30 research outputs found

    Fault management via dynamic reconfiguration for integrated modular avionics

    Get PDF
    The purpose of this research is to investigate fault management methodologies within Integrated Modular Avionics (IMA) systems, and develop techniques by which the use of dynamic reconfiguration can be implemented to restore higher levels of systems redundancy in the event of a systems fault. A proposed concept of dynamic configuration has been implemented on a test facility that allows controlled injection of common faults to a representative IMA system. This facility allows not only the observation of the response of the system management activities to manage the fault, but also analysis of real time data across the network to ensure distributed control activities are maintained. IMS technologies have evolved as a feasible direction for the next generation of avionic systems. Although federated systems are logical to design, certify and implement, they have some inherent limitations that are not cost beneficial to the customer over long life-cycles of complex systems, and hence the fundamental modular design, i.e. common processors running modular software functions, provides a flexibility in terms of configuration, implementation and upgradability that cannot be matched by well-established federated avionic system architectures. For example, rapid advances of computing technology means that dedicated hardware can become outmoded by component obsolescence which almost inevitably makes replacements unavailable during normal life-cycles of most avionic systems. To replace the obsolete part with a newer design involves a costly re-design and re-certification of any relevant or interacting functions with this unit. As such, aircraft are often known to go through expensive mid-life updates to upgrade all avionics systems. In contrast, a higher frequency of small capability upgrades would maximise the product performance, including cost of development and procurement, in constantly changing platform deployment environments. IMA is by no means a new concept and work has been carried out globally in order to mature the capability. There are even examples where this technology has been implemented as subsystems on service aircraft. However, IMA flexible configuration properties are yet to be exploited to their full extent; it is feasible that identification of faults or failures within the system would lead to the exploitation of these properties in order to dynamically reconfigure and maintain high levels of redundancy in the event of component failure. It is also conceivable to install redundant components such that an IMS can go through a process of graceful degradation, whereby the system accommodates a number of active failures, but can still maintain appropriate levels of reliability and service. This property extends the average maintenance-free operating period, ensuring that the platform has considerably less unscheduled down time and therefore increased availability. The content of this research work involved a number of key activities in order to investigate the feasibility of the issues outlined above. The first was the creation of a representative IMA system and the development of a systems management capability that performs the required configuration controls. The second aspect was the development of hardware test rig in order to facilitate a tangible demonstration of the IMA capability. A representative IMA was created using LabVIEW Embedded Tool Suit (ETS) real time operating system for minimal PC systems. Although this required further code written to perform IMS middleware functions and does not match up to the stringent air safety requirements, it provided a suitable test bed to demonstrate systems management capabilities. The overall IMA was demonstrated with a 100kg scale Maglev vehicle as a test subject. This platform provides a challenging real-time control problem, analogous to an aircraft flight control system, requiring the calculation of parallel control loops at a high sampling rate in order to maintain magnetic suspension. Although the dynamic properties of the test rig are not as complex as a modern aircraft, it has much less stringent operating requirements and therefore substantially less risk associated with failure to provide service. The main research contributions for the PhD are: 1.A solution for the dynamic reconfiguration problem for assigning required systems functions (namely a distributed, real-time control function with redundant processing channels) to available computing resources whilst protecting the functional concurrency and time critical needs of the control actions. 2.A systems management strategy that utilises the dynamic reconfiguration properties of an IMA System to restore high levels of redundancy in the presence of failures. The conclusion summarises the level of success of the implemented system in terms of an appropriate dynamic reconfiguration to the response of a fault signal. In addition, it highlights the issues with using an IMA to as a solution to operational goals of the target hardware, in terms of design and build complexity, overhead and resources

    Damage Localization of Mechanical Structures by Subspace Identification and Krein Space Based H-infinity Estimation

    Get PDF
    This dissertation is devoted to the theoretical development and experimental laboratory verification of a new damage localization method: The state projection estimation error (SP2E). This method is based on the subspace identification of mechanical structures, Krein space based H-infinity estimation and oblique projections. To explain method SP2E, several theories are discussed and laboratory experiments have been conducted and analysed. A fundamental approach of structural dynamics is outlined first by explaining mechanical systems based on first principles. Following that, a fundamentally different approach, subspace identification, is comprehensively explained. While both theories, first principle and subspace identification based mechanical systems, may be seen as widespread methods, barely known and new techniques follow up. Therefore, the indefinite quadratic estimation theory is explained. Based on a Popov function approach, this leads to the Krein space based H-infinity theory. Subsequently, a new method for damage identification, namely SP2E, is proposed. Here, the introduction of a difference process, the analysis by its average process power and the application of oblique projections is discussed in depth. Finally, the new method is verified in laboratory experiments. Therefore, the identification of a laboratory structure at Leipzig University of Applied Sciences is elaborated. Then structural alterations are experimentally applied, which were localized by SP2E afterwards. In the end four experimental sensitivity studies are shown and discussed. For each measurement series the structural alteration was increased, which was successfully tracked by SP2E. The experimental results are plausible and in accordance with the developed theories. By repeating these experiments, the applicability of SP2E for damage localization is experimentally proven

    Modeling and Intelligent Control for Spatial Processes and Spatially Distributed Systems

    Full text link
    Dynamical systems are often characterized by their time-dependent evolution, named temporal dynamics. The space-dependent evolution of dynamical systems, named spatial dynamics, is another important domain of interest for many engineering applications. By studying both the spatial and temporal evolution, novel modeling and control applications may be developed for many industrial processes. One process of special interest is additive manufacturing, where a three-dimensional object is manufactured in a layer-wise fashion via a numerically controlled process. The material is printed over a spatial domain in each layer and subsequent layers are printed on top of each other. The spatial dynamics of the printing process over the layers is named the layer-to-layer spatial dynamics. Additive manufacturing provides great flexibility in terms of material selection and design geometry for modern manufacturing applications, and has been hailed as a cornerstone technology for smart manufacturing, or Industry 4.0, applications in industry. However, due to the issues in reliability and repeatability, the applicability of additive manufacturing in industry has been limited. Layer-to-layer spatial dynamics represent the dynamics of the printed part. Through the layer-to-layer spatial dynamics, it is possible to represent the physical properties of the part such as dimensional properties of each layer in the form of a heightmap over a spatial domain. Thus, by considering the spatial dynamics, it is possible to develop models and controllers for the physical properties of a printed part. This dissertation develops control-oriented models to characterize the spatial dynamics and layer-to-layer closed-loop controllers to improve the performance of the printed parts in the layer-to-layer spatial domain. In practice, additive manufacturing resources are often utilized as a fleet to improve the throughput and yield of a manufacturing system. An additive manufacturing fleet poses additional challenges in modeling, analysis, and control at a system-level. An additive manufacturing fleet is an instance of the more general class of spatially distributed systems, where the resources in the system (e.g., additive manufacturing machines, robots) are spatially distributed within the system. The goal is to efficiently model, analyze, and control spatially distributed systems by considering the system-level interactions of the resources. This dissertation develops a centralized system-level modeling and control framework for additive manufacturing fleets. Many monitoring and control applications rely on the availability of run-time, up-to-date representations of the physical resources (e.g., the spatial state of a process, connectivity and availability of resources in a fleet). Purpose-driven digital representations of the physical resources, known as digital twins, provide up-to-date digital representations of resources in run-time for analysis and control. This dissertation develops an extensible digital twin framework for cyber-physical manufacturing systems. The proposed digital twin framework is demonstrated through experimental case studies on abnormality detection, cyber-security, and spatial monitoring for additive manufacturing processes. The results and the contributions presented in this dissertation improve the performance and reliability of additive manufacturing processes and fleets for industrial applications, which in turn enables next-generation manufacturing systems with enhanced control and analysis capabilities through intelligent controllers and digital twins.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169635/1/baltaefe_1.pd

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    Large space structures and systems in the space station era: A bibliography with indexes

    Get PDF
    Bibliographies and abstracts are listed for 1219 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1990 and December 31, 1990. The purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems

    Efficiency and Sustainability of the Distributed Renewable Hybrid Power Systems Based on the Energy Internet, Blockchain Technology and Smart Contracts-Volume II

    Get PDF
    The climate changes that are becoming visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems, and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this reprint presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications, such as hybrid and microgrid power systems based on the Energy Internet, Blockchain technology, and smart contracts, we hope that they will be of interest to readers working in the related fields mentioned above

    High Performance Control Techniques for Multiphase eDrives

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    A Plant Life Management Model Including Optimized MS&I Program - Safety and Economic Issues

    Get PDF
    This report collects the experience of the European Countries in the field of Plant Life Management (PLIM) and maintenance optimisation, as a background for the development of a new PLIM models, suitable for the European framework. The research highlights the the basic goal of PLiM in terms of support to a safe long-term supply of electricity in an economically competitive way. A PLIM model is proposed, validated with the experience of the SENUF research network members and with the essential contribution of managers and staff of a selected nuclear plant. The model addresses both technical and economic issues, as well as organizational and knowledge management issues and is now open for a broader validation by the research and engineering communities, to be carried out in the coming research steps.JRC.F.5-Nuclear operation safet
    corecore