1,442 research outputs found

    Sustainability Benefits Analysis of CyberManufacturing Systems

    Get PDF
    Confronted with growing sustainability awareness, mounting environmental pressure, meeting modern customers’ demand and the need to develop stronger market competitiveness, the manufacturing industry is striving to address sustainability-related issues in manufacturing. A new manufacturing system called CyberManufacturing System (CMS) has a great potential in addressing sustainability issues by handling manufacturing tasks differently and better than traditional manufacturing systems. CMS is an advanced manufacturing system where physical components are fully integrated and seamlessly networked with computational processes. The recent developments in Internet of Things, Cloud Computing, Fog Computing, Service-Oriented Technologies, etc., all contribute to the development of CMS. Under the context of this new manufacturing paradigm, every manufacturing resource or capability is digitized, registered and shared with all the networked users and stakeholders directly or through the Internet. CMS infrastructure enables intelligent behaviors of manufacturing components and systems such as self-monitoring, self-awareness, self-prediction, self-optimization, self-configuration, self-scalability, self-remediating and self-reusing. Sustainability benefits of CMS are generally mentioned in the existing researches. However, the existing sustainability studies of CMS focus a narrow scope of CMS (e.g., standalone machines and specific industrial domains) or partial aspects of sustainability analysis (e.g., solely from energy consumption or material consumption perspectives), and thus no research has comprehensively addressed the sustainability analysis of CMS. The proposed research intends to address these gaps by developing a comprehensive definition, architecture, functionality study of CMS for sustainability benefits analysis. A sustainability assessment framework based on Distance-to-Target methodology is developed to comprehensively and objectively evaluate manufacturing systems’ sustainability performance. Three practical cases are captured as examples for instantiating all CMS functions and analyzing the advancements of CMS in addressing concrete sustainability issues. As a result, CMS has proven to deliver substantial sustainability benefits in terms of (i) the increment of productivity, production quality, profitability & facility utilization and (ii) the reduction in Working-In-Process (WIP) inventory level & material consumption compared with the alternative traditional manufacturing system paradigms

    Machine learning solutions for maintenance of power plants

    Get PDF
    The primary goal of this work is to present analysis of current market for predictive maintenance software solutions applicable to a generic coal/gas-fired thermal power plant, as well as to present a brief discussion on the related developments of the near future. This type of solutions is in essence an advanced condition monitoring technique, that is used to continuously monitor entire plants and detect sensor reading deviations via correlative calculations. This approach allows for malfunction forecasting well in advance to a malfunction itself and any possible unforeseen consequences. Predictive maintenance software solutions employ primitive artificial intelligence in the form of machine learning (ML) algorithms to provide early detection of signal deviation. Before analyzing existing ML based solutions, structure and theory behind the processes of coal/gas driven power plants is going to be discussed to emphasize the necessity of predictive maintenance for optimal and reliable operation. Subjects to be discussed are: basic theory (thermodynamics and electrodynamics), primary machinery types, automation systems and data transmission, typical faults and condition monitoring techniques that are also often used in tandem with ML. Additionally, the basic theory on the main machine learning techniques related to malfunction prediction is going to be briefly presented

    Building a Simple Smart Factory

    Get PDF
    This thesis describes (a) the search and findings of smart factories and their enabling technologies (b) the methodology to build or retrofit a smart factory and (c) the building and operation of a simple smart factory using the methodology. A factory is an industrial site with large buildings and collection of machines, which are operated by persons to manufacture goods and services. These factories are made smart by incorporating sensing, processing, and autonomous responding capabilities. Developments in four main areas (a) sensor capabilities (b) communication capabilities (c) storing and processing huge amount of data and (d) better utilization of technology in management and further development have contributed significantly for this incorporation of smartness to factories. There is a flurry of literature in each of the above four topics and their combinations. The findings from the literature can be summarized in the following way. Sensors detect or measure a physical property and records, indicates, or otherwise responds to it. In real-time, they can make a very large amount of observations. Internet is a global computer network providing a variety of information and communication facilities and the internet of things, IoT, is the interconnection via the Internet of computing devices embedded in everyday objects, enabling them to send and receive data. Big data handling and the provision of data services are achieved through cloud computing. Due to the availability of computing power, big data can be handled and analyzed under different classifications using several different analytics. The results from these analytics can be used to trigger autonomous responsive actions that make the factory smart. Having thus comprehended the literature, a seven stepped methodology for building or retrofitting a smart factory was established. The seven steps are (a) situation analysis where the condition of the current technology is studied (b) breakdown prevention analysis (c) sensor selection (d) data transmission and storage selection (e) data processing and analytics (f) autonomous action network and (g) integration with the plant units. Experience in a cement factory highlighted the wear in a journal bearing causes plant stoppages and thus warrant a smart system to monitor and make decisions. The experience was used to develop a laboratory-scale smart factory monitoring the wear of a half-journal bearing. To mimic a plant unit a load-carrying shaft supported by two half-journal bearings were chosen and to mimic a factory with two plant units, two such shafts were chosen. Thus, there were four half-journal bearings to monitor. USB Logitech C920 webcam that operates in full-HD 1080 pixels was used to take pictures at specified intervals. These pictures are then analyzed to study the wear at these intervals. After the preliminary analysis wear versus time data for all four bearings are available. Now the ‘making smart activity’ begins. Autonomous activities are based on various analyses. The wear time data are analyzed under different classifications. Remaining life, wear coefficient specific to the bearings, weekly variation in wear and condition of adjacent bearings are some of the characteristics that can be obtained from the analytics. These can then be used to send a message to the maintenance and supplies division alerting them on the need for a replacement shortly. They can also be alerted about other bearings reaching their maturity to plan a major overhaul if needed

    Teollisen Internetin käyttöönotto automaatiolaitteissa

    Get PDF
    Industrial Internet is a term that is used to describe digitalization of industry. It is a research direction in Finland, where there are already various groups studying it. Despite this, the term Industrial Internet is still relatively vague and there is a lack of concreteness around the topic. The objective of this thesis is to explore the current status of Industrial Internet and study the capabilities of automation devices from an Industrial Internet point of view. I explore Industrial Internet through a literary review where I study various use cases. The use cases of Industrial Internet are divided into two main types: platform centric and machine to machine (M2M) communication centric. The use cases provide a list of characteristics and requirements for Industrial Internet from these two perspectives. General requirements are, for example scalability and flexibility, which are achieved through various IT technologies, such as Service-Oriented-Architecture. This thesis also consists of a practical part where I configured the control logic and data collection for a test bed that simulates drop tests of active magnetic bearings. The control logic consists of a programmable logic controller and corresponding software. The data collection consists of software for collecting and analyzing measurement data and the measuring equipment. After the literary review and practical part, I propose the creation of a cloud based Industrial Internet platform around the active magnetic test bed. The purpose of the platform is to provide a direction for further research. The creation of the platform consists of two phases: first phase includes the creation of the platform so that the test bed achieves current functionality but cloud based. The second phase consists of changing the platform to meet the requirements of the literature review. The end results will be an application independent system solution for Industrial Internet.Teollinen Internet on termi, jolla kuvataan teollisuuden digitalisaatiota. Aihe on kasvavan kiinnostuksen kohde ja esim. Suomessa on useita tahoja, jotka panostavat aiheen tutkimukseen. Siltikin Teollinen Internet on käsitteenä epäselvä ja sitä vaivaa konkretian puute. Tämän työn tarkoituksena on tutustua Teollisen Internetin nykytilaan ja automaatiolaitteiden ominaisuuksiin Teollisen Internetin näkökulmasta. Teollisen Internetin esimerkit jakautuvat pääasiassa kahteen luokkaan: alustalähtöisiin ja koneiden väliseen kommunikaatioon (M2M-kommunikaatio). Esimerkit tarjoavat listan ominaisuuksia ja vaatimuksia Teolliselle Internetille kummastakin näkökulmasta. Yleisiä ominaisuuksia ovat esimerkiksi skaalattavuus ja joustavuus, jotka saavutetaan erilaisilla tietoteknisillä vaatimuksilla, esim. palvelukeskeisellä arkkitehtuurilla. Lisäksi työhön kuuluu käytännön osuus, jossa kirjoitin ohjainlogiikan ja datankeräyksen testilaitteeseen, joka simuloi aktiivimagneettilaakerien pudotuskokeita. Ohjainlogiikka koostui PLC-laitteesta ja siihen liittyvistä ohjelmistoista. Datan keräys koostui mittausdatan keräykseen ja purkamiseen vaadittavista ohjelmistoista sekä laitteistosta. Kirjallisuudesta kerättyjen vaatimusten ja käytännön kokemuksien perusteella esitän pilvipohjaisen, Teolliseen Internetiin suunnatun ohjelmistoalustan kehittämistä testilaitteen ympärille. Ohjelmistoalusta voi toimia yliopistollisen jatkotutkimuksen pohjana. Ohjelmistoalustan toteuttaminen tapahtuu kahdessa vaiheessa: ensimmäisessä vaiheessa kehitetään pilvipohjainen alusta, joka saavuttaa testilaitteiston nykyisen toiminnallisuuden. Toisessa vaiheessa ohjelmistoalusta muutetaan vastaamaan Teollisen Internetin vaatimuksia, jolla saavutetaan sovellusriippumaton järjestelmäratkaisu

    A Novel Method for Adaptive Control of Manufacturing Equipment in Cloud Environments

    Get PDF
    The ability to adaptively control manufacturing equipment, both in local and distributed environments, is becoming increasingly more important for many manufacturing companies. One important reason for this is that manufacturing companies are facing increasing levels of changes, variations and uncertainty, caused by both internal and external factors, which can negatively impact their performance. Frequently changing consumer requirements and market demands usually lead to variations in manufacturing quantities, product design and shorter product life-cycles. Variations in manufacturing capability and functionality, such as equipment breakdowns, missing/worn/broken tools and delays, also contribute to a high level of uncertainty. The result is unpredictable manufacturing system performance, with an increased number of unforeseen events occurring in these systems. Events which are difficult for traditional planning and control systems to satisfactorily manage. For manufacturing scenarios such as these, the use of real-time manufacturing information and intelligence is necessary to enable manufacturing activities to be performed according to actual manufacturing conditions and requirements, and not according to a pre-determined process plan. Therefore, there is a need for an event-driven control approach to facilitate adaptive decision-making and dynamic control capabilities. Another reason driving the move for adaptive control of manufacturing equipment is the trend of increasing globalization, which forces manufacturing industry to focus on more cost-effective manufacturing systems and collaboration within global supply chains and manufacturing networks. Cloud Manufacturing is evolving as a new manufacturing paradigm to match this trend, enabling the mutually advantageous sharing of resources, knowledge and information between distributed companies and manufacturing units. One of the crucial objectives for Cloud Manufacturing is the coordinated planning, control and execution of discrete manufacturing operations in collaborative and networked environments. Therefore, there is also a need that such an event-driven control approach supports the control of distributed manufacturing equipment. The aim of this research study is to define and verify a novel and comprehensive method for adaptive control of manufacturing equipment in cloud environments. The presented research follows the Design Science Research methodology. From a review of research literature, problems regarding adaptive manufacturing equipment control have been identified. A control approach, building on a structure of event-driven Manufacturing Feature Function Blocks, supported by an Information Framework, has been formulated. The Function Block structure is constructed to generate real-time control instructions, triggered by events from the manufacturing environment. The Information Framework uses the concept of Ontologies and The Semantic Web to enable description and matching of manufacturing resource capabilities and manufacturing task requests in distributed environments, e.g. within Cloud Manufacturing. The suggested control approach has been designed and instantiated, implemented as prototype systems for both local and distributed manufacturing scenarios, in both real and virtual applications. In these systems, event-driven Assembly Feature Function Blocks for adaptive control of robotic assembly tasks have been used to demonstrate the applicability of the control approach. The utility and performance of these prototype systems have been tested, verified and evaluated for different assembly scenarios. The proposed control approach has many promising characteristics for use within both local and distributed environments, such as cloud environments. The biggest advantage compared to traditional control is that the required control is created at run-time according to actual manufacturing conditions. The biggest obstacle for being applicable to its full extent is manufacturing equipment controlled by proprietary control systems, with native control languages. To take the full advantage of the IEC Function Block control approach, controllers which can interface, interpret and execute these Function Blocks directly, are necessary

    Business analytics in industry 4.0: a systematic review

    Get PDF
    Recently, the term “Industry 4.0” has emerged to characterize several Information Technology and Communication (ICT) adoptions in production processes (e.g., Internet-of-Things, implementation of digital production support information technologies). Business Analytics is often used within the Industry 4.0, thus incorporating its data intelligence (e.g., statistical analysis, predictive modelling, optimization) expert system component. In this paper, we perform a Systematic Literature Review (SLR) on the usage of Business Analytics within the Industry 4.0 concept, covering a selection of 169 papers obtained from six major scientific publication sources from 2010 to March 2020. The selected papers were first classified in three major types, namely, Practical Application, Reviews and Framework Proposal. Then, we analysed with more detail the practical application studies which were further divided into three main categories of the Gartner analytical maturity model, Descriptive Analytics, Predictive Analytics and Prescriptive Analytics. In particular, we characterized the distinct analytics studies in terms of the industry application and data context used, impact (in terms of their Technology Readiness Level) and selected data modelling method. Our SLR analysis provides a mapping of how data-based Industry 4.0 expert systems are currently used, disclosing also research gaps and future research opportunities.The work of P. Cortez was supported by FCT - Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. We would like to thank to the three anonymous reviewers for their helpful suggestions

    Development of a context-aware internet of things framework for remote monitoring services

    Get PDF
    Asset management is concerned with the management practices necessary to maximise the value delivered by physical engineering assets. Internet of Things (IoT)-generated data are increasingly considered as an asset and the data asset value needs to be maximised too. However, asset-generated data in practice are often collected in non-actionable form. Moreover, IoT data create challenges for data management and processing. One way to handle challenges is to introduce context information management, wherein data and service delivery are determined through resolving the context of a service or data request. This research was aimed at developing a context awareness framework and implementing it in an architecture integrating IoT with cloud computing for industrial monitoring services. The overall aim was achieved through a methodological investigation consisting of four phases: establish the research baseline, define experimentation materials and methods, framework design and development, as well as case study validation and expert judgment. The framework comprises three layers: the edge, context information management, and application. Moreover, a maintenance context ontology for the framework has developed focused on modelling failure analysis of mechanical components, so as to drive monitoring services adaptation. The developed context-awareness architecture is expressed business, usage, functional and implementation viewpoints to frame concerns of relevant stakeholders. The developed framework was validated through a case study and expert judgement that provided supporting evidence for its validity and applicability in industrial contexts. The outcomes of the work can be used in other industrially-relevant application scenarios to drive maintenance service adaptation. Context adaptive services can help manufacturing companies in better managing the value of their assets, while ensuring that they continue to function properly over their lifecycle.Manufacturin

    IoT Anomaly Detection Methods and Applications: A Survey

    Full text link
    Ongoing research on anomaly detection for the Internet of Things (IoT) is a rapidly expanding field. This growth necessitates an examination of application trends and current gaps. The vast majority of those publications are in areas such as network and infrastructure security, sensor monitoring, smart home, and smart city applications and are extending into even more sectors. Recent advancements in the field have increased the necessity to study the many IoT anomaly detection applications. This paper begins with a summary of the detection methods and applications, accompanied by a discussion of the categorization of IoT anomaly detection algorithms. We then discuss the current publications to identify distinct application domains, examining papers chosen based on our search criteria. The survey considers 64 papers among recent publications published between January 2019 and July 2021. In recent publications, we observed a shortage of IoT anomaly detection methodologies, for example, when dealing with the integration of systems with various sensors, data and concept drifts, and data augmentation where there is a shortage of Ground Truth data. Finally, we discuss the present such challenges and offer new perspectives where further research is required.Comment: 22 page

    Advances on Mechanics, Design Engineering and Manufacturing III

    Get PDF
    This open access book gathers contributions presented at the International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing (JCM 2020), held as a web conference on June 2–4, 2020. It reports on cutting-edge topics in product design and manufacturing, such as industrial methods for integrated product and process design; innovative design; and computer-aided design. Further topics covered include virtual simulation and reverse engineering; additive manufacturing; product manufacturing; engineering methods in medicine and education; representation techniques; and nautical, aeronautics and aerospace design and modeling. The book is organized into four main parts, reflecting the focus and primary themes of the conference. The contributions presented here not only provide researchers, engineers and experts in a range of industrial engineering subfields with extensive information to support their daily work; they are also intended to stimulate new research directions, advanced applications of the methods discussed and future interdisciplinary collaborations

    IoT and Machine Learning for Process Optimization in Agrofood Industry

    Get PDF
    A indústria 4.0 engloba as principais inovações tecnológicas dos campos de automação, controlo e tecnologia da informação, suportada nos conceitos tecnológicos, Internet das Coisas (IoT), sistemas Cloud e sistemas Cyber-Físicos, tornando os processos cada vez mais eficientes e autônomos. Neste contexto, propomos estudar e otimizar o processo de dessolventização de uma unidade fabril de produção de óleo vegetal, associada a uma cadeia de abastecimento da industria agroalimentar. Esta cadeia contêm um conjunto de dispositivos e sensores que permitem monitorizar o processo em tempo real, dando a capacidade de desenvolver modelos preditivos que otimizem o processo de extração do solvente comercial do produto final.Pretendemos demonstrar que a transformação da operação desta cadeia de abastecimento melhora a eficiência e eficácia dos processos associados, reduzindo os custos operacionais de extração de solvente, obtendo o produto final de acordo com as normas e parâmetros de qualidade e segurança.Orientadores Externos: Vasco Miguel Pires, Raquel Peixoto de Oliveir
    corecore