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Abstract 

This thesis describes (a) the search and findings of smart factories and their enabling 

technologies (b) the methodology to build or retrofit a smart factory and (c) the 

building and operation of a simple smart factory using the methodology. A factory is 

an industrial site with large buildings and collection of machines which are operated 

by persons to manufacture goods and services. These factories are made smart by 

incorporating sensing, processing and autonomous responding capabilities.  

Developments in four main areas (a) sensor capabilities (b) communication 

capabilities (c) storing and processing huge amount of data and (d) better utilization 

of technology in management and further development have contributed significantly 

for this incorporation of smartness to factories. There is a flurry of literature in each 

of the above four topics and their combinations. The findings from the literature can 

be summarized in the following way. Sensors detect or measure a physical property 

and records, indicates, or otherwise responds to it. In real-time they can make very 

large amount of observations. Internet is a global computer network providing a 

variety of information and communication facilities and the internet of things, IoT, is 

the interconnection via the Internet of computing devices embedded in everyday 

objects, enabling them to send and receive data. Big data handling and provision of 

data services are achieved through cloud computing. Due to the availability of 

computing power the big data can be handled and analysed under different 

classifications using several different analytics. The results from these analytics can 

be used to trigger autonomous responsive actions that make the factory smart.  

Having thus comprehended the literature a seven stepped methodology for building 

or retrofitting a smart factory was established. The seven steps are (a) situation 

analysis where the condition of the current technology is studied (b) breakdown 

prevention analysis (c) sensor selection (d) data transmission and storage selection 

(e) data processing and analytics (f) autonomous action network and (g) integration 

with the plant units.  

Experience in a cement factory highlighted the wear in a journal bearing causes plant 

stoppages and thus warrant a smart system to monitor and make decisions. The 

experience was used to develop a laboratory-scale smart factory monitoring the wear 
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of a half-journal bearing. To mimic a plant unit a load carrying shaft supported by 

two half-journal bearings were chosen and to mimic a factory with two plant units, 

two such shafts were chosen. Thus there were four half-journal bearings to monitor. 

USB Logitech C920 webcam that operates in full-HD 1080 pixels was used to take 

pictures at specified intervals. These pictures are then analysed to study the wear at 

these intervals. After the preliminary analysis wear versus time data for all four 

bearings are available. Now the ‘making smart activity’ begins.  

Autonomous activities are based on various analyses. The wear time data are 

analysed under different classifications. Remaining life, wear coefficient specific to 

the bearings, weekly variation in wear and condition of adjacent bearings are some of 

the characteristics that can be obtained from the analytics. These can then be used to 

send a message to the maintenance and supplies division alerting them on the need 

for a replacement shortly. They can also be alerted about other bearings reaching 

their maturity to plan a major overhaul if needed. 

Keywords: Smart factories, autonomous, IoT (Internet of Things), big data, cloud 

computing, journal bearing. 
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Title and Abstract (in Arabic) 

 صناعة المصنع الذكي

 صالملخ

تتناول هذه الأطروحة )أ( البحث والتطرق لنتائج المصانع الذكية والتقنيات التمكينية 

بناء وتشغيل مصنع ذكي بسيط الخاصة بهم , )ب( منهجية بناء أو تعديل المصنع الذكي و )ج( 

باستخدام المنهجية المستخدمة في الأطروحة. المصنع عبارة عن موقع صناعي به مباني كبيرة 

ومجموعة من الآلات التي يقوم بالعمل عليها أشخاص لتصنيع السلع والخدمات. لقد أصبحت 

 تجابة الذاتية.هذه المصانع ذكية من خلال دمج قدرات الاستشعار عن بعد ,المعالجة والاس

تجري التطورات في أربعة مجالات رئيسية )أ( القدرات الاستشعارية )ب( قدرات 

الاتصالات )ج( تخزين ومعالجة كمية هائلة من البيانات و )د( الاستخدام الأفضل للتقنيات 

الحديثة في الإدارة ومواصلة التطوير و هي عوامل ساهمت بشكل كبير في دمج هذا الذكاء 

. هناك دراسات عديدة أجُريت على الموضوعات الأربعة المذكورة أعلاه منفردة للمصانع

ومترابطة مع بعضها البعض. يمكن تلخيص نتائج الدراسات السابقة بالطريقة التالية. تقوم 

المستشعرات باكتشاف أو قياس إحدى الخواص مادياً وتسجيلها أو الإشارة إليها أو الرد 

رى. حالياً، يمكن عمل عدد كبير جداً من الملاحظات بناءً على ما والتفاعل معها بطريقة أخ

سبق. الإنترنت عبارة عن شبكة كمبيوتر عالمية توُفر مجموعة متنوعة من مرافق المعلومات 

، هو الربط البيني عبر شبكة الاتصالات لأجهزة الحوسبة المضمنة في IoTوالاتصالات. 

لها إرسال البيانات وتلقيها. يتم تحقيق معالجة البيانات  الأجهزة المستخدمة يومياً، مما يتُيح

الكبيرة وتوفير خدمات البيانات من خلال الحوسبة السحابية. نظرًا لقوة الحوسبة المتوفرة، يمكن 

معالجة البيانات الضخمة وتحليلها في ظل تصنيفات مختلفة باستخدام تحليلات مختلفة. يمكن 

 .لتحريك إجراءات الاستجابة الذاتية والتي تجعل المصنع ذكياًاستخدام نتائج هذه التحليلات 

بعد مراجعة عميقة للدراسات السابقة، تم إنشاء منهجية ذات سبع خطوات لبناء أو تعديل 

مصنع ذكي. الخطوات السبع هي )أ( تحليل الحالة حيث تتم دراسة حالة التقنية المستخدمة حالياً 

ر المستشعر )د( نقل البيانات واختيار نوعية التخزين )ب( تحليل منع التوقف )ج( اختيا

المستخدمة )هـ( معالجة البيانات والتحليلات )و( شبكة العمل المستقلة )ز( التكامل مع وحدات 

 المصنع الأخرى.
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سلطّت التجربة في مصنع للأسمنت الضوء على التآكل الذي يحدث في مُرتكز عمود التحمل 

وقف المصنع وبالتالي الحاجة لوجود نظام ذكي لمراقبة واتخاذ والذي يؤدي بالضرورة إلى ت

القرارات. تم استخدام التجربة لتطوير مصنع ذكي على نطاق المختبر لمراقبة تآكل نصف 

مُرتكز عمود التحمل. لمُحاكاة وحدة المصنع، تم اختيار عمود مُثقل بأوزان مدعوم بنصفي 

دتين تشغيليتين، تم اختيار اثنين من هذه الأعمدة. مرتكز عمود التحمل، ولمحاكاة مصنع ضم وح

 USBوبالتالي كان هناك أربعة من مرتكز أعمدة التحمل للرصد. تم استخدام كاميرا الويب 

Logitech C920  بكسل عالية الدقة لالتقاط الصور على فترات زمنية  1080التي تعمل بدقة

هذه الفواصل الزمنية. بعد التحليل الأولي،  محددة. ثم يتم تحليل هذه الصور لدراسة التآكل في

تتوفر بيانات تظُهر العلاقة بين التآكل و الزمن لمرتكزات أعمدة التحمل الأربعة. والآن يبدأ 

 "صنع نشاط ذكي".

وتستند الأنشطة الذاتية التحليلات المختلفة. يتم تحليل بيانات التآكل مع الزمن تحت تصنيفات 

الافتراضي المُتبقي، ومُعامل التآكل المُحددّ للمرتكزات، والتباين مختلفة. ويعُتبر العمر 

الأسبوعي في التآكل وحالة المرتكزات المجاورة من بعض الخصائص التي يمكن الحصول 

عليها من التحليلات. يمكن بعد ذلك استخدامها لإرسال رسالة إلى قسم الصيانة والإمدادات 

قريباً. يمكن أيضًا تنبيههم بشأن مرتكزات أعمدة التحمل  لتنبيههم إلى الحاجة إلى استبدالها

الأخرى التي تصل إلى مرحلة النضج )نهاية العمر الافتراضي( للتخطيط لإجراء إصلاحات 

 كبيرة إذا لزم الأمر.

البيانات  ،انترنت الأشياء ،الاستقلال بالتحكم الذاتي ،المصانع الذكية مفاهيم البحث الرئيسية:

 .الكبيرة، والحوسبة السحابية، مُرتكز عمود التحمل
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Chapter 1: Introduction 

1.1 Overview 

A factory, with its origin during the 18th century, is an industrial site, 

consisting of buildings and large collection of machinery, where workers operate 

machines to manufacture goods. The technologies employed were continuously 

improved with continued new developments in science and technology. Factories 

manufacturing chemicals are often called plants and have most of their equipment, 

consisting of blowers and ducts, pumps and piping, tanks, pressure vessels and 

chemical reactors, located outdoors and operated by personnel in control rooms. 

Such a plant will have several machine units made up as an assemblage of several 

components that get worn-out and eventually break. Maintenance in these factories 

consists of actions necessary for retaining or restoring a piece of equipment, 

machine, or system to the specified operable condition. This is often achieved by 

replacing components, that have reached the near-end-of-life condition or broken 

down completely, during an overhaul.  

Traditional maintenance assumes that the operation of a population of devices 

can be viewed, as shown in Figure 1, comprising 3 distinct periods:  
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Figure 1: Cumulative Operating Time Versus Failure Rate 

a) an ‘early failure’ (burn-in) period, where the chance of failure is high at the 

beginning and decreasing rapidly over time  

b) a ‘random failure’ (useful life) period, where the chance of failure remains 

constantly low over time and  

c) a ‘wear-out’ period, where the chance of failure increases over time  

 Historical data are collected in the form of time to failure or mean time to 

failure (MTTF) and components are assumed to reach the ‘wear-out’ period when 

their time in operation approaches the MTTF. During a shutdown of a plant for 

maintenance, it is customary to replace such components that are in the wear-out 

period to increase the reliability of the plant. However, these components will often 

have some useful life left in them. Thus a traditional factory can be considered as an 

assemblage of components which are kept in operating state optimally by (a) 

replacing and restoring components guided by the MTTF and (b) keeping 

components and personnel in stand-by for rectifying breakdowns.  
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On the other hand science and technology worldwide has advanced in several 

dimensions and the final report of the Industrie 4.0 Working Group [1] states that 

“the introduction of the internet of  Things, IoT and Services, into the manufacturing 

environment is ushering in a fourth industrial revolution. In the manufacturing 

environment, these Cyber-Physical Systems, CPSs, comprise smart machines, 

storage systems and production facilities capable of autonomously exchanging 

information, triggering actions and controlling each other independently. This 

facilitates fundamental improvements to the industrial processes involved in 

manufacturing, engineering, material usage and supply chain and life cycle 

management”. The factories that employ these approaches and technologies are 

called smart factories. Within a CPS, the combination of cyber and physical elements 

can transform a product into a smart product. A smart product is a product that can 

perform a much more useful function with the empowerment provided by the 

Internet of Things [2].  

In this context a smart factory can be described as a factory with the 

empowerment provided by the data, connectivity and processing capabilities of the 

components (and their additional accessories) of a factory which enable them to 

function autonomously or semi-autonomously thereby increasing the capability of 

the factory. 

 This thesis describes designing and building a simple smart factory as an 

assemblage of two sets of loaded shafts running on half journal bearings which were 

empowered by a computer vision system that continuously monitor the wear in them 

and communicate to a computer which analyzes the data and initiate cross 

communication between the components and with some modifications in the future 
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work it can trigger remedial actions. The main aim is to understand the constituents 

and the method of their integration to form a smart factory. The required knowledge 

in different areas for a smart factory is described in chapter 2. It also includes facts 

about the ways of measuring wear in journal bearings. Chapter 3 provides details 

about the proposed methodology for retrofitting an existing factory into a smart 

factory. Chapter 4 discusses the implementation of the proposed methodology .The 

results are presented and discussed in chapter 5. Finally, chapter 6 concludes the 

outcomes of this thesis work and provides an insight to future works. 

1.2 Statement of the Problem 

There is a tremendous worldwide effort underway to incorporate 

technological developments described later in chapter 2 to address a multitude of 

industrial problems under the broad heading Industry 4. Smart factories are the 

principal structures in Industry 4. However the literature shows limited guidelines on 

‘how to build or retrofit a smart factory’. To get the knowledge and experience on 

‘how to build or retrofit a smart factory addressing specific issues’, a simple smart 

factory, made up of basic building blocks and addressing a single issue using the 

principles of smart factory outlined above is needed. Wear in journal bearings is an 

issue encountered in many industries and this is chosen as the single issue to be 

addressed in this effort to build a simple smart factory. 

1.3 Aim and Objectives 

The research aims to “Design and build a simple smart factory as an 

assemblage of two sets of loaded shafts running on half journal bearings to monitor 

the wear characteristics and use the principles of smart factory to empower the 

bearings to function autonomously”. 
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This objectives of this research are as follows: 

1. To conduct a detailed literature survey and comprehend the concept of smart 

factories and their constituents 

2. Establish a methodology to retrofit an existing factory into a smart factory 

3. Design and build a laboratory-scale factory consisting the two sets of loaded 

shafts running on half journal bearings. 

4. Design and build a computer vision based ‘sensing system’to continuously 

monitor and record wear in bearings. 

5. Design and implement algorithms and analytics to process wear data. 

1.4 Salient Achievements and Findings from the Research 

This research has five main achievements. They are: 

a. Collecting, comprehending and summarizing the constitution and constituents 

of a smart factory and establishing a method for retrofitting. 

b. Designing and building a laboratory-scale smart factory with four half journal 

bearings as the elements. 

c. Designing and building a vision monitoring system for monitoring wear in 

individual bearings. 

d. Developing a MATLAB based software for analyzing and obtaining wear 

characteristics for individual bearings. 

e. Observing and measuring the variation of wear factor so that autonomous 

remedial actions can be taken to make the system more robust . 

f. Estimating the remaining life which results in removing uncertainties in 

conventional factories. 
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Chapter 2: Literature Survey 

A great worldwide endeavour is underway, to use the Internet of Things (IoT) 

and smart analytics in technologies in the manufacturing industries and, 

consequently, to improve the overall performance, quality, and controllability of 

manufacturing processes. Smart factory may be described as the incorporation of 

latest technologies in its development to have self-x capabilities, where x stands for 

characteristics such as description, awareness, management, organizing, controlling, 

directing, healing, correction, auto-discovery, re-configuration, predicting, 

comparing, maintaining, organizing etc., which in turn makes manufacturing reliable, 

safer, economical, sustainable and high quality. The integration of all IoT 

technological advances in computer networks, data combination and analytics to the 

manufacturing factory is referred to as a smart factory [3]. It is a fully connected and 

flexible system that can use a constant stream of data from connected operations and 

production systems to learn and adapt to new demands [4]. ‘Smart Factory’ can be 

defined as a factory of connected and intelligent machines, where waste, defect, and 

downtime are almost equal to zero. These highly productive factories move materials 

more efficiently across the factory floor, made possible in part by data seamlessly 

moving from sensors on machines to servers to services [5]. Smart factory is seen as 

the panacea for all the difficulties and limitations of conventional factories.  

Smart factory is a disruptive development to the existing factory system, and 

as such the first step of this review considers the ‘advances in science and 

technology’ that make the smart factories appropriate for the present time (sensors, 

IoT, storing and processing a huge amount of data and data analytics). In the second 

step the descriptions of smart factories (definitions) are collated and analyzed and in 
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the third step the constituents, governing design principles as identified from the 

literature are collected, analyzed and categorized. Then the prevailing factory system 

and its weaknesses are identified to elicit the benefits that are offered by smart 

factory systems. It then paves the way for a methodology to implement retrofitting or 

designing new facility so that it will be a smart factory. It can be said that this 

research is aimed at reviewing the published literature to identify (a) why smart 

factory is the appropriate development now, for the factory system of manufacture 

(b) what are the constituents of a smart factory and (c) how retrofitting or developing 

a new factory has to be handled. 

2.1 Technological Developments 

This section describes the advanced technological developments that are the 

key contributors for the desired disruptive development for the present factory 

system. They are identified and grouped as the following for easy comprehension: 

a. New opportunities to generate large amount of data (sensors) 

b. Opportunities provided by communication capabilities and IoT 

c. Opportunities for storing and processing huge amount of data 

d. Opportunity for new and better management 

The following sub-sections describe them. 

2.1.1 New Opportunities to Generate Data (Sensors) 

Sensor is a device that detects events or changes in the environment, and 

transforms signals from different energy domains (such as radiant, mechanical and 

thermal) to the electrical domain and provides a corresponding output [6]. It detects 
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or measures a physical property and records, indicates, or otherwise responds to it. 

Sensors are used in high precision manufacturing equipment like CNC machine tools 

and industrial robots to provide feedback signals to the controller that uses them to 

precisely move the drives. Sensors and instrumentation are considered as the central 

driving forces for innovation for all megatrends that are described with the adjective 

smart, e.g. smart factory, smart production, smart mobility, smart home, or smart 

city [7]. Kanoun and Tränkler [8] state that sensors and sensor systems achieve their 

function through an interlocked interaction of sensor structure, manufacturing 

technology, and signal processing algorithms. It consists of a sensor element that 

changes its output depending on the magnitude if the measured quantity and a pre-

processing unit where the sensor signal is transformed into an adequately amplified 

and filtered signal. There are a variety of sensors including temperature sensor, 

proximity sensor, accelerometer, infrared  sensor, pressure sensor, optical sensor and 

ultrasonic sensor. With such a vast choice, non-destructive online sensors have 

become easily available at affordable prices. Multi-sensor systems have become 

affordable where a phenomenon is measured by more than one sensor for 

applications that require high level of reliability like applications involving fire and 

passenger transportation.  

In 2004 Kanoun and Tränkler [7] anticipated the following two areas of 

development: 

a) Maintenance-free sensors with long life expectancy and low electric power 

consumption.  

b) Increased use of multisensory and wireless systems and miniaturization.  
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In 2018 Schütze, Helwig and Schneider [8] report of smart sensors, which 

generate the data and allow further functionality from self-monitoring and self-

configuration to condition monitoring of complex processes. In short sensor 

technology of today has become advanced to provide sensors to (a) continuously 

generate data for every aspect of the manufacturing process (b) track real-time 

movements and locations of raw materials, work-in-progress and finished goods, and 

high-value tooling (c) be placed on equipment to drive predictive and cognitive 

maintenance analytics and (d) geofence dangerous equipment from operating in close 

proximity to personnel. In this context geofence is a virtual geographic boundary, 

defined by GPS (Global Positioning System) or RFID (Radio-frequency 

Identification) technology that enables software to trigger a response when a mobile 

device enters or leaves a particular area. 

2.1.2 Opportunities Provided by Communication Capabilities and IoT 

Internet, as known to everyone, is a global computer network providing a 

variety of information and communication facilities. The internet of things, IoT, is 

the interconnection via the Internet of computing devices embedded in everyday 

objects, enabling them to send and receive data. This is a revolutionizing 

development that has the potential to change the way factories operate and people 

conduct their day-to-day lives. In other words this can be part of the disruptive 

technology desired for developing smart factories. 

Patel and Patel [9] express the vision of IoT in the following way: Internet of 

Things (IoT) is a concept and a paradigm that considers pervasive presence in the 

environment of a variety of things/objects that through wireless and wired 

connections and unique addressing schemes, are able to interact with each other and 
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cooperate with other things/objects to create new applications/services and reach 

common goals. In the context of a factory the things/objects can be blowers and 

ducts, pumps and piping, tanks, pressure vessels, chemical reactors, and their 

constituent components like shafts and bearings. With the latest development of 

RFID technology, IoT has been paid more and more attention because it could 

provide a promising opportunity to build powerful industrial systems and 

applications. This is achieved by leveraging the growing ubiquity of RFID, wireless, 

mobile and sensor devices embedded in the object, logic object and internet-based 

information infrastructure. The Internet of Things (IoT) is a significant element of 

Industry 4.0 that creates comprehensive network infrastructure to create virtual 

systems and physical objects using the internet [10] leading to operations that can be 

performed more efficiently, accurately and intelligently [11]. 

Two remarkable developments that are worth mentioning here are (a) Internet 

of Services (IoS) and (b) Cyber physical systems (CPS).  

Internet of Services (IoS): The internet of services enables service vendors to 

offer their services via the internet. The IoS consists of participants, an infrastructure 

for services, business models and the services themselves. Services are offered and, 

combined to value-added services, by various suppliers; they are communicated to 

users as well as consumers and are accessed by them via various channels [12]. In 

the context of a factory this can mean for example the two-way communications 

originated by a component between the maintenance team or supplies division and 

itself about its approaching end-of-life condition. It is possible that this concept can 

be transferred from single factories to entire value added networks. Factories may go 

one step further and offer special production technologies instead of just production 
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types. These production technologies could be offered over the IoS and can be used 

to manufacture products or compensate production capacities. Within the Internet of 

Services, large amounts of data can be processed autonomously in order to provide 

better and more useful services: Smart services. Examples of these Smart Services 

include predictive and preventive maintenance made possible by processing large 

amounts of data collected from running product or machines [13]. 

Cyber Physical Systems: A cyber physical system (CPS) can be described as 

a physical system that is controlled or monitored by computer-based algorithms and 

tightly integrated with the Internet and  its users. The industry of developed countries 

in Europe and North America are based on the use of cyber-physical systems based 

on the integration of wireless control system, wireless systems, machine learning and 

production based sensors [14]. Such industries are developing a national platform for 

new production systems. In other words, it is a new generation of systems that 

integrate computer and physical capabilities. Through the ability to interact and use 

the expansion capabilities of the physical world using computing power, 

communication technologies and control mechanisms of the physical world, cyber 

physical systems allow feedback loops, improving production processes and 

optimum support of people in their decision making processes [15]. By using the 

corresponding sensor technology, cyber physical systems are able to receive direct 

physical data and convert them into digital signal. They can share this information 

and access the available data that connect it to digital networks, thereby forming an 

Internet of Things [16].The real value of the  IoT comes by using the cyber elements 

in order to make an object, a machine or a plant perform better. Within a CPS, the 

combination of cyber and physical elements can transform a product into a smart 
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product. A smart product is a product that can perform a much more useful function 

with the empowerment provided by the internet of things [13]. 

2.1.3 Opportunities for Storing and Processing Huge Amount of Data 

Advancement in sensor technology has opened the floodgates for the influx 

of huge amounts of industrial data. Industrial data is growing twice as fast as any 

other sector. Yet today, less than 3% of the data is tagged and used in a meaningful 

fashion [17]. With the use of advanced sensor technologies modern manufacturing 

systems increase the complexity in generating huge amounts of continuously 

generated data. This data contain valuable information useful for several use cases 

such as knowledge generation, optimization of key performance indicators (KPI), 

diagnosis, prediction, and feedback to design or decision support [18]. Technology 

for storing and handling this data also is developing faster. Big data is the concept of 

data where it is hard to collect, manage and process by traditional tools and 

technologies [12]. One of the focuses of smart manufacturing is to create 

manufacturing intelligence from large amount of real-time data to support accurate 

and timely decision-making. Therefore, big data analytics is expected to contribute 

significantly to the advancement of smart manufacturing [13]. Big data analytics 

tools are the suitable solutions to provide ease in cleaning, formatting and 

transforming industrial data [12]. 

Cloud computing is a complete new technology to provide services in storing 

and processing huge amount of data. To users, cloud computing is a Pay-per-Use-

On-Demand mode that can conveniently access shared IT resources through the 

Internet where the IT resources include network, server, storage, application, service 

and so on and they can be deployed with much quick and easy manner and least 
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management and also interactions with service providers. It is the development of 

parallel computing, distributed computing grid computing, and is the combination 

and evolution of virtualization, utility computing, Infrastructure-as-a-Service (IaaS), 

Software-as-a-Service (SaaS), and Platform-as-a-Service (PaaS). Cloud is a 

metaphor to describe web as a space where computing has been pre-installed and 

exist as a service; data, operating systems, applications, storage and processing 

power exist on the web ready to be shared [14]. IoT cloud computing architecture 

plays a great role in the IoT data. IoT data and applications are stored in the cloud to 

make it easy to get from anywhere with any web browser or client software. Industry 

4.0 appreciates the cloud computing architecture for their centralized control 

available by different users including managers, customers, operators and 

programmers [12]. 

2.1.4 Fundamental Deviation in Data Processing and Use of Data  

In order to figure out huge data and its impact imagine a journal bearing 

carrying a running shaft in a factory. The wear in the bearing is the parameter that 

tells whether it is in the operable condition or is reaching the wear-out period. When 

no continuous data is available, as in the conventional factory, routine change of 

lubricant and the MTTF from the historical data are the two things to rely upon. 

Imagine a condition where the wear is taken twice every hour. This is a large amount 

of data about a single component. But this provides opportunities to decide the daily 

wear rate reflecting the condition of lubrication providing a better way to manage 

than the routine oil change. The measurement of wear permits the estimation of the 

remaining life. This can facilitate to plan the spare part and bring the maintenance 

team in time to minimize the downtime. But this needs two things: (a) availability of 
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large data and (b) processing capability or analytics to compute different monitoring 

constructs to assist efficient operation. In other words, a fundamental deviation in 

collecting data and processing data is required. 

Collection of continuous data provides opportunities for viewing single and 

subsets of data under different classifications. In this context classification can be 

seen as a systematic arrangement of data. For example, the continuously collected 

data from the journal bearing above can be used to calculate (a) the average wear per 

week (b) overall wear rate per day to estimate the life available (c) the impact of the 

environmental change (say the dusty condition) by considering the data during the 

period (d) the requirement of lubricant change indicated by increased wear on the 

daily and weekly basis and so on. It is worth noting here that a single item of data 

can belong to several different groups under different classifications. The 

classification of data for different constructs results in establishing different 

analytics. Making the journal bearing smart may include it sending a photograph of 

itself to the maintenance team when it is entering the ‘end-of-life’ stage of its life. 

Thus the data processing and use of data has to be part of the disruptive technology 

and undergo a fundamental deviation. It should adopt the processing techniques 

highlighted earlier in section 2.1.3 about ‘Opportunities for storing and processing 

huge amount of Data’. 

2.1.5 Opportunity for Better Management  

Groover [15] identifies that production systems have two constituents namely 

(a) facilities and (b) manufacturing management systems. Facilities consist of the 

factory, production machines and tooling, material handling equipment, inspection 

equipment and computer systems that control the manufacturing operations. 
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Manufacturing Management Systems are the procedures and systems used by the 

firm to manage production and solve the technical and logistics problems associated 

with designing the product, planning the processes, ordering materials, controlling 

the work-in-process as it moves through the plant, and delivering the product to 

customers. Four functions are performed in this category: business functions, product 

design, manufacturing planning, and manufacturing control. Collection of huge 

amount of data and associated analytics greatly enhance the ability to utilize the 

facilities to the full and seamlessly integrate the manufacturing management systems 

to assist production and minimizing waste and downtime while maximizing 

sustainability. 

2.2 What is a smart factory? 

Smart factory can be described as the incorporation of latest technologies 

described in section 2.1 in its development to have the self-x capabilities, where x 

stands for characteristics such as description, awareness, management, organizing, 

controlling, directing, healing, correction, auto-discovery, re-configuration, 

predicting, comparing, maintaining, organizing etc., which in turn makes 

manufacturing reliable, safer, economical, sustainable and high quality. This follows 

the technology transfer model Research → Development → Design → Production as 

proposed by Ramanathan [16]. In this model research findings are first developed 

sufficiently for incorporation into design of goods and services. Then the design 

phase starts which leads to commercial production. Smart factory concept is between 

the development and design phases and hence the definition of it in terms of 

constituents and the level of their incorporation in designs are fuzzy.  Another 

important aspect about technology transfer identified by Bennet and Vaidya [19] is 
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the ‘basic knowledge in science and technology of the recipients’. The nature of 

smart factory requires competence in what is traditionally called multi-disciplinary.  

The level of competence of the implementers thus has a significant influence on the 

constituents of any specific implementation of smart factories. The following sub 

sections explore the description of smart factory by different authors, constituents of 

smart factories and design principles of smart factories.  

2.2.1 Description of Smart Factories by Authors 

The literature has listed many descriptions for ‘smart factory’. When reading 

through them one could immediately realize that they are goal oriented descriptions 

answering the ‘what’ question than the ‘how’ question. Table 1 shows some of these 

descriptions. 

Table 1: Description of Smart Factory by Authors 

Author Description of Smart Factory 

Jay Lee [3] 

The combination of all new IoT technological advances in 

computer networks, data integration and analytics to bring 

transparency to all manufacturing factories 

Elvis Hozdic 

[20] 

Integrating between the numerous industrial and non-industrial 

partners who build virtual organizations resulting in an effective 

and flexible production solution. 

Radziwon et al. 

[21] 

A manufacturing solution that is related to automation, known as 

a combination of software, hardware and mechanics, which 

should lead to optimization of manufacturing resulting in 

reduction of unnecessary labor and waste of resource. 

Deloitte 

Development 

[4] 

A self-optimizing performance across a broader network, self-

adapt to and learn from new conditions in real or near real time 

and autonomously run entire production processes 



17 

 

2.2.2 Constituents of Smart Factories 

According to Deloitte Development LLC [4] the components needed to 

enable a successful smart factory are largely universal, and each one is important: 

data, technology, process, people, and security. Following this five clusters were 

formed. 

1) Data: 

Data is the lifeblood of the smart factory. Through the power of algorithmic 

analyses, data drive all processes, detect operational errors and provide user 

feedback. When gathered in enough scale and scope, it can be used to predict 

operational and asset inefficiencies or fluctuations in sourcing and demand. 

Combining and processing the resulting data actions are what make them valuable. 

To power the smart factory, manufacturers should have the means to create and 

collect on-going streams of data, manage and store massive loads of information 

generated [4]. 

2) Technology: 

For a smart factory to function, assets defined as plant equipment such as 

material handling systems, tooling, pumps, and valves should be able to 

communicate with each other and with a central control system. The control system 

can take the form of a manufacturing execution system, which is an integrated, 

layered hub that functions as a single point of entry for data from across the smart 

factory and the broader digital supply network, aggregating and combining 

information to drive decisions. Organizations have to consider other technologies 

including transaction and enterprise resource planning systems, IoT and analytics 

platforms, and requirements for edge processing and cloud storage.  
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3) Process and Governance: 

One of the most valuable features of the smart factory is its ability to self-

optimize, self-adapt, and autonomously run production processes which can 

fundamentally alter traditional processes and governance models. An autonomous 

system can make and execute many decisions without human intervention, shifting 

decision-making responsibilities from human to machine in many cases, or 

concentrating decisions in the hands of fewer individuals. The connectivity of the 

smart factory may extend beyond its four walls to include increased integration with 

suppliers, customers, and other factories. 

4) People: 

In a smart factory people are expected to still be key to operations. However 

there can be profound changes in the operations and IT/OT organizations, resulting 

in a realignment of roles to support new processes and capabilities. Some roles may 

no longer be necessary as they may be replaced by robotics (physical and logical), 

process automation, and AI. Other roles might be augmented with new capabilities 

such as virtual augmented reality and data visualization. Organizational change in 

management could play an important role in the adoption of any smart factory 

solution. 

5) Cybersecurity: 

By its nature, the smart factory is connected and thus cybersecurity risk 

presents a greater concern in the smart factory than in the traditional manufacturing 

facility and should be addressed as part of the overall smart factory architecture. In a 

fully connected environment, cyber-attacks can have a more widespread impact and 

may be more difficult to protect against, given the multitude of connection points.  
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2.2.3 Terminologies used in Smart Factory Descriptions 

It was observed that existing technologies and terminologies were given 

specific features and meanings when they were applied in smart factory applications. 

Therefore, the existing terminologies towards smart factories have been reviewed. 

With their additional features and meanings they have become the active constituents 

of smart manufacturing. They could be clustered into the above five constituents. 

Table 2: Technology/Terminology and References 

Technology/Terminology Reference 

Intelligent [22-25] 

Energy saving efficiency 

 
[24, 26-30] 

Cybersecurity 

 
[24-26, 31] 

Real time Communication 

 
[24, 34, 35] 

CPS/CPPS 

 
[24, 26, 34-36] 

Virtual Reality and Augmented 

Reality 
[26, 37, 38] 

IoT/IIoT 

 
[24, 26, 39, 40] 

Data analytics/big data 

analytics 

 

[29, 41-46] 

Data visualization [47, 48] 

Operation Planning 

 
[49] 

IT-based production 

management 
[24] 

Smart Materials 

 

 [27, 50, 51] 

Advanced manufacturing  [52, 53, 57, 29] 
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Table 2 illustrates a collection of these technologies and terminologies, which 

were found in the references accompanying them. For example, one terminology is 

intelligent technology which means the ability to change its action based on its own 

experience. Another term is energy saving efficiency which is a technology where 

the energy necessary to provide a product or service can be reduced. Cyber security 

is one of the five constituents as discussed earlier in section 2.2.2, it  is when data 

should be secured from cyber threats. In addition real-time communication is a 

technology, which enables users to exchange data with systems in real-time and this, 

can be put with the technology cluster. CPS/CPPS (Cyber Physical Systems /Cyber 

Physical Production System) are technologies used to solve and work with physical 

mechanisms or components. This is placed under the process and governance cluster. 

Virtual Reality (VR) creates 3D images using a computer and the interaction in that 

space with the help of electronic devices, for the user  to feel as if he or she has been 

immersed in a synthetized environment. Augmented Reality (AR) is a technology 

that can superimpose a computer-generated 3D numerical format in the real world 

but not interact with it. VR and AR are categorized under the people cluster because 

there are changes in the operations supporting new processes and abilities. IoT/IIoT 

(Internet of Things /Industrial Internet of Things) enables communication between 

the physical and internet-enabled devices, which can be used to improve the existing 

manufacturing systems. IoT/IIoT  is also placed under the process and governance 

cluster. 

Additional terminologies such as big data is a technology that can analyze 

large sets including real-time data that are difficult to analyze by traditional methods. 

Data analytics is dealing with data into actions and insights within a manufacturing 

system. This terminology is clustered under the data cluster. Indeed, big data can be 
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understood as being part of this technology which also makes it under the data 

constituent cluster. Data visualization represents data with the help of graphs and 

other visual representations which can lead to graph patterns to analyze the data. The 

authors agreed that data visualization should be in the process and govenance cluster. 

Furthermore, operation planning is when all the activities of the organization is 

planned to achieve the final objective. In other words, connecting everything 

happening within the organization through the help of IT. This terminology can also 

be placed on the process and governance cluster. The IT-based production 

management includes computer-aided design (CAD), computer-aided manufacturing 

(CAM), computer aided technology (CAx) etc. These are the tools that allow to 

design, analyze and facilitate the design and production. Therefore, the CAx tools are 

included in the technology cluster. Smart materials can sense the change in 

environment with the help of sensors and take the corrective actions using actuators, 

as well as they provide data for analysis as well, which may lead to improved part 

design.  

Smart materials can sense the change in environment and operations with the 

help of sensors and can take corrective actions using actuators and they can also 

provide data for analysis as well which results in an improved part design. Since 

smart materials require the use of sensors and actuators they should be considered in 

the data cluster. Finally, advanced manufacturing terminology which is for instance 

additive manufacturing that is a technology that can print a 3D image into an object 

with the help of laser beam, electron beam which is a technology cluster . 

In summary, the clustering has been done according to my subjective 

judgment by determining the most suitable cluster because there are some items that 
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could have been possibly placed  in another cluster; nevertheless, they are placed  in 

a specific cluster. However, it is fully acknowledged that one might argue that the 

respective items might fit into another cluster as well based on the individual 

background and experience. 

2.2.4 Design Principles of Smart Factories 

Various authors identified six design principles that would help designers to 

build new smart factories or upgrade existing ones [12, 55-57]. The five constituents 

are data, technology, process, people, and security that are identified from section 

2.2.2 are aimed  to act as the capabilities to enable smart manufacturing together with 

these design principles. These design principles are: 

1) Interoperability: Being able to allow communication through interfaces 

between the components/sub-systems of a manufacturing system, allowing it to work 

with or use parts of another components of subsystems. 

2) Virtualization: Creating an artificial factory environment with CPS similar 

to the actual environment and to being able to monitor and simulate physical 

processes. Such environment can be created by the information transparency in CPS 

and the aggregation of sensor data [58] . 

3) Decentralization: is the ability of smart manufacturing systems and 

technologies to make decisions on their own and to perform their tasks autonomously 

including global production goals [58]. 

4) Real-time capability or Responsiveness:  is the ability to automatically and 

in real-time collect manufacturing system data via a network of sensors such as IoT 

and immediately provide the derived understandings [59]. 
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5) Service orientation: Manufacturing industries and organizations focus on 

profit from selling the service rather than selling the product [57]. Cloud computing 

plays an important role in enabling the on-demand provision of services [60]. 

6) Modularity: is the design of the system components. It is when system 

components are combined and separated easily and quickly. It allows the system to 

respond to changing customer requirements and to avoid the internal system 

malfunctions [61]. 

After understanding (a) the technological advancements that make the smart 

factory as an appropriate contemporary development (b) the definitions of a smart 

factory and its five constituents (c) the terminologies that describe smart factory 

systems and (d) the design principles guiding the design of smart factories, it is time 

to introduce the issue encountered in this thesis which is wear in journal bearings. 

This is done by discussing some general assessment of wear failure and ways of 

measuring wear of journal bearings in industry. 

Journal bearings are used to provide support and to enable the relative motion 

between rotor systems.The bearing failures are generally complex and can be 

recognized to several failure modes which combine to cause a failure.The journal 

bearings are smaller in nature and relatively cheaper than the components of an 

engine or machine.The failure of a machine bearing leads to serious problems 

including the need for a complete overhaul.The bearing damage that frequently 

occurs in journal bearings includes scratching,wiping,wear and fatigue.The most 

common cause for journal bearing failures are related to inadequate lubrication, 

faulty assembly, improperly machined components, misalignment and overloading. 
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When the journal bearings are lubricated properly,they do no exhibit signs of 

wear.The wear takes place on the bearing when the speed of the shaft is too low to 

produce sufficient fluid pressure to support the bearing sufaces on a lubricant film. 

2.3 Fundamentals of Wear Failure 

 Wear is a critical concern in many types of machine components; in fact, it is 

often a major factor in defining or limiting the suitable lifetime of a component. An 

important example is the wear of dies and molds. Wear generally is manifested by a 

change in appearance and profile of a surface. Wear results from contact between a 

surface and a body or substance that is moving relative to it. Wear is progressive in 

that it increases with usage or increasing amounts of motion, and it ultimately results 

in the loss of material from a surface or the transfer of material between surfaces. 

Wear failures occur because of the sensitivity of a material or system to the surface 

changes caused by wear. Typically, it is the geometrical or profile aspects of these 

changes, such as a dimensional change, a change in shape, or residual thickness of a 

coating, that cause failure. However, a change in appearance and the nature of the 

wear damage also can be causes for failure. An example of the former would be 

situations where marring is a concern, such as with optical scanner windows, lens, 

and decorative finishes. Examples of the latter include valves, which can fail because 

of galling, and structural components, where cracks caused by wear can reduce 

fatigue life [62, 63]. In addition to these differences, the same amount or degree of 

wear may or may not cause a wear failure; it is a function of the application. For 

example, dimensional changes in the range of several centimeters may not cause 

wear failure on excavator bucket teeth, but wear of a few micrometers might cause 

failure in some electromechanical devices. As a consequence of these differences, 
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there is no universal wear condition that can be used to define failure. The specific 

nature of the failure condition generally is a significant factor in resolving or 

avoiding wear failures. It can affect not only the solutions to a wear problem but also 

the details of the approaches used to obtain a solution. While this is the case, there 

are some general considerations and approaches that can be of use in resolving or 

avoiding wear problems. 

2.3.1 Ways of Measuring Wear 

There are several techniques have been used for measuring wear in journal 

bearings where out-of-roundness was found to be the most reliable method for 

measuring small wear quantities in journal bearings.Wear measurement methods can 

be categorized in three groups based on change in weight, change in geometry and 

change in wear debris quantity. To achieve high accuracy in measurements it is 

preferred that the amount of wear is significant so that the measurement error is 

small too. Measurement of wear by recording the change in geometry of the 

component itself is also a useful wear measuring method and directly useful in 

estimating the life of tribo-pairs such as brakes and clutches [64]. The three wear 

measurement methods can be summarized as follows: 

a) Weight loss: weight loss in bearing as well as in shaft. 

Weight loss is one of the direct evidence of wear losses and also one of the 

most trusted approaches of measuring the wear in machine components. It was 

recorded for the bearing as well as sleeve specimens. 
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b) Change in wear debris quantity: particle count and debris weight. 

Change in wear debris quantity is considered to be a reliable method for 

monitoring wear in machine components. There are two methods of quantifying the 

wear debris: the particle count and the aggregate weight of the wear debris.  

c) Change in geometry: out-of-roundness, radial clearance, surface roughness, 

maximum wear depth. 

The change in radii of the bearing as well as in the shaft gives the correct 

measure of the change in radial clearance of the bearing. The change in radial 

clearance directly relates to the load carrying capacity of a journal bearing. A 

relationship between the drop in load carrying capacity and the useful life of a 

bearing can be successfully derived analysing the effect of change in radial clearance 

on minimum oil film thickness similar to that of Chu and Kay [65]. 

The following section evaluates the evolvement of conventional factories and 

their methods of operation. This vision would create the foundation for smart factory 

implementation.  

2.4 Conventional Factory  

A conventional factory can be seen as a collection of physically connected 

and non-connected units. An industrial blower driven by a motor is a typical example 

for such a connection. The motor will be totally unaware of the condition of the 

impellor vanes or the supporting bearings of the blower, even though they are 

physically connected. External monitoring and human intervention are the means to 

make this connection in a conventional factory. Routine inspections and observation 

of noise and current levels are the principal means employed to handle deficiencies. 

Preventive maintenance based on historical data and routine inspection, are the two 
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main methods for keeping a conventional factory in the functional state. Increasing 

the reliability of key plant units and scheduled maintenance activities including 

replacement of partially worn-out units in key plants are some of the steps taken to 

keep the conventional factories operational. 

2.4.1 Limitations of Conventional Factory  

Operation of a conventional factory can be regarded as an endeavour to 

maximize the state of functioning (Sofu) and minimize the state of failure (Sofa) of 

the plant in the safest possible manner. Every activity, including resource allocation 

and data collection, is tailored to minimize ‘Sofa’. Maintenance was classified as (a) 

breakdown maintenance (b) preventive maintenance and (c) planned maintenance for 

general work and condition based maintenance for special units. Maintenance 

personnel called the ‘running maintenance team’ were kept on ‘stand-by’ to attend 

breakdowns. Preventive maintenance routinely checked the plant and changed the 

lubricants routinely to prevent breakdowns. Based on historic data planned 

maintenance works were carried out to refurbish or replace worn-out components 

nearing their life expectancy derived from crude measurements and historic data. 

Historic data itself was collected as aggregate parameters like the time to failure 

(which is used to estimate the mean life of a component) rather than the large amount 

of data about each component at short time intervals. Spare units of critical 

components also were kept in waiting for replacement during break down 

maintenance or planned maintenance. This approach has stabilized the operation and 

maintenance and, efficiency levels were established as targets to represent good 

performance (for example more than 330-340 days of operation of a cement plant in 

an year). The limitations can be summarized as follows: 
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a) Organization of the maintenance as breakdown, preventive and planned 

maintenance. 

b) Running maintenance team waiting as stand-by.  

c) Spare components waiting as stand by. 

d) Shortage of spare units and emergency purchases. 

e) Data collection in summary form which lacks continuous analysis of data and 

optimization. 

f) Limited opportunities to detailed data analysis for finding root causes, due to 

summary format of data collection. 

g) Bulk of the maintenance work is post-event.  

The problem is further exacerbated by the rapid obsolescence of products and 

the emergence of new products, high quality standards, short delivery and decreasing 

costs [20]. Conventional factories and their supply chains face challenges in keeping 

up with ever-shifting fashion. Conventional factories have the safety, environmental 

and sustainability issues [4]. ‘Fixed Routing’ is a major limitation where the 

production line is fixed except when manually reconfigured by people with system 

power down. There is no communication among machines, products, information 

systems and people and the field devices are separated from the upper information 

systems. In the current thinking this is considered as a major drawback. Another 

major limitation is due to the fact that ‘any malfunction of a single device will break 

the full operation since every machine is preprogramed to perform the assigned 

functions only’ [66]. 
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2.4.2 Analysis 

The situation in the conventional factories needs some disruptive 

development that will destroy the existing methodologies and procedures and 

introduce better and autonomous new ones based on advanced technologies that 

make very much reduced waste, defect, and downtime. New developments based on 

advanced technologies namely (a) sensors to generate more operational data (b) 

Internet of Things (IoT) for effective communication (c) cloud and dedicated 

computing to handle huge amount of data (d) deviation from traditional processing 

and (e) integrated management, should be considered for incorporation. Non-

invasive online condition monitoring and appropriate autonomous corrective actions 

are the way forward for these factories. Analysis of the literature about the 

methodology for retrofitting  and implementing smart factories revealed seven main 

steps underlying a successful smart factory implementation which are discussed in 

chapter 3 and 4. 
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Chapter 3: The Methodology 

Chapter 2 concluded  that non-invasive online condition monitoring and 

appropriate autonomous corrective actions are the way forward for these factories. A 

conventional factory can be visualized as a collection of elements of which some are 

physically connected to ensure functionality. Figure 2 shows a factory as an 

assemblage of physically connected elements. Depending on the nature of the 

elements they need some components in them refurbished or replaced. Data about 

these elements are collected routinely at very large intervals of time and there is no 

possibility for any inter-element communication. If it is a process plant operating 

round the clock the endeavour is to maximize its state of functioning and minimize 

its state of failure. The traditional approach is to monitor the key elements and 

replace or refurbish them during a planned shut down or an unplanned breakdown.  

 

Figure 2: A Factory as an Assemblage of Physically Connected Elements 

The objective of the proposed methodology is to make the conventional 

factory into a smart factory by including smart technologies in the appropriate plant 

units. In a smart factory the elements are physically connected to ensure functionality 

as in the conventional factory and the key elements are fitted with accessories and 

sensors which continuously monitor them and communicate the condition to 
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controllers which store and analyze the data with or without the help of backup cloud 

computing. The controller then communicate with the accessories to effect changes 

based on the results of the analyses. This ability to monitor and control provides 

autonomous capabilities to the element and the factory. Figure 3 shows the schematic 

of a smart factory as an addition of accessories and sensors to the elements shown in 

the conventional factory to make it smart. 

 

Figure 3: Schematic of a Smart Factory 

This chapter proposes a methodology for installing the online condition 

monitoring and appropriate autonomous corrective actions. The proposed 

methodology has seven stages (a) situation analysis (b) breakdown prevention 

analysis (c) sensor selection (d) data transmission and storage selection (e) data 

processing and analytics (f) autonomous action network (g) integration with the 

physical plant units. The methodology is schematically shown in Figure 4. The 

following sections describe these seven stages. 
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Figure 4: Methodology for Building a Smart Factory 

3.1 Situation Analysis 

Situation analysis starts with the process description with the associated  plant 

units. Then historical data of these units could be appraised through performance 

analysis of the plant units. This would identify the units that have robust performance 

and need little change, and the vulnerable units that can be subjected to process 

improvement. A ‘Pareto Analysis’ can easily identify the units that frequently 

breakdown and thus need enhancement [67]. 
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3.2 Breakdown Prevention Analysis 

In the next breakdown prevention analysis the vulnerable units identified 

earlier are investigated for rectifying their vulnerability. It may be that the particular 

unit is breaking down because of the failure of a particular part. Then monitoring the 

condition of this part and taking remedial action at the right moment is the way 

forward in making them robust. This needs the identification of the needed self-x 

characteristics. This self-x characteristic for example may be the notification of the 

remaining life of a journal bearing. At the end of this stage  a ‘list of vulnerable units 

and the needed self-x characteristics’ can be produced as the output of this stage.  

3.3 Sensor Selection 

 The next stage is to establish the monitoring needed to incorporate the 

specific self-x characteristics. Suitable sensors have to be selected for this 

monitoring. There are a variety of sensors including temperature sensor, proximity 

sensor, accelerometer, infrared sensor, pressure sensor, optical sensor and ultrasonic 

sensor. With such a vast choice, non-destructive online sensors have become easily 

available at affordable prices. The chosen sensor should easily measure the required 

characteristic or parameter amongst the various noises such as vibration, dusty 

condition and bad lighting that can prevail in the factory.  

3.4 Data Transmission and Storage Selection 

 The data generated by the measurements made by sensors should be 

transmitted and stored for analysis. Estimation of the amount of data that would be 

generated and the choice of the communicating method are crucial at this stage.There 

are a variety of communicating technologies that support the specific networking 
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functionality needed in an IoT system in contrast to a standard uniform, network of 

common systems. The major enabling technologies of IoT are RFID, NFC, low 

energy bluetooth, low energy wireless, low energy radio protocols, LTE-A and Wi-

Fi-Direct [68]. The following subsections describes them. 

3.4.1 NFC and RFID 

 RFID (radio-frequency identification) and NFC (near-field communication) 

provide simple, low energy, and useful options to identity and access tokens, 

connection bootstrapping, and payments etc.  RFID technology uses two-way radio 

transmitter-receivers to identify and track tags associated with objects. However, 

NFC consists of communication protocols for electronic devices, typically a mobile 

device and a standard device [69]. 

3.4.2  Low-Energy Bluetooth 

 This technology supports the low-power, long-use need of IoT function while 

exploiting a standard technology with native support across systems. Bluetooth 

technology allows connection to a variety of different electronic devices wirelessly to 

a system for the transfer and sharing of data and this is the main function of 

bluetooth. Bluetooth technology uses radio waves to communicate between devices. 

Most of these radio waves have a range of 15 to 50 feet. Cell phones are connected to 

hands-free earpieces, wireless keyboard, mouse and mic to laptops with the help of 

bluetooth as it transmits information from one device to other device. Bluetooth 

technology has many functions, and it is used most commonly in wireless 

communications’ market [69]. 
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3.4.3  Low-Energy Wireless 

 This technology replaces the most power hungry aspect of an IoT system. 

Though sensors and other elements can power down over long periods, wireless 

communication links must remain in listening mode. Low-energy wireless not only 

reduces consumption, nevertheless also extends the life of the device through less use 

[69]. 

3.4.4 Radio Protocols 

 ZigBee, Z-Wave, and Thread are radio protocols for creating low-rate private 

area networks. These technologies are low-power, but offer high throughput unlike 

many similar options. This increases the power of small local device networks 

without the typical costs [69]. 

3.4.5  LTE-A 

 LTE-A, or LTE Advanced, delivers an important upgrade to LTE technology 

by increasing not only its coverage, but also reducing its latency and raising its 

throughput. It gives IoT a great power through expanding its range, with its most 

significant applications being vehicle, UAV, and similar communication [69]. 

3.4.6  WiFi-Direct 

 WiFi-Direct  allows P2P (peer-to-peer) connections with the speed of WiFi, 

but with lower latency therefore it eliminates the need for an access point. Although, 

WiFi-Direct eliminates an element of a network that often bogs it down, and it does 

not compromise on speed or throughput [69]. 
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3.5 Data Processing and Analytics 

 The important next stage is where the generated large amount of data is 

arranged in suitable classes (data processing) and subjected to various analyses. 

Evaluation of the analyses would reveal conditions where remedial or reactive 

actions are needed to keep the unit operational or to minimize the downtime and 

safety risks. This activity may require services from ‘Cloud Computing’. Most cloud 

computing services fall into four broad categories which are infrastructure as service 

(IaaS), platform as a service (PaaS), server less, and software as a service (SaaS) 

[70]. These are called cloud computing stack because they build on top of one 

another. 

3.5.1 Infrastructure as a Service (IaaS) 

 This is the most basic category of cloud computing services. With IaaS, the 

IT infrastructure servers and virtual machines, storage, networks, operating systems 

form a cloud provider on as you go basis [71]. 

3.5.2 Platform as a Service (PaaS)  

 This is another cloud computing service that supply an on-demand 

environment for developing, testing, delivering, and managing software applications. 

PaaS is designed to make it easier for developers to quickly create web or mobile 

apps without worrying about setting up or managing the underlying infrastructure of 

servers, storage, network, and databases needed for development. However, 

serverless computing which is considered as the overlapping of PaaS focuses on 

building app functionality without spending time continually managing the servers 

and infrastructure required to do so. The cloud provider handles the setup, capacity 
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planning, and server management for you. Server less architectures are highly 

scalable and event-driven only using resources when a specific function or trigger 

occurs [72]. 

3.5.3 Software as a Service (SaaS) 

 This is a method for delivering software applications over the internet, on 

demand and typically on a subscription basis. With SaaS, cloud providers host and 

manage the software application and underlying infrastructure and handle any 

maintenance like software upgrades and security patching. Users connect to the 

application over the Internet, usually with a web browser on their phone, tablet or PC 

[72]. 

3.6 Autonomous Action Network 

 Time has now come to take remedial action autonomously. This needs the 

controlling network for transmitting controlling information to accessories fitted in 

the originating plant unit or to other units or seek human intervention. The control 

action may include shutting down the plant, sections of the plant, units in sections or 

slowing down operational rates. This is the establishment of autonomous or self-

acting network of activities.  

3.7 Integration with Physical Plant Units 

 Once the network of activities or actions described in section 3.6 is 

established the last stage is to integrate the process with plant units. It may include 

fitting new accessories in various plant units or totally replacing the unit itself with a 

better one. This will make the vulnerable units in the conventional plant more robust 

due to self-monitoring and autonomous remedial action. As a closing remark it can 
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be said that the methodology proposed is based on the findings from literature review 

and the limited experience with plant units. The methodology needs testing to prove 

its validity. 
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Chapter 4: The Implementation 

Chapter 3 established a methodology for retrofitting an existing factory into a 

smart factory or building a new smart factory. Implementing the methodology 

therefore needs a factory in the first place. A laboratory-scale factory was built for 

this purpose. The methodology was then applied to make it smarter. This chapter 

describes the building of the factory and implementation of the methodology to make 

it smart. As explained in Chapter 3, a factory is considered as an assemblage of some 

physically connected elements, which function together in harmony to form the 

factory.  

4.1 The Laboratory-Scale Factory 

This section explains the conceptualization and designing of the laboratory 

scale factory which was built and tested. There are very many mechanical elements 

and the factories housing them that can be chosen for investigation. The main aim 

here as stated earlier is  ‘To get the knowledge and experience on ‘how to build or 

retrofit a smart factory addressing specific issues’, a simple smart factory, made up 

of basic building blocks and addressing a single issue using the principles of smart 

factory outlined earlier’. Based on the experience the main supervisor Dr 

Sivaloganathan had in a cement factory wear in journal bearings, an issue 

encountered in many industries, is chosen as the single issue to be addressed.   

4.1.1 Requirements 

In order to build the laboratory-scale factory its requirements were identified 

as follows: 
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a. It should reflect some real-life situation and involve elements that are widely 

used in factories. 

b. These elements should have behavioral characteristics that make them 

vulnerable due to random failure. 

c. The characteristic or characteristics should be easily monitored in a 

continuous manner. 

d. Analysis of the measured data of the characteristic under consideration 

should lead to some behavior that could be explained using established 

principles of engineering. 

e. The analysis should point towards some remedial actions to improve the 

performance of the factory. 

4.1.2 Triggering Problem and Conceptual Design 

An experience by the main supervisor Dr Sivaloganathan in a cement factory 

triggered the basis for the laboratory-scale factory. The experience can be described 

in the following way: The drive of the grate cooler attached to the kiln was connected 

to the drive through a journal bearing. The bearing gets worn out in short intervals. 

When the wear increases beyond a certain limit the play in the bearing creates a 

‘knock’, which shakes the cooler plate assembly. This and the resulting vibrations 

loosen the bolts that fix the cooler plates to the chassis and the cooler plates got 

dislodged causing a breakdown stopping the kiln. 

The experience identified journal bearing as the candidate for observation and 

wear of the bearing as the characteristic for continuous monitoring. The wear caused 
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the failure and it is affected by various factors such as the ambient temperature, dusty 

condition of the air, condition of lubrication etc. Cameras were chosen to monitor the 

wear on a continuous basis. A single bearing can be considered as an element in the 

factory and two of them when connected to carry a shaft can form a connected unit. 

But there should be more than one such unit. In the end the laboratory-scale factory 

was conceptualized to have two shaft assemblies, each carried by two journal 

bearings. But getting a clear view from the camera to monitor wear, proved difficult. 

It was observed that ‘Goods Wagons’ in railways use half-bearings as shown in 

Figure 5. Following this pattern the shafts were carried by half journal bearings. This 

enabled clear vision of the ‘top part’ of the lower-half bearing.  

 

Figure 5: Bearings in Railway Goods Wagons [73] 

To initiate wear the shaft has to be loaded. To load the rotating shaft a pulley 

supported by a ball bearing was installed at the center of the shaft. The conceptual 

design of the setup is shown in Figure 6. The conceptual design consists of two 

motors, two gear boxes, two loaded shafts and four half journal bearings. Out of 

these, the four half journal bearings, are the key elements that are vulnerable for 
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failure due to wear. To make the factory smart these bearings have to be monitored 

continuously. A vision system has been developed to monitor these bearings. Four 

webcam cameras were employed for this purpose.  

 

Figure 6: Conceptual Design of the Laboratory-Scale Factory 

4.1.3 Completed Laboratory-Scale Factory 

The detailed design of the factory was completed using SolidWorks software 

as shown in Figure 7. The ‘Production Drawings’ are given in Appendix A.  
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Figure 7: Motor and Shaft Assembly without the stand 

4.1.4 Stand for the Cameras 

Proper measurements require clear pictures and they should be at a constant 

location to yield accurate calculations. The cameras should not be fixed to the factory 

frame because the vibrations could shake the camera while pictures are being taken. 

To prevent this a frame to mount the four cameras was designed and fabricated as 

shown in Figure 8. The fabricated factory and the camera stand are shown in 

Figure 9. 
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Figure 8: Framework for Carrying the Cameras 
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Figure 9: The Fabricated Laboratory-Scale Factory 

4.1.5 Functional Description of the Factory 

Two motors each were connected to a flexible coupling (universal joint) and 

then to a shaft formed the drive units.The flexible coupling was used to fix any 

misalignment between the gearbox and the shaft. A 316 L AISI stainless steel shaft 

was loaded by a ball bearing fixed inside the pulley holding a load of 7.5 kg and the 

half journal bearings were mounted on bearing housings to carry the shaft.The 

housing of the journal bearing was made from aluminium alloy (Al Zn 6 Mg Cu) 

whereas the bushing of the journal bearing was made from bronze (Cu Sn 7 Pb 6 
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Zn 4). The bill of materials table is shown in Appendix C. Each journal bearing had a 

camera sensor to monitor its wear. Operating the journal bearing with the load in a 

harsh condition to get the maximum amount of wear and monitoring and making this 

failing bearing smart were the purposes of this factory. Furthermore, the design 

allows for relatively simple assembly and disassembly requiring 2 persons (complete 

removal and disassembly of the setup requires less than 4 hours).Having thus seen 

the description of the laboratory-scale factory the seven-stepped methodology for 

making it smart can be applied. 

4.2 Situation Analysis 

Since this laboratory scale factory is built to monitor the journal bearings 

there is no need for a situation analysis. 

4.3 Breakdown Prevention Analysis 

To prevent the breakdown there are some self-x characteristics needed. The 

vulnerable unit in the cement factory was the journal bearing which has been chosen 

as a candidate component for making the factory smart. Monitoring the condition of 

the journal bearing and taking remedial actions at the right moment is the way 

forward for making it robust. The needed self-x characteristics for making the 

frequently failing  journal bearing smart is (a) The notification of the remaining life 

of the journal bearing can be calculated from the historic data ‘wear value to 

breakdown’.(b) The average K is the combination of K, and the coefficient of friction 

fs called the ‘wear factor’ and is determined by experiments for different 

materials.This value for the specific bearing can be calculated where the K value can 

be used to trigger a lubricant flush. 
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Other vulnerable units can exist and accordingly a list of self-x characteristics 

can be generated.  

4.4 Sensor Selection 

 The monitoring needed to incorporate the self-x characteristics is done using 

a sensor. There are several sensors available in literature but in this work the sensor 

selected was the USB Logitech C920 webcam. It operates in full-HD 1080 pixels. It 

comes with a photo quality of 15 Mega pixels and a video quality of 1920x1080.It 

has a full-HD glass lens. The frame rate of the cameras is 30 frame per second. 

Logitech C920 produces brighter images because it is equipped with automatic HD 

light correction, the C920 fine tunes to your lighting conditions to produce bright, 

well-contrasted images even if you’re in a dim setting [74].The camera was placed at 

a constant distance of 7 centimetres away from the journal bearing. Figure 10 shows 

the C920 Logitech USB Webcam.  

 

Figure 10: A C920 USB Logitech Webcam 

4.5 Data Transmission and Storage Collection 

 The data generated by the measurements made by the sensor selected 

(Logitech C920) in section 4.4 should be transmitted and stored for analysis. 

Estimation of the amount of data that would be generated and the choice of the 

communicating method are crucial at this stage. There are several communication 
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methods that can be used such as ethernet, low energy wireless, low energy radio 

protocols, LTE-A and Wi-Fi-Direct. In this thesis ethernet communication has been 

used for data transmission and storage collection where the devices were connected 

through a wired local area network. MATLAB image processing toolbox and the 

USB webcam package has been installed to the PC using Ethernet communication 

(wired communication). The Image Processing Toolbox is a collection of functions 

that extend the capability of the MATLAB numeric computing environment [75]. 

The toolbox supports a wide range of image processing operations. MATLAB Image 

processing toolbox has been used to measure and process the wear of half journal 

bearing. At specific time intervals a Logitech webcam camera takes an image or 

picture of the shown journal bearing assembly, which is stored in the computer 

memory. The vision software then analyzes the image of the region ABCD shown in 

Figure 11 and estimates by how much the edge AD has moved from the first image. 

This is the wear. The wear is written to a file together with the lapsed time. The 

process continues with the image-acquiring and wear-calculating activities. The 

measured wear is then analyzed to monitor the wear rate, remaining life etc. They 

can be used to trigger messages to the maintenance, supplies and other necessary 

parties.  

 

Figure 11: The Half Journal Bearing under Investigation 
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Diagrams and images are considered more communicative as compared to 

text. Therefore, Jackson Structured Programming Diagrams [76] has been used to 

illustrate the code. JSP is basically a program design procedure that applies on 

systems with well-defined inputs and outputs. This design technique is language 

independent and can be used for any structured programming language. Table 3 

shows the JSP symbols and description. 

Table 3: JSP Symbols and Description 

 
 

 

The Methodology of measuring the wear consists of three parts: 

1. Image acquisition  

2. Creating the mask with first unworn image and  

3. Obtaining the measurement of the wear and getting the wear versus time 

values table.  

The following subsection describe the process done in each one of them. 
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4.5.1 Image Acquisition 

 

Figure 12: Software for Acquiring the Image 

This is the process of taking pictures at a specified interval over a specified 

period of time, display the image on the computer screen, and write the picture in a 

file. For the process reported here the images were obtained for a period of three 

hours and the pictures were taken at 50 seconds interval so that with processing time 

one picture is taken every minute that is a total of 180 pictures for each trial. To see 

significant amount of wear no lubricants were introduced between the journal and the 

bearing. The software to execute this activity is written as a function in MATLAB 

whose structure is shown in Figure 12. The function starts with setting up maximum 

time, pause time, resolution, file name and other similar variables under the title ‘set 

parameters’. The camera, which is connected to form part of the image processing 

system, is then called to take pictures. The camera in turn takes pictures in cycles. 

The picture taken is transferred to the computer, which displays the picture in the 

screen and writes it in the file present in the computer hardware during every cycle. 
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The process is repeated until the specified maximum time is reached. Appendix B 

shows the code structure of the ‘acquire image function’. 

4.5.2 Masking the Region of Interest  

 

Figure 13: Software for Masking the Region of Interest 

The picture covers a relatively large area in comparison to the bearings area 

of interest, which is marked by the reference rectangle ABCD shown earlier in 

Figure 11. This step is done only once on the first image in each set since the camera 

does not move and its position is constant for the same set. The process starts by 

drawing the rectangle ABCD (called polygon in Figure 11) and setting this rectangle 

as the mask. Then the reference angle is set as one equal to the arc tan of y divided 

by the x values. The values of the drawn rectangle and the distance are set. Figure 13 

shows the program structure of the masking .These values are saved for use in the 

next program where the wear is measured. 

4.5.3 Algorithm for Measuring Wear 

 This section discusses the process of processing the wear, where the mask 

done in the previous step is loaded and initialized first. Then a for loop is written to 

split the pictures into jpg format and numbers to make it easy in handling and 

manipulation.  
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Then the pixels and depth of wear is initialized to start obtaining wear continuously. 

Before obtaining the wear some preprocessing is done to prepare the region of 

interest to be calculated. Then setting the angular position to fix the inclination after 

cropping. This results in some black edges appearing on the edges. The black edges 

are removed and the image is grayscaled, filtered and binarized. Moreover, the pixel 

versus rows is plotted to see the distance from the first edge to the other edge by 

detecting the maximum peaks. To remove the error it has been subtracted and then 

the plot of wear versus time is obtained. Figure 14 shows the algorithm for 

measuring the wear. Figure 15 shows the whole process for measuring the wear. The 

detailed process with pictures is shown in chapter 5. 

 

Figure 14: Software for Measuring Wear 
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Figure 15: Structure of the Complete Program 
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4.5.4 Details of Processing and Preprocessing the Wear 

The procedure for preprocessing and calculating wear is described in this 

chapter.The required region is masked as shown in Figure 16(i) and cropped as in 

Figure 16(ii) and then the cropped image is rotated as in Figure 16(iii) this results in 

adding more zeros, or in other words black edges around the image. The zeros are 

removed by taking row-wise and column-wise sum of the pixel values, and 

considering the first nonzero sum as the beginning and the end of each summed lines 

and the result of this step is shown in Figure 16(iv). The RGB image is converted  to 

grayscale, after that a range filter is used to enhance only the important aspects like 

contour of wear. The filtered image is then binarized using a predefined threshold to 

capture much of the contour that indicates wear. Figure 16(v) shows the binarized 

image showing the boundaries of the bearing. Figure 16(a) shows the unworn journal 

bearing 1 and Figure 16(b) shows the same steps for processing a worn journal 

bearing 1. Figure 17,18 and 19 shows the same process for the the other three journal 

bearings. 
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Figure 16: Processing the Images (a) Unworn Journal Bearing 1 (b) Worn Journal 

Bearing 1 
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Figure 17: Processing the Images (a) Unworn Journal Bearing 2 (b) Worn Journal 

Bearing 2 
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Figure 18: Processing the Images (a) Unworn Journal Bearing 3 (b) Worn Journal 

Bearing 3 
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Figure 19: Processing the Images (a) Unworn Journal Bearing 4 (b) Worn Journal 

Bearing 4 
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Then this binarized image is used to get the pixels’ values versus rows graph. 

The highest peaks are detected by using differentiation command so that the 

boundaries of the region of interest are clearly shown. Figure 20 shows a typical 

‘pixel sum’ versus ‘Row’ graph where the actual length is represented by the gap 

between the peaks. Every picture taken by the camera at specified time intervals will 

be having a similar graph from which the actual size of AB represented by this gap 

can be calculated during the processing of that picture. The difference between the 

reference size (from the first picture) and the current size is the cumulative wear. 

 

Figure 20: Pixel Sum Versus Row Number 

4.6 Data Processing and Analytics 

 The important next stage is where the generated large amount of data is 

arranged in suitable classes (data processing) and subjected to various analyses. 

Evaluation of the analyses would reveal conditions where remedial or reactive 

actions are needed to keep the unit operational or to minimize the downtime and 
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safety risks. This activity may require services from ‘cloud computing’ such as IaaS, 

PaaS or SaaS. In this work they were however not needed. Evaluation of the analyses 

would reveal conditions where remedial or reactive actions are needed to keep the 

unit operational or to minimize the downtime and safety risks. 

 The processed data has a huge impact in the management of a journal bearing 

carrying a running shaft in a factory. The wear in the bearing is the parameter that 

tells whether it is in the operable condition or is reaching the wear-out period.  

A large amount of data about a single component can be classified in several 

ways. For example the condition of the wear rate when lubrication is provided and 

the wear rate when no lubrication is provided (harsh condition).This data provide a 

better way to manage than the routine change done in the MTTF from the historical 

data. 

 The measurement of wear permits the estimation of the remaining life. This 

can facilitate to plan the spare part and bring the maintenance team in time to 

minimize the downtime. But this needs two things: (a) availability of large data and 

(b) processing capability or analytics to compute different monitoring constructs to 

assist efficient operation.  

4.7 Autonomous Action Network 

Time has now come to take remedial action autonomously. The proposed 

smart system communicates with a cloud server on the internet through the ethernet 

network of the factory. The maintenance personnel check the status of the bearings 

through a web application. Thus, this facilitates a condition based maintenance 

instead of the preventive maintenance. This facilitates the decision making process in 
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which different stake holders could access the data and take required actions such as 

shutting the plant, or triggering the supplies for a spare part etc. This can be shown in 

Figure 21. 

 

Figure 21: Schematic of the Developed Smart Factory 

The analysis section of the project analyses these images and obtain the wear 

characteristics. The wear characteristics are plotted and displayed as a graph showing 

wear versus time. Another part of analysis calculates the following: 

a. The wear constant 

b. Any variation in wear rate 

c. Remaining life 

 The findings from the analyses autonomously trigger alerts to the 

maintenance and supplies divisions to get ready with spares and maintenance team 

for corrective maintenance. However, this part has not been done in this thesis. 
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The network system is composed of the following components: 

• Networked Factory (Wired or Wireless) 

• Cloud Server 

• Web Application  

4.8 Integration with the Physical Plant Units 

 Once the network of activities or actions described in section 4.7 is 

established the last stage is to integrate the process with plant units. It may include 

fitting new accessories in various plant units or totally replacing the unit itself with a 

better one. This will make the vulnerable units in the conventional plant more robust 

due to self-monitoring and autonomous remedial action. 
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Chapter 5: Results and Discussion 

In this chapter, the results of the implementation done in the previous chapter 

is illustrated.The four graphs of the four journal bearings are presented .As described 

earlier the entire system has been implemented in MATLAB using the Image 

Processing Toolbox. 

5.1 Analysis of the Results – Graphs 

Figure 22 shows the wear-time curve of the first journal bearing. The right 

part of the journal bearing has been masked as the region of interest. It can be seen 

that the wear is increasing rapidly because no lubricant was introduced. Initially, the 

curve shows a rapid change in wear (0 to 20 minutes) up to 0.15 mm. The slope 

started to be less steep after the 20 minutes. From 40 to 139 minutes the wear 

increased gradually to reach a value of 0.45 mm at 140 minutes.  

 

Figure 22: Wear versus Time Plot of Journal Bearing 1 
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Figure 23 shows the wear-time curve of the second journal bearing. Initially, 

the curve shows a rapid change in wear (0 to 10 minutes) where the wear reached 

0.06 mm. The wear started to increase gradually to reach a value of 0.17 mm at 140 

minutes.  

 

Figure 23: Wear versus Time Plot of Journal Bearing 2 

Figure 24 shows the wear-time curve of the third journal bearing. Initially, 

the curve shows a high peak wear value of 0.06 mm in the beginning and then it 

decreased to reach 0.02 mm.This can be an error because of the detection or the 

illumination. Then it shows a representative response of wear increasing gradually 

until to reach a value of  approximately 0.2 mm. 
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Figure 24: Wear versus Time Plot of Journal Bearing 3 

Figure 25 shows the wear-time curve of the fourth journal bearing. Initially, 

the curve shows a rapid change in wear (0 to 5 minutes) where the wear reached 0.3 

mm. The wear started to increase slightly to reach a value of 0.45 mm at 140 

minutes. 
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Figure 25: Wear versus Time Plot of Journal Bearing 4 

5.2 Analysis of the Results – Analytics 

 The graph in Figure 22 has been analyzed where the estimation of K and the 

remaining life of the journal bearing has been calculated from the wear-time table. 

Table 4 shows the time and wear extracted from the Figure 22 plot. Table 4 can be 

used for getting the analytics. 
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Table 4: Wear-Time Table 

Time Wear 

0 0 

10.833 0.11684 

20 0.14733 

30 0.19316 

40 0.19985 

50 0.22416 

60 0.23496 

70 0.23595 

80 0.26065 

90 0.30723 

100 0.33717 

110 0.36578 

120 0.40171 

130 0.43033 

140 0.4492 

 

5.2.1 Analysis of the Wear 

Budyanas and Nisbett in Shigley’s Mechanical Engineering Design [77] 

explains the wear in the following way.  

  

(a) (b) 

 

Figure 26: Sliding Block Subjected to Wear (Adapted from [77]) 
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Consider the block of cross sectional area A shown in Figure 26 (a) sliding 

through a distance S and reaches the position as shown in Figure 26 (b). In the 

process it undergoes a wear w as shown. Let the pressure on the wearing surface be P 

and the coefficient of friction be 𝑓𝑠. 

The frictional force, 

         fsPA Newtons                                                             (1) 

Work done in moving by a distance S is,  

                                                         fsPAS                                                               (2)   

 

But the work done is proportional to the volume of material removed. The material 

removed is,  

                    wA mm3                                                            (3) 

 

Therefore, 

                                                       fsPAS ∝ wA                                                         (4) 

 

 

This leads to 

                                                   w = K1fsPS mm                                                       (5) 

 

Also, 

                                                            S = Vt                                                               (6) 

 

This leads to 

                                        w = KPVt mm                                                                    (7) 
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Where K is the combination of 𝐾1 and 𝑓𝑠, called the ‘Wear Factor’ and is 

determined by experiments for different materials. 

A journal bearing works satisfactorily until the wear reaches a limit at which 

point the sloppiness would increase vibrations and create damage to the rest of the 

plant units. Normally maintenance units replace the worn-out bearings. Continuous 

monitoring as described above would permit the estimation of the wear factor at 

frequent intervals for the specific bearing. This can give the following benefits: 

5.2.2 Estimation of the Exact Value of K for the Given Bearing 

Consider the bearing in the test rig. The motor has a speed of 1400 rpm and 

the gearbox has a reduction of 50. This leaves the speed of the shaft be 28 rpm. The 

shaft diameter is 25 mm. Hence the peripheral velocity of rubbing equals, 

  (π × 25) × (
28

60
) × 10−3 = 0.037 m/sec                                                                (8) 

 

The load at the center is 7.5 kg. This can be considered as 75 Newtons. The length of 

the bearing is 25 mm. Hence the, 

                                     Average pressure =
75

2×25×25
= 0.06 MPa                          (9) 

 

Thus in general for this bearing the wear 𝑤 = 𝐾 × 0.06 × 0.037 × 103 × 𝑡 

 

Now if the wear during the first 10 minutes is considered  

0.11684 = K × 0.06 × 0.037 × 103 × 10.8333 × 60                                           (10) 
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Hence, 

K =
0.11684

0.06×0.037×103×10.833×60
= 8.0973 × 10−5                                   (11) 

 

Now if the 30 minutes’ interval from 20 minutes to 50 minutes is considered.  

 

Wear 𝑤 = 0.22416 − 0.1473 = 𝐾 × 0.06 × 0.037 × 103 × 30 × 60                  (12) 

 

Hence, 

                   𝐾 =
0.07686

0.06×0.037×103×30×60
= 1.9234 × 10−5                                         (13) 

 

This tells that the K value under normal operations is much lower than the 

initial value. The initial K was high till the peaks and valleys in the two mating 

surfaces smooth themselves out. The variation of K values in 20 minutes’ intervals is 

given in Table 5. 

Table 5: Variation of K in 20 Minutes Interval 

Time(min) Wear (mm) K 

0 0  

20 0.14733 5.530 × 10−5 

40 0.19985 3.751 × 10−5 

60 0.23496 3.940 × 10−5 

80 0.26065 2.446 × 10−5 

100 0.33717 2.531 × 10−5 

120 0.40171 2.513 × 10−5 

140 0.4492 2.409 × 10−5 
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Monitoring the K value can give an indication about the lubrication and 

environmental condition such as dust. It also is a reflection of the materials of the 

shaft and the bearing. Any increase in the value would indicate the need for checking 

the environment and lubrication instead of depending on Preventive maintenance. 

5.2.3 Estimation of Remaining Life 

Estimation of remaining life based on specific measured values would be 

more reliable than those figures based on historical data. For the given setup let the 

permissible wear be 3 mm. If an average value of 7.2 × 10−5 is assumed for K the 

total life can be calculated as, 

Total life =  
Permissible wear

K×0.06×0.037×103 =
3

7.2×10−5×0.06×0.037×103 = 312.8 Mins                  (14)             

 

As can be seen the estimated total life is 312.8 minutes. This value will 

change with the change in the K value. But it can be used as a more reliable estimate. 

Using this for example at the end of 140 minutes the remaining life can be 

estimated as: 

   Remaining  life = (312.8 − 140) = 172.8 𝑚𝑖𝑛𝑠                                              (15) 
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Chapter 6: Discussion, Areas for Future Work and Conclusion  

This thesis and the laboratory-scale factory are the results of the maiden 

effort in the department on smart factories and digital manufacturing. Since this topic 

is current and many researchers are actively involved in the research the number of 

publications in the public domain is very high. Common terminologies in English 

language had different specific meanings in this digital formation. It was therefore a 

huge effort to carry out a representative literature survey.  

6.1 Discussion 

The findings from the survey prompted the question ‘How can one retrofit or 

build a smart factory?’. The survey and the methodology proposed were summarized 

and published in the International Journal of Advance Research, Ideas and 

Innovations in Technology under the title ‘Smart Factory: A methodology for 

adaptation’. This defined the smart factory for us and the methodology to build one. 

In the next step we used the methodology to build a laboratory-scale smart factory. 

The journal bearings were chosen as the single issue for investigation. The biggest 

problem was finding the right sensor and the method of using it for condition 

monitoring. Several alternatives were considered and abandoned due to their high 

cost. Logitech Webcam C920 was chosen and Image Processing Toolbox from 

MATLAB were used for carrying out the functions. It required substantial command 

in programming. A program was formulated and written using Jackson’s Structured 

Programming methodology, JSP. This was written as a paper for the Computing 

Conference 2019 under the title ‘Vision monitoring of half journal bearings’. This 

was the first attempt to monitor a single bearing. It was thought that monitoring all 

four bearings simultaneously could be done easily. Though monitoring was achieved 
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the process was far from easy and complete. It needed the IoT platform. At this point 

it was decided that this phase would conclude here, showing how the data collected 

could be used to make the factory smart rather than implementing it. Chapter 5 

showed that the following could be done using the data collected during the 

continuous monitoring (a) observing and measuring the variation of wear factor k so 

that autonomous actions can be taken to make the system more robust (b) estimating 

the remaining life which results in removing uncertainties in conventional factories. 

6.2 Future Work – IoT Platform 

An IoT platform bridges the gap between device sensors and data network. It 

is a set of components that allows developers to spread out the applications, remotely 

collect data, secure connectivity, and execute sensor management. It connects 

different components, ensuring uninterrupted flow of communication between the 

devices. In a factory there can be several plant units that require routine replacement 

after certain time is elapsed. Coordinating them and replacing them during a single 

planned shutdown is a major task in conventional factory maintenance. With 

continuous monitoring and facility for the estimation of remaining lives of several 

units the plant units can communicate among themselves and plan an optimal time 

for a shutdown. In addition to, journal bearings can communicate with voice 

commands illustrating the remaining live left in them and send a request to the 

supplies department for replacing the journal bearings. 

6.3 Conclusions 

This research has provided several insights into smart factories. The following can be 

said as conclusions from this research: 
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1. In the first instance it carried out an extensive survey on ‘Smart Factory’ and 

identified and understood the enabling technologies on which smart factories 

are and can be built. Developments in four main areas (a) sensor capabilities 

(b) communication capabilities (c) storing and processing huge amount of 

data and (d) better utilization of technology in management and further 

development are these enabling technologies and practices.  

2. The research proposed a methodology to retrofit an existing factory into a 

smart factory and for formulating the development of a new smart factory. It 

outlines a systematic approach for the introduction of ‘Smartness’ in the 

operation of a smart factory. 

3. In the research a factory at the laboratory-scale has been built. It identified 

the route cause or shortcoming of existing factories (wear in journal bearings) 

and used the enabling technologies to make it smart. 

4. The laboratory-scale factory used the vision-based sensing system in a novel 

way to study the wear characteristics of half journal bearings.The maximum 

wear value was 0.45mm for journal bearing 1 and 2. 

5. Finally algorithms and analytics have been developed to process the data to 

get results that can be used to make applications of journal bearings ‘Smart’. 
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Appendix B 

 

Image Acquistion  
 

clear  

maxTime = 240; %in minutes  

Fname =[num2str(maxTime),' minute']; % just any name for the folder  

pauseTime = 60; %in seconds  

cams = webcamlist; % call the webcam connected  

camera1 = webcam(1);  

resolution = '1920x1080';  

% camera=webcam('Logitech HD Pro Webcam C920');%Connect to the 

camera  

camera1.Resolution = resolution;%change this but try to keep 4:3 

standard  

pause(10);%ensure setting of resolutions  

% picture1=camera1.snapshot;  

% subplot(1,2,1);image(picture1);  

% path = ('Photos\');  

cnts = 0;  

maxTime = maxTime *60 + 10;   

mkdir(strcat('C:\Users\user\Pictures\Logitech Webcam\Saved 

Photos\',Fname));  

presentTime = 0;  

while (presentTime < maxTime)  

    tic  

    cnts = cnts + 1;  

%     picture=camera.snapshot;  

%     image(picture);title(['image ',num2str(cnts)])  

    picture1=camera1.snapshot;  

    subplot(1,2,1);image(picture1);title(['cam1_',num2str(cnts)])  

    drawnow;  

    path1=strcat('C:\Users\user\Pictures\Logitech Webcam\Saved 

Photos\',Fname,'\cam1_',num2str(cnts),'.jpg');  

    imwrite(picture1,path1)  

    pause(pauseTime)  

    presentTime = presentTime + toc;  

end  

   

clc  

fprintf('Done !\n')  
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Cropping the ROI  

  

clc  

clear  

close all  

   

fldName = 'C:\Users\user\Pictures\Logitech Webcam\Saved Photos\180 

minute\';  

   

fname1 = 'cam1_1.jpg';  

   

   

RGB1 = imread([fldName,fname1]);  

imshow(RGB1)  

h_good = impoly();  

xy1 = h_good.getPosition;  

x = floor(min(xy1(:,1)));  

y = floor(min(xy1(:,2)));  

w = ceil(range(xy1(:,1)));  

h = ceil(range(xy1(:,2)));  

theta1 = rad2deg(atan((xy1(2:end,2) - xy1(1:end-1,2)) ./ 

(xy1(2:end,1) - xy1(1:end-1,1))));  

   

iRect1 = [x y w h];  

iMask1 = h_good.createMask();  

dist = 25;%mm  

   

save('DistanceMask_cam1.mat','iMask1','iRect1','theta1')  

  

 

Getting Wear  

 

clc 

 

clear 

close all 

load DistanceMask.mat 

fldName ='C:\Users\user\Pictures\Logitech Webcam\Saved Photos\180 

minute_cam2\'; 

  

  

folder = dir(fldName); 

folder_not_a_directory = folder((~[folder.isdir])); 

[filenames1]=deal({}); 

[index1] = deal([]); 

for ii=1:length(folder_not_a_directory) 

    nn = folder_not_a_directory(ii).name; 

    TextSplit = strsplit(nn,{'_','.'}); 

    filenames1{end+1} = nn; 

    index1 = [index1 str2double(TextSplit{2})]; 

             

end 

if exist('theta1','var') 

    theta = theta1; 

end 

if ~exist('dist','var') 

    dist = 12.5; 

end 

[~,x1] = sort(index1); 
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filenames1 = filenames1(x1); 

  

[pixels1,depth1] = deal([]); 

for itr = 1:length(filenames1) 

    filename1 = filenames1{itr}; 

    RGB1 = imread([fldName,filename1]); 

    rgb1 = RGB1; 

    rgb1(repmat(~iMask1,1,1,3)) = 0; 

    rgb1 = imcrop(rgb1,iRect1);  

    image1 = imrotate(rgb1,theta(2)); 

    VectorSum = sum(image1,3); 

    yF = find(sum(VectorSum,2),1,'first'); 

    yL = find(sum(VectorSum,2),1,'last'); 

    xF = find(sum(VectorSum,1),1,'first'); 

    xL = find(sum(VectorSum,1),1,'last'); 

    image1 = image1(yF:yL,xF:xL,:); 

    binaryimage1 = imbinarize(rgb2gray(rangefilt(image1)),0.15); 

    Pixels_versus_row_Plot = sum(binaryimage1,2); 

     

    if itr == 1 

        pop=binaryimage1; 

        [a,b]=findpeaks(diff(-Pixels_versus_row_Plot)); 

        [~,idx] = max(a); 

        PeakStart = b(idx)+2; 

        [c,d]=findpeaks(diff(Pixels_versus_row_Plot)); 

        [~,idx] = max(c); 

        PeakStop = d(idx)-2; 

        depth = 0; 

        h2 = Pixels_versus_row_Plot(PeakStart:PeakStop); 

        h1 = h2; 

    else 

        h2 = Pixels_versus_row_Plot(PeakStart:PeakStop); 

        h = h2 - h1; 

        [pks,locs] = findpeaks(h); 

        bottomOfWear = locs(end-5); 

        if isempty(bottomOfWear), bottomOfWear = 0; end 

        depth =bottomOfWear/(PeakStop-PeakStart+1)*dist;  

        depth=12.5-depth; 

    end 

    pixels1 = [pixels1 h2]; 

    depth1 = [depth1 depth]; 

    fprintf('CAM1:done %3g of %3g \n',itr,length(filenames1)) 

end 

depth_of_wear1 = movmean(depth1,[100,0]); 

depth_of_wear1= depth_of_wear1-depth_of_wear1(1); 

depth_of_wear1(1)=[]; 

no_of_pictures1 = length(depth_of_wear1); 

time1 = (0:no_of_pictures1-1)*50; %seconds 

depth_of_wear1=depth_of_wear1(10:end)-depth_of_wear1(10); 

time1=time1(10:end) 

figure('Name','cam1') 

plot(time1/60,smooth(depth_of_wear1),'o'); 

xlabel('Time, mins') 

ylabel('Wear depth, mm') 

grid on 
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Appendix C 

s/n Vendor Name Item name Specification 

1 

Bearings World 

Auto Spare Parts 

Trading L.L.C 

63/28 Bearings 28 cm diameter shaft 

2 SKIDAUTO.CO

M 
Universal Joint 

Borgeson Steering 1in.48 x 

1DD diameter 

3 ACE Al Futtaim 

Trading Co LLC 

HOME WORKS FOLD 

WORKBENCH WROL 
Wooden Workshop table 

4 GUANGLU 

MOTOR FZCO 

2 motors 50:1 Gearbox 

ratio 

1400 rpm and 1hp motor 

50:1 Gearbox ratio 

5 SOUQ.COM 4 Logitech C920  1080p Full HD Webcam 
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