85 research outputs found

    Clustering Regression Wavelet Analysis for Lossless Compression of Hyperspectral Imagery

    Get PDF
    Recently, Regression Wavelet Analysis (RWA) was proposed as a method for lossless compression of hyperspectral images. In RWA, a linear regression is performed after a spectral wavelet transform to generate predictors which estimate the detail coefficients from approximation coefficients at each scale of the spectral wavelet transform. In this work, we propose Clustering Regression Wavelet Analysis (RWA-C), an extension of the original ‘Restricted’ RWA model which may be used to improve compression performance while maintaining component scalability. We demonstrate that clustering may be used to group pixels with similar spectral profiles, these clusters may then be more efficiently processed to improve RWA prediction performance while only requiring a modest increase side-information.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    High-Performance Lossless Compression of Hyperspectral Remote Sensing Scenes Based on Spectral Decorrelation

    Get PDF
    The capacity of the downlink channel is a major bottleneck for applications based on remotesensing hyperspectral imagery (HSI). Data compression is an essential tool to maximize the amountof HSI scenes that can be retrieved on the ground. At the same time, energy and hardware constraintsof spaceborne devices impose limitations on the complexity of practical compression algorithms.To avoid any distortion in the analysis of the HSI data, only lossless compression is considered in thisstudy. This work aims at finding the most advantageous compression-complexity trade-off withinthe state of the art in HSI compression. To do so, a novel comparison of the most competitive spectraldecorrelation approaches combined with the best performing low-complexity compressors of thestate is presented. Compression performance and execution time results are obtained for a set of47 HSI scenes produced by 14 different sensors in real remote sensing missions. Assuming onlya limited amount of energy is available, obtained data suggest that the FAPEC algorithm yields thebest trade-off. When compared to the CCSDS 123.0-B-2 standard, FAPEC is 5.0 times faster andits compressed data rates are on average within 16% of the CCSDS standard. In scenarios whereenergy constraints can be relaxed, CCSDS 123.0-B-2 yields the best average compression results of allevaluated methods

    Virtually Lossless Compression of Astrophysical Images

    Get PDF
    We describe an image compression strategy potentially capable of preserving the scientific quality of astrophysical data, simultaneously allowing a consistent bandwidth reduction to be achieved. Unlike strictly lossless techniques, by which moderate compression ratios are attainable, and conventional lossy techniques, in which the mean square error of the decoded data is globally controlled by users, near-lossless methods are capable of locally constraining the maximum absolute error, based on user's requirements. An advanced lossless/near-lossless differential pulse code modulation (DPCM) scheme, recently introduced by the authors and relying on a causal spatial prediction, is adjusted to the specific characteristics of astrophysical image data (high radiometric resolution, generally low noise, etc.). The background noise is preliminarily estimated to drive the quantization stage for high quality, which is the primary concern in most of astrophysical applications. Extensive experimental results of lossless, near-lossless, and lossy compression of astrophysical images acquired by the Hubble space telescope show the advantages of the proposed method compared to standard techniques like JPEG-LS and JPEG2000. Eventually, the rationale of virtually lossless compression, that is, a noise-adjusted lossles/near-lossless compression, is highlighted and found to be in accordance with concepts well established for the astronomers' community

    Lossless compression of hyperspectral images

    Get PDF
    Band ordering and the prediction scheme are the two major aspects of hyperspectral imaging which have been studied to improve the performance of the compression system. In the prediction module, we propose spatio-spectral prediction methods. Two non-linear spectral prediction methods have been proposed in this thesis. NPHI (Non-linear Prediction for Hyperspectral Images) is based on a band look-ahead technique wherein a reference band is included in the prediction of pixels in the current band. The prediction technique estimates the variation between the contexts of the two bands to modify the weights computed in the reference band to predict the pixels in the current band. EPHI (Edge-based Prediction for Hyperspectral Images) is the modified NPHI technique wherein an edge-based analysis is used to classify the pixels into edges and non-edges in order to perform the prediction of the pixel in the current band. Three ordering methods have been proposed in this thesis. The first ordering method computes the local and global features in each band to group the bands. The bands in each group are ordered by estimating the compression ratios achieved between the entire band in the group and then ordering them using Kruskal\u27s algorithm. The other two methods of ordering compute the compression ratios between b-neighbors in performing the band ordering

    Remote Sensing Data Compression

    Get PDF
    A huge amount of data is acquired nowadays by different remote sensing systems installed on satellites, aircrafts, and UAV. The acquired data then have to be transferred to image processing centres, stored and/or delivered to customers. In restricted scenarios, data compression is strongly desired or necessary. A wide diversity of coding methods can be used, depending on the requirements and their priority. In addition, the types and properties of images differ a lot, thus, practical implementation aspects have to be taken into account. The Special Issue paper collection taken as basis of this book touches on all of the aforementioned items to some degree, giving the reader an opportunity to learn about recent developments and research directions in the field of image compression. In particular, lossless and near-lossless compression of multi- and hyperspectral images still remains current, since such images constitute data arrays that are of extremely large size with rich information that can be retrieved from them for various applications. Another important aspect is the impact of lossless compression on image classification and segmentation, where a reasonable compromise between the characteristics of compression and the final tasks of data processing has to be achieved. The problems of data transition from UAV-based acquisition platforms, as well as the use of FPGA and neural networks, have become very important. Finally, attempts to apply compressive sensing approaches in remote sensing image processing with positive outcomes are observed. We hope that readers will find our book useful and interestin

    Lossless hyperspectral image compression using binary tree based decomposition

    Get PDF
    A Hyperspectral (HS) image provides observational powers beyond human vision capability but represents more than 100 times data compared to a traditional image. To transmit and store the huge volume of an HS image, we argue that a fundamental shift is required from the existing "original pixel intensity"based coding approaches using traditional image coders (e.g. JPEG) to the "residual" based approaches using a predictive coder exploiting band-wise correlation for better compression performance. Moreover, as HS images are used in detection or classification they need to be in original form; lossy schemes can trim off uninteresting data along with compression, which can be important to specific analysis purposes. A modified lossless HS coder is required to exploit spatial- spectral redundancy using predictive residual coding. Every spectral band of an HS image can be treated like they are the individual frame of a video to impose inter band prediction. In this paper, we propose a binary tree based lossless predictive HS coding scheme that arranges the residual frame into integer residual bitmap. High spatial correlation in HS residual frame is exploited by creating large homogeneous blocks of adaptive size, which are then coded as a unit using context based arithmetic coding. On the standard HS data set, the proposed lossless predictive coding has achieved compression ratio in the range of 1.92 to 7.94. In this paper, we compare the proposed method with mainstream lossless coders (JPEG-LS and lossless HEVC). For JPEG-LS, HEVCIntra and HEVCMain, proposed technique has reduced bit-rate by 35%, 40% and 6.79% respectively by exploiting spatial correlation in predicted HS residuals

    Técnicas de compresión de imágenes hiperespectrales sobre hardware reconfigurable

    Get PDF
    Tesis de la Universidad Complutense de Madrid, Facultad de Informática, leída el 18-12-2020Sensors are nowadays in all aspects of human life. When possible, sensors are used remotely. This is less intrusive, avoids interferces in the measuring process, and more convenient for the scientist. One of the most recurrent concerns in the last decades has been sustainability of the planet, and how the changes it is facing can be monitored. Remote sensing of the earth has seen an explosion in activity, with satellites now being launched on a weekly basis to perform remote analysis of the earth, and planes surveying vast areas for closer analysis...Los sensores aparecen hoy en día en todos los aspectos de nuestra vida. Cuando es posible, de manera remota. Esto es menos intrusivo, evita interferencias en el proceso de medida, y además facilita el trabajo científico. Una de las preocupaciones recurrentes en las últimas décadas ha sido la sotenibilidad del planeta, y cómo menitoirzar los cambios a los que se enfrenta. Los estudios remotos de la tierra han visto un gran crecimiento, con satélites lanzados semanalmente para analizar la superficie, y aviones sobrevolando grades áreas para análisis más precisos...Fac. de InformáticaTRUEunpu

    Efficient Nonlinear Dimensionality Reduction for Pixel-wise Classification of Hyperspectral Imagery

    Get PDF
    Classification, target detection, and compression are all important tasks in analyzing hyperspectral imagery (HSI). Because of the high dimensionality of HSI, it is often useful to identify low-dimensional representations of HSI data that can be used to make analysis tasks tractable. Traditional linear dimensionality reduction (DR) methods are not adequate due to the nonlinear distribution of HSI data. Many nonlinear DR methods, which are successful in the general data processing domain, such as Local Linear Embedding (LLE) [1], Isometric Feature Mapping (ISOMAP) [2] and Kernel Principal Components Analysis (KPCA) [3], run very slowly and require large amounts of memory when applied to HSI. For example, applying KPCA to the 512×217 pixel, 204-band Salinas image using a modern desktop computer (AMD FX-6300 Six-Core Processor, 32 GB memory) requires more than 5 days of computing time and 28GB memory! In this thesis, we propose two different algorithms for significantly improving the computational efficiency of nonlinear DR without adversely affecting the performance of classification task: Simple Linear Iterative Clustering (SLIC) superpixels and semi-supervised deep autoencoder networks (SSDAN). SLIC is a very popular algorithm developed for computing superpixels in RGB images that can easily be extended to HSI. Each superpixel includes hundreds or thousands of pixels based on spatial and spectral similarities and is represented by the mean spectrum and spatial position of all of its component pixels. Since the number of superpixels is much smaller than the number of pixels in the image, they can be used as input for nonlinearDR, which significantly reduces the required computation time and memory versus providing all of the original pixels as input. After nonlinear DR is performed using superpixels as input, an interpolation step can be used to obtain the embedding of each original image pixel in the low dimensional space. To illustrate the power of using superpixels in an HSI classification pipeline,we conduct experiments on three widely used and publicly available hyperspectral images: Indian Pines, Salinas and Pavia. The experimental results for all three images demonstrate that for moderately sized superpixels, the overall accuracy of classification using superpixel-based nonlinear DR matches and sometimes exceeds the overall accuracy of classification using pixel-based nonlinear DR, with a computational speed that is two-three orders of magnitude faster. Even though superpixel-based nonlinear DR shows promise for HSI classification, it does have disadvantages. First, it is costly to perform out-of-sample extensions. Second, it does not generalize to handle other types of data that might not have spatial information. Third, the original input pixels cannot approximately be recovered, as is possible in many DR algorithms.In order to overcome these difficulties, a new autoencoder network - SSDAN is proposed. It is a fully-connected semi-supervised autoencoder network that performs nonlinear DR in a manner that enables class information to be integrated. Features learned from SSDAN will be similar to those computed via traditional nonlinear DR, and features from the same class will be close to each other. Once the network is trained well with training data, test data can be easily mapped to the low dimensional embedding. Any kind of data can be used to train a SSDAN,and the decoder portion of the SSDAN can easily recover the initial input with reasonable loss.Experimental results on pixel-based classification in the Indian Pines, Salinas and Pavia images show that SSDANs can approximate the overall accuracy of nonlinear DR while significantly improving computational efficiency. We also show that transfer learning can be use to finetune features of a trained SSDAN for a new HSI dataset. Finally, experimental results on HSI compression show a trade-off between Overall Accuracy (OA) of extracted features and PeakSignal to Noise Ratio (PSNR) of the reconstructed image
    • …
    corecore