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The primary goal of this work is to present analysis of current market for predictive 

maintenance software solutions applicable to a generic coal/gas-fired thermal power 

plant, as well as to present a brief discussion on the related developments of the near 

future. This type of solutions is in essence an advanced condition monitoring 

technique, that is used to continuously monitor entire plants and detect sensor reading 

deviations via correlative calculations. This approach allows for malfunction 

forecasting well in advance to a malfunction itself and any possible unforeseen 

consequences. 

 

Predictive maintenance software solutions employ primitive artificial intelligence in the 

form of machine learning (ML) algorithms to provide early detection of signal 

deviation. Before analyzing existing ML based solutions, structure and theory behind 

the processes of coal/gas driven power plants is going to be discussed to emphasize 

the necessity of predictive maintenance for optimal and reliable operation. Subjects to 

be discussed are: basic theory (thermodynamics and electrodynamics), primary 

machinery types, automation systems and data transmission, typical faults and 

condition monitoring techniques that are also often used in tandem with ML. 

Additionally, the basic theory on the main machine learning techniques related to 

malfunction prediction is going to be briefly presented. 
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1. Introduction 
 

Electricity generation across the world grows every year, thus increasing already significant 

numbers even beyond. This is imposed by various activities in human societies especially in 

the rapidly developing countries – e.g. China or India in recent years. (Table 2, Appendix). 

[1]   

As for the reasons behind that: generation rates are intertwined with the consumption rates 

and are mostly industrial manufacturing-driven, i.e. the more production takes place in a 

country, the higher the required electricity supply. Next in magnitude is the residential 

sector, i.e. the more population there is to use basic home appliances, street lighting and 

district heating, the higher the total consumption. (e.g. Chinese consumption rates for 

different sectors, fig. 51, Appendix). [2]  

Obviously, immense numbers of terawatt-hours of electricity required by countless 

consumers are supposed to have sources. And, indeed, various methods to convert energy 

into versatile electricity have been discovered over the history of mankind - from 

harnessing the kinetic energy of motion with a generator to converting the energy of 

sunlight with solar panels. These methods in turn have evolved into different PP types 

employed to generate electricity on the commercial level. The plant types have the main 

structural differences mostly dependent on the type of energy source used: fossil (gas/coal), 

nuclear fuel, wind etc. [3,4] 

Nevertheless, disregarding the type, these plants have one quality in common - nearly 

unfathomable level of sophistication. Countless elements are intertwined into a complex 

interdependent combination: heavy rotating machinery, multilevel monitoring and 

controlling electronics unified with computer networks, high pressure and high 

temperature withstanding routings and mechanisms. Sophisticated appliances might fail 

under constant heavy load due to various reasons, be it a manufacturing imperfection of 

even a single important element in the system, loads exceeded over nominal values or just 

plain pre-estimated wear, not to mention the human factor (poor maintenance or 

operation). Independently of the cause, final consequence is always the same – critical 

malfunction of a device, rendering it inoperable. Additionally, apart from a single 

breakdown the malfunctioning device may cause an outage of a branch of a system or an 

entire system (thus upsetting the stability of local electrical network), make the working 

environment hazardous for the operating personnel, incur heavy financial losses for the 

operating company or even lead to catastrophic events, if the PP in question is nuclear. [5]   

Existence of various techniques makes it possible to prevent any of these consequences by 

addressing the core cause – the original malfunction itself. All such techniques are a part of 

an important subject of CM, role of which became prominent for the majority of energy 

companies since the beginning of 1990. CM can be divided into two major parts: offline – 

a machine is shut down for a scheduled thorough inspection or repair to be conducted, and 

online – a machine is running normally while being monitored. Further on, online methods 

are currently comprised of different techniques of monitoring each machine or part of a PP 
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system with a myriad of various sensors dotting every important device. This sensor-based 

monitoring became incredibly reliable and irreplaceable with the advancement in 

technological development – the further the advancement, the more compact, accurate and 

cheap sensors become and thus the more ways to easily monitor a machine with a constant 

access to its exact current status without the need to shut it down or run the checks 

manually with an external apparatus. Furthermore, advancement of computer technologies 

also brought the possibility of synergy between computers and various sensor data that has 

never been available before, e.g. computers equipped with ML based software are able not 

only to monitor the current state of different parts of a system and alarm when something 

is wrong, but also can predict failures long before they happen by detecting early systematic 

deviations from normal measurement values. [6] 

The main focus for this thesis is going to be the subjects of a generic thermal power plant 

(coal/gas-fired only, excluding nuclear PPs) processes and suitable predictive maintenance 

ML based software solutions. More precisely: basics of PP processes and their structure is 

going to be presented in the beginning to demonstrate the necessity and reasoning for CM 

and it is going to be followed by a brief discussion on the CM techniques (also often used 

in conjunction with ML methods) themselves, monitoring and control systems, as well as 

on the basics of ML. Next, a research is going to be conducted into the current state of the 

PM software market (on the global scale) with comparison and estimation of the trends for 

future developments. Solutions to be studied mostly belong to the “energy applications” 

group (i.e. designed for use on PPs), but some solutions are designed for industrial use 

(application on various factories). Nevertheless, they still are going to be analyzed and 

listed, for the technology applied is similar as is the functionality.   
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Figure 1 Damavand CCGT plant, 3000MW, Iran [7] 

2. Thermodynamic processes. 
 

As it has already been mentioned, an 

electricity generating plant in essence is a very 

sophisticated system with numerous 

interconnected multilevel main, supporting, 

failsafe and monitoring subsystems. Main 

purpose of such system is simple – to provide 

electricity to supply various industries as well 

as ordinary members of society, which often 

means that hundreds of MW need to be 

generated by each plant (far beyond 

1000MW when needed in a heavily loaded part of an electrical network, fig. 1).  

The core idea in any PP around the world is to transform one form of energy that 

humanity can’t use directly, e.g. fuel combustion, sunlight or nuclear fission, into the other: 

harvestable, easily transportable, transformable and applicable for endless variety of needs, 

i.e. electricity.  Although, the idea sounds rather simple, it is the various details and nuances 

in the actual implementation that make it complex in the end. For path from initial fuel to 

the final product - electricity, is a long one, with many obstacles present (i.e. various 

transitions). The main challenge in the design of a PP is that high power output requires 

bulky machines, dozen meters tall reservoirs (e.g. boiler), thick couplings and pipes to 

conduct the process of fuel transformation into electricity. Moreover, the process includes 

many stages (and sometimes also additional reheat cycles) and often more than one 

working fluid, as well as plethora of different machines working in tandem - this is 

overlooking various supporting and auxiliary systems and the economical side in general, 

since obviously enormous investments are involved in a venture of such scale. [8, 9]  

The input in a thermal PP (in this thesis by “thermal PP” term is going to be meant coal-

fired, GT and CCGT, thus excluding the nuclear normally also meant by the term) is the 

related fuel, that is delivered, fed and combusted in the suitable reservoir. The base process 

employed on a coal-fired plant is following: the energy freed in the combustion is then 

used to transform water (working fluid) into high pressure vapor that in turn expands in 

the turbine that makes it rotate. Turbine rotation is exactly the useful work that is being 

harnessed, since it is built on the same shaft as TG rotor, i.e. the direct connection to the 

generator makes rotation of the turbine generate electricity in the end. In case with a GT, 

the process normally revolves around gas (e.g. air) as a working fluid – after the 

combustion, the resultant high pressure and temperature flue gas expands in the turbine 

immediately after combustion chamber.  

The exhaust gas after a GT is still hot enough to be useful, hence often used further to 
perform the same process of heating water into the state of superheated vapor as described 
earlier. (fig. 2) This type of PPs is called CCGT, the name comes from the fact that the 
plant combines two cycles in its operation enhancing overall efficiency up to approximately 
60% from 40% of a simple coal-powered plant. [9]  
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Figure 2 Simplified schematic of the process on a CCGT plant [9] 

The following parts are going to delve deeper into the entire process from combustion to 

generation of electricity, with basic theory behind it explained. Main nodes of both 

thermodynamic (i.e. aforementioned cycles) and electrodynamic parts of the process are 

going to be described.  

2.1. Enthalpy  

 
The state parameters for working fluid in the system of a PP are easily determined with 

utilization of a rather simple thermodynamic concept: enthalpy. 

By definition, enthalpy is a heat function depending on the state of a system (e.g. working  

fluid):   

𝐻 = 𝑈 + 𝑝𝑉        (1) 

Where 𝐻 is enthalpy, 𝑈 is internal energy, 𝑝 is pressure and 𝑉 is volume. 

This equation is best explained with an example system of a gas-filled cylinder with a 

piston. (fig. 3) Let us assume that gas within the cylinder is at 

pressure 𝑝 and that the piston with an area 𝐴 moves within the 

cylinder without friction. 

If the system is considered with the piston affected by a force 

𝐹 = 𝑝𝐴 that counterbalances the internal pressure of the gas, 

then the system can be considered “expanded”. Enthalpy of 

such system then would be equal to the sum of the gas internal 

energy 𝑈 (energy contained within a system in the current 

state, i.e. at current temperature) and potential energy of the 

piston  𝐸𝑝𝑜𝑡 = 𝐹𝑥 = 𝑝𝐴𝑥 = 𝑝𝑉 where 𝑥 is the distance to the Figure 3 Piston in a 
cylinder [10] 
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point of equilibrium travelled by the piston when the force is applied.  

Therefore, enthalpy is the sum of internal energy of a system and the work required to 

introduce an object of volume 𝑉 into the system being at pressure 𝑝 and in equilibrium 

with the object. Thus, enthalpy depends not only on temperature (via internal energy) but 

also on pressure, which makes it especially useful in the working fluid state calculations.  

Total enthalpy of a complex system containing 𝑁 independent parts would equal a sum of 

enthalpies of all parts (additive property): [10] 

𝐻𝑡𝑜𝑡 = ∑ 𝐻𝑖

𝑁

𝑖=1

= 𝐻1 + 𝐻2 + ⋯ + 𝐻𝑁          (2) 

Furthermore, when the fluid is known, so-called “specific enthalpy” can be used, the 

enthalpy per unit mass, that is usually denoted with a lowercase ℎ, yielding similar yet more 

versatile version of formula (1): 

ℎ = 𝑢 + 𝑝𝑣         (3) 

It is more versatile in the sense that it can be used to calculate changes in heat/work on the 

mass flow basis (�̇�, kg/s), when combined with the first law of thermodynamics1, and 

depending on the type of energy primarily involved in the operation of a part (e.g. boiler, 

turbine, pump etc.) of the system in question, 

Work: 

�̇� = �̇� ∗ 𝑤 = �̇�∆ℎ = �̇�(ℎ2 − ℎ1)     (4) 

or heat: 

�̇� = �̇� ∗ 𝑞 = �̇�∆ℎ = �̇�(ℎ2 − ℎ1)       (5) 

In either case, the known enthalpy change with known mass flow yields the magnitude and 

direction of energy flow (e.g. power produced by a turbine or amount of heat flow 

consumed in the process of steam superheating) in the part of the process. Thus, making 

the flow rate the one of the most important quantities to be measured along with pressure 

and temperature. 

Summarizing the aforementioned formulas and the concept itself: one can use changes in 

enthalpy levels to design or analyze thermodynamic systems of any complexity. Also, basic 

analysis can be performed even by hand, given the existence of vast amount of accurate 

data accumulated in the form of tables sorted by temperature and pressure of a fluid in 

question (e.g. VDI Heat Atlas [11]) and additional tools as e.g. temperature-specific entropy 

(Ts) diagram (Fig. 53, Appendix) with distinctive fluid state variations. In the end, these 

known enthalpy changes let one define the amounts of work/heat to be consumed or 

produced by any part of a thermodynamic system. [12, pp.62, 68-72] 

                                                           
1 thermodynamic variation of the law of conservation, stating that energy can on only be transformed but 

neither destroyed nor created: ΔU=Q-W, i.e. change of internal energy of a system is equal to the difference 
between heat introduced into and work done by the system. [12, p.60] 
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2.2. Cycles 

 

The basic theoretical postulates above serve as a good backbone for another concept, that 

is closer to the practical implementations in reality: thermodynamic cycles. While there is 

plenty of different cycles (apart from mentioned here, e.g. Otto and Diesel cycles employed 

in combustion engines), suitable for various uses, those affiliated with PP processes the 

most are going to be discussed. 

2.2.1. Carnot 

The most basic cycle, which serves mostly as an 

idealistic one to compare the rest to: Carnot cycle (fig. 

4). It is idealistic, because while it has the highest 

possible efficiency of all cycles, it includes conditions 

that are either impossible or just not feasible to 

implement. In the cycle 1-2 is isothermal2 heating of the 

working fluid (feedwater) in the boiler, 2-3 is adiabatic3 

expansion in the turbine of a generator, 3-4 is 

isothermal condensation (steam-to-water) in the 

condenser and 4-1 is adiabatic compression via a pump. 

All of the processes in the cycle are also assumed to be 

reversible: nearly infinitely gradual i.e. excluding any 

rapid changes for the system to stay in the constant 

state of equilibrium, where real thermodynamic processes are often in equilibrium only at 

the endpoints [14, pp. 60-61]. Efficiency of the cycle is: 

𝜂 = 1 −
𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥
          (6) 

 

Which basically means that efficiency is higher when the temperature difference is higher 

(between the minimum temperature in the cycle and the maximum). Also, it can be noted, 

that the lower temperature and pressure values are at the condenser, the more work is 

produced by the turbine during the process of expansion. While simple in theory, this cycle 

has severe limitations impossible to overcome in practice, main of which is the regions of 

operation of the cycle. Namely, the expansion 2-3 and the compression 4-1 that happen to 

be mostly in the “wet steam region”4. For both the turbine and the compressor (pump) it 

would be mechanically difficult to manage moist steam, for particles of liquid water would 

greatly reduce the lifespan of both due to damage incurred to moving parts given high 

levels of pressure and temperature.  Not only that, but also idealistic processes would 

                                                           
2 water-to-steam transformation, no temperature change 
3 without heat transfer with outer environment, hence lossless, ideal process 
4 fig. 5.1, inner area inside the bell is the “wet steam region”, fig. 54 (Appendix) – percentage of steam 

dryness, i.e. “quality of steam” can be seen.  

Figure 4 Carnot cycle, Ts diagram (4.1) 
and simplified schematic (4.2) [12] 
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require machines not feasible to build to achieve performance even somewhat close to the 

desired, e.g. 4-1 would be realized with enormous compressor (pump) that would virtually 

devour most of the energy produced by the turbine in 2-3. [12, pp. 251-253; 15, pp. 44-45]  

2.2.2.  Rankine 

Because the Carnot cycle imposes challenges that are impossible to solve in reality, when 

steam is the working fluid in question, a modified version of the cycle is commonly 

employed on PPs – Rankine cycle (fig. 5). Main difference from Carnot is that previously  

purely idealistic assumptions have been altered to more realistic ones (fig. 5.1): heating 4-5-

6-1 and condensation 2-3 are now isobaric (pressure is kept constant). Ideal Rankine model 

still contains adiabatic processes: expansion 1-2s and compression 3-4s (although now 

realistically irreversible). Nevertheless, given that these processes are taken to the 

“superheated steam” and “subcooled5 liquid” regions respectively, it doesn’t render them 

impossible for implementation, because in this cycle the turbine handles only dry6 steam 

and the pump compresses only pure water, and both are possible to design to be durable 

and reliable. The only difference in reality from theoretical “adiabatic” in this case is that 

both processes are slightly less efficient: less work 𝑊𝑇 produced by the turbine and more 

work 𝑊𝑇 consumed by the pump. Additionally, boiler now contains several heat exchangers, 

each with its own separate function to transfer the working fluid from one state to another: 

Superheater, Evaporator and Economizer (to be described in the later chapter).   

The heat 𝑄1 is introduced into the exchangers via flue gas from burning the fuel (e.g. coal 

powder) in the furnace, that usually is also a part of a boiler. The rest of main elements of 

the cycle is identical to those in the Carnot cycle and only the points of operations in each 

node are different with highest temperature of up to 565⁰C (limited only by metallurgical 

considerations, i.e. infeasibility to use stronger but too exotic and expensive alloys). [12, 

pp.253-255; 14, pp.39-49] 

                                                           
5 i.e. under the boiling point. 
6 must be above 85% dry, if less: condensation on the turbine blades will cause increased wear due to 

formation of droplets that damage the turbine at high rotation rates. 

Figure 5 Rankine cycle TS diagram (5.1) and schematic (5.2) [15, p.41] 
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2.2.3. Brayton 

When natural gas7 is employed as a primary fuel to drive a power plant (or a gas-powered 

part thereof), another cycle is used: Brayton cycle. It differs from the aforementioned 

cycles mainly in terms of working fluid - in this case it is air (or another suitable gas if the 

cycle is closed). Thus, the entire process and machinery is somewhat different (fig. 6). 

In this case, both the compression and expansion (fig.6, 1-2 and 3-4 respectively) occur via 

compressor and turbine both installed on the same shaft. Former compresses air supplied 

from outside of the plant (open cycle), whereas latter performs the same function as in the 

cycles mentioned before – does the useful work on the generator that is attached to the 

shaft and also driving the compressor. In the ideal case: both compression 1-2 and 

expansion 3-4 processes are adiabatic, whilst heat addition (combustion, 𝑞1) 2-3 and 

rejection (exhaust, 𝑞2) 4-1 are isobaric (fig. 6.1). Between the compressor and the turbine 

resides the combustion chamber, where introduced natural gas burns with compressed air 

producing chemically transformed air, i.e. flue gas. This product of combustion at high 

pressure and temperature proceeds then to the turbine where it expands rotating the shaft 

and thus producing the actual work that is harnessed. After the turbine, exhaust is either 

sent directly into a stack where it escapes into the atmosphere (simple case, open cycle), or 

used once more to provide heat for a part of a plant working with steam as a working fluid 

(i.e. steam turbine generator, CCGT case) and only then proceeds into a stack. Another 

solution based on Brayton cycle is a closed cycle (fig. 7): air or other suitable gas is 

circulating in the closed system comprised of compressor, heat exchanger (combined with 

combustion chamber for instance), turbine and another heat exchanger (refrigerator). 

Combustion (or any other process with sufficiently high heat output) introduces heat to the 

compressed working fluid via heat exchanger without chemically altering it; after the 

turbine, the fluid is cooled down and fed into the compressor and the cycle is repeated. [16, 

17]  

                                                           
7 methane, CH4 

Figure 6 Brayton cycle TS diagram (6.1) [16] and schematic of an open cycle (6.2) [17] 



9 

 

Figure 7 closed Brayton cycle [17] 

Closed cycle is not employed in reality due to technical 

constraints imposed by the need of enormous heat 

exchangers (“refrigerator” unit also requiring vast mass 

flow of coolant) and overall high pressure in the system 

making it infeasible to design such a plant. [8, pp.268-

271] Although, according to [18], closed cycle GT plants 

have future not only in the form of small experimental 

2MW plants but can actually find a niche as a 

supplementary efficiency-increasing solution, 

complementing e.g. nuclear PPs, concentrated solar and 

other electricity generating facilities with a high 

temperature source of waste heat.   

2.2.4. Cycle improvements 

Lastly, one could also describe two additional cycles 

when discussing primary thermodynamic cycles: 

Reheat and Regeneration. Both are more or less sub-

cycles (or cycle modifications) that can be a part of 

either Rankine or Brayton cycle implementation. In 

case with Reheat, primary boiler pressure is 

increased along with the temperature, and additional 

turbine with additional heat exchanger in the boiler 

are added. After expansion in the HP turbine 2-3, 

cooled and lower pressure steam is reintroduced 

into the boiler via the additional reheat exchanger 3-

4, after which this steam rotates the LP turbine 4-5 

and, in the end, passes through the same alterations 

as in a normal Rankine cycle 5-6-1-2 (fig.8). Usually, 

not more than 2 reheat stages are implemented, for 

complexity of the system grows rapidly (fig.9) while 

marginal efficiency improvement (according to [19] 

providing up to 49% efficiency in the dual reheat 

case, which is still lower than with a CCGT layout) 

is not enough to justify. [12, pp.259-260].   

 

Figure 8 Reheat cycle schematic (8.1) and 
Ts diagram (8.2) [12, pp.259-260] 
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Figure 10 schematic of a GT with regeneration, reheat and intercooling (10.1) and Ts diagram (10.2) [12, 
p.355] 

As for the Regeneration cycle, it is another 

modification of the traditional cycle 

employed to reduce the required heat 

addition in the boiler via preheating the 

feed water by means of heat exchange with 

a part of steam exhaust of a turbine. [12, 

pp. 260-262] It is often used in conjunction 

with Reheat cycle as can be seen on the 

example schematic on fig. 9, since the operating temperatures are higher, thus higher is the 

temperature of a turbine exhaust, which makes it feasible to redirect part of it to heat the 

feedwater. Additionally, efficiency of a regeneration system of a power plant can be slightly 

improved (by ~0.6%) via installation of absorption heat pumps between the condenser and 

the LP heat exchangers, thus using some of the heat rejection in the condensation stage for 

heating the feedwater, as illustrated in [20, 21]. 

Reheat and Regeneration cycles are both applicable also to GTs with Brayton cycle, with an 

addition of a process known as Intercooling (fig. 10). Not necessarily employed 

simultaneously, each improves efficiency of a gas-powered turbine, requiring different 

modifications of the system. Reheat cycle assumes that there are two turbines and two 

combustion chambers – one between the compressor and HP turbine and the other 

between the HP and LP turbines. It provides supplementary heat addition (fig. 10, 7-8) for 

the second turbine stage at lower pressure. Regeneration cycle on the other hand, includes 

a heat exchanger that transfers part of the exhaust heat to preheat compressed air before 

the combustion. (fig. 10, 4-5 and 9-10) to reduce the amount of heat required to be added 

in the combustion chambers. Intercooler in turn needs two compressor stages to perform 

heat rejection during compression of intake air (fig. 10, 2-3) to reduce the work needed to 

be consumed by the process. [12, pp. 245-255] Each of these modifications provide a 

marginal (1-6%) improvement amplifying overall efficiency up to 40% at the expense of a 

more complex structure of otherwise simple and compact cycle. [22]  

Next, the actual implementation of the cycles commonly applied on thermal power stations 

is going to be discussed.  

Figure 9 Standard double reheat layout [19] 
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2.3. Boiler 

Perhaps, it is best to start thermodynamic machinery description with the largest and 

crucial part of all thermal power plants, part where water gets heated (and sometimes also 

reheated) into steam that is then utilized to harvest the energy. Several main types of boilers 

are going to be discussed in this part: typical pulverized coal fired boiler, Heat Recovery 

Steam Generator (HRSG) and Circulating Fluidized Bed (CFB) boiler. A boiler in general 

contains several heat exchangers within for different purposes as well as the furnace where 

the fuel is burnt, if the unit is coal-fired. In any case, a boiler applied on a typical PP is an 

enormous structure of approximately a dozen meters tall, that contains following common 

elements: 

• Economizer: water preheater, heats it up to the boiling point for the pressure 
level, i.e. to saturated state 

• Evaporator: turns the saturated water into saturated (dry) steam  

• Superheater: heats steam further to increase overall efficiency and exclude 
possibility of condensate formation in the turbine during expansion 

• Air preheater: heats air to be used e.g. in the furnace during combustion  

All the parts listed are heat exchanger types comprised of an array of pipes for the fluid to 

pass through. There is not necessarily only one heat exchanger of each type – especially if 

the plant in question includes steam turbines of different pressure levels. In this case, there 

can be several superheaters/reheaters to reach the desired temperature levels. [23, pp.105-

108] Usually, also a steam drum is present in the closest vicinity of the boiler: it is 

responsible for water/steam separation and it links together all the stages of the fluid. 

Preheated water is fed into the drum, from there it passes into the evaporator via 

downcomer pipes or directly into a heat exchanger and the 

resultant steam is circulated back into the drum being 

heated in the process. As steam is recirculated, it gets 

separated from water either by force of gravity (water 

remains in the lower part of the drum) or via system of 

scrubbers (more compact and able to obtain steam as dry 

as less than 1 ppm of solid content). Boilers that don’t 

contain a steam drum are called once-through: they have 

economizer, evaporator and superheater connected in 

series as one. It is the only boiler type viable for 

supercritical pressure (Fig 54, Appendix) operation. [24, 

p.31,52; 25 p.99]  

The pulverized coal fired boilers have a furnace as the primary source of heat generation. It 

takes a vast portion of the boiler internal volume and has numerous burners with lighters 

installed in the middle that ignite the coal powder/air mixture introduced into the 

combustion chamber. From the chamber, flue gas is directed towards all the heat 

exchangers mentioned above and proceeds out of the boiler to a flue gas purification 

section. [25, p.139]  

Figure 11 Generic pulverized coal-
fired boiler [26] 
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CFB boilers differ mainly in the structure of the furnace: lower part is now filled with a 

layer of solid particles (commonly limestone, CaCO3) of relatively small size. These 

particles are lifted along with fuel particles by the hot combustion air supplied from the 

nozzles located in the bottom of the boiler. Flue gas formed in the combustion then passes 

through normal heat exchangers and additionally a classification stage with cyclone in 

between to separate unburnt particles and return them back to the combustion chamber. 

(fig.11) This approach enables solid non-pulverized (crushed to sizes of 2-25mm) coal fuel 

to be used, at the same time absorbing most sulfur content in the flue gas (approximately 

90%). Also, a lower quality fuel can be used (e.g. lignite, the lower energy content cheaper 

coal) but at the expense of more 

logistics related difficulties caused by 

the vast amount of fuel needed to be 

supplied on a daily basis. This boiler 

has simplified flue gas purification 

requirements (only fly ash removal is 

needed) and therefore the system is 

more compact, but at the same time 

it has more complex structure of the 

boiler compartment, has to withstand 

more stress during operation and 

needs more electricity for the 

more powerful fan to fluidize the 

bed. [24, pp 99-108, 27]  

HRSGs on the other hand are installations that are used as to recover the outlet heat of a 

GT in CCGT plants. Structurally, it is similar to the standard boiler type, with the only 

difference of lacking a combustion chamber – air enters the boiler already combusted in 

the form of hot flue gas. This type of boiler can also contain heat exchangers for more than 

one pressure level and reheat stage to increase the overall efficiency. [23, p.192-194] 

2.4. Turbine 

In this part, another vital element of a thermodynamic cycle of a PP is 

going to be discussed: the turbine, also called a prime mover, 

responsible for production of useful work transformed into electricity. 

Basically, turbines exist in the two main forms: impulse and reaction. 

(Fig. 13, 1 = nozzles, 2 = turbine, 3 = fluid stream, 4 = direction of 

turbine motion) The impulse type employs nozzles as a part of 

immobile housing of the turbine - these nozzles direct streams of 

working fluid onto the blades the turbine is comprised of thus giving 

it the impulse and setting it in motion. The reaction type on the other 

hand has nozzles as a part of the turbine itself, i.e. mounted on the 

rotor and creating rotation through reaction force (or “thrust”). In 

case with PP turbines, the main difference is in terms of the shape of 

Figure 13 Turbine types: 
impulse (upper) and 
reaction (lower) [28] 

Figure 12 A CFB based system (Foster Wheeler Pyropower, Inc.) [24] 
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Figure  SEQ Figure \* 
ARABIC 4 schematic 
representation of operation 
of impulse (top) and reaction 
(bottom) turbines. 

 

Figure  SEQ Figure \* 
ARABIC 4 schematic 
representation of operation 
of impulse (top) and reaction 
(bottom) turbines. 

the turbine blades: impulse turbines have the “bucket” shaped blades directed towards 

static nozzles. Actual change of pressure, i.e. fluid expansion, occurs only where it leaves 

the static nozzle in this case, the blades are rotated by the impulse translated from velocity 

of fluid particles affecting the blade surface. Reaction turbines have the blades shaped more 

closely to nozzles and the stream is directed via static vanes installed just before the 

turbine, the fluid creates reaction force through the converging nozzle-shaped blades and 

the fluid expansion occurs at the rotating blades as the fluid passes through. Nevertheless, 

in reality such strict division is somewhat absent, since reaction-based force still takes place 

in the motion of an impulse turbine although low in magnitude, and vice versa: there is 

some impulse-based interaction in a reaction turbine as well. Moreover, PP turbines 

contain a plethora of turbine stages, often with a mixture of both blade types to reach 

maximum efficiency. [28] 

2.4.1. Steam 

Steam turbines are divided into extraction (condensing) and back-pressure turbines (non-

condensing). The former is used mainly on PPs with a sole purpose of electricity 

generation, in this case steam exits the turbine as exhausted (pressure below atmospheric) 

and cooled as possible and then condensed immediately with a large supply of external 

cooling water. The latter, back-pressure turbines, are in turn used on more multifunctional 

plants where heat co-generation is as important as electricity generation, for steam 

processed in the turbine returns with enough energy content to use it for district heat 

production. [29] 

2.4.2. Gas 

GTs are usually considered to be comprised of several modules (not limited to 1 per type): 

GT itself, combustion chamber and compressor. Since all of these modules are contained 

within the common casing and around the common shaft (sometimes twin- or triple-spool 

shaft when several pressure level turbines and compressors are present), the entire system 

is regarded to as GT for simplicity. This also explains why simple Brayton cycle GT 

installations are so compact – all the main nodes of the cycle are within the same shell just 

a few dozen meters long and few meters tall (excluding the air intake filtration module), 

especially opposed to innumerous variety of heavy spacious auxiliary machinery in the coal-

Figure 14 GE STF-D200, up to 300MW of output power. HP, IP and LP (left to right) turbine stages are 
clearly visible. Courtesy of GE 
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fired plants. Also, there is no need for complex flue gas filtration system, since there are no 

solid particles in the gas. (fig. 15). [30]  

Basic GT installation archetypes are: [31]  

● heavy duty - high power output (above 100MW), rugged design for PP applications  

● industrial - medium power (4-70MW), rugged design for supplementary power 

generation applications  

● aero-derivative – medium power, light design based on aeronautical GT designs, 

for applications in remote areas with the requirement of easy transportation of the 

unit  

 

Figure 15 SGT-8000H heavy duty GT, 450MW of rated power output and efficiency of 61% in CCGT, 
compressor turbine stages with 4 variable vane stages can be seen on the left, 4 GT stages are on the right 
and combustion system in between. Courtesy of SIEMENS AG 

2.5. Condenser and water processing  

Another pivotal change of the state of the working fluid in a steam based thermal power 

plant occurs in an appliance called a “Condenser”. In essence, it is a large heat exchanger 

located in the nearest vicinity from the steam turbine, its role is basically to be the cooling 

node of as low pressure and temperature as possible. The pressure is kept at levels far 

below atmospheric (at tenths to hundredths of a bar, where normal atmospheric pressure is 

around 1 bar) that allows for more steam heat (energy) to be converted into useful work. 

The temperature on the other hand is held at the point where it causes the turbine outlet 

steam to condense into water in the condenser for a condensate extraction pump to be able 

to process it further. Cooling water is supplied either from a nearby (either natural or 

artificial) water reservoir or a cooling tower. In each case the water heated in the process is 

cooled down via evaporation in the lake/tower and recirculated back into the condenser.   

Structurally, it is comprised of a large outer shell, that has an array of tubes built in through 

which the cooling water circulates supplied from outside. The exhaust steam from the 
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turbine passes through these tubes and has the temperature dropped enough to start to 

condense. Condensate in turn is gathered at the 

lowest point of the condenser, i.e. “hot well”, 

where it is suctioned by a condensate extraction 

pump to be processed further and in the end to 

be returned to the boiler. (Fig. 16) The top side 

of the shell of the condenser includes apart from 

the turbine exhaust steam intake also a vacuum 

steam ejector system intake, responsible for the 

low pressure in this part of the system. [25, 

pp.223-225] 

Condensate extracted from the condenser proceeds to the feedwater tank, that can also be 

combined with a deaerator. The main purpose of the device is to remove oxygen and other 

gases (e.g. carbon dioxide) from the condensate, preheat water before the boiler (e.g. using 

heat from steam between HP and IP). This, as well as additional forms of treatment, are 

performed to condition the water before it gets processed in the boiler to avoid damage 

caused by impurities in the working fluid and reach optimal operating point. Additionally, 

for the same reasons, water in the cycle is constantly monitored in a local laboratory and 

when it is required to add water, the water from outside gets processed through multiple 

filtering/conditioning stages before the feedwater tank. [25, p.224,240] 

2.6. Flue gas purification 

 

Exhaust gas purification is conducted in the manner suitable for fuel combustion technique 

applied on the station: pulverized coal boilers require both fly ash removal and 

desulphurization stages, CFB boilers need only fly ash removal, GTs in turn need nothing 

except accurate combustion control and steam injection for NOx8 emission reduction. 

 

2.6.1. Fly ash 

 

Both pulverized coal-fired and CFB boilers have one purification requirement in common - 

the flue gas has solid particles to be removed before it can be either 

processed further (at desulphurization facility, pulverized coal) or 

directly fed into the stack (CFB). These filtering devices can be 

split into two major categories: Electrostatic precipitators 

(electrical filter) and Baghouses (cloth filter).  

The first type uses a phenomenon of static electricity 

where the basic idea is “opposite charges get attracted to 

each other”. This idea is realized with two electrodes that 

produce high-voltage electric field (Fig. 17). First electrode is 

                                                           
8 nitrogen oxides, NO1 and NO2, the toxic components of exhaust gas 

Figure 17 ESP filter principle [32] 

Figure 16 Condenser schematic [25, p.224] 
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negatively charged, and it passes this charge onto the solid particles in the flue gas 

introduced into the filter. Then, the gas with negatively charged particles gets in between of 

surfaces of the positively charged electrode that electrostatically attracts the solid particles 

of fly ash. The electrode is to be cleaned at known intervals for the ash to get detached, e.g. 

with vibration, to be then collected at the bottom of the structure and in the end - disposed 

of. Electrodes can be of different shapes, be it plates or thin vertical rods. This type of 

filter can be 99% efficient at securing fly ash content in the flue gas, although 

approximately 2-4% of electrical output of a PP might be used to energize it. [32] 

The other type of such filter, the “Bag filter”, employs 

numerous long bags made from high temperature 

withstanding fabric (Fig. 18). These bags are hanged 

within the body of the filter (several meters tall) on the 

cage-like frames and a fan forces the flue gas to pass 

through the bags, leaving most solid particles stuck in 

the fabric. Akin to the electrodes of the previously 

described filter type, the bags require periodic cleaning 

by various methods: with vibration (“shaker”), air flow 

being momentarily reversed (“reverse air”), or with 

compressed air jets (“pulse jet”). The type of cleaning 

defines some slight structural differences, e.g. first 

two types are built in separate compartments because the cleaning sequence requires the 

flow of flue gas to be stopped, hence the compartments get cleaned in turns, whilst the 

pulse jet baghouse can operate during cleaning without stopping any compartments.  

In the end, bag filters don’t need same high-power supply as electrostatic precipitators, also 

they are more compact, nevertheless, the filtering cloth of the bags deteriorate over use and 

thus bags require replacement roughly every 15 months. Because of this the electrostatic 

precipitators are mainly used in larger coal-fired PPs, where there is flue gas flow vast 

enough to justify the high electricity consumption. Baghouses on the other hand are 

normally employed on smaller facilities where there is either no electricity production or 

relatively low levels thereof, making it reasonable to use a more maintenance-demanding 

solution whilst saving in the energy consumption department. [33, 34] 

 

2.6.2. Desulphurization  

 

Flue gas of a coal-fired PP normally contains significant amount of sulfuric chemical 

compounds (and other pollutants), amongst which SO2 is the main culprit in acid rains and 

overall toxic pollution. Therefore, there is a necessity of sulfur dioxide removal from 

exhaust and with this idea in mind various techniques are applied. In a CFB boiler SO2 is 

captured and removed during combustion process in a reaction with the limestone, while 

the more common pulverized coal PP requires a separate facility for this with the main part 

of it being the scrubber. There are many different types of scrubbers, but this subchapter 

will be focused only on the most common ones: wet and spray dry scrubbers. 

Figure 18 Bag filter schematics [33] 
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Wet scrubbers are the most commonly 

employed technology capable of SO2 

removal - they can be further classified into 

limestone-based ones and the seawater 

scrubbers. Limestone scrubbers have the 

best efficiency of SO2 removal at 95-99%, 

they operate by introducing a mix of 

limestone and water into the same chamber 

with flue gas, forcing it to flow through the 

mix. The purified gas is directed to a stack 

and the main byproduct of the reaction is 

gypsum that is widely used in construction. 

This is one of the more expensive solutions both due to high capital cost (complex 

additional facility requires large investments) and high operating cost. (Fig. 19)  

Spray dry scrubbers in turn, have a maximum SO2 removal efficiency of 90%, also the 

acceptable flue gas flow is limited thus requiring several modules in case of a large PP. Akin 

to wet scrubbers, lime-based absorbent is used, that is sprayed in the form of finely ground 

suspension into the absorber compartment. Also, precipitators have to be used after and 

sometimes before the scrubbing for the main byproduct of the process is basically the fly 

ash. Normally, the baghouse type precipitators are used due to the fact that part of 

unreacted absorbent with remaining SO2 in the gas gets additionally mixed in the filter 

fabric (which is impossible in case with electrostatic filter), increasing overall efficiency by 

as high as 20%. Nevertheless, this type of scrubbers is significantly more simple, compact 

and cheap than the previous type of flue gas filtration, that makes it a viable option for 

smaller facilities. [35] 

2.7. Fuel supply and conditioning 

Most demanding in this department amongst the discussed types of PPs are definitely the 

coal-fired stations: the coal needs to be transported to the plant - normally by a truck, or by 

railroad if such type of transportation is available, in enormous quantities. Then it is 

relocated into the coal silo where it is stored with some excess for gradual and constant fuel 

supply for the plant. From there it proceeds through some more transportation and 

preparation stages before getting actually combusted to provide heat into the cycle. To be 

discussed in this chapter: coal transportation across the station and conditioning before 

being supplied to the boiler furnace. 

  

Figure 19 Wet scrubbing facility schematics [35] 
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2.7.1. Conveyors  

One of the main means of coal transportation within the plant for 

extended distances (above 50m) is a belt conveyor (Fig. 20), that is 

simple in terms of its operation, reliable and easy to maintain. It 

consists of the rubber belt with a metal fabric core that is looped 

around numerous pulleys which enable the belt to roll. One of the 

pulleys is powered by an electrical motor, others remain passive. 

Normally, conveyor belts are not designed to be completely 

shielded from all directions to provide easier maintenance access, 

at the same time this open design imposes a hazard of accidental 

interaction with the moving parts. Hence, an emergency stoppage 

thread is stretched along the hazardous end of the operating machinery.   

Screw (auger) conveyors (Fig. 20) on the other hand are most suitable in short distance 

(less than 50m) applications to transport solid matter of varying degrees of fineness from 

powder/ash to relatively coarse coal. The main element of such 

apparatus is a rotating spiral-shaped core that has the spiral surface 

pushing the matter needed to be transported usually in a horizontal or 

slightly inclined direction. The spiral is also energized by an electric 

motor and has a completely closed design since the main element 

rotates within a tube. 

Additionally, exist the bucket type elevators where numerous buckets 

are connected by chain and driven by an electric motor on one end. 

Equivalently structured elevators are used e.g. for sludge transportation 

or vertical coal transportation in confined spaces. (Fig. 21). [8, pp. 146-

147] 

2.7.2. Coal processing 

First, the raw coal is normally crushed into smaller 

pieces by a crusher (unless the coal is delivered 

already preprocessed) – a crude mechanism driven 

by an electrical motor, for equalizing and reducing 

the size of particles transported further on. Then, 

coal mills (also “pulverizers”) are used to grind coal 

further into dried homogenous powder that is used 

as a main fuel on a pulverized coal fired PPs 

(otherwise, the crushed coal can be supplied to a 

CFB boiler directly). Basically, the overall structure 

of PP coal pulverizers is somewhat reminiscent of a 

CFB boiler, with only difference that the hot air9 

                                                           
9 (boiler primary air kept at 100°C to dry the coal from any possible moisture content) 

Figure 21 Sludge 
removal elevator, 
Suomenojan PP. 

Figure 22 Coal mill [24, p.267] 

Figure 20 Belt (upper) and 
auger (lower) type 
conveyors [8, pp.146-147] 
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supplied to the bottom of a mill fluidizes coal only for the classification purpose. Such 

approach allows the fine enough powder to be separated from yet coarse coal that needs to 

be ground more. Other than air circulation system, the mill consists of the coal supply 

channel from the top of the mill, that leads directly to the surface where it is ground by 

rolling elements (Fig. 22), the hot air lifts the ground coal and then it passes through 

rotating separator screen if the powder is fine enough, if not, it is returned back to the 

rolling elements. The power for grinding (as for the hot air circulation fans) elements is 

supplied by electrical motors of suitable output, which are normally connected through a 

reduction gear to provide higher torque (i.e. force applied to the rotating axis) at the 

expense of rotational speed. [36; 24, p.265-268] 

2.8. Fluid control  

Working fluid be it air, water or steam also needs control and direction for a cycle to 

perform well. Primary fluid control machinery and mechanisms are going to be described 

in this chapter.  

2.8.1. Pumps and fans 

Pressure of a working fluid is reached via pumps (for liquid fluid) or compressors 

(gaseous), while having the similar purpose, both differ greatly in the structure department. 

Fans on the other hand are used to create an airflow, where pressure induced is of lesser 

importance, but not the volume of air that needs to be displaced, e.g. boiler furnace air 

supply. Compressor basics have already been described in the GT section above, whilst the 

pump and fan principles for the majority of PP applications are going to be described in 

this section. Both fans and pumps employed on power plants are usually of 

centrifugal type, hence both have similar structure overall. Rotating 

impeller (visually reminding a turbine) is secluded in a volute 

casing that directs the flow of the fluid. (Fig. 23) The impeller is 

rotated by an electrical motor, either directly or through a clutch 

with a gearbox if the nominal rpm of the motor is different 

from the rpm required in the mechanical appliance. In the 

centrifugal type suction of fluid happens in the middle of the 

impeller and is directed by the casing outwards through the 

single opening into a pipe (water) or diffusor (air). Also, in 

centrifugal pumps several stages are employed, when high 

pressure levels of water are required, e.g. boiler feedwater. 

[37; 24, pp. 479-491] 

2.8.2.  Valves 

Another type of fluid flow control devices are the valves. This kind of machinery is used 

neither to create the flow nor to enhance (where pumps and fans are used), but rather to 

alter it. In other words, to open an additional flow route, to cease flow or decrease it in a 

controlled manner via “throttling effect” (reducing the area through which a fluid can pass 

Figure 23 Centrifugal pump [37] 
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thus also reducing the flow rate). Thus, it is possible not only to cut the fluid off from 

admission into a part of a system, but also to redirect it, for when piping is designed 

accordingly, a valve can: 

• open a controllable bypass path around a part of a system that needs to be either 

temporarily disconnected or its through-flow to be reduced 

• prevent a backflow (water) that would damage a centrifugal pump (non-return 

valve or check valve) 

• open a controllable recirculation path that would e.g. once again prevent centrifugal 

pump damage in case of the need to reduce the flow rate after the pump output, 

since they are also very susceptible to flow rates below nominal. (Fig. 24) 

Depending on the function and placement, valves vary across the 

range from being slow-acting and precise, hand or actuator (e.g. 

electrical motor) driven heavy duty mechanisms as in case with 

district heating water routes to light quick (quarter-turn) hand-

operated valves. 

Structurally, all valves have some form of a mobile obstacle that is 

capable of completely obstructing the flow-through. This obstacle 

can be a shifting/rotating plate (gate/butterfly types respectively), 

moving plug (globe type) or a screw (needle type). [24, pp. 380-386] 

  Figure 24 Automatic 
recirculation valve, 
courtesy of SchuF Group. 
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3. Electrodynamic processes 
 
Various electrical machinery and subsystems are just as important, for it is the electricity 

that needs to be produced in the end (apart from heat) by generators, it is electrical motors 

that drive numerous mechanical rotating nodes in every cycle (fans, pumps and actuators, 

to name the few). Not to mention different automated control measures that are possible 

only with the application of electrically powered circuits. This part is going to discuss the 

electrodynamic basics that is employed in the operation of the systems mentioned above, 

as well as main electrical machinery types. 

3.1. Basics 

 

First of all, electrical current10 can be of two types: alternating and direct, i.e. AC or DC. 

AC is oscillating in the wave-like manner with constant fixed period and cycle, while DC 

on the other hand remains on a constant level. Also, AC can be supplied in the form of 

three-phase current, where the three phases are delayed from each other by 1/3 of a full 

cycle (Fig. 25) – this allows for more efficient long-distance 

transmission and industrial applications. Any current 

produces magnetic field around the conductor and it is also 

possible to create current by magnetic field, as stated by the 

Faraday’s law of induction. The law of induction is the 

cornerstone mechanism behind electrical machinery 

operation. Some theory in the simplest mathematical form: 

 

Φ = ∫ BdA   ↔  EMF = −
𝑑Φ

𝑑𝑡
     (7)  

 

Where Φ is a magnetic flux of a magnetic field, B is a density of the magnetic flux, A is an 

area of a contour through which the magnetic field is passing, and EMF here is basically 

the electricity (voltage) produced by the change of flux. So, summarizing these formulas in 

other words – generated EMF is proportional to the rate of change of the magnetic flux (or 

vice versa – rate of change of the flux is proportional to the EMF supplied). [39, pp. 13-17] 

Motors and generators consist of two key elements: rotor, the rotating part and stator, the 

stationary one. If electricity generation by a TG is taken as an example of (7): the rotor is 

supplied magnetizing DC current11 to produce a constant magnetic field, the change of flux 

of the field is realized via rotation of the rotor and electricity is then generated in the stator 

in the form of alternating three-phase current. There is a predefined rotation rate of a TG 

for the generated current to be of required (by widely accepted standard) frequency for the 

entire network and appliances connected to operate as designed: 

 

                                                           
10 a directed voltage-induced “flow” of free electrons that are in abundance in conducting materials, especially 
metals 
11 the process called “excitation” 

Figure 25 three-phase current. [38] 
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n =
𝑓

𝑝
∗ 60 =

50𝐻𝑧

1
∗ 60

𝑠

𝑚𝑖𝑛
 =  3000𝑟𝑝𝑚    (8) 

 

where f is the network (and stator current) frequency, normally 50Hz (Hz = 1/s) in 

Europe, p is the amount of magnetic pole pairs of the rotor, normally for TGs it equals 1 

(2 poles) and the fraction is then multiplied by 60 to convert 1/s to 1/min = rpm.  

The same theory can be applied to a common electrical motor, only the other way around: 

the stator is supplied AC current, that causes the magnetized rotor to spin, where amount 

of pole pairs and the frequency of supplied current define the speed of rotation. The dual-

application nature of the induction law also yields the capability of a motor to be a 

generator and vice versa.  

The law of induction is applicable not only to motors and generators but also to an 

important part of electricity distribution and control – a transformer, which performs a 

function similar to a gearbox in a mechanical system. The main reason is the manipulation 

on electricity to achieve voltage and current levels12 suitable to an application. Induction 

results in the simple relations between voltage, current and transformer structure (ideal 

case): 

 
N1

N2
=

V1

V2
=

I2

I1
      (9) 

 

Where N1 and N2 are amount of turns around the core in 

each winding that are the main elements of the 

transformer, V and I are the related voltage and current 

values over the primary and secondary terminals. (Fig. 26) 

Since the transformer is immobile, the only way to provide 

changing magnetic field to induce voltage in the other 

winding is by using AC, hence transformers cannot 

manipulate DC. [39, pp. 33-36] 

3.2. Generator/Motor 

 

Electrical motors and TGs have similar overall structure, with TG differing mainly in terms 

of size and presence of additional cooling, monitoring and controlling elements. Therefore, 

it is logical to describe the more complex machine first, the TG.  

TG is a large synchronous (i.e. has rotor and magnetic field rotating at the same rpm) 

machine, where high pressure vapor or flue gas is the main source for rotation of the 

turbine driving the machine of up to about 1500MVA rating. Despite that for the majority 

of electric motor applications Tesla's induction (asynchronous) motor is being used instead 

                                                           
12 the levels of generated electricity (e.g. 10500V and 2584A by a 40MVA generator AEG KANIS) are too 
high to feed the local LV networks – need a voltage step-down. And at the same time the current is too 
high to effectively transmit electricity over distances due to “I2R” losses in the conductors caused by 
metal resistance, dependent on current – need voltage step-up  

Figure 26 Transformer, simplified 
schematic, 1-phase [39, p. 51]  
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of synchronous motors, synchronous generators are still universally used for electricity 

generation across the world.  

Stator of a TG is made of steel laminated core that is uniformly 

slotted with open slots, which itself is the framework for the 

three-phase AC winding (armature winding, fig. 27). 

Laminations of the winding are insulated, and the thickness of 

insulation and the type of steel are chosen to make hysteresis 

losses and eddy current13 as low as possible. Modern generators 

are usually equipped with a winding which is of double-layer lap 

type - shape reminiscent of a hexagonal lattice. [42]  

The majority of TGs is designed as two-pole, because higher 

rpm (at lower pole count, since according to (8): n~1/𝑝) 

allows for better turbine technical and economical 

characteristics, with the exception of slower four-pole TGs that are designed for some 

nuclear power plants. TG rotors are typically manufactured out of solid high-quality steel 

forging, the diameter of an active part of the rotor can't 

exceed 1.2-1.5m because of mechanical loads caused by 

great centrifugal force at the usual rate of rotation of 3000 

rpm (8). That is why the rotor of a high-power rating 

machine is designed to be rather long, where its length is 

limited by flexibility and deflection of the rotor. The 

magnitude of vibration during rotation is connected to 

these characteristics too, thus the longest possible length of 

the rotor to be reliable is approximately 8.5m. So, in the 

end, maximum dimensions of the rotor are limited by 

capabilities of modern metallurgy. Winding of a TG rotor 

(field winding, fig. 28) is made in the form of concentric 

coils and is fixed in slots with non-magnetic metal 

(duralumin etc.) wedges, which have enough durability and 

able to withstand quite large centrifugal forces. [43, pp. 83-

90; 44]  

 

As already mentioned in connection to (7), DC current needs to be supplied to the rotor 

for the TG to actually generate electricity. It can be supplied from one of few sources:  

● DC power generator installed on the same shaft with TG  

● External rectifier that uses a part of the stator output current (solid-state, i.e. 

without moving parts)  

● Brushless excitation with rectifying system mounted on the shaft next to the rotor  

                                                           
13 hysteresis losses are caused by specific behavior of magnetic parameters of ferromagnetic materials 
(e.g. iron) during current fluctuations (Fig 53, Appendix), eddy current losses - by parasitic current in 
unwanted direction present e.g. in large conductors 

Figure 28 a. Not yet wound 
320MW TG rotor, b. Same rotor 
with winding in place 

Figure 27 600MW TG 
stator winding with water-
cooled windings [41, p. 21] 
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First two sources require a commutator in the form of slip rings and carbon brushes, the 

last one just has simply more complex structure with the purpose to eliminate the necessity 

of a commutator. [41,42] 

The cooling system is also a very important element of any large generator, because 

overheating is a big problem in a several meters long constantly working rapid rotation 

machine. In TGs of various power-output ratings different types of cooling are used: in 

low power smaller (less than 30MW) generators it is a closed air cooling system; in larger 

more powerful generators hydrogen is used instead of air as a more efficient solution, it is 

over-pressurized by about 0.05 atm to prevent air from getting inside the hull and forming 

a dangerous mix. In generators of more than 150MW output hydrogen in the system is 

over-pressurized to 3-5 atm, and in all aforementioned cases multi-flow radial cooling is 

used, basically a direct cooling of rotor where air or hydrogen is in the closed loop with 

cooling chamber and it passes stator core and the gap between stator and rotor. In larger 

more than 300MW more efficient methods are applied – direct cooling of winding 

conductors with water or hydrogen via the use of hollowed conductors or conductors with 

ventilation channels respectively. [44] 

 

On the other hand, structure of a traditional motor is much simpler, even when it performs 

e.g. a demanding function of driving a powerful district heating pump. If TGs are usually 

synchronous machines, apparatuses devised with a motoring function in mind, on the 

contrary often are asynchronous, i.e. have a rotor spinning at the slightly slower rate than 

the “synchronous speed” – stator magnetic field rotation rate (and when generating, rotor 

is rotating slightly faster than the field induced in the stator). These motors are called 

“induction motors” and this type is mostly represented with “squirrel-cage” rotor type 

motors, when industrial application is in question. “Induction” part comes from the fact 

that the rotor current is induced by the stator via electromagnetic induction14 rather than 

from direct feeding from elsewhere: this means that there is no necessity for commutation 

with slip rings and brushes, thus simplifying construction. “Squirrel cage” is a suitable name 

due to the rotor core structure, that is basically a short-circuited cage frame installed on the 

shaft (with laminated steel in the frame). Overall structure provides admirable reliability 

and easy maintenance, thus making this type of 

motor a welcome choice for driving the majority of 

mechanisms around a PP of variable sizes, e.g. fans, 

motors, pumps transportation conveyors etc. The 

cooling requirements are quite simpler than those of 

a TG, usually realized with a fan attached to the 

opposite end of the motor shaft to direct the air 

flow onto the hull. Same as monitoring devices - 

normally only a temperature sensor is present by 

default on larger machines. [41, 42] 

                                                           
14 current is induced via this difference between the mechanical rpm of the rotor and rpm of the stator 
field, i.e. this difference (called “slip”) is present also during steady state operation – for it satisfies the 
change of flux condition of the induction law. 

Figure 29 A cross-section of a typical 
induction motor, courtesy of ABB  
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3.3. Transformation 

 

The necessity of transforming electrical current comes from the fact of greatly differing 

levels of the voltage/current on the generator output, magnitudes required for efficient 

transmission and for application at the consumer end. Also, real-time flexible conversion of 

supplied electricity by a frequency converter allows for efficient speed control in the AC 

motoring applications (e.g. district heat pumping) where it might be useful. This subchapter 

will have discussed these two electricity transformation methods. 

3.3.1. Transformer 

There are two basic types of power transformers important on a PP: step-up, e.g. to change 

a relatively low voltage at the generator output into high voltage suitable for transmission 

(with levels up to 500kV depending on the distance of transmission); and step-down, e.g. 

to lower the voltage level to desired magnitude (down to a minimum of 230V for local 

applications such as lighting). 

Aforementioned basic transformer structure remains 

unchanged disregarding the magnitude of the current 

handled by a unit: magnetic core with windings of 

particular number of turns (e.g. three-phase units typical 

for PPs and substations, fig. 30). Step-up and step-down 

functionality is defined only by the number of turns in 

primary and secondary windings (also possible a tertiary 

and more windings if there are more than one level of 

output voltage). The core is made from high-grade iron 

(also laminated just as motor/generator stator core) or a 

more advanced alloy, depending on the application and 

requirements, windings are normally copper. Usually, 

internals are submerged in oil, for it provides cooling 

while being dielectric (non-conducting). Heat dissipation 

is important in transformer operation, since approximately 2.5-5% of power transformed is 

wasted as heat (caused by hysteresis and eddy current losses in the core, and copper losses 

in the windings15) which can be significant considering over 100000kVA rating devices. 

System components differ relatively to the power rating of the transformer apart from the 

size, though:  

• power inputs: terminals that connect the transformer to busbars or cables have 

different isolative solutions applied to - ceramic, oil, polymer, SF6 (hexafluoride) 

etc.   

• cooling: radiator, forced air ventilation, circulation of oil etc. 

• control mechanisms: voltage reduction via variation of the number of turns used in 

a winding  

                                                           
15copper losses – the same as losses in conductors, caused by the resistance of metal, hence also called 
“I2R losses” being practically the power wasted on heating the conductor. 

Figure 30 A modern LV/MV 3-phase 
transformer (up to 4MVA), Siemens 
GEAFOL Neo, courtesy of Siemens AG 
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• additional equipment: gas relay (malfunction causes gas to form from degrading oil, 

the relay shuts down the faulty machine in case there is this gas detected), 

temperature indicator, oil level indicator etc. 
[41,42,35] 

3.3.2. Frequency converter 

Often also called “Variable Frequency Drive” (VFD), this type of device mainly serves as 

an accurate speed controller, as it has already been mentioned. Apart from the simple 

function of variating rpm of a motor, it has other useful functions:  

• gradual smooth starting and controlled braking, contrary to the full-blown on/off 

that loads a motor significantly reducing its lifespan 

• efficient power supply at other than nominal speeds, granting economic benefit 

during operation if compared to operation without VFD  

• speed stabilization during load fluctuations 

• drive diagnostics (also the motor and its power feed diagnostics) and flexible 

adjustments 

Structurally, a variable frequency controller consists of several major parts: a rectifier, DC 

bus and a Pulse Width Modulation (PWM)-controlled inverter. Rectifier, normally in the 

form of diode/thyristor (electronic components allowing current to pass only in one 

direction) bridge that converts AC to DC with some ripple present. DC bus contains 

additional components to eliminate ripple, thus provides filtering function. PWM-section 

of the converter is normally a transistor-based16 bridge that produces pulses of required 

frequency and magnitude thus producing fully controlled AC current that in turn drives the 

motor. All of this is complemented by sophisticated electronic 

measurement and control devices that are responsible for the 

converter output control, taking into account feedback from the 

motor itself and the preset program or command fed.  

The output control schemes are following: 

• Scalar control: V/Hz, “Volts per Hertz”, simple linear 

frequency control suitable for non-demanding applications 

where some inaccuracy is acceptable 

• Vector control: provides control over magnetization 

current in the rotor thus yielding very accurate rpm 

regulation, albeit requiring sophisticated hardware and 

software. Can be used with sensors for improved accuracy.  

• Direct Torque Control, another type of efficient vector 

control with torque control in mind, slightly more simple 

and quicker to respond, although less accurate if used 

sensor-less (without rpm measurement) 

[43, 44] 

                                                           
16 transistors are switch-type components that have the current pass-through on/off function controlled 
by applying low voltage over its terminals 

Figure 31 ABB ACS550, 
modern compact wall-
mounted VFD for drive 
control of up to 315kW, 
courtesy of ABB 
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4. Condition monitoring and automation 
 

All of the previous chapters described the structure, main components and basic theory 

behind PP operation. One could notice - it is not necessarily each component is the culprit 

of overall complexity and fault sensitivity, but all of the components required to be 

working constantly and in tandem at high loads. Just one malfunction in any of the main 

sections of a cycle and the entire system needs to be abruptly disabled both for the safety 

of environment and operating personnel, as well as for preservation of the cycle elements 

still retaining integrity and functionality. With this in mind, majority of the vital 

components is duplicated for failsafe and load equalizing reasons – feedwater pump, 

district heating pump, air and flue gas fans, piping etc. Whilst more expensive, large and 

sophisticated components (e.g. boiler) are not duplicated, but there are often additional TG 

units (or entire cycles) built for a PP to have some extra capacity: these normally can have 

load transferred to them in case of emergency so that the PP is never rendered completely 

powerless 

Next are going to be discussed: vulnerabilities, the most common and effective methods to 

monitor them and prevent malfunctions, as well as automation systems allowing for user-

friendly monitoring over an entire power plant from one place. 

4.1. Weaknesses 

This chapter will include common malfunctions for each node in the cycle. Most parts 

share similar vulnerabilities based on the structural rigidity depending on the strength of 

material used, where the most differences come from the type of stress that given part has 

to withstand. Some weaknesses for majority of functionally similar nodes are basically the 

same: 

• excessive thermal and mechanical stress of heat exchangers – the effect can be 

reduced with higher quality materials and accurate control 

• corrosion of heat exchangers due to impurity of water – prevented by water 

chemistry processing (control and filtering), higher quality materials and coatings 

[49] 

• bearing wear of rotating machinery of any size and function – lessened by oil 

supply systems and timely maintenance.  

• any other sort of pre-estimated end of lifecycle/functional effectiveness, e.g. 

clogging (BH) or electrode wear (ESP) in filtering devices – solved by timely 

maintenance or replacement  

The more specific common vulnerabilities/malfunctions and their solutions are going to be 

briefly discussed further in this chapter. 

Any type of boiler being a vast structure made of metal, is mainly susceptible to the damage 

of the material that internals are comprised of. Apart from the obvious thermal stress from 

high temperatures and pressures, there is also a common problem of ash fouling/slagging 
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in coal-fired units, caused by fly ash getting collected on the surfaces of heat exchangers. 

Thus, ash reduces the efficiency of heat transfer requiring in the end to run the boiler at 

higher temperatures to upkeep the performance of a PP. For this reason, the sooth blowers 

(producing jets of steam on all levels of heat exchanger piping) are employed to overcome 

this problem. The problem can be detected by lowered heat output of the boiler. [50] 

Steam or gas turbine, as a delicately shaped element comprised of slim parts (blades) 

operating in aggressive high-temperature environment, is prone to “creep” or gradual 

deformation due to material fatigue. This phenomenon is common for both steam and GT 

turbines and requires advanced alloys - the more advanced the higher the operating 

temperature is. Prediction of the creep happening can be realized not only with direct 

calculation of power outputs (where lowered performance at normal parameters would 

indicate ongoing damaging), but also with mathematical modelling (ML methods: 

inaccurate linear creep/damage prediction, more accurate non-linear or an ANN method). 

[51, 52] 

 

Performance of a coal mill can suffer from a variety of factors combined: high moisture 

content in the coal, rapid load changes and high coal demand by the process. This might 

cause some quantity of coal dust to remain moist and begin to accumulate within the mill 

that in the end might lead to this excess of accumulated fuel to abruptly get into the 

furnace thus possibly causing an overheat. This can be prevented by more sophisticated 

control with an assistance of predictive mathematical modelling. [53] 

 

Pumps on the other hand have a purely hydraulics-related issue, common for hydraulic 

machinery overall: cavitation. This phenomenon occurs when the local pressure of the 

working liquid becomes lower than the pressure of the liquid in vaporous form at current 

temperature. This causes vaporous bubbles to form at the location of the pressure drop, 

that in turn cause pump performance decrease, increased impeller deterioration and 

increase vibrations that affect the deterioration rate of both pump shaft bearings and 

bearings of the motor that drives the pump. This can be prevented by correct piping 

construction on the suction side of the pump, ensuring stable high pressure. [54] 

 

For TGs, according to statistical data presented in [55], primary causes of generator 

stoppages starting from most common: damaging of shaft oil seals, weakening of mounts 

of frontal parts of stator winding, fluffing of stator end core packages and few others, 

significantly less common. Although, the shaft seal related problems are much more 

common than stator-related ones, it is the stator malfunctions that cause the most down-

time or overall power generation deficiencies. Additionally, there are malfunctions which 

are unlikely but could lead to catastrophic failures in case they happen: fissures in the main 

shaft, fissures in the rotor banding parts and significant hydrogen leak, all of which lead to 

total TG destruction with fire or even explosion if not addressed rapidly enough. The only 

solution to these possible problems is thorough monitoring and predictive maintenance. 

The primary weakness of a transformer is the insulation of its windings due to constant 

electrical and thermal stress - their deterioration leads to short circuits and severe damage 
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with performance drop. For this reason, the most important transformers may not only 

their I/O electrical parameters monitored but also the composition of the gas produced by 

the oil heated to temperatures beyond nominal. The gas analysis can also be bolstered with 

an AI technique (ANN) as presented in [56] to point at the type of fault present within 

(overheating, arcing, etc.) by detecting particular chemicals in the gas associated with 

known fault.  

4.2.  Monitoring techniques 

Nevertheless, most of these primary failsafe measures do not remove the necessity of 

monitoring the status of each component and working fluids. Such monitoring is realized 

with the help of countless sensors of various types installed in important spots, often 

duplicated so that the more important the measurement is, the more duplicates are 

installed, e.g. TGs having numerous temperature and pressure sensors at each step to 

provide the most accurate and backed-up measurement possible. 

 

Perhaps, temperature measurement is the most useful, versatile 

and thus common, for it can quickly indicate overheat or other 

deviation from normal operating temperature due to wear or 

even electrical malfunction/overload. Temperature is measured 

off basically every but the smallest machines (coolant bulk 

temperature, hull temperature), mechanisms (e.g. bearings) and 

piping sections (to monitor the working fluid). In a more 

important machinery, there can be numerous temperature 

sensors measuring basically the same temperature, e.g. GT 

exhaust temperature (Fig. 32). [57] 

 

When working fluid is in question, an equally important status 

parameter is the pressure. Often located after pumps, along 

the piping, in a manner that there are numerous 

measurements in the same part of the cycle. Just as temperature sensors, they are used to 

monitor pressure of all fluids in all parts of the cycle: steam, feedwater, district heat water, 

coolants, lubricants, intake air and flue gas. Pressure levels can indicate the health of pumps 

and integrity state of the piping, and can be used for other calculations. 

Another fluid related measurement is the flow rate monitoring in the feedwater, coolant 

water and fuel supply department. As it has already been mentioned in the beginning of the 

theoretical chapters, flow rate is a crucial quantity, that can be used to instantly define the 

heat transfer between two known points, knowing other parameters (pressure and 

temperature). [58] 

 

Another technique employed on modern PPs is monitoring the chemical compositions of 

substances. This is done to ensure the quality of the feedwater supply, i.e. absence of 

unwanted particles in the fluid from various parts of the cycle that might cause erosion of 

heat exchanger conductive surfaces. Additionally, TG lubrication oil can be monitored for 

Figure 32 GT flue gas temperature 
measurement (wired sensors can be 
seen mounted radially on the outer 
rim), Suomenojan PP 
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presence of debris (signs of bearing deterioration) or signs of thermal decomposition due 

to overheating. Also, coolant gas in a TG can be monitored for traces of thermal 

deterioration of insulation (pyrolysis). [59, 60]  

 

For all rotating machines, vibration of known estimated magnitude is a normal companion 

during operation. Nevertheless, anomalies in vibration patterns can indicate a wide variety 

of problems starting with trivial bearing wear and up to rotor insulation faults causing 

imbalance in the magnetic field and thus noticeably increasing vibration of the shaft at 

nominal speeds. Pattern deviations can be only detected either through thorough offline 

analysis, or online via a computer complemented with ML algorithm-based software that 

can quickly process large amounts of data and compare them with previously recorded 

trends of vibration at normal operation.  

When a vital mechanical appliance is in question (e.g. feedwater pump), monitoring a 

lubricant (oil) level in the system is also commonly applied. This is useful along with 

vibration monitoring, because it allows to detect a lubrication system general malfunction 

before it causes a significant temperature increase in the bearings when they already started 

to deteriorate. [41, p.159, pp. 177-181] 

 

If one to view effective TG electrical CM techniques directly 

related to the rotor, the first to mention would be a search coil. 

This is a type of magnetic flux measuring sensor, installed in 

the air gap between rotor and stator (Fig. 33). Data received 

from it is analyzed to detect abnormal fluctuations that would 

indicate the oncoming rotor winding insulation failure. [61]  

The other types of TG electrical CM is directed more towards indication of stator 

insulation integrity problems. The operation of this type of sensors is aimed at detection of 

partial discharge (PD) – phenomenon occurring when there is a small cavity inside the 

insulation material (e.g. air bubble) or just the first signs of insulation wear begin to 

manifest. This phenomenon can be detected as a short pulse in the stator output, that can 

be indicated by different types of sensors (measuring charge in the capacitors installed on 

the stator output, or antenna-like RF sensors) whose data is read with the aid of a ML 

technique or by using mathematical manipulations to filter the noise out. [6; 41, pp. 238-

240] 

4.3. Automation  

Each of the aforementioned measurement techniques is represented by a number of 

sensors – ranging from just a few (e.g. PD detection) in one location up to hundreds (e.g. 

temperature and pressure) across an entire PP. Overall, this is already an immense number 

of signals not to mention also signals from actuated control valves (position data), switches 

and machinery statuses and control signals. All of these signals require a common location 

where they are received, organized and used to analyze and control.  

Figure 33 Search coil 
installation [61]. 
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4.3.1. Hardware and software 

In terms of hardware, the location where all the analysis data arrives from a myriad of 

sensors and actuators is a cross-connection relay room containing numerous “closets” that 

in turn contain I/O modules that send and receive these signals. Signals from sensors 

located in the vicinity from one another (e.g. from the same apparatus) are normally carried 

within a single cable containing several conductor pairs with a grounding 

conductor/shielding for interference protection. Cable is connected to cross-connection 

slots where each conductor pair or cable is then connected to a suitable I/O unit to 

perform in turn the send/receive/interpret signal functions, where modular structure 

allows for easy access in case of need of modification or repair. These units can be either 

PLCs (programmable signal communication unit, versatile modules) or RTUs 

(preconfigured communication units, e.g. Modbus RTU), depending on the application and 

requirement. I/O modules are then connected to CPUs and other controller units that 

organize the data and transmit it to servers, from where it becomes available on monitoring 

and control computers. (Fig. 34)

 
Figure 34 Example of automation communication hardware arrangement, ABB Symphony Plus 

In terms of software, there are 2 main layers to operate and monitor the system: visual and 

actual programming. Visual layer is where all the data and available triggers (actuators) are 

displayed on the schematic drawing of the process (Fig.35). From this schematic the plant 

is actually monitored, controlled and it even enables some malfunctions to be superficially 

analyzed. As for the programming layer, it is used to define connections between particular 

nodes (to program e.g. one action to affect several actuators) in the background: their 

addresses (I/O ports) and labels.  
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Additionally, all the data is archived and stored within a relational database (usually in some 

form of SQL17-based language) on a local or remote server as timeseries. This allows 

remote access to data other than real-time 

using specific software tool or service, such as 

a data historian (e.g. Schneider Electric 

Wonderware, Siemens SIMATIC Process 

Historian, GE Historian and many others). 

Historian services often offer connectivity to 

third-party database solutions and provide 

user-friendly access to the data stored for 

analysis. Some solutions are hybrid, i.e. having 

both the database and historian functionality 

offered as a suite, e.g. OSIsoft® PI 

System®.  

 

All of the aforementioned levels (sensor/machine → I/O → database/historian → 

interface) comprise the SCADA and DCS architectures. SCADA stands for “Supervisory 

Control And Data Acquisition”, whilst “DCS” stands for “Distributed Control System”. 

Both used to be distinctively separated in the past - DCS is the lower-level local control 

network (sensor/machine → I/O → interface, local with elaborate control, e.g. boiler 

initialization sequence) under control of higher-scale SCADA (DCS data → 

database/historian → interface, with remote access capabilities). With DCS, as more 

process-oriented system, having more functionality for direct local control, while SCADA, 

as more data-oriented hierarchy, having broader functionality for remote data access.  

Currently, both types have evolved and intertwined to the point where they became very 

similar in terms of functionality, e.g. remote networking capabilities that used to be part of 

the SCADA are now accessible directly for DCS level devices via internet protocols (e.g. 

Modbus TCP). [62] 

Additionally, an OPC UA (Open Platform Communications Unified Architecture) 

specification provides means for unification of all automation systems and data 

access/transmission in terms of standards and protocols applied on all levels (from local 

PLC level to cloud-based servers). This specification is supported by all vendors of 

industrial hardware/software and thus, an OPC server installed in-situ, can become a 

binding link for any hardware with any third-party cloud18-based software that does not 

support some of the local PP data standards (e.g. database) directly. [63]  

4.3.2. Data transmission protocols 

Measurement and control data needs to be transmitted and accessed both locally (within 

the station) and remotely (anywhere, e.g. cloud services). This can be achieved only by 

                                                           
17 SQL - Structured Query Language that databases are built upon, some larger companies like Microsoft 
or Oracle have their own variations of SQL or other similar query language 
18 Cloud services are usually provided (by software giants like Google, Amazon, Microsoft et al.) in the 
form of flexible server clusters with remotely accessible “virtual machines” – computers with scalable 
computational power and data capacity with required software installed. 

Figure 35 Example of an automation system UI: boiler, 
DH and steam TG, Suomenojan PP (Metso DNA system) 
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adopting widely spread transmission protocols that allow data transmission between 

different devices produced by different manufacturers. These protocols are numerous, 

both proprietary and open, for local network and distant long transmission via internet, few 

of the most common of each type are going to be briefly described.  

There are different sets of commonly used protocols depending on the type of 

transmission, but first, some of the most common protocols that local measurement and 

control signal transmission can be realized with: [64] 

• DC 4-20mA analog signal, “current loop” -  perhaps, the most simple and 

widespread type of sensor connection, that is realized by using one pair of 

conductors. Sensor either adjusts resistance according to measurement value, thus 

altering the current in the energized loop (passive sensor, loop energized 

@24VDC) or forms the current signal (active, i.e. with external voltage supply) 

itself.  

• HART (Highway Addressable Remote Transducer) protocol – physically akin to 

the previous connection, only now implying additional capability of signal 

frequency modulation of the current signal with modulating fluctuations of 0.5mA 

in magnitude, (when several devices are connected in “Multi-drop” mode, current 

becomes locked at 4mA), available to the sensor/device, thus allowing several 

devices installed on one line and signal becoming in essence digital. In the digital 

mode, devices in the network obey the master/slave19(single device connection 

allows also continuous signal broadcasting) communication order. Protocol (just as 

other smart digital protocols) allows for error checking - in case of weak/distorted 

transmission errors are detected, and “resend” operation is imposed. 

• Modbus is another master/slave series communication protocol widely used for 

connecting many devices with PLCs, differs from HART in the fact that analog 

inputs are separate (and converted) with transmission between slave and master 

being purely digital. Simple overall, versatile (supporting single- and multi-pair 

twisted pair shielded cables) and robust, albeit relatively slow compared to more 

modern protocols. Original Modbus (not the modern Modbus TCP internet-

adapted variation), supports only one master device and very strict master/slave 

order – slaves cannot inform/interrupt master device even in case of malfunction 

or other exceptional state. 

• Profibus (PROcess FIeld BUS) – protocol similar to Modbus (digital, master/slave, 

widely available), but more modern (original Modbus has been developed in the 

1970s, Profibus has been devised in the 1990s), supporting much higher 

transmission rates, multiple master devices and is suitable for use in hazardous (e.g. 

explosive) environments. It supports only the multi-pair shielded or optical cables, 

has more complex hierarchy both physically and communication-wise than the 

Modbus. 

                                                           
19 communication order, where “Slave” devices are polled by the “Master” unit, i.e. slave sends data 
only when requested by the master. 
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Remote communication protocols used for data transfer across long distances, e.g. via 

internet, are usually built onto the TCP/IP - Transmission Control Protocol/Internet 

Protocol - two layers of protocols commonly used for all kinds of networking and distant 

data transmission. TCP/IP protocols basically organize transmission in a vast worldwide 

network that is internet. Additionally, in the era of cloud-computing when local data is 

often continuously sent to remote servers, there is a need to provide secure encrypted (Fig. 

36) connection to avoid unwanted access especially when a functionality of remote control 

is present. With this in mind, several security transmission protocols are used for industrial 

data-transfer, the two most common ones being: 

• SSL (Socket Security Layer) and TSL (Transport Layer Security) that has evolved 

from it, are widely used key-exchange protocol that excludes unauthorized access 

and ensures integrity of data transferred. The data is encrypted, and encryption keys 

are automatically generated every connection, the encryption algorithm and keys are 

defined before any portion of data is sent. Whenever the secure connection is 

requested from a server supporting SSL/TLS, a digital certificate signed by a 

certificate authority is sent, that ensures the genuineness of the server and the 

encryption method. [65] 

• SSH (Secure Shell) is another secure protocol, similar to SSL/TLS, with main 

difference being expanded functionality, e.g. capability of direct remote control 

over the server via login. There are no certificates of SSH verifying such 

connections.  [66] 

  

Figure 36 Basic schematic of a secure internet connection [66] 
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5. Machine learning  
 

Today, when computer and information technologies have evolved to the point that we 

can simulate entire virtual worlds on a single compact machine and then send the data to 

another machine within adequate time frame. Definitely, such computational power and 

network bandwidth can be of most usefulness in the field of electricity generation (and 

industrial applications overall) with vast arrays of signals required to be processed 

continuously. Moreover, the need especially persists since standard automation systems use 

human personnel to operate and monitor processes – whilst there is no problem with 

operating a plant, continuously monitoring thousands signals from a myriad of sensors is 

physically impossible no matter how large the number of personnel is. Also, value limits at 

which a signal makes the automation to produce an alarm are usually set in the nearly-

critical region, for otherwise alarms would flood the control monitors at each minor 

fluctuation. This meaning that often when the automation system has produced an alarm, it 

is possible that significant damage has already been done. 

This is where advanced computer technologies bolstered by AI methods and Internet of 

Things20 solutions have become extremely useful. Whilst the subject of AI is rather broad, 

including e.g. image recognition, voice processing and other forms of imitation of human 

intelligence, a separate form of machine intelligence is discussed in regard to predictive 

maintenance: machine learning. ML enables a computer to be capable of data analysis and 

decision making based on learned data examples, e.g. whether a slight departure from 

normal readings is a momentary consequence of another change in a process, a single 

chaotic fluctuation in the sensor data (either can be ignored) or it is a systematic deviation 

signaling of oncoming failure that needs to be reported urgently.    

Not only does this approach allow to warn in advance about a deviation that might have 

gone unnoticed otherwise, but it also does so for a constant flow of intertwined data that 

would be impossible to process in this manner with any other method efficiently. This 

constant vast flow of various sensor readings is commonly addressed to as “big data”. The 

concept of big data has imposed challenges that would have been impossible to overcome 

in the past: amount of data needed to be gathered, transmitted and processed is enormous. 

In case with PPs the data requires entire server networks for it to be successfully 

manipulated even now, while in the past there was no feasible solution for this at all. 

Vast computational power is required because AI techniques used for analyzing the data in 

essence are mathematical models consisting of myriads of interconnected mathematical 

functions. These functions are able to classify the input data or use it to predict expected 

values, correlate values to each other and detect abnormalities. But to do this efficiently, 

such model needs to be “trained”, or in other words needs to optimize itself (or “learn”) 

using an example set of data, in order to accurately detect the “abnormal” values. The area 

of ML optimization is actually the one where the main differences and challenges lie, and it 

is going to be discussed in this chapter along with the basics of learning algorithms.  

[67; 68, pp. 2-5] 

                                                           
20 new trend in the current age of smart computerized devices meaning the network of such devices 
communicating with each other and user, locally and over internet. [67] 
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5.1. Regression 

 

Perhaps, regression type of ML algorithms is the best to begin delving into the subject. 

Main purpose of regression algorithms is to form a mathematical function that is able to 

forecast output from input fed into the function. The simplest regression model is the 

linear regression, that mathematically is represented in the following form (common for all 

linear algorithms):  

�̂� = 𝒘T𝒙 + 𝑏    (10)  

Where �̂� is the estimated output, 𝒙 =  [𝑥1, 𝑥2, . . . , 𝑥𝑛] is the 

input vector (set of input values), b is bias (increasing accuracy if 

linearity is not in line with the coordinate origin) and  𝒘T =

[𝑤1, 𝑤2, . . . , 𝑤𝑛]  is the transposed21 weight vector. Weight is the 

concept common for all similar-purpose ML algorithms, that is 

the target for training. Training process defines the weight values 

that are used afterwards to predict output based on input and is 

done by feeding in the training datasets of both input and output 

values (𝒙𝐭𝐫𝐚𝐢𝐧, ytrain) – this is also a definition of supervised22 

algorithm.   

Performance of this simple model can be increased via analyzing 

the Mean Squared Error (MSE) between m estimated and actual 

output value pairs in a test subset: 

MSEtest =
1

m
∑ (�̂�𝑖

test − 𝑦𝑖
test)

2𝑛
𝑖    (11) 

MSE is also used to define the most appropriate weight in linear regression in the simplest 

ML method – vector 𝒘 producing the lowest MSE ((11), only from “train” dataset) is the 

most optimal (Fig.37): 

∇𝒘𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 = 0 → 𝒘 = (𝑿(𝑡𝑟𝑎𝑖𝑛)𝑇𝑿𝑡𝑟𝑎𝑖𝑛)
−1

𝑿(𝑡𝑟𝑎𝑖𝑛)𝑇𝒚𝑡𝑟𝑎𝑖𝑛     (12) 

This operation, in the end, is computationally basically the simple 𝐰 =
𝒚𝒕𝒓𝒂𝒊𝒏

𝑿𝑡𝑟𝑎𝑖𝑛 , where 

𝑿𝑡𝑟𝑎𝑖𝑛 is the complete training input matrix (all the input vectors) and 𝒚𝑡𝑟𝑎𝑖𝑛 is the training 

output vector. Overall, this method while simple, can prove rather inaccurate (as an 

example of method efficiency – around 30% error for linear regression in a PM experiment 

conducted in [69]), rending it useless in demanding non-linear tasks on its own without 

modifications or supporting algorithms.  

[68, pp. 105-108; 69] 

                                                           
21 transpose is vector/matrix related manipulation where rows become columns and vice versa, usually 
for multiplication purposes – turning product of 2 vectors/matrices of suitable size into a single 
value/vector/matrix depending on the order of the calculation and target of a transpose  
22 supervised, i.e. an algorithm is given not only the inputs (“features”) but also the correct outputs 
(“labels”) associated with them. In unsupervised training, algorithm is provided only with inputs. 

Figure 37 Linear regression 
(upper) and MSE optimization 
(lower) [68, p. 107] 
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5.2. Classification and kernel trick 

 

Another important task of AI based algorithms is to produce automatic classification 

(labeling) of the input data (e.g. this approach used in image recognition), one of the 

primary methods devised with this function in mind is the Supported Vector Machine. 

Akin to the simplest ML technique, the linear regression, SVM at its core is linear, only the 

idea behind the linearity is different. All the input values are separated (labeled) into two 

groups during training, e.g. A and B, with corresponding to simple output values 1 and -1:  

y𝑖
𝑡𝑟𝑎𝑖𝑛 = {

1, if 𝑥𝑖
𝑡𝑟𝑎𝑖𝑛  ∈  A

−1, if 𝑥𝑖
𝑡𝑟𝑎𝑖𝑛  ∈ B

     (13)  

Then, the imaginary line (as (10)) is drawn between the groups and the margin is 

maximized between the nearest values from the different groups to provide better accuracy 

and the vectors from the imaginary line to boundary x values are the support vectors (Fig. 

38): 

w = ∑ 𝛼𝑖𝑥𝑖𝑦𝑖
𝑛
𝑖   (14) 

𝐿𝐷 = ∑ 𝛼𝑖
𝑛
𝑖 −

1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖

𝑛
𝑗 𝑦𝑗𝑥𝑖𝑥𝑗

𝑇𝑛
𝑖    (15) 

Often, the bias term is dropped from calculations because 

data is assumed to be zero mean. 𝛼𝑖 is coefficient, that is 0 

for the points beyond margin (and in correct class 

boundary), is linear to the estimated output function and 

it is the value that is subject to optimization. Margin M is 

maximized via maximizing 𝐿𝐷, that represents (after some 

mathematical manipulations) the difference between the sum of all boundary coefficients 

and sums of products of those coefficients and respective datapoints. [70; 68, pp. 139-141] 

When training is complete, the new input values can be accordingly defined to one of the 

preset classes. Additionally, SVM can be applied for regression analysis because of the 

functional similarity to linear regression model. There, the margin boundary maximization 

feature can be used to adjust “fitting” of the model to data (margins are adjusted to have 

the datapoints within, not without as in classification SVM). [71] 

Some data might follow a non-linear pattern, following which can be more useful than 

following a straight line. There is a technique employed to adjust a model to this known 

non-linear behavior, called the Kernel trick. It is based on the idea that a linear function of 

an algorithm can be represented by a sum of dot products23 of example input values. This 

allows replacing the actual input values in the main function (classifier function) with a 

kernel function that represents a dot product of the trained and unlabeled feature functions 

and alters (15) as followed: 

                                                           
23 dot product for ordinary real numbers would be a normal product and in terms of vectors, it would be 

a sum of products, e.g. 〈𝐱, 𝐲〉 = 𝐱T𝐲 = ∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖  

Figure 38 a graphical 
representation of the SVM 
algorithm [70] 
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𝑥 → h(x) 

K( 𝑥𝑖, 𝑥𝑗  )  =  〈h(xi), h(xj)〉  

𝐿𝐷 = ∑ 𝛼𝑖
𝑛
𝑖 −

1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖

𝑛
𝑗 𝑦𝑗K(xi, xj)

𝑛
𝑖     (16) 

Where 𝐾(𝑥𝑖 , 𝑥𝑗) is a kernel function, the most applied type being the radial basis function 

(or Gaussian kernel): 

 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒
−

||𝑥𝑖−𝑥𝑗||
2

σ2 , with 𝜎 as a tuning parameter. 

The kernel trick is especially important because it can be applied to any simple linear 

method (e.g. linear regression) to fit the data better and thus to dramatically increase 

accuracy for either classification or regression. Also, it doesn’t increase the computational 

difficulty of the algorithm, which is important in case with complex datasets. Overall, SVM 

can be applied for maintenance-related tasks even on its own for a less demanding task: 

particular part of machinery can be continuously analyzed to be classified as “normal” or 

”abnormal” to evaluate the condition of the given part, as suggested in [70]. 

[68, pp139-141] 

5.3. Clustering and unsupervised learning 

 

If supervised ML models are trained via known input values with known labels (output 

values), unsupervised algorithms imply only availability of the input data. This type can be 

useful when there is a need to define the structure of the dataset without labeling, i.e. to 

cluster the input data into groups based on the similarity of features. This approach is 

logically called “Clustering” and is suitable for preliminary data analysis with the purpose of 

pre-processing to learn basic correlation between an array of input features. 

One of the main techniques in this type of algorithms is k-means clustering. It can be 

represented as a k-dimensional vector 𝒉 =  [ℎ1, ℎ2, . . . , ℎ𝑘] that contains information on 

whether or not input datapoint 𝑥𝑖 belongs (thus ℎ𝑖 = 1) to a cluster or not (i.e. 0). 

Furthermore, there is assumed an equal amount of cluster centroid vectors [𝝁𝟏, 𝝁𝟐, . . . , 𝝁𝒌] 
that describe the middle point related to the cluster of datapoints. Vicinity of a datapoint 

can be defined e.g. via calculation of average distance with shortest defining the cluster the 

datapoint belongs to.  

 

Principal component analysis (PCA) on the other hand is a clustering related algorithm that 

is based on dimensionality reduction via mathematical transformation. First, a manipulation 

called Singular Value Decomposition (SVD) is applied to the dataset, that in essence is a 

matrix transformation used here to obtain the principal components: 

𝐗 = 𝐔𝚺𝐖T, where U, 𝚺 and W are the singular vector matrices of different compositions. 
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The main goal is to perform transformation z = 𝐖T𝒙, where values z are mutually 

independent, and to produce matrix Z of lesser dimension, absent of linear correlations, 

that aims at hidden factor of data variation removal. 

 

Both methods can be used in conjunction for data structuring, or each can bolster some 

other algorithm. According to [72], k-means clustering with prior PCA can be effectively 

used for abnormal behavior detection. A state-of-the-art method of advanced Kernel 

Spectral Clustering method has been devised in [73] based on spectral analysis of vibration 

data from accelerometers – it allows for predicting deterioration of various parts of 

modelled machinery, also with including the possibility of adjustment for either soft 

clustering (overlapping clusters) that could point at “probability of maintenance”, whilst 

hard clustering (clusters are strictly separated) can determine data anomalies and thus 

malfunctions. 

[68, pp. 145-148] 

5.4. Artificial neural network 

 

One of main AI model types for complex applications is called “Artificial Neural Network” 

– it is a combined method capable to be devised for both classification and regression 

purposes, with linear or non-linear data behavior. It usually doesn’t require a supporting 

algorithm for increased functionality and/or accuracy, as often is the case with simpler 

models required to operate complex data. The name implies that it has a sequential layered 

model structure that is reminiscent of that of a human brain (Fig. 39). 

Each “neuron” in the model, i.e. a mathematical 

function, is connected to other ones with a weight 

value, that defines how closely input values are 

connected to each node of next layer in a chain 

fashion (e.g. 3-layer function): 

𝐟(𝐱) = 𝐟(𝟏) (𝐟(𝟐)(𝐟(𝟑)(𝐱))) 

𝐲 =  𝐟(𝐱; 𝛉) 

Where 𝛉 is the set of parameters defining model behavior, that includes weight and 

possible bias (e.g. if linear behavior is considered: 𝐟(𝐱; 𝛉) =  𝒘T𝒙 + 𝑏) 

There can be a plethora of layers: input, output and numerous “hidden layers” in between - 

in this case an ANN is called “Deep feedforward network”, and this is one of the most 

useful types for commercial applications. Hidden layers are exactly the bulk of the entire 

ANN model defining the relation between the input and output data and correlation 

thereof. “Deep” in the name comes from the “depth” of the model, i.e. numerous layers it 

consists of (generally, more than 3), feedforward stands for the direction of propagation of 

the calculation to produce output values.  

Figure 39 simple graphical 
representation of ANN [74] 
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This model can be trained in a number of ways, the more basic (yet still noticeably more 

elaborate than previous ML techniques for simpler models) one is following. Firstly, initial 

values x𝑖 are fed into the ANN to receive some output values y�̂�. This output is used to 

calculate the error (e.g. MSE) between the model estimated output values y�̂� and the 

desired (known) output y𝑖 . Afterwards, the known output y is fed into the network in the 

opposite direction (back-propagation) to define the gradient of the cost function (i.e. 

derivative or change rate of error function against the known x𝑖) that is used in optimizing 

the weight values in the way that the gradient is at minimum (Stochastic gradient descent 

algorithm), thus producing output estimation with the lowest error possible.    

All in all, this approach can be used to define connections between input values and 

predict/determine possible output values. ANN models can be very complex, at the same 

time, increased complexity grants more flexibility and accuracy for the end result. They can 

be employed across variety of applications: from image and pattern recognition to steam 

turbine monitoring or general PP performance monitoring.  

[74; 75; 68, pp. 164-174] 
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6. “Industry 4.0” 

The idea of programmable computers with some sort of intelligence is older than 150 years 

(Ada Lovelace) and the AI techniques have been in development for many decades as well. 

Today, the technological advancement reached the point where it is feasible to widely apply 

various forms of AI not only for experimental purposes on supercomputers (e.g. IBM 

Deep Blue c.1997) but for basically any application where quick computerized analytical 

decision could be useful: from a simple image processing on a smartphone to the 

aforementioned industrial sensor data flow analysis. [68, pp. 1-2] 

With this purpose in mind, numerous ML based big data analysis systems have already 

been developed, offered and deployed worldwide. Usually, these solutions are more than 

just software: they include a business model that in turn contains numerous aspects related 

to implementation of the software in question for a customer in a mutually profitable 

manner. Business model most notably includes:  

• strategy - the purpose of the solution and goals of the company  

• value statement - both for the customer and the company 

• operating model – a bridging component between the purpose and 

implementation 

• implementation – from commissioning to day-to-day use 
[76, 77] 

The latter two points are the most important in regard to this thesis for they contain the 

main differences in the “Industry 4.0” solutions, or in other words in smart AI based IoT 

automation designed to be used practically everywhere from manufacturing plants to PPs 

and smart grids24. Overall, the main technological aspects in terms of product structure, 

operating model, implementation, main technology used in such solutions are to be 

analyzed for the sake of comparison in the following sections. 

6.1. Maintpartner INtelligence® (Remote Access Tool) 

The first PM solution to be listed is the INtelligence of Maintpartner Oy, a Finnish 

maintenance company headquartered in Helsinki. The INtelligence team running the 

solution is responsible for realization of distribution, deployment and active application of 

the AI based software with Remote Access Tool (RAT, fig. 40) being a visual interface. 

Whilst the software updates/tweaks and data processing are provided by partner 

companies.  

                                                           
24 likely the future of current electrical grids, where even private consumer can not only consume 
electricity, but also generate on their own e.g. with a solar panel and feed it into AI-controlled smart grid 
that is able to quickly adjust load balance and isolate anomalies. [78] 



42 

 

INtelligence represents an entire package of services provided to a customer where at the 

core is an industrial signal processing software suitable for both industrial (i.e. 

manufacturing) and energy applications. The package includes:  

• ML analysis software with the cloud service that provides worldwide availability of 

the process analysis  

• data integration with support of various protocols and databases (e.g. SFTP, OPC 

UA, SQL etc.)  

• continuous support after deployment 

 

Additionally: 

• a separate module for optimization via mathematically calculated optimal points of 

operation for maximum efficiency 

• a web-based app is currently in development – for secure access to the data from 

any device connected to the internet 

 

Figure 40 UI of Remote Access Tool 

The operating model is following: 

1) Process model definition, data overview, data connection establishing (2-4 weeks) 

2) Data de-noising, unsupervised ML, model tuning (1-2 weeks) 

3) Model validation and retuning, local RAT users training (1-2 months) 

4) Model handed over to the customer, nevertheless its performance still monitored, 

model training continues (1-2 months) 

5) “Software as a service” (SaaS, subscription business model) with updates, 

INtelligence team support, monthly review (continuous operation)  



43 

 

 

Technically speaking, general modelling is executed by the software based on the initial list 

of sensors (their position identification) provided by the customer. Software then defines 

automatically correlations between signals and their grouping. On this basis and with the 

data being fed from these sensors (possible to access the data via local automation system 

database directly), INtelligence is able to estimate the signal value via sophisticated 

calculations later on. 

The training of a model starts with clustering of the data to group the sensors more closely 

to each other in the model. Next, more algorithms (e.g. kernel regression among others) are 

engaged in succession: they define the correlation patterns between the signals in the 

cluster, making it possible to estimate what the combination of all signals (their outputs) 

should be during normal run (or any other mode of operation learned by the system). This 

makes the solution computationally heavy, demanding a server cluster for its smooth 

operation, yet at the same granting relative independence from personnel – there are no 

features/labels that need to be gathered/chosen manually – only history data is required for 

training. The directly supervised part is initiated after the training is complete: during this 

stage, the team contacts operating personnel on the customer’s site nearly on the daily basis 

to ensure correct model adjustments. As soon as there is significant25 deviation emerges in 

the signal combination, program produces an alarm, then it is a task of an operator 

(INtelligence team member or local user later on) to evaluate the alarm and determine 

whether if it is correct or incorrect. When alarm is rated as either, the software makes 

adjustment to the dataset used for next retraining that is initiated in case of change of mode 

of operation or model expectation inaccuracies caused by other reasons – retraining is done 

during any stage of operation as the need arises. After the majority of adjustments have 

been completed, the predictive maintenance solution is fully commissioned to a customer 

with an ongoing support. In the RAT, all the sensor data is accessible and displayed in the 

form of timeseries (both in real time and history). Models are organized in a pie chart 

manner, representing data grouping that was determined during initial training of the 

model. [79] 

6.2. NEC SIAT (Invariant Analyzer) 

A technique similar in the main idea behind operation: 

System Invariant Analysis Technology employed by 

Tokyo based Japanese NEC (Nippon Electric 

Corporation). Just as the previous example, the 

operation of this method is based on the ML based 

constant sensor data analysis with the purpose of 

anomaly detection.  

Whilst there is no mobile app separately announced, a 

photo of a tablet with analyzer UI is displayed on NEC 

                                                           
25 significance, i.e. alarm boundaries, is defined by the software itself, although an operator can alter 
this in case of need 

Figure 41 Invariant Analyzer UI on a 
tablet [81] 
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web-site (Fig.41). From UI it can be noted that the software also has a capability of 

presenting a model in the form of schematic of actual PP/factory with signal marked onto. 

Additionally, a separate cybersecurity solution is offered as a means to defend against 

external attacks, detect unauthorized network access etc. [81, 82] 

 

NEC working in conjunction with its partner, another Japanese company - Sumitomo 

Corporation, provide this service in the following manner: 

 

1. Verification of the target systems and data collection (1-3 weeks) 

2. Invariant analysis (measurement relationship determination) period (6 weeks) with 

few overlapping stages:  

a. Data preprocessing (2-3 weeks) 

b. Active communication with a customer (4 weeks) 

c. In the end - the report with a briefing section (3 weeks, starting before the 

end of invariant analysis) 

Data collection (as well as first meetings) and communication with a customer is realized 

by both NEC and Sumitomo, whilst data processing and analysis with report is executed by 

NEC only. This process is a sort of a preparation before the full continuous deployment 

on a plant: accuracy and effectiveness of the approach on the given site are verified. 

Additionally, NEC requires a timeseries of target systems data of at least one year for the 

creation of the invariant model. For detection of anomalies there has to be a timeseries 

with an anomaly example and normal run timeseries prior to the anomaly, thus making the 

algorithm supervised, for it needs clear separation between normal and anomaly data.  

As it is implied in the name of the technology, it learns and later analyzes relationships 

between input data that are invariant (unchanging) during normal operation. When the 

invariance is broken, the method allows to point at the source data relationship change and 

alarm users via the Invariant Analyzer software interface. It allows timeseries data (anomaly 

score) to be analyzed at a glance displaying the percentage of deviation. Also, two options 

of analysis are available: quick but more simplified local analysis in-situ (directly from DCS 

data) and a more delayed but complex and deep cloud analysis (from historian/database). 

[80]  

6.3. Avantis® PRiSM (Predictive Asset Analytics) 

Avantis is a package that includes several services and software solutions. The core of this 

package – PRiSM was developed by the American software company InStep (Chicago, US) 

that is now a part of multinational corporation Schneider Electric (Rueil-Malmaison, 

France). [84] 
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The AI analysis software itself can be complemented 

with additional solutions that can be integrated with 

PRiSM (Fig. 42) and used for easier access and control 

over the data. Notably, amongst the array of 

applications is the Performance Optimization Services 

(process optimization by Schneider Electric experts) 

and Wonderware® series of products that include: 

SmartGlance mobile app that makes it possible to 

access the real-time plant data via a smartphone or a 

tablet from anywhere, and eDNA solution that stores, 

displays and analyzes measurement data and allows 

easy access to it (historian). Also, a software developer 

kit (SDK) with an open application programming 

interface are available for Wonderware SCADA interface, 

meaning that it is possible for a customer to develop applications on their own. In terms of 

cybersecurity, additional to security data transmission protocols, authentication and access 

control standard across all manufacturers, there is also a separate cybersecurity solution for 

e.g. network intrusion detection. [85, 86] 

 

The general operational model for the primary implementation is following: 

1. Automation and sensor data connection establishing phase (to DCS, SCADA, 

smart sensors etc.) 

2. Data processing and product information collection 

3. Analysis via machine learning and fault diagnostics 

4. Online application with collaboration of local personnel and Avantis team 

 

The operation of the data analyzing software is based on the OPTiCS algorithm with 

Advanced Pattern Recognition. Overall, the algorithm (or combination thereof, according 

to US patent No. 9,379,951 B2, “Method and apparatus for detection of anomalies in 

integrated parameter systems” that belongs to the company) is based on the historical data 

analysis that is used to build a model via data feature selection (classification into “normal” 

and “abnormal” subsets) with clustering of the selected data set to structure the data 

according with similarities within the subset. Then, the resultant model is tested and tuned 

with cross-validation (self-checking of the model) of the data and can be used for 

monitoring. During the continuous phase, the new data is analyzed via calculation of the 

proximity to “normal” or “abnormal” operation mode clusters, alarming when the input 

data is considered “abnormal”. [83] 

6.4. Uptake™  

The solution “Uptake”, offered by American Uptake Technologies (Chicago, US) is 

another ML based monitoring platform. It has slightly different history of applications 

from the point of focus of this thesis, namely the industrial heavy-duty fleets of 

construction machines (tractors, bulldozers etc.) and city transport, wind turbines and 

Figure 42 PRiSM UI [84] 
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oil/gas gathering industry facilities, and for energy sector it is developed mostly with smart 

grids in mind. Yet this means only that so far, the solution has been employed on smaller 

models largely identical to each other rather than interconnected variable models of a PP. 

Still, the idea is the same and the overall structure as well – the system gathers data from 

numerous sensors, relays it to the main platform server, where it is processed and then can 

be viewed by user. Additionally, it has an emphasis on cybersecurity, being able to analyze 

also possible network trespassing and unauthorized access. Also, it is capable of taking into 

consideration additional external variables that might affect performance – such as wind 

conditions for wind turbines. Overall, the analysis provided by the platform is aimed at 

easy visualization of state of machinery with hints at type of maintenance that needs to be 

conveyed and also the time when it could be critical to do. (Fig. 43) 

 

Figure 43 Uptake UI 

Technically, determination of failures and applicable solutions heavily relies on models 

based on the result of so-called survival analysis, where likelihoods of particular failures and 

error codes (of on-board monitoring systems) are estimated and associated with particular 

variables. According to US patents No. 2018/0060703 A1 and No. 2016/0371584 A1 

(“Detection of anomalies in multivariate data” and “Local asset analysis” respectively) that 

belong to Uptake LLC, the algorithm calculating the deviation of values at its core is based 

on a mathematical transformation of the input data, PCA, that reduces the dimensionality 

and input data type variability. Moreover, while compressing, it also forms the main 

components of the data, thus forming a cluster with general parameters describing the 

entire input subset. Next, the cluster is standardized using z-score26, based on which the 

maximum variable is defined in the transformed data cluster for each input variable, 

                                                           
26 i.e. with regard to standard (Gaussian) deviation  
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forming a threshold. These threshold values, calculated during training period, are stored 

and later allow for effective comparison of new real-time data, for noticeably differing data 

would also deviate beyond the threshold after transformation. After analyzing, the data is 

transformed back to original state to define the actual point of deviation if such took place. 

Additionally, likely is the use of an undisclosed ML learning algorithm for model 

updating/improvement. 

6.5. Siemens Plant Monitor and MindSphere. 

Next, the solutions offered by the German conglomerate Siemens AG (München, 

Germany) are going to be analyzed. The Plant Monitor (part of SPPA-D3000 lineup) is 

offered as a package of the predictive diagnosing software system and a technology server 

from the SPPA-T3000 automation control system (the Siemens-engineered DCS system) 

that is required for the Plant Monitor to run. It can be used even with any non-Siemens 

control system given that the data is transferred via OPC UA server and relayed to a 

separate T3000 server with the D3000 Plant Monitor (Fig. 44). Either way, client has access 

to all of the diagnostics, archiving and monitoring capabilities of the software (additional 

option – SPPA-P3000 optimization software). Akin to the solutions mentioned above, the 

implementation procedure is following: 

• Preparation: model-based description of the processes based on archived data, 

measurement point (tag) collection and selection 

• Training phase, that can last from days to weeks - the period is based on the 

magnitude of fluctuations in the trend data  

• Retraining: model is readjusted in case of insufficiently long initial training phase, 

causing incorrect predictions  

• Normal continuous monitoring 

 

Figure 44 Plant Monitor UI opened inside T3000 app [87]. 
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Technically, this diagnostics system uses a deep learning ANN algorithm (ANN is briefly 

mentioned in the technical description manual, also several ANN and deep learning patents 

are assigned to Siemens, [88]), likely modified with e.g. radial basis function for improved 

non-linear capabilities. The goal is exactly the same: to detect early deviations, only 

approach is different, since ANN is basically a complex model with interconnected hidden 

layers, where the previously described systems mainly used different algorithms in 

conjunction to form a model. Unlike most other systems, that are more of a “black box”27 

type, plant monitor actually requires tags to be chosen and selected, thus including some 

actual human-driven modelling. The training process can be easily adjusted any time with a 

possibility of choosing an exact training period, data sets and even removal of an already 

added abnormal data in the set. Similar flexibility is available also during operation, the 

model can be adjusted and retrained at any time, same variables can be used for several 

models and overall a model can be trained for modes of operation other than normal and 

make adjustments taking into account known aging of particular elements. [87] 

While the Plant Monitor is mostly based on the older technology software that is in the 

possession of Siemens AG, there is a more modern solution available: MindSphere (Fig. 45, 

created in collaboration with SAP that is going to be discussed later in the chapter, [92]). It 

is a versatile IoT cloud platform suitable for various needs that includes different modules 

(MindSphere Apps, including third-party [90]), with offered open API for custom apps and 

extensive cybersecurity measures 

with additional data encryption, 

firewalls and virtual private network 

access (although, these are industry-

standard measures, there is no 

separate network-security 

Mindsphere App mentioned). These 

modules provide a wide diversity of 

functionality, e.g. continuous access 

to online CM data anywhere via a 

smartphone app, with trend 

prediction and anomaly detection 

capabilities (likely also based on 

ANN) for separate signals. [89, 91] 

6.6. GE SmartSignal and Predix 

The SmartSignal is a software solution developed and offered by another large company, 

American General Electric (Boston, US). Currently, the software is closely tied to the GE 

Predix cloud platform, that is a data transmission, storage and management system with 

analytical functionality, similarly to the Siemens MindSphere. If used with Predix, 

                                                           
27 a system where exact internal functions/technologies are beyond the scope of interest, and only I/O 
of the system is taken into consideration, thus assuming the system to be a plain black box with known 
inputs and outputs 

Figure 45 Mindsphere UI as presented in the whitepaper, 
courtesy of Siemens AG. 
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SmartSignal is offered as a part of the Asset Performance Management (Fig. 46) package - 

the package that is responsible for analyzing and displaying measurements along with 

predicted values in the Predix platform. Predix is available with an SDK for custom app 

development, with an optimization package called Operations Performance Management 

(OPM) and in terms of cybersecurity, Predix is built around the standard practices of data 

encryption, security protocols, authentication control etc. If SmartSignal is employed 

separately – it is realized with supporting database server hardware in situ, although lacking 

the cloud-based easy access and data management functionality to some extent, as well as 

the integration with other GE Predix products (mostly revolving about process 

management and additional optimization functionality). [94, 95, 96] 

 

Figure 46 GE Predix APM UI, Courtesy of GE 

In any case, SmartSignal is capable of processing signals incoming from database of any 

manufacturer supporting SQL or an OPC UA system. Overall reliability predictive 

functionality is based on the idea of determining the similarity of the current state of the 

model (i.e. a large machine with multitude of sensor data) to the previously determined 

one. The main learning algorithm used (according to US patent No. 7,509,235 B2 

belonging to GE) is somewhat different in terms of the main idea: being dubbed 

“Evolutionary” or “genetic programming” for similarity to evolutionary processes in the 

nature. Input parameters are grouped into a set of “individuals”, also called 

“chromosomes” or, in other words, vectors with weight and similarity data corresponding 

to a model. Chromosomes comprise “population” and the best gets selected in the 

population replacing the worst, i.e. less fitting model parameters akin to natural selection in 

the process of evolution. “Fitness” is defined during via classification into “true positive” 

or “false positive” by an additional fuzzified28 model evaluation algorithm. This algorithm 

likely has kernel-based non-linear capabilities because of the gaussian basis function 

mentioned in the patent and also provides classification based on the weights between the 

input data calculated during initial clustering. Thus, the algorithm creates the model created 

                                                           
28 Fuzzy meaning that traditional Boolean true/false are replaced with a wider variety of conditions, e.g. 
“completely true”, “somewhat false”, “quite true” etc. 
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via similarity-based clustering and then updates and improves it during numerous following 

iterations via self-analysis employing classification. [93] 

6.7. ABB Ability™, IBM Watson and MS Azure 

Similar to other corporations and conglomerates mentioned above, the multinational 

corporation ABB (Zürich, Switzerland) offers a rich series of products run by the name of 

“ABB Ability”. The product series unifies numerous applications and solutions suitable for 

different needs in different industries. To name the few ones developed for energy industry 

- system analysis and management solution Ellipse Asset Performance Management 

(APM), automation system Symphony Plus (unifying DCS and SCADA functionality), and 

Virtual Power Pools process optimization service (aimed mostly at power balance in the 

grid and system). [97] 

Ellipse APM is the most important related to the focus of this thesis, for it provides the 

predictive information on the operating machinery. The main function of the package is to 

visualize in easily comprehensible form the current state of each machine with estimated 

malfunction probabilities and service intervals that are adjusted according to numerous 

parameters. As an example, the state of an HV transformer can be displayed in the form of 

Duval triangle (Fig. 47), that takes into consideration current chemical composition of the 

oil inside, as well as various other parameters (temperature, electrical inconsistencies etc.). 

[101] The triangle itself helps quickly see the state of transformer and probability of a 

failure of particular kind. Other equipment can also be monitored similarly, with 

maintenance suggestions, periods and overall health displayed for an operator to plan the 

maintenance accordingly. [97] 

 

Figure 47 ABB Ellipse APM UI dashboard (left) and transformer Duval triangles (right), courtesy of ABB 

Akin to Uptake, the approach is survival-based (US patents No. 9,665,843 B2, 

2014/0365271 A1 and US2014/0156225 A1): the operation of the software revolves 

around the use of models estimating the lifecycle and probabilities of particular failures 

prior to estimated aging due to various factors. The models are developed with a machine 

learning technique(s) in mind, through the exact one used in Ellipse APM or e.g. in the 

marine ABB Ability Remote Diagnostic System (sea vessel CM solution with PM 
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functionality) is undisclosed and the suitable patents are described in the way to support 

any of the openly available ML techniques (ANN, SVM, regression etc.).  

Ellipse can be installed in situ, or in the cloud that is provided by Microsoft Azure service. 

Also, other cloud-dependent solutions of ABB are powered by the Azure platform. 

Moreover, another collaboration of ABB with IBM on the integration of the IBM Watson 

AI in ABB Ability, implies the wide adoption of it across many ABB solutions in the near 

future, e.g. for predictive maintenance, manufacturing defect detection and performance 

optimization. Thus, ABB has outsourced some of its services to third-party suppliers to 

focus more on the own product development and support, also making the overall solution 

structure somewhat simpler. As for the cyber security, it is mentioned extensively 

throughout various ABB product brochures, yet there appears to be no separate 

application/service for it, rather the security measures are built-in by default in the form of 

protocols and structure or in the form of additional network intrusion detection options 

for the Symphony Plus system. [98, 99, 100] 

6.7.1. IBM Watson 

Watson AI platform by American IBM (Armonk, US) is likely to be utilized to drive the AI 

based functionality of many ABB’s applications. Watson is positioned as a flexible solution 

capable of fitting any need from arbitrary pattern recognition to predictive maintenance of 

any machine [102]. Whilst IBM has ready Watson IoT solution of their own, Watson can 

still be employed as a versatile platform for any need by any company or even a regular 

user - devised as an AI based algorithm for some particular function requiring machine 

analytical capabilities not available to a human mind.   

IBM Watson is based on a concept of a supercomputer that evolved and was bolstered 

with additional functionality over decades. Initially, it was developed as an ANN-based 

question-and-answer machine to be used in a word analogy quiz television show called 

“Jeopardy!” against human players. [103] Later on, abilities of the AI algorithm proved to 

be so useful that gradually Watson has turned into a widely accessible pattern recognition 

cloud-based software platform with various preset applications added. Today, the advanced 

deep learning ANN algorithm of the AI solution is capable of, but not limited to: image 

pattern recognition (e.g. applicable for manufacturing defect detection) and regression 

analysis (useful in predictive maintenance) [104, 105] 

6.7.2. Microsoft Azure 

Azure by American Microsoft Corporation (Redmond, US) is a cloud platform widely used 

by various businesses across the globe. Offered on a Platform as a Service model (PaaS, 

platform subscription model) it is a flexible tool granting remote computing power in the 

form of cloud-based Windows or Linux virtual machines and access to them. Any kind of 

proprietary software (i.e. ABB Ability products in this case, or any other) can be deployed 

on Azure servers, hence some CM software offering companies like ABB rely upon 

Microsoft’s services to provide cloud computing for own software solutions. [106] 

Whilst offering a myriad of various cloud-related computing and networking services, 

Microsoft Azure platform also has analytics solution with ML capabilities of its own. It 
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allows to use any algorithm suitable for one’s needs (from linear regression and ANN to 

decision trees and many other techniques that have been left out of scope of this thesis) for 

any kind of data analysis. Moreover, Azure includes IoT package of applications called 

Azure IoT Suite, that has predictive maintenance preconfigured solution suitable for 

machinery monitoring and expected lifecycle analysis to be performed (although, 

showcased only with an example of an aircraft engine and the regression model derived 

from it). Also, this package also includes “Connected factory” solution, that allows for 

monitoring the state, performance and overall efficiency of a facility (showcased an 

example of a machinery part manufacturing plant). [107, 108]   

6.8. C3 IoT Platform™ 

American C3 Inc. (Redwood City, US) offers a C3 Type System™, an abstract layer that 

unifies a cloud-based data storage and an analysis platform and numerous applications and 

services - the C3 IoT Platform. Overall, the product structure is clear and contains 

services/tools for various needs, distinctively divided into groups, e.g. C3 Predictive 

Maintenance™, C3 Sensor Health™, C3 Fraud Detection™ (finance application) and so 

forth. Any of these products can be evaluated in the form of a trial organized as a scalable 

6 to 12 weeks long project (6-week long implementation as an example) costing $100000 to 

$500000 depending on the length and complexity: 

1. “Discovery kick-off” along with design phase: week 1 and 2 

2. Data integration phase: week 2 and 3 

3. Analytics and machine learning (model training): weeks 2 to 5 

4. Validation and tuning: weeks 4 to 6 

5. UI configuration: week 5 and 6 

6. Demo and review: week 6 

After this trial, the product can be put to use immediately as a PaaS or/and SaaS 

(depending on the products chosen). Additionally, a team of up to 6 specialists from C3 

IoT can be assigned to the facility for a period for up to 3 years to train 50 to 200 of the 

local personnel to be capable to develop and operate locally needed software solutions 

(ML/IoT) independently from C3, also providing an integrated development environment. 

[109] 

The more related to the scope of this thesis products are going to be analyzed, namely the 

C3 Predictive Maintenance with the C3 IoT Platform (including C3 Data Lake cloud 

service). The cloud server functionality is based on the Amazon Web Services platform 

(according to the c.2017 product overview), and lately the company turned also to the 

aforementioned MS Azure service [110]. Apart from the cloud, IoT Platform package also 

contains different data processing solutions, e.g. an integrator for easy data mapping and 

transformation to other data systems via XML29, a data explorer om the form of visual 

interface to analyze measurement data, an AI design tool for additional data manipulations, 

                                                           
29 eXtensible Markup Language, a specific versatile data structure language, used e.g. in a configuration 
file parameter list 
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to name the few. The C3 Predictive Maintenance (Fig. 48) is based upon a combination of 

classification, regression and clustering algorithms (US patent No. 2017/0006135 A1), 

whilst another energy industry related solution, the C3 Energy Management uses regression 

analysis to perform energy consumption statistics and predictions (US patent No. 

2016/0238640 A1). Additionally, C3 has a cybersecurity risk and vulnerability 

determination technology also based on ML, that can be used to indicate abnormal traffic 

or access to any part of a network, e.g. in a SCADA data acquisition system. (US patent 

No. 2016/0359895A1) [109] 

 

Figure 48 C3 IoT PM UI, courtesy of C3 Inc. 

6.9. Seeq®   

Another American company, Seeq Corporation (Seattle, US), offers a browser-based 

solution (written in HTML5 just as many modern web-applications e.g. YouTube). The 

cornerstone software is Seeq Workbench™ that is the visual interface used to access and 

analyze the data in a suitable manner. The solution has an emphasis on being lightweight, 

i.e. quickly deployable and accessible, being also versatile.  

The product line is organized simply: apart from the Workbench™ (Fig. 49), there is a 

Seeq Server – a scalable server solution (i.e. comprised of one or a plurality of servers 

depending on the load and requirements) that provides the data integration, storage and 

processing functionality. Measurement data imported from a process data historian, even 

proprietary e.g. Schneider Electric Wonderware eDNA, OSIsoft PI System, a cloud 

database like Microsoft Azure, or directly from a local DCS via OPC UA. Also, software 

developer kits are available, making the solution open towards own software modifications 

conducted by a customer. Additional ongoing services provided by Seeq include support 

and additional software tweaks based on customer requirements. [111]  
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Figure 49 Seeq Workbench UI, courtesy of Seeq Corporation 

In terms of the predictive functionality, the software includes numerous algorithms suitable 

for different approaches and data types. The ML techniques supported include pattern 

recognition and regression amongst else. Exact algorithms used, and training times of the 

models are undisclosed, but certainly they belong/similar to the widely known and used 

(not patented) techniques. Given the nature of the solution, i.e. the ability to connect to any 

data timeseries without importing, the analysis is likely fast but superficial and might be 

somewhat inaccurate in some circumstances. Additionally, the software has extensive 2-D 

visualization capabilities, applicable to any timeseries data in the form of scatter plots, 

histograms etc., also any portion of data can be easily exported in the form of a 

PowerPoint, Excel file or even as a direct internet link. [110]       

6.10. SAP® PM and Service 

A variety of all kinds of enterprise-oriented solutions are offered by a multinational 

software corporation SAP SE (Walldorf, Germany), amongst which is the SAP Leonardo 

line of solution packages. Whilst being suitable to a multitude of industries, Leonardo 

includes also the IoT functionality especially suitable for PP PM in the form of a built-in 

machine learning realized within the Predictive Maintenance and Service (Fig. 50) solution. 

Additionally, SAP offers additional security packages (e.g. Cloud App Security) and SDK 

packages for capability of designing own compatible applications to use with various 

services of the company. 
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Figure 50 SAP PM and Service UI, courtesy of SAP 

Akin to other larger companies, SAP also offers a variety of services capable of working in 

tandem, to build a robust interconnected network of services:  

• SAP Cloud Platform – cloud service that Leonardo is based on, running upon 

Amazon, MS Azure and Google Cloud 

• SAP HANA - a database with built-in ML analytical functionality 

• SAP Fiori – a mobile service with various apps for easy data access 

[113, 114, 115] 

SAP product structure is rather complex in that it has a myriad of services both aimed at 

enterprise application in general and suitable to industrial/utility applications. Some of 

these products enhance management and scheduling of all kinds of operations, others aim 

at change forecasting and data organization via ML algorithms on the software change and 

(e.g. applying methods such as ANN: US 2014/0201115 A1 or regression: US 

2016/0062876 A1), additionally SAP possesses a patent engineered for parallel use of 

several ML models at once, that can be deployed for various applications (EP 3 029 614 

A1). As a result, e.g. the SAP Predictive Maintenance and Service has the R packages with 

different anomaly detection algorithms (PCA, multivariate autoregression or SVM), 

lifecycle estimation or failure prediction via classification. [113] 
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7. Comparison and conclusion 

The variety of PM solutions presented in the previous chapter makes it clear that both 

demand and development grow rapidly for such solutions at the moment. The core 

elements of a CM ML product are common for all the cases:  

• a server (or likely a server cluster) either local or remote (cloud) to provide raw 

storage and computational power for the data and processing algorithm(s) 

• the ML based software with a graphical user interface for convenient interaction 

with the data analyzed 

• a database (historian), either separate (e.g. from local automation system) and/or on 

the remote servers 

• a data integrator of sorts to transform data from original format to a CM software 

native format – can be contained within a database if the database type is fully 

supported, can be separate (e.g. OPC Server), and/or can be in the form of simple 

transitional software scripts on the AI analysis side. 

Additionally, all solutions have support for widely accepted standards as OPC UA 

certification with included transmission protocols, all possess security-related features via 

secure transmission protocols and strict authentication control. The differences between all 

of the previously described solutions are going to be presented in the form of table:  
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A family of products available N N Y N Y Y Y N N Y 
Several algorithms employed Y Y Y Y N Y Y Y Y Y 
Deep learning ANN N N N N Y N Y30 N N Y31 
Lifecycle estimation (Asset health) N N N Y N Y Y N N Y 
Tablet/phone application N32 N Y N Y33 Y34 N N N Y 
Custom applications (Open API) N N Y N Y Y N35 Y Y Y 
Additional security solution N Y N Y N N Y36 Y N Y 
Optimization option Y N Y N Y Y Y37 N N N38 
Table 1 Comparable feature overview for the solutions analyzed 

                                                           
30 at the moment, the direct application for PP process analysis is undisclosed  
31 application of ANN is likely to be tangentially related to PP processes 
32 web-based application is planned for release in the future 
33 third party, access to the predictive analysis is unclear 
34 access only to process data, not the predictive analysis [116] 
35 mentioned for other product, unrelated to PPs 
36 exists as an additional network intrusion monitoring option for Symphony Plus  
37 more of a smart grid-oriented solution rather than PP performance optimizing one 
38 existing optimization solutions seem to be unrelated to PPs directly [117] 
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From the Table 1 it can be seen that the extent of functionality offered largely depends on 

the size and focus of a company. Large corporations (especially the enterprise software-

oriented SAP) are capable of enormous investments in research and development of a 

myriad of software solutions simultaneously, having access to the long experience 

accumulated during their history, thousands of patents claimed via purchases of smaller 

companies or by own research specialists. Because of this, corporations have entire suites 

of solutions for various needs that can be ordered in the form of an entire array consisting 

of tightly interconnected services, e.g. AI analytics solution itself, a cloud service, a 

database-historian service, various asset management optimizing solutions with access to 

additional customizable applications etc. Smaller companies, on the contrary, focus on 

offering only the predictive maintenance and remote support services, yet still supporting 

primary third-party solutions (databases and cloud services).  

As for the future of the AI market, one can say assuredly that it is going to expand more 

not only in the power generation industry, but rather in every possible industry around the 

world that has any sort of machinery-based processes and assets employed. It is the 

indisputable benefits of having abnormal deviations detected much prior to the point 

where they lead to critical malfunctions or even cause an alarm produced by the standard 

monitoring systems. Moreover, these benefits come at a very modest price (compared to 

operating costs and especially to multimillion losses caused by an unplanned stoppage of a 

crucial machine) of a service subscription monthly fees varying from several thousand up 

to several dozen thousand euros per month, depending on the complexity of the facility 

and amount of additional options (in case with an availability of suites and additional 

solutions, e.g. pricing of somewhat related product series from SAP [118] – basic limited 

package would cost 1500€/mon, whilst far more advanced one is already 15000€/mon). 

Such low pricing is easily justified by the fact that usually these AI solutions are normally 

run on a rented server cluster, thus often lacking any additional installations in situ - since 

the data analyzed comes from the monitoring systems originally installed when a PP was 

built, and UI software can reside within a laptop computer.   

Furthermore, current developments in the field of 

augmented reality imply the next step for the 

industrial maintenance. Augmented reality is a form 

of projecting digital images onto a picture that a 

human user perceives, realized with the help of 

“smart glasses”. There are the two largest and 

longest-running projects: Google Glass and 

Microsoft Hololens (Fig. 51). The Google Glass is 

based on the idea of having a small transparent 

screen installed on the right upper corner of the 

user’s field of view without obstructing it. [119] On 

the other hand, MS Hololense is capable of 3D 

projections on the entire lower area of the field of 

view of a user, for it covers both eyes. [120] Both 

Figure 51 Google Glass (upper, courtesy of 
Google Inc.), Microsoft Hololens (lower, 
courtesy of Microsoft) [119, 120] 
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products are finding their way into various industries (few examples):  

• ABB is testing Hololens for maintenance, where projections display the status of 

machines in the user’s line of sight [121] 

• GE and Schneider Electric are using product named Skylight provided by Upskill 

company [122]. It is based on the Google Glass and is used to provide real-time 

instructions and hints for a worker to ease maintenance/installation/assembly, that 

are also capable of contacting an expert to provide real-time guidance 

• Siemens is testing full-field of view AR glasses for remote expert services during 

GT maintenance, enabling an expert to see the worker’s actions and to provide the 

worker with visual hints. [123] 

• Additionally, Volvo and Ford motor companies are using (testing) Hololens to 

design cars [124, 125] 

Given the complexity of PP systems, AR technologies can be also employed there with a 

great effectiveness providing support with hints, instruction videos and remote expert 

service. The full field of view type smart glasses akin to Hololens also could provide 

extensive information on structural condition/weaknesses based on 3D CAD blueprints 

and sensor data, by highlighting a part requiring attention. This could be bolstered even 

further with the data from predictive analytics software, with giving the AR glasses a 

capability to visually inform an engineer of oncoming failure in some particular part of the 

system pointing them directly to that part. 

Even further in the future of industrial digitalization, one could easily imagine another 

technology stepping in: virtual reality. Unlike AR that has virtual images overlapped onto 

the real picture, VR has user completely immersed in the fully simulated environment. VR 

can be used also for remote expert services with expert being able to be virtually present on 

site, additionally granting and ability to research an object with thorough detail, be it a 

separate machine, system of processes or an entire facility. [126]  
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8. Appendix 
 

      Growth rate per y. Share 

 2012 2013 2014 2015 2016 2016 2005-15 2016 

Total World 
22797.

3 
23402.

9 
23844.

0 
24215.

5 
24816.

4 2.2% 2.8% 
100.0

% 

of which: OECD 
10939.

9 
10929.

3 
10875.

5 
10911.

5 
10939.

2 ♦ 0.2% 44.1% 

                 Non-OECD 
11857.

4 
12473.

6 
12968.

5 
13304.

0 
13877.

2 4.0% 5.5% 55.9% 

                 European Union # 3295.7 3267.3 3185.3 3234.3 3247.3 0.1% -0.3% 13.1% 

                 CIS 1523.7 1509.0 1515.3 1499.9 1527.8 1.6% 0.9% 6.2% 

Table 2 Worldwide electricity generation, exempt [1] 

 

Figure 52 Electricity consumption in China (calculated and estimated) [2] 
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Figure 53 Hysteresis loop examples of ferrite (iron-based) and NdFeB (neodymium) magnets, displaying 
nonlinearity between magnetic field strength H and magnetic flux density B [39, p.20] 

  

 

Figure 54 Example of a steam temperature-entropy diagram, beyond the right edge of the bell is the 
superheated dry steam region, left – liquid water, above the bell and upper right region is supercritical. 
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