2,952 research outputs found

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    OpenZmeter: An Efficient Low-Cost Energy Smart Meter and Power Quality Analyzer

    Get PDF
    Power quality and energy consumption measurements support providers and energy users with solutions for acquiring and reporting information about the energy supply for residential, commercial, and industrial sectors. In particular, since the average number of electronic devices in homes increases year by year and their sensitivity is very high, it is not only important to monitor the total energy consumption, but also the quality of the power supplied. However, in practice, end-users do not have information about the energy consumption in real-time nor about the quality of the power they receive, because electric energy meters are too expensive and complex to be handled. In order to overcome these inconveniences, an innovative, open source, low-cost, precise, and reliable power and electric energy meter is presented that can be easily installed and managed by any inexperienced user at their own home in urban or rural areas. The system was validated in a real house over a period of two weeks, showing interesting results and findings which validate our proposal

    Cloud platforms for remote monitoring system : a comparative case study

    Get PDF
    Currently, industrial companies are increasingly introducing services to extend their tangible products. Remote monitoring solutions are one of the most implemented services by machine builders to manage their relationship with customers and also improve their business performance in the digital manufacturing era. However, the conventional method of remote monitoring cannot fulfil distributed business environments. Therefore, new solutions are needed to enable remote connection in manufacturing. By reviewing recent literature and proposing new features for software which can be used for remote service and operations, this research paper introduces a remote monitoring system connecting into a central cloud-based system with edge computing network architecture, namely Cloud-based Remote Monitoring (CloudRM). This proposed CloudRM also has been implemented in two different case companies for analysis and evaluation from a value proposition and technical implementation point of view. It shows significant improvement of production management and measurement by using CloudRM.fi=vertaisarvioitu|en=peerReviewed

    Blockchain outlook for deployment of IoT in distribution networks and smart homes

    Get PDF
    Nowadays, unlike depleting fossil fuel resources, the integration of different types of renewable energy, as distributed generation sources, into power systems is accelerated and the technological development in this area is evolving at a frantic pace. Thus, inappropriate use of them will be irrecoverably detrimental. The power industry will reach a turning point in the pervasiveness of these infinite energy sources by three factors. Climate changes due to greenhouse gas accumulation in the atmosphere; increased demand for energy consumption all over the world, especially after the genesis of Bitcoin and base cryptocurrencies; and establishing a comprehensive perspective for the future of renewable energy. The increase in the pervasiveness of renewable energy sources in small-scale brings up new challenges for the power system operators to manage an abundant number of small-scale generation sources, called microsources. The current structure of banking systems is unable to handle such massive and high-frequency transactions. Thus the incorporation of cryptocurrencies is inevitable. In addition, by utilization of IoT-enabled devices, a large body of data will be produced must be securely transferred, stored, processed, and managed in order to boost the observability, controllability, and the level of autonomy of the smart power systems. Then the appropriate controlling measures must be performed through control signals in order to serve the loads in a stable, uninterruptible, reliable, and secure way. The data acquires from IoT devices must be analyzed using artificial intelligence methods such as big data techniques, data mining, machine learning, etc. with a scant delay or almost real-time. These measures are the controversial issues of modern power systems, which are yet a matter of debate. This study delves into the aforementioned challenges and opportunities, and the corresponding solutions for the incorporation of IoT and blockchain in power systems, particularly in the distribution level and residential section, are addressed. In the last section, the role of IoT in smart buildings and smart homes, especially for energy hubs schemes and the management of residential electric vehicle supply equipment is concisely discussed

    Bidding strategy for a virtual power plant for trading energy in the wholesale electricity market

    Get PDF
    Virtual power plants (VPPs) are an effective way to increase renewable integration. In this PhD research, the concept design and the detailed costs and benefits of implementing a realistic VPP in Western Australia (WA), comprising 67 dwellings, are developed. The VPP is designed to integrate and coordinate an 810kW rooftop solar PV farm, 350kW/700kWh vanadium redox flow batteries (VRFB), heat pump hot water systems (HWSs), and smart appliances through demand management mechanisms. This research develops a robust bidding strategy for the VPP to participate in both load following ancillary service (LFAS) and energy market in the wholesale electricity market in WA considering the uncertainties associated with PV generation and electricity market prices. Using this strategy, the payback period can be improved by 3 years (to a payback period of 6 years) and the internal rate of return (IRR) by 7.5% (to an IRR of 18%) by participating in both markets. The daily average error of the proposed robust method is 2.7% over one year when compared with a robust mathematical method. The computational effort is 0.66 sec for 365 runs for the proposed method compared to 947.10 sec for the robust mathematical method. To engage customers in the demand management schemes by the VPP owner, the gamified approach is adopted to make the exercise enjoyable while not compromising their comfort levels. Seven gamified applications are examined using a developed methodology based on Kim’s model and Fogg’s model, and the most suitable one is determined. The simulation results show that gamification can improve the payback period by 1 to 2 months for the VPP owner. Furthermore, an efficient and fog-based monitoring and control platform is proposed for the VPP to be flexible, scalable, secure, and cost-effective to realise the full capabilities and profitability of the VPP

    Study applying simulation to improve a real production process in the context of Industry 4.0

    Get PDF
    During the thesis development, simulation theories and techniques will be applied to a part of the production process of an Italian manufacturing company. A simulation model of the steaming and washing phases will be developed to outline the automated and manual procedures that are performed in the AS-IS state. Several what-if scenarios will be then envisioned and simulated to analyze how the production activities could be re-engineered in the light of the new technological advancements, such as the introduction of full traceability

    Design og styring av smarte robotsystemer for applikasjoner innen biovitenskap: biologisk prøvetaking og jordbærhøsting

    Get PDF
    This thesis aims to contribute knowledge to support fully automation in life-science applications, which includes design, development, control and integration of robotic systems for sample preparation and strawberry harvesting, and is divided into two parts. Part I shows the development of robotic systems for the preparation of fungal samples for Fourier transform infrared (FTIR) spectroscopy. The first step in this part developed a fully automated robot for homogenization of fungal samples using ultrasonication. The platform was constructed with a modified inexpensive 3D printer, equipped with a camera to distinguish sample wells and blank wells. Machine vision was also used to quantify the fungi homogenization process using model fitting, suggesting that homogeneity level to ultrasonication time can be well fitted with exponential decay equations. Moreover, a feedback control strategy was proposed that used the standard deviation of local homogeneity values to determine the ultrasonication termination time. The second step extended the first step to develop a fully automated robot for the whole process preparation of fungal samples for FTIR spectroscopy by adding a newly designed centrifuge and liquid-handling module for sample washing, concentration and spotting. The new system used machine vision with deep learning to identify the labware settings, which frees the users from inputting the labware information manually. Part II of the thesis deals with robotic strawberry harvesting. This part can be further divided into three stages. i) The first stage designed a novel cable-driven gripper with sensing capabilities, which has high tolerance to positional errors and can reduce picking time with a storage container. The gripper uses fingers to form a closed space that can open to capture a fruit and close to push the stem to the cutting area. Equipped with internal sensors, the gripper is able to control a robotic arm to correct for positional errors introduced by the vision system, improving the robustness. The gripper and a detection method based on color thresholding were integrated into a complete system for strawberry harvesting. ii) The second stage introduced the improvements and updates to the first stage where the main focus was to address the challenges in unstructured environment by introducing a light-adaptive color thresholding method for vision and a novel obstacle-separation algorithm for manipulation. At this stage, the new fully integrated strawberry-harvesting system with dual-manipulator was capable of picking strawberries continuously in polytunnels. The main scientific contribution of this stage is the novel obstacle-separation path-planning algorithm, which is fundamentally different from traditional path planning where obstacles are typically avoided. The algorithm uses the gripper to push aside surrounding obstacles from an entrance, thus clearing the way for it to swallow the target strawberry. Improvements were also made to the gripper, the arm, and the control. iii) The third stage improved the obstacle-separation method by introducing a zig-zag push for both horizontal and upward directions and a novel dragging operation to separate upper obstacles from the target. The zig-zag push can help the gripper capture a target since the generated shaking motion can break the static contact force between the target and obstacles. The dragging operation is able to address the issue of mis-capturing obstacles located above the target, in which the gripper drags the target to a place with fewer obstacles and then pushes back to move the obstacles aside for further detachment. The separation paths are determined by the number and distribution of obstacles based on the downsampled point cloud in the region of interest.Denne avhandlingen tar sikte på å bidra med kunnskap om automatisering og robotisering av applikasjoner innen livsvitenskap. Avhandlingen er todelt, og tar for seg design, utvikling, styring og integrering av robotsystemer for prøvetaking og jordbærhøsting. Del I omhandler utvikling av robotsystemer til bruk under forberedelse av sopprøver for Fourier-transform infrarød (FTIR) spektroskopi. I første stadium av denne delen ble det utviklet en helautomatisert robot for homogenisering av sopprøver ved bruk av ultralyd-sonikering. Plattformen ble konstruert ved å modifisere en billig 3D-printer og utstyre den med et kamera for å kunne skille prøvebrønner fra kontrollbrønner. Maskinsyn ble også tatt i bruk for å estimere soppens homogeniseringsprosess ved hjelp av matematisk modellering, noe som viste at homogenitetsnivået faller eksponensielt med tiden. Videre ble det foreslått en strategi for regulering i lukker sløyfe som brukte standardavviket for lokale homogenitetsverdier til å bestemme avslutningstidspunkt for sonikeringen. I neste stadium ble den første plattformen videreutviklet til en helautomatisert robot for hele prosessen som forbereder prøver av sopprøver for FTIR-spektroskopi. Dette ble gjort ved å legge til en nyutviklet sentrifuge- og væskehåndteringsmodul for vasking, konsentrering og spotting av prøver. Det nye systemet brukte maskinsyn med dyp læring for å identifisere innstillingene for laboratorieutstyr, noe som gjør at brukerne slipper å registrere innstillingene manuelt.Norwegian University of Life SciencespublishedVersio

    Emerging research directions in computer science : contributions from the young informatics faculty in Karlsruhe

    Get PDF
    In order to build better human-friendly human-computer interfaces, such interfaces need to be enabled with capabilities to perceive the user, his location, identity, activities and in particular his interaction with others and the machine. Only with these perception capabilities can smart systems ( for example human-friendly robots or smart environments) become posssible. In my research I\u27m thus focusing on the development of novel techniques for the visual perception of humans and their activities, in order to facilitate perceptive multimodal interfaces, humanoid robots and smart environments. My work includes research on person tracking, person identication, recognition of pointing gestures, estimation of head orientation and focus of attention, as well as audio-visual scene and activity analysis. Application areas are humanfriendly humanoid robots, smart environments, content-based image and video analysis, as well as safety- and security-related applications. This article gives a brief overview of my ongoing research activities in these areas

    Incentive based Residential Demand Aggregation

    Get PDF
    From the beginning of the twenty-first century, the electrical power industry has moved from traditional power systems toward smart grids. However, with the increasing amount of renewable energy resources integrated into the grid, there is a significant challenge in power system operation due to the intermittency and variability of the renewables. Therefore, the utilization of flexible and controllable demand-side resources to maintain power system efficiency and stability has become a fundamental goal of smart grid initiatives. Meanwhile, due to the development of communication and sensing technologies, intelligent demand-side management with automatic controls enables residential loads to participate in demand response programs. Therefore, the aggregate control of residential appliances is anticipated to be feasible technique in the near future, which will bring considerable benefits to both residential consumers and load-serving entities. Hence, this dissertation proposes a comprehensive optimal framework for incentive based residential demand aggregation. The contents of this dissertation include: 1) a hardware design of smart home energy management system, 2) a new model to assess the responsive residential demand to financial incentives, and 3) an online algorithm for scheduling residential appliances. The proposed framework is expected to generate optimal control strategies over residential appliances enrolled in incentive based DR programs in real time. To residential consumers, this framework will 1) provide easy-to-use smart energy management solution, 2) distribute financial rewards by their quantified contribution in DR events, and 3) maintain residents’ comfort-level expectations based on their energy usage preferences. To LSEs, this framework can 1) aggregate residential demand to enhance system reliability, stability and efficiency, and 2) minimize the total reward costs for executing incentive based DR programs. Since this framework benefits both load serving entities and residents, it can stimulate the potential capability of residential appliances enrolled in incentive based DR programs. Eventually, with the growing number of DR participants, this framework has the potential to be one of the most vital parts in providing effective demand-side ancillary services for the entire power system
    • …
    corecore