k+1
j

— ek+1
j =

vk + ekj + fk+1
j−1 + fk+1

j

4

Figure 4.9: Catmull Clark 2

4.5 Feature Adaptive Subdivision Surfaces

Catmull-Clark subdivision surfaces are a generalization of regular bicubic B-splines

patches. Nasri (1987) introduced boundary subdivision rules as an extension for

Catmull-Clark scheme. Hoppe et al. (1994) applied those additional rules to the

edges of non-boundary patches to generate creases. In addition, DeRose et al. (1998)

proposed a semi-sharp crease feature that allow modeling edges with tighter radius

of curvature while using less memory.
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4.5.1 Subdivision Rules

According to DeRose et al. (1998), a crease is defined by adding a sharpness to

an edge. Subdividing a sharp edge creates two child edges which have the sharpness

value of their parent minus one. A vertex vj is described as a crease vertex when it

connects with exactly two crease edges ej and ek. The following rules are used (crease

rule):

— ei+1
j =

1

2
(vi + eij)

— vi+1
j =

1

8
(eij + 6vi + eik)

If a vertex connects to three or more sharp edges or located on a corner then it

has vi+1 = vi (corner rule).

Figure 4.10 shows an example of a semi-sharp crease.

Nießner et al. (2012) provided modified scheme in order to deal with fractional

smoothness and propagate sharpness properly where e.s is the value of sharpness of

an edge and smooth rule means Catmull-Clark rule:

— Face points are always at the center of the surrounding points

— e with e.s = 0→ smooth rule

— e with e.s ≥ 1→ crease rule

— e with 0 ≤ e.s ≤ 1→ (1− e.s) · esmooth + e.s · ecrease

Then they introduced the vertex sharpness to handle vertices, where v.s is the

average of all incident edge sharpnesses and k is the number of edges around vertex

v with e.s > 0:

— v with k < 2→ smooth rule

— v with k > 2 ∧ v.s ≥ 1.0→ corner rule

— v with k > 2 ∧ 0 ≤ v.s ≤ 1→ (1− v.s) · vsmooth + v.s · vcorner

— v with k = 2 ∧ v.s ≥ 1.0→ creaserule
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Figure 4.10: The Crease Sharpnesses for (a), (b), (c), (d), and (e) Are 0, 1, 2, 3, and

Infinite, Respectively

— v with k = 2 ∧ 0 ≤ v.s ≤ 1→ (1− v.s) · vsmooth + v.s · vcrease

The semi-sharp creases are especially important as they can handle realistic edges

while using less memory. For example, the model in Figure 4.12 was created with
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Figure 4.11: One Subdivision Step Spplied on a Pyramid Where the Edges of the

Base Plane Are Tagged Sharp.

semi-sharp creases which only requires a few tag data per creased edge. Without

semi-sharp creases, it would require a base mesh with more vertices, faces, and edges

to achieve a similar shape.

Figure 4.12: Disney Model
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4.5.2 Feature Adaptive Subdivision

As mentioned before, the limit surface of Catmull-Clark subdivision can be de-

scribed by a collection of regular bicubic B-spline patchesm, where there are infinitely

many patches around extraordinary vertices and creases as shown in 4.13.

Figure 4.13: Bicubic Patches Around EV(left) and Creases(right)

In feature adaptive subdivision, there are two types of faces. A face is regular only

if it is a quad with all regular vertices, if none of its edges or vertices are tagged as

sharp, and there are no hierarchical edits that would influence the shape of the limit

patch. In all other cases the face is recognized as irregular.

The feature adaptive subdivision identifies regular faces at each stage of sub-

division, rendering them directly as bicubic B-splines using hardware tessellation.

Irregular faces are refined, and the process repeats at the next finer level.

4.5.3 Patch Construction

For each subdivision level, there are two kinds of patches: full patches and tran-

sition patches. Full patches are patches that share edges with patches of the same
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subdivision level. Regular full patches are passed throught the hardware tessellation

pipeline and rendered as bicubic B-splines, and irregular patches are refined at next

level.

Transition patches are patches that are adjacent to a patch from the next subdivi-

sion level. They are required to be regular. And where faces with different subdivision

levels meet, T-junction occur. In order to obtain crack-free renderings, special meth-

ods should be taken. One way to do that is to use compatible power of two tess

factors. However, this will be a severe limitation for the tessellation unit. In order to

avoid this limitation, Nießner et al. (2012) proposed a method to split each transition

patch into several subpatches by analyzing the arrangement of the adjacent patches.

According to their analysis, there are only 5 distinct cases as shown in 4.14.

Figure 4.14: Five Transition Patch Cases

4.6 Adaptive Quadtrees Subdivision Surfaces

Even though the feature adaptive subdivision can subdivide irregular faces, and

those with special features, to yield multiple patches that can be directly processed by

tessellation hardware, which yielding an accurate surface, it has several disadvantages.

First, each irregular input face maps to multiple tessellator input primitives, the

number of which correlates with the subdivision level at run time. This complicates

the application logic used to assign tessellation rates and submit primitives. Second,

where faces with different subdivision levels meet, T-junctions occur, which must be

fixed with the introduction of transition patches, which makes the distribution of
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vertices on the tessellated limit surface less uniform (Figure 4.15).

Figure 4.15: Transition Patches Arrangement

Brainerd et al. (2016) proposed a novel end-to-end subdivision algorithm that

incorporates subdivision surface tessellation into the graphics pipeline. The most

important method in their algorithm is to submit one tessellator primitive per input

quadrilateral face, as in approximate schemes, but to pre-compute sufficient data

to perform accurate surface evaluations equivalent to feature adaptive subdivision.

Compared to the state of the art, our approach is both simpler and faster, and

integrates with existing vertex and fragment shaders used for polygonal models.

4.6.1 Overview

The input of their algorithm is a Catmull-Clark base mesh, which is defined by

its topology, feature tags, and a set of base vertices, which supports all common

extensions of Catmull-Clark subdivision, including boundaries and both hard and

semi-sharp crease tags on vertices and edges.

When a base mesh is first loaded, we process each face (and its 1-ring neighbor-

hood) to create (or reuse) a subdivision plan. The subdivision plan is a data structure

that represents a feature-adaptive subdivision hierarchy for the face, down to some
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Figure 4.16: Adaptive Quadtrees Subdivision Overview

fixed maximum depth. Specifically, it comprises:

• a quadtree of the adaptive subdivision hierarchy of the face

• an ordered list of stencils for control points required by subdivided faces. Each

stencil represents a control point as a weighted sum over base vertices in the

1-ring of the face.

Figure 4.17 shows an example of the quadtree structure

After that, they submit one primitive to the hardware tessellator for each quad

35



Figure 4.17: Quadtree Structure

face of the base mesh, irrespective of regularity, special features, or valence. This

single primitive may represent a hierarchy of adaptively-subdivided faces, each with

their own control points.

For the surface evaluation, the hardware tessellator produces a set of tessellation

vertices, each associated with a parametric location within the u, v domain of the

face. The surface evaluation step computes position and tangents of the limit surface

at each of these locations. Surface evaluation maps to the hardware domain shader.

Evaluation traverses the quadtree in the subdivision plan to find the directly-evaluable

sub-face in which the u, v location lands. In the common case, this is a regular sub-

face, which is evaluated as a B-spline surface, using control points output by the

subdivision stage.
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Chapter 5

RAY TRACING OF SUBDIVISION SURFACES

As the subdivision surfaces have been the standard modeling primitive, the de-

mand for efficient rendering algorithms increases for both real time and photorealis-

tic display. While interactive rendering has been addressed and near-interactive ray

tracing has come within reach, efficient ray tracing of subdivision surfaces has only

received little attention.

The ray tracing of subdivision surfaces existing so far can be classified in two

categories Müller et al. (2003). The first one is to tessellate the surface before the ray

tracing process and render the resulting polygons. The second method is that the

intersection test is done directly with subdivision surface.

For the first category, the surface is refined uniformly or adaptively according to

the curvature of the surface. Then the resulting polygons are rendered by a ray tracer.

In order to obtain a high quality image (e.g., visible at reflections and silhouettes of

objects and their shadows), a sufficient fine tessellation is necessary. However, because

the refinement is executed independently from the scene, the complete, dense object

must be refined, which means those parts that are not necessary for the computation

of ray tracing are subdivided. This leads to a great number of polygons taking into

account the exponential growth during a subdivision step. In order to deal with this

problem, a reasonable subdivision level for the control mesh must be chosen depending

on, e.g., the distance to the camera.

In the second category, the refinement of the control mesh is done automatically

during the ray tracing. Therefore only parts of the control mesh with contribution

to the light transport are refined. Due to the fact that in ray tracing, the rays
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intersect geometry in a coherent way, Christensen et al. (2003) proposed using ray

differentials to construct multiresolution caches for tessellated faces. They called such

rays coherent rays. In ray tracing process, the specular reflection and refraction rays

from flat or slightly curved surface are usually coherent; shadow rays from point lights,

spot lights, directional lights, and small area lights are coherent. In this situation,

it is possible to ray trace complex scenes: only the directly visible parts and the

reflected, refracted, and shadow-casting areas need to be kept in tessellated form at

any given time. Therefore, a geometric caching system is admirable for efficient store

and trigger the tessellated faces.

5.1 Multiresolution Geometry Caching

Christensen et al. (2003) introduced an efficient algorithm to render ray tracing

and global illumination effects in very complex scenes — scenes that are so complex

that a fully tessellated representation of all objects would need more memory than is

available. They utilized the relation between ray differentials and ray coherency to

deal with classic and distribution ray tracing in complex scene. The key is that there

are two types of rays:

1. Specular reflection and refraction rays from surfaces with low curvature and

shadow rays to point-like light sources. These rays have small differentials, and

require high accuracy and fine tessellation. These rays are usually coherent, so

using a geometry cache with relatively small capacity (few entries) works well.

2. Specular reflection and refraction rays from highly curved surfaces and rays from

wide distribution ray tracing. These rays have large differentials, do not require

high accuracy, and can use a coarse tessellation. These rays are incoherent, so

they require a cache with large capacity (many entries) and/or entries that are

fast to recompute.
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Figure 5.1 shows parallel rays specularly reflected by flat, convex, and concave

surfaces.

Figure 5.1: Specular Reflection

According to this relation, they present a multiresolution geometry caching scheme

with separate caches for coarsely, medium, and finely tessellated surfaces. This ex-

ploits the different coherencies of various types of rays, and their different accuracy

requirements. It is interesting to note that this scheme results in an automatic level-

of-detail representation of the tessellation.

5.2 Lazy-Build Tessellation Caching

Benthin et al. (2015) proposed a lazy-build caching scheme to efficiently handle

the highly tessellated surfaces while also utilizing today’s many core architecture.

According to their method, they lazily tessellate patches only when necessary, and

utilize adaptive subdivision to efficiently evaluate the underlying surface representa-

tion. The core idea of their approach is a shared lazy evaluation cache, which triggers

and maintains the surface tessellation. In addition, they also combine the caching

scheme with SIMD-optimized subdivision primitive evaluation and fast hierarchy con-
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struction over the tessellated surface.

5.2.1 Patch Generation

For ray tracing subdivision surfaces, they dynamically tessellate Catmull-Clark

patch primitives. Then the tessellation is used to determine the ray intersection.

For the patch construction, they follow a similar data flow to the feature-adaptive

subdivision algorithm proposed by Nießner et al. (2012), where the input data is given

as a coarse mesh over polygons (typically quad-dominant) with additional data arrays

defining features like tessellation level, edge creases, vertex creases, and holes.

According to feature adaptive subdivision, to achieve as few patches as possible,

they adaptively subdivide the patch only as long as the face is not a regular face.

Finally, B-Spline patches are used for the regular faces, and Gregory patches are used

to approximate patches with irregular faces. If accuracy of the surface is a concern,

feature-adaptive subdivision could easily be continued to reduce the size of Gregory

patches without any modification to the rest of our approach.

They build a top-level hierarchy over the original set of bicubic B-Spline and

Gregory patches. While they build the top-level hierarchy at the beginning, each

patch also maintains its own local BVH. A local BVH is traversed once a ray reaches

a leaf of the top-level BVH. In contrast to the top-level BVH, all local hierarchies are

built on-demand during ray traversal and their data is stored and managed by the

tessellation cache.

5.2.2 Ray Patch Intersection

In order to intersect a ray with a subdivision model, they first traverse the ray

through the top-level hierarchy. If a ray reaches a leaf, they then compute the in-

tersection between the ray and the associated patch. To this end, they evaluate the
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patch at a uniformly-spaced set of 2D domain locations, thus obtaining a regular grid

of vertices. Displacements are applied to grid vertices. They then construct a local

BVH4 over the corresponding tessellation, enabling fast ray traversal. Finally, when

a ray reaches a leaf of a local BVH4, triangle intersection tests are performed.

5.2.3 Shared Lazy-Build Cache

Even though patch tessellation and local BVH4 construction is fast, performing

them every time a ray intersects a patch will severely impact performance, as the

associated construction cost is much higher than that of traversing a ray through the

local BVH4 afterwards. As ray distributions typically exhibit spatial and temporal

coherence, caching previously generated tessellation and BVH4 data is therefore an

efficient approach to save redundant calculation.

To this end, they propose a new lazy-build evaluation cache specifically designed

for many-core architectures. The cache operates as a globally-shared segmented FIFO

(first-in first-out) cache that can efficiently store irregular-sized tessellation and BVH4

data under heavy multi-threaded conditions. As long as the cache is filling up, the

scheme behaves exactly like a lazy hierarchy build with unbounded memory storage.

5.3 Feature Adaptive Ray Tracing

Unlike previous work, I propose a new way to improve the efficiency of ray tracing

subdivision surfaces, while it has lower quality. According to feature adaptive subdi-

vision, there are many patches around crease edges and extraordinary vertices, while

there are less on the regular faces, which means the geometry around those places

are complex and for the regular region, it is kind of smooth. Can we use this idea for

the ray tracing? We cast more rays on the area with more patches and less for the

regular part which have less patch. It is because those area have complex geometry
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structure. It needs more rays to generate accurate result. And the smooth area are

not.

A common ray tracing algorithm casts rays for each pixel on the image to the

object world. But it is very expensive to calculate the color of all pixels. My work is

trying to find a way to reduce the number of rays it needs to compute. The overview of

my algorithm is that it first divides the image pixels into different groups by certain

algorithm. For one group, it chooses several pixels to cast rays and then uses an

interpolation algorithm to assign color for other pixels.

The following sections introduce all necessary features for my algorithm.

5.3.1 Half-Edge Data Structure

For the subdivision scheme, it requires a lot of operations that need to search

adjacent edges, vertices and faces. In order to efficiently support adjacent queries for

subdivision surfaces, a half-edge structure is needed based on the input edge data.

This data structure is called half-edge because instead of storing the edges of

meshes, it stores half-edges. For an edge that connects two vertices, it splits into two

half-edges, called pair, which have opposite directions. Figure 5.2 shows an example.

As you can see, every face is formed by a circular linked list around it. And for

each half-edge, it has a pointer to its pair, the one with opposite direction.

It might look something like this:

struct HE edge {
HE vert∗ s o u r c e v e r t ;
HE edge∗ pa i r ;
HE face∗ f a c e ;
HE edge∗ next ;

} ;

For vertices, it has a vertex array to store all vertices information so that in the

half-edge data structure, it only stores the index of the vertex. And it also has a
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Figure 5.2: Half-Edge Data Structure

pointer to which half-edge it connects.

struct HE vert {
int index ;
HE edge∗ edge ;

} ;

For faces, it is quite simple which only needs a pointer to the first half-edge.

struct HE face {
HE edge∗ edge ;

} ;

The first frequently used query is to iterate over the half-edges adjacent to a face.

The pseudocode below shows how to do that:

HE edge∗ edge = face−>edge ;
do {

// do something
edge = edge−>next ;

} while ( edge != face−>edge )

The second one is to iterate over the half-edges adjacent to a vertex.

HE edge∗ edge = vert−>edge ;
do {

// do something
edge = edge−>pair−>next ;

} while ( edge != vert−>edge )
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5.3.2 Patch Generation

A patch is a face with its 1-ring vertices, which shows in Figure 5.3. And due to

the property of Catmull-Clark subdivision, the 1-ring is the only information required

to subdivide a face.

Figure 5.3: 1-Ring Vertices

The algorithm to fetch the 1-ring around a face is easy with the help of half-edge

data structure. For a given face, the outer loop iterates all vertices, and the inner

loop adds all faces around this vertex. Here is the psuedocode:

// f i s the g iven f a c e
HE edge∗ e = f−>edge ;
do {

HE vert∗ v = e−>s o u r c e v e r t ;
HE edge∗ e v = v−>edge ;

do {
add ( e v−>f a c e ) ; // w i l l remove repea ted f a c e s
e v = e v−>pair−>next ;

} while ( e v != v−>edge ) ;
e = e−>next ;

} while ( e != f−>edge ) ;

After all 1-rings per input face are converted to a set of patches, they are able to

be subdivided by using feature adaptive subdivision to generate a more refined mesh.

The subdivision scheme has been discussed in chapter 4.
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5.3.3 Ray-Patch Intersection

K-d tree and axis-aligned bounding box are used here as the acceleration structures

for the ray-patch intersection. Once a ray hits a patch, it replaces the underlying faces

with triangles, and executes ray-triangle intersection which has been discussed before

as well.

5.3.4 Groups of Pixels

Once the model has been loaded, the next step is to divide the pixel map into

different groups. The way using here is according to the first object the ray hits from

this pixel. When the normal ray tracing is performed, it casts ray from each pixel

to the world. For this method, it has an array to store the patch index which is the

closest patch to the view plane. If the projection from object world to the pixel map

is done, a breadth-first search is used to group the pixels that hit the same patch

which means their patch index should be the same.

Figure 5.4: Example of Groups of Pixels

for ( i = 0 ; i < he ight ; i++) {
for ( j = 0 ; j < width ; j++) {

45



i f ( p i x e l ( i , j ) i s not added be f o r e ) {
Q. enqueue ( p i x e l ( i , j ) ) ;
while (Q i s not empty ) {

cur r ent = Q. dequeue ( ) ;
int x = current . x ;
int y = current . y ;

// f i n d ad jacen t p i x e l s wi th the same patch index

// p i x e l on top o f curren t

i f ( p i x e l (x−1, y ) i s not added be f o r e
&& patch i n d i c e s are same ) {
Q. enqueue (x−1, y ) ;

}
// the same f o r o ther t h r e e d i r e c t i o n s
. . .

}

}

}
}

5.3.5 Interpolation

For each group of pixels, a bilinear interpolation is used to approximate the color of

the pixels. At first, the algorithm is to find the top, bottom, left and right pixels that

has the same patch index. Then it casts rays for those four pixels just like the normal

ray tracing. Finally, it uses the color of the four pixels and bilinear interpolation to

calculate the color of the rest pixels in this groups.

5.3.6 Result

Table 5.1 shows the number of rays this algorithm casts in order to render the

image, Table 5.2 shows the total time needed for rendering, and Table 5.3 shows the

interpolation time and ray casting time for feature adaptive ray tracing. The image
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Figure 5.5: Bilinear Interpolation

size is 800 × 600.

Table 5.1: Rays Count

Depth Feature Adaptive Ray Tracing Normal Ray Tracing Total Pixels

0 10115 95408 480000

1 40235 93983 480000

2 74409 93625 480000

With the increase of subdivision level, there are more rays needed for rendering.

It is because the interpolation is based on the same patch. For a refined mesh with

higher subdivision level, there are more patches.

And figure 5.6 - 5.8 show the comparison of feature adaptive ray tracing and the

normal ray tracing.
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Table 5.2: Rendering Time

Depth Feature Adaptive Ray Tracing (s) Normal Ray Tracing (s)

0 3.1 11.5

1 20.4 30.2

2 113.3 135.4

Table 5.3: Interpolation and Ray Casting Time

Depth Feature Adaptive Ray Tracing (s) Interpolation (s) Rays Casting (s)

0 3.1 0.6 2.5

1 20.4 2.4 18

2 113.3 3.3 110

Figure 5.6: Subdivision Level 0 (Left Is the Feature Adaptive Ray Tracing, and Right

Is The Normal Ray Tracing)

5.3.7 Image Quality Assessment

In computer graphics world, there is an intensive producer of visual content like

images, videos, 3D data, etc. Therefore the need for controlling and evaluating the
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Figure 5.7: Subdivision Level 1 (Left Is the Feature Adaptive Ray Tracing, and Right

Is The Normal Ray Tracing)

Figure 5.8: Subdivision Level 2 (Left Is the Feature Adaptive Ray Tracing, and Right

Is The Normal Ray Tracing)

quality of these graphical data is necessary regardless of the application. How to

compare and evaluate the quality of images is important for researchers who want to

prove how good their algorithm is. Lavoué and Mantiuk (2015) present the existing

objective quality metrics, the subjective quality experiments as well as an evaluation

and comparison of their performance.
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For the need of my algorithm, I choose the HDR-VDP-2 metric to compare and

evaluate between the rendering effect of feature adaptive ray tracing and normal ray

tracing.

HDR-VDP-2 is the visibility (discrimination) and quality metric capable of de-

tecting differences in achromatic images spanning a wide range of absolute luminance

values proposed by Mantiuk et al. (2011). Although the metric originates from the

classical Visual Difference Predictor proposed by Daly (1992), and its extension HDR-

VDP proposed by Mantiuk et al. (2005), the visual models are very different from

those used in those earlier metrics. The metric is also an effort to design a comprehen-

sive model of the contrast visibility for a very wide range of illumination conditions.

Figure 5.9 to 5.11 shows the results by using HDR-VDP-2 metric to compare the

feature adaptive ray tracing and normal ray tracing.

Figure 5.9: HDR for Depth = 0
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Figure 5.10: HDR for Depth = 1

Figure 5.11: HDR for Depth = 2
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Chapter 6

FUTURE

The algorithm presented here is a prototype which just shows the idea of feature

adaptive ray tracing. There are many aspects that needs to improve. At the first

place, the ray tracer described above is only a small subset of what can be done with

ray tracing. More topics can be integrated into this algorithm.

—Supersampling and Antialiasing: there will be ’jaggies’ along the edges of objects

if it only sends one ray per pixel. Supersampling is a method to send multiple rays

per pixel, and it deals with which rays to send and how to combine those colors.

There are impressive researches that have done in this fields, like Whitted (2005) and

Lee et al. (1985).

—Shading Model: The shading model used in this thesis is a very basic one. There

are many different shading models that can describe the world more accurately, like

Cook and Torrance (1982) and Hall et al. (1983).

Secondly, for ray tracing of subdivision surfaces, using a cache system to dy-

namic tessellate the control mesh is significant important due to the memory I/O

problems. And for the algorithm presented in this thesis, it is very easy to support

dynamic tessellation. Benthin et al. (2015) proposed a lazy-build caching system with

SIMD-optimized subdivision primitive evaluation and fast hierarchy construction. In

addition, they have integrated their work into Embree Wald et al. (2014) that makes

interactive ray tracing of subdivision surfaces available.

In the third place, apart from the feature adaptive subdivision surfaces, an adap-

tive quadtrees structure subdivision surfaces has been presented by Brainerd et al.

(2016). Their method subdivides the u, v domain of each face ahead of time, and
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generates a quadtree structure. It yields a more uniformed surface and needs fewer

primitives. It is also possible to integrate their method to this algorithm.

And finally, in this algorithm, it uses a bilinear interpolation to interpolate the

color for the pixels in same group. I think there should have a more accurate model

other than bilinear interpolation. Even though the result in this thesis is not bad, it

may seems unsatisfiable when the scene becomes more complex. It still needs further

research to make this idea robust and efficient for all situations. For example, instead

of using bilinear interpolation, a convex hull can be used to do the interpolation more

accurately.
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