492 research outputs found

    Mining users' significant driving routes with low-power sensors

    Get PDF
    While there is significant work on sensing and recognition of significant places for users, little attention has been given to users' significant routes. Recognizing these routine journeys, opens doors to the development of novel applications, like personalized travel alerts, and enhancement of user's travel experience. However, the high energy consumption of traditional location sensing technologies, such as GPS or WiFi based localization, is a barrier to passive and ubiquitous route sensing through smartphones. In this paper, we present a passive route sensing framework that continuously monitors a vehicle user solely through a phone's gyroscope and accelerometer. This approach can differentiate and recognize various routes taken by the user by time warping angular speeds experienced by the phone while in transit and is independent of phone orientation and location within the vehicle, small detours and traffic conditions. We compare the route learning and recognition capabilities of this approach with GPS trajectory analysis and show that it achieves similar performance. Moreover, with an embedded co-processor, common to most new generation phones, it achieves energy savings of an order of magnitude over the GPS sensor.This research has been funded by the EPSRC Innovation and Knowledge Centre for Smart Infrastructure and Construction project (EP/K000314).This is the author accepted manuscript. The final version is available from ACM via http://dx.doi.org/10.1145/2668332.266834

    RoADS: A road pavement monitoring system for anomaly detection using smart phones

    Get PDF
    Monitoring the road pavement is a challenging task. Authorities spend time and finances to monitor the state and quality of the road pavement. This paper investigate road surface monitoring with smartphones equipped with GPS and inertial sensors: accelerometer and gyroscope. In this study we describe the conducted experiments with data from the time domain, frequency domain and wavelet transformation, and a method to reduce the effects of speed, slopes and drifts from sensor signals. A new audiovisual data labelling technique is proposed. Our system named RoADS, implements wavelet decomposition analysis for signal processing of inertial sensor signals and Support Vector Machine (SVM) for anomaly detection and classification. Using these methods we are able to build a real time multiclass road anomaly detector. We obtained a consistent accuracy of ≈90% on detecting severe anomalies regardless of vehicle type and road location. Local road authorities and communities can benefit from this system to evaluate the state of their road network pavement in real time

    Smartphone-based vehicle telematics: a ten-year anniversary

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordJust as it has irrevocably reshaped social life, the fast growth of smartphone ownership is now beginning to revolutionize the driving experience and change how we think about automotive insurance, vehicle safety systems, and traffic research. This paper summarizes the first ten years of research in smartphone-based vehicle telematics, with a focus on user-friendly implementations and the challenges that arise due to the mobility of the smartphone. Notable academic and industrial projects are reviewed, and system aspects related to sensors, energy consumption, and human-machine interfaces are examined. Moreover, we highlight the differences between traditional and smartphone-based automotive navigation, and survey the state of the art in smartphone-based transportation mode classification, vehicular ad hoc networks, cloud computing, driver classification, and road condition monitoring. Future advances are expected to be driven by improvements in sensor technology, evidence of the societal benefits of current implementations, and the establishment of industry standards for sensor fusion and driver assessment

    D5.1 SHM digital twin requirements for residential, industrial buildings and bridges

    Get PDF
    This deliverable presents a report of the needs for structural control on buildings (initial imperfections, deflections at service, stability, rheology) and on bridges (vibrations, modal shapes, deflections, stresses) based on state-of-the-art image-based and sensor-based techniques. To this end, the deliverable identifies and describes strategies that encompass state-of-the-art instrumentation and control for infrastructures (SHM technologies).Objectius de Desenvolupament Sostenible::8 - Treball Decent i Creixement EconòmicObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i InfraestructuraPreprin

    An Early Detection-Warning System to Identify Speed Breakers and Bumpy Roads using Sensors In Smartphones

    Get PDF
    Speed breakers and bumpy roads are a major threat to drivers that questions their safety. The mishap happens because of no sign boards indicating the speed breaker, poor visibility at night and road works that are often carried out with no proper signs of road deviations and also the negligence of the driver. All these factors put the life of the persons in vain causing damage to the vehicle as well as life. Also, bumpy roads have become a problem for cars with less ground clearance. The focus of the paper is on designing an early warning system detecting both speed breaker humps and bad road conditions. The approach used in this paper is a real-time solution and is developed as an android service that runs in the background and relies on Google Maps application in the smartphone. This service will throw an alert giving early warning if the user is approaching the speed breaker or a bumpy road. Apart from just giving an early alert to the user, it also provides the user with an alternative and a better route. The solution proposed in this work is a form of crowdsourcing where users share and get data, therefore making the system cost effective

    An Automated Machine-Learning Approach for Road Pothole Detection Using Smartphone Sensor Data.

    Get PDF
    Road surface monitoring and maintenance are essential for driving comfort, transport safety and preserving infrastructure integrity. Traditional road condition monitoring is regularly conducted by specially designed instrumented vehicles, which requires time and money and is only able to cover a limited proportion of the road network. In light of the ubiquitous use of smartphones, this paper proposes an automatic pothole detection system utilizing the built-in vibration sensors and global positioning system receivers in smartphones. We collected road condition data in a city using dedicated vehicles and smartphones with a purpose-built mobile application designed for this study. A series of processing methods were applied to the collected data, and features from different frequency domains were extracted, along with various machine-learning classifiers. The results indicated that features from the time and frequency domains outperformed other features for identifying potholes. Among the classifiers tested, the Random Forest method exhibited the best classification performance for potholes, with a precision of 88.5% and recall of 75%. Finally, we validated the proposed method using datasets generated from different road types and examined its universality and robustness

    Classification of road surface quality using Android smartphone devices

    Get PDF
    Thesis submitted to the Department of Computer Science, Ashesi University College, in partial fulfillment of Bachelor of Science degree in Computer Science, April 2014The quality of roads in a country contributes greatly to its economic development. In Ghana and elsewhere in Africa, essential goods such as agricultural produce are transported mostly by road. Good roads not only promote economic activity, they contribute positively to the quality of life of their users. In many areas, however, the road infrastructure is not of uniform quality, comprising tarred roads, dirt roads, smooth roads, bumpy roads, and roads that are barely motorable. Roads with poor surface conditions damage vehicles, slow down traffic, lead to accidents, and are uncomfortable to drive on. A possible solution to the problem is system that automatically detects and reports the surface conditions of roads. This study explores the use of an Android-based mobile application to detect and report the surface quality of roads. We start by collecting hand-labeled training data from vehicles traversing carefully selected roads of differing quality. In addition, we use GPS sensors to reliably match road quality information to specific locations. A logistic regression machine learning algorithm is used to train a road surface classifier based on the accelerometer readings collected. This study aims to detect the surface condition of roads and present that data in a manner that can be easily be embedded into maps online. We find that we are able to distinguish between good and bad roads with a true positive rate of 92%. We are able to distinguish between good and fair roads with a true positive rate of 83%. The study is however unable to reliably distinguish between fair and bad roads. To the best of our knowledge this study is the first to attempt the automatic classification of entire sections of road as opposed to the detection of individual road anomalies such as potholes.Ashesi University Colleg

    A Systematic Review of Convolutional Neural Network-Based Structural Condition Assessment Techniques

    Get PDF
    With recent advances in non-contact sensing technology such as cameras, unmanned aerial and ground vehicles, the structural health monitoring (SHM) community has witnessed a prominent growth in deep learning-based condition assessment techniques of structural systems. These deep learning methods rely primarily on convolutional neural networks (CNNs). The CNN networks are trained using a large number of datasets for various types of damage and anomaly detection and post-disaster reconnaissance. The trained networks are then utilized to analyze newer data to detect the type and severity of the damage, enhancing the capabilities of non-contact sensors in developing autonomous SHM systems. In recent years, a broad range of CNN architectures has been developed by researchers to accommodate the extent of lighting and weather conditions, the quality of images, the amount of background and foreground noise, and multiclass damage in the structures. This paper presents a detailed literature review of existing CNN-based techniques in the context of infrastructure monitoring and maintenance. The review is categorized into multiple classes depending on the specific application and development of CNNs applied to data obtained from a wide range of structures. The challenges and limitations of the existing literature are discussed in detail at the end, followed by a brief conclusion on potential future research directions of CNN in structural condition assessment

    Data-Driven Simulation Modeling of Construction and Infrastructure Operations Using Process Knowledge Discovery

    Get PDF
    Within the architecture, engineering, and construction (AEC) domain, simulation modeling is mainly used to facilitate decision-making by enabling the assessment of different operational plans and resource arrangements, that are otherwise difficult (if not impossible), expensive, or time consuming to be evaluated in real world settings. The accuracy of such models directly affects their reliability to serve as a basis for important decisions such as project completion time estimation and resource allocation. Compared to other industries, this is particularly important in construction and infrastructure projects due to the high resource costs and the societal impacts of these projects. Discrete event simulation (DES) is a decision making tool that can benefit the process of design, control, and management of construction operations. Despite recent advancements, most DES models used in construction are created during the early planning and design stage when the lack of factual information from the project prohibits the use of realistic data in simulation modeling. The resulting models, therefore, are often built using rigid (subjective) assumptions and design parameters (e.g. precedence logic, activity durations). In all such cases and in the absence of an inclusive methodology to incorporate real field data as the project evolves, modelers rely on information from previous projects (a.k.a. secondary data), expert judgments, and subjective assumptions to generate simulations to predict future performance. These and similar shortcomings have to a large extent limited the use of traditional DES tools to preliminary studies and long-term planning of construction projects. In the realm of the business process management, process mining as a relatively new research domain seeks to automatically discover a process model by observing activity records and extracting information about processes. The research presented in this Ph.D. Dissertation was in part inspired by the prospect of construction process mining using sensory data collected from field agents. This enabled the extraction of operational knowledge necessary to generate and maintain the fidelity of simulation models. A preliminary study was conducted to demonstrate the feasibility and applicability of data-driven knowledge-based simulation modeling with focus on data collection using wireless sensor network (WSN) and rule-based taxonomy of activities. The resulting knowledge-based simulation models performed very well in properly predicting key performance measures of real construction systems. Next, a pervasive mobile data collection and mining technique was adopted and an activity recognition framework for construction equipment and worker tasks was developed. Data was collected using smartphone accelerometers and gyroscopes from construction entities to generate significant statistical time- and frequency-domain features. The extracted features served as the input of different types of machine learning algorithms that were applied to various construction activities. The trained predictive algorithms were then used to extract activity durations and calculate probability distributions to be fused into corresponding DES models. Results indicated that the generated data-driven knowledge-based simulation models outperform static models created based upon engineering assumptions and estimations with regard to compatibility of performance measure outputs to reality
    corecore