RoADS: A road pavement monitoring system for
anomaly detection using smart phones

Fatjon Seraj', Berend Jan van der Zwaag?, Arta Dilo, Tamara Luarasi®, and
Paul Havinga'

! Pervasive Systems, University of Twente, Enschede, The Netherlands
2 Adaptive Systems, Hengelo (O), The Netherlands
3 European University of Tirana, Tirana, Albania
{f.seraj,a.dilo,p.j.m.havinga}@utwente.nl,
berendjan.vanderzwaag.nl@ieee.org, tamara.luarasi@uet.edu.al

Abstract. Monitoring the road pavement is a challenging task. Author-
ities spend time and finances to monitor the state and quality of the road
pavement. This paper investigate road surface monitoring with smart-
phones equipped with GPS and inertial sensors: accelerometer and gy-
roscope. In this study we describe the conducted experiments with data
from the time domain, frequency domain and wavelet transformation,
and a method to reduce the effects of speed, slopes and drifts from sen-
sor signals. A new audiovisual data labelling technique is proposed. Our
system named RoADS, implements wavelet decomposition analysis for
signal processing of inertial sensor signals and Support Vector Machine
(SVM) for anomaly detection and classification. Using these methods
we are able to build a real time multi class road anomaly detector. We
obtained a consistent accuracy of ~90% on detecting severe anomalies
regardless of vehicle type and road location. Local road authorities and
communities can benefit from this system to evaluate the state of their
road network pavement in real time.

1 Introduction

The technology is riding fast and is spreading everywhere, even in the most re-
mote places where people still face basic road transportation difficulties. The
roads will become obsolete with the invention of teleportation, but until then
people have to ride on them fast and safe. Meanwhile, the world road network is
estimated at 35,433,439 km!, and the number of vehicles is estimated at 35 vehi-
cles per 1000 people?. Many studies and surveys are made on the topic of roadway
deficiencies and their impact on safety and economy [18]. The road surface can
wear and deteriorate in time from factors related to location, traffic, weather,
engineering solutions and materials used to build. In developed countries, Pave-
ment Management Systems (PMS) are specialized structures that handle the

! CIA World Factbook https://www.cia.gov/library/publications/the-world-
factbook/fields/2085.html
2 The World Bank 2011 data: http://wdi.worldbank.org/table/3.13



duty of the road maintenance. Often these structures are equipped with sophis-
ticated and expensive equipment installed on specialized Pavement Evaluation
Vehicles!. For example, in the Netherlands since the introduction of PMS in
early 1989, 75% of all of the local authorities, municipalities and provinces, are
utilising a PMS [23]. Developing countries often lack this kind of technology and
the know — how. They sustain their road network through inefficient financial
and maintenance planning. One way to assess the road pavement is to measure a
vehicle’s vibration with inertial sensors found on smartphones. Therefore, we ex-
ploit the pervasive and ’smart’ nature of smartphone devices to collect, process
and share these data.
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Fig. 1: RoADS flow chart

Other research teams are focused more on pothole detection. Potholes are
often results of neglected or bad constructed road segments [17]. We are inter-
ested to detect and classify more road surface events. Doing so we can monitor
in real time the state and the deterioration of the road segments. Figure 1 shows
an overview of our solution, from pre-processing, domain selection and feature
extraction to anomaly detection and classification.

In this paper we describe RoADS, a smartphone based Road pavement
Anomaly Detection System. Section 2 gives a brief overview of the existing
works related to road pavement analysis and anomaly detection. Section 3 out-
lines our data collection setup, the locations and the methods used to label the
collected data. Section 4 explains the preprocessing steps, features extracted
from different transformations and the method used to reduce the speed and
other dependencies from the sensors signal. Section 5 describes the methods and

! Pavement Evaluation Vehicle https://www.fhwa.dot.gov/research/tfhrc/labs/
pavement/index.cfm



the tools used to classify the data, as well as the obtained results for the la-
belled and unlabelled roads. Section 6 discusses the conclusion and delineates
the future plans.

2 Related work

To determine the road roughness, road engineers measure the profile of the road.
A profile is a segment of road pavement, taken along an imaginary line. Usu-
ally the longitudinal profiles are subjects of study because they show the design
grade, roughness and texture of the profile [22]. Road roughness is defined by
American Society of Testing and Materials (ASTM) [1] as: The deviations of
a pavement surface from a true planar surface with characteristic dimensions
that affect vehicle dynamics, ride quality, dynamic loads, and drainage, for ex-
ample, longitudinal profile, transverse profile, and cross slope. Equipment and
techniques for roughness estimation are usually categorized into [22]:
— Road and Level survey, surveys performed by a survey crew
— Dipstick profiler, a hand-held device commonly used for calibration of com-
plex instruments
— Response type road roughness meters (RTRRMS), transducers that accu-
mulate suspension motions.
— Profiling Devices, sophisticated inertial reference systems with accelerometer
and laser sensors to measure the vehicle displacement.

The following works show that inertial sensors alone could be used to detect
road surface anomalies. Mainly they were trying to detect potholes, because they
are the main concern and also because they are relatively easy to detect based on
the energy of the event. Studies and practice suggests that potholes are created
as a result of distresses on the road surface [17]. Detecting and classifying more
of these distresses we it will be possible to maintain the long term performance
of the road pavements. Beside the anomaly detection, all these works faced one
major issue, namely the vehicle velocity. The same road anomaly shows differ-
ent frequencies and amplitudes when driven over with different speeds. Figure 2
shows the signal generated by a manhole when approached with low and high
speeds. An important aspect worth mentioning is also the data labelling method
used for marking the road anomalies. It is crucial to train a precise detection
algorithm with labelling the right anomalous segments.

Pothole Patrol (P?) [7] uses a high resolution 380Hz accelerometer and a
GPS device attached to the car dashboard to collect data and to detect the pot-
holes. Data are transferred to a central server for further processing. Clustering
is used to increase detectors precision. Five filters are used, one of them called
z_peak tries to detect potholes from other high-amplitude road events. Filter
speed vs. z_ratio is introduced to reject signals with a peak less than a factor ¢,
times the speed of travel. The labelling technique is based on a trained labeller
sitting inside the car and pressing keyboard keys corresponding to predefined
anomaly types when they occur.

Nericell [19] uses the Windows Mobile Phone microphone and GPS in con-
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Fig. 2: A 2 second sample of the vertical accelerometer signal when the car drives
over a manhole at low speed and at high speed

junction with a high resolution Sparkfun WiTilt accelerometer clocked at 310Hz
to monitor traffic and road pavement. The same technique as in P? [7] is used to
threshold the acceleration signal and to deal with speed. The novelties consist of
introducing another filter named z_sus for speeds < 25km/h, arguing the same
anomaly has different shapes for different speeds, and virtual orientation of the
phone, using Euler angles to reorient accelerometer data. However, they do not
mention the labelling technique they used.

Perttunen et al. [21] use a Nokia N95 mounted on the wind-shield, with
accelerometer sampling at 38Hz and GPS to collect the data. Their algorithm
classifies the anomalies into two classes: mild and severe. A method of linear
regression is introduced to remove the linear dependency of the speed from the
feature vector. Labelling is performed with a camcorder attached to the headrest
of the front passenger seat, however they realised this method was unreliable to
detect the anomalies. A FFT transformation of the signal is performed to ex-
tract frequency domain features and to label the data by plotting together the
power spectrum and time domain data. Unclear remains the fact how a 38Hz
accelerometer sensor can generate 17 frequency bands with 1.4Hz bandwidth.

Tai et al. [24] use a motorcycle riding strictly at two different speeds, 30km/h
and 40km/h. An HTC Diamond with accelerometer sampling at 25Hz and a GPS
was used to collect the data. Data are preprocessed by the device and sent to a
centralised server for classification. Two classification procedures are performed,
one to detect the anomalies and the other to rate the road pavement quality from
a predefined model of a smooth road. Labelling is performed by the motorcycle
rider with a microphone, while riding through an anomaly. An algorithm is used
to shift the audio label to correspond with the nearest anomaly event captured
by the accelerometer.

3 Data collection

This section describes our data collection setup, the study areas, the type of
anomalies, and the technique used to label the data. Throughout this paper we



use the term data referring to the streaming data captured from smartphone
inertial sensors.
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Fig. 3: Smartphone orientation inside the car.

3.1 Data collection setup

Our setup consists of a Samsung Galaxy S2 smartphone running Android 4.0
and an Inertia ProMove 3D'. The devices were fixed on the windshield of the car
with Nokia Universal Holder CR-114. The Android API does not allow to directly
access the sensors used in smartphone, however it allows to choose between five
predefined delay intervals at which sensor events are sent to the application:
UI, Normal, Game, Fastest or user-defined delay [9]. Therefore two modes were
used: Game corresponding to ~ 47Hz, and Fastest corresponding to ~ 93Hz on
the Galaxy S2. The Inertia Node was clocked at 200Hz and was used for testing
purpose only.

Table 1: Distance between two consecutive accelerometer measurements at dif-
ferent speeds for different systems.

Speed
System Sampling Rate 25km/h 50km/h 75km/h
P2 7] 380Hz 1.8cm 3.6cm 5.5cm
Nericell [19] 310Hz 2.2cm  4.5cm 9.0cm
Perttunen [21] 38Hz 18.3cm 36.5cm  54.8cm
Tai [24] 25Hz 27.7cm 55.4cm 83.1cm
Our setup 93Hz 7.0cm 14.0cm 21.0cm

Data collection software registered independently every available sensor on
the phone, with corresponding timestamp in nanoseconds since uptime. GPS
timestamp is milliseconds since January 1, 1970 [9]. The drive was recorded in a

! Inertia ProMove 3D Motion Tracking: http://inertia-technology.com



video using the camera and the microphone of the smartphone. All sensor time-
stamps were synchronised. Table 1 shows how our setup of 47/93Hz compares
to other setups in capturing small dimension anomalies.

3.2 Collected data

Data was collected using five different types of cars from different roads in two
different cities: in and around the city of Vlora in Albania and in and around
the city of Enschede in the Netherlands (see Table 3). The selected roads that
were used to collect the data represent different types of anomalies. The Dutch
roads are in better shape, are flat without many turns. Common anomalies are
manholes, speed humps, patches, cracks, bumps and some small potholes. In
contrast, the Albanian roads have a lot of slopes, different types and sizes of
potholes, bumps and segments of fully deteriorated or unpaved roads. In total
we collected data over a distance of 100.3km on 45.9 unique km of road (see
Table 2). Data was collected from accelerometer, gyroscope and GPS sensors

Table 2: Total road coverage in km with different vehicles

Trip Car Type Km Area Hz Location
1 Toyota Corolla  hatchback 22.8 rur/urb 47 Enschede(NL)
2 Peugeot 306 hatchback 22.8 rur/urb 96 Enschede(NL)
3 Skoda Fabia supermini 16.3 urban 47 Vlora(AL)
4 Toyota Yaris supermini 33 hway/rur 47 Albania
5 BMW X3 suv  5.46 urban 47 Vlora(AL)

Total 100.3

Unique 45.9

of the phone. MEMS gyroscopes are devices that measure the rotation around
a specific axis, the angular velocity, and are becoming native to smartphones,
like accelerometers and compasses. The decision to include the gyroscope in
our measurements derives from the fact that rotational velocity describes the
behaviour of the car in specific situations. For example, if the car drives through
an anomaly that is spanning the road or lane width, such as a speed hump
or railroad, the gyroscope measures that rotation around the axis parallel to
the anomaly, the pitch, in our case Y. If the car drives over a pothole, the
gyroscope measures the anomaly in the axis parallel to the road, the roll, in our
case Zgyr -

3.3 Data labelling

We went multiple times over the same road segment, every time with different
speed and tried to hit the anomaly in different angles. Labelling was performed
by one person using the microphone and the camera of the phone. A detailed



list of all known road surface anomalies was compiled. As the car approached
the anomaly the labeller mentioned loudly the type of anomaly. The labeller
mentioned everything relevant he saw or felt while sitting beside the driver inside
the car. We captured the video footage of the trips in 480x720 pixel resolution.
The video footage was used to prove the ground truth. Data collected in Albania
was not used for training as they were not voice labelled, and labelling them only
by video is inaccurate and time consuming.

Urusoft Subtitle Editor® is an application used to transcript the movie sub-
titles. This application was used to transcript all voice labels with accuracy in
the order of milliseconds. The subtitle file is synchronised with the smartphone
data timestamp, t7.. < tia < t7E! where tq.. is the accelerometer timestamp

n
acc acc
and t, is the subtitle time, resulting in an array [tiqp,,,,,, tiab..., label].
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Fig.4: Signal in blue and binary label (1 for anomaly and 0 for normal road) in
red, generated from the voice recordings.

A lag between labelled segments of the data and the actual anomaly was
noticed as shown in Figure 4 where Red signal is shifted from or does not cor-
respond with any peak. Also the video footage was shorter and behind, in time
about 1s, than accelerometer data length. Because Android is not a real-time op-
erating system (RTOS), data sometimes may drop when the device is busy [16]
and some measured data values may have been delayed, resulting in incorrect
timestamps. All lags were corrected manually.

The number of individual anomalies was not sufficient for a successful train-
ing. We decided to divide the anomalies into event classes. The anomalous data
were divided into 3 event classes.

1. Severe, in this category we labelled sunk-in manholes, small potholes and
deteriorated and heavily patched road segments.

2. Mild, in this category we placed all those anomalies that happened only in
one side of the car such as cracks, one side patches, one side bumps.

! nttp://www.urusoft.net/products.php?cat=sw



3. Span, in this category were placed road-wide (transversal) bumps, road ex-
pansion joins, patches across the road, thick paint, bumps across the road
and speed humps.

4 Data preprocessing

The section describes the steps and techniques we used to pre-process the data.
A high-pass filter was applied to the signal to remove the low-frequency com-
ponents, such as turns, acceleration, deceleration, etc. As mentioned in other
works, while driving with different speeds over the same anomaly on the road,
the signal has different peaks. We call this speed dependency. Before segmenta-
tion we remove the speed dependency from the signal. It was noticed that when
speed signal from GPS and the absolute values of accelerometer x-axis, for a flat
road, are plotted as in Figure 7a,the envelope of accelerometer follows the speed
signal from GPS. This is not the case if the road is not flat. Figure 5 shows that
in the segment between vertical dashed lines the car is driving with high speed
through a relatively flat highway, but the peaks are much higher in the segment
between vertical black bars, when the car is driving up and down a hill.

B . TR S S

Fig. 5: Readings of linear accelerometer axis |X| (green) with speed from GPS
(red) and velocity computed from linear acceleration (blue). Notice the drift
accumulated in the segment between two black bars.

4.1 Dealing with speed

To deal with speed dependency we included the speed from GPS into our data
logger. Using a device equipped with GPS, one would assume speed and position
will always be available, but this is not the case with GPS chips found in smart-
phones. GPS sensors suffer TTFF (time to first fix) delay. Requirements for a
fast TTFF are a clear line of sight and a stable position. To improve the start-
up performance of GPS, mobilephones use a technology called A-GPS (Assisted
GPS) [14]. A-GPS requires an active data connection with the mobile network
operator to receive a preloaded list of available GPS satellites for that location.
We did not have an active data connection in our mobile phones at the time we
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Fig.6: (a,b) 3D spectrogram of raw and demodulated accelerometer signal with
plotted x-axis accelerometer (red) on top; (c,d) 3D spectrogram of raw and
demodulated gyroscope signal with plotted y-axis (red) and z-axis gyroscope
(blue) on top.

collected the data. On some measurements, data from GPS including the speed
were absent. To overcome the absence of speed signal we estimated the velocity
by integrating the z-axis of the accelerometer. The results were satisfactory for
the flat Dutch roads, but not for the Albanian roads where we were confronted
with slopes. The segment between the black bars in Figure 5 shows the car climb-
ing a hill, the integrated velocity is increasing but not the GPS speed. The way
the speed, slopes and drift behave on inertial sensors readings has a resemblance
with the amplitude modulated signals in radio technology [10]. The accelerome-
ter signal measuring complex mechanical vibrations is modulated with different
signals, it acts as a carrier for different signals like speed, slope degree, engine
and tire revolutions. Envelope demodulation is often used for empirical mode
decomposition (EMD) [8] of complex mechanical vibrations in Hilbert-Huang
transform [13]. Demodulated signal dS is computed from the raw signal S based
on equation (1),

_ HoS(t)
- Eol|H|o X,e(t) (1)

ds(t)
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Fig.7: (a) Absolute value of x-axis accelerometer |X, .| plotted against scaled
GPS speed and envelope, (b) Demodulated signal dX,.. (blue) plotted against
raw signal X,.. (red).

where t is time, o is the function composition, E is a moving average filter, see
Eq. (2), with a large window (M=2000 samples rolling window), H is the high-
pass filtered applied to the signal and X,.. is the x-axis accelerometer.

B(t) = 57 3 X(iiry) ©)

The envelope demodulation does not only represent the speed signal but it also
compensates for the slope and other low frequency components. From Figure 6 is
clear that the demodulated signal shows better the anomalies. Figure 7a shows
the signal for the absolute values of x-axis, the speed and the envelope. Figure 7b
show how the demodulated signal differs from the raw signal.

4.2 Feature extraction

To prepare data for the classification phase, features representing the data were
extracted from accelerometer and gyroscope sensor signals. They are computed
from time domain, transformation in frequency domain and wavelet decomposi-
tion.

Data was windowed with 256 samples, corresponding to 2.5 seconds and a 170
sample overlap for the data sampled at 93Hz, and 128 samples with 85 samples
overlap for the data sampled at 43Hz. First we tried to use the wavelet transfor-
mation as a de-noising tool for the signal. Considering the properties of wavelets
and their ability to represent the signal in time and frequency, we decided to
include wavelet transformation features into our classification algorithm. Dis-
crete Wavelet Transform (DWT) uses multi- resolution filter banks and wavelet
filters to analyse and synthesise the original signal [6]. It gives frequency resolu-
tion in low frequencies and time resolution in high frequencies [15]. Hesami and
McManus [11] showed that DWT analysis outperforms power spectral density
(PSD) analysis when used to estimate and analyse road roughness.



Time-domain features extracted: mean, standard deviation, variance, peak to
peak, root mean square, zero crossing rate, mean of absolute value, correlation
between all axis, tilt angles, wave form length, signal magnitude area.
Frequency-domain features were extracted after FFT transformation with
a Hamming window function: mean frequency, median frequency, energy of the
frequency bands.

‘Wavelet decomposition: To decompose the signal we used Stationary Wavelet
Transform(SWT) [20] a form of nondecimated DWT. Several experiments were
carried out with different wavelet families. Sym5 wavelet from symlet wavelet
family, and 4 levels of decomposition gave the best results. Figure 8 shows the
plot of the original signal on top and 4 levels of SWT decomposition, the ap-
proximations on the left and the details on the right. The high frequencies are
visible at the details column d1 and lower frequency signal at a4. Also because
we are using SWT we can a have a good time resolution for every level of de-
composition. The following features were extracted from SWT decomposition:
absolute mean, standard deviation, variance, energy for every level of detail and
approximation. Four levels of wavelet decomposition were appropriate for our
signal.

Demodulated accelerometer x-axis signal
T T

Fig.8: SWT decomposition at 4 levels with a symb wavelet.

5 Classification and Results

For the anomaly detection and classification task we used support vector ma-
chines (SVM) [2][5], specifically LIBSVM library [12]. Assuming the number of



anomalous windows is lower than the number of normal windows, we used a 2
step classification. As the first step, all the windows are processed to detect the
anomalous windows (those containing road events) from the normal ones. In the
second step, the anomalous windows are processed through another classifier to
classify the type of anomaly.

5.1 Training SVM

To train the detector we used our labelled data consisting of 3066 windows, 2073
normal windows and 993 anomalous windows. We use a sliding window with an
overlap of 66% to frame the data,which means that parts of the anomalous sig-
nal would be present in more than one window. Training was performed using
10-fold cross-validation, where 1/10 of both anomalies and normal data were
used only for testing purpose. The training data were not stratified. From 993
anomalous windows, we used only those windows with the anomalous signal in
the center of the window spreading equally in both sides. The reason behind this
decision, is that using a sliding window method, parts of the same anomaly are
present in different consecutive overlapping windows and the aim is to train the
detector with the best representative of the class. Smartphones are subject of
processing power and energy concerns. We try to keep the number of calculated
features as small as possible and in the mean time to be flexible with the number
of classes. We decided to use a radial basis function (RBF) kernel, as described
by Burges [4] and Ben-Hur et al. [3]. A grid search was conducted to find the
best values for hyperparameters [3]: the kernel parameter v = 0.002 and 0.0002,
the cost of misclassification the soft margin constant C' = 320 and 100 respec-
tively for the detection and classification. Several experiments were performed,
training the detector with feature sets from different domains, transformations
and combinations thereof, see Table 3. We also experimented with different set-
tings, such as features extracted from the raw signal TD,.,,,, on features from
the demodulated signal TDgemodulated- The best results were achieved by the
TD+SWT, the combined feature set from time domain and wavelet transforma-
tion. Nevertheless for detection we used only features from SWT.

5.2 Results from training

The results from the training experiments clearly show that the detectors trained
with the demodulated features were more accurate on classifying the data than
the detectors trained with raw data. Table 3 shows the results of the anomaly
detection.

Table 4 shows anomaly classification results of our 10-fold crossvalidation
training of the data with features extracted from the wavelet decomposition
(SWT) and combined (TD+SWT) features from time domain and wavelet de-
composition. The accuracy is the same 91%. However, the severe class is detected
better with features from the wavelet transformation only. We also experimented
with features from other transformations but the results were lower than 86%.



Table 3: The confusion matrix and accuracy for the classification of anomalous
(Positive) and normal (Negative) segments of road, with different feature sets.

Confusion Matrix Anomaly vs Normal

Method Accuracy TP TN FP FN Spec. Sens. G RS FPR FNR
TD,quw 80.13% 49 201 39 18 0.82 0.73 0.77 0.89 0.18 0.26
TDaemodulated 85.26% 52 214 31 15 0.87 0.82 0.84 0.94 0.13 0.18
FFTraw 77.88% 49 194 51 18 0.79 0.73 0.76 0.92 0.21 0.27
FFT demodulated 79.17% 40 207 38 27 0.84 0.59 0.71 0.70 0.15 0.40
SWTraw 82.69% 50 208 37 17 0.85 0.75 0.80 0.88 0.15 0.25
SWT demodutated 88.14% 57 218 27 10 0.89 0.85 0.87 0.96 0.11 0.15

TD+4+FFT demodulated 83.01% 48 211 34 19 0.86 0.72 0.79 0.83 0.14 0.28
TD+SWT pemodulated 88.78% 59 218 27 8 0.89 0.88 0.89 0.99 0.11 0.12

*TD= Time Domain, *FD= Frequency Domain, *SWT=Stationary Wavelet Transform
TP/FP= True/False positive, TN/FN= True/False negative, Spec./Sens.=Specificity/Sensitivity

G= G-mean, RS= Rlative sensitivity FPR/FNR = False positive/negative rate

Table 4: The confusion matrix and accuracy of the classification for anomalous
segments of road with features from SWT and TD+SWT.
Confusion Matrix

SWT TD+SWT
Class Sev. Mild Span Sev. Mild Span
Severe 17 3 0 16 4 0
Mild 1 15 0 0 16 0
Span 0 0 9 0 0 9
Accuracy 91.1% 91.1%

5.3 Results on unlabelled data

The evaluation process turned out to be easy using our labelling technique. The
system made the predictions and two subtitle files were generated containing
the labels of the anomalies detected. The algorithm also generates a KML !
file with the location of severe anomalies for Google Maps. We went through
the video footage taking notes on reported anomalies from the subtitles. From
data collected in Albania some types of severe anomalies were not detected. We
believe the reason for that is the fact that our system had not been trained
for those anomalies. Table 5 shows the performance of our system with data
collected with different cars in different locations. Trip 1 and Trip 2 are made
in the Netherlands, in the same road used for training the system. Trip 3, 4 and
5 are trips made in Albania(see Table 2). The trips in the Netherlands have a
higher ratio of anomalies per total number of windows than those in Albania.
The reason is the driver behaviour in our tests. The video footage showed that
the drivers in Albania tried to avoid damage by swerving around or slowing down

! Keyhole Markup Language https://developers.google.com/kml/documentation/
kmlreference



in front of bad road areas, whereas the drivers in the Netherlands did not. The
GPS location from mobile phone on the map is not very accurate (see Figure 9).
In a wider perspective with more data from different contributors it create the
possibility for clustering all measurements by their geo-coordinates.

Table 5: The results of system classifications with models and features from
TimeDomain and Wavelet Decomposition

Detection  Classification Mapping Evaluation
S/R #Win Anom Sev. Mild Span mapped Sev. TD FD MA
Trip 1 TD 47Hz 609 195 107 68 20
SWT 47Hz 609 165 119 26 20 113 73 64 15 4
Trip 2 TD 96Hz 764 222 76 105 41
SWT 96Hz 764 207 93 T2 42 123 61 52 12 3
Trip 3 TD 47Hz 1067 280 119 106 55
SWT 47Hz 1067 222 120 51 512 152 82 74 10 8
Trip 4 TD 47Hz 2240 584 349 176 61 .
SWT 47Hz 2240 412 255 98 59 296 173 no video
Trip 5 TD 47Hz 794 239 113 126 0
SWT 47Hz 794 192 99 93 0 134 76 74 6 6

Sev.= Severe, TD= True Detections, FD= False Detections, MA= Missed Anomalies

*
*
>
‘:‘_ *
severe
severe
(a) map AL (b) snapshot mapAL

Fig.9: Snapshots of map and video anomalies for locations in Vlora, Albania.

To estimate the detector performance for the severe class we counted the
false negative windows reported by the detector and also the undetected anoma-
lies from the video footage, see Table 5. The detector detects all windows with
anomalous signal, including consecutive windows for the same anomaly. To avoid
clutter on the map, if two or more consecutive windows detected the same
anomaly, we keep the half of them. This way the number of anomalies shown on
the map is fewer than the number of reported windows. As false detections (FD)



were counted all severe anomalies that were detected as mild ones, but that can
be subjective based only on video footage. Missed anomalies (MA) is the num-
ber of all anomalies, counted by us through the video but not reported from the
detector. For Trip 4 associated with Figure 5 the video file was corrupted, but
based on GPS map we noticed that the majority of the anomalies were in the
segments of deteriorated road, the segment between black lines. For Trip 5, made
with the BMW X3 SUV, the results were more correct. Worth mentioning is the
fact that the system has a high accuracy on detecting transversal anomalies,
spanning the width of the road. On extremely deteriorated road segments, the
system detected windows that belong to the transversal anomaly class, see Ta-
ble 5. In comparison, P? [7] and Nericell [19] skipped the windows representing
transversal anomalies.

6 Conclusions

In this paper we proposed a system that detects road surface anomalies using
mobile phones equipped with inertial sensors: accelerometers and gyroscopes.
We applied the stationary wavelet transform analysis and a method to remove
effects of speed, slopes and drifts from sensor signals using the envelope tech-
nique. Our audiovisual labelling technique was precise and also helpful for the
system evaluation. Classifying road anomalies is a rather difficult process and
the expectancies to detect all road anomalies on one pass are quite low. Never-
theless, the obtained results showed a consistent accuracy of ~90% on detecting
severe anomalies regardless of vehicle type and road location. To increase the ac-
curacy and the number of anomaly classes we will collect more labelled data and
improve the training of the SVM through stratification and testing with other
feature sets and sensors, such as barometric pressure sensor. For future work, we
aim to apply these methods of road anomalies detection in participatory sensing
using clustering by the geo-coordinates. We also intend to implement a vehicu-
lar network to share that information with other vehicles and to perform road
serviceability performance with outputs conform the International Roughness
Index and the ISO 2631 standard.
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