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ABSTRACT 

From the beginning of the twenty-first century, the electrical power industry has 

moved from traditional power systems toward smart grids. However, with the increasing 

amount of renewable energy resources integrated into the grid, there is a significant 

challenge in power system operation due to the intermittency and variability of the 

renewables. Therefore, the utilization of flexible and controllable demand-side resources 

to maintain power system efficiency and stability has become a fundamental goal of smart 

grid initiatives.  

Meanwhile, due to the development of communication and sensing technologies, 

intelligent demand-side management with automatic controls enables residential loads to 

participate in demand response programs. Therefore, the aggregate control of residential 

appliances is anticipated to be feasible technique in the near future, which will bring 

considerable benefits to both residential consumers and load-serving entities. Hence, this 

dissertation proposes a comprehensive optimal framework for incentive based residential 

demand aggregation. The contents of this dissertation include: 1) a hardware design of 

smart home energy management system, 2) a new model to assess the responsive 

residential demand to financial incentives, and 3) an online algorithm for scheduling 

residential appliances. 

The proposed framework is expected to generate optimal control strategies over 

residential appliances enrolled in incentive based DR programs in real time. To residential 

consumers, this framework will 1) provide easy-to-use smart energy management solution, 

2) distribute financial rewards by their quantified contribution in DR events, and 3) 
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maintain residents’ comfort-level expectations based on their energy usage preferences. To 

LSEs, this framework can 1) aggregate residential demand to enhance system reliability, 

stability and efficiency, and 2) minimize the total reward costs for executing incentive 

based DR programs. Since this framework benefits both load serving entities and residents, 

it can stimulate the potential capability of residential appliances enrolled in incentive based 

DR programs. Eventually, with the growing number of DR participants, this framework 

has the potential to be one of the most vital parts in providing effective demand-side 

ancillary services for the entire power system. 

 

Keywords: Power systems, demand response, residential demand aggregation, 

electricity market, incentive based demand response program, behavioral analysis. 
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CHAPTER 1 

INTRODUCTION AND GENERAL INFORMATION 

1.1 Demand Response 

From the beginning of the twenty-first century, the electrical power industry has 

experienced significant transformation due to the integration of an increasing amount of 

distributed energy resources. The trend implies less conventional generators, suggesting 

that future power systems are inclined to have less generation reserve capability. Therefore, 

not surprisingly, the demand-side resources, which are under-utilized, have the potential to 

improve the reserve capacity and system efficiency for future smart grids. 

Demand response (DR) refers to “changes in electric usage by end-use customers 

from their normal consumption patterns in response to changes in the price of electricity 

over time, or to incentive payments designed to induce lower electricity use at times of 

high wholesale market prices or when system reliability is jeopardized” [1, 2]. DR, by 

promoting the interaction and responsiveness of the customers, determines short-term 

impacts on the electricity markets, leading to economic benefits for both electricity 

consumers and load serving entities (LSEs) [3, 4]. Moreover, by improving the power 

system reliability and, in the long term, lowering peak demand, DR reduces overall plant 

and capital cost investments and postpones the need for network upgrades [5, 6]. 
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1.1.1 Residential Demand Response 

According to the energy review of 2014 by the U.S. Energy Information 

Administration (EIA), the residential electricity use in the U.S. in 2013 is 1,391,090 million 

kWh, which is the largest share (38%) of total electricity consumption [7]. Figure 1 is re-

generated from [8] and [9] to show the increasing development and investment on demand 

side management, in particular, peak load reduction.  

 

 

Figure 1. Residential Peak Load Reduction Program and Cost 

 

According to figure 1, both residential actual peak load reduction and potential peak 

load reduction in the U.S. have a general growing trend since 2004. The increasing 

demand-side participation in power systems has been creating new challenges and 

opportunities for electricity market participants [10, 11]. Meanwhile, with the development 

of communication and sensing technologies, the advanced platforms in which electricity 
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consumers and suppliers to interact with each other become feasible. This creates 

opportunities for utilizing demand side resources enhance the power system reliability, 

stability and efficiency based on the cooperation among system operators, end consumers, 

and LSEs. For power system operators, various DR programs have been deployed as 

potential resources to balance supply and demand, reduce peak-hour loads, and enhance 

the generation efficiency [10]. For consumers, electricity consumption is expected to be 

responsive to the fluctuant pricing signals to reduce their electricity payments [1,11-15]. In 

a fully competitive electricity market, LSEs play a critical role to function as intermediaries 

between end consumers and wholesale market operators to connect them into an optimal 

operation framework [16]. 

 

1.1.2 Types of Demand Response Programs 

Methods for engaging residential customers into DR include price-based DR 

programs via time-varying price mechanisms such as time-of-use pricing (TOU), critical 

peak pricing (CPP), real-time pricing (RTP), and peak load reduction credits, as well as 

incentive-based intelligent load control DR programs. 

 

Time-of-Use Pricing (TOU)  

TOU of electricity is set for a specific time period on an advance or forward basis, 

typically not changing more often than twice a year. Prices paid for energy consumed 

during these periods are pre-established and known to consumers in advance, allowing 
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them to vary their usage in response to such prices and manage their energy costs by 

shifting usage to a lower cost period or reducing their consumption overall. 

 

Critical Peak Pricing (CPP) 

CPP of electricity is in effect except for certain peak days, when prices may reflect 

the costs of generating and/or purchasing electricity at the wholesale level. 

 

Real-time pricing (RTP) 

RTP of electricity may change as often as hourly (exceptionally more often). Price 

signal is provided to the consumers on an advanced or forward basis, reflecting the utilities’ 

cost of generating and/or purchasing electricity at the wholesale level; and 

 

Peak Load Reduction Credits 

Peak load reduction credits are for consumers with large loads who enter into pre-

established peak load reduction agreements that reduce a utility’s planned capacity 

obligations. 

 

1.1.3 Incentive based Residential Demand Response 

I-DR was introduced in an attempt to induce flexibility in retail customers (such as 

small/medium size commercial, industrial, and residential customers) on a voluntary basis 

[31]. With an increasing amount of market products and research prototypes [17-23] of 

home energy management system appearing on the market, I-DR, which helps realize 
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intelligent controls over residential appliances, will become easily feasible in the near 

future. The adoption of I-DR would bring benefits to both residents and LSEs including: 

• Reduction of the total power generation and environmental impacts. Under the 

successful implementation of I-DR, the need of activating expensive-to-run 

power plants to meet peak demands is eliminated, and at the same time, while it 

enables energy providers to meet their pollution control obligations [1]. 

• Change of demand to follow available supply, especially in regions with high 

penetration of renewable energy sources, such as solar panels and wind turbines, 

to maximize the overall power system reliability [24]. 

• Reduction or even elimination of overloads in distribution system. The 

Distribution Management System (DMS) will monitor  the distribution system, 

and takes near real-time decisions over residential appliances to enhance the 

reliability of distribution systems [25]. 

• Improvement on electricity market efficiency. Residents are expected to reduce 

their energy cost; meanwhile, the aggregated demand will give LSEs more 

flexibility in the electricity market bidding which may bring them more profits. 

[16][26-30] 

At this point, an example is illustrated as follow to show how I-DR benefits LSEs 

while there is wind power integrated.  

Figure 2 demonstrates the impact of I-DR and wind power uncertainty to both 

electricity supply curve and elastic demand curve. As shown in Figure 2, (D1, π1) is the 
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intersection between the expected supply curve and the original demand curve, and (D2, π4) 

denotes the intersection between the expected supply curve and the new demand curve with 

financial incentives. Considering the wind power output, the locational marginal price 

(LMP) π1 is greater than the flat rate price η at the system demand level D1. If the wind 

power output is lower than forecasted, the LMP goes higher at π3; however, if the wind 

generates more power than forecasted, the LMP becomes lower at π2. Under demand level 

D1, the expected net revenue for the LSE considering the wind uncertainty (η-π1)∙D1, is 

negative. When a financial incentive is provided, the elastic demand curve changes from 

D1(P) to D2(P). With the new demand curve, the corresponding LMP will be π4 which is 

lower than the flat rate η. Consequently, as long as the net revenue (η-π4)∙D2-r∙(D1-D2) is 

greater than (η-π1)∙D1, the LSE will have an incentive to offer the reward price r to 

customers in I-DR. Therefore, the I-DR program with proper reward prices can help LSEs 

increase their profits by mitigating the price volatility due to wind uncertainty in the 

wholesale market.  

 

 

 

 

 

 

 

 



 
7 

 

 

S3(P)

S1(P)

S2(P)

S1(P)-Supply curve with forecasted wind power output

S2(P)-Supply curve with wind power output larger than forecasted 

S3(P)-Supply curve with  wind power output lower than forecasted

D1(P)-Original elastic demand curve

D2(P)-Elastic demand curve with coupon incentive

D1(P)

D2(P)

Quantity

Price

D1D2
 

Figure 2. Impact of I-DR and Wind Power on Supply and Demand Curves 
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1.2 Electricity Market with Demand Response  

With growing development in demand response, LSEs may participate in electricity 

market as strategic bidders by offering I-DR to customers. By aggregating the demand 

enrolled in I-DR, LSEs will be able to utilize the demand flexibility to increase their profit 

in the market [32].  

1.2.1 Procedure of LSEs’ Bidding  

The three-layer electricity market structure is shown in Figure 3. The generation 

companies provide electricity offers including the available generation quantity and prices 

to the corresponding independent system operator (ISO); then, the LSEs provide demand 

bids to the ISO, and finally the ISO clears the market to maximize the social welfare. The 

illustration of LSEs’ strategic bidding under this market structure will be discussed in this 

subsection. Most ISOs in the U.S. implement the two-settlement system [33]: day-ahead 

(DA) market and real-time (RT) market. The energy cleared in real-time markets is around 

2%–8% [34] which is considerable with respect to the possible DR amount.  

 

 
 

Figure 3. Structure of the Electricity Market 
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Figure 4 is the flowchart of LSEs’ strategic bidding. First, the LSE obtains the 

locational marginal price (LMP) information from the ISO’s DA market. Then, the LSE 

broadcasts the incentive price for the hours in which the LSE wants to perform I-DR to 

stimulate customers to reduce demand (i.e., the hours when LMP exceeds or is likely to 

exceed the electricity flat rate). After gathering all the information of potential demand 

reduction, the LSE mimics ISO’s economic dispatch (ED) process to identify the optimal 

demand reduction. Finally, the LSE performs the bidding with the revised demand. 

 

Day
Ahead

Real Time 
Settlement

Hourly
Ahead

LSE

Customers

Incentive
Price

LMP

Strategic Bidding 

Time Point 

Load
Reduction

Incentive Price 

Broadcast 

 

Figure 4. Flowchart of the Proposed Strategic Bidding 

 

1.2.2 Net Revenue of LSEs 

The LSE receives a gross revenue from each customer k (
iBk  ) at bus i ( Ai  ), as 

shown in k4 to k7 of LSE A in Figure 5. This revenue is calculated as the product of the 

retail price ηi,k and electricity consumption Di,k. Then, the payment (i.e., the product of spot 

price πi and the electricity consumption Di,k) is subtracted since the LSE purchases 

electricity from ISOs in the wholesale market at volatile nodal prices. Finally, the financial 
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incentives that the LSE pays to customers should be subtracted as well, which is the product 

of incentive price ri,k and the deviation between the actual electricity demand and the 

baseline electricity consumption. Therefore, the LSE’s net revenue, represented by Rn, 

should be expressed as (1-1): 

 
 


Ai Bk

kikikikiikin

i

DDrDR )]()[( ,

0

,,,, 
 (1-1) 

The LMP πi in (1-1) is obtained from ISO’s ED [31]. 

 

Bus i1

k5
k4

k6
k7

k8

k3k2k1

LSE A

Bus i2

Transmission 

Network

 

 

Figure 5. The Illustrative Figure of an LSE and Its Customers 
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Hence, it is clear that aggregating the demands with different incentive prices gives 

LSEs opportunities to increase their profits by strategic bidding in the market. 

 

1.3 Residents in Demand Response 

Most of the existing demand response programs target large industrial or 

commercial users. There are several reasons for this. First, demand side management is 

rarely invoked to cope with a large correlated demand spike due to weather or a supply 

shortfall due to faults, e.g., during a few of the hottest days in summer. Second, the lack of 

ubiquitous two-way communication in the current infrastructure prevents the participation 

of a large number of diverse users with heterogeneous and time-varying consumption 

requirements.  

Here, I-DR attempts to induce the demand flexibility in residential demand to 

realize the accurate residential demand control on a voluntary basis. However, as 

aforementioned, the application of I-DR is difficult for LSEs, due to residents’ versatile 

electricity consumption patterns and easy-to-use smart energy management system. 

 

1.3.1 Smart Home Energy Management System 

Smart home energy management system (SHEMS) is the residential extension of 

building automation. It is automation of the home, housework or household activity. 

SHEMS may include centralized control of an electrical water heater (EWH), air 

conditioner (AC), lighting, electrical vehicle (EV), and other appliances, to provide 

improved convenience, comfort, and energy efficiency. The popularity of home 
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automation has been increasing greatly in recent years due to much higher affordability 

and simplicity through smartphone and tablet connectivity. The concept of the "Internet of 

Things" has been tied in closely with the popularization of home automation. Most 

importantly, SHEMS is the vital enabling technology of realizing the intelligent incentive 

based demand aggregation. 

Currently, two issues are preventing SHEMS from being widely used:  

1) Most of SHEMS designs request complex settings and controls from the users;  

2) Existing SHEMS designs are hardly able to intelligently schedule the appliances 

considering residents’ comfort levels. 

 

1.3.2 Residents’ Behavior towards Financial Incentives 

If the model of residents’ behavior toward financial incentives can be established 

can be established, it should help the algorithm of aggregating residential demands greatly. 

Promoting I-DR in the residential sector heavily relies on understanding residents’ 

reactions to financial incentives and developing effective marketing strategies based on 

residents’ characteristics.  

In order to study customers’ versatile behavior, the following questions should be 

answered: 1) how large do financial rewards need to be to induce major heating-cooling 

(HC)-related DR behaviors? 2) Do the residents prefer having utility companies adjust HC 

settings for them or would they rather do it themselves? 3) How do the answers to these 

questions vary across residents with different values, needs, and habits? 
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1.4 Contributions of This Work 

This work proposes a comprehensive optimal framework for aggregating 

residential demands, and incorporates residential demand aggregation with current power 

system operation (depicted in Figure 6).  

Specifically, the contributions of this work can be summarized into three aspects. 
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Figure 6. Overall Design of the Proposed Concept 
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 This work provides enabling technology for incentive based residential 

demand aggregation, i.e., the hardware design of a SHEMS. With the proposed 

design, residents can achieve a responsive control strategy over residential loads 

including EWHs, AC units, EVs, dishwashers, washing machines, and dryers. Also, 

they may interact with LSEs to facilitate I-DR. Further, SHEMS is designed with 

sensors to detect residents’ activities and then apply a machine learning algorithm 

to intelligently help residents reduce total electricity payment without complex 

settings.  

 This work solves the issues of residents’ versatile energy usage behavior 

towards I-DR by establishing a stochastic model based on the residents’ portfolios 

to assess responsive residential demand in response to certain given times, locations, 

and financial incentives. Also, the proposed model avoids the time-consuming 

procedure of communicating and makes the online implementation of I-DR feasible 

for LSEs. 

 This work proposes an optimal online method for scheduling the residential 

appliances in I-DR. This method not only allocates demand reduction requests 

(DRRs) among residential appliances quickly and efficiently without affecting 

residents’ comforts, but also intelligently reward residents for their participation.  

In sum, the comprehensive framework for incentive based demand aggregation 

benefits both LSEs and residents, and it may stimulate the potential capability of residential 

appliances enrolled in I-DR programs. Eventually, with the growing number of DR 



 
15 

participants, this framework has the potential to be one of the most vital parts in improving 

power system operating stability, reliability and efficiency. 

 

1.5 Organizations of the Dissertation 

The literature review is given in Chapter 2. 

Chapter 3 presents a hardware design of SHEMS with the applications of 

communication, sensing technology, and machine learning algorithm. With the proposed 

design, customers can easily achieve price-responsive control strategy for residential home 

appliances such as EWHs, ACs, EVs, dishwashers, washing machines, and dryers. Also, 

residents may interact with LSEs to facilitate the load management at supply side. Further, 

the proposed SHEMS is designed with sensors to detect residents’ activities and then a 

machine learning algorithm to intelligently help residents reduce total payment on 

electricity with very little involvements from the residents themselves. In addition, 

simulation and experiment results are presented based on an actual SHEMS prototype to 

verify the hardware design. 

Chapter 4 presents a model which integrates three data sets: 1) the residential 

energy consumption survey by the U.S. Energy Information Administration; 2) the 

American time use survey by the U.S. Department of Labor; and 3) the survey of customers’ 

reactions to financial incentives in DR programs by the Center for Ultra-Wide-Area 

Resilient Electric Energy Transmission to assess responsive residential demand in a 

stochastic model. In practice, LSEs are promoting various DR programs to stimulate the 

flexibility of industrial and commercial demand. However, in the residential sector, due to 
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customers’ versatile electricity consumption patterns, fully utilizing the responsive 

residential demand through DR programs such as I-DR is difficult. Specifically, in I-DR, 

the most crucial issue for LSEs is how to estimate the residents’ potential responses to 

certain financial incentives. Here, this proposed model can be easily customized for any 

given times, locations, financial incentives, and residents’ portfolios. Also, it will help 

LSEs get valuable insights on regulating residential demands by adjusting financial 

incentives to customers and improving the mechanism of existing demand response 

programs. 

Chapter 5 introduces a mechanism for aggregating residential demands. Different 

from the common incentive based demand control, to residents, this method minimizes the 

impact of DR events to their pre-determined comfort settings; To LSEs, this method helps 

minimize the total financial reward costs of performing DRRs. Also, the innovative reward 

system may stimulate the potential capability of loads enrolled in DR programs which can 

further improve the performance of the proposed method. In addition, the proposed method 

has been verified with several simulation studies. 

 In Chapter 6, the conclusion regarding the whole work is given and the future work 

is also discussed. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter presents the review of past and on-going research findings relevant to 

the design of SHEMS, residents’ behavior in I-DR, and the mechanism of aggregating 

residential demand. 

 

2.1 Smart Home Energy Management System 

The relevant literature includes a broad range of previous works related to SHEMS 

on hardware prototypes, design simulations, and visions of future commercial products. 

Many of these works such as [35-38] point out that SHEMS will be an important and 

necessary component in smart grids. 

As for hardware prototypes, a wireless, controllable power outlet architecture is 

introduced in [18] for developing home automation networks. Also, a prototype of an 

intelligent metering, trading, and billing system is presented with implementation in 

demand side load management in [19]. As for the design simulations, an agent-based smart 

home architecture is proposed in [20], in which the prediction of inhabitant activity and 

related automated control is considered. Based on the architecture in [20], further analyses 

of the prediction algorithms and the automated control of an agent-based smart home are 

discussed in [21]. 

The residential energy consumption scheduling considering electricity prices are 

discussed in [22, 23]. In [22], residential distributed energy resources are collectively 

considered to give a coordinated scheduling. In [23], a dynamic price responsive algorithm 
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which leads to significant reduction in users’ payment is discussed. Also, some works 

related to home energy management are documented in [39-42]. 

On the one hand, literature on previous hardware prototypes rarely considers the 

implementation and design of machine learning to achieve the responsive load 

management for DR programs. On the other hand, many simulation studies rarely give a 

SHEMS hardware design although they individual articles do appear from the “software” 

side, which delves into such topics as machine learning algorithms, dynamic price 

responsive mechanisms, and other challenges in practical applications. 

 

2.2 Residents’ Behavior in DR Programs 

Many studies and industry practices have segmented customers or created customer 

profiles based on their electricity usage data and demographic information such as age, 

gender, house size, income, and education level, but very few attempts have been made to 

bring social-psychological variable into the light, despite the growing realization that those 

variables could be quite insightful in customer segmentation.  

As examples of the very few attempts, Pedersen from BC hydro added “general 

attitudes” as a segmentation criterion besides self-reported household electricity usage 

habits [43]. The measure of general attitudes was composed of ten items, which ranged 

from self-perceived knowledge, eagerness to save energy and consumer confidence that 

saving energy benefits the environment and national security. The study clustered all 

customers into six categories, such as “turned-out and carefree,” “stumbling proponents,” 

“cost-consciousness practitioners,” and “devoted conservationists,” and analyzed how 
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those segments differed in their habits, attitudes, and demographics. Sütterlin and his 

colleagues took this analysis one step further by bringing in more solid psychological 

concepts into the clustering algorithm such as awareness of consequences, ascription of 

responsibility, personal norms, response efficacy, self-efficacy, and perceived loss of 

comfort; they also measured energy saving actions in broader domains including food and 

mobility, as well as citizenship behaviors such as support for energy-efficiency policies 

[44]. This study also yielded six categories but with different connotations as can be seen 

in the following “idealists,” “selfless,” “thrifty,” “materialistic,” and “convenience-

oriented,” and “problem-aware well-being oriented.”  

Despite the wide scopes and careful analyses, the above-mentioned studies 

neglected the need to focus on the key behaviors in DR programs and to clearly postulate 

a relationship between social-psychological variables and successful customer programs. 

In fact, only one related peer-reviewed article was found, which segmented customers 

along the continuum from “reluctants” to “committeds” on environmental attitudes and 

behaviors (EAB), and further examined the effectiveness of feedback vs. financial 

incentives as impetuses to promote energy saving as a function of EAB segments [45]. 

Results showed that the higher up a segment was on EAB, the more likely the households 

preferred feedback; the lower down a segment was on EAB, the more likely the households 

preferred financial rewards. 
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2.3 The Framework of Aggregating Residential Demand 

Various algorithms and techniques for optimally scheduling residential demand in 

DR programs have been discussed. [46] and [47] proposed models to control the 

aggregated demand from a population of ACs, through adjusting the temperature set points. 

[48] proposed a method to characterize the availability of residential appliances to provide 

reserve services with considering residents’ energy consumption patterns and comfort 

preferences.  

However, first, previous literature rarely considers the practical issues in realizing 

residential demand aggregation such as how to generate optimal schedules for a large 

number of appliances in real time; Second, existing literature seldom considers how to 

coordinate residents’ energy usage preferences and their comfort levels in DR programs; 

Third, few articles present the advanced financial incentives distribution system to the 

participants of DR programs. This issue is essential, because it may affect the residents’ 

participation levels directly.  
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CHAPTER 3 

SMART HOME ENERGY MANAGEMENT SYSTEM 

This chapter presents a smart home energy management system (SHEMS) 

hardware design integrated with the machine learning algorithm. This work collectively 

considers both interests from the electricity supplier side and the customer side. Particularly, 

the hardware design of a SHEMS system with communication, sensing technology, and 

machine learning is expected to provide an easy-to-use energy management solution for 

the residents who enrolled in I-DR programs.. Also, this chapter presents the experimental 

and simulation results based on a SHEMS prototype to verify the design of the proposed 

hardware system. Most importantly, this hardware design of SHEMS will be enabling 

technology of realizing the intelligent incentive based demand aggregation. 

 

 

Figure 7. The Schematic Diagram of SHEMS 
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3.1 Nomenclature 

iF  Signals from sensors. 

C  User’s activity. 

 tX T  Temperature in EWH at time t, °C. 

 tX a  Ambient temperature at time t, °C. 

a  Thermal resistance of tank walls, W/°C. 

 tA  Rate of energy extraction when water is in demand at time t. 

 tq  Status of the hot water demand at time t, ON/OFF 

EWHP  Power rating of the heating element, W. 

EVP  Power rating of EV charging station, W. 

HP  Power rating of dishwasher, washing machine, or dryer, W. 

 tm  Thermostat binary state at time t, ON/OFF. 

 tRTP  Real time price at time t, $/MWh. 

 tSEV  Status of charging station, ON/OFF. 

EVTF  The time EV needs to get fully charged (hour). 

EVR  Desired percentage of battery being charged. 

startT  The time when EV is connected to the charging station. 

endT  The time when the user needs to drive EV. 

hstartT  The time when dishwasher, washing machine, or dryer starts to work. 
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huseT  Time duration for dishwasher, washing machine, and dryer to complete the 

work once started. 

hreadyT  The time when dishwasher, washing machine, and dryer is ready to use. 

hendT  The time when user needs to pick up things from dishwasher, washing machine 

or dryer. 

 

3.2 Functional Requirement Analysis 

In this section, the functions of the proposed SHEMS will be discussed. 

From the customers’ viewpoints, the essential goal of SHEMS is to reduce their 

total electricity payment while satisfying their needs as well. Specifically, the optimal 

strategy provided by SHEMS is to modify and adjust the control settings of each load in 

accordance to the financial incentives offered by LSEs, the preferred comfort level, the 

environmental temperature, and so on. As shown in Figure 8, the primary function of the 

proposed SHEMS includes: 

 To collect useful information and other messages such as the financial 

incentives, residents’ comfort preference, residents’ activities at home, status of 

home appliances; 

 To generate the optimal strategies by analyzing the collected data; 

 To modify or adjust the settings of appliances based on the generated 

strategy by the control algorithms; and 

 To send the feedback and other relevant data back to LSEs. 
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Figure 8 Expected Major Functions of the Proposed SHEMS 

 

Moreover, the detailed requirement analyses about data collection, processing and 

control are discussed as blow.  

 

 

3.2.1 Data Collection 

1) Financial Incentives: It is necessary for reading the financial incentive signals 

from LSE. Therefore, an Ethernet module should be included in the proposed 

SHEMS design. 

2) Messages: This function is designed to respond to extreme scenarios. For 

example, the supplier may send an important message to its customers such as 

scheduled outages, weather alerts, and so on. Meanwhile, the customers should 

be able to report issues related to electricity usage, which include meter-reading, 

billing, and payment. Note, since extreme scenarios always come with other 
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accidents, the 4G network should be considered in the design, at least as the 

premium service for backup purpose when a wired Internet connection is 

unavailable. 

3) Comfort Preference: In order to obtain the residents’ preference, a touch screen 

user interface is included for each customer to manually change the home energy 

management settings. Also, with the Ethernet module already mentioned in 1), 

it is feasible for remote changes to the settings. 

4) Residents’ Activities: Motion and flow sensors need to be installed to collect 

useful data for detecting residents’ home activities. By applying machine 

learning algorithms in the processing part, the activities related to energy 

consumption can be predicted. For instance, the temperature settings of EWH 

and AC units may be changed to a lower setting if little residents’ motion is 

detected. As such, SHEMS is able to further optimize the energy consumption 

of residential appliances. 

5) Status of Home Appliances: Interfaces need to be developed to obtain the status 

of residential appliances, such as EWH, AC, EV, dishwasher, washing machine, 

and dryer. Temperature and illumination sensors are also needed and perhaps 

deployed in a number of, if not all, rooms to monitor the environmental 

parameters. 
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Figure 9 below summarizes this part. 
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Figure 9 Summary of the Data Collection 

 

3.2.2 Processing  

The design will optimize the control strategies of home appliances by analyzing the 

collected data on the processor which works as the brain of SHEMS. The tasks for the 

processor to perform are as following: 

1) Receiving Data: Ethernet, 4G module, and touch screen can have wired connection 

with the processor. However, as for the sensors and load interfaces, they are 

designed with a wireless connection with the processor. 
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2) Host of User Interface: The processor is also the user interface (UI) host. In addition, 

the processor may host a customized webpage on which remote control is 

implemented. 

3) Event Analysis: The processor reminds the customer about the messages from LSEs 

through a specific user interface. This information may affect the scheduling of 

residential appliance, and the proposed design should have the capability of 

analyzing these events and providing the information such as whether the room 

temperature can still meets residents’ comfort preferences. For example, if there is 

a scheduled one-hour locational outage, the SHEMS will pre-heat the EWH and/or 

pre-cool the room to reduce the residents’ uncomfortableness. Further, SHEMS 

should alarm the residents about whether their comfort levels will be significantly 

impacted under any inclement event. 

4) Residents’ Activity Prediction: Machine learning and pattern recognition 

algorithms will be implemented to analyze and predict residents’ activities based 

on data collected by motion and flow sensors. The prediction can provide important 

information for the processor to generate the optimal strategies at a later time. Here, 

pattern recognition helps the identification of activities, and machine learning trains 

the system to have a better understanding and prediction of the residents’ living 

habits. That is, the longer the system is in use, the more accurate the predictions 

will be. 

5) Load Optimal Strategies: Since all the useful information including incentive prices, 

customers’ needs, special events, and residents’ activities can be obtained, the 
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processor will offer the optimal strategy for each load based on the models of 

different loads.  

Figure 10 summarizes the processing part. The collected data of residents’ activities 

or motions combined with other information will be used for machine learning and pattern 

recognition algorithms to induce behavior changes and to further optimize all the loads. 
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Figure 10 Summary of the Processing Part 

 

3.2.3 Control 

The functions for the control part are load control and information feedback. 

For load control, it has been mentioned in the data collection part that the proposed 

design has load interfaces to obtain the real-time status of the home loads. Meanwhile, in 

the proposed design the load interfaces are also expected to modify the appliances’ settings 

according to the results calculated from the processing part. 



 
29 

For feedback, the status of appliances and important event information will be 

shown to the customer through a touch screen user interface and a Web page for remote 

control. 

 

3.3 Proposed Hardware Designs  

According to the functional requirement, the objective of SHEMS is to enable 

minimization of the customer’s total electricity payment cost meanwhile satisfying the 

customer’s needs in comfort levels such as the indoor temperature, the hot water 

temperature, and the indoor illumination. SHEMS will identify optimal load control 

strategy responsive to the incentive signals from LSEs, the customer’s needs, as well as 

extreme scenarios. Further, the administrators (e.g. residential load aggregator ) have the 

capability to monitor and analyze the real-time status of a specific area. 
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Figure 11. Brief Hardware Design of SHEMS 
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Figure 11 shows a brief hardware design of a typical SHEMS. From the hardware 

design perspective, the SHEMS shall have five main components: 

1) Application Processor: This is the brain of SHEMS to solve issues in three aspects. 

First, the processor communicates with other parts to obtain necessary information 

and coordinates the works among those parts. Second, the processor is in charge of 

realizing various algorithms, which include machine learning, pattern recognition, 

and customized tasks for different types of loads based on their own individual 

characteristics and models. Third, the processor serves as the Web page host, from 

which the customer is able to perform remote operations, for instance, via a wireless 

smart phone. Meanwhile, the processor also drives the local touch screen UI. The 

design here is to use embedded system because of its strength in computational 

capability and portability. 

2) Communication Interface: According to the requirement analysis, the 

communication methods in the proposed SHEMS may vary. Several different 

hardware modules related to communication are needed. First, Ethernet ports are 

the essential for reading incentive signals, communicating messages with suppliers, 

and ensuring the remote control to function. Second, the deployment of 4G module 

is to ensure the communication still available under some extreme scenarios like 

power blackout or catastrophic weather. Third, as for sensors, Zigbee and Wi-Fi are 

two popular options. The advantage of Zigbee is low energy consumption, but Wi-

Fi is so widely used nowadays such that it can be easily implemented almost 
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everywhere. Moreover, most houses today are already Wi-Fi covered, therefore, it 

helps reduce the initial installation cost if Wi-Fi is adopted as the communication 

method between the sensors and the processor, as well as between the load 

interfaces and the processor.  

3) User Interface: Since ordinary customers are not familiar with the operation of 

electricity markets or power systems, it is very necessary to have a friendly and 

easy-to-use UI to change settings at the customer’s side. The touch screen, which 

is driven by the processor, provides a local UI to the customer.  Meanwhile, the 

remote UI is the Web page hosted by the processor. It needs to be emphasized that 

in order to make this system easy to set, SHEMS is designed with machine learning 

algorithms to fit the customer’s needs after several weeks of automated training 

with the data monitored. Hence, customers do not have to perform detailed settings 

or to change their preferences frequently.  

4) Sensor Interface: SHEMS has various sensors to collect all the real-time 

information that the processor needs. This part should be extendable in case the 

system needs to measure new parameters due to the addition of a new appliance. 

For the present version of the proposed hardware design, it has temperature sensors 

to detect the temperature of rooms and the water in EWH, motion sensors to record 

residents’ activities, flow sensors to monitor water usage, and illumination sensors 

to detect indoor brightness. The data collected from those sensors will be sent to 

processors via Wi-Fi. 
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5) Load Interface: This part is also extendable. A designated load Interface transfers 

the strategies generated by the processor to control signals, which loads can accept. 

For example, the load interface for EWH has a relay to turn it on and off; and the 

load interface for AC should work as a remoter to set its operating temperature and 

operating modes.  

To facilitate user’s operation on this system, the prototype is designed with three 

quick, built-in setting modes for users to realize the “Easy Setting” feature.  

 Comfort mode: In this mode, the highest priority of SHEMS is to ensure the most 

comfort level for residents. That is, a resident will always have sufficient hot water 

and perfect room temperature, and the resident’s comfort level will not be reduced 

by participating in the supplier’s DR program. 

 Smart mode: In this mode, SHEMS will make a tradeoff between the comfort level 

and the payment saved. Occasionally, the resident probably has to bear the water 

with a little lower temperature than normal, and also a little difference (e.g., +/- 3°C 

or 5°F) in indoor temperature. SHEMS will take part in the load reduction program, 

if it does not affect the resident’s comfort level much. 

 Saving mode: In this mode, the highest priority of SHEMS is to save the total 

electricity payment. In peak hours, residents may have to bear the water with a 

lower temperature than normal, and also some difference (e.g., +/- 5°C or 9°F) in 

indoor temperature. Under this mode, SHEMS will participate in the power 

supplier’s load reduction program as much as possible. 
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The details of the schematic design of SHEMS for a typical end user are shown in 

Figure 12. It demonstrates how SHEMS processes the inputs, applies machine learning 

algorithm, calculates the optimal strategy, and uploads useful information to the server. 

 

 

 

Figure 12. Schematic Design of SHEMS (User End) 
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Figure 13. Model Platform of SHEMS 

 

Based on the design described above, a model platform is established as shown in 

Figure 13. The model platform of SHEMS is based on Stellaris LM3S9D96 MCU, and it 

realizes the functions mentioned in Section 3.2. In addition, a set of protection system like 

air switches have been included for safety and reliability consideration of the proposed 

SHEMS.  

This system is able to perform the following four tasks:  

1) Reading incentive price signals;  

2) Providing optimal control strategy with automatically adjusted loads including 

EWH, AC, EV, dishwasher, washing machine, and dryer;  

3) Providing both local and on-line user interfaces; and  
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4) Uploading log files to the server. Therefore, users can make simple operations 

to remotely monitor the state of energy usage via the Internet. 

 

3.4 Machine Learning Algorithm for SHEMS 

A machine learning algorithm is implemented in the proposed SHEMS prototype 

design to analyze and predict residents’ activities based on data collected by the sensors. 

However, machine learning for SHEMS is not like other machine learning applications 

such as the voice or handwriting recognition where users can help with updating the 

training set. Learning user’s living habit is difficult, because SHEMS is not supposed to 

correct its own judgment by making frequent queries to users.  

Here, Naive Bayes Classifier (NBC) and Hidden Markov Model (HMM) are 

implemented collectively to generate a practical solution. Specifically, NBC is used to 

learn and identify the on-going activities of the user, and HMM is employed to learn and 

predict user’s living habits.  

The data used to test the algorithm here is from a project called “Activity 

Recognition in the Home Setting Using Simple and Ubiquitous Sensors” which is done by 

a research group in MIT [49]. In that experiment, sensors are installed in a single-person 

apartment collecting data about residents’ activity for two weeks. In this work, 9 activities 

related to the usage of home appliances are studied: going out, toileting, bathing, grooming, 

preparing breakfast, preparing lunch, preparing dinner, washing dishes, and doing laundry. 

 



 
36 

3.4.1 Naive Bayes Classifier 

A naive Bayes classifier is a simple probabilistic classifier based on Bayes’ theorem 

with strong (naive) independence assumptions. Abstractly, the probability model for a 

classifier is a conditional model [50] given by  n1 F,...,F|Cp ,p(C|F1, ? ? ? , Fn) which is 

over a dependent class variable C with a small number of outcomes or classes, conditional 

on several feature variables F1 through Fn.  

Using Bayes’ theorem, it can be written as  

p(C|F1, ? ? ? , Fn) =
p(C)p(F1,???,Fn|C)

p(F1,???,Fn)
 (3-1) 

With sufficient data to train the system, the criterion of the classifier can be built. 

3.4.2 Hidden Markov Model 

An HMM is a statistical Markov model in which the system being modeled is 

assumed to be a Markov process with unobserved (hidden) states. A HMM can be 

considered as the simplest dynamic Bayesian network [51]. Here, the discrete model should 

be used to apply HMM to this problem. The unobserved states are the user’s on-going 

activities, and the observed states are the data collected by the sensors as well as the 

previous classification results generated by NBC. 

Markov matrix (i.e., the matrix of transition probabilities) can be generated by the 

given training data set. Then, Markov matrix and NBC can update each other during the 

actual use of SHEMS to learn the residents’ behavior. 

Figure 14 is an example showing how this works. The diagram within the red, 

dashed rectangle shows the general architecture of an instantiated HMM. Also,  tx  is the 

http://en.wikipedia.org/wiki/Bayes%27_theorem
http://en.wikipedia.org/wiki/Bayes%27_theorem
http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Markov_model
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hidden state at time t, which stands for the present activity of the user, and  ty  is the 

observation at time t, which stands for the data collected by the sensors. 

Assume that at time t, NBC detects an on-going activity A1 by the criterion of the 

classifier. However,  tx  obtained by HMM is different from A1. As discussed before, 

SHEMS is not supposed to ask the user for any correction. Thus,  tx  and A1 demonstrates 

a probabilistic characteristic in HMM and NBC. Without losing generality, we may call 

them a and b for A1 and  tx , respectively. Therefore, we have three scenarios: 

1) If the values of a and b are very close within a given threshold, SHEMS will record 

the event and wait for user’s input for final judgment.  

2) If b is much greater than a, SHEMS will record the correspondence between  tx  

and  ty , and update the training set of NBC to update the criterion of the classifier. 

3) If a is much greater than b, SHEMS will record the correspondence between A1 and 

 ty , and update the training set of HMM to eventually update the Markov matrix. 

 
Figure 14. The Learning Process of SHEMS 
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3.4.3 Simulation Results 

Applying the methodologies discussed previously, this work obtains some 

preliminary results shown in Table 1. Note that these results are based on the data of two 

weeks, and the training set is one week long for demonstrative purpose. 

 

 

Table 1. Simulation Results of Machine Learning Algorithm 

Activity Name Right Cases Wrong Cases Accuracy(%) 

Going out to work 11 1 91.67 

Toileting 70 14 83.33 

Bathing 13 5 72.22 

Grooming 33 4 89.19 

Preparing breakfast 9 5 64.29 

Preparing lunch 13 4 76.47 

Preparing dinner 6 2 75.00 

Washing dishes 6 2 75.00 

Doing laundry 19 0 100.00 

Total 180 37 82.95 
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3.5 Appliance Models and Verification Results 

Various appliances’ models will be studied first in Subsections from 3.5.1 to 3.5.3. 

Then, test and verification studies about the effect of the proposed SHEMS system will be 

presented in this section. 

Residential load is the largest share in electricity end use of year 2014, as shown in 

Figure 15. Residential load profiles are inherently difficult to model. Each household has 

different lifestyles and set of habits. There is also a wide variation in the load profiles of 

different appliances. 

 

Figure 15. Electricity End Use of Year 2014, USA 

 

As for residential electricity use, EWH and AC hold two largest shares totaling 53% 

of the total residential electricity consumption [52], or 20% of the total electricity 

consumption. Since EWHs and ACs have a great potential to be optimized by SHEMS, 

Subsections 3.5.1 and 3.5.2 will discuss the detailed models of EWH and AC with testing 

results. Nevertheless, the models of EV, dishwasher, washing machine and dryer are also 

briefly discussed since they have potentials in the future DR. 
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RTP signals are implemented in the simulation instead of incentive signals, because 

there are practical RTP data available. It needs to be noted that the purpose of the 

simulation here is to verify the proposed hardware design has the capability of generating 

optimal control strategies over the appliances. Hence, using RTPs or incentives signals will 

both have the same effect in testing the capability. 

 

3.5.1 Electrical Water Heater 

The general model of EWH has been discussed in [53-54]. The discrete state 

dynamics model is applied here, since the RTP signals may change as fast as every 5 

minutes which is a discrete variable. The model can be described by: 

 

          tmPtqtAtXtXa
dt

dX
EWHaT

T   (3-2) 

 

Table 2 shows the specifications of EWH used in the experiment. For testing and 

simulation purposes, Table 3 shows some useful information applied here. Also, a typical 

water usage curve as shown in Figure 16 is obtained from [55]. 
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Table 2. Water Heater Characteristics 

Water Heater Type Electrical 

Power Rating of Heating Element 4.5 kW 

Tank Surface Area 2.8 m2 

Tank Volume 40 gal 

Thermal Resistance of Tank Wall 0.04 W/(min °C) 

 

 

Table 3. Water Usage Information for Testing 

Number of Residents 4 

Resident Type Townhouse 

Daily Water Demand 1000 Liter 

Low Temperature Setting 40°C 

High Temperature Setting 80°C 
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Figure 16. Typical Water Usage Curve for 24 hours 

 

 

 

 
Figure 17. Real Time Price Curve for 24 hours 
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Figure 18. Typical EWH Strategy 

 

 

 
Figure 19. Optimized EWH Strategy 
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In this study, the LMPs on a randomly selected day from New York independent 

system operator (NYISO) is used as the real-time price, which is shown in Figure 17. The 

result without SHEMS is shown in Figure 18, and the results after applying an RTP-

responsive algorithm to change the ON and OFF strategy of EWH is shown in Figure 19.  

The optimized strategy used in the test can be further improved in future 

algorithm/software studies, while this work focuses on the hardware part. Nevertheless, the 

straightforward algorithm still works greatly. A brief description of the algorithm is 

presented next.  

The principle of the algorithm is to turn EWH on for a while before the dropping 

temperature reaches the lower bound. Meanwhile, the algorithm also considers whether the 

EWH can provide comfortable hot water based on the predicted demand of water usage 

with a look-ahead consideration. For example, the algorithm will preheat the EWH to a 

higher temperature before the resident takes a shower. The mathematical description is an 

optimization model as following. 

 

    

120

0

EWHPtmtRTP min  (3-3) 

 

s.t.: Eq. (3-2) 

  highTlow TtXT   (3-4) 

Since  tRTP  refreshes every 5 minutes, this model given by (3-2), (3-3) and (3-4) 

is discretized into a time interval of 5 minutes. The genetic algorithm (GA), an intelligent 
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search algorithm using stochastic operations, is customized in this work to solve the model 

to find the global optimal scheduling for the EWH. With this approach, SHMES can reduce 

the total payment and energy consumption while meeting the customers’ needs.  

The result verifies that SHEMS helps reduce the thermostat ON time by 14%, while 

reducing the customer’s electricity payment by 60% of the original payment on heating 

water.  

The proposed SHEMS system has been programmed and tested to connect and 

disconnect a mock EWH load in accordance with Figure 20.  

 

3.5.2 Air Conditioning 

The American Society of Heating, Refrigeration and Air Conditioning Engineers, 

Inc. (ASHRAE) has compiled modeling procedures in its Fundamentals Handbook [56]. 

The Department of Energy (DOE) has produced the EnergyPlus program for computer 

simulation [57]. Also, the detailed model for simulating AC systems is given in [58, 59]. 

Accurate model for energy consumption needs to consider many factors including weather, 

season, thermal resistance of rooms, solar heating, cooling effect of the wind, and shading. 

Unlike EWH which has constant and relatively accurate parameters, those AC parameters 

are difficult to be precisely modeled with the possibility to change over the time due to 

other factors.  

Therefore, the testing here is not based on any detailed model but relies on the 

actual measurement from the experiments performed at The University of Tennessee with 

the SHEMS prototype and a portable AC unit.  
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In this experiment, the SHEMS optimizes the AC based on three parameters: the 

mock RTP from the prices in a randomly selected day in NYISO used in the previous EWH 

test, the real-time temperature in the test room, and the temperature setting by the user. 

Table 4 shows the related parameters. 

 

Table 4. AC Parameters in the Test 

Room Area 800 sq ft 

Room Type Single room 

AC Power Rate 3.5kW 

Room Temperature Setting 73°F (23°C) 

 

For comparison purpose, a parameter named “Comfort Level” is considered here. 

In market economics, a customer has to compromise between quality and price. The 

introduction of “Comfort Level” is based on similar idea for home energy management. 

Simply speaking, “Comfort Level” in this case means the difference between the actual 

indoor temperature and the temperature desired by the customer.  

Table 5 shows the energy consumption and the total payment reduction of the cases 

under different comfort levels with SHEMS. The results are in percentage with respect to 

the case without SHEMS. As shown in Table 5, considerable reduction of energy 

consumption and payment is achieved. Further, if a customer can tolerate a higher 

temperature difference, more payment or credit to AC from the supplier can be achieved. 

This is sensible from the standpoint of market economics. 
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Table 5. AC Results with SHEMS 

 

Different Comfort Level 

+/-0°C +/-3°C (5.8°F) +/-5°C (9°F) 

Energy Consumption (% w.r.t the case w/o 

SHEMS) 
91% 79% 72% 

Payment (% w.r.t the case w/o SHEMS) 86% 73% 64% 

 

3.5.3 Other Appliances 

In order to fully exploit the potential of SHEMS and contribution to the power grid, 

low cost is an important characteristic of the prototype. Since considering bidirectional 

power flow will significantly increase the total cost of SHEMS design, the EV model in 

the proposed prototype is to charge a battery. That is, this design of SHEMS does not 

include the consideration for EV to send power back to grid.  

Loads such as charging the battery for an EV are interruptible [23]. It is possible to 

charge the battery for 1 hour, then stop charging for another hour, and then finish the 

charging after that. In contrast, the loads like dishwasher, washing machine and dryer 

demonstrate similar features to EV, but differ from EV considerably because they are 

uninterruptible. That is, as soon as the corresponding appliance starts operation, its 

operation should continue till completion.  

3.5.3.1 Electrical Vehicles 

An EV should be fully charged, for example, at 8AM but the EV user does not care 

when or how the EV battery is charged. Therefore, SHEMS chooses the possible hours 
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with the low electricity price to charge. Meanwhile, SHEMS must make sure EV to be fully 

charged before being used at 8AM.   

As an interruptible load, the mathematical expression of the discrete model of EV 

can be expressed in Eqs. (3-5) and (3-6). Since the real-time price refreshes every 5 minutes, 

the time interval of discrete model is also set to 5 minutes. Here,  tSEV  is the optimal 

solution that needs to be generated by SHEMS. 

 

   tStRTPPmin EV

T

Tt

EV

end

start




 (3-5) 

 

s.t.: 
  EVEV

T

Tt

EV RTFtS
12

1 end

start

 


 (3-6) 

 

3.5.3.2 Dishwasher, Washing Machine and Dryer 

As an uninterruptible load, the mathematical expression of the discrete model of 

dishwasher, washing machine and dryer can be all expressed in (3-7), (3-8) and (3-9), 

respectively. The time interval of discrete model is also set to 5 minutes.  hstartT  is the 

optimal solution which needs to be generated by SHEMS. 

 





husehstart

hstart

TT

Tt

H tRTPPmin  (3-7) 
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s.t.: hendhstarthready TTT   (3-8) 

   hendhusehstarthready TTTT   (3-9) 

 

 

3.5.4 Effects of SHEMS in Load Shifting 

Based on the previous analysis on EWH and AC, it is rational to conclude that 

SHEMS can make substantial contribution to reduce home energy consumption from not 

only EWH and AC, but also EV, dishwasher, washing machine, dryer, etc. To study the 

effect of SHEMS in a large-scale system, this subsection demonstrates a comparison on 

the load curves with and without SHEMS.  

The simulation here is to give a quantified verification that SHEMS will play a 

critical role in load shifting. The total real-time load curve (including residential, 

commercial, industrial and other) is selected from NYISO again. The date of the data is the 

same as the date of the selected RTP.  

The EWH and AC parameters are as the same as the previous Subsections 3.5.1 

and 3.5.2. The EV parameters are chosen based on Nissan Leaf [60] for this simulation 

study:  

 

 Charging power rate: approx. 6 kW; 

 Battery volume: 24 kWh; 
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 Time of fully charging: 4 hour; and 

 The percentage of EV battery to be charged is set as 100%. 

The parameters of dishwasher, washing machine, and dryer are shown in Table 6. 

 

Table 6. Parameters of Dishwasher, Washing Machine and Dryer 

 Model HP  (W) huseT  (min) 

Dishwasher Danby 1000 30 

Washing machine Danby 400 45 

Dryer Whirlpool 3000 40 

 

The reduction of energy consumption from individual appliance is scaled up to 

simulate the optimized residential load consumption. The results are shown in Figure 20, 

which illustrates that SHEMS can help with load shifting. In addition, it reduces the loads 

in peak hours by nearly 10 percent which is significant.  
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Figure 20. Load Curve Comparison with and without SHEMS 

 

3.6 Comparative Analysis and Conclusion 

3.6.1 Comparative Analysis  

As mentioned in the Introduction, there are several companies working on products 

related to DR. However, those early products do not take full considerations of all aspects 

mentioned in this work. Most of these previous products focus on displaying and 

monitoring the status of home energy consumption. Some advanced ones may help analyze 

power usages of different appliances, then offer tips for conserving energy and reducing 

payment in electricity, which is represented by the “Indirect Feedback” [61, 62]. None of 

those previous works has reported any real intelligent control down to the appliance level, 

and users’ interaction is needed. However, the proposed design and the actual prototype 

carried out in our Smart Home lab implements automated, intelligent controls for smart 

home energy management to the appliance level. 

As for the cost, the proposed design typically costs less than $200 with off-the-shelf 

retail prices for materials and components. The actual cost also depends on the number of 
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appliances that the customers want to install load interfaces, as well as the number of rooms 

to be monitored. Here is the cost breakdown in a typical case. The main controller costs 

around $80 based on to the off-the-shelf retail price ($15 for a microcontroller, $20 for 

making PCB and accessories, $15 Wi-Fi module, and $30 for touch screen). Each load 

interface and room monitoring unit costs around $20 ($15 for Wi-Fi module and $5 for 

accessories). 

With the assumption that a customer wants to control AC and EWH, and has 3 4 

rooms to monitor, the total cost will be around $200 in this typical setting. In addition, this 

design is expandable and can be easily upgraded by updating programs running in the 

processor without any change of existing hardware. 

Table 7 provides a high-level comparison of the proposed design and 4 SHEMS-

like devices from commercial vendors. These 4 devices include eMonitor12 by 

Powerhouse, Home monition and Control by Verizon, Nucleus by GE, and Thermostat 

controller by NEST. The listed features are monitoring, remote control, real-time price 

responsive, machine learning, and easy setting. They are randomly named Vendor 1 to 4 

without any particular order in Table 7. One of the vendor’s cost is the annual service cost, 

while the device is sold separately. The cost of the system from Vendor 1 is relatively low, 

but with relatively simple functions. It does not have machine learning algorithm and 

cannot provide optimized schedule for home appliances. Vendor 4 provides a fancy user 

interface which is easy and efficient, but cannot control appliances other than AC.  

Note, the cost of the developed prototype may not be directly comparable with the 

costs of the four vendors’ products since the cost of the developed prototype does not 
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include labor cost and the expected profit. However, on the other hand, the prototype cost 

is based on retail prices of various materials and components, which are usually higher than 

wholesale prices under mass production. Nevertheless, the cost information is listed in 

Table 7 for future references. 

 

Table 7. Comparison of Existing SHEMS 

Name Appliances 
Monitor 

/Control 
Response Learn 

Easy 

Setting 
Cost ($) 

Proposed 

Design 
Extendable X X X X ~200 

Vendor 1 
Vendor’s own 

devices 
X X   199 

Vendor 2 12 switches X    1024 

Vendor 3 Extendable X    120/yr 

Vendor 4 Thermostat X  X X 250 

 

3.6.2 Conclusion  

Chapter 3 presents a hardware design of a SHEMS with the application of 

communication, sensing technology, and machine learning algorithm. With the proposed 

design, customers can achieve responsive control strategy over residential loads including 

EWHs, AC units, EVs, dishwashers, washing machines, and dryers. They may interact with 

LSEs to facilitate the management at the supplier side. Further, SHEMS is designed with 

sensors to detect residents’ activities and then apply machine learning algorithm to 
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intelligently help the customers reduce total electricity payment without much of their 

involvement. In addition, the testing and simulation results shows the effectiveness of the 

hardware system of the SHEMS prototype. The expandable hardware design makes 

SHEMS fit to houses regardless of its size or number of appliances. The only modules to 

extend are the sensors and load interfaces.  

Also, this design is the enabling technology for aggregating residential demands. If 

this design can be widely used in the future, the administrator-user structure will provide 

good potentials for electricity aggregators. Likely, utilities may not be interested or 

motivated to administrate all individual, millions of end energy consumers directly and 

simultaneously. Therefore, electricity aggregators can play as agents between customers 

and utilities. This business mode may facilitate the popularity of SHEMS or similar 

systems and create win-win results for all players. 
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CHAPTER 4 

RESIDENTIAL RESPONSIVE DEMAND MODELING 

 

I-DR attempts to induce the demand flexibility in retail customers (such as 

small/medium size commercial, industrial, and residential customers) to realize the accurate 

residential demand reduction on a voluntary basis [31]. However, in practice, methods such 

as PTR and CPP are still prevalent ways to realize the demand side management. I-DR is 

different from them in terms of the mechanism. In PTR, the rebate rates during critical 

periods are pre-determined and fixed whereas the incentive rates vary in I-DR. In CPP, 

mandatory high prices are utilized to motivate residents to adjust their electricity 

consumption whereas the residents are voluntary to participate in I-DR. Despite the 

advantages of I-DR, the application of I-DR is still difficult for LSEs, due to customers’ 

versatile electricity consumption patterns. 

In this chapter, in order to assess the responsive residential demand to financial 

incentives, a stochastic model has been proposed. With the proposed model, LSEs or 

residential load aggregators (RLAs) can obtain the characteristics of residential responsive 

demand under I-DR programs based on the residents’ portfolio and generate the probability 

distribution of the possible residential demand reduction for any given time, location, and 

amount of incentive. 
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4.1 Model Overview 

The uncertainty of customers’ demand reduction is typically modeled as follows in 

I-DR based strategic bidding:  

1) The LSE offers an incentive price to customers;  

2) The customers provide their ranges of corresponding demand reduction to the LSE;  

3) The LSE calculates the expected net revenue through bidding this revised demand 

in electricity market; and  

4) By repeating steps 1)-3) with different incentive prices, the optimal incentive value, 

which brings the LSE the maximum net revenue, can be found.  

However, there are two issues for this process: it is rarely feasible to keep frequently 

updating customers’ demand reduction data; and interaction with numerous customers 

makes it too time-consuming to serve as an online implementation. Therefore, a stochastic 

model of demand reduction is proposed. 

 

Probabilistic distribution
of demand reduction  

Time

Location

…...

Incentive 
Price P1

Model

 

Figure 21. Schematic Diagram of the Proposed Model 

 



 
57 

Different from the traditional method, with the consideration of the characteristics 

of residential demand for a given time, location and customers’ portfolios, the proposed 

model is able to assess the probability distribution of residential demand response to certain 

incentive price. As the schematic shows in Figure 21, instead of iteratively updating 

information between LSE and customers, the proposed model directly generates the results, 

and this avoids the time-consuming procedure of communicating and makes the online 

implementation of I-DR feasible for LSEs or RLAs. 

 

4.2 Residential Responsive Demand Model Formulation 

The proposed model is established based on adequate data analysis of three data 

sets: 1) the Residential Energy Consumption Survey [63] (RECS) by the U.S. Energy 

Information Administration (EIA), 2) the American Time Use Survey [64] (ATUS) by the 

U.S. Department of Labor (USDL), and 3) the Survey of Customers’ Reactions to Financial 

Incentives (SCRFI) in DR by the Center for Ultra-wide-area Resilient Electric Energy 

Transmission Networks (CURENT) [65].  

 RECS collected data from 12,083 households in housing units statistically 

selected to represent the 113.6 million housing units that are occupied. Specially 

trained interviewers collect energy characteristics on the housing unit, usage 

patterns, and household demographics. This information is combined with data 

from energy suppliers to these homes to estimate energy costs and usage for 

heating, cooling, appliances and other end uses that are critical to energy demand 

and efficiency. 
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 ATUS provides nationally representative estimates of how, where, and with 

whom Americans spend their time, and is the only federal survey providing data 

on the full range of nonmarket activities. In addition, ATUS data files have been 

used by researchers to study a broad range of issues; the data files include 

information collected from over 148,000 interviews conducted from 2003 to 2013. 

 SCRFI collected self-reported data from 711 U.S. residents across 48 states in 

2013. This study estimates the adopting rates of major DR behaviors as a function 

of the demanded financial incentives. Specifically, this survey was conducted by 

CURENT through Amazon’s Mechanical Turk (MTurk). MTurk has been 

received great popularity among social scientists as a useful research tool to 

collect data [66]. The SCRFI was published on MTurk as a “hit.” The respondents 

read the instructions and voluntarily completed the survey. It needs to be noted 

that another sample of 826 residents has just been collected, and that CURENT 

is continuously improving the question designs in SCRFI and aiming to gather 

more representative responses across the U.S. 

By creatively integrating RECS, ATUS and SCRFI, the proposed method can be 

formulated. The procedure of the model formulation is summarized as follows: 

 

Step 1) Based on the given location to be studied, the residents will be categorized 

into several groups (G1, G2 ……GN) based on the demographic information. For each 

group of residents, step 2) to 5) will be performed. 
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Step 2) For group Gi, the types and ratings of the appliances customers owned can 

be obtained by analyzing RECS. Here, the proposed model considers the I-DR over 

appliances including EWHs and ACs, since EWHs and ACs account for the 

dominating part (over 53%) of residential demand. Therefore, for residents of Gi, 

the average ratings their of ACs and EWHs can be obtained as Rac,i and REWH,i. 

 

Step 3) For group Gi, ATUS can provide information about the activities which 

the residents are doing at a given location and at a given time of a day. The proposed 

model considers only AC and EWH-related activities such as working (out/at home), 

taking shower, sleeping, etc. Therefore, at time t, the probability of the residents in 

Gi conducting activities  m21j a,......,a,aa   can be expressed as Pactivity,i(aj,t). 

 

Step 4) To study customers’ reactions to financial incentives, SCRFI helps 

estimate the distribution of group Gi in terms of the willingness to respond to a 

certain incentive price  
p21k r,......,r,rr  in I-DR. Then, based on the residents’ 

responsiveness to different incentive prices, their spectrum of responsiveness can be 

modeled. The responsiveness for AC and EWH of the residents in Gi are expressed 

as PresAC,i(rk,aj,t) and PresEWH,i(rk,aj,t) respectively.  

 

Step 5) With the integration of the appliance and activity information, the possible 

amount of the residential demand reduction can be obtained. The potential reducible 
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demand for group Gi at time t with given financial incentives rk, can be formulated 

by (4-1). 

   

   t,a,rPt,aPR

t,a,rPt,aPR)t,r,G(D

iki,resEWH

m

1j

ii,activityi,EWH

iki,resAC

m

1j

ii,activityi,ACkiRED













 (4-1) 

 

Step 6) By repeating step 2) to 5), the residents’ responsiveness distribution 

and the potential reducible demand of all the groups (G1 to GN) are known. Then, it 

is easy to obtain the probabilistic distribution of the residential responsive demand 

reduction. 
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Figure 22. Schematic Diagram of the Information Flow for the Proposed Model 
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The schematic diagram of the information flow for the residential demand reduction 

model is shown in Figure 22, where the inputs of the model are the incentive prices, the I-

DR’s location and time length. The output is the corresponding probabilistic distribution 

of residential demand reduction in I-DR with a given incentive price at a given location in 

a given time. 

In summary, the above proposed stochastic model evaluates the characteristics of 

residential demand reduction under I-DR programs based on the local residents’ portfolios 

and provides the probability distribution of demand reduction for given times, locations, 

and incentive prices. 

4.3 Case Studies 

The proposed method has been tested to demonstrate the model features. However, 

since this is an early work in this area, there is no practical results publically available for 

comparison. In order to verify the validity and effectiveness of the proposed model, various 

case studies in Northeast, Midwest, South and West regions of U.S. have been performed 

for comparison to check whether the results comply with common knowledge. The 

simulation has been performed in Matlab on a desktop with Intel Xeon 3.2GHz CPU, 8 GB 

RAM, and Window 8. 

 

4.3.1 Fixed Time 

The model has been applied to simulating the probability distribution of reduced 

power ratio (RPR) in residential aspect with various incentive prices for the whole U.S. at 
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12pm in a summer day. Figure 23 shows the probability distribution results, which indicate 

that the higher the financial incentive is, the more likely customers are willing to reduce 

their load. Meanwhile, due to customers’ different responses to financial incentives in DR, 

with the increasing of the financial incentive, the probabilistic distribution of demand 

reduction becomes broader. 

 

 
 

Figure 23. Probability Distribution of RPR under Different Incentive Prices 

 

Figure 24 is the customers’ responses towards different incentive prices in the 

Northeast, Midwest, South and West regions of U.S. respectively. The results show that 

the residential demand in the South at summer time responds more significantly to I-DR 

than that of the other three regions. This phenomena is reasonable, because 1) SCRFI 

shows that residents in the South are more sensitive to financial incentives and 2) RECS 
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reflects that more space cooling appliances are operating in the South region at summer 

time, which increases the total capacity of the potential reducible demand. 

 

 

 

Figure 24. Probability Distribution of RPR with Different Incentive Prices in the 

Northeast, Midwest, South and West Regions of U.S. 

 

4.3.2 Fixed Incentive Price 

The characteristics of residential demand of the whole U.S. with a given incentive 

price in a random summer day for 24 hours are illustrated in Figure 25. The result shows 
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that the residential demand is most probable to be reduced by I-DR from 7AM-7PM. The 

possible reasons are 1) the possible reducible demand is high when most of the residents 

are awake (by ATUS), and also 2) SCRFI shows that residents are more likely to turn off 

home appliances when they are not at home (i.e., are at work place). 

 

 

 
 
 

Figure 25. Probability Distribution of 24 Hour RPR 
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Figure 26. Probability Distribution of 24-hour RPR in different areas 

 

Furthermore, the residential responsive demand varies with different resident 

portfolios. For example, the probability distribution of RPR for 24 hours is significantly 

different in the Northeast, Midwest, South, and West regions of U.S., as shown in Figure 

26. The possible reason is, as aforementioned, more space cooling appliances are operating 

in summer in the South region, which can be reduced by I-DR. 

Therefore, the simulation results of the preliminary study regarding residential 

demand modeling comply with common knowledge, and these facts help verify the validity 

and effectiveness of the proposed model. 
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4.4 Conclusion 

Chapter 4 presents a stochastic model based on the residents’ portfolios to assess 

responsive residential demand in response to specific times, locations, and financial 

incentives. By implementing the proposed model, LSEs will be able to solve the two 

aforementioned issues with typical procedures of performing I-DR: 1) it is rarely feasible 

to keep frequently updating customers’ demand reduction data; and 2) the interaction with 

numerous customers makes it too time-consuming to serve as an online implementation. 

Instead of iteratively communicating and updating information between LSE and 

customers, the proposed model integrates three data sets (RECS from EIA, ATUS from 

USDL, SCRFI from CURENT) to directly generate the probability distribution of demand 

reduction for specific times, locations, and incentive prices. Therefore, it avoids the time-

consuming procedure of communicating and makes the online implementation of I-DR 

feasible for LSEs. Moreover, various case studies of the Northeast, Midwest, South and 

West regions of U.S. with fixed time or fixed incentive prices have been conducted to 

verify the validity and effectiveness of the proposed model. 

If this model can be widely used in the future, it will provide great potentials for 

LSEs including: 

 LSEs will be able to quicky estimate the residents’ response to certain financial 

incentives and then perform accurate the residential demand control with optimized 

financial incentives. 
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 With the capability of accurately controlling residential demand by financial 

incentives, LSEs will be able to perform strategic bidding in the market in real-time 

to maximize their profit.  

 This stochastic model allows LSEs to perform economic analysis before actual 

executing I-DR in certain areas. In this way, LSEs can have an assessment of 

whether it is worthy to invest on replacing devices in certain areas to make I-DR 

feasible in advance. 

 Also, the proposed model will help LSEs get insights on how to improve the 

existing demand response programs. 
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CHAPTER 5 

A FRAMEWORK FOR DEMAND AGGREGATION 

 

This chapter proposes the optimal framework for incentive based residential 

demand aggregation for LSEs to provide effective demand-side ancillary service by 

strategically controlling residential appliances based on residents’ unique energy usage 

preference and impartially rewarding the participants of DR program. In the proposed 

design, residential load aggregators (RLAs) serving as the agents, who receive demand 

response requests (DRRs) from load serving entities (LSEs) and real-time environmental 

parameters from every household as shown in Figure 27. Then, the RLAs generate the 

optimal operating strategy of appliances based on residents’ preferences, and then send the 

optimized control strategies to the actual appliances. 

For residents, this framework is expected to 1) distribute financial rewards 

according to their quantified contribution in DR events, and 2) maintain residents’ level of 

in-home comfort based on their personal preferences. For LSE, this framework is expected 

to 1) realize the DRR by controlling residents’ appliances, and 2) minimize the total reward 

costs for performing the DRR. Hence, this framework enables residents to become more 

active and to customize their energy usage preferences. This may stimulate the potential 

capability of demand-side resources from the residential aspect. 
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Figure 27. Schematic Information Flow Chart of the Optimal Framework 
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5.1 Nomenclature 

n Number of households under one RLA. 

R1 Level 1 reward rate, cents/(kW∙5min). 

R2 Level 2 reward rate, cents/(kW∙5min). 

R3 Level 3 reward rate, cents/(kW∙5min). 

TRM,i Room temperature for resident i, °F. 

T0RM,i Initial room temperature for resident i, °F. 

TL,i Low room temperature threshold for resident i, °F. 

TH,i High room temperature threshold for resident i, °F. 

PAi AC power rate of resident i, kW. 

SAi Operating status of the AC of resident i, ON/OFF. 

AEi Effect of the AC of resident i, °F/kW. 

LRRM,i Room temperature loss rate of resident i. 

RWRA,i AC reward rate for resident i, cents/(kW∙5min). 

TT,i EWH tank temperature of resident i, °F. 

T0T,i EWH initial tank temperature of resident i, °F. 

TTL,i Low tank temperature threshold of resident i, °F. 

TTH,i High tank temperature threshold of resident i, °F. 

PEi EWH power rate of resident i, kW. 

SAi EWH operating status of resident i, ON/OFF. 

Ei Effect of the EWH for resident i, °F/kW. 

LRT,i Tank temperature loss rate for resident i. 
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RWRE,i EWH reward rate for resident i, cents/kW∙5min. 

Comi if resident i compromises to the appliances operating beyond their comfort 

temperature ranges, YES/NO. 

CVi Comfort level violation for resident i. 

TAi Ambient temperature for resident i. 

TDR Total demand secluded to reduce, kW. 

D Amount of demand reduction required, kW. 

δ  Parameter associated with demand reduction accuracy relaxation. 

RWi Total financial rewards for resident i, $. 

w Weight of comfort level violation. 

i , i  Auxiliary binary variables for converting the optimization problem. 

 

5.2 Overview of the Optimal Framework  

According to several pilot studies by utilities [67-72], air conditioners (ACs) and 

electrical water heaters (EWHs) are critical loads in DR programs, because they are 

predominant inertia loads and able to provide fast responses with minimal impact to 

residents in a short time period. Moreover, in the residential aspect, ACs and EWHs 

typically account for more than one half of the total peak demand [73]. Therefore, RLAs 

are expected to perform DRRs by controlling ACs and EWHs without affecting residents’ 

normal life, while rewarding residents by quantifying the contributions they made under 

the proposed framework. 

There are several assumptions for the proposed framework:  
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1) ACs and EWHs have bi-directional communication with RLAs; this fact also 

indicates that RLAs are able to obtain the real time room temperature from ACs, 

and the tank water temperature of EWHs;  

2) The real-time ambient temperature is known to RLAs; 

3) Residents provide comfort temperature ranges of both indoor air and hot water 

to RLAs; and 

4) Residents decide whether they are willing to sacrifice, if RLAs have to adjust 

(lower) the comfort level of some residents.  

Figure 28 is a schematic diagram of the information flow in the proposed optimal 

framework. In Figure 28, when the RLA receives a request from the LSE notifying that 

there is demand Dr that needs to be reduced, this RLA considers the residents’ appliances 

profile, their energy usage preferences, real time ambient temperature, and real time indoor 

air temperature as well as water temperature of every household from ACs and EWHs. 

From this information,  the RLA performs the optimization within a very short time. As a 

result, the framework achieves several tasks including: 

1) generating and sending out optimal control instructions to residents’ appliances; 

2) providing the LSE with a cost-effective way of realizing the DRR with minimal 

reward costs; 

3) recording the contributions that individual residents made for this DRR, and 

4) distributing the financial rewards to the residents.  
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Figure 28. Schematic Diagram of the Information Flow 

 

5.3 The Reward System  

There are 55 utilities all over the U.S. offering incentive based demand response 

programs to their residential customers. However, few existing programs provide residents 

with an opportunity to customize their energy usage preferences. Moreover, most of the 

programs ignore to minimize the overall impact of DR events to residents’ living comfort 

levels. 

It needs be noted that an appealing reward system is one of the vital factors to make 

the optimal framework feasible and then attract sufficient demand-side resources to provide 

system ancillary services. Therefore, the rest of Section 5.3 introduces the innovative 

reward system which is implemented in the proposed optimal framework. 
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5.3.1 Multilevel Reward Rates 

In this optimal framework, DR program participants will be rewarded strategically. 

In order to get rewards, participants have to provide their energy usage preferences 

including their personal comfort temperature setting ranges for EWH and AC units, and 

whether they are willing to compromise by turning off EWH and AC units even if either 

the room or water tank temperatures go beyond their comfort temperature ranges. With 

some large amounts of DRRs, whenever the RLA has to enforce some residents’ comfort 

to work out a  compromise, those residents will receive extra compensation, which means 

higher reward rate for participating in such DRRs. Moreover, if an emergency occurs, in 

order to maintain the stability of the power system, the LSE has to send a DRR with a 

tremendous amount to the RLA. Then, the RLA figures that executing such DRR will have 

to make the appliances of residents, who claim not to compromise, operate beyond their 

comfort temperature ranges. In this case, those participant residents will get the highest 

reward rate. 

Generally, the differences among various reward rates are as shown in Table 8. 

Take AC units for example, the reward rates for resident i can be determined based on the 

flow chart as shown in Figure 29. Mathematically, the various reward rates can be 

expressed as (5-1). Since one of the objectives of the optimal framework is to minimize the 

total reward payment to perform certain DRR, naturally, the higher the reward level is, the 

less probability such situation happens. (The total reward payment minimization will be 

discussed in Section 5.4) 
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Temperature 
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Temperature 
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No Reward

R2

R1

R3

No
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No

No

Yes

Yes

Yes
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Figure 29. The Flow Chart of Determining the Reward Rate for Resident i 

 

 

Table 8. Various Reward Rates 

Resident Type Rate Symbol Probability 

Compromise 

Common R1 Common 

Higher R2 Occasional 

Not Compromise 

Common R1 Common 

Highest R3 Emergency 
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5.3.2 Comfort Level Violation 

When allocating DRRs to appliances, the RLA always faces the issue of how to 

select the proper available appliances to turn off. Here, the proposed framework introduces 

the concept of “Comfort Level Violation” to solve this issue. Take resident i with an AC 

unit as an example. The “Comfort Level Violation”, CVi, is defined by (5-2), and the mean 

value of the low and high threshold (user energy usage preferences) of the comfort 

temperature range
2

,, iHiL TT 
, is assumed as the perfect operating point. Then, CVi stands 

for the distance between the present status and the perfect operating point. Therefore, the 

higher the CVi value, the less comfortable the resident i feels.  1CVi   when temperature 

goes beyond the comfort temperature range. 

 

i,Li,H

i,Hi,Li,RM

i
TT

TTT2
CV






 (5-2) 
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Substituting (5-2) into (5-1), the relationship between CVi and reward rates can be 

expressed as (5-3). 

 

















0Com1CVif,R

1Com1CVif,R
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RWR

ii3

ii2

i1

i,A

 and 

 and 
 (5-3) 

 

To be fair to all the residents under the control of one RLA, whenever the RLA 

receives a DRR, it should try to maintain a similar comfort margin for each resident in the 

controlled area while performing the demand reduction. This issue can be solved by the 

optimal framework introduced in Section 5.2 since overall comfort levels have been 

considered in the objective function of the optimization problem formulation. However, 

there is still an issue among the residents with same CV values. To solve this issue, the 

RLA keeps a record on the DRR participation history of every resident. This way, 

whenever the residents have the same CV values, the RLA will choose the one with lower 

DRR contribution history to participate so as to maintain justice. For example, let’s assume 

the contribution history for all the residents is as shown in Figure 30. If resident#2 and #3 

have the same CV value and either resident#2 or #3 has to turn off their AC unit for a while, 

resident#2 will be selected according the aforementioned rules.  

Furthermore, it needs to be noted that the record of DRR participation history and 

rewards distribution results will be kept in the RLA’s data base. Those data will only be 
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uploaded to the LSE every week or month which also help release the stress for LSE from 

having massive real-time bi-directional communication with tens of thousands of residents. 

 

 
Figure 30. The Record of DRR Participation History 

 

5.3.3 Discussion of Residents’ Strategy  

This optimal framework provides a chance for residents to gain financial rewards 

as a result of participating in DR program. As for a good reward system design, it must be 

able to attract more participants into the DR programs, and prevent any malicious 

manipulation. This reward system provides a platform which satisfies various residents 

with different needs. By customizing their preferences, residents can become involved in 

the DR program at different levels.  

Here, a simple example of resident A, B and C with AC units under one RLA is 

used to perform a general analysis on different residents’ strategies without performing 

complex optimization calculation. The preference settings of AC units for A, B, and C are 

shown in Table 9 as follow. The comfort temperature ranges of B and C are broader than 

A’s; C chooses to compromise while A and B select not to.  
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Table 9. Preference Settings of Three Resident Example 

Resident Name Comfort Temperature Range (°F) Compromise? 

A 73-77 No 

B 70-80 No 

C 70-80 Yes 

 

 

Assuming today is a hot summer day, resident A, B and C have exactly the same 

houses and AC units, and the present room temperature is the perfect operating point as 

mentioned in Subsection 5.3.2) (A:75°F, B:75°F, and C:75°F). Hence, according to the 

description, Figure 31 shows the preference settings of the three residents. In Figure 31, 

the blue curve represents the reward rates they will get with different predicted room 

temperature during the demand reduction period, and the red dotted line is the initial room 

temperature before DRR.  

Now, assume the RLA receives a DRR (CASE#1) asking for a one third reduction 

of total residential demands. Therefore, the RLA needs to turn down one of the ACs from 

these three residents. In CASE#1, because of the same houses, same AC units, and same 

initial room temperature. Since the estimated room temperature with executing this DRR 

is predicted as 77°F for all three residents, the reward rate is the same for all of them. 

However, due to the concern of CV (CVA=1, CVB=0.4, CVC=0.4), resident A is excluded, 

while B and C share the same possibilities to turn down their ACs. In CASE#2, the 

estimated room temperature with executing this DRR is 81°F for all three residents. This 

81°F goes beyond the comfort temperature ranges for A, B, and C (CVA, CVB ,CVC >1). 
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Due to the different preferences on “Compromise”, the reward rate for C is lower than A 

and B. Therefore, C will be selected to turn down his/her AC. 
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Figure 31. Reward Rate with Predicted Estimated Room Temperatures 

 

In sum, this simple example shows clearly that resident C will most likely get the 

chance to perform a demand reduction and gain financial rewards, because resident C has 

the broadest comfort temperature range and willingness to compromise. The settings 

indicating that C is willing to sacrifice her/his comfort level more than the others.  

This simple example is only used for generally demonstrating how the system 

works with various residents’ preferences. Meanwhile, the practical cases will be much 

more complex due to the differences in houses, appliance parameters, initial room 

temperatures, etc. Section 5.4 will provide the complete mathematical formulation of the 

optimization problem of the proposed optimal framework with this reward system. 
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5.4 Optimization Problem Formulation 

The objectives of the optimal framework is to realize cost-effective DRR while 

trying to maintain the comfort levels of residents. In formulating the detailed mathematical 

model, there are several issues with the time length of DRR, temperature estimation, 

demand reduction accuracy, etc. Subsections from 5.4.1 to 5.4.4 will discuss these issues 

first and then formulate the complete optimization question into an MIQCP problem which 

is solvable using available optimization software tools.  

5.4.1 Time Length of DRRs 

A DRR contains two important factors:  

1) total required demand reduction; and  

2) time length based on how long demand reduction should last.  

In order to prevent the uncomfortableness caused by performing one single DRR 

with a long time length, the time length of each DRR is set to be five minutes which means 

the long time length DRR will be treated as several continuous short DRRs. 

There are several other advantages that come with dividing a long DRR into short 

time segments. This method ensures a stable calculation time and makes online 

optimization possible, because it keeps the size of the optimization problem same. 

Moreover, short DRRs reduce the errors in estimating temperature during DR events 

compared with longer term prediction, because the sensors’ feedbacks will help correct the 

estimation. 

Taking a one-hour long DRR with only ACs in winter as an example, the DRR will 

be divided into twelve five-minute DRRs. As shown in the schematic process chart in 
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Figure 32, after performing each of the short DRRs, the RLA receives the updated indoor 

air temperature data from each household, and then perform the next short DRR after five 

minutes. This method maintains the residents’ comfort levels during DR events, reduces 

calculation errors, and makes the online optimal scheduling of DRRs online optimization 

feasible. 
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Figure 32. The Process Chart for Performing One Hour Length DRR 
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5.4.2 Temperature Estimation 

Temperature estimation is vital in this model, because it determines the reward rates 

for the residents.  

As for estimating the water temperature in EWHs, the general model has been 

discussed in [53-55]. The discrete state dynamics EWH model is applied here, since the 

time length of each DRR is set at five minutes which is fixed. Hence, the model can be 

described by (5-4): 

 

  iiiii,Ti,Ti,T SEPEETA0TLRT   (5-4) 

 

As for estimating the indoor air temperature with AC units, the ASHRAE has 

compiled modeling procedures in its fundamentals handbook [56]. The U.S. Department 

of Energy (DOE) has produced the Energy Plus program for computer simulation [57]. 

Also, the detailed model for simulating AC systems is given in [58, 59]. According to these 

studies, an accurate model needs to consider many factors including weather, season, 

building thermal resistance, solar heating, cooling effect of the wind, and shading. Unlike 

EWH which has constant and relatively accurate parameters, those parameters of AC are 

difficult to measure precisely, since they are always changing with the operating status. 

Compared with the complex model, the simplified model, which is faster but less accuracy, 

is a better for the proposed framework, due to the following reasons:  

1) The errors of predicting the temperature for only five minutes ahead are limited;  

2) The framework needs to perform online optimization. 
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Hence, the simplified model of estimating the indoor air temperature with ACs is 

implemented as shown in (5-5).  

 

  iiiii,RMi,RMi,RM SAPAAETA0TLRT   (5-5) 

 

Instead of executing complicated setting adjustments for ACs, the control variable 

for ACs is binary SAi in (5-5). Therefore, the ACs will be controlled simply by ON/OFF. 

It needs to be highlighted that the values of parameters i,TLR , iE , i,RMLR  and iAE  

are different for each resident. Because the RLA is able to receive feedbacks from the 

sensors, the values of those parameters can be obtained through performing regression on 

the historical data for each resident in practical application under the proposed framework. 

However, due to the lack of historical data, those parameters are only set by assumptions 

in the numerical case studies in Section 5.5.  

 

5.4.3 Demand Reduction Accuracy Relaxation 

The total demand can be reduced from n residents by executing the optimal control 

strategies over ACs and EWHs, which is expressed in (5-6) as: 

 

   




n

1i

iiii SE1PESA1PADRT  (5-6) 
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However, since iSA and iSE are both binary, TDR and demand D, which is the value 

requested to reduce, cannot usually be exactly the same. It is also possible for D to go 

beyond the capability of the RLA. Therefore, the constraint of the amount of demand to be 

reduced needs to relax according to the LSE requirement as expressed in (5-7).  

 

    Dδ1TDRDδ1    (5-7) 

 

The value of δ  is set as 0.05 in the case study to be discussed in Section 5.5. 

 

5.4.4 MIQCP Problem Formulation 

According to the discussion in Subsection 5.3.1, in summer time, the reward rates 

of ACs and EWHs should be expressed by (5-8) and (5-9), respectively.  
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In order to formulate the optimization problem, (5-8) is converted into (5-10) (5-

11) and (5-12) as the constraints of optimization problem. 

 

     ii3ii2i1i,A Com11RCom1RRRWR    (5-10) 

 ii.Hi,RM 1MTT   (5-11) 

iiHiRM MTT  ,.  (5-12) 

 

Similarly, (5-9) can be converted to (5-13), (5-14) and (5-15). 

 

     ii3ii2i1i,E Com11RCom1RRRWR    (5-13) 

 ii.Ti,TL 1MTT   (5-14) 

ii,Ti.TL MTT   (5-15) 

 

where M is large enough constants, and i  and i are the auxiliary binary variables 

[74]. 

Given the previous discussion in Subsections from 5.4.1 to 5.4.3, this optimization 

problem of minimizing total rewards payment while maximizing the residents’ comfort 

levels (thereby minimizing comfort level violation) during the summer time can be 

formulated as: 
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Therefore, the optimization problem is formulated as a MIQCP problem, which is 

easy to solve using available software tools. 

 

5.5 Case Studies 

The proposed optimal framework is performed on both a ten-resident system and a 

much larger system with no more than 1000 residents whose parameters are from the 

residential energy consumption survey (RECS) created by U.S. EIA in 2009.  
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The first case study is designed to show how the optimal framework schedules 

every appliance and rewards each resident, since more detailed information can be 

demonstrated in a small scale case study. Also, this case study compares the simulation 

results under the optimal framework with the existing DR programs. 

Further, the second case study is used to show changes in residents’ comfort levels 

and total rewards costs for the LSE under different DRRs under the proposed framework. 

The simulations have been done using the General Algebraic Modeling System 

(GAMS) which can solve large scale optimization problems. The MIQCP problem is 

solved by BONMIN solver in GAMS on a desktop with Intel Xeon 3.2GHz CPU, and 8 

GB RAM. 

 

5.5.1 Ten-Resident System 

Based on the proposed framework and optimization problem formulation, several 

case studies have been carried out. The first test system is a ten residents’ system 

considering only AC units. In this system, every residents has different personal 

preferences and house household parameters as shown in Table 10. The total demand of 

ACs is 13.6 kW. 
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Table 10. Ten-Resident Profile 

ID TH TL PA T0 Cop AE LR 

1 75 70 1.3 72.5 0 5 0.1 

2 75 70 1.4 72.5 1 5 0.1 

3 75 65 1.2 70 0 5 0.3 

4 80 70 1.5 75 0 5 0.2 

5 75 65 1.6 70 1 6 0.3 

6 75 65 1.3 70 1 5 0.1 

7 75 67 1.2 71 0 4 0.1 

8 77 67 1.1 70 1 4 0.2 

9 77 65 1.5 71 0 5 0.2 

10 75 70 1.5 72.5 1 5 0.2 

 

Here is an example of a conventional incentive-based DR programs offered in 

United States, referred to here as “IDR#1.” On hot summer days, 3 to 5 times at most per 

month, a typical AC will be turned off for 20 minutes. A resident who enrolls in the 

program will get $8 off his/her monthly summer electricity bill as a reward. Assuming the 

power rate of the AC united is 1.5kW, if the utility company turns off the resident’s AC 

unit 4 times, the cost would be equivalent to 33 cents/ (kW∙5min). Here, reward rates R1, 

R2, and R3 in the proposed framework are roughly set at 20, 40, and 60 cents/ (kW∙5min) 

respectively, in which the lowest reward rate is a little lower than 33 cents/ (kW∙5min). 

However, since the lowest reward rate ensures the residents’ comfort levels and the median 
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reward rate is higher than 33 cents/ (kW∙5min), the settings of the reward rate in the optimal 

framework should be comparable to existing programs. 

In this ten-resident case study, the RLA received two DRRs from the LSE. 

 

5.5.1.1 DRR#1 with 4kW/ 20min 

DRR#1 asked the RLA to reduce 4kW for 20 min among these ten residents’ AC 

units. The results of residents’ satisfaction as well as rewards distribution are shown in 

Table 11. CMFT stands for the percentage of time when the temperature was within 

comfort temperature ranges. 

 

Table 11. DRR#1 Result (30% AC Demand Reduction) 

ID min TRM (°F) max TRM (°F) CMFT (%) Rate Rewards ($) 

1 70.8 74.5 100 R1 0.38 

2 70 74.3 100 R1 0.56 

3 71 72.8 100 R1 0 

4 70.1 74.1 100 R1 0.3 

5 70 70 100 R1 0 

6 66.4 70.1 100 R1 0.78 

7 70.3 72.9 100 R1 0.24 

8 70 74 100 R1 0.22 

9 67 69.8 100 R1 0.4 

10 70 74.8 100 R1 0.3 
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As for DRR#1 results, all residents were within their comfort temperature ranges. 

Resident #6 received the most financial rewards, due to his broad comfort temperature 

range and low LR value. A lower LR indicates a lower temperature change when turning 

off the appliances, hence a low LR improved capability of residents participating in DRRs. 

Neither resident #3 nor #5 earned rewards, because they kept their ACs on to maintain the 

proper room temperature due to high LRs. As a result, the RLA did not turn their ACs off, 

as long as others were able to offer enough demand reduction. 

 

5.5.1.2 DRR#2 with 8kW/ 20min 

DRR#2 requests the RLA to reduce 8kW for 20 min among these ten residents’ AC 

units. Residents’ satisfaction results and reward distributions are shown in Table 12.  

In DRR#2, the demand to be reduced was around 60% of the total regular demand 

which is tremendous. This can be traced to resident #2, #5 and #10 bear uncomfortable 

warm room temperature. Consequently, their financial rewards were relatively higher than 

others, because they were rewarded with R2 when their room temperature went beyond 

their comfort temperature ranges. It needs to note that all three of these residents selected 

willing to compromise. 
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Table 12. DRR#2 Result (60% AC Demand Reduction) 

ID min TRM (°F) max TRM (°F) CMFT (%) Rate Rewards ($) 

1 70.8 74.5 100 R1 0.58 

2 70 75.8 75 R1, R2 1.28 

3 71 72.5 100 R1 0 

4 73 79.1 100 R1 0.6 

5 70 80.2 50 R1, R2 1.28 

6 68.8 72.8 100 R1 0.78 

7 72.2 74.6 100 R1 0.72 

8 72.6 76.1 100 R1 0.44 

9 72.8 76.3 100 R1 0.6 

10 71 76.3 75 R1, R2 1.2 

 

 

5.5.1.3 Results Comparison 

Table 13 clearly shows that, compared with the conventional incentive-based DR 

program IDR#1, the proposed optimal framework has the following advantages: 1) The 

optimal framework significantly increases the resident overall comfort levels during DR 

events; 2) The optimal framework reduces costs for LSEs to perform DRRs; 3) Residents 

are rewarded for the actual contribution they make which can attract more DR program 

participants. 
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Table 13. Result Comparison between DRR#1 and #2 

 IDR#1 Optimal Framework 

 Ave. CMFT (%) Equivalent Rewards ($) Ave. CMFT (%) Rewards ($) 

DRR#1 49.7% 5.28 100% 3.18 

DRR#2 46.3% 10.56 90% 7.48 

 

As for the optimal framework itself, the calculation time for performing both DRRs 

is within 0.02s. Comparing the residents’ profiles and the results of these two DRRs, all 

the appliances of the residents were fairly scheduled according to resident preferences and 

parameters. Moreover, Table. 13 shows that the increase in demands to be reduced may 

lead to a dramatic rise in terms of reward costs: The amount of DRR#2 was twice that of 

DRR#1, but the total reward cost to perform DRR2 was about 2.34 times that of DRR#1. 

Because, for large DRRs, the RLA has to violate some residents’ comfort levels to reduce 

enough demand. The affected will be rewarded with R2 which increases the total reward 

cost. 

 

5.5.2 Large System Test 

The parameters of a large system used in this study are found in the RECS by U.S. 

EIA. The RECS data sets contain information related to appliances that residents own, and 

their parameters as well as the usual settings for those appliances. The original RECS 

contained the information from more than 60,000 households. In this case study, no more 
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than 1000 residents were selected, because the RLA is expected to solve practical problems 

within this scale.  

The result turns out performing the optimization of 1000-resident system under the 

proposed optimal framework take less than 10 seconds of calculation time for each DRR. 

 

5.5.2.1 The performance of a 500-resident system 

A 500-resident system was studied with different DRRs. Figure 33 and Figure 34 

show the change in resident comfort levels as well as the total rewards costs for the LSE 

performing the DRRs with different time lengths and demand reduction amounts. 

The results are reasonable in that, they show how, with the increase of time lengths 

and the amount of the demand needs to be reduced in DRR, the resident comfort levels 

dramatically fall while total reward costs rise sharply. 
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Figure 33. The Results of 500 Residents in Test#1 
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Figure 34. The Results of 500 Residents in Test#2 

 

5.5.2.2 Scale Effect 

Compared with the conventional incentive-based DR program, such as the 

aforementioned IDR#1, the proposed optimal framework is expected to have better overall 

performance as the number of DR program participants increase. With more DR program 

participants, the proposed framework will have more demand side resources available for 

scheduling. Hence, the resident overall comfort levels can be maintained in a very high 

level. Consequently, in most cases, the reward rates will be R1, and the total cost for 

performing DRRs will be low. However, with more program participants, the cost of 

IDR#1 will have a linear increase. Moreover, since resident comfort levels are not 

considered as the objective of IDR#1, the difference in the number of participants will not 

influence the average comfort levels. 
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In order to verify the above discussion, the simulations regarding different number 

of DR program participants (from 100 to 1000) were performed. The simulation results 

about the changing trends of cost and residents’ average comfort levels regarding different 

numbers of participants are summarized in Table. 14. It is clear that the simulation results 

support the statement that the proposed framework performs better with an increasing 

number of programs participants compared with conventional I-DR programs. 

 

Table 14. Scale Effect Comparison 

 (X-Axis: Number of DR Program Participants) 
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5.6 Conclusion 

In Chapter 5, an optimal framework for RLAs is proposed. Under this framework, 

the RLAs serve as agents of LSEs. Their role is to not only allocate DDRs among 

residential appliances quickly and efficiently without affecting resident comfort levels, but 

to also strategically reward residents for their participation, which may stimulate the 

potential capability of loads optimized and controlled by RLAs in incentive based DR 

programs. The main contributions of this work are summarized as follows: 

 For the LSE, RLAs reduce the size of the optimization problem and make 

dispatching DRR down to residential appliances feasible in real time. 

 This framework minimizes total reward costs for LSEs to perform an efficient DRR 

in a DR program while maintaining the comfort levels for residents.  

 The reward system is established to satisfy the needs for various types of customers. 

They can make a tradeoff between financial rewards and in home comfort levels by 

strategically and simply setting their preferences over the appliances. 

 Compared with the conventional incentive based DR programs, the proposed 

framework has an economy of scale effect wherein its performance becomes better 

and more cost efficient with the increasing number of DR program participants. 

 Moreover, since this framework benefits both LSEs and residents, it can stimulate 

the potential capability of residential appliances optimized and controlled by RLAs 

in DR programs. Eventually, with the growing electricity usage in residential aspect, 
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this framework will have the opportunity to become one of the most vital part in 

providing effective demand-side ancillary services for the whole power system. 
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CHAPTER 6 

CONCLUSION AND RECOMMENDATIONS 

6.1 Summary of Contributions 

This work proposes a comprehensive optimal framework for aggregating 

residential demands and incorporates residential demand aggregation with current power 

system operation. The comprehensive solution may largely improve the capacity of 

demand-side ancillary, which helps maintain power system stability and security. The 

achievements of this work include: 

1) Hardware design of a smart home energy management system 

The SHEMS provides enabling technology for an incentive based residential 

demand aggregation. The design includes sensors to detect residents’ activities, and 

then applies a machine learning algorithm to intelligently help residents reduce total 

electricity payment with very little involvements from the residents themselves. 

Moreover, it can achieve responsive control strategy over residential loads 

including EWHs, AC units, EVs, dishwashers, washing machines, and dryers. Most 

importantly, they may interact with LSEs to facilitate I-DR. 

2) Model for assessing the capacity of responsive residential loads 

Based on the residents’ portfolios, this model can assess responsive residential 

demand in response to specific times, locations, and financial incentives. It solves 

issues with residents’ versatile energy usage behavior towards I-DR. Also, the 
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proposed model avoids the time-consuming procedure of communicating and 

makes the online implementation of I-DR feasible for LSEs. 

3) Optimal framework for performing residential load aggregation 

This framework schedules the residential appliances in I-DR in real-time. This 

method not only allocates DRRs among residential appliances quickly and 

efficiently without affecting residents’ comfort, but also strategically rewards 

residents for their participation.  

To summarize, the comprehensive solution for incentive based demand aggregation 

benefits both LSEs and residents, and it may stimulate the potential capability of residential 

appliances enrolled in incentive based DR programs. Eventually, with the growing number 

of DR participants from residential aspect, this work has the potential to become one of the 

most vital parts in improving the system’s operating stability, reliability and efficiency. 

 

6.2 Future Works 

The following directions are considered as future tasks of this comprehensive 

solution for incentive based residential demand aggregation. 

1) The models of appliances implemented are simplified in the existing models. Future 

models of electrical vehicle and energy storage components will be more prevalent 

and are expected to show what they can do in test runs. 

2) The advanced modeling technologies considering occupants’ behavior are expected 

to improve the accuracy of assessing residential responsive demand. 
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3) The bi-directional electricity should be transferred between LSEs and common 

residents. 

4) The field studies are expected to verify the functionalities of the proposed 

comprehensive solutions in aggregating residential demand. As a timely new 

research area teeming with unexplored extensions, the large-scale simulation can 

be used to exhibit designed functions. Meanwhile, practical pioneering projects can 

further verify the implementation of theoretical techniques and polish the existing 

models. 
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