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Abstract 
 

Lossless Compression of Hyperspectral Images.  
 

Sushil K. Jain 
 
Hyperspectral imaging is a useful tool in mineral exploration, environmental monitoring, 
agriculture, and resource management. The capture of images at small discrete 
frequencies is possible with better sensor technologies. This has resulted in the 
acquisition of large amount of data everyday. There is a need to compress this data due to 
restriction on the available bandwidth and storage space. In this thesis we study two 
aspects of lossless compression of hyperspectral images. Ordering and the prediction 
scheme are the two major aspects of hyperspectral imaging which have been studied to 
improve the performance of the compression system. Each module is studied separately 
and new techniques are suggested which lead to better performance compared to the 
state-of-the art technologies. 
 
In the prediction module, we propose spatio-spectral prediction methods. Two non-linear 
spectral prediction methods have been proposed in this thesis. NPHI (Non-linear 
Prediction for Hyperspectral Images) is based on a band look-ahead technique wherein a 
reference band is included in the prediction of pixels in the current band. The prediction 
technique estimates the variation between the contexts of the two bands to modify the 
weights computed in the reference band to predict the pixels in the current band. EPHI 
(Edge-based Prediction for Hyperspectral Images) is the modified NPHI technique 
wherein an edge-based analysis is used to classify the pixels into edges and non-edges in 
order to perform the prediction of the pixel in the current band. Since the global 
structures of the bands remain the same, the edge feature calculated in the reference band 
should be similar to features present in the current band. The edge based information can 
be computed easily since at the decoder the reference band is decoded before the current 
band. Hyperspectral images have high spectral correlation between most of the bands, but 
some of the bands are corrupted by atmospheric absorption and hence perform poorly 
with spectral prediction. These bands are predicted using spatial predictor NP (North 
Pixel). The spatial predictor (NP) performs better than the standard spatial predictors on 
the bands corrupted by atmospheric absorption. Some of the bands have very low 
intensity values, these bands are best encoded without prediction since they have low self 
entropy and poor spectral correlation. 
 
Three ordering methods have been proposed in this thesis. The first ordering method 
computes the local and global features in each band to group the bands. The bands in 
each group are ordered by estimating the compression ratios achieved between the entire 
band in the group and then ordering them using Kruskal’s algorithm. The other two 
methods of ordering compute the compression ratios between b-neighbors to order the 
bands. The weighted graphs formed are then ordered based on two MST (Minimum 
Spanning Tree) algorithms. Prim’s and Kruskal’s MST algorithms have been modified to 
obtain the ordered bands for lossless compression of hyperspectral images. 
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  Introduction 

Chapter 1 Introduction 
 

1.1  Introduction to the Problem 
 

Data compression can be classified into lossless compression and lossy compression. In 

lossless compression the original data can be retrieved from the compressed data without 

any distortion or change. Lossless compression yield lower compression ratios. Lossy 

compression retains the important part of the data while discarding the rest. The measure 

of the quality of the compressed data is based on the Mean Square Error (MSE) or Peak 

signal to Noise Ratio of the reconstructed data. Compression gains are dependent on the 

allowable rate-distortion factor for any given application for which the data is being 

compressed. Lossless compression is used in applications like medical imaging, 

hyperspectral imaging, compressing legal documents and for executables. Lossy 

compression is used in internet applications, cell phones, and entertainment archives. 

 

The focus of this work is on hyperspectral image compression, in particular, on lossless 

compression of hyperspectral images. With the advent of satellite imaging, huge amounts 

of data are being captured everyday and transmitted back to earth for further processing. 

Improved sensor technology has allowed the researchers to capture images at small 

discrete frequencies resulting in increase in the number of bands captured for one scene. 

AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) sensors capture 224 bands in 

the range of 400nm to 2500nm in discrete steps of 10nm [2, 35]. In one day, 76 GB’s of 

data is captured by the AVIRIS sensors [2, 35]. With constraints on available bandwidth 

and storage space there is a need to compress this data. The captured data is further 

processed to study the mineral deposits and atmospheric changes and require that the data 

should not be corrupted in any form at the time of compression and transmission.  

 

Intense research in the field of lossless compression has been carried out for last many 

decades. Standard algorithms such as JPEG-LS (Joint Photographic Expert Group) [15] 

and CALIC (Context Based Adaptive Lossless Image Coder) [54] are widely used in 
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  Introduction 

different applications; however, these algorithms perform poorly in terms of compression 

ratio on hyperspectral images [50, 20, 55, and 40]. Hyperspectral images have strong 

spectral correlation than spatial correlation, hence spectral prediction algorithms work 

better than the spatial prediction algorithms. The standard lossless image compression 

algorithms have been optimized to compress 8 bit images, while hyperspectral images 

have varying bit depth across the bands ranging from 6 bits per pixel to 16 bits per pixel. 

Hyperspectral imaging captures reflected light from different surfaces. This spectral 

information is then sampled by a 12-bit ADC and then represented with 16-bit precision 

[2, 39, 35].  Standard lossless image compression algorithms are designed to compress 

largely natural images having a bit depth of 8 bit and hence do not perform well on 16-bit 

hyperspectral images. The proposed 3-D CALIC [55, 20] algorithm was not optimized 

for 16 bit data and hence did not perform well on the hyperspectral data. M-CALIC 

which improved 3-D CALIC combined the previous bands to form a reference band 

before applying 3-D CALIC. 

 

Hyperspectral images are affected by atmospheric absorption and sensor noise at the time 

of capture [2, 22]. Gases, water molecules and the suspended particles in the atmosphere 

interact with the solar energy and reduce the energy of light reaching the earth. Similarly 

the reflected light from the earth surface is scattered or absorbed by the atmosphere. This 

reduces the total incident energy on the sensors resulting in large variation of pixel values 

across the bands. At certain wavelengths the incident light on the sensors is almost 

completely absorbed or scattered by the atmosphere. These bands have high dominance 

of sensor noise over the incident light energy and hence have very little spectral 

information. Since the sensor noise dominates over the spectral information incident on 

the sensors, the captured images have very low pixel value range.   

 

Hyperspectral images have same global structure across the bands but have different 

pixel intensities due to different absorption properties of the atmosphere and the region of 

interest. Since the global structure remains similar across all the bands, hyperspectral 

images visually look similar if they are normalized and displayed. Though the global 

structure remains same across the bands the variation in pixel intensities is different 
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locally. This is due to the absorption and reflection properties of the material which 

changes with change in wavelength of the incident light. There is a need to capture this 

variation at the time of prediction to reduce the prediction error residual.  

 

Classification of pixels into edge and non-edge areas becomes easy in the case of 

hyperspectral images due to the a priori information obtained from the reference band. 

This process of classification becomes difficult in the case of spatial prediction. The pixel 

gradients in the bands is very high and sometimes in thousands. It becomes difficult to 

classify the pixels into edge and non-edge pixels as almost all the pixels will be classified 

as an edge region. Though this might not improve the performance of the system, it could 

become computationally intensive. As discussed earlier, the general structure in the bands 

remain same hence the edge areas and non-edge areas should be similar across the bands. 

This information can be utilized for classification of pixels instead of analyzing each 

pixel spatially. As discussed in [54] higher compression ratios are obtained if the pixels 

are classified correctly. The pixel correlation is higher along the edge then across the 

edge, hence the need to classify the pixels.  

 

1.2  Thesis Objective 
 

The basic objective of this thesis is to study the problem of lossless hyperspectral image 

compression. Lossless compression is a two step process. The first step is prediction 

wherein the pixel under consideration is predicted based on information obtained from its 

neighboring pixels. The second step is encoding, wherein the error residuals from 

prediction are encoded. The focus of this thesis is on designing a good prediction scheme 

so as to lower the prediction error residual and obtain a highly skewed error distribution. 

In particular, we consider the problem of designing the spectral predictor. There is a need 

to identify bands for different prediction schemes. Some bands perform better with 

spatial prediction, while others perform better without prediction. There is a need to 

identify such bands to gain higher compression ratios [39, 26]. Due to atmospheric 

absorption and scattering, some bands have higher sensor noise and less spectral 
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information. These bands have poor spectral correlation and need to be compressed using 

spatial predictors or encoded without prediction [2, 22, 39].  

 

The other aspect of hyperspectral image compression which very few researches have 

addressed is ordering of bands. One popular algorithm is the method published by Tate 

[48] for ordering purposes. It has been shown that the performance in terms of 

compression ratio of a system can be improved if the bands are ordered prior to 

prediction and encoding [48, 49]. The ordering scheme proposed in [48] has an order of 

complexity  where n is the number of bands. In this scheme the compression ratio 

is computed between all the bands and then the bands are ordered to optimize the 

compression ratio. The  complexity only accounts for the ordering of the 

compression ratios computed between the bands. It does not account for the time required 

to compute the compression ratios between all the bands. A faster algorithm was 

proposed in [49] where the algorithm was 13 times faster than [48]. In this algorithm 

compression ratios were computed between 40 neighboring bands. There is a need to 

explore lower complexity algorithms for band ordering.  

2( )O n

2( )O n

 

1.3  Research Contribution 
 

Performance of a compression scheme depends on how effectively the prediction scheme 

can model the neighboring pixels in order to predict the current pixel. In spatial 

prediction the context is formed by the neighboring pixels in 2-D space while in 

hyperspectral images the context for prediction is formed by neighboring pixels in 3-D 

space. In this thesis, the context for prediction is formed by pixels in the current band and 

the pixels in a reference band. A good spectral predictor should be able to capture the 

change in pixel intensities between the contexts in the reference band and the current 

band. The variation in the pixel intensities between the contexts of the two bands can be 

used in predicting the pixel in current band. The method proposed in this thesis computes 

the change in pixel intensities between the two bands and utilizes the information to 

modify the weights computed in the reference band to predict the pixel in current band. 
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Since the pixels in the reference band have already been decoded, the weights for the 

pixel can be computed easily. These weights are then modified depending on the change 

in intensities. An error feedback mechanism is employed which computes the error 

between the calculated weights and the actual weights for the pixels in the context and 

utilizes this error to modify the weights for the current pixel. The prediction scheme is 

further modified to incorporate pixel classification into edge and non-edges. It has been 

proven in [54] that pixel classification improves the performance of the compression 

system. 

  

The motivation behind the spectral prediction scheme comes from the fact that the 

general structure of the image captured remains similar in all the bands, though at 

different intensities. Hence assuming that a reference band has already been encoded we 

can calculate the coefficients of prediction accurately for the pixels in the reference band. 

Ideally these weights should apply to the pixels in the next band or the band being 

predicted without any need for modification. But due to change in intensity values caused 

by atmospheric absorption, atmospheric scattering, sensor noise, and different absorption 

properties of different materials, there is a need to modify these coefficients with the 

variation between the context of the two bands and also the scale difference between the 

two bands. The spectral prediction scheme proposed in this thesis is a 3-D context based 

scheme. The 3-D context is formed by 12 neighboring and causal pixels in the current 

band and the reference band. Hyperspectral images have different band intensities hence 

simple differences cannot be used in the calculations [50]. The spectral predictor 

proposed in this thesis computes ratios between pixels for the calculation of the weights 

and feedback error values. This eliminates the need to normalize the bands before 

prediction or to compute the scale factor between the bands. The prediction schemes 

discussed in [54, 33] have an error feedback mechanism which is used to modify the 

prediction error residual depending on the context classification. In this thesis, we 

propose an error feedback mechanism wherein we compute the error between the actual 

weights and the calculated weights for the pixels in the contexts. This error is used to 

modify the weights computed for the current pixel.  
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Prediction techniques which can classify the image area into edge and non-edge areas 

fare better than the techniques which do not perform classification [54, 33, 32, 51]. Pixel 

correlation is higher along the edge than across the edge. Hence prediction along the edge 

results in lower prediction error residuals. Edges can be classified using standard edge 

detection algorithms such as Canny edge detector, or by setting a threshold value wherein 

pixels are classified as edge pixels if the change in pixel value with the neighboring pixel 

is greater than the set threshold. In case of hyperspectral images a global threshold cannot 

be set as the intensity values vary from one band to another. Since the hyperspectral 

images have similar structure in all the bands the pixel classification in the reference band 

applies to the band being predicted. Since the reference band is decoded first it becomes 

easy to classify the pixels in the reference band and utilize them in the current band.  

 

Higher compression ratios can be achieved if the bands are ordered before prediction [48, 

49]. But there is a tradeoff between ordering complexity and compression ratios 

achieved. The algorithm proposed by Tate has a complexity in  and it gives the 

best result achievable with the given prediction method after ordering. The algorithm 

proposed in [49] is 13 times faster than [48] and the results are very close to the results 

obtained by [48].  In this thesis we have proposed three different methods for ordering. 

The first method computes the global and local features of the bands to cluster them into 

smaller groups. Then compression ratios between bands in each group are computed. The 

weighted graph formed by the compression ratios between the bands is then solved by 

Kruskal’s algorithm for minimum spanning tree. In the second and third method the 

compression ratios are computed between the 10 neighboring bands and the weighted 

graph is solved by modified Prim’s and Kruskal’s algorithms.. 

2( )O n

 

1.4  Thesis Organization 
 
In Chapter 2 gives an overview about the nature and physics of hyperspectral imaging. 

The details of AVIRIS sensors and AVIRIS data have been mentioned in this chapter. 

Also the motivation behind the proposed method has been discussed briefly in this 
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chapter. Different methods of lossless compression technique that have been proposed till 

date have been discussed. In the end ordering methods proposed for 

multispectral/hyperspectral images have been discussed.  
 
In Chapter 3 the proposed method of lossless compression of hyperspectral images have 

been discussed. The two prediction method NPHI and EPHI have been discussed in 

details. Also we discuss the need for spatial predictors and encoding some bands without 

prediction in this chapter. 

 

Chapter 4 describes the ordering methods for lossless compression of hyperspectral 

images. Three methods for ordering have been proposed in this thesis which has been 

described in this chapter. The first method of ordering is based on global and local 

features extracted from each band while the other two methods is based on the features 

estimated from the neighboring band. 

 
Chapter 5 summarizes the results with a comparative study with the state-of-the-art 

methods. Effects of change in parameters on the proposed techniques have been 

discussed. 

 
Chapter 6 concludes the thesis with suggestion for future work. 
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Chapter 2:  Background 

 

Hyperspectral imaging has been an area of active research and development for many 

years. Till recent past hyperspectral data was available only to researches and not for 

commercial use. Since the advent of commercial satellites the data has been available for 

commercial use. Hyperspectral imaging is a useful tool in mineral exploration, 

environmental monitoring, agriculture, and resource management. Capture of images at 

small discrete frequencies is possible with better sensor technologies. This has resulted in 

capture of large amount of data everyday. AVIRIS sensors capture 224 images/spectral 

bands in the range of 400nm to 2500nm with each band having a range of 10 nm. One 

AVIRIS scene consists of 512 lines and covers an area of 10 Km on ground. One scene 

having 512 lines yields 140 megabytes of data.  AVIRIS sensors capture 76 gigabytes of 

data everyday. This data needs to be communicated back to the earth from the satellites 

for further processing. With limitation on available bandwidth and storage space there is 

a need to compress this data. Hyperspectral imaging applications require that the data be 

stored without any loss, hence the need for lossless compression of hyperspectral images.  

 

2.1  Physics of Hyperspectral Imaging  

 

Hyperspectral imaging is also termed as imaging spectroscopy. “Imaging spectroscopy is 

defined as being the simultaneous acquisition of spatially co-registered images, in many, 

spectrally contiguous bands, in an internationally recognized system of units from a 

remotely operated platform (Schaepman, 2005)”[13, 43].  

 

Hyperspectral images are acquired using image spectrometers. The development of 

image spectrometers resulted from two fields, spectroscopy and remote sensing of earth. 

Spectroscopy is study of light emitted or reflected by the minerals and its variations in 

energy at different wavelengths. Hyperspectral remote sensing exploits the fact that all 
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  Background 

materials reflect, absorb, and emit electromagnetic energy, at specific wavelengths, in 

distinctive patterns related to their molecular composition [30].  

The Image spectrometer captures the emitted or reflected light from the earth surface. 

The optical dispersing element splits the incoming light into different narrow contiguous 

spectral bands which is then measured by separate detectors. Ideally the visible spectrum, 

infrared and shortwave infrared spectrum is captured by the spectrometers. The acquired 

signal by the detectors is then converted into a digital signal by an ADC. This signal is 

then stored for further processing. 

 
 

Figure 1:  Image Spectroscopy [46] 
 

Figure 1 taken from [46] shows the basic diagram for image spectrometer. The basic 

source of light energy is the sun hence the spectrum of light captured is dominated by the 

energy curves of sun. Different materials possess different absorption and reflectance 
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properties depending on there chemical composition. The materials absorb or reflect light 

with different intensities at different wavelengths. Every material has its own signature of 

absorption and reflectance property which can be seen in Figure 2. From Figure 2 it can 

be observed that vegetation has higher reflectance in infrared region than in visible 

spectrum. Plants have high content of chlorophyll which absorbs visible light while 

reflecting the infrared light.  As compared to vegetation, soils have higher absorption 

property in the infrared region. 

 

 
 

Figure 2:  Spectral Absorption/Reflectance for different materials [22] 
 
Figure 3 shows the mineral spectra for different minerals [22]. Different minerals have 

different absorption/reflectance properties for different spectral light. Hematite’s have 

higher absorption property in the visible light spectrum due to ferric iron while calcite has 

higher absorption in the spectral range of 1.8 µm- 2.4 µm range due to carbonate ion 

content. Higher spectral energy absorption around 1.9 µm is seen in montmorillonite 

(clay) material due to water content.  
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Figure 3:  Mineral Spectra [22] 

 
In Figure 4 it can be observed that there is higher absorption at certain spectral 

wavelength due to water and carbon dioxide which for essential component of earth’s 

atmosphere. Hence higher absorption is seen in this region in the spectra plotted for 

hyperspectral imaging. Figure 4 shows absorption properties for gases and water present 

in earth’s atmosphere. It can be observed that due to carbon dioxide and water high 

absorption of spectral energy is seen around 1.4 µm and 1.9 µm. Hence the interaction of 

light with the atmosphere reduces the energy of light in these spectral ranges resulting in 

capture of very little information of the area under study. Sensor noise dominates over the 

incoming spectral information and hence after spectral correction these bands have very 

low pixel intensity.  
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Figure 4: Spectral curves for atmospheric absorption  

 
Spectral curve captured by AVIRIS sensors shown in Figure 5 show the dominance of 

atmospheric absorption in the 1.4 µm and 1.9 µm range corresponding to band 107 to 114 

and 153 to 160. These bands have poor spectral correlation and hence best predicted by 

spatial predictors or best encoded without prediction. One of the reasons is that these 

bands have very low pixel intensities and low self entropy. 

 

2.2  AVIRIS Sensors and AVIRIS Data 

 

The main focus of this thesis is on lossless compression of hyperspectral images captured 

by AVIRIS (Airborne Visible Infrared Imaging Spectrometer) sensors. Hyperspectral 

images captured by the AVIRIS sensors have been widely used by researchers for the 

study of lossless compression of hyperspectral images. These images are easily available 

on the JPL (Jet Propulsion Laboratory) website [2]. Hyperspectral imaging is acquisition 

of images from the same area into narrow contiguous spectral bands, also termed as 

“Imaging Spectroscopy” [2, 23, and 22]. The main objective of the AVIRIS project is to 

identify, measure, and monitor constituents of the Earth's surface and atmosphere based 

on molecular absorption and particle scattering signatures. Research with AVIRIS data is 
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predominantly focused on understanding processes related to the global environment and 

climate change. 

 

The AVIRIS instrument contains 224 different detectors which have wavelength sensitive 

range of 10 nm [2]. The detectors acquire images in the range of 400nm to 2500nm 

covering the visual, near infrared and short wave IR spectrum. The area covered on earth 

depends on the distance of the satellite from the earth. At a distance of 20km each pixel 

produced by the instrument covers an area of 20 m diameter hence covering an area of 

11km for one scene while at a distance of 4 km each pixel covers an area of 4 m diameter 

covering the total area of 2km for one scene. AVIRIS has been flown on aircrafts which 

fly at an altitude of 4 km and 20 km and across two continents North America and 

Europe. Each scene captured by AVIRIS has 614 pixels per line, 512 lines and 224 bands 

after preprocessing. The size of each scene is around 140 megabytes. Each flight of 

AVIRIS captures 76 Giga bytes of data every day. 

 

 

 
Figure 5:  Single Pixel Spectrum from AVIRIS [2] 
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Figure 5 taken from [2] and it shows the single pixel spectrum of AVIRIS. Here the x-

axis is the channel wavelength while y-axis is radiance. The spectrum of AVIRIS is 

dominated by the light curve of the sun and the absorption and scattering properties of the 

atmosphere. Sun has a black body curve which implies that the curve peaks in the green 

wavelength and diminishes for all other wavelengths [2]. The valleys in the curves are 

due to the absorption properties of the atmosphere. Different components in the 

atmosphere like nitrogen, oxygen, carbon dioxide, water vapor absorb light at different 

frequencies. The valley in Figure-5 between 1.4 µm and 1.9 µm is due to water vapor 

present in the atmosphere. The variation in the curve other than due to sun and 

atmosphere depict the information of the chemical composition of the material being 

studied. Like in the case of vegetation chlorophyll present in plants absorb the visible 

spectrum of light and reflects the infrared light. Hence pixels capturing vegetation will 

show a peak in infrared region. 

  

 

 
 

Figure 6:  AVIRIS Moffet field Image Cube [2] 
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Figure 6 taken from [2] shows the AVIRIS image cube for the Moffet field where all the 

224 bands are stacked over each other. The top of the stack is a false color image to show 

the image captured. To the right is the water body and to the left is the Moffet field 

airport. To the right of the stack at 700 nm which is the red part of the visible spectrum a 

red area is seen. This is due to the red shrimps present in the pond. 

 

Jet Propulsion Lab (JPL) website has 5 different image sets captured by AVIRIS in 1997 

for download [2]. Research on AVIRIS data has been carried out since last two decades. 

Prior to 1997 data acquired in 1989 by the AVIRIS instrument were available for 

research purposes. The 5 image set acquired by the AVIRIS instrument which have been 

made available for research and commercial use are Cuprite, Moffet Field, Jasper Ridge, 

Lunar Lake and Low Altitude. Each image is of different size and comprises of scenes of 

size  wherein the last scene has lesser number of rows in each image set. . 614 512×

 

 
 

Figure 7:  Moffet Field, Jasper Ridge, Cuprite, Low Altitude, and Lunar Lake 
 
An image of each of the AVIRIS image has been shown in Figure 7. These images were 

acquired from [2]. The images have been rescaled but they depict actual size with each 
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other. It can be seen from the Figure 7 that low altitude is the largest of the images and 

lunar lake is the smallest in size. 

 

2.3  Lossless Compression of Hyperspectral Images 

 
Research in data compression has been mainly focused through three different 

approaches transform coding, prediction based and vector quantization based. These 

algorithms have been implemented successfully on different images in 2-D and 3-D 

domain.   

• Transform Coding: The original data is transformed from spatial domain to 

frequency domain or wavelet domain depending on the transform used. Discrete 

Cosine Transform, Discrete Wavelet Transform, Discrete Fourier Transform and 

Discrete Sine Transform are the main compression tool in transform coding [16, 

42, 45, 1, 3, 5]. The coefficients in transform domain are truncated for higher 

compression, but this results in lossy compression. For lossless compression the 

error between the retrieved data and the original data is sent with the truncated 

coefficients. Though the transform based compression schemes are fast they yield 

lower compression ratios.  

• Prediction Based Compression: Main focus of research in data compression has 

been on prediction based techniques. The simplest prediction based technique is 

DPCM wherein the pixel is predicted based on the previous pixel in raster scan 

order. The difference between the two pixels is then encoded. Higher compression 

ratios can be achieved with prediction based schemes [21, 9, 20, 25, 55]. The 

focus of this thesis is on prediction based method.  

• Vector Quantization:  A code book of vector is formed from the data. The 

difference between the code book vector and the incoming vector is encoded. The 

code book vector needs to be sent with the encoded data [47, 31 11, 41, 26]. 

 

Prediction based compression scheme can be broken down into two steps: prediction 

based on the causal data set which has already been encoded, and encoding of the 

prediction error residual. Simple DPCM based technique gives low compression rates 
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hence adaptive DPCM was introduced [6, 44]. But Adaptive DPCM lacked the modeling 

ability and hence yielded low compression ratios. A good prediction scheme should be 

able to model the pixels into smooth areas, edge areas and textured area. Usually the 

smooth region yields lower prediction error residuals compared to edge area and textured 

area. Many algorithms have been proposed which model the local area for prediction. 

JPEG LS [15, 14] is the standard image compression algorithm which uses median based 

predictor MED (Median Edge Predictor) for prediction. CALIC [53] is also a know 

algorithm in the field of image compression which models the local area pixel. CALIC 

utilizes GAP (Gradient Adjust Predictor) for the purpose of prediction. 2-D compression 

algorithms have been applied to Hyperspectral Imaging but they failed as they did not 

consider the spectral correlation between the bands. 3-D implementation of CALIC [55] 

was proposed but it still did not yield higher compression ratios. 

 

An interband linear predictor and a least square based approach for lossless compression 

of hyperspectral images was proposed in [39] in 2005.  The linear prediction [LP] scheme 

computes the average difference between the context of the pixel ( , , )I x y t in the current 

band and the context of the pixel ( , , 1)I x y t −  in the reference band. If the deviation 

between the maximum and minimum value of the difference is greater than a threshold 

than the prediction is corrected by adding the average prediction error of previous two 

bands. The linear prediction scheme is not completely interband. It switches between 

interband predictor and intraband predictor for the band marked for the respective 

prediction. It was observed in [39] that the first 8 bands are best predicted by intraband 

predictor. Standard median predictor is used for intraband prediction. 

 

 The least square based prediction scheme proposed in [39] is fully interband.  SLSQ 

(Spectral Oriented Least Square) utilizes 4 neighboring pixels from the current and the 

previous band, to optimize the prediction at each pixel in each band. Least square based 

approaches have been proposed for lossless compression of standard images [18]. They 

optimize the prediction parameters along the edge hence improving the prediction at edge 

pixels. Also the least square based approaches perform better along the edges than in 

smooth areas [33]. With SLSQ, the authors observed that with increase in context size 
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there is very little improvement in the final compression ratio. Hence they have fixed the 

context size to 4 to reduce the overall complexity of the algorithm. The SLSQ method 

involves 4 multiplications and 6 additions at each step of prediction. 

 

Two methods heuristic and optimal have been proposed in [39] to improve the overall 

compression ratio. In HEU, all the bands in all 5 image sets are predicted by the intraband 

scheme. Bands which are better compressed using intraband scheme are marked as IB. 

To generalize the intrabands across all 5 image sets, bands which perform better in more 

than 15 scenes out of 26 scenes are marked as intraband. These bands are predicted using 

median predictor in all the scenes in the 5 image sets. In the optimal scheme (marked as 

OPT), the bands are predicted using both intraband and interband prediction scheme. The 

scheme giving better result is used to predict the respective band.  

 

Clustering based approach has also been proposed in [26]. In [26] the LBG (Linde Buzo 

Gray) [19] algorithm was used to cluster the bands based on their spectral content. LBG 

is a vector quantization design technique used to develop the code book for compression. 

The first code vector is formed by taking average of the whole training set. Then at each 

step the code vector is split into two till the desired number of code vectors is not 

obtained. In [26] the LBG algorithm was used to cluster similar bands and not to form the 

code book for vector quantization. Thus in this case, the code vector forms the centroid of 

the cluster and the bands closest to a given centroid forms part of that cluster. A multiple 

linear regression scheme is used to design a linear predictor for each of the clusters and 

each band. Each cluster is encoded using a range coder whose model is dependent on the 

cluster. A two mode approach similar to [39] is implemented in [26]. All the bands are 

entropy coded without prediction and if the entropy of the band is better than the entropy 

with prediction than the bands are stored without prediction. In [26], using 20 previous 

bands for predicting, the LBG is set to form 16 clusters as it was found to give optimal 

results. [26] has the best result published, but its algorithmic complexity is very high due 

to the clustering and the use of linear regression in computing optimum coefficients for 

each band in each cluster.  

 

 18



  Background 

In [50] two methods were proposed, one based on JPEG’s 7 predictors and the other 

using correlation-based conditional averages. The motivation for this works comes from 

the fact that hyperspectral images have the same global structure. Hence the relationship 

of a pixel and its surrounding in one band should be similar to the relationship of a co-

located pixel and its neighbors in the neighboring bands. Hence if a predictor is designed 

for a pixel in the previous band it should hold true for a co-located pixel in the current 

band. Seven JPEG predictors were used to predict the pixel in the reference band and the 

best predictor was selected to predict the pixel in the current band. As the reference band 

is used to calculate the optimal predictor no overhead is required to derive the predictor at 

the decoder. In the correlation based conditional average (CCAP) technique the author’s 

use a context size of 4 since increasing the context size did not improve the result. The 

correlation is computed between the context of the pixel in the current band and context 

of the co-located pixel in the 5 previous bands. The context having the highest correlation 

with the context in the current band is used to predict the pixel in the current band. Since 

the images captured in each band may not be at the same pixel locations, (i.e. the images 

may be shifted by few pixels) the authors propose a search window of . The 

correlation coefficient is computed between the context of the current band and the 

context formed by the pixels in the search window in all 5 previous bands. Due to 

different dynamic range of each band, rather than using a linear predictor, a scaled 

prediction is computed

3 3×

1
1

ˆ xy y
x

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, where 1y  is the adjacent pixel to the pixel in the 

current band, 1x  is the adjacent pixel to the collocated pixel in the reference band and x is 

the collocated pixel in the reference band.. To improve the robustness of the prediction, 

rather than one single prediction value, the average of prediction of all the pixels having 

correlation coefficient higher than 0.95 is computed. [50] has the best published results 

for Cuprite but on an average its performance was not better than the most published 

results. 

 

Standard lossless compression schemes such as JPEG-LS, JPEG2000, and CALIC 

perform poorly on hyperspectral images. It was shown in [39] that some improvements 

can be made if the difference between bands is compressed using JPEG- LS or 
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JPEG2000. But this improvement is not significant enough as compared to already 

existing algorithms for lossless compression Hyperspectral images.  

 

Two extensions of the original CALIC algorithm, namely 3D CALIC and M-CALIC 

were proposed in [55] and [20] respectively. In [55] correlation based approach similar to 

[50] is used to switch between interband mode and intraband mode. Correlation between 

the context of the pixel in the current band and the context of the co-located pixel in the 

previous band is computed. If the correlation between the two context is higher than 0.5 

than interband method for prediction is applied otherwise the intraband method for 

prediction is used. Standard CALIC is used for intraband compression. In case of the 

interband prediction technique ŷ Xα β= + is computed so as to minimize the 
2

Ŷ Y− . 

Here α and β  are calculated from the context formed in the current and previous band. 

In case of edges, horizontal and vertical gradients are computed in the reference band and 

the predicted value is calculated using the gradients from the current band and the 

reference band as was done in [50].  Similar to CALIC, 3D CALIC also operates in two 

modes binary and continuous. The selection of binary mode in 3D CALIC depends on the 

pixel values in both the reference band and the current band. If the binary pattern between 

the two contexts is different then the pixel in the current band is predicted using the 

binary mode in intraband CALIC. In case if the two binary patterns are same and the 

symbolization for the pixel in the current band and the reference band is same then the 

value of current pixel can be uniquely determined. In case the binary patterns are same 

but the symbolization for the pixels is different the mode is switched to the continuous 

mode. The context selection for biased error cancellation is dependent on the correlation 

coefficient. The higher the correlation coefficient the lower is the prediction error 

residual.  Hence the correlation coefficient plays an important role in context formation 

for both biased error cancellation and encoding. An extension to 3D CALIC algorithm 

was proposed in [20]. In M-CALIC the reference band was computed by taking weighted 

averages of previous 2 bands. The reference band is computed as: 

1 2 1 3ˆ 2y x xλ λ λγ γ γ−= + + −   .The coefficients 21,γγ and 3γ  are fixed to 8, 0.65, and 0.35 

respectively. The other changes over 3-D CALIC proposed in M-CALIC were the 
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quantization parameters and model parameters. These changes improved the results of M-

CALIC over 3-D CALIC scheme.  

 

Vector quantization based lossless compression of AVIRIS image is discussed in [41]. In 

vector quantization based lossless compression scheme a codebook vector is formed form 

the image set to be compressed. Then the difference between the image vectors and the 

closest vector in the code book is entropy coded with the index of the vector in the code 

book. In case of hyperspectral images the codebook is formed spectrally and not 

spatially. In [41] the 224 bands are broken into ‘b’ blocks and codebooks are formed for 

each block such that the length of each vector in the codebook is ‘v’ and the product of 

‘v’ and ‘b’ equals to 224. The k-means algorithm was then used to design the codebook, 

using 32 vectors in each codebook. With higher number of vectors in the codebook, the 

input vector becomes closer to the reference vector. Hence the difference image entropy 

will reduce but the entropy of the addresses will increase. Hence a tradeoff is needed 

between the size of the codebook and the achieved compression. 

 

2.4  Ordering Techniques for Hyperspectral Data 

 

In multispectral/hyperspectral imaging the previous image may not be always the best 

image to predict the current image. Tate [48] showed that with optimal ordering the 

performance in terms of compression ratio improves significantly. Ordering of bands can 

be based on the compression ratios achieved by compressing all the bands with each 

other or by clustering the bands based on there global or local features. If the 

compression of bands has been performed already, the complexity of ordering when all 

the bands are compared with each other is ( )2nO , where  is number of bands. This 

complexity can be reduced by clustering techniques wherein the features in each band is 

used to cluster the bands.  

n

 

The problem of ordering of hyperspectral/multispectral bands for compression was 

addressed by Stephen Tate [48] in 1997. He proposed an algorithm which had an order of 
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time complexity of  after computing the compression obtained by compressing 

one band with the other. Thus, the time for estimating the compression is not included, 

which could be quite substantial given the size of the bands and the number of bands. In 

his algorithm he calculated the compressed size of the band depending on if the current 

pixel is available in the predictor band or not. He obtained two matrices which had entries 

of compressed sizes of the band given that the current pixel is available or not in the 

predictor band. He transforms the problem of optimal compression into problem of 

weighted directed graph. Here the weights for the edges between the bands come from 

the two matrices depending on which of the compressed size is less. For a sparse 

weighted graph the solution has an order of 

( )2O n

( )EEVO +log  where V is the number of 

vertices in the graph and E is the number of edges in the graph [48]. For a dense weighted 

graph the solution has an order of complexity of ( )2O n . He further proposed that for 

larger set of data where N is very large the bands should be grouped in small sets so that 

if one band needs to be accessed then only few number of bands will be needed to be 

uncompressed, whereas in earlier case in an extreme case all the bands might be needed 

to be uncompressed to access a single band. In [48] it was shown that optimal ordering 

improved the performance of AVIRIS (1989) and CZCS data set but the improvement in 

TM and AVHRR dataset was not significant. This shows that improvement due to 

ordering is data dependent. Tate showed that picking 5 adjacent blocks and optimally 

ordering those significantly improved the results for AVIRIS data set.  

 

In [28] five different ordering methods for lossless compression of hyperspectral images 

were discussed. The five ordering methods discussed in [28] were namely forward 

monotonic, reverse monotonic, best forward, best reverse and optimal order. Forward 

monotonic and reverse monotonic are the simplest of the band ordering techniques. The 

bands are predicted in either ascending order or descending order depending on the 

technique used. The current band is predicted by the closest neighbor in ascending or 

descending order. The measure of band correlation is computed by the calculating the 

PMSE between the two bands. Lower the PMSE between the two bands lesser number of 

bits will be required to compress the bands. In the best forward and best reverse ordering 
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PMSE is computed between the current band and all the bands that have been encoded 

prior to the current band. The band having the lowest PMSE with the current band is used 

to predict the band. The final ordering method discussed in [28] is the optimal ordering 

technique. In this method the PMSE is computed between all possible pairs of bands that 

can be formed. The order of complexity of this technique is  where n is number of 

bands. The optimal ordering method discussed in [28] is similar to that proposed in [48]. 

In [48] the weight of the edge is a directed graph computed by calculating the 

compression ratio between the pair of bands while in [28] PMSE is computed between 

the bands.    

2( )O n

 

In [49] a correlation based band ordering technique was proposed. Instead of computing 

the PMSE or compression ratios between the bands, correlation between the bands is 

computed. To reduce the complexity of the ordering method the bands are down-sampled 

before the correlation is computed between the bands. A significant gain in computation 

time is obtained with slight loss in compression ratios. The weighted graph formed is 

solved using a minimum spanning tree algorithm; in this case, Prim’s algorithm is used. 

Since the correlation coefficients are computed between the bands a maximum weight 

tree is formed instead of a minimum spanning tree. The results for the correlation based 

ordering is compared with optimal ordering proposed in [49] and it was observed that at a 

reduced ordering complexity the results were slightly poorer than obtained by optimal 

ordering. To reduce the overall complexity of ordering a new method was proposed in 

which the correlation is computed between the current band and 42 of its closest 

neighbors. The results though degraded slightly but significant reduction in computation 

time was obtained.  

 

The performance of the ordering scheme depends on the method of prediction and the 

number of bands involved in ordering. In [49] the performance of the system reduced 

slightly when lesser number of bands was involved in ordering but significant 

improvement in computation time was obtained. The optimal ordering methods proposed 

in [48, 20] cannot be implemented onboard but they provide a limit on the achievable 

compression ratio for a compression method used. There is a need to study ordering 
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methods having lower computation time so that they can be implemented successfully on 

the satellites to improve on the obtained compression ratio performance.
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Chapter 3:  Prediction  
 

3.1  Introduction 
 

Two methods for lossless compression of hyperspectral images are proposed in this 

thesis. The first method predicts the band in ascending order, wherein the current band is 

predicted by the previous band. The encoder and decoder complexity is same for this 

method. The second method orders the band based on different features estimated 

between the bands. The complexity of the encoder and decoder is different; the 

complexity of the encoder is higher than the decoder. The decoder complexity remains 

the same in both the lossless compression techniques.  

 

Table I, Table II and Table III give an idea about the nature of the hyperspectral images 

and the motivation to use spatio-spectral predictor for lossless compression of 

hyperspectral images. In Table I the average statistics for the different images in AVIRIS 

data have been shown. The data was collected for a small band size of 256×256. Table I 

shows the average variation of the bands. It can be seen from the table that the range of 

pixel intensities over the 224 bands in each image set is very large. It can be seen that the 

entropies of Moffet Field and Low Altitude is higher that the entropies of the other 

images sets in AVIRIS data. Also the standard deviation of these images is higher than 

the other images.  

 
TABLE I AVERAGE IMAGE STATISTICS FOR AVIRIS DATA SET 

 
 

 Mean Median Standard 
Deviation 

Minimum Maximum Entropy 

Cuprite 1796 1801 21 -17 8352 7.0879 
Jasper Ridge 1072 1064 32 -17 7016 7.4674 
Moffet Field 1232 1292 136 -18 7814 8.6798 
Lunar Lake 2269 2262 55 -13 12127 7.3321 

Low Altitude 1248 1244 68 -52 19011 8.1057 
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In Table II the effect of spatial prediction has been shown. It can be observed that the 

prediction error residual entropy of the bands has improved over the self entropy of the 

bands. Standard median predictor has been used to predict the bands.  
 

TABLE II EFFECT OF SPATIAL PREDICTION ON AVIRIS DATA 
 
 

 Mean Median Standard 
Deviation 

Minimum Maximum Entropy 

Cuprite -0.8368 0 21.5711 -2291 5379 6.2093 
Jasper Ridge -0.8427 0 11.6909 -2077 3226 6.5403 
Moffet Field -1.7266 0 21.6527 -2544 3700 7.1742 
Lunar Lake -0.6776 0 34.3098 -2742 6848 5.7449 

Low Altitude 0.8506 0 26.6915 -17901 18832 7.2264 
 
 
Table III shows the results for spectral prediction on AVIRIS data set. The pixel in the 

current band is predicted by the co-located pixel in the reference band. It can be observed 

that with simple differences between the bands significant improvement in terms of bits 

per pixel has been obtained over the self entropy and entropy of prediction error residual 

obtained by spatial prediction. Also the range of error values has reduced significantly 

over the range of error values obtained with spatial predictors. Better de-correlation of the 

bands is obtained with simple differences. Higher compression ratios can be obtained 

with spectral predictors as compared to spatial predictors. 
 

TABLE III EFFECT OF SPECTRAL PREDICTION ON AVIRIS DATA 
 
 

 Mean Median Standard 
Deviation 

Minimum Maximum Entropy 

Cuprite -4.1982 -4 2.3349     -2302 1877 5.2585    
Jasper Ridge -2.7301 -4 4.5049    -1877 1390 5.4281    
Moffet Field -3.3561 -10.125 24.2412     -2293 2111 6.2814    
Lunar Lake -4.8387 -8 6.2669    -3235 2502 5.3816    

Low Altitude -3.1420 -1 11.0795 -4930 3223 6.0803 
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In Figure 8 the entropies for the bands for different image sets have been plotted. Figure 

8(a) shows the self entropy of the bands. It can be seen that the change in the entropy on 

an average remains the same across all the image sets. This is due to the dominance of the 

absorption properties of the atmosphere and spectral energy curve of the sun. The 

variation between the curves shows the effect of different materials captured at different 

wavelengths. In Figure 8(b) the entropies for prediction error residuals for spatial 

prediction on the bands in each image set have been plotted. It can be observed that the 

spatial predictors perform better on an average over the bands. Significant improvement 

is obtained in few of the bands.  

                     
(a)       (b) 

 
 (c)       (d) 

 
Figure 8: Entropy plots for different predictors; (a) Entropy of the bands, (b) Entropy for spatial 

prediction, (c) Entropy for Spectral Prediction for 3 bands , (d)  Entropy for Spectral Prediction for 
2 bands 
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In Figure 8 (c) & 8(d) the effect of spectral prediction on the AVIRIS images have been 

shown. It can be observed that on an average the entropies obtained with spectral 

prediction is better than the entropies obtained with self entropy of the bands and with 

spatial prediction. It is important to notice that the self entropy of the bands is lower than 

the entropies obtained with the two prediction methods obtained for bands in the range of 

150 to 160. Also for bands in the range of 1 to 15, 105 to 115 the spatial predictors 

perform better than the spectral predictors. These bands have poor spectral correlation 

and hence perform poorly with spectral predictors. Two figures have been plotted for 

entropies obtained with spectral prediction since the plots were not distinguishable when 

plotted together. 

 

Lossless compression of hyperspectral images is achieved using three different predictors 

namely, spectral predictor, spatial predictor, and encoding without prediction. 

Hyperspectral images have high spectral correlation as the images captured are of the 

same area but at different spectral frequency [39, 50]. Hence the global structure in each 

band is similar but they are at different intensity levels.  In [39, 50] it has been shown that 

the performance of the spectral predictors is better than the standard lossless image 

compression algorithms. Hyperspectral images are affected by the atmospheric 

absorption and scattering. The light energy emitted by the sun is either absorbed or 

scattered by the atmospheric particles like gases and water. The bands affected by this 

phenomenon have low spectral correlation and dominance of sensor noise.  These bands 

are best predicted by some spatial predictor or perform better when they are encoded 

without prediction. 

 

The cost of computing the compression ratio for each band with three different prediction 

methods is very high, but significant improvement can be obtained in terms of 

compression ratio. Since the lossless compression method for hyperspectral images are 

designed to be implemented onboard on the satellites it is necessary to keep the 

computation time low. Though the memory space and computation time required by the 

spatial predictor is very less compared to the spectral predictor it still affects the overall 

computation time. It was observed that certain bands were best predicted by spectral 
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prediction and these bands remained fixed over all the scenes and image sets. Hence we 

can fix the bands which are to be predicted by one of the prediction method rather than 

predicting each band by three different methods. This reduces the overall computation 

time and memory requirement at cost of very little change in the compression ratio.  Also 

we need not send the header information required to specify the type of prediction 

method applied to each band. Though this observation was made on 26 scenes across 5 

different image sets it can be generalized for the AVIRIS data set. Similarly the 

information can be generalized for other data sets captured by different sensors but only 

in this case the predictor assignment will be data dependent as different number of bands 

at different frequency range is captured by different sensors. Atmospheric absorption is 

due to the gases and water molecule present. These elements affect the spectral energy is 

specific bands as seen in the five image sets acquired from the JPL website. Hence the 

prediction scheme can be generalized over all the hyperspectral images if the 

wavelengths of the bands are known.  

 

The proposed spectral prediction scheme is non-linear as the prediction is made based on 

the locality of the pixel and its context. The spectral prediction scheme is a context based 

prediction scheme and requires 12 neighboring pixels in the current band and reference 

band for prediction. The prediction is performed in raster scan order. Most of the state-of- 

the-art algorithms have a feedback scheme to minimize the prediction error; similarly we 

calculate the error made in computing the weights for the prediction of pixels in the 

context and use these to modify the weights for the prediction of current pixel.  

 

Figure 9 shows the block diagram for the prediction method proposed in this thesis. The 

initial block of edge analysis is present in the edge based prediction (EPHI) method 

proposed. Here the pixels in the context are classified into edge and non-edge pixels 

depending on the threshold set for that band. The in defines the context used. In 

case of edge-based prediction the pixels in the context will be reduced set of the original 

set depending on the edge classification. The block coefficients for pixels in the reference 

band compute the weights to predict

c ( , )I c t

( , , 1)I x y t − . These weights are modified by α  

which is the variation between the two contexts. The weight error buffer computes the 
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difference between the ratio of the contexts, and the ratio of the weights from reference 

band and the actual weights of the current band, after each prediction. An average of the 

error computed is stored. The weight error buffer stores all the average differences 

computed for the pixels in the context. The average of these weights is used to modify the 

ratio computed between the two contexts to compensate for the scale factor. This factor is 

multiplied with the weights computed in the reference band to obtain the weights for the 

pixels in the current band.  

 

 
 

Figure 9:  Block Diagram for the Prediction Method 
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3.2  Prediction Algorithm 
 
In this section context based spectral prediction without edge based consideration is 

discussed. The spectral predictor utilizes 12 neighboring causal pixels in the current band 

and 12 neighboring causal pixels in the reference band. The coefficients calculated for the 

pixel in reference band are modified according to the variance and scale between the two 

contexts to obtain the weights to predict pixels in the current band. The variance and 

scale between the contexts can be obtained by taking the ratios between the two contexts. 

The weights calculated are fine tuned by a feedback mechanism wherein the error made 

in calculating the weights for the pixels in context is used to correct the weights 

calculated for the pixel being predicted. 

  

3.2.1 Spectral Prediction - NPHI 
 

Hyperspectral imaging is acquisition of images wherein different spectral energy arriving 

at the detector is stored in digital form. As the portion of area being acquired is same in 

all the spectral bands the global structure of the image in all the bands remains same. 

Every material displays different absorption and reflectance properties at different 

wavelengths hence the intensity of the acquired image varies from band to band. The 

average intensity variation across the bands is from 10 to 5000. The major reason for 

such large variation is due to the effect of atmospheric absorption on light energy at some 

spectral frequencies. Since the images have same global structure they generally have 

high spectral correlation than spatial correlation. Hence the spectral predictors perform 

better on most of the bands. Some of the bands affected by atmospheric absorption are 

best predicted by spatial predictors as they have poor spectral correlation.  

 

Spectral prediction schemes proposed till date utilize one band-look ahead schemes [39], 

more than one band [26, 50] or average of bands [20] to predict the band under 

consideration. The proposed prediction scheme (NPHI) utilizes one band look-ahead 

method to predict the bands. The band decoded last is used to predict the next band. The 

spectral prediction scheme works on the basis that the variation of pixels in one band will 
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be similar to the variation in other bands since the bands have same general structure. 

Hence if we can compute the variation between the two bands it is possible to predict the 

pixel in current band and minimize the prediction error residual. As discussed in [54] two 

large a context size leads to context dilution and small context size does not hold enough 

information to predict the pixel in order to minimize the prediction error. Hence context 

size of 12 was fixed after testing partial image set for different context size.  

  
Figure 10 and Figure 11 show the context formed to predict the pixel ( , , )I x y t . Figure 10 

is for the context in the current band, while Figure 11 is for the context in the reference 

band. 

 

 
 
 

Figure 10:  Prediction context formed in the current band 
 

 
 
 

 
 
 

Figure 11:  Prediction context formed in the reference band 
 
 
In Figure 10 and Figure 11 x  and y represents the spatial coordinates of the pixel while 

‘ t ’ represents the spectral position (i.e. the band number). Hence ( , , )I x y t  represents the 

intensity of the pixel located at position ( x , ) in the band.  y tht

 

 32



  Prediction 

As the dynamic range could vary significantly between bands, prediction using 

differences will not produce good results. Similarly, global normalization is not feasible 

due to the dynamic range of the images which introduces error in prediction. Different 

image range will lead to stretching of the image with lower range leading to higher errors 

in prediction. Also local normalization becomes computationally intensive over all the 

pixels in all the bands. Hence scale based prediction is used where ratios are calculated 

instead of linear prediction [50]. The prediction scheme works on the basis that even with 

sensor noise there is some correlation between bands. Hence if the pixel variation 

between two contexts can be computed efficiently then the prediction error magnitudes 

can be reduced. Ideally the coefficients calculated for ( , , 1)I x y t −  should apply for 

prediction of ( , , )I x y t , but this is not the case as the two images have different dynamic 

range. Also since the images are captured at different spectral frequency there is slight 

variation in the pixel values. But this difference can be compensated for if we can capture 

the variation between the two bands. 

  

Coefficients for prediction of ( , , 1)I x y t −  can be calculated as shown in (1) and (2). As 

the pixels have already been decoded the weights for prediction of  can easily 

be computed by taking the ratio of each pixel in the context with  as shown in 

(1).  

( , , 1)I x y t −

( , , 1)I x y t −

 

( , , 1)( , , 1) ,
( , , 1)x

I x y tW x i y j t i j C
I x i y j t

−
− − − = ∈

− − −
    (1) 

 

( )1( , , 1) ( , , 1) ( , , 1) ,x
c i j

I x y t W x i y j t I x i y j t i j C
n

− = − − − ∗ − − − ∈∑∑  (2) 

 

Here  is the context size cn xW  are the weights computed for the pixels used to 

predict .  ‘C’ is the context used. Ideally the weights computed for the co-

located pixel  in the reference band should be similar to the actual weights of 

the pixel 

( , , 1)I x y t −

( , , 1)I x y t −

( , , )I x y t  in the current band. Since the bands could be at different intensity 
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level and the light absorbed by different materials is different at different wavelengths 

there is slight variation between the weights computed for the reference bands for the 

pixel  and the actual weights for pixel ( , , 1)I x y t − ( , , )I x y t  in the current band. The 

variation between the two bands can be computed from the two contexts. The ratio 

between the bands will help us in identifying the variation in the bands.  

 

x yW W∝           (3) 

 

Where, is the actual weight to predict the pixel yW ( , , )I x y t  in the current band. The 

proportionality can be made similar if the weights xW  computed in the reference band are 

modified by a factor which is dependent on the variation between the two contexts. 

 

yW xWα≈ ⋅           (4) 

 

In (4) α  is the factor which should be estimated to make xW as close as possible to . 

The variation between the two bands can be estimated by taking the ratio between the 

two contexts. 

yW

 

( , , 1)( , , ) ,
( , , )

I x i y j tx i y j t i j C
I x i y j t

ρ − − −
− − = ∈

− −
    (5) 

 

Since the bands have different pixel intensity levels the scale factor between the two 

contexts affect the calculations of ρ . To nullify this, we can either compute the 

normalization factor between the bands or compute the value that needs to be added or 

subtracted from the ratios. The normalization will spread the ratio around the zero value 

which will make some of the ratios to be negative. Since this is a non-linear method of 

prediction, and also ratios are computed for all the calculations, the variance computed 

between the two contexts will be multiplied to the weights xW of the reference band. The 

negative ratios will affect the weights and finally the prediction. One method to correct 
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the ratios from the pixels in the context is to normalize the two contexts before taking the 

ratios. However; as pointed out earlier, normalizing the two contexts leads to change in 

pixel gradient which will no more be proportional to the earlier pixel gradient for that 

context. The context with smaller range will be stretched in terms of pixel values with 

respect to the other context leading to errors in the prediction. Secondly if the two 

contexts are normalized independently they will lead to pixel values being normalized 

around zero leading to negative ratios. Here we avoid these problems by determining the 

error made in computing the weights after predicting each pixel and using this value to 

correct the ratios. Here the error computed for each pixel in the context will be used to 

correct the current ratios.  

 

The following calculations are computed for the pixels in the context. After predicting 

each pixel actual weights are computed for those pixels. Similar to (1) and (2) we 

compute the actual weights for the pixel in the context of pixel ( , , )I x y t . 

 

( , , )( , , ) ,
( , , )

c
c

c

I x y tW x i y j t i j C
I x i y j t

− − = ∈
− −

     (6) 

 

( )1( , , ) ( , , ) ( , , ) ,c c c
c i j

I x y t W x i y j t I x i y j t i j C
n

= − − ⋅ − −∑∑ ∈   (7) 

 

 

Here the subscript ‘C’ implies that the calculations are computed for each pixel in the 

context. The ratio between the actual weights of pixel  in the current band and 

the weights of the pixel 

( , , )cI x y t

( , , 1)cI x y t −  in the reference band will give the estimate that was 

required to vary the weights xW in the reference band to obtain the weights for the current 

band. 

 

Since we are trying to estimate the scale factor between the two bands so that the ratios 

can be modified by this value we compute the difference between the ratios of the 
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weights to the ratio of the pixel in contexts. The final correction factor used to correct the 

ratio between the two contexts is then given by.  

 

( , , )1 ( , , ) ,
( , , 1)
c

c c
c ci j

W x i y j tf x i y i t i j C
n W x i y j t

ρ
⎛ ⎞− −

= − − −⎜ ⎟− − −⎝ ⎠
∑∑ ∈   (8) 

cf  is computed for all the pixels after they have been predicted. f  is formed by all the 

cf  within the context.  

 

( , , ) cf i j t f←           (9) 

       

Finally α is computed as:  

 

( )1( , , ) ( , , ) ( , , ) ,
c i j

x i y j t x i y j t f x i y j t i j C
n

α ρ− − = − − + − − ∈∑∑  (10) 

 

Here f is the correction factor calculated for each pixel in the context to compensate for 

the scale factor which affects the estimate of variation ρ between the two bands. Our 

empirical observation shows that using the average of the correction factor gives better 

results than adding the individual correction factor to its respective pixel ratio. 

 

The weights for the pixels in the context of  ( , , )I x y t  are calculated as shown.  

ˆ ( , , ) ( , , ) ( , , 1) ,y xW x i y j t x i y j t W x i y j t i j Cα− − = − − ⋅ − − − ∈    (11) 

 

The prediction for pixel ( , , )I x y t in the current band is given by 

 

( )1ˆ ˆ( , , ) ( , , ) ( , , ) ,y
c i j

I x y t W x i y j t I x i y j t i j C
n

= − − ⋅ − −∑∑ ∈   (12) 
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The prediction error residual  ) for ( , , )e x y t ( , , )I x y t  is given by 

 

ˆ( , , ) ( , , ) ( , , )e x y t I x y t I x y t= −        (13) 

 

3.2.2 Spatial Prediction 
 

Hyperspectral images are affected by atmospheric absorption and scattering at certain 

spectral wavelengths. The major contribution to absorption of light energy at these 

spectral wavelengths is due to carbon dioxide and water present in the atmosphere. The 

bands affected by atmospheric absorption and scattering have poor spectral correlation. 

Simple spatial predictors like JPEG’s 7 predictors and median predictors perform better 

than the spectral predictors. These bands have high correlation with the vertical neighbors 

of the current pixel. 

 

 
 

Figure 12: Context for spatial prediction. 
 
 
 Pixel ( , , )I x y t  is best predicted by pixel ( 1, , )I x y t− .  

 

ˆ( , , ) ( 1, , )I x y t I x y t= −         (14) 

 

ˆ( , , ) ( , , ) ( , , )e x y t I x y t I x y t= −        (15) 

 

The prediction scheme works better than the standard median predictor and JPEG LS for 

the given bands. In [39] bands 1 to 8 were identified as the bands that should be predicted 
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spatially. Empirically we found out that bands 1 to 8 and bands 107 to 114 should be 

predicted spatially and that the spatial prediction scheme gives the best results for these 

bands. These bands give the best results over all the image sets hence these bands were 

identified for spatial predictors. The bands are not easily identified hence they need to be 

predicted by both the spectral and spatial predictors to find the best prediction scheme. In 

case of AVIRIS images the bands predicted spatially remain same over different scenes 

in different images and hence can be incorporated in the compression scheme without 

any need of sending overhead bytes. Fig 13 shows Bands 1, 7, 109, and 112 in Jasper 

Scene 1 which were predicted spatially.  

 

 

 
Figure 13: Jasper Scene 1- Top Row Bands (1, 7) Bottom Row Bands (109,112) 
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3.2.3 Encoding with no Prediction 
 

Few of the bands have very low dynamic pixel range. The pixel value varies from -20 to 

20. These bands have high sensor noise as the reflected light in these frequencies is 

absorbed by the atmosphere and the intensity captured by these sensors is superimposed 

by the sensor noise. These bands have no correlation with any other band and can be 

easily identified by there pixel value range. These bands do not have any spatial or 

spectral correlation and are best encoded without any prediction due to there low pixel 

values. In AVIRIS images these bands are in the range of 153 to 160. These bands are 

very noisy as seen in Figure14. The images displayed in Figure 14 are from Jasper 

Scene1 and the band numbers are 155 and 156. 

 
Figure 14: Jasper Scene 1 Band numbers 155 and 156 

   

3.3  Edge Based Prediction - EPHI 
 

Improvements in lossless compression have been possible with the use of edge-based 

approaches [18, 54, 33] over the DPCM-based techniques. The prediction scheme 

discussed in section 3.2 does not consider edges while calculating the coefficients for 

prediction. Pixels along the edges have higher correlation than pixels across the edge. In 

this section we modify the previous prediction scheme to incorporate the edge-based 

information. The spatial predictors still give better performance than the edge-based 
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scheme hence the bands that have been marked for spatial prediction and with encoding 

without prediction are not considered for edge-based prediction. 

 

The main aspect of edge based techniques is to decide on the threshold value to classify 

edge and non-edge pixels. Different threshold values work better with different images. 

Different methods of edge classifications have been studied in the field of lossless 

compression. Canny edge detectors have performed well in classifying the edges and 

non-edges in natural images but the computation time required to perform the edge 

detection is high. Hyperspectral images have high pixel gradients and large texture like 

areas. Hence most of the detection algorithms identify almost all the pixels as edge 

pixels. Hence there is a need for an edge detection method which is computationally 

efficient. 

 

Size of hyperspectral images is very large hence computing the edge gradient calculations 

for every pixel becomes computationally intensive. It has bee shown in [33] that 

computation time can be reduced at the expense of little loss in compression ratio when a 

global threshold is computed. Since the image size of hyperspectral image is very large 

computing edge thresholds locally become computationally very intensive, hence a 

global threshold is assigned to every band. In case of hyperspectral images each band has 

different range of pixel values. The average value of the bands varies from 10 to 5000. 

With such large variation it is difficult to assign one threshold value to a complete set of 

224 bands. Empirically it was found that threshold value of 20% of the mean of each 

band gives the best results. Different tests were conducted varying the threshold value 

from 75 to 250 in steps of 25 and 10% to 24%of the mean of each band in steps of 2. The 

best results were obtained with a threshold value of 20% of mean of the band. The 

threshold being dependent on the average of each band works better than assigning a 

fixed threshold over all the bands. To save overhead cost of sending the threshold value 

for each band the threshold of reference band is used to predict that of current band. This 

did not affect the results considering that the global structure in all the bands is similar. 

Also the edge detection is performed on the reference band and the pixels marked as edge 

pixel in reference band are also marked as edge pixel in the current band. 
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1
1 1

1 ( , , 1)
*

m n

t
y x

I x y t
m n

μ −
= =

= ∑∑ −         (16) 

120*
100

tT μ −=           (17) 

where, T is the edge threshold.  

 1tμ −  is the average of all the pixel intensities in band 1t − . 

 

The main aspect of edge based technique is to efficiently pick edge pixel in a context. It 

might happen that two edges pass in the context and may contribute as edge pixels. But 

the pixel being predicted may have higher correlation with pixels forming an edge with it 

than pixels which are part of a different edge. 

 

 
 

Figure 15: Context for Edge Pixels 
 
 
Consider Figure 15, here ( , , 1)I x y t −  lies on a edge and the edge is formed by 

pixels ( 1, 1, 1)I x y t− + − ,  and( 1, 2, 1)I x y t− + − ( 2, 2, 1I x y t )− + − . The edge formed in 

the context is shown by the dotted lines. In the same context there is a second edge which 

is formed by pixels ( 1, 2, 1)I x y t− − − , ( 2, 2, 1I x y t )− − −  and ( 2, 1, 1)I x y t− − − . Since 

the two set of pixels are part of different edge structures they should not be combined to 

predict  ( , , 1).I x y t −

 

Consider the case shown in Figure 15 where, ( 1, 1, 1)I x y t− + − ,  

and are part of the edge formed going through the pixel being 

predicted. 

( 1, 2, 1I x y t− + − )

)

)

( 2, 2, 1I x y t− + −

( 1, 2, 1I x y t− − − , ( 2, 2, 1I x y t )− − −  and ( 2, 1, 1)I x y t− − − forms a second 
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edge which is not connected to ( 1, 2, 1)I x y t− − − ,  

and

( 2, 2, 1I x y t− − − )

)( 2, 1, 1I x y t− − − . To avoid the second we start classifying the inner set of pixels as 

edges or non-edges. Here the inner set of pixels is formed by the four closest pixels 

to . It can be observed that only ( , , 1)I x y t − ( 1, 1, 1)I x y t− + −  is part of the edge. Hence 

all the pixels connected to ( 1, 1, 1)I x y t− + −  are tested for edge properties. Pixels 

 and are identified as edge pixels. Since only 

connected pixels are tested for edge properties we save time as the edge calculations are 

computed only on the reduced set of pixels. 

( 1, 2, 1I x y t− + − ) )( 2, 2, 1I x y t− + −

 

The calculations for the edge-based is similar to the context based method discussed in 

the previous section. In the case of edge based method the pixel classified as edges and 

non-edges for there respective context classification are used for the computation of the 

prediction error of the current pixel. Considering that the current pixel is classified as an 

edge pixel and the case studied in Figure 15 is taken. Then the calculation to predict 

( , , )I x y t  is as follows. 

 

( , , 1)( , , 1) ,
( , , 1)x p

I x y tW x i y j t i j E
I x i y j t

−
− − − = ∈

− − −
    (18) 

 

The weights in the reference band are computed for the pixels classified as edge pixels. 

Here pE stand for the edge pixels in the context. 

 

Since the edge calculations in the reference band holds true for the current band. Co-

located pixels classified as edge pixels in the reference band are picked from the current 

band to compute the ratio between the two contexts 

. 

( , , 1)( , , ) ,
( , , ) p

I x i y j tx i y j t i j E
I x i y j t

ρ − − −
− − = ∈

− −
    (19) 
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The calculations made for the correction factor to correct the ratios are computed only on 

the pixels classified as edge pixels. 

 

( , , )
( , , ) ,

( , , )
ep

ep p
ep

I x y t
W x i y j t i j E

I x i y j t
− − = ∈

− −
   

 (20) 

 

( , , )1 ( , , ) ,
( , , 1)

ep
ep ep p

ep epi j

W x i y j t
f x i y i t i j E

n W x i y j t
ρ

⎛ ⎞− −
= − − −⎜ ⎟⎜ ⎟− − −⎝ ⎠

∑∑ ∈  (21) 

 

Since the estimation for the correction factor is computed from only the edge pixels better 

approximation is obtained for the weights to predict ( , , )I x y t  

 

( )1( , , ) ( , , ) ( , , ) , p
ep i j

x i y j t x i y j t f x i y j t i j E
n

α ρ− − = − − + − − ∈∑∑  (22) 

 

 

The weights computed for the edge pixel ( , , )I x y t is given in (22). 

 

ˆ ( , , ) ( , , ) ( , , 1) ,y x pW x i y j t x i y j t W x i y j t i j Eα− − = − − ⋅ − − − ∈   (23) 

 

The predicted value for ( , , )I x y t is computed as shown. 

( )1ˆ ˆ( , , ) ( , , ) ( , , ) ,y p
ep i j

I x y t W x i y j t I x i y j t i j E
n

= − − ⋅ − −∑∑ ∈  (24) 

Here is number of pixels classified as edge pixels. epn

ˆ( , , ) ( , , ) ( , , )e x y t I x y t I x y t= −        (25) 

 

Since only the edge pixels are involved in the calculations higher gains in compression 

ratios are achieved. Gains obtained are highest in the case of Moffet field since they have 
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very distinct edge. It can be observed from the results of M-CALIC that Moffet Field 

performs better with edge based algorithms than non-edge based algorithms. 

3.4  Sign Bit Flipping 
 

The sign bit flipping techniques to remap the prediction error residuals discussed in (26) 

is difficult to implement in the case of hyperspectral images due to the dynamic range of 

the pixel values.  

 

( )

ˆ( , )
ˆ( , ) ( , )

ˆ, 0 ( , ) 2 ( , ) 1

ˆ( , ) 2 ( , )

ˆ ˆ( , ) ( , ) ( , )

ˆ( , ) max ( , )

ˆ( , ) 0 ( , ) 2 ( , )

ˆ( , ) 2 ( , ) 1

ˆ ˆ( , ) max ( , )

if y m n median
if e m n y m n

if e m n e m n e m n

Else e m n e m n
Else

e m n y m n e m n
Else

if e m n y m n

if e m n e m n e m n

Else e m n e m n
Else

e m n y m n e

<=

<=

< =

=

= +

<= −

< =

−

= −

= − + ( , )m n

   (26) 

 

Where,  is the prediction error being remapped? ( , )e m n

  is the prediction for . ˆ( , )y m n ( , )y m n

  is the remapped symbol. ˆ( , )e m n

 Max is he maximum pixel intensity. 

 Median is the median of all the pixel intensities in a band. 

 

In the case of standard images the minimum ad the maximum value that can be present in 

the image is know i.e. 0 and 255. But in case of Hyperspectral images the minimum and 

the maximum values are different in each image. The major problem with hyperspectral 
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images is that there are few pixels which have very high value compared to other pixels 

in the band. Due to this the last condition in the equation is never satisfied as the 

difference between the maximum pixel intensity and the median of the image pixel 

intensity is never less than the error value. Hence no gain in entropy is obtained after 

remapping. Hence simple sign bit flipping is used to remap the prediction error residue as 

shown in (27). 

 

2* ( , )                         ( , ) 0
ˆ( , )

2* ( , ) 1                    ( , ) 0

e m n if e m n
e m n

e m n if e m n

⎧ ≤⎪= ⎨
− >⎪⎩

     (27) 
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Chapter 4: Band Ordering 
 

4.1  Introduction 
 

Lossless compression of hyperspectral imaging can be broken down into two parts; 

ordering of bands, and then prediction based on the ordering. In [48, 49] significant gains 

in compression ratio have been shown for the lossless compression of hyperspectral 

images after ordering. Ordering technique proposed in [48] has an order of complexity of 

 where n is the number of bands. This does not include the complexity of the 

compression algorithm used to compute the compression ratios between the bands. Due 

to high complexity of ordering it is not feasible to implement the ordering schemes 

onboard on satellites capturing hyperspectral images. There is a need to study different 

ordering scheme in order to reduce the overall complexity of ordering and obtain the 

compression ratios compared to optimal ordering. In this thesis we propose three 

different schemes of ordering. 

2( )O n

 

4.2  Band Ordering Problem 

 

Band ordering problem can be defined as, given a set of bands { }1 2, ,...., nB b b b=  in a 

hyperspectral image, the band ordering problem is to find a permutation ( )BΠ , such that 

predicting band  using ib ( )ibΠ for each band ib B∈  will give the maximal compression. 

The permutation constitutes an ordering of the band in . Π B

 

The band ordering problem for multispectral/hyperspectral images was studied by Tate in 

[48]. He computed the compression ratios between all possible combinations of bands to 

obtain a weighted directed graph. The solution of a weighted directed graph to obtain a 

maximum weight spanning forest for a dense graph has an order of complexity of  

where n is the number of bands. The computation time required to order the bands is also 

2( )O n
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dependent on the lossless compression algorithm used to compute the compression ratio 

between the bands. A faster algorithm was proposed in [49], instead of computing the 

compression ratios between bands, correlation between bands were computed to order the 

bands. To reduce the time required to compute the correlation coefficient between bands 

the images were down-sampled. The effect of this on the final performance of the system 

was very little. To further improve the performance of the ordering scheme in terms of 

time the correlation factor was computed between 42 neighboring bands.  

 

In this thesis we have proposed 3 different ordering algorithms. The first algorithm 

computes the global and local features of the band to cluster the bands having similar 

features together. After the bands have been grouped, bands in each group are then 

ordered by computing the compression ratios between the bands and finding the spanning 

tree using Kruskal’s algorithm. The second and third methods of ordering for 

hyperspectral images require the computation of compression ratios between the 10 

neighboring bands. The weighted graph formed is the solved to obtain the spanning tree 

using Prim’s algorithm and Kruskal’s algorithm. 

 

4.3  Minimum Spanning Tree 

 
Given a connected, undirected graph, a spanning tree of that graph is a sub-graph which 

is a tree and connects all the vertices together [29]. A single graph can have many 

different spanning trees. Weights are assigned to each connection in the graph. A 

minimum spanning tree is formed by the spanning tree having the minimum weight 

compared to all other trees. In this thesis we form a maximum weight spanning tree as 

higher the compression ratios better is the performance of the system. Two MST 

algorithms have been discussed in this thesis namely Prim’s algorithm and Kruskal’s 

algorithm. Both the algorithms are greedy algorithms and run in polynomial time.  

 

In Kruskal’s algorithm the edges are sorted based on their weights. The first edge has the 

least weight while the last weight has the maximum weight. At each step the edge is 

connected to the tree if it does not form a cycle. Since independent trees are formed 
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Kruskal’s algorithm forms a forest. Kruskal’s algorithm forms a forest but the final tree 

might connect to form a single tree instead of a forest. Kruskal’s algorithm has a worst 

case complexity of ( )logO E V  where E is number of edges and V is number of vertices.  

 

Prim’s algorithm the tree starts from an arbitrary root vertex r and grows until the tree 

spans all the vertices in V. At each step, a light edge connecting a vertex in E to a vertex 

V-E is added to the tree [7, 37, 36]. Prim’s algorithm forms a single tree with a single 

root vertex. The run time for Prim’s algorithm is ( )logO E V . Two different algorithms 

Prim’s and Kruskal’s form different spanning trees when tested on the same data, hence 

the two algorithms have been used to test which of them gives the best results.  

 

4.4  Ordering based on Global and Local Features  
 

We divide the problem of ordering into three parts: global grouping wherein global 

features of the bands are used to group the bands, local grouping wherein local features in 

each band is used to sub group the global groups; and ordering whereby the bands in the 

subgroups are ordered based on techniques similar to [48]. The major problem with 

ordering methods is the time required to compute the weights of the edges in a weighted 

graph. In [48] two compression methods were used to compute the weights for each edge 

in the graph. Though the complexity of the ordering scheme is  which implies that 

the run time to find the maximum weight spanning tree is . But the time required to 

compute the weights is very high. The total time required will be dependent on the 

computation time of the lossless compression algorithm.  

2( )O n
2( )O n

 

In this thesis we propose an ordering scheme which groups the bands based on their 

global and local features. Bands in each group are then ordered using Kruskal’s 

algorithm. The compression ratio between the bands is computed within each group 

hence the total computation time required to compute the weights is reduced as the total 
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combination of bands is reduced from  to 2n
2nk

k
⎛ ⎞×⎜ ⎟
⎝ ⎠

 where n  is the total number of 

bands and k  is the number of groups. Here the assumption is made that the bands are 

equally divided between the groups.  

 

Figure 16 shows the ordering of bands. Here 4 groups are formed and in each group the 

bands are ordered. The root band in each group is predicted by the closest band in the n-

dimensional space. 

 

 
 

Figure 16:  Ordering of Bands 
 

 

4.4.1 Global Grouping 
 

The global structure captured by the sensors in hyperspectral images is similar across all 

the bands. But the intensity level of the pixels varies from band to band. The average 

computed for all the pixels in a band vary from 10 to 5000 across the bands in the 

hyperspectral images. Hence the gradient of pixel with its neighbor in a band having an 

average of 10 will be different from the gradient of pixel with its neighbor in a band 

having an average of 5000. Though the band with average pixel value of 10 can be 
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scaled/normalized to 5000 but this will also rescale the gradients between the pixels by 

that scale factor, which will be higher than the gradients in band with an average of 5000. 

Hence to obtain higher compression gains it is advisable to predict a band with a band 

having similar intensity levels. Hence the motivation of this work comes from the fact 

that higher prediction gains can be obtained if bands with similar intensity levels predict 

each other. 

 

Hyperspectral images are affected by sensor noise and absorption and scattering 

properties of the atmosphere [22]. The bands affected by noise have either lower intensity 

level or high variance. Hence these bands should be grouped together based on there 

average intensity level and the variance. It has been observed that images corrupted by 

noise have higher variance than normal images. 

 

From the above two considerations it can be observed that the bands should be grouped 

based on there average intensity level and the standard deviation of the pixel intensities to 

achieve better prediction and higher compression ratios. Two parameters were computed 

for each band, average band intensity and standard deviation. This 2 dimensional data 

was then given to k-means to group the bands. Here any clustering algorithm can be used 

to group the bands. The number of clusters or groups was fixed to 7 which gave the best 

performance. 

 

4.4.2 Local Grouping 
 

Global Grouping will group images with similar intensity level and variation together. 

But this may not result in higher compression gains as intensity levels in different part of 

the image in the same group may not be similar enough to obtain good spatial and 

spectral predictions. Hence there is a need to further divide the images into smaller 

groups based on the features extracted from the bands. The time required to achieve the 

final grouping is reduced as now only the bands in the group need to be compared and 

not all the n bands. Global grouping is used to reduce the overall time required to sub-

group. KL-distances is computed between the bands to obtain the final sub-group. To 
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reduce the overall time required to obtain the final grouping the number of sub-groups 

were calculated adaptively and instead of computing  KL-distance between all the bands 

in the group, reference bands were generated which were used to compute the KL-

distances. The distances were computed between the bands and the reference bands. The 

matrix obtained after computing all the distances is then given to a clustering algorithm. 

In this thesis k-means is used to group the bands. 

 

To improve the performance of the system in terms of time the number of sub-groups that 

should be formed is pre-calculated. In this thesis we have proposed a technique which 

can be used to decide on the number of subgroups to be assigned to each global group.  

Ideally the sub-group should be assigned based on the number of bands in a group. But 

there is a possibility that a group may have higher number of bands and also the cluster 

density is very high. In this case it is not advisable to assign more number of sub-groups. 

Hence the assignment of the sub-group should be dependent on the cluster density of a 

group and the number of bands in each group. Hence poor cluster density but fewer 

numbers of bands will have lesser number of groups while a group with higher cluster 

density and more number of bands will also have lesser number of subgroups. The 

calculation for subgroups helps us in using the optimized k-means instead of the adaptive 

k-means.  

 

The cluster density of the groups is calculated as follows. 
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Where,  stands for the  group and is the number of bands in the group,  is the 

cluster density for the  group. In a two dimensional space the cluster center or the 

centroid will be represented by two points. and  are the cluster centers for the 

 group. In order to compare the cluster densities it is necessary to normalize them with 
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respect to the number of bands in the group. The normalized cluster density for the  

band is as shown 

thi
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Here ( )dC i  is he normalized cluster density and ( )bN i  is the normalized group size for 

the group. is the number of groups formed after the global grouping. To compute the 

number of sub-groups that can be assigned to each group it is necessary to fix the upper 

limit to the number of groups that can be formed for a hyperspectral data. Here z is the 

maximum number of groups that can be assigned to a hyper-spectral data.  
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Here is the number of sub-groups assigned to each group. Ideally two images can 

be compared by calculating there MSE’s or PMSE’s but they are computationally time 

consuming. Lesser computational method to compare the images is to compare there 

Histograms. KL distance is a good tool to compare two distributions.  
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Where p and q are the two histograms to be compared and i represents the bins in the 

histogram. For optimal grouping we should calculate KL distance between all the 

histograms in a group. But the computation of KL distances between all the bands will 

increase the complexity of the algorithm and will require more run time due to log 

calculation. To reduce the time complexity of the algorithm reference bands are picked 

from the group of bands. The number of reference band in a group is dependent on the 
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number of bands present. Hence for the largest group 3 reference bands are picked and 

for the smallest 1 reference band is picked. The reference bands are picked by sorting the 

bands in ascending order. Here the bands are placed in 2 dimensional space where the 

two dimensions are mean and standard deviation. The bands are sorted in ascending 

order. The first reference band is picked close to the median of the sorted order. The 

second reference band is picked by flipping the first reference band. The band closest to 

the flipped dimension is picked as the second reference band. The third reference band is 

picked close to the centroid of the group. The reason to obtain reference bands in this 

order is we need a good representation of the group. The first two reference bands are 

placed between the centroid and the first and last band. The third band is located close to 

the centroid. In case only one band is chosen as the reference band then the centroid is 

picked. While, if two reference bands are chosen then the first two reference bands are 

taken as the representative of the group. After computing the reference band, KL 

distances are computed between the reference bands and all the bands in the group. The 

distances are then grouped using the k-means algorithm. The numbers of clusters or sub-

groups were pre-calculated as shown in equation (2, 3, and 5) for each group.  

 

After the final grouping is obtained the bands are ordered by computing the compression 

ratios between all the bands in a sub-group. Here since the number of bands in a sub-

group is less than the total number of bands in an image set the computation time 

required is much less than the algorithms proposed in [48, 49]. In optimal ordering [48] 

with n number of bands, compression ratios need to be computed. Assuming that there 

are 

2n

iP  number of bands in the group total number of compression ratios that need to be 

computed is given by . Here m is the total number of groups. Since in each 

group the number of bands is fraction of the total number of bands the computation time 

required to obtain the compression ratios is reduced. After obtaining the compression 

ratios the weighted graph formed was solved using Kruskal’s algorithm. Since the 

Kruskal's algorithm forms a forest there was a need to connect all the roots to form a 

single tree. To obtain this depth first search was used to connect the roots to the main 

tree. 
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The performance of the ordering algorithm was not as expected. High losses were 

incurred in predicting the root bands of each group. The loss incurred in the prediction of 

the root bands was higher than the gain obtained due to ordering.  These bands showed 

poor performance with spatial prediction and prediction by bands from different groups. 

Here we tried to study the problem of ordering by computing the global and local features 

in the bands. The major aim was to reduce the time required to compute the compression 

ratio between all the bands by reducing the number of bands from n to fraction of it in 

each group.  

 

4.5  Neighborhood-based Ordering 
 

In hyperspectral images the correlation factor reduces with the increase in the distance 

between the current band and the prediction band. The absorption and reflection property 

of material remains similar in the neighboring bands. Hence the band under consideration 

is best predicted by the neighboring bands. The ordering method proposed in this thesis 

computes the compression ratio of the current band with limited number of the 

neighboring bands.  

 
 

Figure 17 Ordering based on Neighbors 
 

 
In Figure 17 band d  is predicted by bands from qd−  to qd+ and the compression ratios 

computed between them is given by qW− and qW+ . Here the limit to the number of 
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neighboring bands is set to . Since only q 2 q×  neighboring bands are used to predict the 

current band . Hence overall 2d q n× × compression ratios need to be computed to order 

the bands as compared to  in the case of optimal ordering proposed by [49] and 

in the method proposed by [48].  

2n
22 n×

 

The ordering methods proposed have been inspired by Prim’s algorithm and Kruskal’s 

algorithm. The proposed algorithms are modified Kruskal’s and Prim’s algorithm. The 

main difference between the proposed method and the two standard algorithms is that 

they require a symmetric matrix wherein the connection between two nodes has the same 

weights in either direction. This means that the compression ratio computed from band  

to band  is same as computed from band  to band . In real world case the 

compression ratios will never be the same. Hence the two algorithms were modified to 

incorporate this fact. 

1b

2b 2b 1b

 

The first method of ordering is based on the Kruskal’s greedy algorithm to find the 

minimum spanning tree from a weighted graph. In Kruskal’s algorithm the weights for 

the edges are sorted in ascending order and the least edge weight forms the root node. 

Kruskal’s algorithm computes a forest since many trees are built simultaneously till all 

the edges have been connected. The final result might have a single tree if all the edges 

are connected to each other or it will form a forest having many spanning trees in it. 

Similar to the Kruskal’s algorithm we order the compression ratios computed between the 

bands. Since the compression ratios vary from small value to large it is not advisable to 

order the compression ratios, since it may not result in the best performance achievable. 

The compression ratios do not provide the gain made if a band is predicted by another 

band. Here the best compression ratio obtained will form the first edge but the 

improvement obtained in predicting the band may not be significant compared to other 

bands.  Hence there is a need to order the gain made by the prediction of one band with 

another, than ordering the compression ratios. 
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Since the method is being compared with the results obtained by unordered bands we 

select the difference between the compression ratios achieved by predicting the band with 

its neighbors with the compression ratio achieved for that band when the bands are 

unordered. In an unordered method the previous band is used to predict the current band. 

Now the weights of the edges is given  by the gain made in compressing one band from 

another and the first edge will be for the bands having highest gain. Similar to Kruskal’s 

the edges are ordered in ascending order depending on their weights. Greater 

improvement in performance is obtained since edges having higher gain have higher 

priority compared to other bands. 

q

 

For each edge there is a pair of predicted and predictor band  and  respectively. The 

pair forms a union under 2 conditions. 

i
dP i

rP

• The band has not already been predicted. 

• The two bands should not form a cycle. 

 

The first condition can be checked by storing all the bands that have been predicted and 

there predictors. This data is also needed by the decoder to decode the bands correct 

order.  A cycle is formed when two nodes of the same tree are connected to each other. 

Hence the band can be reached from two or more different paths. To avoid cycles we 

need to check if the two bands the predicted and predictor are not subset of the same tree. 

As independent trees are grown it is difficult to keep account for all the tree formation 

and there nodes. A look up table is kept which keeps the information of the bands being 

predicted and there predictor. So each time a union of two bands is formed the look up 

table is updated. Each time two new bands come in the look up table is parsed to find the 

bands that have already been predicted by . Similarly for all the bands predicted by  

we find the bands predicted by them and the process continues till all the bands 

connected to  have been found.  is compared with all the connected bands found 

from the look up table and if a match is found then the pair is discarded. 

i
dP i

dP

i
dP i

rP
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The ordering method discussed forms a forest which may result in many root nodes 

which have not been predicted. It is difficult to compress these bands spatially due to 

poor spatial correlation. Also the distance between the root nodes will decide the 

achievable compression ratio if one root node is predicted by another. Hence there is loss 

in performance due to poor performance of the root bands in terms of compression ratios. 

To avoid formation of multiple trees the next ordering method forms a single tree using 

Prim’s algorithm. Similar to Prim’s algorithm the first band forms the root node of the 

tree. The best prediction by the current band forms the next edge of the tree.  

 

The complexity of both the above algorithms is where  forms the edges of 

the weighted graph and V  forms the vertices of the weighted graph. Since only 

neighboring bands are selected to predict the current band the overall computation time 

is reduced by 

( log )O E V E

q

2
n

q where is the total number of bands and  is the number of 

neighboring bands used for prediction. 

n q

 

 57



Results 

Chapter 5 Results 
 
The main objective of this thesis is to develop a method that could achieve comparable or 

better compression ratios when compared with state of the art algorithms for lossless 

compression of hyperspectral images. Two different aspects of lossless compression of 

hyperspectral images have been studied in this thesis, namely the prediction scheme and 

the ordering method. Two different prediction methods have been proposed in this thesis. 

The first scheme performs a spatio-spectral prediction of the pixels in a given band, using 

information in causal spatio-spectral neighborhood. The second scheme classifies the 

pixels into edges and non-edge pixels, and then performs prediction based on this 

classification. Three different ordering schemes have been studied in this thesis; the first 

one orders the bands based on their global and local features, while the other two 

schemes order the bands based on the information computed from their b-neighboring 

bands. 

 

5.1  Experimental Setup and Data Set 
 

The experiments were performed on a machine with 1.53 GHz, AMD Athlon processor 

and 1 GB RAM using Matlab 7. 

  

The JPL website has 5 different image sets captured by AVIRIS in 1997 for download 

[2]. Research on AVIRIS data has been carried out since last two decades. Prior to 1997 

data acquired in 1989 by the AVIRIS instrument were available for research purposes. 

The 5 image set acquired by the AVIRIS instrument which have been made available for 

research and commercial use are Cuprite, Moffet Field, Jasper Ridge, Lunar Lake and 

Low Altitude. Each image is of different size and comprises of scenes of size 614 512×  

wherein the last scene has lesser number of rows in each image set. The size and number 

of scenes of each image set is given in Table IV 
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TABLE IV: DETAILS OF AVIRIS IMAGE DATA SET. 
 

Image Set Number of 

Scenes 

Size of each 

scene 

Size of the Last 

Scene 

Total Image 

Size in Pixels 

Total Image 

Size in MB’s 

Cuprite 5 614 512×  614 158×  614 2206×  606.8 

Moffet Field 4 614 512×  614 495×  614 2031×  558.6 

Lunar Lake 3 614 512×  614 407×  614 1431×  393.6 

Jasper Ridge 6 614 512×  614 26×  614 2586×  711.3 

Low Altitude 8 614 512×  614 105×  614 3689×  1014.7 

  

The parameters used in the prediction method were 

Context Size – 12 

Threshold Value – 20 % of the mean of each band for (EPHI) 

Bands predicted spatially- 1 to 8 and 107 to 114 

Bands encoded without prediction- 153-160 

All other bands were spectrally predicted. 

 

Parameters for Ordering 

1. Feature based ordering 

Cluster Size for Global Grouping –7 

Maximum groups allowed 20 

Maximum Reference Bands used for local grouping-3 

2. Neighborhood based ordering  

Number of Neighbors–10 

 

The encoding scheme used in this thesis is the Matlab’s arithmetic encoder. The 

arithmetic encoder in Matlab requires the probability of occurrence of each symbol. This 

information is required at the decoder. Hence the probability of each symbol is added to 

the header of the compressed file and is included at the time of computing the 

compression ratios. 
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5.2  Spatial Prediction Schemes 
 

Before we study the performance of prediction schemes proposed in this thesis, it may be 

helpful to see the performance of standard lossless image compression algorithms on 

hyperspectral images. The performance of spatial predictors on hyperspectral images 

have already been shown in [39, 38, 55, 34, 20]. Spatial predictors do not perform well 

(in terms of compression ratios) on hyperspectral images. In [39] it was shown that 

differential JPEG LS and differential JPEG 2000 perform better in terms of compression 

ratios. In the differential schemes, the differences between the bands were compressed 

instead of the bands being compressed individually. Significant improvement in the 

performance was obtained when the difference between bands were compressed, hence 

the motivation for spectral predictors. TABLE V shows the performance for different 

standard lossless image compression algorithms in terms of compression ratio on 

hyperspectral images.  

 
TABLE V: PERFORMANCE OF STANDARD LOSSLESS IMAGE COMPRESSION ALGORITHMS  

 
CALIC [20] JPEG LS [38] JPEG 2000 [38] Differential 

JPEG LS [39] 
Differential 

JPEG 2000 [39] 
 

bpp CR bpp CR bpp CR bpp CR bpp CR 
Cuprite 6.99 2.29 7.66 2.09 8.38 1.91 5.50 2.91 5.48 2.92 

Jasper Ridge 7.69 2.08 8 2.00 8.89 1.80 8.84 2.81 1.8 2.82 

Moffet Field 6.53 2.45 8.38 1.91 8.99 1.78 5.63 2.84 5.65 2.83 

Lunar Lake 6.48 2.47 8.04 1.99 8.79 1.82 5.46 2.93 5.44 2.94 

Low Altitude - - 7.47 2.14 8.16 1.96 5.93 2.70 5.95 2.69 

Average 6.90 2.32 7.62 2.03 8.65 1.85 5.63 2.84 5.63 2.84 

 
 

Earlier images from 1989 flight were used for research in lossless compression of 

hyperspectral images. These images were replaced by images from the flight run of 1997. 

From TABLE V it can be observed that standard lossless image compression algorithms 

perform very poorly on hyperspectral images. The results have been quoted from the 

relevant sources as indicated in TABLE V. But mentioned said earlier in Chapter 4 on 

prediction, some of the bands are best predicted by spatial predictors. These bands have 
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poor spectral correlation and perform poorly with spectral predictors but give better 

compression ratios with simple median predictors or JPEG’s 7 predictors. 

 

5.3  Spatio-Spectral Predictor 

 
Spatial predictors perform poorly in terms of compression ratios as compared to the 

spectral predictors as discussed in chapter on background and prediction. Comparing 

Table V and table VI it can be observed that significant improvements in compression 

ration can be obtained in lossless compression of hyperspectral images. AVIRIS 

hyperspectral images have 5 different sets of images and each image set has different 

number of scenes. Each image set has scenes of size 512 614× while the size of the last 

scene varies in all the image sets. The results shown in this thesis have been for the 

combined results of all the scenes for each image set.  

 

Context based prediction has been classified into edge-based prediction (EPHI) and non-

edge based prediction (NPHI). Slight improvement is obtained when the edge-based 

classification is used for prediction. A context size of 12 causal pixels was fixed after 

testing partial image set for different context size. The Figure 16 shows the effect of the 

change of context size for different image sets. The figures are based on image sizes of 

 from scene-1 of the respective image sets, and thus do not represent actual 

entropy for each band. The graphs basically show the change in the entropies with 

changing context size. It can be observed that after context size 12 the change in entropy 

is almost constant. Hence the context size of 12 was fixed considering the gain in 

compression ratio and computation time required. 

256 256×

 

In Figure 18(a) the effect of change in context size on entropy of prediction for the five 

image sets of AVIRIS is shown. It can be observed that the change in entropy after 

context size of 12 is not significant. In Figure 18(b) it can be observed that the change in 

entropy is of 0.02 from context size of 12 to 23. Hence with almost twice the number of 

computations required to compute the prediction error residual the change is not 

significant.  
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(a) (b) 

 
Figure 18:  Effect of Context size on prediction error residual; (a) Entropies plotted for all the bands; 

(b) Plot for Cuprite 
 

 
As discussed in Chapter 3 on prediction, some bands have poor spectral correlation and 

are best predicted by spatial predictors. The spatial predictor used in this case is the North 

Pixel (NP) Predictor, wherein the pixel north to the current pixel is used to predict the 

current pixel. Also some of the bands have low self entropy and are best encode without 

prediction. In Figure 19 the entropies obtained for the three prediction scheme on Jasper 

Scene 3 and Moffet Scene2 have been shown. It can be seen that bands 1 to 8 and 107 to 

114 are best predicted by spatial predictor and bands 153 to 160 are best encoded without 

prediction. From the Figure 19 it can be observed that the self entropy of the images for 

bands 153 to 160 is lower than that obtained by the two prediction schemes. The two 

figures have been plotted for image set Jasper Ridge scene-3 and image set Moffet Field 

scene-2.  
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   (a)      (b) 
 

Figure 19 Entropy plots for different prediction schemes; (a) Jasper Scene 3; (b) Moffet Scene 2. 
 
 
In Figure 20(a) the effect of threshold value on the prediction error residual is show. It 

can be observed that the curves become almost constant after .02 (20 % of the mean of 

the bands). Though for Lunar Lake and Cuprite the entropy does not vary much with 

threshold value, it changes significantly for Moffet Field and Jasper Ridge.  In Figure 

20(b) the variation of entropy against threshold value is shown for Jasper Ridge. 

 

 
(a)       (b) 

 
Figure 20 Variation of entropy of prediction residual with edge threshold; (a) for all the images; (b) 

Magnified plot for Jasper Ridge 
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Table VI shows the results obtained with the two proposed methods for prediction 

namely Non-Linear Prediction for Hyperspectral Images (NPHI) and Edge-Based 

Prediction for Hyperspectral Images (EPHI). It can be observed from Table VI that EPHI 

performs better than NPHI for all the image sets. Higher gains in terms of compression 

are obtained in EPHI over NPHI on Moffet Field and Low Altitude. 

 
TABLE VI: RESULTS FOR THE PROPOSED PREDICTION METHODS 

 
 

NPHI EPHI  

Entropy in  bpp CR Entropy in  bpp CR 

Cuprite 4.7904 3.34 4.7619 3.36 

Jasper Ridge 4.8930 3.27 4.8632 3.29 

Moffet Field 4.9689 3.22 4.8780 3.28 

Lunar Lake 4.7904 3.34 4.7619 3.36 

Low Altitude 5.3156 3.01 5.1948 3.08 

Average 4.9383 3.24 4.8930 3.27 

 

Table VII shows comparative results with other state-of-the-art algorithms with 

comparable complexity. The results quoted in Table VII have been taken from there 

respective sources as indicated in the table. CCAP proposed in [50] performs better for 

Cuprite while LUT proposed in [27] performs better on Lunar Lake. From the Table VII 

it can be observed that on an average the proposed method in the thesis has best 

performance for edge based method. Average 1 mentioned in the table is for average over 

the first 4 image sets while the Average 2 mentioned includes results for Low Altitude. 

The results for [28] have been obtained after optimally ordering the bands. 
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TABLE VII: COMPARISON WITH OTHER PUBLISHED METHODS 
 
 

 M-CALIC  SLSQ-OPT [28] 

(Opt) 

CCAP 3D CALIC LUT NPHI EPHI 

Cuprite 3.21 3.24 3.23 3.53 3.06 3.44 3.34 3.36 

Jasper Ridge 3.17 3.23 3.18 2.56 3.08 3.23 3.27 3.29 

Moffet Field 3.38 3.21 3.13 2.57 3.25 3.17 3.22 3.28 

Lunar Lake 3.28 3.23 3.21 3.21 3.09 3.40 3.34 3.36 

Low Altitude - 3.04 3.03 2.81 - - 3.01 3.08 

Average 1 3.26 3.23 3.19 2.97 3.12 3.31 3.29 3.32 

Average 2 - 3.19 3.16 2.97 - - 3.24 3.27 

 
 

5.4  Band Ordering 

 
 
Higher compression ratios can be obtained if the bands are ordered before prediction. A 

popular ordering method for lossless compression of multispectral/hyperspectral images 

was proposed by Tate in [48]. The complexity of the algorithm as published in [48] is 

 where n is number of bands which in the case of AVIRIS images is 224. The 

algorithm is computationally intensive as it needs to calculate the compression ratios 

between all the bands. Hence the complexity of the algorithm will be dependent on the 

type of prediction method used and the compression methodology. In [49] a correlation 

based method was proposed where the correlation between all the bands is computed. 

Though the order of complexity remained the same the time required to compute the 

weights for the edges in the weighted graph reduced. Further in [49] a lesser complex 

method was proposed wherein the correlation was computed between the neighboring 40 

bands. Though this reduced the compression ratios achieved.  

2( )O n

 

 Table VIII shows the results for the three ordering methods described in chapter 4 on 

ordering. We have included same results from Table V for comparison. The results for 

unsorted ordering perform the best between the three ordering methods proposed and 

have the second best results overall. In Table 5 the Ordering I method refers to the 
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ordering based on global and local features while ordering II refers to ordering based on 

Prim’s algorithm and ordering III is based on Kruskal’s algorithm. The results are based 

on EPHI edge based prediction. 

 
TABLE VIII: COMPARISON OF COMPRESSION RATIOS FOR ORDERING METHOD 

 
 M-CALIC SLSQ-OPT [28] LUT Ordering I Ordering II Ordering III 

Cuprite 3.21 3.24 3.23 3.44 3.24 3.38 3.37 

Jasper Ridge 3.17 3.23 3.18 3.23 3.27 3.29 3.27 

Moffet Field 3.38 3.21 3.13 3.17 3.15 3.28 3.27 

Lunar Lake 3.28 3.23 3.21 3.40 3.23 3.36 3.36 

Average 3.26 3.23 3.19 3.31 3.22 3.33 3.32 

 

Table IX shows the result when the independent bands are not included in the results. It 

can be seen that the ordering improves the results significantly. Here the root bands of 

each tree have not been included in the results. Significant gain in compression ratio is 

achieved as these bands perform poorly in terms of compression ratio when predicted 

spatially. Table IX therefore shows the improvements due to ordering and explain why 

the results shown in Table VIII show little improvements. An effective scheme to 

compress the root nodes is therefore required for overall improvement in compression 

performance.  
 

TABLE IX: COMPRESSION RATIO FOR ORDERING WITH INDEPENDENT BAND EXCLUDED 
 
 

 Ordering II Ordering II w/o the root bands 

Cuprite 3.38 3.41 

Jasper Ridge 3.29 3.34 

Moffet Field 3.28 3.33 

Lunar Lake 3.36 3.40 

Average 3.33 3.37 
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Chapter 6: Conclusion 
 

Research in the field of lossless compression of hyperspectral images has been motivated 

by the need to conserve bandwidth and storage pace. Earlier the hyperspectral data was 

restricted to the research community. With the advent of commercial satellites huge 

amount of data is being captured. The basic area of study for hyperspectral images is 

mineral exploration and environmental monitoring. Same applications dependent on 

hyperspectral images need the data to be stored such that it can be recovered without any 

corruption. Hence the need arose for lossless compression of hyperspectral images. Since 

the compression algorithm needs to be implemented on-board on satellites the algorithm 

should have low complexity and should run in real time. 

 

The prediction algorithm proposed in thesis method is based on one-band look-ahead 

hence does not require huge amount of memory space. A context based non-linear 

predictor has been proposed in this thesis which predicts the pixel in the current band 

based on the information of 12 causal pixels in the current band and 12 causal co-located 

pixel in the reference band. The context based non-linear predictor is modified to add the 

edge-based analysis which improves the results. The proposed prediction method has the 

best results compared to the state-of-art-methods having comparable complexity.  

 

A major contribution to this thesis has also been the identification of bands for spatial 

prediction. Significant improvement is obtained when these bands are spatially predicted 

since these bands are affected by atmospheric absorption. Since we know the range of 

wavelengths in which atmospheric absorption we can generalize the algorithm for most 

of the datasets. Also significant improvement is obtained when bands dominated by 

sensor noise are encoded without prediction. These bands carry very little information 

and have poor spectral and spatial correlation. Since they have low pixel intensities they 

are best encoded without prediction. 

 

Though the proposed ordering techniques do not provide significant compression, they 

open a new avenue for ordering of hyperspectral images. The ordering based on 
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neighboring bands has better results than the proposed prediction scheme but there is a 

need to study it in more detail to achieve significantly higher compression ratios. 

 

In this thesis a context based spatio-spectral predictor was proposed. Though edge-based 

method has been proposed but the pixel classification was based on single threshold 

value. A better classification is needed to exploit the spectral information. Also bias error 

cancellation similar to those proposed in CALIC needs to be studied for the proposed 

method which might improve the results. The symbol remapping algorithm proposed in 

CALIC does not provide any gain in entropy due to the nature of the hyperspectral data. 

A detailed study needs to be carried out by comparing the difference between the two 

bands and the error residuals obtained. The change in pixel gradients is very high 

compared to the error values obtained hence the sign remapping technique does not 

perform well on the hyperspectral data. 

 

A major avenue for improvement in the proposed technique is to model the error 

residuals for encoding. 16 bit predictor used either gave poorer results than the entropy of 

the prediction error residuals or gave no improvements in it. Hence there is a need to 

study more appropriate encoding techniques for the hyperspectral images. 
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