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ABSTRACT

This dissertation is devoted to the theoretical development and experimental labora-
tory verification of a new damage localization method: The state projection estimation
error (SP2E). This method is based on the subspace identification of mechanical struc-
tures, Krein space based H

∞ estimation and oblique projections. To explain method
SP2E, several theories are discussed and laboratory experiments have been conducted
and analysed.

A fundamental approach of structural dynamics is outlined first by explaining me-
chanical systems based on first principles. Following that, a fundamentally different
approach, subspace identification, is comprehensively explained. While both theories,
first principle and subspace identification based mechanical systems, may be seen as
widespread methods, barely known and new techniques follow up. Therefore, the
indefinite quadratic estimation theory is explained. Based on a Popov function ap-
proach, this leads to the Krein space based H

∞ theory. Subsequently, a new method
for damage identification, namely SP2E, is proposed. Here, the introduction of a
difference process, the analysis by its average process power and the application of
oblique projections is discussed in depth.

Finally, the new method is verified in laboratory experiments. Therefore, the identifi-
cation of a laboratory structure at Leipzig University of Applied Sciences is elaborated.
Then structural alterations are experimentally applied, which were localized by SP2E
afterwards. In the end four experimental sensitivity studies are shown and discussed.
For each measurement series the structural alteration was increased, which was suc-
cessfully tracked by SP2E. The experimental results are plausible and in accordance
with the developed theories. By repeating these experiments, the applicability of SP2E
for damage localization is experimentally proven.
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ZUSAMMENFASSUNG

In dieser Dissertation wird eine neue Methode der Schadenslokalisation theoretisch
hergeleitet und im Labor experimentell verifiziert: Sie trägt den Namen ’State Projecti-
on Estimation Error’ (SP2E) und basiert auf der Subspace Identifikation mechanischer
Strukturen, der Kreinraum basierten H

∞ Schätztheorie und schiefen Projektionen.
Um die Methode SP2E zu erklären, werden in dieser Arbeit verschiedene Theorien
diskutiert und Laborversuche ausgewertet.

Die Arbeit beginnt mit einigen Ausführungen der analytischen Mechanik, welche zur
Modellierung mechanischer System in der Strukturdynamik Anwendung finden. Dar-
auf aufbauend wird die Subspace Identifikation umfassend erklärt. Während beide
erstgenannten theoretischen Teile als weitverbreitet angesehen werden können, folgen
daraufhin wenig bekannte bis unbekannte Ansätze: Dafür wird zuerst die Theorie der
indefiniten quadratischen Schätzung behandelt. Auf Basis einer popov Funktion führt
dies zur Kreinraum basierten H

∞ Schätztheorie. Im Anschluss daran wird die neue
Methodik SP2E eingeführt. Dabei sind vorrangig die Definition eines Differenzpro-
zesses, dessen Auswertung mit der mittleren Prozessleistung und die Anwendung
schiefer Projektionen wichtig.

Abschließend wird die neu entwickelte Methodik in Laborversuchen verifiziert. Da-
für wird zunächst die Identifikation einer Laborstruktur an der Leipzig University of
Applied Sciences umfassend erklärt. An dieser Laborstruktur wurden experimentell
strukturelle Veränderungen eingebracht, welche mit SP2E erfolgreich lokalisiert wer-
den konnten. Zum Schluss werden vier durchgeführte experimentelle Sensitivitätsstu-
dien aufgezeigt und diskutiert. In diesen vier Versuchsreihen wurde die strukturelle
Veränderung sukzessive erhöht. Diese Veränderungen konnten mit SP2E verfolgt wer-
den und die Ergebnisse waren plausibel. Da die Versuche jeweils wiederholt wurden,
konnte so die Anwendbarkeit von SP2E zur Schadenslokalisation experimentell nach-
gewiesen werden.
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1
INTRODUCTION

1.1 Monitoring of Large-Scale Structures

The environmental life-cycle assessment of buildings is an important research issue
to improve sustainability and economic efficiency. Hereby, central states (design, con-
struction, operation, demolition and waste treatment) of technical structures (infras-
tructure, buildings, plants, etc.) must be considered altogether.1–3

To design buildings, infrastructure and so on, finite element modelling (FEM) is a
generally accepted and common engineering oriented tool.4 Thereby, complex models
are usually applied to accurately estimate mechanical quantities, like displacements,
strains and so forth. However, in maintenance existing structures may be constantly
observed to measure mechanical quantities (e.g. accelerations, velocities, strains),
which can be used to validate those models. Based on that, it is advantageous to im-
plement a model-based operation and maintenance. This may save natural resources
and invested capital. Unfortunately, adjustments of complex models in consequence
of new measurements are unsuitable, because from a theoretical perspective, the pro-
cess might be ambiguous, inconsistent and is in general real-time incapable.5 Because
maintenance can be the most cost-intensive part (compared to the total costs of build-
ings), an alternative is necessary here.

Research of degradation evaluation of mechanical structures during maintenance
phase is referred to as structural health monitoring (SHM). For that, a vast variety
of techniques have been proposed.6, 7 Although it is beyond the scope of this thesis to
give a complete overview of this topic, the most common approaches are summarized
in the following. Based on this overview of scientific fields, the central dissertation
research issue is then derived.

1.2 Modelling during Operational Phase

During the operational phase of buildings it is fundamentally important to reduce
the complex physical behaviour of large-scale mechanical structures to an analysable
model.8 To validate these models, mechanical vibration measurements can be usefully
applied, which is discussed below.

According to the system-theoretic and cybernetic approach, modelling techniques can
be classified as i) white-box, ii) black-box and iii) grey-box.9 The grey-box model is a
combination of both first named approaches and is not discussed here.

1



introduction

White-box models of mechanical structures are based on analytical-physical
first principles.4 Here, conservation laws (mass, momentum, energy), geometrical
kinematic properties and constitutive equations (for the particular material) are ap-
plied to mathematically determine a model. Then this model describes the analysed
mechanical system. Often these defined fundamental equations are analytically deriv-
able for special cases only. Thus, these equations are solved by numerical approxima-
tion techniques based on discrete elements, like the finite element method, boundary
element method, finite differences and modal techniques.5, 10

The derived equations of white-box models can be directly interpreted in a physi-
cal sense, which is advantageous.11 On the other hand, complex problems require
an enormous methodical and numerical effort during the lifespan of a mechanical
structure. Important examples for that are the influence of environmental and op-
erational conditions (temperatures, humidities, etc.), non-linearities (geometrical and
material-dependent), variable operational states and so on.

Because of the issues outlined above, finite element models are usually adjusted by
an updating process according to measured mechanical quantities in structural dy-
namics.12–14 Here, modal data is predominantly determined from measurements and
used for the updating process. As it may be seen as an optimization, it is difficult to
expediently choose a low number of mechanical parameters to be adjusted out of a
large number of defined ones in accordance with the conducted experiment.5 Further-
more, a problem is the choice of updating approach and the physical interpretation
of its result afterwards. In addition to that, the model order of defined finite element
models usually is very high. Hence, real-time applications are typically impossible in
the maintenance phase.

Black-box models are fundamentally different to the previously described ap-
proach, because those models are at first usually derived from a mathematical-general
perspective only. As they are based on measurements of physical quantities, black-box
models characterize the transfer function of a system input to its output in a general
way. Very importantly, these models may be categorized as follows: i) parametric –
non-parametric, ii) linear – non-linear, iii) continuous-time – discrete-time, iv) single
degree of freedom – multi degree of freedom, v) recursive estimate – identification in
blocks, vi) deterministic – stochastic, vii) time-domain – frequency-domain, viii) ex-
plicit – implicit, ix) output-only – input-output, x) time-invariant – time-variant.4, 15

Following the given classifications, there are numerous black-box system identifica-
tion techniques and model structures, like the autoregressive moving average model,
the state space models and so forth.16 Most commonly, multi degree of freedom
parametrized models are linearized at an operation point. Thus, frequently used state
space models are presupposed in the following.

2



1.3 black box system identification

1.3 Black Box System Identification

Black-box systems may be parametrized following numerical methods, which are
based on measured (or theoretically presumed) excitations and measured structural
responses.17–19 The direct application of measured physical-structural behaviour al-
lows an appropriate system realization. Here, the parametrization of systems based
on measured signals, so called system identification techniques, usually is classified
according to applied test loads in deterministic and stochastic approaches.9 Deter-
ministic identification techniques are based on measurable test loads like impulses,
sweep function and so forth.

On the other hand, stochastic identification techniques are based on ambient excita-
tions, for example wind, traffic and waves. Another important categorization distin-
guishes between output-only and input-output identification. Especially completely
parametrized input-output models describe the causal transfer behaviour from ex-
citations to structural responses of mechanical systems.20 For this reason, subspace
techniques can be advantageously applied.17, 19

Deterministic identification typically is devoted to parametrize a cho-
sen model structure in a certain theoretical frame. Commonly, subspace methods
in connection with a least-squares approach are used to determine (and eventually
parametrize) a transfer system on the basis of structural measurements. To name
widespread methods, one may revisit the method of Ho-Kalman,21 the numerical
algorithms for state subspace system identification (N4SID)22 and the multivariable
output error state space algorithm (MOESP).23, 24

It usually is hard to apply deterministic test loads during operation at large-scale
structures, like bridges, wind energy plants and airplanes. Nevertheless, those struc-
tures are characteristic in civil and mechanical engineering. In addition to that, deter-
ministic test loads are elaborate and thus expensive to apply at large-scale structures.25

In opposite to that, ambient vibrations are already present during operation. Because
active test load applications may be omitted, stochastic identification techniques are
generally preferable, and thus are primarily considered in this dissertation.

Stochastic identification is premised on measured stochastic structural re-
sponses or derived correlation functions. Important techniques are, among others,
the stochastic realization,26 the canonical variate analysis (CVA)27 and the canonical
correlation analysis (CCA).28, 29 Most recently, mixed stochastic-deterministic identi-
fication techniques have been developed, for example the past-output MOESP (Po-
MOESP),30 the orthogonal decomposition technique (ORT)19 and the input-output
CCA.19 Furthermore, closed-loop identification techniques recently got more atten-
tion by researchers.31, 32

To identify completely parametrized state space models based on stochastic excita-
tions, Kalman filtering theory may be applied, as van Overschee and de Moor22 point
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out. One approach for that is the canonical factorization of the power spectral den-
sity, which itself is estimated based on measured structural responses. In result an
innovation model is parametrized, which describes the transfer behaviour of a causal,
theoretical input (innovation process) to measured structural responses.20

If one wants to numerically compute an innovation model, an optimization problem
must be analysed. Therefore, a Riccati equation is commonly solved, for which several
numerical approaches have been developed, like the direct iteration, the doubling
algorithm and the application of an extended symplectic pencil.33, 34 Unfortunately,
there might be no solution at all to the Riccati equation due to numerical inaccuracies
of identified system parameters. The background and compensation methods for that
have been constantly analysed, formerly from a system-theoretic viewpoint.35–37

1.4 Output-Only and Operational Modal Analysis

Output-only methods may be seen as a special case of black-box system identification
and are usually used to determine modal data, like natural frequencies, dampings and
unscaled mode shapes.38 These parameters solely describe the dynamics of a mechan-
ical structure in opposite to completely parametrized state space models. According
to Cunha et al.,15 the application of output-only identification for modal analyses have
originally been developed in mechanical engineering in frequency domain. At that
time the adjustment of theoretical frequency response functions has been a central
research object.

Being commonly applied for decades, single degree of freedom systems were anal-
ysed by several methods, for instance peak amplitude, curve fit and inverse meth-
ods.15 Later on the analysis of multiple degree of freedom systems required more
elaborate approaches, which were found for example by the rational fractional poly-
nomial, the complex exponential frequency domain and the polyreference frequency
domain.39 Unfortunately, those frequency-domain methods are limited by the appli-
cable frequency resolutions, influenced for example by spectral leakage. This can lead
to inaccurate frequency estimates.15

In addition to that, the number of measured natural frequencies is fundamental.15

Consequently, time domain methods have been developed, which are based on ad-
justments of measured and estimated time series. To classify here, indirect (e.g. least
squares, Ibrahim time domain (ITD), eigensystem realization) and direct techniques
(e.g. based on the autoregressive-moving average (ARMA) model) may be named.15

Operational modal analysis is an active research field, especially in struc-
tural dynamics and structural health monitoring. Based on ambient vibration ex-
citations (typically presupposed as white noise), modal data is primarily identified
rather than general system parameters. In view of the historical development, opera-
tional modal analysis (OMA) techniques have originally been derived based on non-
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parametric descriptions in the frequency domain, as can be seen by peak picking,39

the frequency-domain decomposition (FDD)40 and the enhanced frequency domain
decomposition (EFDD).41

Although these methods are very useful, more accurate techniques are generally
based on parametrized, mathematical systems in time-domain, especially ARMA-
models and state space systems. Here, several methods can be named, like the
Ibrahim time domain (ITD) method, the multiple reference ITD, the covariance based
stochastic subspace identification (SSI-Cov) and the Data-Driven stochastic subspace
identification.42–45 More recently, modal analysis methods have been developed on
the premise of parametric descriptions in the frequency-domain, as can be seen by op-
erational PolyMAX, polyreference least-squares complex frequency-domain (pLSCF)
and polyreference maximum likelihood estimator (pMLE).46–49 Additionally, a hybrid
identification technique on the basis of partially measured structural excitations was
introduced, which is called OMA with exogenous inputs (OMAX).50

1.5 Damage Identification

An important application of system identification is structural health monitoring
(SHM). Typically, damage sensitive parameters, also known as features,51 are applied
here according to various different damage identification techniques. The technique
capabilities can be hierarchically categorized following Rytter:52 (1) damage detection,
(2) damage localization (3) damage assessment and (4) prediction of remaining life-
time. Furthermore, vibration-based structural health monitoring has been described
as a four-step statistical pattern recognition paradigm by Farrar et al.51 and funda-
mental axioms for the same topic were proposed by Worden et al.53

A very rudimentary damage analysis technique is based on defined maximal vibra-
tion magnitudes. Here, german standardizations for civil engineering (DIN 4150) and
mechanical engineering (DIN ISO 10816) give exemplary guideline values. In con-
trary to symptom based damage identification, model based damage identification
is more significant54 and will be elaborated in the following. However, a complete
overview of damage identification techniques is beyond the scope of this summary.

Modal data are, by the author’s knowledge, the most common applied damage
identification feature. Modal data of two systems states are compared to each other ac-
cording to defined approaches. For example natural frequency shifts and mode shape
alterations are analysed, for instance based on the modal assurance criterion (MAC)
and the coordinate modal assurance criterion (CoMAC).55, 56 Furthermore, frequency
response functions,57, 58 modal curvatures,59, 60 modal strain energy61 and experimen-
tal flexibility parameters62–64 are applied for damage identification. Usually damage
detection is possible only. Even that can be questionable, especially when environ-
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mental and operational conditions (e.g. temperature, traffic density) at large-scale
structures need to be additionally considered.15, 16

Besides a direct comparison of modal data, these parameters are also typically used
for finite element model updating.5 By adjusting a model, structural damage may be
found with the help of optimized (updated) mechanical parameters.14

Being an active research community, several other damage identification techniques
have been defined for structural health monitoring. Although less used, they might
be worth our attention. Examples are polynomial coefficient alterations of ARMA-
models,65 wavelet transformation coefficients of structural responses,66 modal fil-
ters,67 transmissibilities68 and correlation functions.69 A fundamentally different dam-
age identification approach is the application of wave propagation theory.70 In addi-
tion to the named alternative damage identification techniques, estimation theory
gives a different viewpoint on that topic.

Applied estimation theory is here an umbrella term for damage identifica-
tion based on Kalman filters, H∞ estimators and so on. Especially Kalman filtering
theory has been used for system identification,71–73 to recursively compute mechanical
parameters74–76 and to define a novelty index based on estimation errors.77 Although
system theoretic approaches are constantly used to determine modal data, analyses
beyond that seem to be rarely applied in structural health monitoring. That can hardly
be explained, but one could argue that system theory and structural health monitor-
ing simply are different research communities, which are not often considered as a
whole.

Kalman filtering can be referred to as H
2 estimation.78 Furthermore, it can be seen as

a special case of H∞ estimation. Although H
∞ theory has been very comprehensively

studied and practically used in control,79–81 it is, to the best of the author’s knowledge,
less used in estimation82 and almost unknown in system and damage identification.
Nevertheless, few studies exist, like the identification of modal mass,83 frequency and
damping tracking84 and design of a fault detection filter.85 Because further research
in H

∞ theory based damage identification may lead to huge improvements in the
field of structural health monitoring, a new method should be developed. This will
enter the dissertation research issue in section 1.7.

1.6 Industrial Need for Damage Localization

Structural health monitoring may prevent ecological and economical catastrophes.
To show possible areas of practical application, structural monitoring of bridges and
wind energy plants are discussed in the following. Nevertheless, this thesis covers a
theoretical discourse and experimental verification only and these industry-practical
examples are not revived again.
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Bridges are typical technical objects to monitor, because undetected structural
damage may lead to enormous catastrophes. Monitoring examples of bridges can be
found all over the world.86–89 Nevertheless, automatic bridge monitoring still is un-
common in Germany, in opposite to periodic inspections. Although German bridges
are manually monitored following standardization DIN 1076, there are several prob-
lems in Germany: i) Most bridges are partially damaged, ii) the owner (federal admin-
istration, etc.) has few economic possibilities for maintenance, iii) state identification
according to DIN 1076 depends on the engineer’s experience, iv) occuring structural
damage can be detected only according to the maintenance interval (main analysis re-
peats every 6 years), v) structural damage can be seen at accessible construction parts
only and vi) non-destructive testing (e.g. eddy-current testing, ultrasonic testing, etc.)
is locally confined and is mostly useful, if the damage position is already known.

These arguments emphasize the requirement for reliable automated damage localiza-
tion techniques. The German directive ’Richtlinie zur Nachrechnung von Straßen-
brücken im Bestand’ explicitly allows monitoring methods in level 4 of recalcula-
tion, which are called here compensating supervision measures (German: ’kompen-
sierende Überwachungsmaßnahmen’). Possibly monitored objects might be: i) Global
structural state (e.g. detection of anomalies during operation, erosion), ii) fatigue,
iii) local structural state (e.g. suspensions, cables), iv) local forces (e.g. in prestressed
concrete, cables), v) loads (e.g. traffic).

Wind energy plants are another important application field for monitoring.90

Here, a possible classification distinguishes between the (more mechanical engineer-
ing oriented) monitoring of nacelle and blades91–93 and the long-term tower analy-
sis.94, 95 The later one is mostly covered in civil engineering, as this discipline also
deals with historical, residential and office towers.96, 97

Energy plants in offshore fields are cost-intensive, and thus are worth to analyse. In
Germany those plants must be developed in all phases (design, construction, oper-
ation and demolition) according to the directive ‚Konstruktive Ausführung von Off-
shore Windenergieanlagen‘ of the Federal Maritime and Hydrographic Agency of
Germany (German: Bundesamt für Seeschifffahrt und Hydrographie (BSH)). Therein
periodic inspections (25% of all constructions per year) are legally demanded, which is
economically expansive (e.g. examination of submarine transition joints, rotor blades).
Here, a problem are inaccessible construction parts. To give building permissions, the
named agency expects at least 10% of offshore wind energy plants to be equipped
with a monitoring system.

Nevertheless, the capability and extend of this monitoring system has not been de-
fined so far. Hence, its usefulness might be questionable. Here, the advantages of
monitoring should be explained to the operators, which might exemplarily be: i) State
identification and early damage detection, ii) coordination of optimized inspection
operations, iii) reduction of economical costs due to predictive maintenance, iv) dam-
age growth prediction and determination of the remaining life-time, v) metrological
recording of real loadings, vi) optimized structural design for new plants and vii) op-
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erational management based on low vibration levels (e.g. control of rotor blade pitch
angles).

Both given examples emphasize the need for robust damage localization methodolo-
gies for industrial applications. Unfortunately, most existing damage identification
techniques are only able to detect (level 1 damage identification). Localization of
structural damage has not been utilized in industrial applications so far and it is thus
useful to develop a new approach.

1.7 The Derived Dissertation Research Issue

Technical constructions are described by models in all life-time phases (design, con-
struction, operation and demolition). Maintenance is the most cost-intensive phase,
in which white-box models (e.g. FE models) are disadvantageous due to, among
other things, large model orders and real-time capability. Instead, black-box models
are preferable, because low model order systems may be implemented in real-time
applications.

Black-box models are directly based on structural measurements. For that, subspace
identification techniques based on ambient vibrations are advantageous. Further-
more, uncertainty-tolerant H

∞ estimators may achieve great progress for damage
localization due to unknown excitations. Hence, stochastic excitation presumptions
are not necessary, as ambient excitations are presumed. Reliable damage localiza-
tion methods are needed by the industry, which might be applied for early damage
detection, inspection optimization and analysis of inaccessible structural parts.

Concluding the above statements, a new damage localization method based on black-
box (subspace) identification and H

∞ theory shall be theoretically developed. Here,
it is important to consider unknown structural excitations (ambient vibrations). To
verify this new method, experimental sensitivity studies in laboratory must be con-
ducted. Although this method should be practically applicable in the end, theoretical
considerations are discussed first and it is beyond the scope of this dissertation to de-
velop an industrial implementation. Hence, the consideration of environmental and
operational conditions is excluded at first, as the former issues are elaborate enough.
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2
DISSERTATION STRUCTURE

2.1 Outline

Based on the derived dissertation research issue of section 1.7, several important scien-
tific areas are subsequentially covered to derive and verify a new damage localization
technique. The line of arguments is structured in three parts, which is illustrated in
figure 2.1.

PART I
Widespread Methods:

Models of
Mechanical Structures

PART II
New Methods:
H∞ Estimation

SP2E

PART III
Experimental
Verificiation

in Laboratory

CHAPTER 3
Models Based on
First Principles

CHAPTER 4
Subspace

Identification

CHAPTER 5
Krein Space

H∞ Estimation

CHAPTER 6
New Method

SP2E

CHAPTER 7
Identification of

Laboratory Struct.

CHAPTER 8
SP2E Verification

Sensitivity Studies

Figure 2.1: Dissertation Outline

Part I is devoted to a review of widespread modelling techniques for mechanical
structures. Here, chapter 3 describes the derivation of white-box models following
first principles. The focus lies in state space representations and frequency-domain
(modal) analysis. Finally, two models of the later used laboratory structure are nu-
merically constructed and analysed.
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In opposite to the given white-box approach, the subspace identification of black-box
models is described in chapter 4. The most important deterministic and stochastic ap-
proaches are discussed. After that, a direct damage identification application of these
techniques is given by briefly discussing the identification of experimental mechani-
cal parameters by corresponding matrices. For that, the application at a real bridge
near Hünxe (Germany) is briefly shown afterwards. These deterministic experiments
are then compared to ambient excitation experiments, which is applied in the end to
numerically identify the multi degree of freedom mechanical system of chapter 3.

Part II introduces barely known and new methods to the field of structural dy-
namics. At first Krein space based H

∞ theory is engineering oriented explained in
chapter 5. This comprehensive elaboration covers time-variant systems in finite hori-
zon, which mostly leads to time-domain expressions. Based on that time-invariant
problems are discussed. Formerly described in the frequency domain, this case is
commonly referred to as the infinite horizon. In the end of that chapter the ’filtering
signals in additive noise’ approach is exemplified at the former mechanical system.

Chapter 6 then introduces a new damage identification technique. Based on stochas-
tic subspace identification and H

∞ estimation, the method state projection estimation
error (SP2E) is derived. It starts by defining a general difference process. Applied
with estimation errors, an approach for synchronization and normalization is shown,
which leads to an advantageous state space representation. Afterwards state projec-
tions are discussed and used for damage identification. The chapter closes with the
introduced mechanical system example.

Part III covers the experimental verification of SP2E in laboratory. For that,
the identification of a laboratory structure is described in chapter 7. Here, several
numerical-practical issues are addressed, like the model order determination, model
reduction and so forth.

Hereafter, experimental damage localization by SP2E is shown in chapter 8. Plau-
sibility and applicability have been analysed for that with the help of experimental
sensitivity studies, especially the identification of successive, experimental damage
growth. This then leads to the dissertation conclusions and a discussion of possible
future research in chapter 9.

2.2 Scientific Innovations and Published Work

This dissertation offers several scientific highlights and innovations. While the most
important ones are named in the following, a list of publications is given afterwards:

i) Subspace identification is comprehensively described with a focus on its
application in chapter 4. This overview may give engineers a solid basis for their
own structural analyses.
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ii) The H
∞

estimation theory following the indefinite-quadratic estimation
approach is comprehensively worked through in chapter 5. Very importantly,
somewhat contradictory scientific work of H

∞ estimation is unified and pre-
sented in step-by-step explanations. By focussing on engineering oriented state-
ments, it is introduced to structural dynamics and health monitoring.

iii) The damage localization method SP2E is proposed and analysed in
chapter 6. The application of both stochastic subspace identification and H

∞

theory to define a damage-sensitive difference process is new. The analysis by
synchronization and normalization in a state space system allows vast theoret-
ical developments. Furthermore, state projections enhance the damage identifi-
cation result.

iv) Experimental sensitivity studies were conducted to verify method
SP2E. Therein, structural alterations have been applied to the laboratory struc-
ture of chapter 7. By experimentally increasing the structural alteration, plausi-
bility and applicability of SP2E were studied. Based on that, chapter 8 confirms
the practicability of the new method.

Published Articles

[Art1] A. Lenzen and M. Vollmering. An output only damage identification method
based on H∞ theory and state projection estimation error (SP2E). Structural
Control and Health Monitoring, 24(11), 2017.

[Art2] A. Lenzen and M. Vollmering. On experimental damage localization by SP2E:
Application of H∞ estimation and oblique projections. Mechanical Systems and
Signal Processing, 104:648–662, 2018.

Presentations and Published Proceedings

[Proc1] A. Lenzen and M.Vollmering. A new technique for damage localisation using
estimates in krein spaces. 6th International Operational Modal Analysis Confer-
ence, Proceedings:239–248, 2015.

[Proc2] A. Lenzen and M.Vollmering. Eine neue Methodik zur schwingungsbasierten
Schadensidentifikation. 5.VDI-Fachtagung Baudynamik 2015, VDI-Berichte
2244:171–185, 2015.

[Proc3] A. Lenzen and M.Vollmering. Vergleich verschiedener Ansätze zur Identi-
fikation instationärer Eigenfrequenzen. 4.VDI-Fachtagung Schwingungsanalyse
& Identifikation 2016, VDI-Berichte 2259:179–196, 2016.
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2.3 Nomenclature

This dissertation follows the common nomenclature of structural dynamics, system
theory and linear algebra in general. Because of this interdisciplinary approach, mul-
tiple notation usage sometimes is unavoidable. In the following, repeatedly used,
important acronyms and notations are listed.

Acronyms

DARE Discrete-time Algebraic Riccati
Equation

EOC Environmental and Operational
Conditions

FEM Finite Element Model
MAC Modal Assurance Criterion
MIMO Multiple Input Multiple Output
OMA Operational Modal Analysis
SHM Structural Health Monitoring
SISO Single Input Single Output
SP2E State Projection Estimation Error
SSI Stochastic Subspace Identification

Systems

∆ System: y → d

H, H System: w, v → y

K System: y → ŝ

L System: w → s

TK System: w, v → s̃

Ω System: w, v → d

Π System: e → y

G System: f → x, ẋ, ẍ

Matrices

Π Lyapunov solution
H Impulse response matrix
I, 0 Identity and zero matrix
Kp Gain matrix
L Weighting matrix
M Input Gramian
M,K,D Mass, stiffness, damping matrix
N Control matrix
P, Σ Solution of Riccati equations

Px, Πx Projectors onto x
Q,R,S Gramians of w and v
Rx Gramian/covariance of x
Sx Spectral density of x
Sy,Σ Popov function
U, V Basis of spaces U and V

Y, Z Coupling matrices
A System matrix
B Control matrix
C Observer matrix
D Feed-through matrix

Operations〈
×
〉

Gramian matrix
‖×‖2 Matrix 2-norm, Euclidian dis-

tance
‖×‖F Frobenius norm
‖×‖

H
2 H

2-norm
‖×‖H∞ H

∞-norm
E{×} Expected value
×T Transpose
×∗ Conjugate transpose
×−1 Inverse
×−∗ Inverse of conjugate transpose
×† Moore-Penrose pseudoinverse

Spaces

H, K Hilbert and Krein space
U, V Complementary subspaces
W Vector space
N Non-negative natural numbers
R Real numbers
C Complex numbers

12



2.4 acknowledgements

Scalar Quantities

δkl Kronecker delta
γ Upper bound
k, l Discrete time-step
m Number of block rows/columns
Mx Measurement Position
N Number of samples
n Number of states
p Number of meas. positions
z Complex number
ω, θ Angular frequency
f Natural frequency
ζ Modal damping

Vectors

P̄ Average process power
∆t Time difference
λ, σ Eigenvalue, singular value
φ, ψ Mode shapes
d Difference process
e Estimation error
f Force vector
s Desired signal
u, y Input and output vector
v Measurement noise
w Process noise
x, z State vector
x, ẋ, ẍ Displacement and derivates
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3
MODELS BASED ON FIRST PRINCIPLES IN
STRUCTURAL DYNAMICS

Chapter Outline

This chapter covers important solutions of structural dynamics. For that, the main
concern can be seen as the determination of structural responses of an analytically
derived mechanical system due to known load excitations. To explain that, a funda-
mental classification between time and Laplace-domain solutions can be given, which
has been kept by sections 1 and 2. These models are derived following physical first
principles, especially Newton’s mechanics and the thereof derived analytical mechan-
ics. The term ’first principle based’ has been chosen on purpose to highlight that
empirical data is not primarily used here.

MECHANICAL SYSTEM
BY FIRST PRINCIPLES

SECTION 1
Time-Domain Solutions

Numerical Integration
State Space Representation

SECTION 2
Frequency-Domain Solutions

Fourier-Transformation
Modal Analysis

SECTION 3
Mechanical System Example

Modal Analysis of a Cantilever Arm

Known
Forces

Unknown
Responses

Figure 3.1: Chapter Outline

Most importantly, derivations following analytical mechanics are continuous-time so-
lutions, which then are implemented numerically in discrete-time. In the end an
illustrative mechanical system example is given to clarify the given results.
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3.1 Time-Domain Solution

3.1.1 Equation of Motion in Structural Dynamics

An engineering oriented analysis of a mechanical structure requires a usable model.
In the design phase of buildings, infrastructures and so forth the load capacity and
serviceability are typically studied. Here, first principles of mechanics are usually ap-
plied. Because of the high relevance of first principle based models, they are discussed
in the following. Although they are important in the design phase, an application dur-
ing operation for structural health monitoring is rather elaborate and cost-intensive.
Thus, just a brief overview of most important aspects is given.

A structural analysis also covers mechanical systems due to loads. These forces may
vary over time, which typically is considered in structural dynamics. To describe the
dynamic behaviour of a system, an equation of motion

M
(
x(t), ẋ(t), ẍ(t), f(t), t

)
= 0 (3.1)

typically is set up. At this point, the vector of external forces f ∈ RN, the displacement
vector x ∈ RN and its time derivations, velocity ẋ ∈ RN and acceleration ẍ ∈ RN, are
utilized. Very importantly, the degree of freedom N has been used here.

Most commonly, Newton’s second law of motion is used to derive analytical models
in structural dynamics. Based on Newton’s classical mechanics, analytical mechanics
arose to extend the theory. To name but a few approaches: i) Principle of virtual work,
ii) Hamilton’s principle, iii) principle of least action and so forth. Following analytical
mechanics, the well known equation of motion in structural dynamics

Mẍ(t) +Dẋ(t) +Kx(t) = f(t) (3.2)

can be defined, which is a widespread approximation (linearization) at an operating
point.4 As it is common-practice in structural dynamics, viscous damping and linear-
elastic system behaviour are presupposed approximately. The mechanical structure
itself is described by the physically derived stiffness matrix K ∈ RN×N, mass matrix
M ∈ RN×N and damping matrix D ∈ RN×N.

Due to Betti’s theorem, the Lagrangian formalism and the Rayleigh damping ap-
proach, all three matrices (K,M,D) are presumed here as positive definite and sym-
metric.4 Besides that, gyroscopic and circulatory forces have been explicitly omitted
above.

The equation of motion (3.2) is primarily known as a fundamental equation in fi-
nite element modelling and multi-body simulations. Besides their significance, both
methods are not described in this thesis.
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3.1 time-domain solution

As was explained before, a structural response x(t) shall be numerically determined
based on known system parameters (K,M,D), defined forces f and initial displace-
ments, velocities and accelerations (t = 0). To do so, the convolution

x(t) = G(t) ∗ f(t) =
t∫

0

G(t− τ)f(τ) dτ (3.3)

must be solved in general, which is elaborate. Here, matrix function G ∈ RN×N refers
to the structural response of the mechanical system due to a successive Dirac impulse
δ(t) excitation at each measurement position. As can be seen in equation (3.3), the
mechanical structure is comprehensively described by its impulse response function.

Unfortunately, based on the equation of motion (3.2), this approach is elaborate, as it
needs numerical integration. In opposite to that, a discrete-time process

xk =

k∑

l=0

Hk−lfl with Mẍk +Dẋk +Kxk = fk (3.4)

may be used instead, following the discrete-time impulse response Hk with t = k∆t

and k, l ∈ N. The numerical determination of these sequences is explained below
based on the general state space approach.

3.1.2 Mechanical Structures in State Space Form

State space systems allow the development of more comprehensive system analysis
techniques and lead to a general solution. Very importantly, mechanical structures
can be seen as a special case of state space systems with distinctive properties, in
opposite, for instance, to certain electrical components.

In the following, mechanical structures are discussed only. For that, the core concept
is the introduction of a state vector

z(t) =

[
x(t)

ẋ(t)

]
with z ∈ R2N . (3.5)

This state vector is used as an intermediate result, when analysing the mapping from
an excitation to the structural response. Following that approach, the equation of
motion (3.2) is equivalently rewritten to formulate a state space representation98, 99

[
D M

M 0

] [
ẋ(t)

ẍ(t)

]
+

[
K 0

0 −M

] [
x(t)

ẋ(t)

]
= Pż(t) +Qz(t) =

[
I

0

]
f(t) . (3.6)
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This approach allows to analyse the second order differential equation (3.2) as a first
order one. By reordering the above expression, a state space system in controllable
canonical form

ż(t) =

[
0 I

−M−1
K −M−1

D

] [
x(t)

ẋ(t)

]
+

[
0

M
−1

]
f(t) = Āz(t) + B̄f(t) (3.7a)

x(t) =
[
I 0

] [x(t)
ẋ(t)

]
= C̄dz(t) (3.7b)

with continuous-time parameters Ā ∈ R2N×2N, B̄ ∈ R2N×N and C̄d ∈ RN×2N arises.
Thus, continuous-time state space system G(Ā, B̄, C̄d) maps loads f(t) to measurable
displacements x(t) here, as is depicted in figure 3.2.

G
(
Ā, B̄, C̄d

)f x

Figure 3.2: Continuous-Time State Space System G

In practice (e.g. at a bridge) displacements x are elaborate to measure, because an
independent measuring base is necessary. Instead velocities and accelerations are
much easier to determine experimentally. Hence, the observer equation (3.7b) can be
replaced to measure velocities or accelerations by

ẋ(t) =
[
0 I

] [x(t)
ẋ(t)

]
= C̄vz(t) or (3.8)

ẍ(t) =
[
−M−1

K −M−1
D
] [x(t)
ẋ(t)

]
+M−1

f(t) = C̄az(t) + D̄af(t) . (3.9)

According to Ebert,25 these observer equations are based on

C̄v = C̄dĀ, C̄a = C̄dĀ
2, D̄v = C̄dB̄ = 0 and D̄a = C̄dĀB̄ . (3.10)

Following that, displacements, velocities and accelerations can easily be determined,
if states z(t) have already been computed. In the following, the index of C̄ and D̄ is
conveniently dropped and should be thought in context of the respective requirement.
Very importantly, a similarity transform with

z̃(t) = Tz(t), Ã = TĀT−1, B̃ = TB̄, C̃ = C̄T−1 and D̃ = D̄ (3.11)

alters the state z, while the structural response persists. Thus, the controllable canoni-
cal form in equation (3.7) is a special case of an infinite number of possible state space
structures according to a positive definite transformation matrix T > 0.
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3.2 frequency-domain solution

The numerical solution of equation (3.7a) can now be given. For that, the
analytical approach follows the convolution

z(t) = eĀtz0 +

∫ t

0
e
Ā(t−τ)

B̄f(τ)dτ . (3.12)

Therein matrix function eĀt is important, which can be determined differently, for
instance by the Cayley Hamilton theorem, series expansion or Taylor series.100 Most
importantly, it can be used to get the response of the mechanical system due to a
Dirac impulse excitation at each measurement point

G(t) = C̄eĀtB̄ if D̄ = 0 , (3.13)

which was used in equation (3.3).

In accordance with the equation of motion (3.4), discrete-time sequences with t = k∆t
must be applied. By assuming a constant input f during a time step ∆t, the discrete-
time state space observer equation

zk+1 = e
Āt
zk + Ā

−1
(
e
Āt − I

)
B̄fk = Azk +Bfk (3.14)

emerges. This method is also known as zero-order-hold, because it holds each sample
value for one sample interval, which leads to

A = eĀ∆t, B = Ā−1
(
e
Ā∆t − I

)
B̄, C = C̄ and D = D̄ . (3.15)

The shown discretization may be numerically disadvantageous due to high matrix ex-
ponential, among others. Thus, approximation solutions can be applied, for instance
the Tustin transform.25

Finally, an impulse response function Hk can be defined based on the discrete-time
parameters (A,B,C,D):

Hk =

{
D, k = 0

CA
k−1
B, k > 0

. (3.16)

This impulse response solution Hk is important, because it comprehensively describes
a mechanical system, as was explained for equation (3.4).

3.2 Frequency-Domain Solution

3.2.1 Laplace and Z-Transform

The determination of continuous-time structural responses are based on the convo-
lution of equation (3.3). Based on that, elaborate numerical integration methods are
necessary, as was explained before. At this point, a Laplace transform

x(t) = G(t) ∗ f(t) d t x(s) = G(s)f(s) with s = σ+ jω (3.17)
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models based on first principles in structural dynamics

allows much easier derivations.4 Hence, the elaborate convolution has been replaced
by a matrix multiplication. It is based on the two-sided Laplace transform L(×) and
its inverse L

−1(×), for instance

x̄(s) = L
(
x(t)

)
=

∞∫

−∞

x(t)e−st dt . (3.18)

Although the central signal information is analysed differently, it is preserved, be-
cause the Laplace transform is also referred to as a unitary linear operator.4 Further-
more, the transfer matrix function

G(s) =
(
Ms

2 +Ds+K
)−1 (3.19)

directly follows the Laplace transform of the equation of motion (3.2).

Here, a very important special case with σ = 0 is called the continuous-time Fourier
transform F, which is widely applied with s = jω: By computing the structural
response in frequency domain with x(jω), a time-domain solution can easily be given
by the inverse continuous-time Fourier transform x(t) = F

−1(
x(jω)

)
.

State space systems are advantageous, because their transfer matrix function
is generally known regardless of its application. Based on that, the transfer matrix
function for mechanical structures

G(s) =

∞∫

−∞

G(t)e−st dt = C̄
(
sI− Ā

)−1
B̄+ D̄ with

(
sI− Ā

)−1
= L

(
e
Āt) (3.20)

directly follows the impulse response matrix function in equation (3.13).

Besides the given continuous-time solution, a discrete-time approach is especially
necessary, when a measurement sequence is present. This is the typical case due to
digital technologies. For that, the two-sided z-transform

x(z) =

∞∑

k=−∞
xkz

−k with z = es∆t (3.21)

can be used. The z-transform converges to the Laplace transform with ∆t→ 0, as can
be seen by comparing equations (3.18) and (3.21).

However, the discrete-time state space representation is well known in z-domain by

H(z) =

∞∑

k=0

Hkz
−k = C(zI−A)−1B+D, for example x(z) = H(z)f(z) . (3.22)

In the above equation the unilateral z-transform of the discrete-time impulse matrix
function Hk in equation (3.16) has been used. By using discretization methods, an
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3.2 frequency-domain solution

error is unavoidable. This error is minimized for ∆t → 0, for example in frequency
domain by

G(jω) = lim
∆t→0

H
(
e
jθ) with θ = ω∆t, θ ∈ [−π,π] . (3.23)

Summarizing the given Laplace and z-transform applications, the frequency domain
results avoid elaborate numerical integration. Thus, advantageous solutions to deter-
mine structural responses can be used instead.

3.2.2 Modal Analysis of Mechanical Systems

Based on the results above, the vibrational properties of a mechanical structure can be
studied. This leads to an important mechanical system description. For that, consider
the search for zeros in

(
Ms

2 +Ds+K
)
x = 0 , (3.24)

which follows transfer matrix function G(s) in equation (3.19).

To find solutions λi = si to the above problem, the state space description is an
excellent approach. Thus, an eigenvalue analysis

(
Ā− λiI

)
ψi = 0 or

(
Q+ Pλi

)
ψi = 0 with Ā = −P−1Q (3.25)

must be solved.101 While the first approach follows system matrix Ā in equation
(3.7a), the second one is a generalization according to equation (3.6). Therefore, the
analytical solution is known by

λi,i+1 = −δi ± jωd,i = −ζiω0,i ± jω0,i
√
1− ζ2i and ψi =

[
φi
φiλi

]
. (3.26)

Here, an index i = 1, 3, . . . , 2N− 1 has been introduced, which marks complex con-
jugated mode pairs.

Furthermore, the undamped and damped angular frequencies ω0 and ωd, the decay
constant δ and the modal damping ζ has been used. Thus, the damped frequency and
the modal damping can be easily determined based on eigenvalues with

fi =
=
(
λi
)

2π
=
ωd,i

2π
and ζi = −

<
(
λi
)

|λi|
=

ζiω0,i√
ζ
2
iω

2
0,i +ω

2
0,i(1− ζ

2
i )

=
ζiω0,i

ω0,i
. (3.27)

Additionally, the generalized mode shapes φi+1 are the complex conjugate of φi.
101

For further analysis all modal results are reordered in compact matrices as

Ψ =
[
ψ1 ψ2 . . . ψ2N

]
=

[
Φ

ΦΛ

]
=

[
φ1 φ2 . . . φ2N
φ1λ1 φ2λ2 . . . φ2Nλ2N

]
. (3.28)
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models based on first principles in structural dynamics

The Jordan form of state space systems refers to a special representation in
diagonal canonical form. From a system theoretic view, poles of the mechanical struc-
ture, which numerically can be determined by eigenvalues λi, are diagonally placed
in the system matrix. This is achieved by applying the similarity transformation of
equation (3.11) with a chosen transformation matrix T = Ψ−1, which leads to

q(t) = Ψ−1
z(t), Λ = Ψ−1

ĀΨ, B̂ = Ψ−1
B̄ and Φ = C̄dΨ . (3.29)

Here, subelements are introduced for further analysis:

q
∗(t) =

[
q
∗
1(t) q

∗
2(t) . . . q

∗
2N(t)

]
and B̂

∗ =
[
b̂
∗
1 b̂

∗
2 . . . b̂

∗
2N

]
. (3.30)

This transform has very important implications: In accordance with the state evolu-
tion in equation (3.12), the time-domain result is a sum of independent generalized
mode shapes following

x(t) = Φq(t) =

2N∑

i=1

φiqi(t) with qi(t) = e
λitqi,0 +

∫ t

0
e
λi(t−τ)b̂if(τ)dτ . (3.31)

If velocities or accelerations shall be measured instead, the approach keeps very sim-
ilar, in general by Ĉ = C̄ψ with column vectors ĉi. This leads to a rewritten form of
the transfer matrix function of equation (3.20)

G(s) = D̄+ Ĉ
(
sI−Λ

)
B̂ = D̄+

2N∑

i=1

ĉib̂i
s− λi

. (3.32)

Centrally, the above statements define a mechanical structure as the sum of its vibra-
tional properties, especially mode shapes, natural frequencies and dampings.

3.2.3 Model Reduction of Mechanical Structures

From an application-oriented viewpoint, system norms can be seen as a response
measure of a system due to a standard excitation, especially the unit impulse (deter-
ministic) or white noise with standard deviation (stochastic).102 In this thesis system
norms are repeatedly used i) to apply model reduction and ii) as a basis for H

∞ es-
timation theory. While the second issue is treated in chapter 5, model reduction is
subsequently explained following Gawronski102 and Wirnitzer:103

Consider a continuous-time state space system, for instance G in equation (3.20), then
the H

2 and the H
∞ norm are

‖G‖2
H

2 =
1

2π

∫∞

−∞

∥∥G(jω)G∗(jω)
∥∥
F

dω, ‖G‖2H∞ = max
ω
σmax

(
G(jω)G∗(jω)

)
. (3.33)
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3.2 frequency-domain solution

A feed-through matrix D̄ should be ignored here, because a transfer matrix function
with G(jω) = D̄ for all ω leads to an infinitely large H

2 norm. However, for discrete-
time systems, like H in equation (3.22), slight changes are necessary:

‖H‖2
H

2 =
1

2π

∫π

−π

∥∥∥H(ejθ)H∗(ejθ)
∥∥∥
F

dθ, ‖H‖2H∞ = max
θ
σmax

(
H(ejθ)H∗(ejθ)

)
. (3.34)

Following Gawronski,102 both cases, the continuous and the discrete-time system
norms, are related by

‖G‖2
H

2 =
‖H‖2

H
2

∆t
and ‖G‖2H∞ = lim

∆t→0
‖H‖2H∞ . (3.35)

The norm of a vibrational mode can be determined based on the modal
description of equation (3.32). Modes arise complex conjugated for mechanical sys-
tems, thus mode pairs should be analysed by

∥∥Gi +Gi+1
∥∥2
H

2 ≈
‖ĉi‖22

∥∥b̂i
∥∥2
2

ζiω0,i
and

∥∥Gi +Gi+1
∥∥2
H
∞ =

‖ĉi‖22
∥∥b̂i
∥∥2
2

ζ
2
iω

2
0,i

. (3.36)

The complete mechanical structure then is the sum of its mode pairs in the case of H2

or the maximum in the case of H∞:

‖G‖2
H

2 =

2N∑

i=1

‖Gi‖2H2 and ‖G‖2H∞ = max
i
‖Gi‖2H∞ . (3.37)

Here, a feed-through matrix D̄ has been neglected again, as it is unusable for the H
2

case and it is presumed to have a small impact on the entire H
∞ norm.

Based on the above definitions, model reduction directly follows. Because a mechan-
ical structure is the sum of its vibrational modes, a straightforward model reduction
technique neglects modes, which are unnecessary. Formally, a state space system is
ordered as ’reduced’ Gr and ’truncated’ Gt by

G

([
Λr 0

0 Λt

]
,
[
B̂r
B̂t

]
,
[
Ĉr Ĉt

])
−→ Gr

(
Λr, B̂r, Ĉr

)
with G = Gr +Gt . (3.38)

The truncated system Gt is then analysed with the help of truncated modes, especially
equation (3.37). Hence, a possible model reduction error can be quantified by

e
H

2 = ‖Gt‖2H2 or eH∞ = ‖Gt‖2H∞ . (3.39)
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models based on first principles in structural dynamics

3.3 Structural Dynamics Example

3.3.1 Single Degree of Freedom System

In the following, the former derivations are applied at two mechanical systems of a
bending beam. These are in accordance with the laboratory structure, which is used
in chapter 7: A steel rectangular hollow section 80× 40× 2.9mm, which is depicted in
figure 7.2. At first a single input single output (SISO) system is analysed: Consider the
cantilever beam in figure 3.3 with Young’s modulus E = 2.1 · 1011N/m2 and a second
moment of area I = 17.7 · 10−8m4. Thus, flexibility δ and stiffness k follow with

δ =
1

3

l
3

EI
≈ 1.24× 10−4 m

N
and k =

1

δ
≈ 8.1× 103 N

m
= 8.1

N
mm

. (3.40)

l = 240cm

x(t) constant EI

Figure 3.3: Mechanical SISO System

Mass m and damping factor d are reasonably chosen as

m = 7.25 kg = 7.25
Ns2

m
= 7.25× 10−3 Ns2

mm
and d = 10

Ns
m

= 10−2
Ns

mm
. (3.41)

The mass followed the specific weight of structural steel γ = 78, 5kN/m3 and an area
of A = 6, 55cm2. In addition to that a sensor mass of mS ≈ 0, 95kg was presumed.
This illustrative structural dynamics example leads to modal data

f =
1

2π

√
k

m

(
1− ζ2

)
≈ 5.31Hz and ζ =

d

dcrit
=

d

2
√
km
≈ 2.1% . (3.42)

To measure displacements, a state space system G is defined, in accordance with
equation (3.7), with

ż(t) =

[
ẋ(t)

ẍ(t)

]
=

[
0 1

−m−1
k −m−1

d

] [
x(t)

ẋ(t)

]
+

[
0

m
−1

]
f(t) = Āz(t) + B̄f(t) (3.43a)

x(t) =
[
1 0

] [x(t)
ẋ(t)

]
= C̄dz(t) . (3.43b)
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3.3 structural dynamics example

This leads to the system norms of equation (3.33). Because a SISO system is analysed,
only one mode pair is present, whose norms are

‖G‖2
H

2 ≈ 6.2 and ‖G‖2H∞ ≈ 9.0 . (3.44)

These results can be interpreted best, when considering a standardized input,102 for
instance a unit impulse or a white noise excitation with standard deviation (determin-
istic or stochastic). Thus, a white noise excitation process with covariance Rf(0) = 1N

2

leads to an average structural response process power of Ry(0) = 6.2mm2, which can
be derived following the H

2 norm. Furthermore, the power spectrum Sy = F(Ry) at
the natural frequency is known by 9.0mm2. Here, the peak (maximum) was found by
the H

∞ norm.

3.3.2 Multi Degree of Freedom System

The former example shall now be extended. Thus, eight degrees of freedom are used
instead, which are depicted in figure 3.4.

5 30 30 30 30 30 30 30 30

245

M1 M2 M3 M4 M5 M6 M7 M8

[cm]

Figure 3.4: Mechanical MIMO System

At this point, a state space representation based on equations (3.7a) and (3.9) is used
to define a system G with

ż(t) =

[
0 I

−M−1
K −M−1

D

] [
x(t)

ẋ(t)

]
+

[
0

M
−1

]
f(t) = Āz(t) + B̄f(t) (3.45a)

ẍ(t) =
[
−M−1

K −M−1
D
] [x(t)
ẋ(t)

]
+M−1

f(t) = C̄az(t) + D̄af(t) , (3.45b)

which maps forces to accelerations. Again, the Youngs’s modulus E = 2.1 · 1011N/m
of structural steel and a second moment of area with I = 17.7 · 10−8m4 has been used.

To derive the flexibility matrix ∆, the principle of virtual forces has been applied.
Thus, displacements δij at measurement position i with regard to a virtual force ex-
citation at j have been determined. Afterwards δij are rearranged in the flexibility
matrix F ∈ R8×8, which then led to the stiffness matrix by inversion K = F−1.
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Figure 3.5: Analytical Modal Analysis: Normalized Mode Shapes (Circles) and Cubic
Spline Interpolation (Continuous Line)
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Figure 3.6: Norms of Mode Pairs

The mass and damping matrices have been reasonably chosen following the specific
weight γ = 78, 5kN/m3, A = 6, 55cm2 and a sensor mass of mS ≈ 0, 95kg. A diagonal
matrix M then emerges with

m1 ≈ 1.7
Ns2

m
, m2 = m3 = . . . = m8 ≈ 2.5

Ns2

m
, d1 = d2 = . . . = d8 = 10

Ns
m

. (3.46)

Based on above definitions a modal analysis has been conducted following equations
(3.25) and (3.27). The results are shown in figure 3.5. To get a clear representation,
the complex mode shapes have been normalized to be real valued and comparable.
Furthermore, a cubic spline interpolation has been conducted to enhance the represen-
tation in between measurement positions. Nevertheless, this interpolation is arbitrary,
and thus is for illustration purposes only. As can be concluded here, the computed
natural frequencies, mode shapes and modal dampings are plausible.

Finally, transfer matrix function G(jω) of equation (3.32) has been numerically com-
puted and was used to determine norms of mode pairs. The results are in accordance
to equation (3.36) and are shown in figure 3.6. As can be seen in this figure, the
maximum singular value of G(jω)G∗(jω) shows eight natural frequencies in verti-
cal direction. Then all eight complex conjugated mode pairs have been analysed by
systems norms as a whole with

‖G‖2
H

2 ≈ 1.1 · 106 and ‖G‖2H∞ ≈ 2.3 · 10
5 . (3.47)
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The H
2 norm of each mode pair determines the average structural response of the

appropriate natural frequency. Because the structural response is the sum of all eight
frequencies, the norm ‖G‖2

H
2 can be determined as the sum of squared H

2 norms of
all mode pairs.

Furthermore, the H
∞ norm of all mode pairs has been shown in figure 3.6, which

essentially gives the peak value due to a standardized input. Then the H
∞ norm

‖G‖2H∞ is the largest value, which here follows the eight mode.
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4
SUBSPACE IDENTIFICATION OF MECHANICAL
STRUCTURES

Chapter Outline

While chapter 3 mainly dealt with the structural response determination based on
known excitations and an analytically derived mechanical system, here the inverse
approach is undertaken: Based on measured structural responses and presumed (or
measured) excitations, a mechanical system is numerically determined by subspace
identification methods. Henceforth, discrete-time signals and systems are analysed
due to the necessary measurement digitization. Very importantly, these parametriza-
tion techniques have been defined for general processes and multiple-applicable state
space systems.

MECHANICAL SYSTEM
BY SUBSPACE ID.

SECTION 2
Deterministic Identification

Method of Ho-Kalman
Input-Output: N4SID

SECTION 3
Stochastic Identification

Covariance-Based
Data-Driven & CCA

SECTION 4
Corresp. Mech. Parameters

Damage Localization
Bridge near by Hünxe

SECTION 5
Mechanical Sys. Example

Operational Modal An.
Gain Determination

Known
Excitation

Measured
Responses

Barely

Applicable

SECTION 1
Projection Techniques: Basis of Subspace Methods

Figure 4.1: Chapter Outline

In this chapter the focus relies on the identification of mechanical structures. Based
on projection techniques (section 1), deterministic subspace identification is explained
first in section 2, leading the way for further analyses. Afterwards, stochastic subspace
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subspace identification of mechanical structures

identification is discussed comprehensively in section 3. Additionally, method varia-
tions are also given.

Although corresponding mechanical parameters can be determined (e.g. for damage
localization) based on known or measured excitations (section 4), it is barely useful
when input processes are unknown. This will be explained in the end at the opera-
tional modal analysis example of the last section.

4.1 Projections in Linear Algebra

4.1.1 Selected Matrix Decompositions

Projection techniques are essential elements of subspace methods and rely on nu-
merical methods. To understand numerical methods for projections, several matrix
decompositions must be revisited. For that, the eigenvalue analysis is shown first.

Consider an invertible matrix A ∈ Cn×n. Then n eigenvalues λ and eigenvectors
x ∈ Cn, x 6= 0 exist, which characterize matrix A. Most importantly, by multiplying
A and x the direction remains, thus Axi = λixi. Eigenvalue λi then serves as a scaling
factor for xi. Furthermore, a matrix is called positive definite, positive semi-definite,
negative definite, negative semi-definite or indefinite according to its eigenvalues.
However, all eigenvalue analysis results are typically condensed in block form with
Λ, X ∈ Cn×n as

AX = XΛ with X =
[
x1 x2 · · · xn

]
, Λ = diag

(
λ1, λ2, · · · , λn

)
. (4.1)

By reordering, the eigendecomposition A = XΛX
−1 emerges. Only if matrix A is

symmetric, the inverse X−1 = X∗. Furthermore, the shown eigenvalue analysis can be
generalized on the basis of invertible matrices C,B ∈ Cn×n to

Bxi = Cλixi with A = C−1
B . (4.2)

The QR decomposition is another important matrix decomposition, because
it allows to determine a recursive eigenvalue algorithm. The idea is to introduce a
unitary matrix Q ∈ Cn×n (QQ∗ = I) and an upper triangular matrix R ∈ Cn×n to
define a decomposition

A = QR or A
∗ = LQ∗ with L = R∗ . (4.3)

Several methods have been defined to determine the QR factorization, like the Gram-
Schmidt procedure.20 The actual eigenvalue determination based on the QR decom-
position follows

Ak = QkRk and Ak+1 = RkQk for k ∈N . (4.4)

By complying certain conditions, Ak+1 converges to the so called Schur form, which
has eigenvalues on its principal diagonal.104
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4.1 projections in linear algebra

The singular value decomposition (SVD) is a generalization of the eigen-
decomposition to arbitrary matrices A ∈ Cm×n. The central idea is to determine the
eigendecomposition of

AA
∗ = UΣΣ∗U∗ and A

∗
A = VΣ∗ΣV∗ . (4.5)

Thus, singular values σ(A) =
√
λ(AA∗) =

√
λ(A∗A) can be determined. Here, the

left and right singular vectors U ∈ Cm×m and V ∈ Cn×n have been used, which are
orthonormal eigenvectors of AA∗ and A∗A respectively. Those unitary matrices are
important because U−1 = U∗ and V−1 = V∗.

A central element of this technique are singular values σi, which are condensed to

Σ =
[
diag

(
σ1, σ2, · · · , σr

)
0
]

if n > m . (4.6)

These singular values are crucial characteristics, as they give the rank r of a matrix,
among others. Very importantly, the singular value decomposition

A =
[
U1 U2

] [Σ1 0

0 Σ2

] [
V
∗
1

V
∗
2

]
≈ U1Σ1V∗1 with Σ2 → 0 (4.7)

allows to distinguish between U1 ∈ Cm×r and U2 ∈ Cm×(m−r) according to singular
values, which also is applicable for V1 ∈ Cn×r and V2 ∈ Cn×(n−r). This allows to
efficiently determine fundamental subspaces of matrix A, especially

i) the column space C(A) = span (U1),

ii) the row space R(A) = span (V1),

iii) the null space (kernel) N(A) = span (V2) and

iv) the left null space (cokernel) N(A∗) = span (U2).

One important application of singular values is the determination of matrix norms,
which constantly will be reused in this thesis:

‖A‖2 = σmax, ‖A‖2F =
r∑

i=1

σ
2
i . (4.8)

4.1.2 Orthogonal Projections

The projection technique allows to conduct linear transformations onto certain vector
spaces. For that, the column space projector P and the row space projector Π are
introduced. As it follows central presumptions, projectors must be idempotent, thus
P
2 = P and Π2 = Π. To define matrix projections, the row space projector

ΠB = B†B = B∗
(
BB
∗)−1

B (4.9)
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is defined. By applying ΠB to an appropriate matrix A, the orthogonal projection of
A onto B

AΠB = AB∗
(
BB
∗)†
B with Π

B
⊥ = I−ΠB (4.10)

is conducted. A geometrical illustration is given in figure 4.2. The orthogonal com-
plement of row space B is easily determined based on Π

B
⊥ .

span(B)

A

AΠB

AΠB⊥

Figure 4.2: Orthogonal Projection of A onto B

Besides that, the projection operator onto the column space of B is given by

PB = B†B =
(
B
∗
B
)−1
B
∗ with P

B
⊥ = I− PB . (4.11)

Numerical methods for the computation of orthogonal projection operators
can now be given following de Cock.105 By considering a singular value decomposi-
tion

B =
[
U1 U2

] [Σ1 0

0 0

] [
V
∗
1

V
∗
2

]
, (4.12)

row and column space projection operators are numerically advantageous derivable
by

PB = U1U
∗
1, P

B
⊥ = U2U

∗
2, ΠB = V1V

∗
1 and Π

B
⊥ = V2V

∗
2 . (4.13)

Another useful numerical method is the application of LQ-factorization
[
B

A

]
=

[
L11 0

L21 L22

] [
Q
∗
1

Q
∗
2

]
with I = QQ∗ =

[
Q1 Q2

] [Q∗1
Q
∗
2

]
. (4.14)

By applying L and Q, row space projection operator

ΠB = Q1Q
∗
1, Π

B
⊥ = Q2Q

∗
2 = I−Q1Q

∗
1 (4.15)

and projection results are easy determinable105 by

AΠB =
(
L21Q

∗
1 + L22Q

∗
2

)(
Q1Q

∗
1

)
= L21Q

∗
1 and AΠ

B
⊥ = L22Q

∗
2 . (4.16)
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4.1.3 Oblique Projections

Orthogonal projections are a special case of oblique projections.17 This more general
linear algebra method can be explained easily by defining sub blocks in equation (4.9),
which leads to

Π[B
C

] =
[
B
∗
C
∗]
[
BB
∗
BC
∗

CB
∗
CC
∗

]−1 [
B

C

]
. (4.17)

The orthogonal projection operator can be split up in two oblique projection opera-
tors17 with the help of

Π[B
C

] = ΠB,‖C +ΠC,‖B . (4.18)

A

span(B)

span(C)

AΠ[B
C

]

AΠB,‖C

AΠC,‖B

span
([
B
C

])

Figure 4.3: Oblique Projection of A

While ΠB,‖C is the projector onto B along C, matrix ΠC,‖B allows the converse projec-
tion. Both oblique projectors

ΠB,‖C =
[
B
∗
C
∗]
[
BB
∗
BC
∗

CB
∗
CC
∗

]−1 [
B

0

]
, ΠC,‖B =

[
B
∗
C
∗]
[
BB
∗
BC
∗

CB
∗
CC
∗

]−1 [
0

C

]
(4.19)

are illustrated at an example in figure 4.3. A numerical solution can be given on the
basis of a LQ∗-factorization

AΠC,‖B = L32L
†
22C, AΠ[B

C

] = L31Q
∗
1 + L32Q

∗
2 with



B

C

A


 =



L11 0 0

L21 L22 0

L31 L32 L33





Q
∗
1

Q
∗
2

Q
∗
3


 .

(4.20)
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4.2 Deterministic Subspace Identification

4.2.1 Introduction to System Identification

Mathematical systems are applied in many scientific fields, like physics, economy,
biology and so forth.17 Especially in structural dynamics, mechanical systems are
analysed, for example bridges and towers. To determine a system, basically two fun-
damentally different approaches can be taken: At one hand there is the analytical
white-box approach based on first principles, which has been explained in chapter 3.
In contrast to that, the system identification black-box approach allows the determina-
tion of far less complex models. Most importantly, the identification of a mechanical
structure during its operational phase allows a comprehensive system analysis, for
instance to automatically localize structural damage.

To identify a system, the first important question is the choice of model. For that,
at least some a priori engineering based knowledge of the structure must be known.
Here, the discrete-time linear time-invariant system is state-of-the-art . Although this
probably is a simple choice, it is the most common approach for mechanical systems.
Thus, non-linear behaviour usually is linearized at a certain working-point.

Secondly, model validation is a key element to evaluate whether the identification
process has been successful or not. A comprehensive overview of the system identifi-
cation workflow is given by Katayama and van Overschee.17, 19 As can be seen there,
the model choice and its validation based on the chosen identification technique is a
trade-off, usually of numerical accuracy, time-consumption and so on. At this point
it is important to understand that identification techniques always lead to an approx-
imation of real systems, and a ’true’ system does not exist.19

The classical approaches for system identification are prediction error methods (PEM),
which have been developed to parametrize single input single output (SISO) autore-
gressive moving average (ARMA) models.106 Since then multi input multi output
(MIMO) systems can be parametrized too and are convertible to more advantageous
state space systems. Nevertheless, MIMO identification remains with numerical diffi-
culties due to local minima in contrast to global solutions.19

Besides prediction error methods, subspace identification techniques are more appro-
priate approaches. Its name follows a common technique of linear algebra, namely
the orthogonal and oblique projection in certain (sub-)spaces, which have been de-
scribed before. The core of subspace identification is the determination of system
states by projection techniques. Then a least-squares problem, defined on the basis of
estimated states, leads to the parametrization of the searched state space system with
the help of numerical methods.19

Hence, subspace identification methods generally are more appropriate to parametrize
MIMO systems, which thus are discussed in this chapter. These techniques are
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based on numerical methods, especially the QR and the singular value decomposi-
tion (SVD), which allow to avoid non-linear optimization techniques.

A linear, discrete-time state space system follows the above statements
and shall be parametrized. It is denoted by H:

xk+1 = Axk +Buk +wk (4.21a)
yk = Cxk +Duk + vk . (4.21b)

The above state space equation (4.21) is a generalization of the mechanical system
state evolution equation (3.14). Here, the general input and output processes u ∈ Rq
and y ∈ Rp have been used. In the case of a mechanical system, forces, displace-
ments, velocities, accelerations and so forth can be used. The number of excitation
and measurement points q and p can be different. In opposite to the first principle
based mechanical system in equation (3.7), the degree of freedom N is unused here.

Besides the deterministic (known) input u, disturbance processes w and v are intro-
duced, which in general are unknown. Process noise w ∈ Cn disturbs state vector x
and has in general no physical pendant, because of a possibly non-physical definition
of state vector x. For mechanical systems, w might be, in a broader sense, in conse-
quence of non-measurable ambient excitations, like wind, traffic, waves and so on. In
opposite to that, measurement noise v ∈ Rp refers to static noise, quantizing noise,
numerical inaccuracies and so forth.

Most importantly, state vector x ∈ Cn is used, which may be without physical mean-
ing, in contrary to z in equation (3.14). At this point the number of states n directly
follows system identification techniques and not necessarily is 2N, which can be in
contrast to the analytically derived mechanical system.

The system itself is described by matrices A ∈ Cn×n, B ∈ Cn×q, C ∈ Cp×n and
D ∈ Rp×q. Based on that, a similarity transformation with

x −→ Tx and H
(
A,B,C,D

)
−→ H

(
TAT

−1, TB,CT−1,D
)

(4.22)

can be conducted. Because a mechanical structure is represented in a state space form,
the system properties are advantageously analysable, for instance by controlability,
observability and stability. Furthermore, the transfer matrix function and the discrete-
time impulse function

H(z) = C
(
zI−A

)−1
B+D and Hk =

{
D, k = 0

CA
k−1
B, k > 0

(4.23)

easily follow defined state space parameters, which is in accordance with equations
(3.16) and (3.22) .

Identification theories may cover the parametrization of state space pa-
rameter A, B, C and D based on measured quantities, for example impulse response
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matrices Hk, a transfer matrix function H(ejθ), input-output data or system responses
only (output-only). To do so, various identification techniques have been developed,
which give a solution for the named realization problems, namely the method of
Ho-Kalman,21 stochastic realization,26 canonical variate analysis,27 numerical algo-
rithms for subspace state space identification (N4SID),22 multivariable output error
state space (MOESP),17 canonical correlation analysis,29 orthogonal decomposition
technique19 and so forth.

In the following, the method of Ho-Kalman and the numerical algorithms for sub-
space state space identification (N4SID) are presented. These deterministic approaches
serve as an ideal theoretical foundation for the subsequent stochastic subspace iden-
tification derivations.

4.2.2 The Method of Ho-Kalman

As has been explained for equation (3.4), a mechanical system is comprehensively de-
scribed by its impulse response sequence Hk. Following that an appropriate technique
is shown below, namely the method of Ho-Kalman.21 It can be seen as the theoreti-
cal basis for subsequently explained subspace identification techniques. Nevertheless,
instrumentation conditions for impulse experiments at large-scale structures, for in-
stance bridges, are very disadvantageous, as will be pointed out in section 4.4.4.

The method of Ho-Kalman21 utilizes measured impulse response matrices Hk with
k ∈N to determine A, B, C and D. Essentially, this technique is the inverse approach
to equation (4.23). Thus, D = H0 can be determined very easily. To derive triplet
(A,B,C), further assumptions are necessary, especially



y0
y1
...




︸ ︷︷ ︸
y+

=



H1 H2 · · ·
H2 H3
... . . .




︸ ︷︷ ︸
H̄∞



u−1
u−2

...




︸ ︷︷ ︸
u−

and uk

{
6= 0, k < 0

= 0, k > 0
. (4.24)

Basically, past inputs can be arbitrary and must stop at k = 0. Thus, a discrete-
time pulse-function with u(−1) = 1/∆t and u(k) = 0 for k 6= −1 can be used in
theory above. Then future measurements y+ = [yk]

∞
k=0 only depend on past inputs

u− = [uk]
−1
k=−∞, which are related by a Hankel matrix H̄∞.

The infinite dimensional Hankel matrix H̄∞ is the key element for the identification,
because it has a finite rank n. Hence, a truncated block Hankel matrix H̄m ∈ Rpm×qm
can be defined which has the identical rank n. Here, index m refers to the number of
block rows and columns. Afterwards, a factorization in extended observability and
controllability matrices

H̄m = OmC̄m with rank(H̄m) = rank(Om) = rank(C̄m) = n (4.25)
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is introduced. A detailed description of this factorization follows equation (4.23) and
is defined by




CA
0
B CA

1
B · · · CA

m−1
B

CA
1
B CA

2
B

...
... . . .

CA
m−1

B CA
2m−1

B



=




C

CA
...

CA
m−1



[
B AB · · · Am−1

B
]

. (4.26)

An efficient numerical solution has been found a decade after the orig-
inal proposition of Ho and Kalman by Zeiger and McEwen.107 It follows a singular
value decomposition (SVD)

H̄m =
[
U1 U2

] [Σ1 0

0 Σ2

] [
V
T
1

V
T
2

]
≈ U1Σ1VT1 (4.27a)

with Om = U1Σ
1/2
1 , C̄m = Σ

1/2
1 V

T
1 . (4.27b)

This can be seen as the determination of subspaces of Hm, namely the column and
row spaces by U1 and V1. The number of relevant singular values σi and left/right
singular vectors is defined by n. This choice typically is determined by σ1 > σ2 >
. . . σn � σn+1. Hence, by neglecting σi with i > n, additional measurement noise can
be rejected.29

Finally, the minimal triplet (A,B,C) can be determined on the basis of extended ob-
servability and controllability matrices. For that, C and B can be taken as the first
block elements of Om and C̄m. To determine system matrix A, the Moore-Penrose
pseudoinverse of the observability matrix can be computed by

A = O
†
m−1O

↑
m with




C

CA
...

CA
m−2




︸ ︷︷ ︸
Om−1

A =




CA

CA
2

...
CA

m−1




︸ ︷︷ ︸
O
↑
m

. (4.28)

In summary, the method of Ho and Kalman is perfect to parametrize a mechanical
system based on impulse response experiments. Practical issues for that are discussed
in section 4.4.2.
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4.2.3 Numerical Algorithms for Subspace State Space Identifica-
tion (N4SID)

A very powerful input-output subspace identification technique, namely numerical
algorithms for subspace state space identification (N4SID), has been developed by van
Overschee and de Moor.22 This method is based on measured input-output data with
[uk]

N
k=0 and [yk]

N
k=0. For instance exciting forces u and accelerations of a mechanical

structure y can be measured.

To derive the identification technique, several notations must be explained first. For
that, measurement data is reordered in block form as

Yk(m|i) =




yk yk+1 . . . yk+i−1

yk+1 yk+2
...

... . . .
yk+m−1 . . . yk+m+i−2




. (4.29)

Equivalently to Yk(m|i) ∈ Rmp×i, the input block matrix Uk(m|i) is identically con-
structed based on u. The notation has been chosen to instantly see the number of
block rows m and columns i. This allows to comprehensively rewrite the state space
system of equation (4.21) without noise disturbances in block form as

Yk(m|i) = OmXk(i) +ΨmUk(m|i) with Xk(i) =
[
xk xk+1 . . . xk+i−1

]
. (4.30)

At this point, an extended observability matrix and a Toeplitz matrix have been de-
fined by

Om =




C

CA
...

CA
m−1


 and Ψm =




D 0 0 0

CA
0
B D 0 0

... . . . 0

CA
m−2

B . . . CA
0
B D


 . (4.31)

Oblique projections are used in the following to estimate system states based
on above definitions. This is a central idea of subspace identification, in contrary to
prediction error methods (PEM). For that, a past and a future data space is defined,
which essentially is the basic approach for several subspace identification techniques:

Wp =

[
Up
Yp

]
=

[
U0(m|i)

Y0(m|i)

]
, Wf =

[
Uf
Yf

]
=

[
Um(m|i)

Ym(m|i)

]
and

[
Xp
Xf

]
=

[
X0(i)

Xm(i)

]
. (4.32)

Following that approach, the available amount of data must be taken into account,
thus N > 2m+ i− 2. To estimate states, the oblique projection of Yf onto Wp along Uf

YfΠWp,‖Uf
= OmXf with span

(
Xf
)
⊂
(

span
(
Wp

)
∩ span

(
Wf

))
(4.33)
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Yf

span(Uf)

span(Wp)

Ŷf

ΨmUf

OmXf

span
([

Uf
Wp

])

Figure 4.4: Oblique Projection of Yf

leads to the desired result. This follows a geometrical approach of central system
equations and its theoretical core is depicted in figure 4.4.

There are several numerical methods to determine projections. Here, the oblique
projection is efficiently conducted with the help of a LQT decomposition

YfΠWp,‖Uf
= L32L

†
22Wp = OmXf with



Uf
Wp

Yf


 =



L11 0 0

L21 L22 0

L31 L32 L33






Q
T
1

Q
T
2

Q
T
3


 . (4.34)

To understand this oblique projection, revisit equation (4.20). According to Katyama,19

L33 should be a zero matrix, which allows certain theoretical simplifications.

The parameter identification follows the block matrix of future states Xf.
To determine this matrix, a singular value decomposition (SVD) is used analogue to
equation (4.27) by

OmXf =
[
U1 U2

] [Σ1 0

0 Σ2

] [
V
T
1

V
T
2

]
≈ U1Σ1VT1 (4.35a)

with Om = U1Σ
1/2
1 , X̂f = Σ

1/2
1 V

T
1 . (4.35b)

Henceforth, estimates are noted by ×̂. Again, the rank n must be chosen, which
determines the system order. Based on estimated states in block form X̂f = X̂m(i)

with X̂m(i) ∈ Cn×i, the state space system of equation (4.30) can be rewritten. This
leads to a least-squares approach

[
Xm+1(j)

Ym(1 | j)

]
=

[
A B

C D

] [
Xm(j)

Um(1 | j)

]
−→

[
A B

C D

]
=

[
X̂m+1(j)

Ym(1 | j)

] [
X̂m(j)

Um(1 | j)

]†
(4.36)
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with j = i− 1. That finally allows to determine all state space parameters A, B, C and
D. To verify this result, the system output is estimated by

Ŷm(1 | j) =
[
C D

] [ X̂m(j)
Um(1 | j)

]
with Ŷm(1 | j) =

[
ŷm ŷm+1 . . . ŷm+i−2

]
. (4.37)

These estimates are based on deterministic inputs, and thus are denoted by yd. A
comparison to initially measured signals y allows to verify the result based on ys =
y− yd.19 However, there are several variations of this method, for instance the Po-
MOESP method30 and the orthogonal decomposition technique.19 Usually, the iden-
tification of a stochastic subsystem according to w and v follows ys. In the following,
the identification of ys is explained, which also is possible for yd = 0. This is the case
when deterministic inputs u are unknown.

4.3 Stochastic Subspace Identification

4.3.1 Covariance Based Stochastic Subspace Identification

The identification based on known deterministic input data, which has been formerly
developed in mechanical engineering,15 is the theoretical foundation for stochastic ap-
proaches. Although deterministic methods are powerful, an experiment with impulse
or sweep excitations is very elaborate for large-scale structures.25 Because active test
loads can be omitted, ambient vibrations, for example wind, traffic, waves, are more
preferable. Thus, stochastic subspace identification can be used instead.

Stochastic subspace identification, traditionally also referred to as stochastic realiza-
tion, has been comprehensively developed several decades ago by Faurre, Akaike,
van Overschee and so forth.17, 26, 28 Nevertheless, it has been recently popularized for
operational modal analysis (OMA). Especially Peeters, de Roeck, and Reynders108, 109

applied stochastic identification methods for modal analysis. An overview of opera-
tional modal analysis can be found in Magalhães et al.15, 110

The presumptions of stochastic subspace identification are very important to
understand the method’s capability: An ergodic (strongly stationary) measurement
process y ∈ Rp is presumed, which in general could be market prices, weather data,
cell growth rates and so on. Typically, accelerations are measured in structural health
monitoring. In the named research field velocities, displacements, strains and inclina-
tions are also sometimes considered.

The measurement data is gathered by [yk]
N
k=0 in discrete-time and k ∈N with t = k∆t.

All statistical moments of y are time-independent, which leads to an auto-covariance
function

Ry(l) = E
{
yk+ly

T
k

}
with Ry ∈ Rp×p . (4.38)
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Here, a sufficient long measurement duration is necessary, which should be used to
determine the covariance function Ry(l) of equation (4.38) by averaging. This will
be explained at an example in section 7.1 of chapter 7, devoted to the laboratory
experiments. However, the spectral density function

Sy(z) = Z
(
Ry(l)

)
=

∞∑

l=−∞
Ry(l)z

−l with Sy ∈ Cp×p (4.39)

follows by applying the well-known Wiener-Khinchine theorem, which is applied here
based on the z-transform of Ry.

Most commonly, the Fourier transform F
(
Ry(l)

)
with z = e

jθ is applied here.4 How-
ever, a deterministic input u is explicitly unknown, thus state space parameters B and
D in equation (4.21) are non-determinable. Hence, a state space model H(A,C) shall
be parametrized by stochastic subspace identification:

xk+1 = Axk +
[
I 0

] [wk
vk

]
= Axk +wk (4.40a)

yk = Cxk +
[
0 I

] [wk
vk

]
= Cxk + vk . (4.40b)

wk +

+
z−1 C

+

+
vk

yk

A

xk+1 xk

Figure 4.5: Time-Invariant System H

State space model H, is depicted in figure 4.5 and is defined by its time-invariant
parameters A ∈ Cn×n and C ∈ Cp×n. Time-invariant system H maps disturbance
processes w and v to measured quantities y. Central element of the state space system
are states x ∈ Cn, which are disturbed by process noise w ∈ Cn.

In large-scale structures ambient vibrations induce mechanical oscillations, for in-
stance wind excitations, earthquakes, waves at offshore structures, traffic at bridges,
and so on. Besides w, measurement noise v ∈ Rp alters process y, for example noise
in electrical wires, quantizing noise and so forth. Both signals w and v are typically
unmeasurable and unknown. Although both disturbance processes may be arbitrary
in real-life applications, they are conveniently modelled as mean-free, white noise
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processes with defined second-order statistical parameters,19 which is a theoretical
presumption only:

E

{[
wk
vk

] [
wl
vl

]∗}
=

[
Q S

S
∗
Rv

]
δkl =Mδkl . (4.41)

Spectral factorization is a very powerful approach to understand stochas-
tic subspace identification, which follows the above definitions. It focuses on the
factorization of spectrum Sy in equation (4.39)

Sy(z) = H(z)MH
∗(z−∗) based on H(z) =

[
Hw(z) I

]
=
[
C(zI−A)−1 I

]
. (4.42)

The spectral factorization and its general form, the Popov function, are concepts of
system theory, and thus will be excessively discussed at its appropriate position in
section 5.2.

Very importantly, the factorization of Sy is not unique. Although Sy(z) remains, an
infinite number of matrices M are possible due to different state definitions.19, 20 Be-
cause w and v are non-measurable, matrix M can be altered by

M(Π) = E

{[
wk
vk

] [
wk
vk

]∗}
=

[
Q S

S
∗
Rv

]
=

[
Π−AΠA∗ N−AΠC∗

N
∗ −CΠA∗ Ry(0) −CΠC

∗

]
> 0 . (4.43)

This approach is based on the covariance matrix of states Π ∈ Cn×n, which follows
the unique solution of Lyapunov equation

Π = AΠA∗ +Q with E







wk
vk
xk


 [w∗k v

∗
k x

∗
k 1

]


 =



Q S 0 0

S
∗
Rv 0 0

0 0 Π 0


 . (4.44)

These definitions lead to a matrix N ∈ Cn×p, which is a key element for covariance
based stochastic subspace identification. It is derived by

N = E
{
xk+1y

T
k

}
= E
{(
Axk +wk

)(
Cxk + vk

)T}
= AΠC∗ + S . (4.45)

Covariance based stochastic subspace identification is a common
technique to parametrize state space model H(A,C) of equation (4.40) based on sys-
tem responses only (output-only). Its core element are factorized covariance matrices

Ry(l) =





CA
l−1
N, l > 0

Rv +CΠC
∗, l = 0

R
T
y(−l), l < 0

. (4.46)

Here, it is more engineering oriented to discuss spectra, because structural dynamics
typically analyses modal data. At this point compare to the discussion of chapter 3,
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especially section 3.2.2. Thus, an equivalence in z-domain directly follows equation
(4.43) with Π = 0:

Sy(z) = H(z)M(0)H∗(z−∗) =
[
C(zI−A)−1 I

] [ 0 N

N
∗
Ry(0)

] [
C(zI−A)−1 I

]∗
. (4.47)

The stochastic realization problem, which was addressed first by Faurre,26 follows:
Based on a measured process y, and thus a known covariance function Ry(l), deter-
mine reasonable state space parameters (A,C) and covariance matrices (Q,R,S). As
can be seen in equation (4.47), the quadrupel

(
A,N,C,Ry(0)

)
is a solution to that.

Therefore, the central idea is the adaptation of deterministic realization method of Ho
and Kalman21 (section 4.2.2) to covariance matrices, as Aoki111 points out. Thus, con-
sider the arrangement of known covariance matrices Ry(l) in an infinite dimensional
and a truncated block Hankel matrix

H∞ =




Ry(1) Ry(2) Ry(3) . . .

Ry(2) Ry(3) Ry(4)

Ry(3) Ry(4) Ry(5)
... . . .


 and Hm =




Ry(1) Ry(2) . . . Ry(m)

Ry(2) Ry(3) . . .
...

...
... . . .

Ry(m) . . . Ry(2m− 1)




.

(4.48)

Although block Hankel matrix H∞ is infinite dimensional, it has a finite rank n.19

Hence, it is appropriate to consider the finite dimensional block Hankel matrix Hm ∈
R
pm×pm, because rank(H∞) = rank(Hm).

112 Again, m is the number of block rows
and columns.

Following theoretical descriptions of Ry in equation (4.46), extended observability and
controllability matrices Om and Cm are applied to factorize the block Hankel matrix

Hm = OmCm with rank(Hm) = rank(Om) = rank(Cm) = n . (4.49)

Equivalently to H̄m in equation (4.26), block Hankel matrix Hm is factorized here by




CA
0
N CA

1
N · · · CA

m−1
N

CA
1
N CA

2
N

...
... . . .

CA
m−1

N CA
2m−1

N



=




C

CA
...

CA
m−1



[
N AN · · · Am−1

N
]

. (4.50)

Henceforth, the approach for both Hankel matrices H̄m and Hm nearly are identical.
Thus, a singular value decomposition

Hm =
[
U1 U2

] [Σ1 0

0 Σ2

] [
V
T
1

V
T
2

]
≈ U1Σ1VT1 (4.51a)

with Om = U1Σ
1/2
1 and Cm = Σ

1/2
1 V

T
1 (4.51b)
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must be applied to determine rank n. Based on that, the extended observability and
controllability matrices Om and Cm are determinable. This leads to the determina-
tion of the triplet (A,N,C) based on equation (4.28), which nearly is identical to the
method of Ho-Kalman. In summary, state space system H(A,C) of equation (4.40)
and figure 4.5 is fully parametrized. This can be applied to determine modal data.

Operational modal analysis comprises the utilization of stochastic system
identification techniques for modal analysis. Its core are ambient excitations (see
above). Thus, the stochastic realization method of Faurre26 has been restated as co-
variance based stochastic subspace identification (SSI-Cov) by Peeters et al.108 The
focus therein is set on modal identification, which is realized by comparing a mechan-
ical system in state space form, especially equation (3.7) in chapter 3, to the identified
general system of equation (4.40). Based on that, the modal identification of section
3.2.2 can be partially applied. Although this approach leads to useful results, the fun-
damental different system derivations (first principles and system identification) must
be kept in mind. For example the non-conform definitions of the degree of freedom
N and the number of measurement position p illustrates radical differences.

The central idea of modal analysis is to treat the identified discrete-time parameter
A like it was derived by analytical mechanics. Of course the analytically derived
and the numerically identified system matrix A may be different, thus physical pa-
rameters (e.g. stiffness and mass) are non-determinable at this point. If this is kept
in mind, the numerically identified state space parameters must be transformed to
continuous-time based on the zero order hold method of equation (3.15) to conduct
an eigendecomposition

Ā = XΛX−1 with Ā =
Ln(A)
∆t

and C̄ = C . (4.52)

Here, the difference of eigenvectors X in comparison to Ψ of equation (3.28) are evi-
dent. The subsequent modal analysis follows section 3.2.2: According to Brincker et
al.113 the eigenvalues of system matrix A

λi,i+1 = −δi ± jωd,i = −ζiω0,i ± jω0,i
√
1− ζ2i , i = 1, 2, . . . , n (4.53)

are directly applied to compute natural frequencies f, modal dampings ζ and unscaled
mode shapes φ by

fi =
=
(
λi
)

2π
=
ωd,i

2π
, ζi = −

<
(
λi
)

|λi|
and Φ =

[
φ1 φ2 . . . φn

]
= C̄X . (4.54)

Only if complex conjugated eigenvalues λi,i+1 occur, a mechanical relevant property
may be found. Otherwise, certain states surely describe noise terms. Nevertheless,
these modal results are very powerful, because they are based on structural measure-
ments only. Hence, imprecise a priori presumptions can not be present in the above
results. However, a possibly lower mode shape resolution and an arbitrary mode
shape scaling (due to unknown excitations) are commonly accepted disadvantages.
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4.3 stochastic subspace identification

Summary: Covariance Based Stochastic Subspace Identification

i) Measure system responses y, for example accelerations due to an ambient exci-
tation. Based on that, determine the covariance function Ry(l) of equation (4.38)
by averaging a sufficient amount of measurement data.

ii) The block Hankel matrix of equation (4.48) must be constructed and analysed
by singular value decomposition. Therefore, the number of block rows and
columns m has to be reasonably chosen.

iii) Based on (U,Σ,V), determine model order n in equation (4.51), which leads to
triplet (A,N,C) from (U1,Σ1,V1), for instance by equation (4.28).

iv) To verify the identification results, estimated and measured spectra Sy can be
compared.

v) Finally, take the transformation from discrete to continuous-time into account
and compute modal parameters according to equation (4.54). If non-plausible
modal data occur, model reduction techniques of chapter 3, especially section
3.2.3, should be applied.

4.3.2 Data-Driven Stochastic Subspace Identification

While the formerly described stochastic identification technique has been based on
covariance data Ry, here an approach based on projections of data y is presented
following van Overschee and de Moor.17 Although stochastic identification is known
for at least two decades, it usually is referred today to as the data-driven stochastic
subspace identification technique (data-driven SSI), which has been popularized for
modal identification by Reynders.109 Because this approach can be seen as a square-
root technique, it may have numerical benefits.

Furthermore, it has resemblance to the numerical algorithms for subspace state space
identification (N4SID) technique of section 4.2.3. Hence, consider past and future
block matrices in accordance with equation (4.29) with

Yf = Y0(m|i), Yp = Ym(m|i) and Xf = Xm(i) . (4.55)

Again the future measurement block matrix Yf shall be projected onto the past data
space in accordance with equation (4.34). But in opposite to the N4SID method, input
data is unknown here. Thus, a projection of Yf onto Yp

Pm = YfΠYp = L21Q
T
1 = OmXf with

[
Yp
Yf

]
=

[
L11 0

L21 L22

] [
Q
T
1

Q
T
2

]
(4.56)

is conducted. At this point other numerical approaches to determine the projection
are possible, which were pointed out in section 4.1.
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The parameter identification is very similar to N4SID, except it is based
on projection Pm instead. Therefore, consider a singular value decomposition

W1PmW2 =W1OmXfW2 =
[
U1 U2

] [Σ1 0

0 Σ2

] [
V
T
1

V
T
2

]
≈ U1Σ1VT1 (4.57a)

with X̂f = Σ
1/2
1 V

T
1W

−1
2 and Om =W−1

1 U1Σ
1/2
1 , (4.57b)

which essentially revisits equation (4.35). However, weighting matrices W1 and W2

have been additionally used here, which allow more precise estimations. Their choice
should be defined application-oriented, as van Overschee et al.17 point out. To define
weighting matrices, consider covariance matrices

Φff = E
{
YpY

T
f

}
, Φfp = E

{
Yf Y

T
p

}
and Φpp = E

{
YpY

T
p

}
. (4.58)

By comparing the above definitions to equation (4.50), one realizes that Φfp just is a
reordered block Hankel matrix Hm, thus

Φfp = OmC̃m with C̃m =
[
A
m−1

N A
m−2

N · · · N
]

. (4.59)

The most important weighting approaches are the following:

i) The principal component (PC) method of Aoki111 is based on the analysis of
principle components of Φfp. Because of central definitions

W1 = I, W2 = Y
T
pΦ

−1/2
pp Yp −→ W1PmW2 = ΦfpΦ

−1/2
pp Yp (4.60)

the left singular vectors of W1PkW2 and Φfp are equal.

ii) A rather simple choice follows the unweighted principal component (UPC) ap-
proach with

W1 = I, W2 = I −→ W1PmW2 = Pm . (4.61)

iii) Finally, a method based on principle angles and directions between Yf and Yp is
taken in the canonical variate algorithm (CVA) of Akaike28 by

W1 = Φ
−1/2
ff , W2 = I, −→ W1PmW2 = Φ

−1/2
ff ΦfpΦ

−1
ppYp . (4.62)

Based on the singular value decomposition results (U,Σ,V), states Xf are estimated
by X̂f. These states are used to determine state space parameters A and C by a least-
squares approach

[
Xm+1(j)

Ym(1 | j)

]
=

[
A

C

]
Xm(j) −→

[
A

C

]
=

[
X̂m+1(j)

Ym(1 | j)

]
X̂m(j)

† (4.63)

with j = i− 1, which is a simplification of equation (4.36). To evaluate the identified
parameters, estimation residua can be analysed:

[
ρw
ρv

]
=

[
X̂m+1(j)

Ym(1 | j)

]
−

[
A

C

]
X̂m(j) with

[
Q̂ Ŝ

Ŝ
∗
R̂

]
= E

{[
ρw
ρv

] [
ρw
ρv

]T}
. (4.64)
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4.3 stochastic subspace identification

Classical and subspace identification methods can be perfectly op-
posed at this point in connection with former statements on main differences. As
was explained in section 4.2.1, classical techniques utilize a transfer function model to
get a state space realization. Based on that, system states can be determined with the
help of a Kalman filter. In opposite to that, system states x̂ have been estimated di-
rectly by projection techniques in equation (4.56) in connection with a singular value
decomposition in equation (4.57).

Although system states are already available, a Kalman filter can be determined as a
comparison. For that, covariance matrices of residua ρw and ρv in equation (4.64) can
be applied to solve a discrete-time algebraic Riccati equation

P = APA∗ −
(
APC

∗ + Ŝ
)(
CPC

∗ + R̂v
)−1(

APC
∗ + Ŝ

)∗
+ Q̂ . (4.65)

This is a common approach to determine a Kalman filter. Alternatively, a covariance
based Kalman filter can be determined by solving a Lyapunov equation

Σ = AΣA∗ + Q̂ and compute N = AΣC∗ + Ŝ, Ry(0) = CΣC
∗ + R̂ . (4.66)

These results are then used to solve a second Riccati equation

Σ = AΣA∗ +
(
N−AΣC∗

)(
Ry(0) −CΣC

∗)−1(
N−AΣC∗

)∗ . (4.67)

Either way, central Kalman filter parameters

Kp =
(
APC

∗ + Ŝ
)
R
−1
e =

(
N−AΣC∗

)
R
−1
e , Re = CPC

∗ + R̂v = Ry(0) −CΣC
∗ (4.68)

are used to estimate states by classical methods following

x̂k+1 =
(
A−KpC

)
x̂k +Kpyk = Apx̂k +Kpyk . (4.69)

Because the determination of a Kalman filter is not a crucial element of stochastic
subspace identification, it is not explained in detail here. Nevertheless, covariance
based Kalman filtering theory is comprehensively explained in the context of Wiener-
Kalman filtering in section (5.2.1) of chapter 5, especially equation (5.137). Further-
more, numerical approaches to solve the named Riccati equations and occurring nu-
merical issues are also discussed in section 5.2.1.

There are several possible method variations, as can be seen in van Overschee et
al.17 For example state space parameters A and C can be determined based on the
extended observability matrix Om in accordance with equation (4.28). Furthermore,
a possible operational modal analysis is identical to the shown approach of equation
(4.54) in section 4.3.1.
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Summary: Data-Driven Stochastic Subspace Identification

1. Determine the projection of Yf onto Yp, which is denoted as Pm in equation
(4.56). For that, the number of block rows m must be chosen.

2. Choose weighting matrices (W1,W2) and apply the singular value decomposi-
tion according to equation (4.57).

3. Determine model order n based on (U,Σ,V), which leads to estimated states X̂.

4. By using block matrix X̂, the Least-Squares approach of equation (4.63) must be
solved to determine A and C.

5. Evaluate the solution by analysing residua in equation (4.64). Again, modal data
can be gathered on the basis of equation (4.54). Eventually, model reduction
techniques are necessary.

4.3.3 Balanced Stochastic Realization

As a last example of stochastic identification, a balanced stochastic realization ap-
proach shall be shown based on the canonical correlation analysis (CCA) following
Katayama.19 It is similar to the canonical variate analysis (CVA) approach, which has
been named above. It is discussed because its clarity is very advantageous.

Central idea of balanced stochastic realization is to determine a Riccati solution Σ

of equation (4.67) with distinctive properties. In view of the more general Riccati
equation (4.68), various solutions according to Σ 6 Π 6 Σ̄

−1 are possible. Here,
solution Σ̄ follows the backward Riccati equation

Σ̄ = E{x̂b,kx̂
∗
b,k} = A

∗
Σ̄A+

(
C
∗ −A∗Σ̄N

)(
Ry(0) −N

∗
Σ̄N
)−1(

C
∗ −A∗Σ̄N

)∗
. (4.70)

This equation can be derived from the backward state space system

xb,k−1 = A
∗
xb,k +wb,k (4.71a)

yk = N
∗
xb,k + vb,k . (4.71b)

Now, according to van Overschee et al.17 a balanced stochastic realization is present,
when both solutions Σ and Σ̄ are equal and diagonal:

Π→ E{xkx
T
k} = E{xb,k−1x

T
b,k−1} = Σ̂ , (4.72)

which is accomplished in the following by applying CCA.

Canonical correlation analysis for stochastic system identification is
based on canonical vectors αk and βk, which have distinctive covariance matrices

E
{
αkα

T
k

}
= E
{
βkβ

T
k

}
= I and E

{
βkα

T
k

}
= Σ̂ = diag(σ1, σ2, . . . , σn) . (4.73)
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4.3 stochastic subspace identification

The canonical correlations σ ∈ [0, 1] shall be used here with Σ = Σ̄ = Σ̂. The singular
values of matrix product ΣΣ̄ essentially are the named canonical correlations.19 Based
on that, the idea is to introduce past and future data spaces

Yp,k = span
(
yk−1, yk−2, . . . , yk−m

)
and Yf,k = span

(
yk, yk+1, . . . , yk+m−1

)
,

(4.74)

which lead to the named canonical correlations: Essentially, the canonical correlations
σ may be geometrically interpreted as angles between principal directions of past
and future spaces Yp and Yf.

17, 105 Following that, an inverse approach is taken: In
computing canonical correlations between past and future data

y
T
p,k =

[
y
T
k−1 y

T
k−2 · · · yTk−m

]
, y

T
f,k =

[
y
T
k y

T
k+1 · · · yTk+m−1

]
, (4.75)

a solution to the forward and backward Riccati equations with Σ = Σ̄ is found.

At first consider covariance matrices

Hm = E{yf,ky
T
p,k}, Tf = E{yf,ky

T
f,k} and Tp = E{yp,ky

T
p,k} . (4.76)

Here, Hankel matrix Hm of equation (4.48) has been reconstituted. Furthermore, two
Toeplitz matrices

Tf =




Ry(0) R
T
y(1) . . . R

T
y(m− 1)

Ry(1) Ry(0) . . .
...

...
... . . .

Ry(m− 1) . . . Ry(0)




, Tp =




Ry(0) Ry(1) . . . Ry(m− 1)

R
T
y(1) Ry(0) . . .

...
...

... . . .
R
T
y(m− 1) . . . Ry(0)




(4.77)

are defined. A numerical efficient way to determine these matrices is the application
of a LQT decomposition and data matrices:
[
Tp H

T
m

Hm Tf

]
=

[
L11 0

L21 L22

] [
L
T
11 L

T
21

0 L
T
22

]
with

1√
i

[
Yp
Yf

]
=

[
L11 0

L21 L22

] [
Q
T
1

Q
T
2

]
, (4.78)

Yp =




ym−1 ym · · · ym+i−2

ym−2 ym−1 · · · ym+i−3

. . . . . . . . . . . .

y0 y1 · · · yi−1


 , Yf =




ym ym+1 · · · ym+i−1

ym+1 ym+2 · · · ym+i

. . . . . . . . . . . .

y2m−1 y2m · · · y2m+i−2


 . (4.79)

While Yf = Ym(m|i) of equation (4.29), the past data block matrix Yp essentially is
Y0(m|i), but block row reversed.
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The numerical solution is in principal based on Cholesky factorizations of
both Toeplitz matrices Tp and Tf and a singular value decomposition. Thus, lower
triangular matrices L and M are introduced. Similar to equation (4.51), a singular
value decomposition

L
−1
HmM

−T =
[
U1 U2

] [Σ1 0

0 Σ2

] [
V
T
1

V
T
2

]
≈ U1Σ1VT1 , Tp =MM

T , Tf = LL
T (4.80)

is applied. This can be seen as a normalization of block Hankel matrix Hm. Most
importantly, canonical correlations and the extended observability and controllability
matrices can be determined here by

Σ̂ = Σ1, Om = LUΣ̂1/2 and Cm = Σ̂1/2VTMT . (4.81)

This leads to the numerical solution of the central element of the method: Canonical
vectors

αk = V
T
M

−1
yp,k and βk = U

T
L
−1
yf,k (4.82)

can be determined based on singular value results.19 Furthermore, states of the for-
ward and backward state space model are determinable following canonical variables
by

xk = Σ̂
1/2
αk = CmT

−1
p yp,k and xb,k−1 = Σ̂

1/2
βk = O

T
mT

−1
f yf,k , (4.83)

which emphasizes the core concept of balanced realization theory: Both solutions of
forward and backward Riccati equations are equal and diagonal in accordance with
equation (4.72). Then slight modifications of equation (4.83) lead to the block state
estimate

X̂m(i) = Σ̂
1/2
V
T
M

−1
Yp . (4.84)

Finally, the output estimate is interesting. Again it is derived by projection techniques,
which is observable with the help of projections of yf onto Yp and yp onto Yf:

19

yf,kΠYp,k
= LUΣ̂αk = Omxk, yp,kΠYf,k

=MVΣ̂βk = C
T
mxb,k−1 . (4.85)

Both projection results can be determined based on results of the singular value de-
composition and derived canonical vectors. However, the parameter identification of
A and C can be conducted following two formerly described methods: i) The classical
method based on the Moore-Penrose-inverse of the extended observability matrix Om
in equation (4.28), and ii) following the least-squares solution of equation (4.63) in
connection with estimated states X̂m(i) of equation (4.84).

Furthermore, a Kalman filter can be derived analogue to the statements of section
4.3.2. Due to redundancy, these statements are omitted here. Finally, a summary of
balanced stochastic realization can be given, which essentially is a slight modification
of covariance based stochastic subspace identification with a singular value decom-
position of a normalized Hankel matrix in equation (4.80).
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4.4 Example: Deterministic Identification for Damage

Localization

4.4.1 Mechanical Systems based on First Principles and Subspace

Identification

As has been pointed out in the introduction in section 1.5, system identification is
a typical basis for damage assessment in structural health monitoring. To show the
complexity and difficulties to do so, a brief summary of research on deterministic
identification for damage localization on the basis of corresponding mechanical pa-
rameters by Ebert25 is summarized below. This example has been chosen here, be-
cause it shows the experimental problems with deterministic excitations, in this case
with an impulse hammer. This directly leads to the usage of ambient excitations,
which will be discussed afterwards.

In both chapters, 3 and 4, mechanical systems have been derived from fundamentally
different viewpoints: The first principle based (analytical) approach with a priori
model uncertainties seems to be incompatible on a deeper level in comparison to
the a posteriori measurement based subspace identification. Nevertheless, this also
allows to define an applicable damage localization technique: The idea is to think
of analytical, mechanical systems not just as models, but as an inherent structure of
nature itself. Then a theoretically perfect measurement based system identification
technique should lead to mechanical parameters like mass, stiffness and damping.
This, of course, is questionable and reveals a philosophical discourse, which is explic-
itly not pursued in this dissertation.

Instead the following question is discussed: If we treat subspace identification based
mechanical systems like they have been derived from first principles, can we extract
physical parameters and use them for damage identification? This is discussed in the
context of corresponding mechanical parameters of Ebert.25 Furthermore, it depends
on the work of many more.98, 114–116

At first one may rethink operational modal analysis of section 4.3.1, which must be
seen in the context of output-only identification. Therein, the numerically identified
discrete-time state space parameters A and C are treated with methods of the first
principle based systems, especially modal analysis techniques, which have been dis-
cussed in section 3.2.2. In the following, this is expanded to use whole identified
state space systems H(A,B,C,D) in accordance with equation (4.21), because more
information of a mechanical system should, in principle, lead to better damage iden-
tification results.
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Continuous-time Markov parameters are usable for damage identifica-
tion.25 Given a first principle based mechanical system like equation (3.7), mass and
stiffness matrices can be determined by matrix multiplications:

C̄dĀB̄ =
[
I 0

] [ 0 I

−M−1
K −M−1

D

] [
0

M
−1

]
=M−1 (4.86)

C̄dĀ
−1
B̄ =

[
I 0

] [−K−1
D −K−1

M

I 0

] [
0

M
−1

]
= K−1 . (4.87)

These parameters have a very important advantage: The above results are invariant
to a similarity transformation with

C̄dĀ
i
B̄ = C̄d

(
T
−1
T
)
Ā
i(
T
−1
T
)
B̄ with T > 0 , (4.88)

which is in accordance with equation (3.11). Hence, the parameters of a numerically
identified state space system with non-physical states can be used too. Furthermore,
it can be adapted to velocity measurements by

C̄vĀ
0
B̄ =M−1 and C̄vĀ

−2
B̄ = K−1 . (4.89)

While above C̄d = C̄vA
−1 has been used, acceleration measurements can be treated

with C̄d = C̄aA
−2, which leads to

C̄aĀ
−1
B̄ =M−1 and C̄aĀ

−3
B̄ = K−1 . (4.90)

As good as this sounds, a comparison of both fundamental different modelling ap-
proaches is necessary to point out theoretical issues.

A comparison of identified and analytical systems reveals funda-
mental differences, which must be dealt with to apply the named Markov parameters:

i) System identification theory is built on a posteriori known input/output data,
impulse response matrices or a transfer matrix function. In opposite to that,
analytical derivations assume a priori mechanical parameters.

ii) While input/output data types of analytical models are defined physically, for
instance displacement measurements in equation (3.7), those signals can in gen-
eral be arbitrary in the identification process.17

iii) The equation of motion (3.2) is deterministic and noise-free in this dissertation.
Realization theory can be seen from a stochastic and/or deterministic point of
view, depending on the chosen identification method.19

iv) Measurement and excitation points are defined differently compared to the de-
gree of freedom. On the one hand, the number of excitation and measurement
points q and p are restricted by experimental technology. On the other hand,
the degree of freedom N must be chosen in analytical derivations for a proper
approximation of the mechanical system.
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v) Excitations are empirically presumed in analytical derivations, while in realiza-
tion theory excitations are presumed or measured, depending on the chosen
algorithm.

vi) States x of realized systems (equation (4.21)) may be non-physical in contrast to
the mechanically defined state vector z of analytical models (equation (3.14)).

vii) Analytically derived models are continuous-time, in contrast to numerically
identified discrete-time systems.

viii) Parameter matrices of analytically derived state space systems have, in contrast
to identified models, a predefined structure. Therefore, the feed-through ma-
trix D̄ is a zero matrix in the case of displacement and velocity measurements.
Furthermore, the stiffness, mass and damping matrices are symmetric for par-
ticular conditions. Furthermore, the matrix multiplication C̄dB̄ = 0 is defined in
analytical derivations, in contrast to the general case of realization theory.

ix) Measurement data is crucial for system identification, as non-measured prop-
erties, for example certain natural vibrations, get lost otherwise. In contrary,
important mechanical characteristics must be known a priori in the modelling
process of analytical systems.

Although the shown discrepancies seem insuperable, there is an outstanding simi-
larity: Both theories allow the parametrization of a state space system, which maps
a load function to accelerations (displacements, velocities, etc.). Based on that, the
introduced Markov parameters can be applied, if certain ideal conditions and model
modifications are taken into account.

4.4.2 Ideal Conditions and Model Modifications

To apply Markov parameters, several ideal conditions and model modifications are
necessary, which is in accordance with the elaborations of Ebert.25 A key element of
identified systems are measurements, which should represent the mechanical struc-
ture. Thus, a broadband excitation is necessary, which clearly is an ideal condition.
Otherwise, important structural information is non-detectable.

Furthermore, the mechanical parameter matrices in the equation of motion (3.2) usu-
ally are symmetric and positive definite, which constitutes reciprocal system be-
haviour. Therefore, mechanical models based on realization theory shall behave re-
ciprocally too, which defines a second ideal condition. Unfortunately, due to exper-
imental circumstances, among others, the reciprocity requirement may be violated.25

Additionally, reciprocity requires linearity, which only is an approximation at certain
operating points. Finally, the excitation and measurement positions should be taken
into account. Especially the number of excitation and measurement positions (p,q)
and the degree of freedom N should be harmonized engineering oriented.

If the described ideal conditions are taken into account, identified systems are more
likely to be physically interpretable. Nevertheless, model modifications are neces-
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sary: Numerically identified discrete-time systems H(A,B,C,D) must be redefined
as continuous-time systems G(Ā, B̄, C̄, D̄). Although the zero order hold method of
equation (3.15) is an excellent approach for that, other methods are possible too, like
first order hold, Tustin approximation and so forth.

Secondly, the identified model must be enforced to have a certain structure, for exam-
ple like equation (3.7), because the parameter structure of identified systems nearly is
arbitrary in the first place. For example C̄dB̄ = 0 should be enforced.

This can be explained by analysing analytical impulse response matrices G(t) =

C̄de
Āt
B̄ of equation (3.13). Here, displacements are measured and the initial state

z(0) = 0. Then the impulse response matrix at t = 0 is G(0) = C̄dIB̄ = 0. This essen-
tially defines causality, because we observe the mechanical system to respond after an
impulse excitation.

Impulse response experiments are common deterministic test scenarios. Model
modifications must be chosen in accordance with the conducted experiments, which
has crucial consequences for impulse response measurements. The theoretical pre-
sumption of a pulse function excitation (in discrete-time) with f(−1) = 1/∆t and
f(k) = 0 for k 6= −1 is non-applicable in real life experiments. In practice the struc-
ture responds before the excitation finished, because the excitation lasts longer than
a fraction of time, especially ∆t. To overcome this issue, Ebert25 defines a correction
method to normalize identified state space parameters. Here, the idea is to replace
the identified triplet (A,B,C) with a corrected one (A, B̃, C̃) following

Hk =
(
CA

−(c−1)/2)
A
k−1 (

A
−(c−1)/2

B
)
= C̃Ak−1B̃ with k ∈N, c ∈ Z . (4.91)

In computing the correction value c, a virtual starting time is determined. Based on
analytical derivations, this point in time must be in accordance with the measured
data type.

Considering ∆t → 0, we need to correct the impulse response matrix Hk for k = 1.
Hence, one must find the minimum in the case of displacement and acceleration
measurements and the maximum in the case of velocity measurements:

Disp./Acc. min
c

∥∥∥CA−c+1
B
∥∥∥
F

Veloc. max
c

∥∥∥CA−c+1
B
∥∥∥
F

. (4.92)

Here, the Frobenius norm has conveniently be chosen. From the viewpoint of appli-
cation an accurate bandwidth for cmust be chosen to compute the optimized impulse
response matrix as a local minimum/maximum.

4.4.3 Corresponding Mechanical Parameters

The physical interpretation of Markov parameters is facilitated by satisfying the ideal
conditions at its best and by carrying out the described model modifications. Based
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on that, an identified state space model H(A,B,C,D), which maps a load function
to structural accelerations, can be physically analysed by its corresponding mass and
stiffness parameters

Mc =
(
C̄Id,aĀ

−1
Id B̄Id

)−1
and Kc =

(
C̄Id,aĀ

−3
Id B̄Id

)−1
. (4.93)

Though acceleration measurements are presumed here, other data types are also pos-
sible, like velocities. Most importantly, the size of corresponding matrices is set to
Mc, Kc ∈ Rp×p, which presupposes N = p = q. For this approximation excitation
and measurement positions must be taken into account. It is very important to no-
tice here that in computing corresponding matrices, the parameters of a finite element
model or a multi-body simulation are not estimated. The described method is thought
to interpret identified mechanical state space systems in a physical sense. Finally, nu-
merical accuracy can be a problem here, because of the inversion. Thus, it can be
reasonable to analyse the corresponding flexibility matrix Fc = K

−1
c instead.

The application for damage identification follows straightforward the defined corre-
sponding parameters by analysing a difference of two system states. For example the
difference corresponding flexibility matrix ∆Fc = Fc,1− Fc,2 can be utilized for damage
detection and localization.

4.4.4 Large-Scale Experiment Example: Bridge near by Hünxe

To show the capability of the corresponding parameters, the damage localization re-
sults of Lenzen and Ebert25, 117, 118 are briefly summarized below. Furthermore, this is
a good basis to pursue stochastic experiments afterwards and discuss essential differ-
ences.

Figure 4.6: Tied Arch Bridge near by Hünxe (North Rhine-Westphalia, Germany)

A tied arch bridge near the city Hünxe (North Rhine-Westphalia, Germany) was used
for large-scale damage identification experiments. The bridge, which had a length of
62.5m (between the abutments), a width of 13.9m and a maximum arch rise of 8.6m, is
shown in figure 4.6. Because of a planned demolition, the opportunity of evaluating
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the corresponding parameters was used. Therefore, a reference-state measurement
and a measurement in damaged-state was conducted. The structural damage was
experimentally induced by severing a concrete hanger between measurement points
10 and 11, which is shown in figure 4.7b. Unfortunately, a successive artificial damage
growth was not possible, because the bridge’s demolition was scheduled shortly after
the experiments.

(a) Impulse-hammer (b) Severed Hanger

Figure 4.7: Experimental Conditions

The large-scale experiments have been planed with deterministic excitations. For that,
the impulse-hammer of figure 4.7a was used. The sensing system had 16 channels for
simultaneous analogue-digital-converting. While one channel was used for tracking
the acceleration of the exciting mass (150kg), the remaining channels were used to
measure structural responses with accelerators. Because an impulse response test
at each measurement positions has been conducted, the number of excitation and
measurement points was uniformly p = q = 15.

Due to sensing technology, the excitation positions have been 2m besides the measure-
ment locations. In addition to the spacial difference of measurement and excitation
points, several other bounding conditions, like non-linear material behaviour, geo-
metric non-linearities and so forth, had been present. Nevertheless, reciprocity was
approximately measured, which has been verified in comparing yij to yji (exchange
of response i and excitation j).

In the large-scale experiments numerous effects beside the important structural be-
haviour have been tracked. To compensate these effects, a finite impulse response
Parks-McClellan band-pass filter was used. Here, several filter adjustments have been
applied. Finally the bandpass 2Hz . . . 25Hz and 13Hz . . . 23Hz have been chosen.

The system identification primarily followed the method Ho and Kalman of section
4.2.2. Based on that, the causality condition had to be enforced following equation
(4.92). This led to the damage identification by a comparison of two system states.
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4.5 example : operational modal analysis

The damage identification has been in accordance with the analysis of dif-
ference corresponding matrices following equation (4.93). Thus, two identified sys-
tems were compared: The reference and the damaged state, especially with the sev-
ered hanger. In preparation of the damage analysis, finite element models have been
generated to predict the system behaviour. Therein, the simulated difference corre-
sponding flexibility matrix showed a single peak at induced structural damage.

The large-scale experiment results are shown in figure 4.8, which is reformulated data
from Ebert.25 As can be seen here, the position of the severed hanger can clearly be
seen at measurement position 11. For more details on that matter see Lenzen and
Ebert.25, 117, 118
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Figure 4.8: Diagonal of Difference Corresponding Flexibility Matrix

In this section the physical interpretation of a numerically identified mechanical state
space system has been discussed. Especially the large-scale experiment example
showed its clear applicability for damage localization. Nevertheless, these results are
based on deterministic excitations, which are very elaborate: The transportation and
operation of the impulse-hammer is very cost and time intensive. Thus, an automa-
tion clearly is not possible. Henceforth, an ambient excitation is necessary instead.
The theoretical consequences of that are discussed below.

4.5 Example: Operational Modal Analysis

The stochastic system identification, for example following the techniques of section
4.3, is advantageous, because an elaborate test load induction can be omitted. Al-
though an output-only identification of H(A,C) and derived operational modal anal-
ysis is quite possible based on these techniques, the identification of all state space
parameters H(A,B,C,D) leads to central issues. Because of that, the application of
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corresponding mechanical parameters is not useful based on stochastic identification,
as will be discussed in the end.

To exemplify stochastic system identification, the multi-degree-of-freedom example
of chapter 3, especially section 3.3.2, is analysed. Therein, a mechanical structure with
force inputs and acceleration outputs was simulated by continuous-time state space
parameters Ā, B̄, C̄a and D̄a. Based on that, the zero-order-hold method of equation
(3.15) is applied with ∆t = 2 · 10−4s, which leads to a discrete-time state space model
H(A,B,C,D). Because basic details shall be shown only, a simple excitation is chosen.
Therefore, stationary white noise processes w and v are used:

E

{[
wk
vk

] [
wk
vk

]∗}
=

[
Q S

S
∗
Rv

]
=

[
IN2

0

0 Im2
/s4

]
. (4.94)
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Figure 4.9: Exemplary Measurement at M1 and Singular Values

Here, a total measurement time of about 11min has been sufficient for further analy-
ses. An exemplary measurement at the free end of the cantilever arm (M1) is shown
in figure 4.9. As can be seen, the measured signal is in fact stochastic, which demands
suitable system identification techniques.

The measurement y had an appropriate magnitude, which can be seen by comparing
the output to ambient vibration test results at Vasco da Gama Bridge of Cunha et al.15

Based on acceleration measurements, the balanced stochastic realization technique is
subsequently applied, because of its clarity. However, other identification methods
are possible too.

The balanced stochastic realization technique of section 4.3.3 has been
used in connection with the Moore-Penrose pseudo-inverse of the extended observ-
ability matrix following equation (4.28). To do so, a covariance function Ry(l) has been
estimated by inverse Fourier transform of a power spectral density (PSD) estimate of
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4.5 example : operational modal analysis

y. To determine the PSD, Welch’s method119 has been used with a Hanning window
(N = 215) and 50% overlap, which follows the efficient numerical covariance determi-
nation of Cunha et al.120 Further explanations for that will follow in section 7.1.2. An
exemplary covariance function at M1 is given in figure 4.10a.
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Figure 4.10: Evaluation of System Identification Results

Based on the covariance function Ry(l), Hankel matrix Hm and both Toeplitz matrices
(Tf, Tp) have been constructed in accordance with equations (4.48) and (4.77). Then
the singular value decomposition in equation (4.80) with m = 29 was conducted. The
first 20 singular values are also shown in figure 4.9. As can be seen here, the first
16 canonical correlations are relevant, thus n = 16 was chosen. This led to extended
observability and controllability matrices Ok and Ck, which allowed to determine the
system identification result: The computation of triplet (A,N,C) according to equa-
tion (4.28). Very importantly, the identification quality must be analysed. Because a
covariance based method has been used, it is reasonable to compare measured and
identified covariance functions. Here, Ry(l) is compared to its identification result
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CA
l−1
N for l > 0. An example at M1 is shown in figure 4.10a. Because of an appro-

priate identification, both functions nearly are identical.

The analysis of covariance matrix function Ry is limited. In our case matrix Ry has
64 elements, which are difficult to analyse at once. Engineering-oriented analyses
are more appropriate in the frequency domain, because modal data can be seen in
principal there. Thus, the first dominant singular value of Sy, both measured and
identified, is presented in figure 4.10b. Central advantage of this type of presentation
is that it is an integral quantity of all measurement positions.

At this point it is important to note the similarity to figure 3.6 in chapter 3. Here,
measurement noise v marks the only difference, which is negligible. The accurate
parametrization of the identified spectrum Sy is observable here, which essentially
retrieves the results of covariance function Ry(l) in figure 4.10a. While the measured
spectrum is the Fourier transform result of Ry, the identified one follows H(z) in
equation (4.47).

Operational modal analysis (OMA) is a central element for applied structural dynam-
ics. It allows to give another viewpoint on spectrum Sy by applying modal analysis
techniques of section 4.3.1. Thus, system parameters A and C are used to deter-
mine natural frequencies, modal dampings and normalized mode shapes following
equation (4.54). The modal identification results are shown in figure 4.11. Therein
measurement position 9 refers to the clamped end of the beam. Most interestingly, a
comparison to the analytical results in chapter 3, especially figure 3.5, shows a resem-
blance. Here, the operational modal identification results are plausible and fit very
well to the originally modelled mechanical system.

Because only fundamental knowledge has been shown in this example, very impor-
tant topics on numerical issues have been omitted here. Nevertheless, a more practical
laboratory example will be given in chapter 7.

Important conclusions follow the above statements: Summarizing above,
the question arises, which damage identification technique is reasonable to use based
on stochastic identification. Most commonly, damage identification based on modal
data is applied only, as was discussed in the introduction in chapter 1. However,
damage identification based on modal data sometimes is questionable. Thus, the
application of complete state space systems H(A,B,C,D) may have advantages in
comparison to output-only identifications H(A,C).

Unfortunately, the corresponding parameters of section 4.4 are non-applicable here,
because gain matrix B is non-determinable. Here, the Kalman filter gain could be
used instead. Nevertheless, it is connected to several numerical issues, which will
be discussed for the laboratory example in section 7.3. Because of that, it is very
useful to discuss the generalization of Kalman filter, so called H

∞ estimation, in the
following. This allows to cope with noise uncertainties, which is advantageous, as
ambient excitations are non-measurable. Based on H

∞ estimators, a new damage
localization technique will be defined in chapter 6.
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Figure 4.11: Operational Modal Analysis: Normalized Mode Shapes (Circles) and Cu-
bic Spline Interpolation (Continuous Line)
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5
AN OVERVIEW OF H

∞ ESTIMATION ON THE BASIS OF
KALMAN FILTERING

Chapter Outline

In this chapter H
∞ theory is explained on the basis of commonly known Kalman

filtering. For that, it is typical to describe two fundamental different estimation theory
approaches, which are explained here: While the 1st section covers finite horizon H

∞

theory, which leads to a so called Krein space Kalman filter, the 2nd section is devoted
to the canonical factorization of a so-called Popov function in infinite horizon. In
fact, the name originates from the presupposed data, like y =

[
yk
]N
k=0

(finite) and
y =

[
yk
]∞
k=−∞ (doubly infinite). This leads to the analysis of time-variant systems in

time-domain on one hand, and time-invariant systems in z-domain on the other hand.

KREIN SPACE BASED
H∞ ESTIMATION THEORY

SECTION 1
H∞ Theory in Finite Horizon

Krein Space Kalman Filter
Time-Variant, Time-Domain

SECTION 2
H∞ Theory in Infinite Horizon

Canonical Fact. Popov Function
Time-Invariant, z-Domain

SECTIONS 3 & 4
Application of H∞ Estimation

Filtering Signals in Add. Noise
Num. Mechanical Sys. Example

Figure 5.1: Chapter Outline

In both final sections the application of H∞ theory is discussed, which then enters the
mechanical system example of chapter 3, namely section 3.3.1. Here, the filtering of
displacements in a noise disturbed environment is discussed.
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5.1 Finite Horizon: Krein Space Kalman Filter

5.1.1 Introduction to Estimation Theory

Estimation problems must be faced in many industrial fields like communications,
control, econometrics and signal processing.20 At first, central concepts of estimation
theory are summarized, which then is the basis for Kalman filter and H

∞ estimator
derivations.

To begin with, the measurement process y ∈ Rp is introduced, which is the ob-
servable output of an analysed system. Numerous possible measurement examples
can be given (e.g. voltage, current, forces, flow rates, etc.). As was pointed out in
chapter 3, accelerations of a mechanical structure are typically measured in structural
health monitoring.15 Furthermore, displacements, velocities, strains, inclinations and
so forth may be analysed too.

Based on the measurement signal y, a desired one, denoted by s ∈ Rm, shall be
estimated,78 for instance corrected price developments, temperatures, pressures or
noise free accelerations. Nevertheless, the desired signal s is unmeasurable in general,
thus, it must be estimated by ŝ. Estimation approaches, referred below as E (×), have
been analysed by researchers for decades and a huge variety of approaches has been
developed for that.

Prediction, filtering and smoothing are important concepts of estima-
tion theory.19, 121, 122 To understand these concepts, consider the estimation of the
desired signal sk+M based on measurements y1, y2, . . . , yk as follows:

ŝk+M|k = E
(
sk+M |y1, y2, . . . , yk

)
for M





> 0 : Prediction
= 0 : Filtering
< 0 : Smoothing

. (5.1)
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Figure 5.2: Visualization of Notion at an Example

The estimate ŝk+M|k with M > 0 is assigned as prediction, because it is beyond the
current measurement sample yk. The opposite case is called smoothing, namely the
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5.1 finite horizon : krein space kalman filter

estimation of a past value. Using measurements y to estimate s of the same time
instant is called filtering. The last statement also refers to an a posteriori estimate,
which is denoted by ŝk|k. In opposite to that, a priori estimates ŝk+1|k essentially are
one-step predictions.121 A notation visualization at an example is given in figure 5.2.
Conveniently, the notation of a priori estimates is simplified below, for example by
ŝk+1 = ŝk+1|k.

Because of the profound mathematical background of estimation theory, norms are
often used to derive estimators. Thus, important mathematical norms are briefly
summarized below.

Mathematical norms are functions that assign a strictly positive number to
mathematical objects (e.g. sequences, vectors, matrices, functions, etc.). For example
the p-norm of a n-dimensional vector x

‖x‖p =
(

n∑

i=0

|xi|
p

)1/p
(5.2)

can be seen as a generalized distance measure for 1 6 p <∞. Note that i refers to the
element in x. As it is often used, the 2-norm (p = 2), namely the Euclidian norm, is a
special case of equation (5.2).

By using matrix A ∈ Cm×n instead of vector x, this can be extended to determine
matrix norms, for instance the spectral norm and the Frobenius norm:

‖A‖2 = max
x6=0
‖Ax‖2
‖x‖2

= σmax, ‖A‖2F =
m∑

i=1

n∑

j=1

|aij|
2 =

r∑

i=1

σ
2
i . (5.3)

Here, the connection between the singular values of a matrix and its norm has already
been given. For details on the singular value decomposition see section 4.1.1.

Furthermore, the matrix 2-norm is a special case of the operator norm. Thus, consider
the more general case of y = Tx in operator notation with finite vectors x and y, then
the induced 2-norm of operator T follows accordingly as

‖T‖i2 = sup
x6=0

‖Tx‖2
‖x‖2

. (5.4)

A generalization of the p-norm in equation (5.2) to infinite processes x and integrable
functions f lead to the introduction of the lp-norm and L

p-norm:

‖x‖lp =

( ∞∑

i=0

|xi|
p

)1/p
, ‖x‖l∞ = sup

i

|xi|, ‖f‖Lp =

(∫∞

−∞
|f(z)|p dz

)1/p
. (5.5)

Based on that, lp-sequences are defined by ‖×‖lp < ∞. Furthermore, the L
p-space

is introduced. The L
p-spaces, also known as the Lebesgue spaces, are the set of all
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Lebesgue p-integrable functions, for which ‖×‖Lp < ∞. Especially the case p = 2 is
technically relevant: l2-sequences are square-summable and L

2-functions are square-
integrable.

The Hardy spaces H
p are subsets of L

p (for 1 6 p 6 ∞), defined by ‖×‖Hp < ∞.
Frequently used in estimation and control theory, the cases of p = 2 and p = ∞ for
matrix valued functions T(z) are important, which are defined here on the unit disc:

‖T‖2
H

2 =
1

2π

2π∫

0

∥∥∥T(ejθ)T∗
(
e
jθ)∥∥∥

F
dθ, ‖T‖2H∞ = sup

θ

σmax

(
T
(
e
jθ)
T
∗(
e
jθ)) . (5.6)

Of course one might discuss the above topic in more detail, but in the frame of this
dissertation that is omitted. Based on the given norm definitions, this now allows us
to analyse systems in more detail.

Causality, invertibility and stability are analysable system properties.78

In order to define causality, consider a system in an operator description A with
y = Au and processes y ∈ Rp, u ∈ Rq. Both processes are defined in this section
as finite processes uk and yk with k = 0, 1, . . . , N, thus u = [uk]

N
k=0 and y = [yk]

N
k=0.

Furthermore, the operator A is represented in finite horizon with the help of matrices
Akl. Based on that, causality is defined by the subsequent statements:

A =
[
Akl
]N
k,l=0 , yk =

N∑

l=0

Aklul, Akl = 0,





k < l : Causal
k 6 l : Strictly Causal
k > l : Anti-Causal
k > l : Strictly Anti-Causal

. (5.7)

Thus, a system is strictly causal, if future inputs have no influence on the current
output. On the other side, if a system is not causal, for example when Akl 6= 0 for
l > k, then system A is referred to as non-causal.78 To understand this, consider a
mechanical structure (e.g. a tower), which is excited by an impulse. A non-causal
system would respond before an impulse hammer actually hits the structure, which
obviously seems unnatural. This fact is observable in chapter 3, especially equation
(3.13). However, in addition to causality, invertibility of a system can be analysed. An
inverse system A

−1 may be used to determine the input

u = A
−1
y with AA

−1 = A
−1
A = I . (5.8)

Furthermore, a system is stable if it maps bounded inputs to bounded outputs. Pro-
cesses are referred to as bounded l2-sequences, if their energy is finite. Finite energy
of processes are defined by infinite processes with

‖y‖
l
2 =

∞∑

k=0

yky
T
k <∞ and ‖u‖

l
2 =

∞∑

k=0

uku
T
k <∞ (5.9)
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and these processes lead to a so called l
2-induced stability of A. To visualize the

above statement, consider an impulse excitation at a damped mechanical structure, for
instance a real bridge: Both, the impulse (force) input and the measurable acceleration
decay function, have finite energy. Here, a practical impulse has been considered, not
the Dirac impulse. Thus, the system of this damped mechanical structure must be
l
2-induced stable.

Besides l2-induced stability, other definitions are possible, for example the l∞-induced
stability (or boundness), which considers bounded amplitude inputs and outputs by

‖u‖l∞ = sup
k

max
l

|ukl| <∞ and ‖y‖l∞ = sup
k

max
l

|ykl| <∞ . (5.10)

Again consider a damped mechanical structure, but with an ambient excitation, namely
wind and vehicle traffic. This excitation is typically modelled as white noise, which
has infinite energy, thus l2-induced stability is non-applicable here. Nevertheless, the
l
∞-norm of the ambient excitation and the structural response is finite. Otherwise, the

damped mechanical structure would collapse. Thus, the mechanical system must be
l
∞-induced stable, which is a more demanding property than l2-induced stability.78

Finally, the above discussion leads to the introduction of a very important estimation
approach:

The linear least-mean-squares estimator is based on complex zero-
mean, vector-valued random variables. Thus, given a set {y0, y1, . . . , yN} with y ∈ Cp,
we would like to estimate variable s ∈ Cm by ŝ with a linear combination

ŝ = Ky, K ∈ Cm×p(N+1) . (5.11)

By defining some covariance matrices Ry = E{yy
∗
} > 0 and Rys = E{ys

∗
} = R

∗
sy, this

leads to the error covariance matrix

Rs̃ = E{s̃s̃
∗
} = Rs −KRys − RsyK

∗ +KRyK
∗ with s̃ = s−Ky . (5.12)

Here, the question arises: What is the optimal solution for an estimator K? To see
that, a joint covariance matrix is introduced and analysed by LDU decomposition:

E

{[
s

y

] [
s

y

]∗}
=

[
Rs Rsy
Rys Ry

]
=

[
I RsyR

−1
y

0 I

][
Rs − RsyR

−1
y Rys 0

0 Ry

][
I 0

R
−1
y Rys 0

]
.

(5.13)

This then is applied to rewrite the error covariance matrix

Rs̃ = Rs −KRys − RsyK
∗ +KRyK

∗ =
[
I −K

] [ Rs Rsy
Rys Ry

] [
I

−K∗

]
(5.14a)

= Rs − RsyR
−1
y Rys +

(
RsyR

−1
y −K

)
Ry

(
RsyR

−1
y −K

)∗
︸ ︷︷ ︸

K0=RsyR
−1
y → 0

. (5.14b)
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As can clearly be seen above, the minimum-mean-square-error matrix Rs̃ arises, as
K0 = RsyR

−1
y is chosen, which is the optimal solution.20

A geometrical reformulation is a repeatedly applied theme of estimation
theory, as it allows a more graphical interpretation. For that, rewrite the linear least-
mean-squares solution K0 = RsyR

−1
y as

K0E{yy
∗
} = E{sy∗} −→ E

{(
s−K0y

)
y
∗} = 0 . (5.15)

To analyse above, the idea is to treat random variables, like y and s, as vectors,20

which suggests that

E
{(
s−K0y

)
y
∗} = 0 −→

〈
s−K0y,y

〉
= 0 −→ s−K0y ⊥ y . (5.16)

YN = span
([
yl
]N
l=0

)

s
s̃ = s− ŝ

ŝ = K0y

Figure 5.3: Orthogonal Projection of s

As is shown in figure 5.3, the found orthogonality s−K0y ⊥ y considerably improves
the interpretability of results. This technique is constantly reused in the finite horizon
section 5.1.

The equivalence of deterministic and stochastic problems is an-
other important theme of estimation theory. The idea is to come up with a solution,
which essentially is the same for the deterministic and the stochastic case. For instance
consider the minimization of a scalar quadratic form (deterministic problem)

J(s,y) =
[
s
∗
y
∗]
[
Rs Rsy
Rys Ry

]−1 [
s

y

]
with

[
Rs Rsy
Rys Ry

]
=

〈[
s

y

]
,
[
s

y

]〉

H

> 0 . (5.17)

By reusing the LDU factorization of equation (5.13), one can find a minimum:78

J(s,y) =
[(
s
∗ − y∗R−1y Rsy

)
y
∗
] [(

Rs − RsyR
−1
y Rys

)−1
0

0 R
−1
y

][
s− RsyR

−1
y y

y

]
(5.18a)

min J(s0,y) =
[
0 y

∗]
[
× 0

0 R
−1
y

][
0

y

]
= y∗R−1y y . (5.18b)
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Again, the optimal solution (maximum likelihood estimate) is s0 = RsyR
−1
y y, which is

equivalent to the stochastic solution of the linear least-mean-squares estimate. This
suggests to treat deterministic and stochastic problems equivalently.

5.1.2 Time-Variant Kalman Filter

In this chapter H
∞ estimation theory is explained comprehensively on the basis of

widespread estimation techniques, especially the Wiener and the Kalman filter.123, 124

For that, the indefinite-quadratic estimation theory78 is an outstanding approach, be-
cause within this theory Wiener and Kalman filters are directly applied. To derive
finite horizon H

∞ estimators, Kalman filtering is explained below, which leads to a
solution based on a so called Krein space Kalman filter. The discussed theoretical
development of the finite horizon section is summarized in table 5.1.

State space models are commonly used approaches to parametrize a sys-
tem. These models are very advantageous to parametrize a multi input multi output
(MIMO) system in both time-domain and z-domain. Its central concept is the intro-
duction of a possibly non-measurable auxiliary vector, the so called state x ∈ Cn. Be-
cause ambient excitations are primarily considered in this thesis, a state space model
H is introduced here, which maps disturbance processes w and v to the measurement
y (see figure 5.4). This time-variant system is a generalization of equation (4.40) and
written in time-domain as follows:

xk+1 = Akxk +
[
I 0

] [wk
vk

]
= Akxk +wk (5.19a)

yk = Ckxk +
[
0 I

] [wk
vk

]
= Ckxk + vk . (5.19b)

wk +

+
z−1 Ck

+

+
vk

yk

Ak

xk+1 xk

Figure 5.4: Time-Variant State Space Model H
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Kalman Filter H
∞ Estimator

1. Optimal State Estimate (eq.(5.23))
Estim. Error x̃k = xk − x̂k

min
x̂k
‖x̃k‖22 , E

{
x̃kx̃

∗
k

}
= Pk

Worst-Case Analysis (eq. (5.57))
Estim. Error s̃k = sk − ŝk, sk = Lkxk

‖TK‖2H∞ = sup
w,v6=0

‖s̃‖22
‖w‖22 + ‖v‖22

< γ
2

Stochastic Processes Det. and Stochastic Processes

2. State Space System (eq. (5.19))

xk+1 = Akxk +wk

yk = Ckxk + vk

Krein Space State Space (eq. (5.63))

xk+1 = Akxk +wk[
yk
šk|k

]
= Ckxk + v̄k

E

{[
wk
vk

] [
wl
vl

]∗}
=

[
Qk Sk
S
∗
k Rv,k

]
δkl

〈[
wk
v̄k

]
,
[
wl
v̄l

]〉

K

=

[Qk 0

0

[
I 0

0 −γ2I

]
]
δkl

3. Innovation Form of Kalman Filter (eq.
(5.37)), Innovations ek

x̂k+1 = Akx̂k +Kp,kek

yk = Ckx̂k + ek

A posteriori H
∞ Estimator (eq.

(5.93)), Estimation error ey,k

x̂k+1 = Akx̂k +Kpy,key,k

yk = Ckx̂k + ey,k

Presumption šk|k = ŝk|k

Pk = Ric. Eq.(Ak,Ck,Qk,Rk,Sk) (5.33) Pk = Ric. Eq.(Ak,Ck,Lk,Qk,γ) (5.75)
Kp,k =

(
AkPkC

∗
k + Sk

)
R
−1
e,k Kpy,k = AkPkC

∗
kR

−1
ey,k

Re,k = E{eke
T
k} = CkPkC

∗
k + Rv,k Rey,k =

〈
ey,k, ey,k

〉
= CkPkC

∗
k + I

Table 5.1: Summary of Discussed Theories in Finite Horizon

The introduced state space system is defined by both matrices A ∈ Cn×n and C ∈
C
p×n, thus H(A,C) follows. In addition, a matrix L ∈ Cm×n is introduced to define

the desired signal as a linear combination of states by

sk = Lkxk . (5.20)

Matrix L is an additional design parameter, which can be used to put emphasis on
some states. Furthermore, it might be used to define an application (e.g. equalization,
filtering signals), as states x might be non-physical. Some possible applications are
discussed by Hassibi et al.78
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5.1 finite horizon : krein space kalman filter

With regard to the subsequently explained Kalman filter, disturbance processes w and
v are presupposed, at this point, as white noise processes with known second order
statistical parameters

E

{[
wk
vk

] [
wl
vl

]∗}
=

[
Qk Sk
S
∗
k Rv,k

]
δkl . (5.21)

Kalman filtering is a widespread state estimation technique based on known
covariance matrices (Q,Rv,S) and a presupposed state space system, for example
H(A,C) of equation (5.19).124 Thus, it is based on stochastic processes. The estimated
state vector, noted by x̂, is determined based on noise disturbed measurements y.
Thus, a state estimation error

x̃k = xk − x̂k (5.22)

is unavoidable. Very importantly, the state estimation error x̃ is minimized in Kalman
filtering,19 and the estimation error minimization considers the average energy of x̃
by the 2-norm with

min
x̂k
‖x̃k‖22 with E

{
x̃kx̃

∗
k

}
= Pk . (5.23)

As it is very similar to the linear least-mean-squares solution in figure 5.3, a geometri-
cal approach has been shown in figure 5.5. Therein the orthogonal projection of states
xk onto a data space Yk, a linear combination of measurements [yl]

k
l=0, leads to the

estimate x̂k. The geometrical approach directly applies orthogonality with x̃k ⊥ Yk.19

Yk = span
([
yl
]k
l=0

)

xk
x̃k

x̂k

Figure 5.5: Orthogonal Projection of x

The innovation process, noted by e, is implied in the above statements. This pro-
cess was introduced by Kailath125, 126 and has distinctive properties: Based on the
orthogonality to the previous data space ek ⊥ Yk−1, innovations are determined by a
difference of actual measurements y and predicted ones with

ek = yk − ŷk =
(
Cxk + vk

)
−Ckx̂k = Cx̃k + vk . (5.24)
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Furthermore, ek ⊥ Ek−1 must be considered based on the linear space of past innova-
tions Ek−1 = span([e]k−1l=0 ). Because new information is constantly introduced by ek, it
must be a white noise process and furthermore the name innovation was derived.20

As can be seen in equation (5.24), the innovation determination can be reduced to
compute the one-step state prediction x̂. Thus, the basic estimation formulae

x̂k+1 =

k∑

l=0

E{xk+1e
T
k}R

−1
e,lel =

(
k−1∑

l=0

E{xk+1e
T
k}R

−1
e,lel

)
+ E{xk+1e

T
k}R

−1
e,kek (5.25)

can be used here.20 This estimation approach is based on the covariance matrix of
innovations, which directly follows equation (5.24) with

Re,k = E{eke
T
k} = CkPkC

∗
k + Rv,k . (5.26)

In the following, the state estimation of equation (5.25) shall be derived to allow a
numerical-practical application. At first past inputs, especially innovations [e]k−1l=0 , are
rewritten to

k−1∑

l=0

E{xk+1e
T
k}R

−1
e,lel = x̂k+1|k−1 = Akx̂k , (5.27)

because they can be seen as an influence on former states. Secondly, the gain matrix

Kp,k = E{xk+1e
T
k}R

−1
e,k (5.28)

is introduced. By using straightforward reflections on

E{xk+1e
T
k} = AkE

{
xk
(
Ckx̃k + vk

)∗}
+ E
{
wk
(
Ckx̃k + vk

)∗}
= AkPkC

∗
k + Sk , (5.29)

the gain matrix has been determined:

Kp,k =
(
AkPkC

∗
k + Sk

)(
CkPkC

∗
k + Rv,k

)−1 . (5.30)

An optimal state estimation based on innovations now can be given by
reconsidering equation (5.25) and the defined gain matrix Kp. Collecting above, the
central state estimate

x̂k+1 = Akx̂k +Kp,kek (5.31)

depends on a continuously computed gain Kp,k, and thus a covariance matrix Pk.
Here, a straightforward derivation can be found by analysing the state estimation
error

x̃k+1 = xk+1 − x̂k+1 =
(
Akxk +wk

)
−
(
Akx̂k +Kp,kek

)
(5.32a)

=
(
Ak −Kp,kCk

)(
xk − x̂k

)
+wk −Kp,kvk (5.32b)

= Ap,kx̃k +
[
I −Kp,k

] [wk
vk

]
, (5.32c)
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defining the closed-loop matrix Ap,k = Ak − Kp,kCk and then forming the covariance
matrix of x̃k+1:

Pk+1 = E{x̃k+1x̃
∗
k+1} = Ap,kPkA

∗
p,k +

[
I −Kp,k

] [Qk Sk
S
∗
k Rv,k

] [
I

−K∗p,k

]
(5.33a)

= AkPkA
∗
k −

(
AkPkC

∗
k + Sk

)(
CkPkC

∗
k + Rv,k

)−1(
AkPkC

∗
k + Sk

)∗
+Qk (5.33b)

= AkPkA
∗
k −Kp,kRe,kK

∗
p,k +Qk . (5.33c)

This equation is referred to as a discrete-time Riccati recursion, whose name comes
from Count Riccati (ca. 1700). While A.M. Legrende (ca. 1786) used it for the calculus
of variations, it was reused by Bellmann (1957) in control theory. Afterwards Kalman
applied it to numerically solve his famous Kalman filter.124

To apply the Riccati recursion and compute the state estimation of equation (5.31),
state space parameters (Ak,Ck) and noise parameters (Qk,Rv,k,Sk) have to be known
for all k. Furthermore, initial conditions x̂0 and P0 must be defined.

Nevertheless, the iterative solution of the discrete-time Riccati recursion is far from
being easy to apply. A comprehensive overview for that is given by Sima.33 Because
it is beyond the scope of this thesis to discuss them all, selected methods are given
below only.

The numerical computation of Riccati recursion (5.33) might be problem-
atic, as it might not converge or give inaccurate results.33 Of course one may directly
apply equation (5.33), but its convergence rate and the numerical accuracy may lack
enormously.33, 127 For further analysis Riccati equation (5.33) is rewritten to

Pk = ÃkPk

(
I−C∗k

(
Rv,k +CkPkC

∗
k

)−1
CkPk

)
Ã
∗
k + Q̃k (5.34a)

with Ãk = Ak − SkR
−1
v,kS

∗
k and Q̃k = Qk − SkR

−1
v,kC

∗
k . (5.34b)

This reformulated recursion allows to apply easier methods,19 because S has been
suppressed. Then the direct iteration can be split up in three steps:

(i) Gain computation Kp,k = ÃkPkC
∗
k

(
Rv,k +CkPkC

∗
k

)−1,
(ii) Determination of closed-loop state matrix Ãp,k = Ãk −Kp,kCk and

(iii) Solution of equation Pk+1 = Ãp,kPkÃ
∗
p,k +Kp,kRv,kK

∗
p,k + Q̃k.

Very importantly, Sima explicitly discourages the reader to apply the direct iteration.33

Rather than that, one can apply the Doubling algorithm,127 which is based on the
reformulated Riccati recursion

Pk+1 =
(
Ḡ21,k + Ḡ22,kPk

)(
Ḡ11,k + Ḡ12,kPk

)−1 (5.35a)

with Ḡk =

[
Ḡ11,k Ḡ12,k
Ḡ21,k Ḡ22,k

]
=

[
Ã

−∗
k Ã

−∗
k C

∗
kR

−1
v,kCk

Q̃kÃ
−∗
k Ãk + Q̃kÃ

−∗
k C

∗
kR

−1
v,kCk

]
. (5.35b)
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The central advantage is the increase of convergence. To determine result Pk one must
solve

Pk = VkU
−1
k following

[
Uk+1
Vk+1

]
=

[
Ḡ11,k Ḡ12,k
Ḡ21,k Ḡ22,k

] [
Uk
Vk

]
. (5.36)

Then result Pk can be used to determine Kp,k of equation (5.30).

A causal and a causally invertible system directly follow from the
above analyses. These systems are important for further H∞ derivations and are thus
shown here. At first, a so-called innovation model, noted as Π,

x̂k+1 = Akx̂k +Kp,kek (5.37a)

yk = Ckx̂k + ek (5.37b)

can be defined following equation (5.31). Furthermore, the recursive desired signal
estimate

ŝk = Lkx̂k (5.38)

is defined. To understand their importance, an exemplary estimation of (ŷ, ŝ) based
on y is shown in figure 5.6.

yk −

+
Kp,k

+

+
z−1

x̂k
Ck

ŷk

Ak Lk

ŝk

ek x̂k+1

Figure 5.6: A Kalman Filter Application to Determine ŷ and ŝ

Most interestingly, the central difference between the state space model H(Ak,Ck) and
the innovation model Π(Ak,Kp,k,Ck) of equations (5.19) and (5.37) is the replacement
of state x by its estimate x̂ due to altered disturbance input processes

[
wk
vk

]
−→

[
Kpek
ek

]
. (5.39)

Causality is an important mathematical property of (mechanical) systems. To analyse
causality of Π, the recursive computation of y on the basis of innovations e must be
understood. Thus, consider an alternative approach of the innovation model with

Π =
[
Πkl
]N
k,l=0 , yk =

N∑

l=0

Πklel, Πkl =





CkΦ(k, l)Kp,l, k > l

I, k = l

0, k < l

(5.40)
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based on state transition matrices Φ:

Φ(k, l) =

{
Ak−1Ak−2 . . . Al+1, k > l+ 1

I, k = l+ 1
. (5.41)

In view of equation (5.7), model Π clearly is causal. The next important issue is in-
vertibility of Π, hence the input determination based on measurements y. Fortunately,
the inverse Π−1

x̂k+1 = Ap,kx̂k +Kp,kyk (5.42a)

ek = −Ckx̂k + yk (5.42b)

follows straightforward from the rearranged equations (5.24) and (5.31):

x̂k+1 = Akx̂k +Kp,k
(
yk −Ckx̂k

)
=
(
Ak −Kp,kCk

)
x̂k +Kp,kyk = Ap,kx̂k +Kp,kyk .

(5.43)

Again causality must be analysed to determine if physically reasonable systems are
present. To analyse causality of the inverse model Π−1 of equation (5.42), closed-loop
state transition matrices

Φp(k, l) =

{
Ap,k−1Ap,k−2 . . . Ap,l+1, k > l+ 1

I, k = l+ 1
(5.44)

are directly applied to determine the subsequent innovations e based on measure-
ments y:

Π
−1 =

[
Π̄kl
]N
k,l=0 , ek =

N∑

l=0

Π̄klyl, Π̄kl =





−CkΦp(k, l)Kp,l, k > l

I, k = l

0, k < l

. (5.45)

As can be seen here, the inverse model Π−1(Ap,k,Kp,k,Ck) is causal too. Furthermore,
e and y are bounded l∞-sequences, which proofs stable systems. Because both sys-
tems Π and Π−1 are causal and stable, they are referred to as minimum phase.78

5.1.3 From Kalman Filter to H
∞ Estimator

The given estimation theory so far is based on Kalman filtering with a focus on the
innovation process. This technique is very powerful, and is thus applied in many
industrial and research fields. However, Kalman filtering has theoretical flaws, which
must be considered when applying it. For example perfectly known noise parameters
(Q,Rv,S) are considered. If these presumptions differ from real noise disturbances,
Kalman filters are unable to deal with those noise uncertainties. In opposite to that,
a generalization of Kalman filters, especially H

∞ estimators, are designed to deal
with these uncertainties. Therefore, the necessity of generalization is explained in the
following.
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The generalization of Kalman filtering is focussed, among others, on
a unified approach for deterministic and stochastic problems. For that, Gramian ma-
trices

〈
×
〉

are used in the following. For example possibly deterministic or stochastic
disturbance processes are analysed by

[
Qk Sk
S
∗
k Rv,k

]
=

〈[
wk
vk

]
,
[
wl
vl

]〉
δkl . (5.46)

If stochastic processes are analysed, expected values
〈
×
〉
→ E{×} can be used instead.

Besides that, the central criterion of Kalman filtering, shown in equation (5.23), shall
be further developed. Thus, consider a weighted estimation error

s̃k = sk − ŝk = Lk(xk − x̂k) = Lkx̃k , (5.47)

which clearly is a generalization of the state estimation error in equation (5.22). Pro-
cess s̃ depends on x̃ and thus on w and v according to equation (5.32).

In order to study the influence of disturbance uncertainties on estimation errors, a
system is introduced here, which maps w and v to s̃. This operator is referred to as
TK. To give an impression how this system may look like, the equations for Kalman
filtering (5.32) and (5.47) are combined. The resulting system

x̃k+1 = Ap,kx̃k +
[
I −Kp,k

] [wk
vk

]
(5.48a)

s̃k = Lkx̃k (5.48b)

is depicted in figure 5.7. This is a special case, based on a state space representation.
Other model forms are possible.

[
wk
vk

]

[
I −Kp,k

] +

+
z−1 Lk

s̃k

Ap,k

x̃k+1 x̃k

Figure 5.7: Exemplary State Space System for Operator TK

The operator of weighted estimation error is defined in finite horizon by

TK =
[
TK,kl

]N
k,l=0 and s̃k =

N∑

l=0

TK,kl

[
wl
vl

]
. (5.49)
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Estimation theory must apply a minimization comparable to the Kalman filtering case
of equation (5.23). Therein, the 2-norm has been applied to the finite dimensional
vector x̃. Thus, the length of x̃ has been minimized, which was depicted in figure 5.5.
However, in the following operator TK shall be minimized instead of the finite vector
x̃, because TK itself is independent of disturbance processes w and v. Because matrix
TK of equation (5.49) can be seen as an application of operator Tk, which maps inputs
w and v to s̃, it thus is reasonable to quantify it by mathematical norms.

In H
2

estimation all vectors are presumed as a set of the Hilbert space H,
which will be revisited in section 5.1.4. The minimization is applied here with the
help of the H

2 norm.78 By presuming finite processes with k, l < ∞, this leads to a
solution based on the Frobenius norm with

min ‖TK‖2H2 and ‖TK‖2H2 =

N∑

k,l

∥∥TK,kl
∥∥2
F

. (5.50)

To illustrate the statements above, consider the following mean-free, uncorrelated,
white noise processes:

Example:
〈[
wk
vk

]
,
[
wl
vl

]〉
= E

{[
wk
vk

] [
w
∗
l v

∗
l

]}
=

[
I 0

0 I

]
δkl . (5.51)

Furthermore, time-invariant parameters, especially L = I, are presupposed. This
leads to s̃ = x̃. Now, by analysing the criterion of equation (5.50) the Kalman filtering
criterion of equation (5.23) is reconstituted:

Example: min ‖TK‖2H2 , E
{
s̃ks̃
∗
k

}
= E
{
x̃kx̃

∗
k

}
= Pk . (5.52)

The minimization of expected state estimation error energy emerges. If in addition w
and v are Gaussian, a least-mean-squares estimator arises. This leads to a maximum-
likelihood estimate of states x. In summary, Kalman filtering is a special case of H2

estimation.

Unfortunately, input Gramians (Q,Rv,S) must be known perfectly here. If presup-
posed disturbance parameters differ from real world processes, noise uncertainties
are present.

Uncertainties in H
2

estimation have an important influence on estima-
tion results. While Kalman filtering is the optimal solution for (least-squares) state
estimation, if model H(A,C) and second order noise parameters (Q,Rv,S) are known
exactly, it is non-robust to noise uncertainties. Hence, if model or noise uncertainties
occur, large estimation errors may emerge.121 Here, an estimator capable to cope with
uncertainties is called robust.78

An example is given by Simon:121 The state estimation by Kalman and a robust H∞

filter are compared according to uncertainties. In result, the Kalman filter performs
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better than the robust estimator, if modelling and disturbance presumptions are exact.
Nevertheless, the robust estimator outperforms the Kalman filter, when uncertainties
are present.

Another example is described by Mangoubi:128 Again the applicability of Kalman
and robust filters are compared, but here according to the maximum singular value
response. As expected, H∞ estimators outperform Kalman filters in the presence of
noise uncertainties.

H
∞

theory allows the derivation of estimators, which are less susceptible to
uncertainties, and are thus referred to as robust. The central approach for that is to
develop estimators, which minimize (or bound) the weighted estimation error over all
possible disturbances.78 This is advantageously derived with the help of the infinity-
norm, which is the origin of the name.79 The infinity-norm

‖T‖H∞ = ‖T‖i2 = sup
x6=0

‖Tx‖2
‖x‖2

(5.53)

can be derived as the induced 2-norm.128 Only if time-invariant parameters are used,
this is correct in a mathematical sense. However, the induced 2-norm has been histor-
ically referred to as the infinity-norm in general,78 which is used in this thesis too.

Nevertheless, the induced 2-norm takes the relation of Euclidean norms (for finite
processes) from input x to output Tx into account. Here, x is a square-summable
sequence, thus x ∈ l2. This approach is now used for the operator of weighted esti-
mation error TK, which maps w and v to s̃:

inf ‖TK‖2H∞ = inf sup
w,v6=0

‖s̃‖22
‖w‖22 + ‖v‖22

. (5.54)

Finally, the infinity-norm in finite horizon is the maximum singular value of the finite
block matrix Tfinite:78

‖TK‖H∞ = σmax
(
TK,finite

)
of



s̃0
...
s̃N


 =



TK,00 · · · TK,0N

... . . . ...
TK,N0 · · · TK,NN




︸ ︷︷ ︸
TK,finite




[
w0
v0

]

...[
wN
vN

]




. (5.55)

Very interestingly, H∞ estimators can be seen as a robust version of the Kalman filter.
This argument is based on practical considerations for robust Kalman filter: Simon121

describes a simple technique to improve the robustness of Kalman filters by increasing
parameter Qk, which then leads to a larger Pk in equation (5.33). If Pk rises, then the
estimate is thought to be less trustworthy and thus a more conservative solution must
be found.
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The game theory approach, described by Banavar,129 certainly is the most
understandable explanation of H∞ estimation. Consider the following cost function,
which is a direct application of equation (5.54):

Jk = min
ŝ

max
w, v

∑k
l=0 ‖sl − ŝl‖22∑k

l=0 ‖wl‖22 +
∑k
l=0 ‖vl‖22

. (5.56)

Cost function J describes the energy gain from disturbances w and v (denominator) to
weighted estimation errors s̃ (numerator). Now, an imaginary game is structured as
follows: We, the estimator designer, begin the game and our goal is the minimization
of J by a reasonable choice of ŝ in the estimation error s̃ = s− ŝ. After that nature, the
second player, maximizes the cost function J through its choice of noise processes w
and v. The initial state has been omitted here for clarity. This problem is also known
as the minimax problem.

The described game is fundamentally different to Kalman filtering, as it presumes
nature to actively degrade the estimation result.121 Because in H

∞ estimation no
assumptions about the disturbances are made, the resulting estimators may be over-
conservative.78

A suboptimal solution is necessary in H
∞ estimation, because the criterion

in equation (5.54) is unsolvable for most theoretical cases.78, 121 Thus, a suboptimal
solution is found instead by introducing an upper bound γ:

‖TK‖2H∞ = sup
w,v6=0

‖s̃‖22
‖w‖22 + ‖v‖22

< γ
2 . (5.57)

Rather than determining an infimum (minimum), an optimal value γopt is searched.
At this point, additional differences between Kalman filtering and H

∞ estimation are
apparent: While Kalman filtering focuses on the minimization of expected estimation
error energy of x̃, H∞ theory allows to bound the weighted estimation error energy by
TK.128 Because of that, the weighting matrix L and the upper bound γ are additionally
needed in H

∞ estimation in comparison to Kalman filtering.

By applying both parameters L and γ, the state estimation error covariance matrix P
is artificially increased.121 Thus, one trusts the given information I = P

−1 less than
before. A direct application of this approach will be given in section 5.1.6, especially
equation (5.107).

The choice of weighting matrix is, besides the upper bound γ, an addi-
tional design parameter for the H

∞ estimator design. Central advantage of using L is
the ability to put emphasis on selected states.128

Although a weighting matrix Lmay be used in Kalman filtering to determine a desired
signal ŝ in equation (5.38), it has no influence on Riccati recursion (5.33), and thus on
state estimation. Hence, the Kalman filter always leads to an optimal linear least

83



an overview of h-infinity estimation on the basis of kalman filtering

squares solution, not depending on the choice of L.128 In opposite to that, parameter
L must be defined in H

∞ theory and it actually does alter the estimation result. While
Hassibi et al. excessively discuss H∞ estimator applications and the following choices
for L,78 the case of L = C, which is referred to as filtering signals in additive noise,
will be described in section 5.3.

Besides the game theory approach of Banavar,129 further H
∞ theories can be applied,

for example Lagrange multiplier,121, 128 J-spectral factorization130 and so on. Here,
methods of research areas like interpolation theory, operator theory, game theory, cir-
cuit theory and system theory may be applied.78 Besides these different approaches,
a rather direct theory based on generalized Kalman filters in so-called Krein spaces is
shown in the following, because it directly builds upon the commonly known Kalman
filtering approach.

5.1.4 Time-Variant Krein Space Kalman Filter

The core concept of Krein space based H
∞ theory is the generalization of the Kalman

filter for an application in indefinite metric spaces. The basic approach for that is
(i) to rewrite the central H∞ criterion (5.57) as an indefinite-quadratic form, (ii) solve
it with the help of a stationary point and (iii) numerically solve it with an innovation
approach of a so-called Krein space Kalman filter, which requires the projection of
a vector in Krein space.78 The very basics of the scalar quadratic form has been
explained in section 5.1.1.

An indefinite-quadratic form emerges, as the central criterion of H∞ es-
timation, the bounding of maximum energy gain of equation (5.57), is reordered. For
that, consider unknown discrete-time processes [wl, vl]

k
l=0:

sup
w,v

k∑
l=0
s̃
∗
l|ls̃l|l

x
∗
0Π

−1
0 x0 +

k∑
l=0
w
∗
lQ

−1
l wl +

k∑
l=0
v
∗
lvl

< γ
2 . (5.58)

Therein, the initial state x0 has been taken into account with the help of the Gramian
matrix Π0 =

〈
x0, x0

〉
. As mentioned above, this problem shall be rearranged in an

indefinite-quadratic form. Thus, the weighted estimation error for filtered estimates
s̃k|k = Lkxk − šk|k and the measurement noise vk = yk − Ckxk are introduced to the
above equation:

sup
w,v

k∑
l=0

(šl|l − Llxl)
∗(šl|l − Llxl)

x
∗
0Π

−1
0 x0 +

k∑
l=0
w
∗
lQ

−1
l wl +

k∑
l=0

(yl −Clxl)
∗(yl −Clxl)

< γ
2 . (5.59)
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Here, the filtered estimate š of the desired signal s has been used.78 This process is
introduced for theoretical purposes only, and should not be confused with the actual
output of estimator, denoted by ŝ.

To determine an optimal estimator, the criterion in equation (5.59) is reordered ac-
cording to usual quadratic forms:

Jk

(
x0,
[
wl,yl

]k
l=0

)
= x∗0Π

−1
0 x0 +

k∑

l=0

(
w
∗
lQ

−1
l wl + v

∗
lvl

)
− γ−2

k∑

l=0

s̃
∗
l|ls̃l|l > 0 (5.60a)

= x∗0Π
−1
0 x0 +

k∑

l=0

[
wl
v̄l

]∗
M̄

−1
l

[
wl
v̄l

]
> 0 . (5.60b)

An indefinite-quadratic form emerges. Its central Gramian matrix M̄ is indefinite,
because of the introduced extended disturbance process

v̄k =

[
vk
s̃k|k

]
=

[
yk
šk|k

]
−

[
Ck
Lk

]
xk with R̂v,k =

〈
v̄k, v̄l

〉
K
=

[
I 0

0 −γ2I

]
δkl . (5.61)

Note the difference between v and its extended form v̄. It is important, because the
lower block of v̄ is an auxiliary process, which takes bound γ into account. Input
Gramian matrix M̄ of equation (5.60) follows:

〈[
wk
v̄k

]
,
[
wl
v̄l

]〉

K

=



Qk 0

0

[
I 0

0 −γ2I

]

 δkl =

[
Qk Ŝk
Ŝ
∗
k R̂v,k

]
δkl = M̄kδkl . (5.62)

Here, an important problem emerges: A negative Gramian matrix indicates negative
power. In Hilbert space H the inner product is defined. Considering x,y ∈ H, the
inner product is defined

(i) for swapped vectors by the conjugate transpose
〈
x,y
〉
=
〈
y, x
〉∗,

(ii) by a linear product with a,b ∈ C as
〈
ax1 + bx2,y

〉
= a

〈
x1,y

〉
+ b

〈
x2,y

〉
and

(iii) as positive definite for scalar-products of itself
〈
x, x
〉
> 0.

Thus, v̄ is undefinable in a Hilbert space H. Therefore, the more general Krein space
K must be used instead, because it allows indefinite Gramian matrices

〈
x, x
〉
K

. This
leads to the introduction of an important state space system:

A Krein space state space system arises as the concept of quadratic forms
is used to derive H

∞ estimators. It follows equation (5.61), and is a key element to
find the stationary point, which itself leads the way to suboptimal H∞ estimators:

xk+1 = Akxk +wk (5.63a)
[
yk
šk|k

]
=

[
Ck
Lk

]
xk + v̄k . (5.63b)
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wk +

+
z−1

[
Ck
Lk

] +

+
v̄k

[
yk
šk|k

]Ak

xk+1 xk

Figure 5.8: Krein Space State Space System

The Krein space state space system in equation (5.63) and figure 5.8 is quite similar to
the standard system in equation (5.19). The straightforward idea is to use widespread
Kalman filtering approaches on the basis of the Krein space state space system. But
for that one must find a minimum of the indefinite-quadratic form in equation (5.60),
which is determined in Krein space with the help of a stationary point.

The stationary point allows to minimize cost function Jk in equation (5.60).
The stationary point is known for the deterministic case for a general variable z:78

min J(z0,y) = y
∗
R
−1
y y with z0 = RsyR

−1
y y, Rz − RzyR

−1
y Ryz > 0 . (5.64)

This result follows the scalar quadratic form in equation (5.17), which is based on a
positive definite joint Gramian matrix of z and y. While that demands the Hilbert
space, equation (5.60) requires the Krein space. For that, the solution is partially
equivalent: The stationary point follows with

ẑ = RzyR
−1
y y with

〈
z̃, z̃
〉
= Rz − RzyR

−1
y Ryz, z̃ = z− ẑ , (5.65)

but different existence conditions arise: Essentially, the inertia I (number of negative
and positive eigenvalues) must be preserved after minimization:

Existence Condition: I(Ry) = I
(
Rz − RzyR

−1
y Ryz

)
. (5.66)

Again, the problem can be seen as a projection result of zk onto Yk = span
(
[yl]

k
l=0

)

with ẑk ∈ Yk. However, as estimators usually work recursively, the fundamental
estimation approach by using innovations in equation (5.25) is reconsidered:

ẑk =

k∑

l=0

〈
z, el

〉 〈
el, el

〉−1
el and min Jk(ẑk,y) =

k∑

l=0

e
∗
lR

−1
e,lel . (5.67)

Here, a minimum has been found for the general variable z by using the innovations
approach of equation (5.67). To apply that approach to equation (5.60),

z −→
[
yk
šk|k

]
and êk =

[
yk
šk|k

]
−

[
ŷk
ŝk|k

]
, R̂e,k =

〈
êk, êk

〉
(5.68)
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are used. This leads to the stationary point, the minimum of Jk, in the context of
recursive estimation:

min Jk =
k∑

l=0

ê
∗
l R̂

−1
e,l êl > 0 . (5.69)

A minimum of the indefinite-quadratic form is found, which leads to the determina-
tion of estimation error êk. Here, the Krein space projection result ŝ (the actual output
of the estimator) emerges, which is depicted in figure 5.9.

span
([
yl
]k−1
l=0 ,

[
šl
]k−1
l=0

)

[
yk
šk|k

]

êk[
ŷk
ŝk

]

Figure 5.9: Projections in Krein Space

Very importantly, the existence condition of equation (5.66) may be rewritten here as78

Existence Condition: I
( 〈
v̄k, v̄k

〉 )
= I
( 〈
êk, êk

〉 )
. (5.70)

More details on that will be discussed later in equation (5.86).

The Krein space Kalman filter is a natural consequence of the statements
above, and is very similar to the standard Kalman filter, but with an extended inno-
vation process

êk =

[
ey,k
es,k

]
=

[
yk
šk|k

]
−

[
ŷk
ŝk

]
=

[
yk
šk|k

]
−

[
Ck
Lk

]
x̂k . (5.71)

Hence, consider the state estimation of equation (5.31)

x̂k+1 = Akx̂k + K̂p,kêk = Ap,kx̂k + K̂p,kyk with Ap,k = Ak − K̂p,kĈk (5.72)

and estimation parameters K̂p ∈ Cn×(p+m) and R̂e ∈ R(p+m)×(p+m). These parameters
are analogue to the standard Kalman filtering solution of equation (5.30), but with
extended matrices:

K̂p,k =
(
AkPĈ

∗
k + Ŝk

)
R̂
−1
e,k, R̂e,k =

〈
êk, êk

〉
= ĈkPkĈ

∗
k + R̂v,k (5.73)

Ĉk =

[
Ck
Lk

]
, R̂v,k =

[
I 0

0 −γ2I

]
, Ŝk = 0 . (5.74)
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Even the Riccati recursion (5.33) of Kalman filtering is carried on with extended ma-
trices with

Pk+1 = AkPkA
∗
k − K̂p,kR̂e,kK̂

∗
p,k +Qk . (5.75)

Finally, an innovation form of the Krein space Kalman filter arises, which is analogue
to the innovation model of equation (5.37). An estimation application of the standard
and the Krein space Kalman filter is shown in both figures 5.6 and 5.10:

x̂k+1 = Akx̂k + K̂p,kêk (5.76a)
[
yk
šk|k

]
=

[
Ck
Lk

]
x̂k + êk . (5.76b)

[
yk
šk|k

]

−

+
K̂p,k

+

+
z−1

x̂k
[
Ck
Lk

]

[
ŷk
ŝk

]

Ak

êk x̂k+1

Figure 5.10: An Application of the Krein Space Kalman Filter

Both estimators of equations (5.37) and (5.76) are very similar and allow the estimation
of (x̂, ŷ, ŝ). Nevertheless, two major differences occur:

(i) the Riccati recursion for P is different and

(ii) the Krein space Kalman filter considers the additional input š.

Process š is unmeasurable, thus a solution for numerical-practical estimation must be
found. Therefore, the idea is to make the correlated innovation processes ey and es
of equation (5.71) with

〈
ey,k, es,k

〉
6= 0 independent and then to reasonably define a

presumption on the remaining estimation error.

The LDU-factorization is advantageous to make ey and es of equation (5.71)
independent. Thus, the Gramian of ê according to equation (5.73) is factorized by

R̂e,k =

[
Ck
Lk

]
P

[
Ck
Lk

]∗
+

[
I 0

0 −γ2I

]
=

[
CkPkC

∗
k + I CkPkL

∗
k

LkPkC
∗
k LkPkL

∗
k − γ

2
I

]
(5.77a)

= L̄kDkŪk, L̄k = Ū
∗
k =

[
I 0

LkPkC
∗
kR̂

−1
ey,k I

]
. (5.77b)
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The indefinite structure is preserved by D:

Dk =
〈
ẽk, ẽk

〉
K
=

[
Rey,k 0

0 Res,k

]
=

[
I+CkPkC

∗
k 0

0 γ
2
I− Lk

(
P
−1
k +C∗kCk

)−1
L
∗
k

]
.

(5.78)

Now, process ẽk ∈ K is defined. This altered estimation error process

ẽk = L̄
−1
k êk =

[
I 0

−LkPkC
∗
kR̂

−1
ey,k I

][
ey,k
es,k

]
=

[
ey,k
ẽs,k

]
(5.79)

has the important property
〈
ey,k, ẽs,k

〉
= 0 following

ẽs,k = −LkPkC
∗
kR

−1
ey,key,k + (šk|k − ŝk) (5.80a)

= šk|k − (LkPkC
∗
kR

−1
ey,key,k + ŝk) = šk|k − ŝk|k , (5.80b)

which is profoundly different from the original Gramian matrix
〈
ey,k, es,k

〉
6= 0. The

altered estimation error ẽs is a projection result, which is shown in figure 5.11.

span
([
yl
]k
l=0,

[
šl|l
]k−1
l=0

)

šk|k
ẽs,k

ŝk|k

Figure 5.11: Projections in Krein Space: Altered Estimation Error

This allows an advantageous state estimate

x̂k+1 = Akx̂k + K̂p,kL̄kěk = Akx̂k +
[
Kpy,k Kps,k

] [ey,k
ẽs,k

]
(5.81)

by determining the gain matrix subelements

[
Kpy,k Kps,k

]
= K̂p,kL̄k = AP

[
C
∗
k L

∗
k

] [I −R−∗ey,kCkPkL
∗
k

0 I

] [
R
−1
ey,k 0

0 R
−1
es,k

]
(5.82)

with

Kpy,k = AkPkC
∗
kR

−1
ey,k and Kps,k = AkPk

(
L
∗
k −C

∗
kR

−∗
ey,kCkPkL

∗
k

)
R
−1
es,k . (5.83)

More importantly, the inertia of Gramian matrixD, and thus (Rey,Res), define whether
a Krein space Kalman filter may exist or not: D and R̂v have the same inertia, if they
have the same number of positive and negative eigenvalues.

89



an overview of h-infinity estimation on the basis of kalman filtering

Existence conditions must be recursively checked for every k, which fol-
lows equation (5.70). Essentially, the existence test evaluates, whether the indefinite
structure of R̂v in R̂e still persists after numerical computations. Thus, the altered
estimation error is introduced to the indefinite-quadratic form by

min Jk
(
x0,
[
wl,yl

]k
l=0

)
=

k∑

l=0

ê
∗
l Ū

−1
l D

−1
l L̄

−1
l êl =

k∑

l=0

ẽ
∗
l

[
R
−1
ey,l 0

0 R
−1
es,l

]
ẽl > 0 . (5.84)

This operation is based on the inverse

R̂
−1
e,k = Ū

−1
k D

−1
k L̄

−1
k with L̄

−1
k = Ū−∗

k =

[
I 0

−LkPkC
∗
kR̂

−1
ey,k I

]
. (5.85)

The indefinite structure can be checked inDk =
〈
ẽk, ẽk

〉
for every k following equation

(5.84): Both matrices Rey and Res must be positive and negative definite, respectively:

Existence Condition: Rey,k
!
> 0 and Res,k

!
< 0 . (5.86)

This test is equivalent to

Existence Condition: P
−1
k +C∗kCk − γ

−2
L
∗
kLk

!
> 0 , (5.87)

which is observable by rewriting Riccati recursion (5.75):131

Pk+1 = Ak

(
P
−1
k +C∗kCk − γ

−2
L
∗
kLk︸ ︷︷ ︸

Condition: >0

)−1
A
∗
k +Qk . (5.88)

The existence tests are advantageous, because they can directly be applied in square-
root form.
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5.1.5 A Special Case of A Posteriori H
∞ Estimators

Process šk|k must still be known to compute an a posteriori estimate

ŝk|k = šk|k − ẽs,k = ŝk + LkPkC
∗
kR

−1
ey,key,k . (5.89)

Here, a closed solution for every possible a posteriori estimate šk|k is elaborate and
difficult for numerical-practical applications.78 Rather it is reasonable here to give
an applicable solution based on a plausible choice on šk|k, which is shown in the
following:

In view of equation (5.69), the important idea is to guarantee that

ê
∗
kR̂

−1
e,kêk > 0 because min Jk = ê

∗
kR̂

−1
e,kêk +

k−1∑

l=0

ê
∗
l R̂

−1
e,l êl > 0 . (5.90)

By applying the LDU factorization of equation (5.84), this can be rewritten to

ê
∗
kR̂

−1
e,kêk =

[
e
∗
y,k ẽ

∗
s,k
]
[
R
−1
ey,k 0

0 R
−1
es,k

][
ey,k
ẽs,k

]
!
> 0 with Rey,k > 0, Res,k < 0 . (5.91)

Based on that, it is straightforward to define ẽs,k → 0 (or equivalently šk|k = ŝk|k),
which guarantees criterion (5.69).131 Nevertheless, the existence criteria (5.86) must
still be checked.

Now, by applying this presumption to the state estimation equation (5.81) with ex-
tended matrices

x̂k+1 = Akx̂k +
[
Kpy,k Kps,k

] [ey,k
0

]
= Akx̂k +Kpy,key,k , (5.92)

the predicted form of the a posteriori H∞ estimator follows:

x̂k+1 = Akx̂k +Kpy,key,k (5.93a)

ŝk|k = Lkx̂k + LkPkC
∗
kR

−1
ey,key,k . (5.93b)

Based on that, the extended matrices (K̂p, R̂e) are reduced in size to

K̂p → Kpy,k = AkPkC
∗
kR

−1
ey,k and R̂e → Rey,k =

〈
ey,k, ey,k

〉
= I+CkPkC

∗
k . (5.94)

The predicted form above can be rearranged on the basis of filtered state estimates
ŝk|k = Lkx̂k|k. By applying the filtered state estimate

x̂k|k = x̂k + PkCkR
−1
ey,key,k with ey,k = yk −CkAkx̂k|k , (5.95)
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the filtered form of the a posteriori H∞ estimator may be given by80

x̂k+1|k+1 = Akx̂k|k + PkC
∗
kR

−1
ey,key,k (5.96a)

ŝk|k = Lkx̂k|k . (5.96b)

Nevertheless, the result ŝk|k is identical for both, the a posteriori H
∞ estimator in

predicted and filtered form. Furthermore, equation (5.92) can be rearranged to

x̂k+1 =
(
Ak −Kpy,kCk

)
x̂k +Kpy,kyk = Ap,kx̂k +Kpy,kyk (5.97a)

ey,k = −Ckx̂k + yk . (5.97b)

Finally, the a posteriori H∞ estimator K, which maps y to ŝ, emerges by reordering

x̂k+1 =
(
Ak −Kpy,kCk

)
x̂k +Kpy,kyk (5.98a)

ŝk|k = Lk
(
I− PkC

∗
kR

−1
ey,kCk

)
x̂k + LkPkC

∗
kR

−1
ey,kyk . (5.98b)

Both, the estimation of (ŝ, ŷ) by the Kalman filter and the a posteriori H∞ estimator
is nearly identical and are depicted in the figures 5.6 and 5.12.

yk −

+
Kpy,k

+

+
z−1

x̂k
Ck

ŷk

Ak Lk

+

+

ŝk|k

LkPkC
∗
kR

−1
ey,k

ey,k x̂k+1

ŝk

Figure 5.12: A Special Case of the A Posteriori H∞ Estimator

The estimation parameters (Ky,Re) and (Kpy,Rey) are similar, but have been derived
on the basis of different Riccati recursions (5.33) and (5.75). Both recursions are con-
nected, as is discussed below.

The special case of Kalman filtering can be derived from the given a
posteriori H∞ estimator. Here, it is interesting to see the connection between Kalman
filtering and its generalization. As has been described in section 5.1.3, key element of
H
∞ theory is the upper bound γ. By defining γ→∞, a Kalman filter can be deduced

as a special case of H∞ estimation.78 To see that, parameter Rse,k of equation (5.86) is
analysed as

γ→∞ : R
−1
se,k =

(
γ
2
I− Lk

(
P
−1
k +C∗kCk

)−1
L
∗
k

)−1
−→ 0 . (5.99)
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Thus, the second estimation error process ẽs, which demands the Krein space, is irrel-
evant for γ → ∞ in the quadratic form of equation (5.84). This simplifies parameter
R̂e of equation (5.77)

R̂
−1
e,k = Ū

−1
k D

−1
k L̄

−1
k =

[
I ×
0 ×

] [
R
−1
ey,k 0

0 0

][
I 0

× ×

]
=

[
R
−1
ey,k 0

0 0

]
(5.100)

and leads to Kps,k = 0 for all k as can be seen by equation (5.73) with

K̂p,k =
[
Kpy,k Kps,k

]
= AkPk

[
C
∗
k L

∗
k

]
[
R
−1
ey,k 0

0 0

]
=
[
AkPkC

∗
kR

−1
ey,k 0

]
. (5.101)

By applying that, Riccati recursions (5.33) and (5.75) are identical for Rv,k = I and
Sk = 0. Hence, the H

∞ norm of a Kalman filter surely is quite large, which indicates
low robustness.78 This brings us to the starting point, in which robustness of Kalman
filtering and its approach have been debated in section 5.1.3.

5.1.6 A Brief Summary of A Priori H
∞ Estimation

In this dissertation a posteriori H∞ estimators are primarily used. However, a priori
H
∞ estimators can be derived too and allow a very illustrative demonstration of

robustness implementation. Hence, a brief overview of a priori H
∞ estimation is

subsequently given.

When altering the central filtering criterion of equation (5.58), the idea is to change
the amount of known data, which leads to smoothing or prediction approaches. A
priori estimates essentially are one-step predictions, thus the criterion is altered ap-
propriately:

sup
w,v

k∑
l=0

(šl − Llxl)
∗(ľk − Llxl)

x
∗
0Π

−1
0 x0 +

k−1∑
l=0
w
∗
lwl +

k−1∑
l=0

(yl −Clxl)
∗(yl −Clxl)

< γ
2 . (5.102)

Here, šk is an a priori estimate of s and the estimation error s̃k = Lkxk − šk has been
used. It is important to note the different amount of data by [šl]

k
l=0 and [yl,wl]

k−1
l=0 . In

the following, the cost function is rearranged analogously to the a posteriori theory
by

Jk

(
x0,
[
wl,yl

]k−1
l=0

)
= x∗0Π

−1
0 x0 +

k−1∑

l=0

[
wl
v̄l

]∗
M̄

−1
l

[
wl
v̄l

]
− γ−2s̃∗ks̃k > 0 . (5.103)

The derivation of the a priori H∞ estimator is quite similar to the a posteriori case.
Thus, a Krein space Kalman filter based on an innovation approach with

ēk =

[
ey,k
ēs,k

]
=

[
yk
šk

]
−

[
ŷk
ŝk

]
=

[
yk
šk

]
−

[
Ck
Lk

]
x̂k (5.104)
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is applied to the above indefinite-quadratic form J. Both, the innovation process and
the stationary point, are comparable to the a posteriori case. Nevertheless, the mini-
mum

min Jk
(
x0,
[
wl,yl

]k−1
l=0

)
=

k−1∑

l=0

ē
∗
kR

−1
e,l ēk + ē

∗
s,k

(
−γ2I+ LkPkL

∗
k

)−1
ēs,k > 0 (5.105)

is more elaborate in contrast to the a posteriori solution in equation (5.69). Again,
several conditions arise, which determine whether an estimator may exist or not.

Existence conditions must be recursively checked for all k, which is com-
parable to the a posteriori conditions of equation (5.86). Following the central cost
function J of equation (5.105) the inertia of

−γ2I+ LkPkL
∗
k

!
< 0 and I+CkP̃kC

∗
k

!
> 0 (5.106)

must be maintained.78 Thus, the number of positive and negative eigenvalues of R̂e
and R̂v are the same. Fortunately, the given two existence conditions can be simplified
to one condition

P̃k = Pk

(
I− γ−2L∗kLkPk

)−1
=
(
P
−1
k − γ−2L∗kLk

)−1 !
> 0 . (5.107)

Basically, parameter P is artificially increased to get P̃, which leads to a more conser-
vative estimation result. This makes the estimator robust because it presumes that at
time instant k we have less information available than P−1k .128 This recaptures the core
of H∞ theory.

A direct comparison of the a posteriori and the a priori condition of equations (5.87)
and (5.107) reveals an important insight: The existence condition of the a priori estima-
tor is more elaborate than the a posteriori one. Hence, the secondly named approach
allows lower bounds γ, which indicate a higher robustness to noise uncertainties.
Because of that, a posteriori H∞ estimators are primarily used in this thesis.

A priori H
∞

estimators may be determined with the help of Riccati recursion
(5.75) of the a posteriori case in connection with P̃ of equation (5.107). Alternatively,
Riccati recursion

Pk+1 = AkP̃kA
∗
k −AkP̃kC

∗
k(I+CkP̃kC

∗
k)

−1
CkP̃kA

∗
k +Qk (5.108)

may be applied too. Either way, the central existence condition must be fulfilled,
which allows the determination of a useful gain

Kp,k = AkP̃kC
∗
k

(
I+CkP̃kC

∗
k

)−1 . (5.109)

Finally, the a priori H∞ estimator

x̂k+1 = Akx̂k +Kp,k (yk −Ckx̂k) (5.110a)

ŝk = Lkx̂k (5.110b)
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5.1 finite horizon : krein space kalman filter

can be applied to recursively compute (ŝ, ŷ). Though different theories have been
applied, similar estimator equations are given by Mangoubi (following Lagrange
Multiplier),128 Hassibi et al. (so-called strictly causal estimator)78 and Shaked and
Theodor.80

Again, the Kalman filter can be seen as a special case of the a priori H∞

estimator. As was shown for the a posteriori case, an important parameter is the
choice of upper bound γ. There is a lowest possible value γopt at one side and on the
other side γ → ∞, which essentially is Kalman filtering. Of course, as γ decreases, a
more conservative result emerges. The lowest possible value γopt is that point, where

P̃k becomes singular and one cannot subtract more information than is available.128

An illustrative example is given by Takaba:130 Here the dependency of eigenvalues
of P according to the upper bound γ is analysed. At the lowest possible bound
γopt eigenvalues of P tend to infinity. By increasing γ, the eigenvalues converge to
the value of Kalman filtering solution. To show the reconstitution of Kalman filters,
consider parameter P̃ of equation (5.107) as γ tends to∞:

γ→∞ : P̃k = Pk

(
I− γ−2L∗kLkPk

)−1
−→ Pk . (5.111)

Following that, the gain Kp of equations (5.30) and (5.109) are the same, and further-
more the Riccati recursions (5.75) and (5.33) are identical for Rv,k = I and Sk = 0. Thus,
parameter L no longer has an influence on the Riccati recursion and the Kalman filter
of equation (5.37) is reconstituted.
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5.2 Infinite Horizon: Popov Function Factorization

5.2.1 Wiener-Kalman Filter

The theory described before has been based on finite processes y, s and so forth. In
opposite to that, infinite processes with k ∈ [−∞,∞] and time-invariant model param-
eters are considered here, thus the following problem is referred to as the (doubly)
infinite horizon.

In this section H
∞ estimators are derived in infinite horizon. The theory of Wiener-

Kalman filtering is presented first, because its central canonical spectral factorization
approach is essential for H

∞ theory too. A comprehensive summary of discussed
theories for the infinite horizon is given in table 5.2.

Wiener-Kalman Filter H
∞ Estimator

1. Least-Mean-Squares (eq. (5.149)) Worst-Case Analysis (eq. (5.157))

‖TK‖2H2 = 1
2π

2π∫
0

∥∥∥TK(ejθ)T∗K
(
e
jθ)∥∥∥

F
dθ ‖TK‖2H∞ = sup

θ

σmax

(
TK
(
e
jθ)
T
∗
K

(
e
jθ))

‖TK‖2H∞ < γ
2

2. Spectral Factorization (eq. (5.125)) Popov Function (5.164)

Sy(z) = H(z)MH
∗(z−∗) Σf(z) = H̄(z)M̄H̄

∗(z−∗)

Special Case of Popov Function Extended: Ĉ =
[
C
L

]
, R̂v =

[
I 0

0 −γ2I

]

H(z) =
[
C(zI−A)−1 I

]

M = E

{[
wk
vk

] [
wk
vk

]∗}
=

[
Q S

S
∗
Rv

]
H̄(z) =

[
Ĉ(zI−A)−1 I

]

M̄ =

〈[
wk
v̄k

]
,
[
wk
v̄k

]〉

K

=

[
Q 0

0 R̂v

]

3. Innovation Approach (eq. (5.131))
Sy(z) = Π(z)ReΠ

∗(z−∗)
Innovation Approach (eq. (5.171))
Σf(z) = Π̂(z)RêΠ̂

∗(z−∗)

Π(z) = C(zI−A)−1Kp + I Π̂(z) = Ĉ(zI−A)−1K̂p + I

P = Ric. Eq.(A,C,Q,R,S) (5.126) P = Ric. Eq.(A,C,L,Q,γ) (5.166)
Kp =

(
APC

∗ + S
)
R
−1
e K̂p =

[
Kpy ×

]
= APĈ∗R−1ê

Re = E{eke
T
k} = CPC

∗ + Rv Rê =
〈
êk, êk

〉
=
[
Rye ×
× ×

]
= ĈPĈ∗ + R̂v

Central Solution eq. (5.207): (Kpy,Rye)

Table 5.2: Summary of Discussed Theories in Infinite Horizon
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5.2 infinite horizon : popov function factorization

At first, central estimation concepts in infinite horizon are discussed. The presump-
tion of k ∈ [−∞,∞] and time-invariant parameters allows more advantageous estima-
tor derivations. For example, the measurement process y and the innovation model
Π are defined by

y =
[
yk
]∞
k=−∞ and Π =

[
Πk
]∞
k=−∞ with Πk−l = Πkl . (5.112)

Here, systems (e.g. Πk) are not described by two indexes k and l anymore, but by a
single one, k, only.

It is advantageous to treat estimation problems in the z-domain, which is conducted
by the so-called bilateral z-transform, for instance

y(z) = Π(z)e(z) with y(z) =

∞∑

k=−∞
ykz

−k and Π(z) =

∞∑

k=−∞
Πkz

−k . (5.113)

Based on that, the analysis of causality and stability of a system, which was intro-
duced in section 5.1.1, still is important. A system Π is causal and stable (or bounded),
if the transfer matrix function Π(z) is analytic on (and outside) the unit circle.78 On
the other side, it is anti-causal and stable (or bounded), if it is analytic on (and inside)
the unit circle.

A typical example are real mechanical structures. The transfer matrix function of a
mechanical system, for instance a bridge, can be identified with the help of the inno-
vation model.17 Matrix function Π(ejθ) may follow with z = e

jθ, which is a special
case of the z-transform, the so-called Fourier transform. This function clearly is anal-
ysed on the unit circle with |z| = 1 and is referred to as analytic if it is differentiable for
θ ∈ [−π,π]. Real mechanical structures must be in accordance with that. In contrary,
the transfer function of a simulated, undamped mechanical model may be infinite at
some points (resonance catastrophe), and thus are non-differentiable, which indicates
a non-stable system.

Besides causality and stability, invertibility is an important property. In infinite hori-
zon the inverse of a system is noted by Π−1(z), which is a matrix inverse. Generally,
the matrix inverse Π−1(z) is non-unique, except for bounded inverse systems Π−1.78 If
both systems Π(z) and Π−1(z) are causal and stable (analytic on and outside the unit
circle), then they are referred to as minimum phase.

Wiener filtering has been an important milestone of model based estimation
on the basis of stochastic processes.123 This technique was developed based on single-
channel processes y ∈ Rp and s ∈ Rq with p = q = 1 in the frequency-domain
(z = ejθ).

As will be shown below, the Wiener filtering approach123 with p = 1 was further
developed afterwards by Kalman for multi-variable processes (p > 1) on the basis of
state space systems.124 Then Kailath developed a straightforward estimation method
by introducing a so-called innovation process.125, 126 Central element of these esti-
mation theories is a spectral factorization of measured spectra. These parametrized
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an overview of h-infinity estimation on the basis of kalman filtering

spectra can be seen as special Popov functions. Finally, the Popov function approach
allows to derive a H

∞ estimation technique on the basis of widespread Kalman filter-
ing.78

An important element of Wiener filtering is the derivation of an estimator K, depicted
in figure 5.13, following stochastic presumptions.

K
y ŝ

Figure 5.13: Estimator K

It is important to note that state space systems are not applied yet to describe transfer
matrix functions.

A Wiener smoothing solution

K(z) =

∞∑

k=−∞
Kkz

−k = Ssy(z)S
−1
y (z) with K =

[
Kk
]∞
k=−∞ (5.114)

can be given by applying spectra

Sy(z) =

∞∑

l=−∞
Ry(l)z

−k and Ssy(z) =

∞∑

l=−∞
Rsy(l)z

−k . (5.115)

The approach of Wiener123 presupposes stationary random processes y and s with
known 2nd order statistical parameters

Ry(l) = E
{
yky

T
k+l

}
and Rsy(l) = E

{
sky

T
k+l

}
. (5.116)

The numerical accuracy of K(z) in equation (5.114) is a demanding problem due to
the inverse S−1y (z). Besides that problem, a recursive filtering solution

Rsy(k) =

∞∑

l=0

KlRy(k− l), ŝk =

k∑

l=−∞
Kk−lyl with Kk−l = 0 for k < l (5.117)

is more advantageous, which presupposes causality. A powerful approach for that has
been the introduction of innovations.125, 126 Based on innovations e, a causal Wiener
filter

ŝk|k =

k∑

l=−∞
Gk−lel with Gk−l = 0 for k < l (5.118)

can be derived. As was shown for the time-variant Kalman filter in section 5.1.2, the
innovation process e is by definition orthogonal to the past data space with ek ⊥ Yk−1.
Without presuming a state space model, this innovation process can be directly com-
puted by the Gram-Schmidt procedure.20 Now, by applying innovations, a causal
filtering solution can be given by deriving a straightforward solution to the inverse
S
−1
y .
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5.2 infinite horizon : popov function factorization

The canonical spectral factorization is an approach to solve the above
filtering problem. For that, a unique rational canonical spectral factor Π(z) ∈ Cp×p
and a positive-definite matrix Re ∈ Rp×p are introduced by

Sy(z) = Π(z)ReΠ
∗(z−∗) . (5.119)

This measurement spectrum factorization is always possible, if spectrum Sy(z) has
full rank and is positive definite on the unit circle, namely z = e

jθ for θ ∈ [−π,π].
A positive definite spectrum Sy(e

jθ) is in accordance with physical presumptions,
but inaccuracies can disturb this property. If the canonical spectral factorization is
computable, then

(i) Π(z) and Π−1(z) are rational matrix functions, which are analytic on and outside
the unit circle with |z| > 1 on the basis of

(ii) Π(∞) = I and a positive definite matrix Re.

This gives an elegant solution to the inverse

S
−1
y (z) = Π−∗(z−∗)R−1e Π

−1(z) , (5.120)

which is applied in equation (5.114) to get the Wiener-Hopf filtering solution

K(z) =
{
Ssy(z)Π

−∗(z−∗)
}
+
R
−1
e Π

−1(z) . (5.121)

Therein, the operation {×}+ refers to the causal part of ×.20

The original approach presumed scalar valued processes p = 1 and the Fourier trans-
form with z = e

jθ. Based on that, several methods to compute the canonical spectral
factorization of Sy may be applied, like Bauer’s method, the Levinson-Durbin algo-
rithm or the Schur algorithm.20

In opposite to that, the canonical spectral factorization of vector processes with p > 1
(multi-variable processes) is more elaborate. Here, the Wiener-Kalman filter approach
allows a solution, which is discussed below.

Most interestingly, the canonical spectral factorization is the key element in Wiener
filtering, Wiener-Kalman filtering and Krein space based H

∞ estimation. Hence, this
central idea is repeatedly applied in the following, which allows an illustrative deriva-
tion of H∞ estimators.

The Wiener-Kalman filter arose a decade after the definition of the Wiener
filter in 1960 through the introduction of state space models.124 The derived Kalman
filter received enormous attention in the following decades by researchers, engineers
and so forth. Subsequently, the canonical factorization approach of equation (5.119) is
elaborated by applying state space parameters in spectrum Sy. These advancements
are then the basis for H∞ estimation derivations.
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an overview of h-infinity estimation on the basis of kalman filtering

To parametrize spectrum Sy, the time-invariant pendant of state space model H in
equation (5.19) is introduced by

xk+1 = Axk +
[
I 0

] [wk
vk

]
= Axk +wk (5.122a)

yk = Cxk +
[
0 I

] [wk
vk

]
= Cxk + vk . (5.122b)

This is a restatement of equation (4.40), namely the model presumption for stochastic
subspace identification. Therein, time-invariant state space parameters A ∈ Cn×n
and C ∈ Cp×n are presupposed. Furthermore, both disturbance processes w and v
are presumed by zero-mean, stationary vector random variables with known second
order statistical parameters

〈[
wk
vk

]
,
[
wl
vl

]〉
= E

{[
wk
vk

] [
wl
vl

]∗}
=

[
Q S

S
∗
Rv

]
δkl =Mδkl . (5.123)

To provide a general approach, the Gramian matrix
〈
×
〉

has been used here, which
allows to treat both deterministic and stochastic disturbance processes at once.

Because w and v are the excitation of system H, parameter M is a so-called input
Gramian matrix. By applying these presumptions, the z-transform of model H in
equation (5.122)

y(z) = H(z)

[
w(z)

v(z)

]
with H(z) =

[
Hw(z) I

]
=
[
C(zI−A)−1 I

]
(5.124)

is advantageously applied to parametrize spectrum Sy with

Sy(z) =
[
C(zI−A)−1 I

] [Q S

S
∗
Rv

] [
C(zI−A)−1 I

]∗
= H(z)MH∗(z−∗) . (5.125)

Based on that, the central idea is apparent: While in Wiener filtering spectrum Sy
was directly applied, here it is parametrized with the help of a state space model.
The parametrized form of Sy in equation (5.125) is a special case of so-called Popov
functions. These functions arise in the Kalman-Yakubovich-Popov (KYP) Lemma,132

whose results are needed below. Most notably, the Popov function of equation (5.125)
is based here on

(i) a possibly indefinite input Gramian matrix M and

(ii) a system matrix A without unit circle eigenvalues, which indicates stability.

An indefinite input Gramian matrix is non-physical, because negative process power
is impossible for real-life measurements. Nevertheless, this presumption allows a
more general derivation, which leads to an H

∞ estimation approach. But at first,
Wiener-Kalman filtering is explained in view of the KYP lemma. According to this
lemma, the following statements are equivalent:

(i) Spectrum Sy(z) is positive-definite for z = ejθ with θ ∈ [−π, π].
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(ii) The discrete-time algebraic Riccati equation (DARE)

P = ApPA
∗
p +

[
I −Kp

] [Q S

S
∗
Rv

] [
I

−K∗p

]
(5.126a)

= APA∗ −
(
APC

∗ + S
)(
CPC

∗ + Rv
)−1(

APC
∗ + S

)∗
+Q (5.126b)

= APA∗ −KpReK
∗
p +Q (5.126c)

with Ap = A−KpC has a unique hermitian solution P. If this is true, the closed-
loop matrix Ap is stable and matrix Re is positive definite.

(iii) The input Gramian M can be equivalently replaced by

M =

[
Q S

S
∗
Rv

]
−→

[
Q− P+APA∗ S+APC∗

S
∗ +CPA∗ Rv +CPC

∗

]
=

[
Kp
I

]
Re
[
K
∗
p I

]
. (5.127)

In equation (5.127) the equivalence class for input Gramians20 has been applied. By
applying this theory, spectrum Sy persists while Gramian M can be altered advanta-
geously.

The introduction of innovations by Re can be geometrically interpreted as an orthog-
onal projection, which was explained in section 5.1.2. Also note that the Riccati re-
cursion (5.33) should converge for k→∞ with time-invariant state space parameters
and a (Schur) stable matrix A to the above named hermitian solution P. Following
that, important estimation parameters

Kp =
(
APC

∗ + S
)
R
−1
e with Re = CPC

∗ + Rv (5.128)

can be determined. In accordance with the innovation model in equation (5.37), the
time-invariant system

y(z) = Π(z)e(z) with Π(z) = C(zI−A)−1Kp + I (5.129)

is introduced. Its inverse allows the determination of innovations by

e(z) = Π−1(z)y(z) with Π
−1(z) = −C(zI−Ap)

−1
Kp + I . (5.130)

These systems are minimum phase and lead to an advantageous canonical spectral
factorization of the Popov function with

Sy(z) = H(z)MH
∗(z−∗) = Π(z)ReΠ

∗(z−∗) , (5.131)

which is a further development of the factorization in equation (5.119) due to the
application of state space systems.

Covariance-based Kalman filtering is an alternative approach to the
above derivations. It especially is useful in connection with stochastic subspace iden-
tification techniques. Here, the central idea is to apply known or rather identified
covariance matrices in a parametrized form

Ry(l) =
〈
yk,yk+l

〉
=





CA
l−1
N, l > 0

Ry(0), l = 0

R
T
y(−l), l < 0

. (5.132)

101



an overview of h-infinity estimation on the basis of kalman filtering

Techniques to determine parametrized covariance matrices Ry based on measure-
ments y has been covered in the subspace identification chapter 4, especially section
4.3.

By applying parametrized Ry, an alternative to the KYP-lemma factorization of Sy in
equation (5.125) can be found. Therefore, consider the z-transform of Ry by

Sy(z) =

∞∑

l=−∞
Ry(l)z

−l = Ry(0) +

∞∑

l=1

CA
l−1
Nz

−l +

l=−1∑

−∞
N
∗(A∗)−l−1C∗z−l (5.133a)

= Ry(0) +Hw(z)N+N∗H∗w(z
−∗) = H(z)

[
0 N

N
∗
Ry(0)

]

︸ ︷︷ ︸
M

H
∗(z−∗) . (5.133b)

Here, another input Gramian M, in comparison to the KYP lemma with equation
(5.125), has been used. Depending on the average process power of states x, an infinite
number of Gramians M are possible to derive the identical spectrum Sy. By defining
the Lyapunov equation for the time-invariant system H by

Π =
〈
xk, xk

〉
= AΠA∗ +Q with Π > 0 , (5.134)

all possible matrices M(Π) can be given:

M(Π) =

〈[
wk
vk

]
,
[
wk
vk

]〉
=

[
Q S

S
∗
Rv

]
=

[
Π−AΠA∗ N−AΠC∗

N
∗ −CΠA∗ Ry(0) −CΠC

∗

]
. (5.135)

Due to the special case of Π = 0,19 Gramian M in equation (5.133) may be positive
semi-definite. Based on this parametrized form of Sy, the KYP lemma can also be
applied to derive a canonical spectral factorization, which allows an innovation model
determination. For that, consider the state estimation error of equation (5.22)

x̃k = xk − x̂k with P =
〈
x̃k, x̃k

〉
=
〈
xk, xk

〉
−
〈
x̂k, x̂k

〉
= Π− Σ , (5.136)

which allows the derivation of an alternative discrete-time algebraic Riccati equation

Σ = Π− P =
(
AΠA

∗ +Q
)
−
(
APA

∗ −KpReK
∗
p +Q

)
(5.137a)

= AΣA∗ +KpReK
∗
p (5.137b)

= AΣA∗ +
(
N−AΣC∗

)(
Ry(0) −CΣC

∗)−1(
N−AΣC∗

)∗ . (5.137c)

Here, the estimator parameters of equation (5.128)

Kp =
(
APC

∗ + S
)
R
−1
e =

(
(AΠC∗ + S) −AΣC∗

)
R
−1
e =

(
N−AΣC∗

)
R
−1
e , (5.138a)

Re = Rv +CPC
∗ = (Rv +CΠC

∗) −CΣC∗ = Ry(0) −CΣC
∗ (5.138b)

have been altered and applied. This method gives the opportunity to apply model
H(A,C) in connection with parameters

(
N,Ry(0)

)
instead of (Q,Rv,S) to determine

an innovation model, which is formerly useful for stochastic system identification
techniques.
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The numerical solution to the algebraic Riccati equations (5.126) and (5.137)
is again problematic. One can use the Doubling algorithm of equation (5.35), but in
view of convergence and numerical accuracy this is not preferable. Instead solution P
is found by an eigendecomposition of Ḡ following

P = V2V
−1
1 with

[
Ã

−∗
Ã

−∗
C
∗
R
−1
v C

Q̃Ã
−∗

Ã+ Q̃Ã−∗
C
∗
R
−1
v C

][
V1
V2

]
=

[
V1
V2

]
Λ . (5.139)

Because the infinite horizon is used here, the index k of Ḡ in equation (5.35) has been
dropped above. Very importantly, matrix Ḡ is symplectic, hence

Ḡ
−1 =

[
Ḡ
∗
22 −Ḡ∗12

−Ḡ∗21 Ḡ
∗
11

]
= J−1Ḡ∗J with J

−1 = J∗ = −J, J =

[
0 I

−I 0

]
. (5.140)

To allow a singular system matrix Ã, the eigendecomposition is generalized to

[
I C

∗
R
−1
v C

0 Ã

] [
V1
V2

]
=

[
Ã
∗
0

−Q̃ I

] [
V1
V2

]
Λ with Ḡ =

[
Ã
∗
0

−Q̃ I

]−1 [
I C

∗
R
−1
v C

0 Ã

]
. (5.141)

This is called a symplectic pencil.34 Finally, the eigendecomposition is advanced for
the case of a singular matrix Rv:
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P = V2V
−1
1 with



I 0 0

0 Ã 0

0 −C 0





V1
V2
V3


 =



Ã
∗
0 C

∗

−Q̃ I 0

0 0 Rv





V1
V2
V3


Λ . (5.142)

Because an additional block row and column has been introduced, this is called an
extended symplectic pencil, which follows the matrix product




[
Ḡ11 Ḡ12
Ḡ21 Ḡ22

] [
0

0

]

[
0 −R−1v C

]
0


 =



[
Ã
∗
0

−Q̃ I

] [
C
∗

0

]

[
0 0

]
Rv



−1 

[
I 0

0 Ã

] [
0

0

]

[
0 −C

]
0


 . (5.143)

The eigenvalue determination of both shown symplectic pencils can be conducted
by the QZ-algorithm as Patell133 suggests. This may lead to useless results, as was
elaborated by Mari.36 Especially the requirement for a positive definite spectrum
Sy(e

jθ) is a problem. To overcome this problem, stabilization techniques have been
defined, which are out of the scope of this thesis. Nevertheless, a brief overview of
stabilization following Vaccaro and Vukina35 will be exemplified in section 7.3.

5.2.2 Generalization to Infinite Horizon H
∞ Estimation

Wiener-Kalman filters, a special case of time-invariant Kalman filters, are susceptible
to noise uncertainties, as was pointed out in section 5.1.3. Here, the generalization
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to H
∞ theory shall be given in infinite horizon. In the following, stochastic and

deterministic problems are treated at once, thus Gramian matrices
〈
×
〉

are applied.
Furthermore, the finite weighted estimation error of equation (5.47) is considered here
too, in operator notation by

s̃ = s− ŝ . (5.144)

Now, a system, which maps disturbances w and v to the generalized estimation error
s̃, shall be analysed. Therefore, operator descriptions are introduced with

s = Lw, ŝ = Ky and y = Hww+ v . (5.145)

Those operators are represented in infinite horizon by transfer matrices L(z), K(z) and
Hw(z), which leads to

s(z) = L(z)w(z), ŝ(z) = K(z)y(z) and y(z) = Hw(z)w(z) + v(z) . (5.146)

The objective of estimation theory is the design of an estimator K for certain criteria.
At the moment state space models are unnecessary, until the Popov function in section
5.2.3 is introduced.

To analyse the weighted estimation error, operator TK of equation (5.49) is used again,
which maps w and v to s̃. Its structure

s̃ = Lw−K
(
Hww+ v

)
=
[
L−KHw −K

] [w
v

]
= TK

[
w

v

]
(5.147)

directly follows the operator notation in equation (5.145). In comparison to a special
case based on state space representations in figure 5.7, it is depicted in figure 5.14.

w

v

Hw

+

+
K

+

−

L

s̃y ŝ
s

Figure 5.14: Operator TK

Because infinite processes and time-invariant systems are presumed, a transfer matrix
function

TK(z) =
[
L(z) −K(z)Hw(z) −K(z)

]
(5.148)

can be given. Comparable to section 5.1.3, estimation theory focuses on the operator
norm minimization of TK. Because infinite horizon problems are treated here, the
transfer matrix function TK(z) of equation (5.148) is applied for that.
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5.2 infinite horizon : popov function factorization

H
2

estimation is a common approach, which is based on the operator H2 norm.
A special case of this theory is Wiener-Kalman filtering. If jointly Gaussian processes
w and v are presumed, Kalman filtering is also referred to as a least mean squares
estimator.78 As an illustration one may consider the stochastic example of equation
(5.52).

However, the H
2 norm was already applied in equation (5.50) for finite processes. In

infinite horizon the Frobenius norm is applied by

‖TK‖2H2 = trace
(
TKT

∗
K

)
=
1

2π

2π∫

0

∥∥∥TK(ejθ)T∗K
(
e
jθ)∥∥∥

F
dθ with z = ejθ . (5.149)

Here, the trace of an operator has been used, which is generally defined in infinite
horizon by

trace
(
A
)
=
1

2π

∫2π

0
trace

[
A
(
e
jθ)]dθ . (5.150)

Because it is needed for further analyses, an optimal H2 smoothing solution shall be
given subsequently. Non-causal H2 estimators should be more precisely than com-
parable causal filters, because infinite time series, and thus all available information,
are used at once.78 Hence, derived causal filters can only be as good as (non-causal)
smoother Ks.

To derive optimal H2 smoother, central element TKT
∗
K of equation (5.149) is analysed:

TKsT
∗
Ks =

(
L−KsHw

)(
L−KsHw

)∗
+KsK

∗
s (5.151a)

=
[
Ks −I

] [I+HwH
∗
w HwL

∗

LH
∗
w LL

∗

] [
K
∗
s

−I

]
=
[
Ks −I

]
Σs

[
K
∗
s

−I

]
. (5.151b)

The important advantage of the above rearranged equation is the separation of smoother
Ks from Σs, which depends on Hw and L. Operator Σs is the key element for the
smoother derivation. For further analysis, a LDU decomposition is applied here

Σs =

[
I 0

Φ I

] [
E 0

0 LE
−1
L
∗

] [
I Φ

∗

0 I

]
with Φ = LH

∗
wE

−1, E = I+HwH
∗
w . (5.152)

This allows a deeper inside in TKsT
∗
Ks, which leads to the searched non-causal estima-

tor. By reconsidering the criterion of equation (5.151), the estimation error TKsT
∗
Ks can

be split in two parts

TKsT
∗
Ks =

(
Ks −Φ

)
E
(
Ks −Φ

)∗
+LE

−1
L
∗ , (5.153)

which must be positive-definite in each case. In consequence, the smallest possible
value of estimation error in equation (5.153) is found by eliminating the first term.
This leads to a smoothing solution Ks = Φ in z-domain

Ks(z) = Φ(z) = L(z)H∗w(z
−∗)
(
I+Hw(z)H

∗
w(z

−∗)
)−1

. (5.154)
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Although the smoothing solution is optimal, an estimation error

TKs(z)T
∗
Ks(z

−∗) = L(z)
(
I+Hw(z)H

∗
w(z

−∗)
)−1

L
∗(z−∗) (5.155)

is unavoidable.

H
∞

theory allows the derivation of estimators, which are less susceptible to
noise uncertainties, as was discussed in section 5.1.3. Its name has been derived in
infinite horizon from the H

∞ norm, which is defined by the maximum singular value
of a transfer matrix function.78, 121 Thus, the maximum singular value of TK(z) with
z = ejθ and θ ∈ [−π, π] leads to the central H∞ criterion

‖TK‖2H∞ = sup
θ

σmax

(
TK
(
e
jθ)
T
∗
K

(
e
jθ)) . (5.156)

Note that the finite horizon case also is referenced to the H
∞ norm, which is a com-

mon inaccuracy: The finite horizon criterion in equation (5.54) is actually applied with
the help of the induced 2-norm.

Again, the optimal solution to H
∞ estimation is possible for special cases only, and

thus a suboptimal one

‖TK‖2H∞ < γ
2 (5.157)

is analysed instead. As was described for the H
2 case, the non-causal solution should

be the best possible estimation solution. Hence, it is reasonable to find the optimal
upper bound γopt by examining the smoothing solution.

Most interestingly, the non-causal H
2 estimation solution in equation (5.154) min-

imizes the estimation error for all possible disturbances (w, v), which includes the
worst case. Hence, the smoother of equation (5.154) covers the H

∞ case too.78 This
leads to an optimal upper bound

γ
2
opt = ‖TKs‖2H∞ = sup

θ

σmax

(
TKs
(
e
jθ)
T
∗
Ks

(
e
jθ)) . (5.158)

Based on the non-causal solution, a causal one with γopt 6 γ 6 ∞ shall be subse-
quently derived. Therefore, the suboptimal criterion in equation (5.157) is rewritten
in operator notation to

TKT
∗
K < γ

2
I (5.159a)

(
L−KHw

)(
L−KHw

)∗
+KK

∗ − γ2I < 0 (5.159b)
[
K −I

] [I+HwH
∗
w HwL

∗

LH
∗
w LL

∗ − γ2I

] [
K
∗

−I

]
=
[
K −I

]
Σf

[
K
∗

−I

]
< 0 . (5.159c)

The identity operators I maps inputs to itself. Here, it is important to note the dif-
ference between the H

2 and the H
∞ case, respectively equations (5.151) and (5.159).
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5.2 infinite horizon : popov function factorization

In both cases, the central operator (Σs and Σf) is essential for estimator derivations,
because here K has been separated from Hw and L. But only in the H

∞ case γ2I is
applied due to the suboptimal approach.

In the following, the operator Σf shall be used in z-domain by

Σf(z) =

[
I+Hw(z)H

∗
w(z

−∗) Hw(z)L
∗(z−∗)

L(z)H∗w(z
−∗) L(z)L∗(z−∗) − γ2I

]
(5.160)

to derive causal H∞ estimators. As it was applied for the Wiener-Kalman filter, the
canonical factorization of a certain Popov function is the key element here.

5.2.3 Canonical Factorization of a Popov Function in Krein Space

To derive a causal H
∞ estimator, the idea is to apply the KYP lemma, which was

already used in section 5.2.1. For that, a Popov function must be set up. Reasonably,
the central criterion of H

∞ estimation, namely the derived transfer matrix function
Σf(z) in equation (5.160) is used. Thus, state space representations

Hw(z) = C(zI−A)
−1 and L(z) = L(zI−A)−1 (5.161)

are introduced. These systems are reordered to reconstitute the Krein space state
space model of equation (5.63) (and figure 5.8) with time-invariant parameters in z-
domain by

[
y(z)

š(z)

]
=

[
Hw(z)

L(z)

]
w(z) + v̄(z) =

[[
C

L

]
(zI−A)−1 I

] [
w(z)

v̄(z)

]
. (5.162)

Both noise processes w and v̄ are still described by equation (5.62), but with M̄k → M̄:

〈[
wk
v̄k

]
,
[
wl
v̄l

]〉

K

=



Q 0

0

[
I 0

0 −γ2I

]

 δkl =

[
Q Ŝ

Ŝ
∗
R̂v

]
δkl = M̄δkl . (5.163)

Again, it is important to note that the Gramian matrix of the lower element of v̄
is negative-definite. Hence, the Gramian matrix must be defined in Krein space K,
which was explained by describing the Krein space Kalman filter in section 5.1.4. The
negative definite Gramian represents an auxiliary process, which is included to cover
the upper bound γ.

By applying the Krein space state space model to Σf in equation (5.160), a Popov
function

Σf(z) =

[[
C

L

]
(zI−A)−1 I

]

Q 0

0

[
I 0

0 −γ2I

]


[(
zI−A∗

)−1 [
C
∗
L
∗]

I

]
(5.164)

arises. The above Popov function Σf(z) is the H
∞ pendant to Sy(z) in the Wiener-

Kalman filtering case. Based on the parametrized matrix function Σf(z), the KYP
lemma can be applied to determine an H

∞ estimator.
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The equivalence class of input Gramians in equation (5.127) allowed
the determination of Kalman filter parameters based on a positive definite Popov
function Sy and the unique hermitian solution P. In the following, an equivalent ap-
proach is taken for the Popov function Σf(z) in equation (5.164). By defining extended
matrices

Ĉ =

[
C

L

]
, R̂v =

[
I 0

0 −γ2I

]
and Ŝ = 0 , (5.165)

the application of the KYP lemma is very similar: If a unique, hermitian, positive semi-
definite solution P in accordance with the discrete-time algebraic Riccati equation

P = APA∗ −
(
APĈ

∗ + Ŝ
)(
ĈPĈ

∗ + R̂v
)−1(

APĈ
∗ + Ŝ

)∗
+Q (5.166)

exists, then the input Gramian M̄ can be replaced. Both Wiener-Kalman elements,
the defined Riccati equation (5.126) and the equivalence class of input Gramians in
equation (5.127), are comparable to the H

∞ case. Thus, an altered input Gramian

M̄ =

[
Q Ŝ

Ŝ
∗
R̂v

]
−→

[
Q− P+APA∗ Ŝ+APĈ∗

Ŝ
∗ + ĈPA∗ R̂v + ĈPĈ

∗

]
=

[
K̂p
I

]
R̂e
[
K̂
∗
p I

]
(5.167)

follows. Because extended matrices have been used, estimator parameters have al-
tered sizes K̂p ∈ Cn×(p+m) and R̂e ∈ R(p+m)×(p+m) according to

K̂p =
(
APĈ

∗ + Ŝ
)
R̂
−1
e and R̂e = ĈPĈ

∗ + R̂v =
[
CPC

∗ + I CPL
∗

LPC
∗

LPL
∗ − γ2I

]
. (5.168)

This operation is possible only, when

(i) the Riccati solution P is hermitian and positive semi-definite,

(ii) the closed-loop matrix Âp = A− K̂pĈ is stable and

(iii) both matrices (R̂v, R̂e) have the same inertia (number of positive and negative
eigenvalues).

Especially in (R̂v, R̂e) the indefinite structure, which requires the Krein space, is ap-
parent. Based on that, a Krein space innovation model

Π̂(z) = Ĉ(zI−A)−1K̂p + I with Σf(z) = Π̂(z)R̂eΠ̂
∗(z−∗) (5.169)

can be determined, which is analogue to system Π(z) in equation (5.129). Further-
more, a comparison of the Popov function factorizations of equations (5.131) and
(5.169) shows a resemblance. In addition to that, innovation model Π̂ is the time-
invariant pendant to the finite horizon Krein space Kalman filter in equation (5.76).
In the following, it is used in z-domain by

[
y(z)

š(z)

]
=

([
C

L

]
(zI−A)−1 K̂p + I

)[
ey(z)

es(z)

]
= Π̂(z)ê(z) . (5.170)
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5.2 infinite horizon : popov function factorization

Here, the estimation error process of equation (5.71) is reused in z-domain. Hence,
orthogonal projections in Krein space, shown in figure 5.9, are still used. However, the
Krein space Kalman filter now is applied to the Popov function of equation (5.164):

Σf(z) =
(
Ĉ (zI−A)−1 K̂p + I

)
R̂e

(
K̂
∗
p

(
z
−∗
I−A∗

)−1
Ĉ
∗ + I

)
. (5.171)

Unfortunately, the Krein space Kalman filter in finite and infinite horizon, respectively
equations (5.76) and (5.170), is not applicable for estimation, because process š is
unknown. Thus, the extended innovation process ê is not determinable. While in
finite horizon a solution was found with the help of a LDU factorization in equation
(5.77), here a step further is taken by applying the J-spectral factorization. This allows
to derive a causal H∞ estimator.

The J-spectral factorization is a commonly used technique in H
∞ the-

ory.130, 134 It is introduced here, because it allows comprehensive estimator deriva-
tions.78 Following the so-called J-spectral factor W ∈ C(p+m)×(p+m), this theory allows
to determine a factorization

Σf(z) =W(z)JW∗(z−∗) with J =

[
I 0

0 −I

]
. (5.172)

Here, the central idea is to separate the indefinite property and to describe it with
signature matrix J. In view of Popov function (5.171), matrix R̂e is factorized and a
spectral factor

W(z) =
(
Ĉ (zI−A)−1 K̂p + I

)
R̂
1/2
e with R̂e = R̂

1/2
e JR̂

∗/2
e (5.173)

is defined. Most interestingly, the inertia of Re are clearly visible by analysing signa-
ture matrix J.

To determine the J-factorization of R̂e, the LDU-factorization of equation (5.77) is ap-
plied again by R̂e = L̄DL̄

∗, but here with time-invariant parameters

L̄ =

[
I 0

LPC
∗
R
−1
ey I

]
, D =

[
Rey 0

0 Res

]
and L̄

−1 =

[
I 0

−LPC∗R−1ey I

]
. (5.174)

It now is reasonable to introduce D = D1/2JD∗/2, thus matrices Rey and Res are factor-
ized in accordance with J:

Rey = R
1/2
ey R

∗/2
ey = I+CPC∗, Res = −R1/2es R

∗/2
es = γ2I− L

(
P
−1 +C∗C

)−1
L
∗ . (5.175)

Following that R̂1/2e = L̄D
1/2 and its inverse R̂−1/2e = D

−1/2
L̄
−1 are determinable fol-

lowing

R̂
1/2
e =

[
R
1/2
ey 0

LPC
∗
R
−∗/2
ey R

1/2
es

]
and R̂

−1/2
e =

[
R
−1/2
ey 0

−R−1/2es LPC
∗
R
−1
ey R

−1/2
es

]
, (5.176)
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which leads to the introduction of process ě by

ěk = R
−1/2
e êk with

〈
êk, êk

〉
= Re and

〈
ěk, ěk

〉
= J . (5.177)

The rescaled innovation process ě is very important, because it is not influenced by
the choice of systems (H,L) or noise parameters (Q, R̂v, Ŝ), which covers the upper
bound γ too. Hence, all information are covered by the spectral factor W. This is
now applied to give an alternative representation of the Krein space Kalman filter in
equation (5.170):

[
y(z)

š(z)

]
= Π̂(z)

[
ey(z)

es(z)

]
=W(z)

[
ě1(z)

ě2(z)

]
. (5.178)

Suboptimal H
∞

estimators are now derivable: A causal and bounded esti-
mator K(z) with H

∞ constraint, namely the criterion of equation (5.157), exists, if the
canonical spectral factorization of Popov function (5.160)

Σf = WJW
∗ =

[
L11 L12
L21 L22

] [
I 0

0 −I

] [
L
∗
11 L

∗
21

L
∗
12 L

∗
22

]
(5.179)

can be determined.78 Furthermore, this is possible only, when

(i) the spectral factor W is causal,

(ii) the inverse operators (W−1,L−1
11 ) are causal and bounded and

(iii) system L12 is strictly causal.

If this is true, then a central estimator Kcen and its generalization Kgen can be derived
on the basis of spectral factor W. It hence is useful to give a parametrization of this
operator first, which is possible due to introduced state space models Hw(z) and L(z)
in equation (5.161). By comparison to equation (5.162), the spectral factor in z-domain

W(z) =

([
Hw(z)

L(z)

]
K̂p + I

)
R̂
1/2
e =

([
Hw(z)

L(z)

]
K̂pL̄+ L̄

)
D
1/2 with R̂

1/2
e = L̄D1/2

(5.180)

follows. Gain matrix K̂p is rather complex and is hard to parametrize. In opposite
to that, K̂pLf can be advantageously parametrized. This gives a solution, which is
comparable to the finite horizon case in equation (5.82) with

[
Kpy Kps

]
= K̂pL̄ = AP

[
C
∗
L
∗]
[
I −R−∗eyCPL

∗

0 I

] [
R
−1
ey 0

0 R
−1
es

]
(5.181)

and gain matrices

Kpy = APC
∗
R
−1
ey and Kps = AP

(
L
∗ −C∗R−∗eyCPL

∗
)
R
−1
es . (5.182)
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Both gain matrices Kpy and Kps are applied in connection with uncorrelated processes
ey and ẽs analogue to equation (5.81). This allows the parametrization of the spectral
factor

[
L11(z) L12(z)

L21(z) L22(z)

]
=

([
Hw(z)

L(z)

] [
Kpy Kps

]
+

[
I 0

LPC
∗
R
−1
ey I

])[
R
1/2
ey 0

0 R
1/2
es

]
(5.183a)

with subelements

[
L11(z)

L21(z)

]
=

[
Hw(z)Kpy + I

L(z)Kpy + LPC
∗
R
−1
ey

]
R
1/2
ey and

[
L12(z)

L22(z)

]
=

[
Hw(z)Kps
L(z)Kps + I

]
R
1/2
es . (5.184)

Based on that, central and general H∞ estimators are derived in the following.

5.2.4 Central and General H
∞ Estimators

While the derivations above have been devoted to analyse Popov function Σ(z) by
canonical factorization, here these results are applied to determine causal H∞ Esti-
mator. Therefore, reconsider the central criterion of equation (5.159) in connection
with the derived Popov function (5.179):

TKT
∗
K − γ

2
I =

[
K −I

] [L11 L12
L21 L22

] [
I 0

0 −I

] [
L
∗
11 L

∗
21

L
∗
12 L

∗
22

] [
K
∗

−I

]
< 0 . (5.185)

This is the central criterion, which is used to determine an estimator K based on
spectral factor W. By introducing two operators

X = KL11 −L21 and Y = KL12 −L22 , (5.186)

the central criterion in equation (5.185) is rearranged to

TKT
∗
K − γ

2
I =

[
X Y

]
J

[
X
∗

Y
∗

]
= XX

∗ − YY
∗
< 0 . (5.187)

In the following, an H
∞ estimation approach is derived, in which the estimation error

of equation (5.187) is minimized. This leads to the central estimator, which is depicted
in figure 5.15:

Kcen = L21L
−1
11 . (5.188)

This approach minimizes the estimation error in equation (5.187) with

X =
(
L21L

−1
11

)
L11 −L21 = 0 and Y =

(
L21L

−1
11

)
L12 −L22 . (5.189)
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y
L−1

11 L21

ŝě1

Figure 5.15: Central Estimator Kcen

Central H
∞

estimators can be parametrized following operator Kcen in
equation (5.188). Because infinite horizon estimators are analysed, transfer system
matrices L21(z) and L−111 (z) must be determined. A state space representation of L11
and L21 have already been derived in equation (5.184):

L11(z) =
(
C(zI−A)−1Kpy + I

)
R
1/2
ey (5.190)

L21(z) =
(
L(zI−A)−1Kpy + LPC

∗
R
−1
ey

)
R
1/2
ey . (5.191)

Here, one notices the similarities to the Wiener-Kalman filter Π(z) and L11(z) in equa-
tions (5.129) and (5.190). If certain assumptions are made (Rv = I, S = 0 and γ→∞),
both systems are nearly identical. Thus, the inverse

L
−1
11 (z) = R

−1/2
ey

(
−C(zI−Ap)

−1
Kpy + I

)
with Ap = A−KpyC (5.192)

can be determined easily following equation (5.97). Furthermore, system L21 is com-
parable to the H

∞ estimator of equation (5.93), but with time-invariant parameters.
This leads to a parametrized central estimator state space system in z-domain with

Kcen(z) = LPC
∗
R
−1
ey + L

(
I− PC∗R−1eyC

)(
zI−Ap

)−1
Kpy . (5.193)

A comparison to the finite horizon H
∞ estimator in equation (5.98) shows a resem-

blance: An a posteriori H∞ estimator was derived by eliminating the second estima-
tion error process by ẽs = 0. In infinite horizon an analogue approach has been taken
by neglecting estimation error ě2 = R

−1/2
es ẽs, thus operator (L12,L22) are unused.

In result the finite and the infinite horizon H
∞ estimators of equations (5.98) and

(5.193) are the same, if time-invariant parameters are assumed and M̄k → M̄. How-
ever, the central estimator Kcen = L21L

−1
11 is a special (and reasonable) choice to mini-

mize the criterion in equation (5.187). A generalization of that is shown below.

General H
∞

estimators take both estimation error processes ě1 and ě2 into
account. Because š is still unknown, process ě2 is non-determinable. Thus, a causal
strictly contractive transfer operator S is introduced to define a relation of estimation
error ě2 = −Sě1.

78 This alters the Krein space Kalman filter to
[
y

š

]
=

[
L11 L12
L21 L22

] [
ě1

−Sě1

]
=

[
L11 −L12S

L21 −L22S

]
ě1 =

[
Ly
Ls

]
ě1 . (5.194)

112



5.3 summary for filtering signals in additive noise

Analogue to the relation of estimation error, operators (X,Y) of equation (5.187) are
concatenated by

X = YS with TKT
∗
K − γ

2
I = Y

(
SS
∗ − I

)
Y
∗
< 0 and 0 6 SS

∗
< I . (5.195)

It is important to note the increase of estimation error TKT
∗
K in equation (5.195) by

choosing S > 0. To derive a general H∞ estimator, the relation X = YS, namely
(
KgenL11 −L21

)
=
(
KgenL12 −L22

)
S , (5.196)

simply is rearranged to

Kgen =
(
L21 −L22S

)(
L11 −L12S

)−1
= LsL

−1
y . (5.197)

Here, the operators (Ly,Ls) of equation (5.194) were used to define the general esti-
mator Kgen, which has been depicted in figure 5.16.

y
L−1
y Ls

ŝě1

Figure 5.16: General Estimator Kgen

Most notably, the case S = 0 refers to the central estimation criterion with X = 0 and
Kcen = L21L

−1
11 in equation (5.189).

Again, a z-domain representation

Kgen(z) =
(
L21(z) − L22(z)S(z)

)(
L11(z) − L12(z)S(z)

)−1
= Ls(z)L

−1
y (z) (5.198)

is given due to the infinite horizon. Unfortunately, the numerical-practical design of
Kgen is elaborate, because the inversion of Ly is non-trivial. However, general H∞

estimators are sparsely applied only. For example, Hassibi et al.78 primarily focus
on the central solution with S = 0. Nevertheless, Takaba130 gives an algorithmic
determination of an appropriate S(z).

5.3 Summary for Filtering Signals in Additive Noise

The theories presented so far describe a general solution to H
∞ estimation. To nu-

merically compute H
∞ estimators, operator L must be defined, which represents the

application of the computed filter. There are various approaches possible to define
L. In the frame of this thesis the approach of ’filtering signals in additive noise’ is
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an overview of h-infinity estimation on the basis of kalman filtering

relevant, and thus is presented below. Its core concept is L = Hw, which redefines the
operator of weighted estimation error TK in equation (5.147) to

s̃ =
[
Hw −KHw −K

] [w
v

]
= TK

[
w

v

]
. (5.199)

This operator is shown in figure 5.17.

w

v

Hw

+

+
K

+

−

s̃s y ŝ
s

Figure 5.17: Operator Tk for Filtering Signals in Additive Noise

Besides the operator L, the upper bound γ must be defined to determine an H
∞

estimator. The best possible solution is the non-causal estimator in z-domain

TKs(z)T
∗
Ks(z

−∗) = Hw(z)
(
I+Hw(z)H

∗
w(z

−∗)
)−1

H
∗
w(z

−∗) , (5.200)

whose estimation error has been discussed in section 5.2.2. Following that, the optimal
upper bound is defined by the smoothing solution in equation (5.158) with

γ
2
opt = ‖TK‖2H∞ = max

θ
σmax

(
TKs(e

jθ)T∗Ks(e
jθ)
)

. (5.201)

A poorly working estimator is K = I, because it would not filter the signal at all. It
leads to a confident estimation error level

γconf = ‖TK‖H∞ =
∥∥[Hw −Hw −I

]∥∥
H
∞ =

∥∥[0 −I
]∥∥

H
∞ = 1 , (5.202)

which is always possible, if a hermitian, positive-definite solution P of Riccati equation
(5.166) exists. The expedient choice of the upper bound for H

∞ estimation is in
between γopt 6 γ 6 γconf and must be determined recursively. Nevertheless, the

definition γ = γconf = 1 always is feasible.78

To filter signals in additive noise, the derivations of both the finite and
infinite horizon can be advantageously used, which lead to similar results. Here, con-
sider time-invariant state space parameters and a constant input Gramian matrix M̄.
Then the hermitian solution P of discrete-time Riccati equation (5.166) can be used
to determine estimator parameters (Kpy,Rey) of equations (5.175) and (5.182), which
leads to the central estimator

Kcen(z) = CPC
∗
R
−1
ey +C

(
I− PC∗R−1eyC

)(
zI−Ap

)−1
Kpy . (5.203)
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5.3 summary for filtering signals in additive noise

As was shown before, the central estimator Kcen(z) of equation (5.193) is a z-domain
equivalent to the a posteriori H

∞ estimator with time-invariant parameters. Thus,
consider the a posteriori H∞ estimator of equations (5.93) and (5.98)

x̂k+1 = Ax̂k +Kpyek = Apx̂k +Kpyyk (5.204a)

ŷk|k = Cx̂k +CPC
∗
R
−1
ey ek = C(I− PC∗R−1eyC)x̂k +CPC

∗
R
−1
eyyk (5.204b)

with the filtered estimate ŝk|k = ŷk|k. The state space representation of an estimator K
is additionally depicted in figure 5.18.

yk −

+
Kpy

+

+
z−1

x̂k
C

ŷk

A +

+

ŷk|k

CPC∗R−1
ye

ey,k x̂k+1

ŷk

Figure 5.18: H∞ Estimator for Filtering Signals in Additive Noise

System L11(z) of equation (5.190) is important, because it leads to

Sy(z) = L11(z)L
∗
11(z

−∗) = Π̄(z)RyeΠ̄
∗(z−∗) with Π̄(z) = C(zI−A)−1Kpy + I . (5.205)

For that, operator L12 is neglected, which follows the central estimation approach.
System Π̄ essentially is the H

∞ pendant for the Wiener-Kalman Popov function fac-
torization Sy of equation (5.131). Very importantly for γ→∞, both equations (5.131)
and (5.205) are identical, because in this case

γ −→∞ : Π̄ = Π and Rye = Re . (5.206)

For details on this matter see section 5.1.5. Finally, system Π̄(A,Kpy,C)

x̂k+1 = Ax̂k +Kpyey,k (5.207a)

yk = Cx̂k + ey,k (5.207b)

and its inverse Π̄−1(Ap,Kpy,C)

x̂k+1 = Apx̂k +Kpyyk (5.208a)

ey,k = −Cx̂k + yk (5.208b)

are defined in time-domain, because they are reused for damage identification in
chapter 6. Both systems Π̄ and Π̄−1 are minimum phase.
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5.4 Mechanical System Example

5.4.1 Filtering Displacement Measurements in Additional Noise

In this section the core of H
∞ estimation is demonstrated at the mechanical system

example of chapter 3, especially section 3.3.1: A cantilever arm is modelled as a single
degree of freedom system with time-invariant mechanical parameters

m = 7.25× 10−3 Ns2

mm
, k ≈ 8.1 N

mm
, d = 10−2

Ns
mm

and ζ =
d

dcrit
≈ 2% (5.209)

following equation (3.41). As was shown in equation (3.43), continuous-time state
space parameters

Ac =

[
0 1

−m−1
k −m−1

d

]
, Bc =

[
0

m
−1

]
and Cc =

[
1 0

]
(5.210)

can be directly determined. For the numerical computation ∆t = 1/20s has been
chosen with t = k∆t. Thus, the zero-order-hold method of equation (3.15) is applied
to compute discrete-time state space parameters (A,B,C). Here, displacements y are
measured. Because stationary processes are presumed, a time-invariant state space
model H(A,C) in z-domain

Hw(z) = C(zI−A)
−1 with y(z) = Hw(z)w(z) + v(z) (5.211)

is defined. The process noise w follows a force excitation

w(z) = Bf(z) , (5.212)

which is typical for mechanical systems. In this analysis, structural displacements
are measured in a noise-disturbed environment, which is considered by v. This is a
usual set-up for large-scale structures, for instance bridges, wind energy plants and
so forth.

The research issue is to analyse the ’filtering signals in additive noise’ ap-
proach following different estimation techniques for the above described mechanical
system example. Most importantly, noise uncertainties are considered, while the true
model of equations (5.211) is known. The mechanical system H is excited by ergodic,
white, noise processes w and v with Gramian matrices

Qtrue = B
〈
fk, fk

〉
B
∗ with

〈
fk, fk

〉
= E{fkf

T
k} = 5N

2, (5.213a)

Rtrue =
〈
vk, vk

〉
= E{vkv

T
k} = 3mm2 and Strue =

〈
fk, vk

〉
= 0 . (5.213b)

It thus is a stochastic problem and covariance matrices must be used to determine
disturbance parameters. However, the true Gramian matrices are unknown to the
estimator designer. Thus, simple estimator design parameters

Qdesign =

[
1mm2

0

0 1mm2

s2

]
, Rdesign = 1mm2 and Sdesign = 0 (5.214)
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5.4 mechanical system example

are chosen instead. To give an impression of the set-up, the power spectra of x and y
due to

Sy(e
jθ) = Hw(e

jθ)QtrueH
∗
w(e

jθ) + Rtrue = Sx(e
jθ) + Rtrue (5.215)

are shown in figure 5.19. Furthermore, exemplary time series of x and y are shown,
to illustrate the influence of measurement noise.
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Figure 5.19: Theoretical Spectra and Exemplary Time-Series

5.4.2 Estimator Design for Filtering Signals in Additive Noise

In the following, four different estimators are designed following the discussed esti-
mation theories of this chapter:

(i) A non-causal H2 estimator,

(ii) Two causal, central H∞ estimators with different upper bounds γ and

(iii) A causal H2 estimator (Wiener-Kalman-filter, γ→∞).

The non-causal H
2

estimator should be the best approach, because avail-
able time series are used at once. In accordance with the described theory of section
5.2.2, a non-causal H2 estimator

Ks(z) = Hw(z)H
∗
w(z

−∗)
(
1+Hw(z)H

∗
w(z

−∗)
)−1

(5.216)

is determined first by applying equation (5.154). This leads to an estimation error

TKs(e
jθ)T∗Ks(e

jθ) = Hw(e
jθ)
(
1+Hw(e

jθ)H∗w(e
jθ)
)−1

H
∗
w(e

jθ) (5.217)
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according to equation (5.200). In accordance with equation (5.201), this leads to the
optimal bound

γ
2
opt = ‖TKs‖2H∞ ≈ 0.9956mm2 . (5.218)

Most interestingly, a lower optimal value γopt could be found, if a larger damping ζ
would be chosen.

Two central H
∞

estimators are designed next. The first one is applied with
γ
2 = γ

2
opt = 0.9956. Usually, an iterative process must be conducted to determine

the lowest possible value γ for Riccati equation (5.166). However, in this case the
optimal value γopt has been directly applicable, which led to the following estimator
parameters:

P∞,1 ≈
[
15mm2 −8mm2

s

−8mm2

s 16, 400mm2

s2

]
, Rey,1 ≈ 15.8mm2, Kpy,1 ≈

[
−0.08

−30.01/s

]
. (5.219)

To allow a comparison to the first H
∞ estimator, a second one is designed with an

arbitrary choice for the upper bound γ2 = 1.5:

P∞,2 ≈
[
2.1mm2 −0.8mm2

s

−0.8mm2

s 1, 273.4mm2

s2

]
, Rey,2 ≈ 3.1mm2, Kpy,2 ≈

[
−0.06

−21.59/s

]
. (5.220)

Based on the computed estimator parameters, two central H∞ with

K∞(z) = CPC
∗
R
−1
ey +C

(
I− PC∗R−1eyC

)(
zI−Ap

)−1
Kpy (5.221)

have been determined following equation (5.203).

Finally, a Wiener-Kalman filter, which is an optimal H
2 estimator, is

designed by applying the theory of section 5.2.1. As was shown in section 5.1.5, it can
be referred to as a special case of H∞ estimation with γ→∞. To design the estimator,
Riccati equation (5.126) is solved and applied to determine parameters Re and Kp:

P2 ≈
[
1.5mm2 −0.5mm2

s

−0.5mm2

s 629.8mm2

s2

]
, Re ≈ 2.5mm2, Kp ≈

[
−0.05

−19.37/s

]
. (5.222)

To be comparable to the formerly described central H∞ estimators, equation (5.203)

K2(z) = CPC
∗
R
−1
e +C

(
I− PC∗R−1e C

)(
zI−Ap

)−1
Kp (5.223)

has been used again to construct the estimator.
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5.4 mechanical system example

5.4.3 Estimation Results and Conclusions

A comparison of estimator design parameters shows the core concept of H∞ estima-
tion: By introducing an upper bound γ, a more conservative estimator is designed.
Thus, by lowering γ, estimator parameters (P,Re,Kp) rise, which is in accordance with
the elaborations of section 5.1.3. In the following, all four estimators are used to esti-
mate the noise-free output (displacements) of the mechanical system. Then estimation
error are compared.

Because stochastic processes (w, v) have been used, computed time-series (y, ŝ) can be
analysed directly. For instance the averaged periodogramm119 is an appropriate tool
for raw spectrum estimation. Although this method is very useful, theoretical spectra
(following state space representations) are much smoother. Nevertheless, all raw and
theoretical spectra and Gramian matrices have been compared and are transparently
related.
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Figure 5.20: Estimation Error

On the left of figure 5.20 the theoretical estimation error TK(e
jθ)T∗K(e

jθ) of equation
(5.148) is shown for all four estimation cases. As was expected, the non-causal es-
timator outperforms the other ones. Furthermore, the Wiener-Kalman filter (γ →
∞) clearly is a least-mean-squares estimator, because it has a very low area below
TK(e

jθ)T∗K(e
jθ).

Especially the first central H
∞ estimator has an increased total area. Nevertheless,

the estimation error peak (nearby the natural frequency of the mechanical system) is
bounded for both central H∞ estimators. This estimation error bounding is the core
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an overview of h-infinity estimation on the basis of kalman filtering

functionality of H∞ theory. Based on these theoretical estimation errors, the real one
is interesting. For that, the estimation error spectrum

Ss̃(e
jθ) = TK(e

jθ)

〈[
wk
vk

]
,
[
wk
vk

]〉
T
∗
K(e

jθ) = TK(e
jθ)

[
Qtrue Strue
S
∗
true Rtrue

]
T
∗
K(e

jθ) (5.224)

is additionally computed and depicted in figure 5.20. These spectra are in general
non-determinable by the estimator designer, because true Gramians (Qtrue,Rtrue,Strue)

are still unknown. However, the knowledge of the real estimation error spectra seems
to be unnecessary, because its principal form is very similar to TK(e

jθ)T∗K(e
jθ).

Finally, a comparison of the average process power of estimation error s̃ is analysed
with the help of Gramian Rs̃(0) =

〈
s̃k, s̃k

〉
. To determine theoretical Gramians, a basic

(but effective) inverse Fourier transform

Rs̃(0) =





2.66mm2 : γ
2 = γ2opt

2.25mm2 : γ
2 = 1.025

2.18mm2 : γ
2 →∞

with Rs̃(0) =
1

2π

2π∫

0

Ss̃(e
jθ)dθ (5.225)

is used. These results can be seen in comparison to Ry =
〈
yk,yk

〉
= 4.22mm2. As is

apparent here, the first central H∞ estimator has the largest average process power of
the estimation error due to the large area below Ss̃(e

jθ) in figure 5.20. On the other
hand, the second central H∞ estimator and the Wiener-Kalman filter have similar but
lower estimation error variances.
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6
DAMAGE LOCALIZATION BY STATE PROJECTION
ESTIMATION ERROR

Chapter Outline

In this chapter the new damage localization technique state projection estimation error
(SP2E) is proposed. This chapter is in part pre-published by the author.Art1, Art2 Each
article gives another viewpoint on SP2E. Furthermore, method SP2E was broadly
discussed at conferences.Proc1, Proc2

SECTION 1
General Difference Process

Normal. & Synch.
State Space Rep.

SECTION 2
Oblique Projections

State Projections
Damage Identification

SECTION 3
Mechanical System Example

FEM based SP2E
SSI based SP2E

Figure 6.1: Chapter Outline

In principal, SP2E is based on a difference process d, which is introduced in the first
section. For that, H∞ estimators, a generalization of Kalman filters, are suitable, be-
cause both deterministic and stochastic signals can be treated at once. Furthermore,
the structural excitation can be unknown. The difference process may then be anal-
ysed for damage identification by its average process power P̄d. Most importantly,
a difference process normalization and synchronization is discussed. Finally, a state
space representation is found for advantageous average process power determination.

Afterwards, section 2 covers state projection techniques. These methods enhance the
formerly described results, which leads to the average process power P̄d,V . In the end
section 3 is devoted to a mechanical system example. Here, fundamentally differ-
ent approaches based on first principles (e.g. finite element models, white box) and
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system identification (e.g. stochastic subspace identification) are used to show the
method’s capability.

6.1 The Difference Process

6.1.1 General Difference Process

According to the fundamental axioms in structural health monitoring,53 damage iden-
tification is based on a comparison of two system states. This has already been ap-
plied on the basis of corresponding mechanical parameters in section 4.4. Therein the
differences of integral quantities of mechanical systems, especially corresponding pa-
rameters rather than modal data, have been analysed. This was suitable for damage
identification based on deterministic system identification. However, a difference of
Markov parameters on the basis of stochastic identification is not useful. Instead the
central idea is to analyse a difference process

d = sj − si . (6.1)

Here, si and sj are determinable processes of a mechanical structure in two differ-
ent structural states i and j. Various approaches are possible to describe s, respec-
tively the state of a mechanical system. At this point a fundamental classification
distinguishes between processes computed by white box models (e.g. finite element
models, multi-body simulations) and black box models (identified state space models,
ARMA models, etc.).

The average process power is an excellent approach to analyse the difference
process d. Hence, Gramian matrix Rd ∈ Rp×p and spectrum Sd ∈ Cp×p are introduced
by

Sd(z) =

∞∑

l=−∞
Rd(l)z

−l and Rd(l) =
〈
dk+l,dk

〉
. (6.2)

In practice a finite sequence d = [dk]
N
k=0 must be used. The average process power can

then be estimated by Rd(0). According to Parseval’s theorem, Rd(0) may be equiva-
lently derived in time and frequency domain with k ∈N and θ ∈ [−π,π]:

Rd(0) =
〈
dk,dk

〉
=

1

N+ 1

N∑

k=0

dkd
T
k =

1

2π

2π∫

0

Sd(z)dθ with z = ejθ . (6.3)
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6.1.2 Parametrization of a Mechanical Structure

There are several approaches to parametrize a mechanical structure, which then leads
to the required process s. At one hand, first principle based models, for example
equation (3.7) of chapter 3, can be used. On the other hand, system identification
techniques lead to numerically identified systems, for instance equation (4.40).

To allow a possible real-time structural damage identification technique, an approach
based on stochastic subspace identification is advantageous, because generally valid
models (state space models) with low complexity (and thus low model order) may be
automatically determined based on measurements only. Furthermore, elaborate test
loads can be omitted. Although a finite element based approach can also be used to
parametrize H, the identification approach is undertaken below. For that, state space
equation (4.40) is presupposed, which is briefly depicted in figure 6.2:

xk+1 = Axk +
[
I 0

] [wk
vk

]
= Axk +wk (6.4a)

yk = Cxk +
[
0 I

] [wk
vk

]
= Cxk + vk . (6.4b)

[
w

v

]

H
y

Figure 6.2: Model of Mechanical Structure

Stochastic subspace identification has been elaborated in chapter 4. In
the following, a short recap is given: Based on measurements y only (e.g. accel-
erations at bridges, towers, etc.) stochastic subspace identification can be derived
covariance based and data driven. Especially the covariance based approach presup-
poses an ergodic, stationary process y. Thus, covariance matrix function Ry ∈ Rp×p
and spectrum Sy ∈ Cp×p arise with

Sy(z) =

∞∑

l=−∞
Ry(l)z

−l and Ry(l) =
〈
yk+l,yk

〉
. (6.5)

These measurements are parametrized with the help of state space system H(A,C).
This model is determined by system identification techniques. Its parameters are
A ∈ Cn×n and C ∈ Cp×n. Here, n is the number of states and p the number of
measured signals, thus x ∈ Cn and y ∈ Rp. Modelled by process noise w ∈ Cn,
the mechanical system is excited by wind, traffic, waves and so forth. Nevertheless,
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measurement noise v ∈ Rp (e.g. static noise, quantizing noise) must be considered
and both noise disturbances w and v are presumed as white noise processes.19, 20

Because a state space form has been used, the z-domain equivalent can easily be
given by rearranging the central system parameters A and C to

y(z) =

∞∑

k=−∞
ykz

−k = H(z)

[
w(z)

v(z)

]
, H(z) =

[
Hw(z) I

]
=
[
C(zI−A)−1 I

]
. (6.6)

Following the covariance based approach the identification of A and C essentially
follows the parametrization of spectrum Sy and covariance function Ry by analysing
a spectral factorization

Sy(z) = H(z)MH
∗(z−∗) with M =

〈[
wk
vk

]
,
[
wk
vk

]〉
=

[
Q S

S
∗
Rv

]
. (6.7)

In large-scale experiments noise processes w and v are unknown. Following that, the
equivalence class of input Gramians20

M(Πx) =

[
Q S

S
∗
Rv

]
=

[
Πx −AΠxA

∗
N−AΠxC

∗

N
∗ −CΠxA

∗
Ry(0) −CΠxC

∗

]
(6.8)

defines an infinite number of possible states x, which all lead to the identical spectrum
Sy. Thus, states x may have no physical meaning in the frame of stochastic subspace
identification. Nevertheless, Gramian matrices Q and Πx ∈ Cn×n are related by a
Lyapunov equation

Πx =
〈
xk, xk

〉
= AΠxA

∗ +Q . (6.9)

Unfortunately, the identified system H is incapable of determining a process s, which
is needed for equation (6.1). However, estimation theory allows an approach for that.

Estimation theory is, among others, devoted to the determination of a general
signal s under certain constraints, which was excessively discussed in chapter 5. Gen-
erally, a weighting matrix L is introduced to define a theoretical signal sk = Lxk. By
estimating this signal, for instance by ŝk = Lx̂k, the central criterion of H∞ estimation
is defined by applying the general estimation error s̃k = sk − ŝk:121

‖TK‖H∞ = sup
θ

σmax

(
TK(e

jθ)
)
< γ, lim

N→∞

N−1∑
k=0
‖s̃k‖22

N−1∑
k=0

(
‖wk‖22 + ‖vk‖

2
2

) < γ
2 . (6.10)

In this equation the origin of name is apparent by the infinity H
∞ norm, which can be

computed by the greatest singular value of transfer matrices TK(e
jθ) with θ ∈ [−π, π].

Therein, TK is a system, which maps w and v to s̃. The right side of equation (6.10) is
a time domain equivalent, which describes the relation between w and v to s̃. Here,
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6.1 the difference process

the initial state is zero. Bounded by a user defined upper value γ, both criteria take
noise uncertainties into account.78 This is very advantageous, because real world
noise processes w and v are still unknown.

It is very important to note that the case of γ → ∞ leads to the classical Kalman fil-
ter, which in result is a least-mean-squares estimator. For that, it is common to solve
Riccati equation (5.137). Unfortunately, the named Riccati equation often is not solv-
able, because of inaccuracies in the measurement and identification process of real
large-scale structures. To be solvable, several criteria (stability, observability, control-
lability and positivity) must be maintained.36 Although stabilization methods have
been defined,36, 37 a useful solution may be questionable for a physical interpretation.
Besides the described numerical issues, uncertainties must be considered for estimator
derivations, which is not possible by Kalman filtering, but an H

∞ approach.

To solve the H
∞ estimation problem, the indefinite quadratic estimation theory78 can

be used. Following this theory, all signals are treated uniformly. Thus, deterministic
and stochastic approaches are unified, which is (among others) applied by dealing
with Gramian matrices. It proposes a solution, which is equivalent to the classical
Kalman-Yakubovich-Popov (KYP) lemma, in z-domain

Sy(z) = Π(z)ReΠ
∗(z−∗) with Π(z) = C(zI−A)−1Kp + I, Re =

〈
ek, ek

〉
. (6.11)

System Π is an important element of estimation theory. Again, a time-domain equiv-
alent can easily be given by

x̂k+1 = Ax̂k +Kpek (6.12a)

yk = Cx̂k + ek = ŷk + ek . (6.12b)

This general case Π(A,Kp,C) usually is found with the special case of central solution
(5.193) for which the Riccati solution P of equation (5.166) is relevant. The named
Riccati equation can be solved differently, but most commonly a generalized Schur
form of a generalized symplectic pencil is applied.34 Then gain Kp → Kpy can be
computed following equation (5.182), which leads to system Π in figure 6.3.

Π Π−1e y y e

Figure 6.3: System Π

It is advantageous because its inverse in time-domain

x̂k+1 = Apx̂k +Kpyk (6.13a)

ek = −Cx̂k + yk = −ŷk + yk (6.13b)

and its z-domain equivalent are directly determinable:

e(z) = Π−1(z)y(z), with Π
−1(z) = −C(zI−Ap)

−1
Kp + I . (6.14)
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To be computable, weighting matrix L must be defined, which is non-relevant in the
Kalman filtering case.121 For mechanical structures the ’filtering signals in additive
noise’ approach of section 5.3 is important, which applies L = C. Hence, ŝk = ŷk =

Cx̂k follows and a uniform upper bound γ = 1 can be applied according to equation
(5.202). In the following, an approach is chosen for which the estimate ŝ is chosen for
equation (6.1):

ŝk = ŷk = Cx̂k with x̂k+1 = Apx̂k +Kpyk . (6.15)

6.1.3 Synchronization and Normalization

The section above covered the parametrization of Π based on measurements y, which
led to an estimate ŝ for equation (6.1). Now, consider the successive identification of
Πi over days, weeks and so on (denoted by i), which is depicted in figure 6.4. Here,
the H

2 norm has been used as a measure of identified Πi, which may be defined
differently.

i i+1 · · · j
Identification during Operational Phase

‖Πi‖2
H2

Figure 6.4: Schematical Identification of Estimators Π during the Lifetime of a Me-
chanical Structure

Structural health monitoring systems must be able to distinguish between an un-
damaged and a damaged structural state. Thus, index i and j are defined: Index 1)
reference and index 2) potentially damaged structural state. Consequentially, in ref-
erence state (calibration of monitoring system) measurement y1 has been measured
to identify H1 and determine an H

∞ estimator Π1. In opposite to that, H2 and Π2
are determined in a potentially damaged structural state of the mechanical system.
Finally, the estimate ŝ1 follows Π1 and ŝ2 is in accordance with Π2.

To analyse the difference process d, index 3) ’theoretical analysis state’ is introduced.
It refers to a general input signal y3, which is applied to Π−1

1 and Π−1
2 to determine ŝ1

and ŝ2 respectively:

dk = −ŝ1,k + ŝ2,k = −ŷ1,k + ŷ2,k . (6.16)
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6.1 the difference process

By using process y3, synchronization and normalization of both processes ŝ1 and ŝ2 is
achieved, which will be subsequently explained. Because the estimate ŝ = ŷ has been
used following the ’filtering signals in additive noise’ approach, the former equation
is equivalent to a difference of estimation error because

dk = −ŷ1,k + ŷ2,k =
(
y3,k − ŷ1,k

)
−
(
y3,k − ŷ2,k

)
= e1,k − e2,k . (6.17)

Here, a z-domain equivalent can directly be given with

d(z) =

∞∑

k=−∞
dkz

−k = e1(z) − e2(z) . (6.18)

Because a general input process y3 has been used, H∞ estimators are advantageous
here: (i) Noise processes w and v are unknown, for example at bridges, offshore
wind energy plants, airplanes, and so forth. (ii) Input y3 is, so far, undefined (an
approach for that is given in section 6.2.1). In summary, both arguments emphasize
the consideration of noise and model uncertainties. Hence, H

∞ estimators are an
appropriate choice.

Yan et al.77 proposed a damage detection technique based on the Kalman filter and a
novelty index of estimation error. Essentially, the novelty index is a weighted 2-norm
of the estimation error. It is interesting to note that this technique can be derived from
equation (6.17) with γ → ∞, y3 = y2 and e2 = 0. Following Yan et al. the novelty
index, respectively the weighted 2-norm of estimation error e1, rises if a damage
occurs.

In the following, the general difference process d is analysed to define an applicable
damage localization technique.

6.1.4 Advantageous Determination of Average Process Power

The former statements proposed a new process d on the basis of two H
∞ estimators

Π1 and Π2, which may be analysed on the basis of the average process power Rd(0).
Although the former definitions can directly be applied, a numerically advantageous
approach is given below. Furthermore, this allows to introduce state projection tech-
niques.

As was shown before, process d can be seen as a difference of estimates, which con-
stitutes an observer equation

dk = −ŷ1,k + ŷ2,k = −C1x̂1,k +C2x̂2,k =
[
−C1 C2

] [x̂1,k
x̂2,k

]
. (6.19)
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Thus, state space system ∆ follows, which maps y3 to d. This system
∆(A∆,B∆,C∆) is shown in figure 6.5b and can be defined by

x∆,k+1 =

[
x̂1,k+1
x̂2,k+1

]
=

[
Ap,1 0

0 Ap,2

] [
x̂1,k
x̂2,k

]
+

[
Kp,1
Kp,2

]
y3,k = A∆x∆,k +B∆y3,k (6.20a)

dk =
[
−C1 C2

] [x̂1,k
x̂2,k

]
= C∆x∆,k . (6.20b)

[
w

v

]

H3 ∆
dy3

(a) System Ω

y3 • Π−1
2

Π−1
1

+

−

e2

e1

d

(b) System ∆

Figure 6.5: State Space Systems Ω and ∆

Essentially, model ∆ can be seen as a difference of inverse estimators Π−1
1 (Ap,1,Kp,1,C1)

and Π−1
2 (Ap,2,Kp,2,C2), in z-domain with

d(z) = ∆(z)y3(z) and ∆(z) = Π−1
1 (z) −Π−1

2 (z) = C∆ (zI−A∆)
−1
B∆ . (6.21)

At this point an important element is apparent: Because input y3 is applied to both
inverse estimators uniformly, the two estimation error processes e1 and e2 are syn-
chronized and normalized. Hence, they are comparable.

Spectrum Sd(z) of equation (6.2) is applicable for damage identification, because it
rises as ∆(z) increases. Based on state space system ∆, spectrum Sd can be determined
following

Sd(z) = ∆(z)Sy3(z)∆
∗(z−∗) with Sy3(z) = H3(z)M3H

∗
3(z

−∗) . (6.22)

In this equation the parametrized spectrum Sy3(z) in accordance with equation (6.7)
has been used with

H3(z) =
[
C3 (zI−A3)

−1
I
]

, M3 =

[
Π33 −A3Π33A

∗
3 N3 −A3Π33C

∗
3

N
∗
3 −C3Π33A

∗
3 Ry3(0) −C3Π33C

∗
3

]
. (6.23)

The central idea is to use a smooth, identified spectrum Sy3, instead of a raw mea-
sured one. Thus, numerical accuracy (in the sense of damage identification) can be
improved. By continuing this thought, a new state space model emerges for advanta-
geous damage analysis.
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6.1 the difference process

State space system Ω maps standard inputs w and v, for example white noise
processes, to the difference process d: If w and v are standard input processes and d
shows inherent structural damage information, then structural damage can be iden-
tified more easily by analysing Ω. To derive a state space model Ω, the general
input process y3 is described here with system H3(A3,C3) in accordance with equa-
tion (6.22), which is depicted in figure 6.5a. By applying model H3(A3,C3), a state
space model form for Ω(AΩ,BΩ,CΩ) is chosen with


x̂1,k+1
x̂2,k+1
x3,k+1


 =



Ap,1 0 Kp,1C3
0 Ap,2 Kp,2C3
0 0 A3





x̂1,k
x̂2,k
x3,k


+



0 Kp,1
0 Kp,2
I 0



[
wk
vk

]
= AΩxΩ,k +BΩ

[
wk
vk

]

(6.24a)

dk =
[
−C1 C2 0

]


x̂1,k
x̂2,k
x3,k


 = CΩxΩ,k . (6.24b)

Full rank of AΩ is supposed. Furthermore, a detailed depiction of system Ω is given
in figure 6.6 at the end of section 6.1. Therein projection constraints of section 6.2 are
already given. Based on model Ω, spectrum Sd of equations (6.2) and (6.22) can be
advanced to

Sd(z) = Ω(z)M3Ω
∗(z−∗) with Ω(z) = ∆(z)H3(z) = CΩ (zI−AΩ)

−1
BΩ . (6.25)

At this point a central advantage of the approach in equation (6.17) in comparison to
the method of Yan et al.77 gets apparent: Because dk = e1 − e2 is used instead of e1,
measurement noise v is eliminated:

e1,k = C3x3,k + vk − ŷ1,k, e2,k = C3x3,k + vk − ŷ2,k (6.26a)
dk =

(
C3x3,k + vk − ŷ1,k

)
−
(
C3x3,k + vk − ŷ2,k

)
= −ŷ1,k + ŷ2,k . (6.26b)

The average process power can efficiently be determined with the help of
the former statements. As was pointed out in section 6.1.1, structural damage shall be
analysed by determining the average process power Rd(0). Because unknown noise
disturbances w and v are presupposed as standard inputs, for example white noise
processes, and state space model Ω maps those to d, system parameters (AΩ,BΩ,CΩ)
may be advantageously applied to compute Rd(0) by solving a Lyapunov equation

Πd =
〈
xΩ,k, xΩ,k

〉
= AΩΠdA

∗
Ω +BΩM3B

∗
Ω . (6.27)

Therein M3 has been used, which is a presumed Gramian matrix of disturbance pro-
cesses according to equation (6.22). This leads to the required solution

Rd(0) =
〈
dk,dk

〉
= CΩΠdC

∗
Ω =

[
−C1 C2 0

]


Π11 Π12 Π13
Π21 Π22 Π23
Π31 Π32 Π33





−C∗1
C
∗
2

0


 (6.28a)

=
[
−C1 C2

] [Π11 Π12
Π21 Π22

] [
−C∗1
C
∗
2

]
. (6.28b)
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Although one may work in the z-domain, the numerical integration of Sd can be
omitted.

Matrix Π33 must be chosen here to defineM3. Nevertheless, its choice has no influence
on (Π11,Π12,Π21,Π22) and thus on Rd(0). Therefore, Π33 = 0 is a reasonable choice in
agreement with stochastic subspace identification.

Finally, the principal diagonal of Rd(0) is referred to as P̄d ∈ Rp, whose elements are
the average process power of d at each measurement position. The vector P̄d can be
applied for damage identification, which is elaborated below.

6.1.5 Damage Localization

The connection between structural damage and the difference process d in general is
evident, as it is an indirect comparison of two identified systems, which represent the
measurement at a mechanical structure in its reference and potentially altered state.
To show the capability of d for damage localization, two fundamental different lines
of arguments are subsequently discussed: At first a system-theoretic, and thus very
general, approach is given. Afterwards, the second order differential equation (3.2)
based argument leads to a mechanical understanding, but with the cost of simplifying
presumptions. Because both arguments have advantages and disadvantages, none of
both is preferable.

The system-theoretic approach begins with a very important presump-
tion: According to de Boe and Golinval,135 a small structural alteration of a mechan-
ical system (monitored by a sensor array) is primarily observable at those sensors,
which are in the vicinity of the damaged structural element. Based on that, de Boe
and Golinval used the sensor validation technique of Friswell and Inman136 to deter-
mine the subset of virtually damaged sensors, respectively the damaged substructure.

This technique is interesting, because more recent research by Kulla137 showed a
method to distinguish between identified faults from environmental and operational
conditions (e.g. temperature), sensor faults and actual structural damage.

The named sensor validation technique for structural health monitoring systems usu-
ally is based on measurements only.138 Because it is based on applied projections of
those measurements, the method is numerically stable, but may be imprecise. More
accurate results are computable by using model-based techniques. Here, the con-
ducted research on fault identification and isolation (FDI) offers several possible ap-
proaches, for example Kalman filter and H

∞ estimator based fault isolation.139, 140 A
comprehensive overview of FDI can be found in Hwang et al.141

Both fault detection and isolation approaches, the data-based and the model-based,
define a residual

e1 = y2 − ŷ1, (6.29)
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following a measurement of the potentially altered state y2 and an estimate based
on it. This estimate follows determined properties of the reference state, thus it is
denoted by ŷ1. Here, the introduced notation of section 6.1.3 has been continued.
Nevertheless, y3 → y2 is presumed for simplicity.

In general, there are methods to allow fault isolation, and thus damage localization,
based on e1, for example by applying Beard’s method142 or others. Nevertheless,
the derived null-space based fault detection77, 90, 143, 144 leads to damage localization
only, if mechanical parameters are introduced. This may follow the definition of e1 in
equation (5.24):

e1,k = (C2x2,k + vk) −C1x̂1,k = −C1x̄1,k +C∆x2,k + vk (6.30a)
with x̄1,k = x̂1,k − x2,k and C∆ = C2 −C1 for n1 = n2 . (6.30b)

Of course, a measure of e1 leads to nowhere, as it mainly consists of measurement
noise v, if a small structural alteration is present. Thus, it is very reasonable to replace
y2 → ŷ2, which leads to difference process d in equation (6.16).

Secondly, residuum e1 is typically determined by a Kalman filtering approach, which
is not able to cope with noise and model uncertainties. Because system alterations
are the important property to be found, this can lead to estimation errors. Here, the
application of H∞ estimation leads to appropriate results,141 as was already pointed
out in section 6.1.3.

In summary, the difference process d, following two H
∞ estimators, is a vastly im-

provement of residuum e1. An analysis of its average process power indicates struc-
tural damage.

The mechanical parameter based argument is a fundamental differ-
ent approach than was shown before, and it follows the second order differential
equation (3.2). Here, the basic idea is to analyse the result by using (K1,M1,D1)
and (K2,M2,D2) on the cost of vast presumptions. Afterwards, the special case of
mechanical parameter based systems is generalized.

For a moment consider two linear, continuous-time state space systemsG1(K1,M1,D1)
and G2(K2,M2,D2) of equations (3.7a) and (3.9) with a uniform system order n1 =

n2 = 2N. Both continuous-time systems are restructured as discrete-time ones by zero
order hold, and are used to determine H

∞ estimators Π1 and Π2. This then leads to a
difference process

dk = −ŷ1,k + ŷ2,k = −C1x̂1,k +C2x̂2,k =
(
−C1x̄1,k +C2x̄2,k

)
+C∆x3,k (6.31a)

with x̄1,k = x̂1,k − x3,k, x̄2,k = x̂2,k − x3,k and C∆ = C2 −C1 . (6.31b)

Essentially d is the sum of processes (−C1x̄1,C2x̄2) and C∆x3. Especially the later
one is important and is analysed in more detail below. In view of zero order hold of
equation (3.15), both discrete-time observer matrices are defined by

C1 = −M−1
1

[
K1 D1

]
and C2 = −M−1

2

[
K2 D2

]
. (6.32)
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This allows to define C∆. For that matter, the cases of mass and stiffness alterations
are considered:

• Mass alteration with M̃ =M−1
1 −M−1

2 > 0 and K∆ = K1 −K2 = 0:

C∆ =M−1
1

[
K D

]
−M−1

2

[
K D

]
= M̃

[
K D

]
. (6.33)

• Stiffness alteration with M̃ =M−1
1 −M−1

2 = 0 and K∆ = K1 −K2 6= 0:

C∆ =M−1 [
K1 D

]
−M−1 [

K2 D
]

=M−1 [
K∆ 0

]
. (6.34)

As can clearly be seen, an alteration of mass M or stiffness K leads to an increase of
C∆, while a damping variation is considered to be negligible. Hence, an alteration of
element (i, i) in M or K leads to an increase of row vector i in C∆, and thus increases
element i in the average process power P̄d.

The above discussion is based on the special case of mechanical parameter based
systems, which for instance are determined by finite element models (FEM). For an
automated structural health monitoring system the usage of finite element models
is elaborated, as was pointed out in the introduction in section 1.2. On the other
side, identification techniques lead to general system descriptions with possible non-
physical system states. Furthermore, stochastic identification techniques are unable
to determine a physical gain matrix. Thus, mechanical parameters (K,M,D) are non-
determinable on the basis of measurements y only.

Three issues follow from the above discussion:

(i) Difference process d should be reduced to its damage identification core, namely
C∆x3,

(ii) The usage of a general system descriptions is desirable and

(iii) The presumption of model orders n1 = n2 must be relaxed.

Therefore, state projections are subsequently applied, as those are an ideal approach
for named the issues above.
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6.2 State Projection Estimation Error (SP2E) for Dam-
age Localization

6.2.1 Complementary Subspaces and Oblique Projections

While the average process power Rd(0) of equation (6.28) can be applied to identify
structural damage, it is enhanced in this section by projection techniques to suppress
numerical noise.

Basically, y3 is a test signal which is applied to ∆ in equation (6.20). Hence, it can
be understood as an approach for synchronization and normalization. Its response d
must be in accordance with its input y3. In the following, a projection approach is
described, which takes advantage of this fact.

Subspaces of AΩ reveal essential parts of xΩ. Because process d follows the
product of observer matrix CΩ and states xΩ in equation (6.24), the subspaces of
these states are studied below. Hence, an eigenvalue decomposition

AΩ = XΛX−1 =

3∑

i=1

XiΛiX̄i with X =
[
X1 X2 X3

]
=



X11 0 X13
0 X22 X23
0 0 X33


 (6.35)

is applied. At this point a reasonable form of matrix X has been chosen, which is
explained in the following: AΩ is an upper block diagonal matrix, which is important
to note. At first eigenvectors and eigenvalues of the principal block diagonal are
constituted to be known and are denoted by

Ap,1X11 = X11Λ1, Ap,2X22 = X22Λ2 and A3X33 = X33Λ3 . (6.36)

Here, all three matrices Ap,1, Ap,2 and A3 have full rank. If diagonal matrices Λ1 and
Λ2 are eigenvalues of Ap,1 and Ap,2 respectively, then they must be eigenvalues of the
whole matrix AΩ. For that, corresponding eigenvectors are augmented with zeros:



Ap,1 0 Kp,1C3
0 Ap,2 Kp,2C3
0 0 A3





X11
0

0


 =



Ap,1X11
0

0


 =



X11
0

0


Λ1 (6.37a)



Ap,1 0 Kp,1C3
0 Ap,2 Kp,2C3
0 0 A3





0

X22
0


 =




0

Ap,2X22
0


 =



0

X22
0


Λ2 . (6.37b)

Furthermore, diagonal matrix Λ3 gives eigenvalues of A3 with eigenvectors X33. Be-
cause AΩ is not a block diagonal matrix, the above argument can not be repeated here
in view of


Ap,1 0 Kp,1C3
0 Ap,2 Kp,2C3
0 0 A3





X13
X23
X33


 =



Ap,1X13 +Kp,1C3X33
Ap,2X23 +Kp,2C3X33

A3X33


 =



X13
X23
X33


Λ3 . (6.38)
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If X13 and X23 are zero matrices, eigenvectors in X33 are zero too, which is a trivial but
useless case. Thus, X13 and X23 must be introduced.

However, the lower block row gives the searched argument in the above equation: If
the principal diagonal of Λ3 are eigenvalues of A3, then those are also eigenvalues of
AΩ. Nevertheless, additional constraints must be fulfilled, which will subsequently
be explained. In summary, sub blocks of eigenvectors in X have been determined.

The inversion of eigenvector block matrix X directly follows the Schur comple-
ment. By defining a positive definite matrix

M =

[
A B

C D

]
= X =




[
X11 0

0 X22

] [
X13
X23

]

[
0 0

] [
X33
]


 with MM

−1 = I , (6.39)

the general 3× 3 block inverse can directly be given with

M
−1 =

[
(A−BD−1

C)−1 −(A−BD−1
C)−1BD−1

−D−1
C(A−BD−1

C)−1 D
−1 +D−1

C(A−BD−1
C)−1BD−1

]
. (6.40)

This leads to the inverse

X
−1 =



X̄1
X̄2
X̄3


 =



X
−1
11 0 −X−1

11 Y

0 X
−1
22 −X−1

22 Z

0 0 X
−1
33


 with Y = X13X

−1
33 , Z = X23X

−1
33 . (6.41)

By multiplying both first block rows of equation (6.38) with X−1
33 from right, projection

constraints

YA3 = Ap,1Y +Kp,1C3 and ZA3 = Ap,2Z+Kp,2C3 (6.42)

arise. In view of the closed-loop system matrix definitions

A1 = Ap,1 +Kp,1C1 and A2 = Ap,2 +Kp,2C2 , (6.43)

one may then conclude the following:

H3(A3,C3) =

{
H1(A1,C1) −→ Y = I

H2(A2,C2) −→ Z = I
. (6.44)

In summary, parameters Y and Z are easy determinable for special cases of H3(A3,C3).
Thus, an appropriate choice for H3 is the potentially damaged state H2, because sig-
nals y2 are measurable at the moment of analysis. These signals can be applied in
equation (6.20), which can allow a real-time damage identification. However, real-
time applications are beyond the scope of this thesis.
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Complementary subspaces are a central element of subsequently applied
projection techniques. They are denoted by U ∩ V = 0 and refer to the direct sum
W = U⊕ V.104 This is applied to analyse the column space of AΩ, which is noted by
W. Then complementary subspaces U and V are defined by

W = U1 ⊕U2 ⊕V and U1 = span(X1), U2 = span(X2), V = span(X3) . (6.45)

In general, oblique projectors are determined by U and V , whose columns are a basis
for U and V respectively:104

PU =
[
U 0

] [
U V

]−1 , PV = I− PU =
[
0 V

] [
U V

]−1 . (6.46)

Here, PU is a projector onto U along V, while the complementary one PV projects onto
V along U. Now, by applying subspaces of AΩ with

[
U V

]
= X =

[
X1 X2 X3

]
and

[
U V

]−1
= X−1 , (6.47)

projectors are derived following equation (6.46). These projectors must be idempotent
and PU + PV = I.104

By applying the results for X and its inverse of equations (6.35) and (6.41), spectral
projectors P arise. Now, projectors are derived following equation (6.46):

PU = X1X̄1 +X2X̄2 =



X11 0

0 X22
0 0



[
X
−1
11 0 −X−1

11 Y

0 X
−1
22 −X−1

22 Z

]
=



I 0 −Y

0 I −Z

0 0 0


 (6.48a)

PV = X3X̄3 =



X13
X23
X33



[
0 0 X

−1
33

]
=



0 0 Y

0 0 Z

0 0 I


 . (6.48b)

These projectors allow system matrix projections

PUAΩ =

2∑

i=1

XiΛiX̄i =



Ap,1 0 −Ap,1Y

0 Ap,2 −Ap,2Z

0 0 0


 , PVAΩ = X3Λ3X̄3 =



0 0 YA3
0 0 ZA3
0 0 A3


 .

(6.49)

At this point the projection constraints of equation (6.42) can be seen because AΩ =

PUAΩ + PVAΩ.
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6.2 state projection estimation error (sp2e) for damage localization

6.2.2 State Projections

The idea is to determine the damage relevant part in d, which follows xΩ. Hence, the
determined projectors PU and PV are applied to study essential elements of the state
vector. A graphical representation of these elements is given in figure 6.7:

xU,k = PUxΩ,k =



I 0 −Y

0 I −Z

0 0 0





x̂1,k
x̂2,k
x3,k


 =



x̂1,k − Yx3,k
x̂2,k −Zx3,k

0


 =



x̃1,k
x̃2,k
0


 (6.50a)

xV ,k = PVxΩ,k =



0 0 Y

0 0 Z

0 0 I





x̂1,k
x̂2,k
x3,k


 =



Y

Z

I


 x3,k . (6.50b)

xΩ,k =

[ x̂1,k
x̂2,k
x3,k

]

U1

U2

V

PUxΩ,k =

[
x̃1,k
x̃2,k
0

]

P1xΩ,k

P2xΩ,k

PVxΩ,k =

[
Yx3,k
Zx3,k
x3,k

]

U

Figure 6.7: Projection of the State Vector

Because H1, H2 and H3 may have different model orders, parameters Y and Z are
fundamental to determine state differences x̃1 and x̃2. In comparison to x̄1 and x̄2 in
equation (6.31), a clear improvement is observable here. Very importantly, the state
differences x̃1 and x̃2 essentially are numerical noise, which is especially plausible for
Y = I or Z = I according to equation (6.44).
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Both processes xU and xV are central elements of xΩ and are computable by applying
projectors to the control equation (6.24a) of model Ω:

PUxΩ,k+1 =



x̃1,k+1
x̃2,k+1
0


 =



Ap,1 0 −Ap,1Y

0 Ap,2 −Ap,2Z

0 0 0





x̂1,k
x̂2,k
x3,k


+



−Y Kp,1
−Z Kp,2
0 0



[
wk
vk

]
(6.51a)

PVxΩ,k+1 =



Yx3,k+1
Zx3,k+1
x3,k+1


 =



0 0 YA3
0 0 ZA3
0 0 A3





x̂1,k
x̂2,k
x3,k


+



Y 0

Z 0

I 0



[
wk
vk

]
. (6.51b)

The essential parts of d follow state projections of xΩ. It thus is reasonable
to deal with dk = dU,k + dV ,k following

dU,k = CΩxU,k =
[
−C1 C2 0

]


x̃1,k
x̃2,k
0


 = −C1x̃1,k +C2x̃2,k and (6.52a)

dV ,k = CΩxV ,k =
[
−C1 C2 0

]


Y

Z

I


 x3,k =

(
−C1Y +C2Z

)
x3,k = CTx3,k . (6.52b)

Process dU can be interpreted as numerical noise, because it follows xU. On the other
side dV describes structural damage and is determined by the observer matrix CT and
states x3. Parameter CT is a core projection result. It is dedicated to the output by
considering observer matrices C1 and C2. This reveals an important relation: If the
difference between Π1(A1,Kp,1,C1) and Π1(A2,Kp,2,C2) increases, then CT ascends
too.

Then the z-domain equivalent shows the projection spectral results

Sd,U = ΩU(z)M3Ω
∗
U(z

−∗), Sd,V = ΩV(z)M3Ω
∗
V(z

−∗) with Ω(z) = ΩU(z) +ΩV(z) .
(6.53)

wk +

+
z−1 CT

dV ,k

A3

x3,k+1 x3,k

Figure 6.8: System ΩV

Here, projected systems

ΩU(z) = CΩ (zI− PUAΩ)
−1
PUBΩ and ΩV(z) =

[
CT (zI−A3)

−1
0
]

(6.54)
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6.2 state projection estimation error (sp2e) for damage localization

have been used. System ΩV has been depicted in figure 6.8. It gives a representation
of dV in equation (6.52b). SystemsΩ andΩV can be compared with the help of figures
6.6 and 6.8.

It is important to note the difference between C∆ in equations (6.33) and (6.34) and
the formerly introduced CT , which reveals some important key aspects of SP2E:

(i) The output is described by a difference of observer matrices C1 and C2 with re-
gard to model order differences and appropriate column spaces, which is taken
into account with Y and Z.

(ii) The difference process d is the response to a test signal y3, which itself is de-
scribed by x3.

(iii) Introduced states x3 might be physical and non-physical.

It therefore is reasonable to use matrix CT and states x3 only to determine structural
damage.

6.2.3 Enhanced Average Process Power

The identification of structural damage is conducted by analysing the average process
power Rd(0). Although this Gramian can be used for damage identification purposes,
it is advantageous to apply the state projection estimation error (SP2E) technique for
an enhancement, which led to process dV in equation (6.52b). The original average
process power of equation (6.28)

Rd(0) =
〈
dk,dk

〉
=
1

2π

2π∫

0

Sd(e
jθ)dθ = CΩ

(
PU + PV

)
Πd
(
P
∗
U + P∗V

)
C
∗
Ω (6.55a)

= Rd,U(0) + Rd,V(0) +
(
Rd,UV(0) + Rd,VU(0)

)
(6.55b)

can arguably be described by four parts. The first one is

Rd,U(0) =
1

2π

2π∫

0

Sd,U(e
jθ)dθ =

[
−C1 C2

]〈[x̃1,k
x̃2,k

]
,
[
x̃1,k
x̃2,k

]〉[
−C∗1
C
∗
2

]
. (6.56)

is numerical noise, because it follows the Gramian of state differences x̃1 and x̃2. On
the other hand,

Rd,V(0) =
1

2π

2π∫

0

Sd,V(e
jθ)dθ = CTΠ33C

∗
T with Π33 = A3Π33A

∗
3 +Q3 (6.57)

refers to the important part of Rd(0). Besides that the cross Gramian matrices Rd,UV(0)

and Rd,VU(0) are considered as irrelevant.
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By comparing equations (6.28) and (6.57), central differences are apparent: In opposite
to the determination of Rd(0), the choice of matrix Π33 is relevant here. Because noise
disturbances w and v are unknown, Gramian matrix Π33 is not unique. Hence, the
input Gramian M3 of equation (6.7) follows an infinite number of possible Π33. An
approach for that is given in the following.

A damage identification approach is proposed here on the basis of a
reasonable choice: There are various possibilities to describe input y3, for example by
state space system H3.

As was described in section 6.2.1, the choice H3 = H2 is advantageous, for instance
for real-time damage identification, and is thus used here. According to equations
(6.44) and (6.50a), this leads to Z = I and x̃2,k = x2,k − x̂2,k. Now, x2,k → x̂2,k is set, as
structural damage should not be observable in noise. Therefore, the Gramian matrix
Π33 → Π22 follows, which shows the central difference to the approach of Yan et al.77

in equation (6.26): dk −→ (e1,k − vk). This allows an approach

Rd,V(0) = CTΠ22C
∗
T with H3 = H2 and Π33 −→ Π22 . (6.58)

Here, the principal diagonal, denoted by P̄d,V , must be analysed to identify structural
damage. Most importantly, elaborate numerical integration can be omitted. Further-
more, Gramian matrix Π22 is independent of the choice of M3. A comprehensive
flowchart of SP2E is given in figure 6.9.
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Parametrization of Discrete-Time Systems

Issue: Determination of Systems Hi for
1) Reference, 2) Altered and 3) Analysis State (index i)

Method: System Identification (e.g. SSI, on the Basis of measurements yi)
OR Mechanical Parameter (Mi,Ki,Di) based (e.g. FEM)

Result: State Space System Hi(Ai,Ci) and GramianMi

H∞ Estimation for i = 1, 2

Hi(Ai,Ci) → Πi(Ap,i,Kp,i,Ci)

Normalization

Proposed H3 → H2, M3 →M2
Para. Spectrum Sy,3(H3,M3)

Average Process Power Rd(0)

State Space System Π1,Π2,Sy3 → Ω(AΩ,BΩ,CΩ)
Lyapunov Equ. Πd = AΩΠdA

∗
Ω +BΩM3B

∗
Ω

Analysis Rd(0) = CΩΠdC
∗
Ω → P̄d

State Projection Estimation Error (SP2E)

Constraints AΩ → (PU,PV)→ (Y,Z)
Parameter CT = −C1Y +C2Z

Proposed Π33(Πd)→ Π22
Analysis Rd,V(0) = CTΠ33C

∗
T → P̄d,V

Figure 6.9: Flowchart SP2E

6.2.4 Summary of Method SP2E

A summary of SP2E is given below on the basis of former statements:

(i) Identify (H1, Π1) and (H2, Π2) based on mechanical parameters (M,K,D) or
measurements y (see section 6.1.2).

(ii) Define the test input y3, for example H3 = H2, and reorder estimator parameters
(A1,Kp,1,C1) and (A2,Kp,2,C2) according to equation (6.24).

(iii) Compute parameters (Y,Z) according to defined projectors of equation (6.48).

(iv) Solve Lyapunov equation (6.27) based on a first presumption Π33 = 0.

(v) Analyse the average process power P̄d,V following equation (6.58).
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6.3 Mechanical System Example

6.3.1 Mechanical Parameter Based SP2E

The simulated example of section 3.3.2, chapter 3, has been repeatedly analysed in
this dissertation. Here, this example is finished by analysing structural damage with
SP2E. This then is the basis for real laboratory experiments in part III. Because the
actual method verification follows therein, central concepts shall be shown only below.
Therefore, the principal function of SP2E on the basis of first principle based (white
box) and identification based (black box) models is discussed. To begin with, the case
of known mechanical parameters (white box) is applied.

Consider two continuous-time systems G1 and G2 with n = 2N1 = 2N2, which map
forces f to accelerations ẍ, according to equations (3.7) and (3.9). Thus, mechanical
parameters M1, K1, D1 ∈ RN1×N1 , M2, K2, D2 ∈ RN2×N2 are known. Based on that
continuous-time state space systems G1(Ā1, B̄1, C̄a,1, D̄a,1), G2(Ā2, B̄2, C̄a,2, D̄a,2) are
derived. This example is, of course, a simplification, which allows to demonstrate the
application of Rd,V(0) in equation (6.57).

Following the concepts of the summary in section 6.2.4, H3 = H2 is chosen. Thus,
Π33 is the Gramian matrix of z2 (state vector of altered structural system). Hence,
the principal diagonal of Π33 can be seen as the average process power of all known
displacement and velocity measurements in z2.

Numerical results shall now be analysed and elaborated, hence a numerical
practical example is analysed. For that, the zero-order-hold method of equation (3.15)
is applied with ∆t = 2 · 10−4s. Here, system G was used in modal form. While A and
C have been applied to equation (6.4), the input Gramian matrix of equation (6.7) was
defined by

M =

〈[
wk
vk

]
,
[
wk
vk

]〉
=

[
Q S

S
∗
Rv

]
=

[
B

D

] [
B
∗
D
∗] . (6.59)

This have been done for three times, respectively for three structural states:

(i) Reference state,

(ii) Mass increase of ≈ 1.25kg at M3 and

(iii) Stiffness degradation between M5 and M6 (lowering the second moment of area
about 16.7%).

In the following, the reference state (index 1) is compared to the altered states each
(index 2). Thus, two damage scenarios shall be analysed by SP2E. The results for that
are shown in figures 6.10a and 6.10b.

As can be seen, the mass and the stiffness alteration have been detected and localized
correctly by SP2E. Furthermore, the projection techniques essentially have no influ-
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(b) Stiffness Alteration between M5 and M6

Figure 6.10: Mechanical Parameter based SP2E, Results in
[
(m/s2)2

]

ence. This is plausible, because potential numerical disturbances are not present. In a
next step numerically identified mechanical systems are used.

6.3.2 SSI Based SP2E

SSI based SP2E essentially uses the canonical correlation based stochastic subspace
identification of section 4.3.3, which has been applied in section 4.5. The identified
system in modal form has been applied commonly with equations (6.7) and (6.8). This
then was the basis for SSI based SP2E.
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(a) Mass Alteration at M3

1 2 3 4 5 6 7 8
0

1.5

3

4.5

·10−1

Meas. Pos. [-]

P̄d

1 2 3 4 5 6 7 8
0

2

4

6

·10−2

Meas. Pos. [-]

P̄d,V

(b) Stiffness Alteration between M5 and M6

Figure 6.11: SSI Based SP2E, Results in
[
(m/s2)2

]

Figures 6.11a and 6.11b show the damage identification results for the SSI based SP2E.
By comparing P̄d to P̄d,V , one can see that projection techniques are necessary to local-
ize structural alterations. The difference clearly follows numerical inaccuracies in the

143



damage localization by state projection estimation error

identification process. Nevertheless, the results of P̄d,V for the mechanical parameter
and the SSI based approach nearly are identical.

The shown SP2E results are a small part of the whole analysis. In this chapter the
fundamental functionality has been shown and discussed only. Based on that part III
of this thesis, especially chapter 8, is devoted to analyse damage identification results
for a laboratory structure.
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7
SUBSPACE IDENTIFICATION OF A LABORATORY
STRUCTURE

Chapter Outline

The theories of former chapters have repeatedly been applied at the simulated me-
chanical system example of section 3.3.2 in chapter 3. Henceforth, the discussed theo-
ries are exemplified with laboratory data. Thus, in the present chapter the laboratory
set-up is discussed first in section 1. Here, the used measurement instrumentation
is important because it determines subsequent results, for example the estimation of
spectra. Based on that, the covariance based stochastic subspace identification of the
laboratory structure is explained. In the end exemplary results of H∞ estimation are
elaborated.

SECTION 1
Laboratory Set-Up

Measurement Instrum.
Spectrum Estimation

SECTION 2
Stochastic Subspace Id.

Covariance Model Id.
Operational Modal An.

SECTION 3
Kalman Filt. & H∞ Estim.

The Positivity Problem
Filt. Sig. in Add. Noise

Figure 7.1: Chapter Outline

All numerical process steps have been analysed and conducted by self-developed
programs. However, this chapter serves as a basis for the subsequent one. While here
the structural reference state is discussed only, the application and identification of
structural alterations is carried out in chapter 8.
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7.1 Laboratory Set-Up

7.1.1 Description of Laboratory Experiments

The laboratory experiments have been conducted at Leipzig University of Applied
Sciences. In these experiments a cantilever arm (bending beam) with a length of 2.45m
has been used, which is shown in figure 7.2: A steel rectangular hollow section 80×
40× 2.9mm. The whole construction was built upon a block type machine foundation.

5 30 30 30 30 30 30 30 30

245cm

M1 M2 M3 M4 M5 M6 M7 M8

(a) Mechanical System: Cantilever Arm (b) Laboratory Structure

Figure 7.2: Laboratory Set-Up

In figure 7.2 the measurement positions M1 . . . M8 are apparent (equally spaced
30cm), thus the total number of measurement positions p = 8. By adding the masses
of beam and sensors, a total mass of approximately 19.4kg follows. Because of former
experiments, the beam already was pre-damaged: In former experiments a saw cut
(≈ 2.5cm depth) between M4 and M5 has been applied and closed afterwards.

Ambient excitations have been used because automated structural health
monitoring shall generally be possible. These stochastic excitations were simulated
by two self-built loudspeakers, hence acoustic noise. To build those, wooden boxes
50× 54× 50cm have been equipped with speaker CPA 15− 1000 (15" diameter, nom-
inal power 1000W; company SpeaKa), which have their optimal frequency response
between 20 . . . 2.500Hz. While both loudspeaker enclosures were built as bass reflex
systems, the maximal standard sound pressure level of the CPA 15 − 1000 is 98dB.
The orientation of both loudspeakers can be seen in figure 7.2.

Very importantly, the ambient excitation is not white noise. Although a white noise
process has been simulated in Matlab (company MathWorks) and used as the loud-
speaker’s input, the frequency response of both sound systems clearly is not flat. In
accordance with the discussed H

∞ estimation theories, the structural excitation sim-
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ply is unknown. Besides that actual real world excitations, for instance vehicle traffic
at bridges, are unknown too. Nevertheless, the laboratory excitation has demonstra-
bly been ergodic.

The measurement chain is depicted in figure 7.3: Eight uni-axial accelerom-
eters PCB 393C of company PCB Piezotronics have been used. Their sensitivity
is 101.9mV/(m/s2). Furthermore, the optimal frequency range (±5%) is between
0.0025 . . . 800Hz.

SENSORS

Accel. PCB 393C
Comp. Piezotronics

SIGNAL COND.

CardMaster 21.255G
Comp. Kemo

ADC

Real-Time Target-PC
PMC-ADADIO 16Bit

Comp. General Standards

DATA MANAGEMENT

Windows Host-PC

Analogue

Signals

Digital

Signals

Figure 7.3: Measurement Chain

Based on analogue sensor voltage signals, measurement data must be digitized. For
that, signal condition is necessary to prevent aliasing and to reduce quantization
noise. Thus, the CardMaster 21.255G (input ±10V, company Kemo) was utilized.
Its linear phase response low pass was used with appropriate amplifications. Because
a constant sampling frequency of fs = 1.250Hz has been used, the filter cut off fre-
quency fc = 400Hz was applied in accordance with the Nyquist-Shannon sampling
theorem (fs > 2fc). Here, the cut-off frequency fc = 400Hz had been chosen to mea-
sure the first sixth vertical bending modes.

The analogue-digital-conversion (ADC) has been realized by a real-time target ma-
chine (xPC Target, Company MathWorks). Therefore, a standard personal computer
(PC) was equipped with PMC-ADADIO (input ±10V, ADC 16Bit, company General
Standards) and has been booted with a real-time operating system. Here, the central
advantage is the exact synchronous data sampling without interrupts.

Afterwards the discrete-time measurement data was processed on a host-PC (standard
Windows machine with Matlab), for instance conversion from voltage to acceleration.
Because of the following data management, the sampling frequency fs = 1.250Hz
was chosen on purpose. At this point a trade-off between resolution and numerical
calculation possibilities had to be considered. For example the singular value decom-
position is bounded by the number of matrix row and columns, thus the number
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of data samples k in t = k∆t. By increasing the sampling frequency (lowering ∆t),
shorter data length (time t) can be processed at once.

7.1.2 Power Spectral Density Estimation

There are various methods to estimate the power spectral density of a signal y. Be-
cause of its common usage, Welch’s method119 is used below, and thus shall be ex-
plained briefly. While the original work in 1967 was based on single channel signals,
multivariate analyses are presupposed here.

Broadly speaking, the central idea of Welch’s method is an averaging of modified
periodograms to reduce the variance of spectral results. This is necessary, because
the spectral variance cannot be reduced by using larger data sets. Periodograms
essentially are the Fourier transform of autocorrelation estimates. Because the fast
Fourier transform is common for that, a data length of the power of two should be
taken to prevent zero padding or cutting data.

The modification of periodograms reveals an important element of this spectral es-
timation approach: The measured data is split in data segments. Those shortened
signals typically have an overlap to previous segments by 50%, which increases the
number of averaging.

Every data segment is scaled by a chosen window function, which is an approach to
reduce leakage. This modifies the resulting periodogram. Spectral leakage is a phe-
nomenon that describes additional peaks in a Fourier spectrum following no physical,
but numerical origins. One major leakage source is created by using finite discrete-
time signals.

There are plenty window functions possible to reduce spectral leakage. Very impor-
tantly, the choice of window function is a trade-off between high resolution and high
dynamic range. Typical high resolution windows are the rectangular and the Kaiser
window. These kind of windows are capable to give precise frequency estimates of
comparable magnitudes, but fail if frequency contents are vastly different. On the
other side windows, which provide a high dynamic, allow appropriate estimates of
altering peak heights. An example is the Blackman-Harris window. If one needs
both characteristics, a window in between these extremes may be chosen, like the
Hamming or the Hann window.

7.1.3 Spectral Results

In result of the described laboratory set-up, discrete-time acceleration signals of eight
measurement positions with units m/s2 have been gathered. While these signals are
the basis of the following analyses, structural assumptions (like stiffness, mass, etc.)
are explicitly not proposed or used. Furthermore, the excitation is unknown.
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To identify the mechanical system, the covariance based stochastic subspace identifi-
cation of section 4.3 in chapter 4 shall be applied. For that, a covariance matrix func-
tion Ry(l) must be determined. As was already explained for the numerical example
in section 4.5, the inverse Fourier transform of an averaged periodogram following
Welch119 is applied because this technique allows advantageous data averaging.

The averaged periodogramm is based on a fast Fourier transform, which is optimized
for data length with the power of two. Hence, a spectral resolution with N = 2

15

was chosen. Here, a study of N = 2
N with N ∈ N,N = 11, . . . , 18 confirmed an

appropriate trade-off between the spectral resolution and necessary averaging. By
analysing spectrum variations due to different data amounts, a measurement length
of 1h was proven to be applicable. This implies 270 spectral averages with a 50% data
overlap. Here, different measurement durations (up to 4 days) have been analysed.
Because of ergodicity, these very long durations are unnecessary.

The resulting measured power spectral density (PSD) Sy has the unit (m/s2)2/Hz.
Because it is a matrix function, this spectrum may be difficult to analyse. Thus, the
largest singular value of Sy(e

jθ) is plotted in figure 7.4. As was discussed before, the
inverse Fourier transform of Sy leads to the covariance matrix function Ry(l), which
again is hard to analyse. Nevertheless, to get an impression, figure 7.4 also shows the
auto-covariance function at M1.
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Figure 7.4: Measured Reference Spectrum Sy and Auto-Covariance Function at M1

A central element of the averaged periodogram is the application of window func-
tions. Only if a rectangular window is used, result Ry(l) is identical to those of
time-domain methods, for example Ry(l) = 1/(N+ 1)

∑N
k=0 ykyk+l. However, the co-

variance matrix function Ry(l) is an estimate due to finite measurements. Because
window functions clearly improve spectral results, the Hann window has been used
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nonetheless. Again this is a trade-off, which followed a study of different window ap-
plications (e.g. Hann window, Hamming window, Chebyshev window). It is beyond
the scope of this thesis to discuss spectral estimation approaches in more detail.

The spectral analysis is very important, because its results determine all
upcoming procedures. While the given covariance function shows remarkable peri-
odicity, sixth vertical bending modes clearly are apparent in spectrum Sy. Besides
that, measurement noise processes are present too. For instance natural frequencies
of the clamping construction have been tracked, which was verified in separate mea-
surements. More details on measured natural frequencies of the actual test structure
will be given in the operational modal analysis section 7.2.2.

The spectral estimate obviously is a raw spectrum, which is determined by the ambi-
ent excitation. As can be seen, frequencies beyond the cut-off frequency fc = 400Hz
are filtered. On the other side the low frequency range (up to 30Hz) is limited too,
which follows the frequency response of the loudspeakers. Hence, the first vertical
bending mode at ≈ 5.6Hz is poorly excited. Although the height of most peaks can
be computed appropriately by averaging, the estimate of the first natural frequency
remains uncertain. Based on spectral data, the loudspeaker’s input could be adjusted
to overcome the above problems. But in view of possible unknown excitations in H

∞

estimation this was omitted.

Finally, a comparison of simulated and measured spectra in figures 3.6 and 7.4 re-
veals imprecise simulation presumptions. Especially the applied and closed saw cut
(pre-damage) is not considered in simulations. Nevertheless, the simulation example
serves as a method demonstration only and (possibly updated) mechanical parame-
ters, like stiffness, mass and damping, are explicitly not used for damage identifica-
tion.

7.2 Stochastic Subspace Identification

7.2.1 Covariance Model Identification

One the basis of former statements a system H(A,C) of the laboratory structure shall
be parametrized. Here, the elaborations of the subspace identification chapter 4 are
important. Following the concept of averaged spectra, or equivalently covariance
functions, the covariance based stochastic subspace identification is an appropriate
technique.

To identify the structure, the singular value decomposition of equation (4.51) must be
conducted, which directly applies the determined covariance matrix function Ry(l).
At this point the number of block rows and columns m is a central element to be
defined. The more data is processed at once, the longer the numerical computa-
tion takes, but more precise results can also be expected. In view of advantageous
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analysability by FFT, m has been chosen to the power of two. Based on a short com-
parison study, m = 29 = 512 was finally chosen.

It is important to note the consequences of choice m. First of all, figure 7.4 gives an
impression of the used amount of relevant data and the effect of using less. Secondly,
the Fourier transform of that shortened covariance function again is a spectrum, but
with a lower resolution in comparison to the primal one in figure 7.4. Synthezising
above, the reduced amount of spectral, or covariance, data in SSI may have tremen-
dous impacts on identification results, as was observed by the author.

The singular values of equation (4.51) are very important to determine an appropriate
model order n. While in simulated scenarios like figure 4.9, the model order n can
easily be seen by a gap in σn � σn+1, real-life data usually is non-analysable by
that method. This will be discussed below in connection with figure 7.5. Although
the CCA technique of section 4.3.3 was very successful in simulation experiments,
it allowed poor model order determination in real-life experiments only. Thus, the
extension to the central CCA equation (4.80) is not an option to improve the algorithm.

The stabilization diagram is a common tool for model order determination
in modern system identification techniques. Following Peeters,44 it is practically use-
ful to over-specify the model order and to eliminate numerical fragments afterwards.
For that matter, the stabilization diagram is a practical approach to compare modal
results for several possible model orders, which leads to an engineering oriented rank
decision.

Figure 7.5 on page 154 gives a stabilization diagram example. While the left side
shows the actual stabilization digram, the right one gives related singular values. As
it was mentioned before, a clear gap in the singular values is not present here.

The given stabilization diagram has the measured raw spectrum in its background.
While the vertical axis gives exemplary model orders, modal results are marked by
grey dots. Here, the operational modal analysis follows equation (4.54). Furthermore,
the model reduction technique in accordance with section 3.2.3 is applied and its
results are presented by black crosses and text, which gives the damping. To truncate
modes, criteria of relevant eigenvalues have been defined:

i) Eigenvalues λi and λi,i+1 must emerge complex conjugated.

ii) The modal damping must be plausible, thus 0 < ζ < 3%.

iii) Identified frequencies have to be near by spectral peaks.

iv) Frequency positions and modal dampings must be stable according to an in-
creasing model order, which is the origin of method name.

v) Computed unscaled mode shapes φi and φi,i+1 have to be complex conjugated.
In principal φi is a vector of p complex values. Only if these values are inphase,
a mode shape is present. An example is given in figure 7.6 on page 155.
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vi) The model following complex conjugated eigenvalues λi and λi,i+1 should lead
to the description of a single spectral peak, which is illustrated in figure 7.6.
Therein the complete model with n = 36 is reduced to a single mode pair,
which perfectly describes the third vertical bending mode.

If a single named criterion is violated, the analysed eigenvalue is truncated. Here,
black crosses (with damping texts) mark complex conjugated eigenvalues in figure
7.5, which fulfil all named criteria.
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Figure 7.5: Stabilization Diagram: Left) Identified Frequencies (Grey Dot), Model Re-
duction (Black Cross) and Modal Dampings (Text in 10−4) in front of the
Measured Spectrum; Right) Singular Values

The identification result now can be given by carefully analysing the sta-
bilization diagram of figure 7.5. Firstly, the shown model order results are chosen
exemplarily to clarify general aspects. Secondly, there are various method variations
possible because of its practical approach. Nevertheless, stabilization diagram ap-
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proaches are not the primary focus of this thesis, and the author refers to Goursat et
al.145

As can be seen in figure 7.5 the relevant frequencies and modal dampings are stable
due to increasing model orders. Very interestingly, rank n = 8 could be a reasonable
choice following the singular values, which leads to a model with the 3rd to the 6th
vertical bending mode. Because five natural frequencies shall be identified, model
order n = 36 has been chosen here. Unfortunately, n > 204 with σ204 ≈ 3 · 10−4 would
be necessary to identify the first natural frequency too. Due to very disadvantageous
numerical inaccuracies, model order n = 36 was chosen to be sufficient.

The spectral identification results are presented in figure 7.7. While the left side shows
the identified spectrum following n = 36, the right one gives the model reduction
result. As can be seen on left several frequencies have additionally been identified.
Most importantly, the unscaled mode shapes of these additional frequencies clearly
indicate noise processes. Because the defined selection criteria are violated, model
reduction truncates this information. The named situation is equivalent to the grey
dots and black crosses in figure 7.5 at n = 36.

Both spectra Sy(e
jθ), the primary identified and the truncated one, are indefinite at

some θ. This is especially apparent for the right spectrum in figure 7.7: Because of
an indefinite spectrum beyond the sixth natural frequency, the first singular value is
suddenly increased. An indefinite spectrum clearly is non-physical and it follows nu-
merical inaccuracies. This has a tremendous impact on possible estimator derivations
in section 7.3.

In result of the identification process a system H(A,C) with additional parameters N
and Ry(0) is determined, which leads to the discussed spectrum of figure 7.7. Here,
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Figure 7.7: Measured and Identified Spectra: Identification with n = 36 (left) and
Model Reduction to n = 10 (right)

the central advantage can be seen: The huge amount of data (1h) is reduced to four
relatively small matrices, which are capable to describe the most relevant structural-
dynamical properties. Furthermore, a smooth spectrum can be analysed instead of
the measured raw spectrum, which is especially useful for damage identification, as
will be seen in chapter 8.

7.2.2 Operational Modal Analysis

The primary result of covariance based stochastic subspace identification is system
H(A,C) in connection with additional parameters (N,Ry(0)). Based on H(A,C) modal
characteristics (f, ζ,φ) can be determined. Although most authors devoted to struc-
tural health monitoring would understand modal parameters as intended results for
damage identification, this is explicitly not undertaken in this thesis. Instead system
H(A,C) is applied to identify an estimator Π(Ap,Kp,C) in section 7.3, which is needed
for SP2E in chapter 8.

Having these circumstances in mind, identified modal parameters are useful for en-
gineering oriented plausibility. Modal results are depicted in figure 7.8. The modal
identification again follows equation (4.54). Here, the unscaled mode shapes φ show
a resemblance to the simulated case in figure 3.5. Besides that, the actual natural
frequency positions are lower in comparison to the simulated case, because of the
pre-damage. Furthermore, less vertical bending modes were identified due to mea-
surement instrumentation.
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Figure 7.8: Operational Modal Analysis: Normalized Mode Shapes (Circles) and Cu-
bic Spline Interpolation (Continuous Line)

Operational damping estimation is a known weakness, see for example Rainieri et
al.56 This problem can be seen here too: An estimated modal damping of about 0.04%
to 0.23% is questionable. Nevertheless, damping estimation is not the primary focus
here and possible inaccuracies are seen as a minor influence for subsequent results.
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7.3 Kalman Filtering and H
∞ Estimation

Because system H(A,C) is unusable for recursive signal determination, estimation
theory is subsequently applied. Here, chapter 5 serves as a basis. From a classical
viewpoint, it is common to determine a covariance based Kalman filter.17 To do
so, the spectral representation of equation (5.133) can be applied in accordance with
the Kalman-Yakubovich-Popov (KYP) lemma. Thus, the parametrized spectrum of
figure 7.7 must be used to determine an estimator for the laboratory structure. By
applying the KYP lemma, the canonical factorization of Sy following equation (5.131)
is conducted and an H

2 optimal estimator Π can be determined. This estimator then
can be the basis for following damage identification techniques.

Crucial element of the KYP lemma is the change of input Gramian matrix M → Re,
which may be interpreted geometrically as orthogonal projections. Therefore, gain Kp
must be determined, which can follow Riccati equation (5.137). Various criteria must
be fulfilled for Riccati equations to be solvable in the context of the KYP lemma, as
has already been pointed out in section 5.2.1.

Following Vaccaro and Vukina35 three main criteria must be accomplished for the
named Riccati equation to be solvable: i) Observability, ii) Controllability and iii) Pos-
itivity. Nevertheless, both of the first two criteria are already fulfilled by the applied
singular value decomposition in covariance based stochastic subspace identification,
as Vaccaro and Vukina35 point out.

Thus, the positivity problem is the crucial one, which demands a positive definite
spectrum Sy(e

θ) for θ ∈ [−π, π]. According to Mari36 spectrum Sy may be indefinite
because system matrix A is not (Schur) stable. For further information on that matter
see Akçay.37 Considering the present laboratory example, all eigenvalues of A lie
inside the unit circle, which indicates stability. Here, the necessity of model reduction
techniques is emphasized (see figure 7.7), because identified noise terms may have
dampings ζ 6 0.

In summary, the positivity problem can hardly be avoided for real-life measurements.
Hence, correction methods may be applied. In the following, the method of Vaccaro
and Vukina35 is exemplified. For that, consider Sy(e

θ) = {Sy(e
θ)}− + {Sy(e

θ)}+. At
this point {Sy}− represents the negative semidefinite part of spectrum Sy, thus {Sy}− 6
0. One could say this is what causes the whole trouble. The named positivity problem
already had been apparent in figure 7.7.

Now, the central idea is to overcome the positivity problem by adding a white noise
process {Ry(0)}New = Ry(0)+∆, such that Sy(e

θ) > 0 for θ ∈ [−π, π]. Here, matrix ∆ ∈
R
p×p follows an eigendecomposition of Sy(e

θ). Furthermore, the spectral alteration
by {Ry(0)}New = Ry(0) + ∆ may be disadvantageous, thus Vaccaro and Vukina also
give an algorithm to alter N instead of Ry(0). However, this leads to an identical
spectrum and is thus omitted here.
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Figure 7.9: Positivity Problem: Left) Comparison of Identified (Indefinite and ’Cor-
rected’) Spectra Sy; Right) Measurement and Identified Positive Definite
Spectrum

The above statements lead to a positive definite spectral result, which is shown in
figure 7.9. Unfortunately, the corrected spectrum Sy is disadvantageously altered. Be-
cause a noise process with large magnitude is necessary, the second vertical bending
mode is completely lost. Furthermore, the height of the other peaks is significantly
increased. It is even worse, because the added noise process is determined numeri-
cally only, hence it is non-physical. Summarizing above, the resulting positive definite
spectrum clearly is not applicable for damage identification purposes.

To overcome the above problems, the usage of a positive definite Gramian matrix
M instead in equation (5.133) can be useful. In connection with an observable and
stable system H(A,C), which model reduction ensures, a Kalman filter must be de-
terminable. As good as this sounds, chosen imprecise noise parameters are disadvan-
tageous for classical H2 estimation methods, because noise uncertainties should be
taken into account.

H
∞

estimation is capable of taking noise uncertainties into account, as has been
pointed out several times before. In the following, the ’filtering signals in additive
noise’ approach of section 5.3 is presupposed. Because of the applied model reduc-
tion technique, system H is stable and observable. Thus, Riccati equation (5.166) can
definitely be solved, which is necessary to determine the H

∞ estimator Π of equation
(5.205). The solution P follows the defined upper bound γ. While the case γ = 1 leads
to ‖P‖2 ≈ 3.580, Kalman filtering (γ → ∞) is much more confident by ‖P‖2 ≈ 210.
Because of noise uncertainties, the H

∞ case with γ = 1 is used subsequently.
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By applying the central estimator Kcen of equation (5.203), an estimated spectrum
Sŝ(e

θ) = Kcen(e
θ)Sy(e

θ)K∗cen(e
θ) can be computed, which is shown in figure 7.10.

Because of the chosen value γ = 1, the transfer function of estimator σmax
(
Kcen(e

θ)
)
6

1 for θ ∈ [−π, π]. As can be seen in the named figure, the measurement noise is
partially reduced. Besides that the second to the sixth bending mode peaks are not
affected. Because the first natural frequency was not identified, it is filtered out.

In result of the estimator determination, system Π(A,Kp,C) can be used for damage
identification purposes. Its frequency response is also shown in figure 7.10. This
result is the condensed information of the laboratory structure. The inverse Π−1(ejθ)

is even more interesting, as it maps measured structural responses (accelerations) to
the estimation error e, which can be applied for damage identification.

160



8
EXPERIMENTAL DAMAGE LOCALIZATION BY SP2E

Chapter Outline

This chapter shows the central verification of SP2E by laboratory experiments. The
conducted sensitivity studies are based on laboratory measurements only. Neither
simulations nor updated mechanical parameters have been used. While the former
chapter 7 discussed the identification of the structural reference state, the parametriza-
tion of several structural states by SSI and H

∞ estimation is presupposed here. As it
is typical for structural health monitoring, damage identification is conducted via a
comparison of a reference and a (potentially) damaged state. Some of the subsequent
results have been pre-published by the author.Art1, Art2

SECTION 1
The Case of 100g at M1

Failure: Mac & CoMAC
Success: SP2E

SECTION 2
Struct. Alt. Localization

Mass Alteration
Stiffness Degradation

SECTION 3
Experimental Sensitivity Studies

Successive Structural Alteration
Necessity of Projections

Figure 8.1: Chapter Outline

The conducted and analysed laboratory experiments comprise mass alterations and
stiffness degradations. At first four series of measurements, corresponding to four
positions of mass alterations, have been conducted. Here, the positions M1, M3, M5

and M7 were chosen. In each measurement series over 18 experiments have been
carried out, in which additional mass configurations 100g, 200g, 400g, 600g, 1000g
and 1600g were studied. An exemplary configuration of 1kg at M1 is shown in figure
8.2a.

The additional masses were realized by magnets. This modification has been chosen,
because these reversible experiments were repeated several times for verification. Al-
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ternative additional mass configurations were analysed too. By applying those, the
influence of magnetic field was proven to be negligible.

(a) Mass Alteration of 1kg at M1 (b) Stiffness Degradation by 2.5mm Saw
Cut (Material Thickness 2.9mm)

Figure 8.2: Two Examples of Applied Structural Alterations

Besides that mass alterations in between measurement positions were also analysed.
Finally, stiffness degradations by successive deepened saw cuts complement the whole
experimental analysis. An example can be found in figure 8.2b. Each named experi-
ment was repeated to proof reproducibility.

To give a comprehensive overview of the conducted experiments, the discussion fol-
lows a successive generalization. Hence, section 1 begins with results of a detailed
case study, especially the additional mass of 100g at M1. In addition to that, a compar-
ison to simple damage identification techniques shows the necessity for SP2E. Based
on that, section 2 is devoted to several case studies of mass alterations and stiff-
ness degradations. In the end section 3 gives several experimental sensitivity studies,
which provide an excellent overview of the capability of SP2E in a laboratory envi-
ronment.

8.1 A Detailed Case Study: 100g at M1

8.1.1 Classical Methods: MAC & CoMAC

To demonstrate the advantages of SP2E, the damage case of 100g additional mass
at M1 is elaborated below. Considering a total weight of 19.4kg (bending beam and
sensors), the mass is increased about 0.5%.

In the following, a technique is necessary in the frame of structural health monitor-
ing, which is able to detect and localize the structural alteration. Thus, the spectra
of both measurements are compared first in figure 8.3a. As can be seen here both
measured spectra, reference and altered, are very similar: While noise terms remain
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8.1 a detailed case study

nearly unchanged, the natural frequencies of the cantilever arm slightly decrease.
Very importantly, the relative frequency shift, depicted in figure 8.3b, is below 6h.

0 100 200 300 400 500 600

10−8

10−4

100

Frequency [Hz]

σ
m

ax
( S
y
(e
jθ
))

Alt.
Ref.

94 95 96 97 98
Frequency [Hz]

(a) Comparison of Measured Spectra (Left) and Zoom at 3rd Natural Frequency (Right)

2 3 4 5 6
0

2

4

6

8

10

Mode Shape [-]

f ∆
/
f R

ef
[h

]

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Mode Shape [-]

di
ag

(I
-M

A
C

)[
h

]

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Meas. Pos. [-]

1-
C

oM
A

C
[h

]
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Figure 8.3: Spectral Influence Study of 100g at M1

Both measurements are processed nearly identical: By applying the covariance based
stochastic subspace identification of section 7.2, two state space systems H1(A1,C1)
and H2(A2,C2) are parametrized. Based on them unscaled mode shapes φ1 and φ2
have been determined, which shall serve for damage identification. Because identified
modal dampings may be questionable,56 they are not called in for that.

One of the most applied techniques to analyse mode shape alterations surely is the
modal assurance criterion (MAC). An overview of it and method variations, like the
coordinate MAC (CoMAC), can be found in Allemang.55 By applying φ1 and φ2,
the MAC matrix shows similarities between both sets of mode shapes. Hence, in
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our case a 5 × 5 matrix emerges, which nearly is an identity matrix. This can be
proven by analysing the Frobenius norm of its difference by ‖MAC − I‖F ≈ 0.01. To
get an impression, the principal diagonal of this difference matrix is also depicted
in figure 8.3b: Here, a MAC value above 99.9% indicates a remarkable resemblance.
A deviation below 1h is very low and may result from numerical inaccuracies. In
summary, both sets of unscaled mode shapes φ1 and φ2 nearly are identical.

Secondly, the CoMAC is determined. This value indicates measurement positions,
which lead to the mode shape alterations. Obviously, this value is above 99.9% for
every position, because it is interconnected with the MAC values.

Based on the above discussion more recent damage identification techniques, like
curvatures and modal strain energy, can be applied. Nevertheless, the fundamental
problem shall be addressed here only: Damage detection and localization based on
modal data only is at least a challenge. Because it is beyond the scope of this thesis, a
comprehensive comparison to contemporary damage identification results is omitted.

8.1.2 State Projection Estimation Error

The application of technique state projection estimation error (SP2E) follows chapter 6,
especially the summary of section 6.2.4. While the former methods have been based
on modal data only, here identified systems H1(A1,C1) and H2(A2,C2) are used to
determine H

∞ estimators. This leads to systems Π1(A1,Kp1,C1) and Π2(A2,Kp2,C2).
Their inverse can be used to recursively compute estimation error processes e1 and
e2, whose difference d = e1 − e2 is important for damage identification.

Because it is more illustrative from an engineering oriented viewpoint, a spectral
approach (frequency domain) is subsequently focussed. For that, some additional
notations are necessary:

Se1(z) = Π
−1
1 (z)Sy2(z)Π

−∗
1 (z−∗), Se2(z) = Π

−1
2 (z)Sy2(z)Π

−∗
2 (z−∗) (8.1a)

with Sy2(z) = H2(z)M2H
∗
2(z

−∗) and z = ejθ . (8.1b)

These spectral results are depicted in figure 8.4. As can be seen there, both spectra
Se1 and Se2 nearly are white noise, thus are very similar. However, Se1 has additional
spectral peaks following the input Sy2 due to slight system alterations. It is important
to remark that estimator Π1 was designed on the basis of Sy1, not Sy2. Finally, the cen-
tral advantage of using the identified spectrum Sy2 following H2 and M2, in opposite
to the originally measured raw one, is apparent: Determined spectra are smooth, and
hence are advantageous to analyse.

As have been pointed out in chapter 6, a key idea of using d instead of e1 is the
reduction of measurement noise. This effect can clearly be seen in figure 8.4. Very
interestingly, the difference process is mainly determined by the important frequency
content of Sy2, which already was present in Se1. This important spectral content
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Figure 8.4: Damage Identification by P̄d Following Sd

follows the inherent modal properties of the altered system (state 2). In an online
structural health monitoring concept this refers to the current (possibly altered) struc-
tural state.

Finally, the average process power P̄d is computed by equation (6.28). It roughly
gives an indication on the first measurement position as the damage location. It now
is reasonable to concentrate on the relevant frequency content in Sd to enhance the
damage identification result. Therefore, projection techniques are applied.

State projections have been elaborated in section 6.2. Because of their intro-
duction, a definition of states x2 becomes necessary. Therefore, the choice Π33 → Π22 is
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Figure 8.5: SP2E Results: Damage Identification by P̄d,V Following Sd,V
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applied following the summary of section 6.2.4. Essentially, this decision presupposes
a nearly perfect state estimate in Π2, which of course is more a practical assumption
than a theoretical general one.

The projection results are given in figure 8.5. As was expected, the relevant frequency
content in Sd now is more significant. While the peak heights and positions remain,
the noise in between natural frequencies is reduced. This emphasizes the necessity of
projection techniques.

For damage identification the result P̄d,V is computed by equation (6.58). A com-
parison of P̄d to P̄d,V in figures 8.4 and 8.5 again emphasizes the need of projection
methods: Now, the damage location is indicated correctly. Although result P̄d,V may
seem like it follows the first bending mode, natural frequency was not identified at
all (see section 7.2).

By analysing figure 8.5, one can dig deeper by applying model reduction techniques.
This allows to study the influence of each mode shape on the result P̄d,V . But in view
of real-life monitoring situations this is not expedient, because one simply does not
know which frequency part of Sd points on an occurred structural damage in the first
place.

In summary, method SP2E properly indicates the position of experimentally added
mass (approximately 0.5% of total structural mass). In the end the question emerges,
which magnitude of P̄d,V is relevant. To decide whether P̄d,V of about 10−6(m/s2)2

should be considered as an indication of damage, a reference value must be intro-
duced. This is done in connection with further damage scenarios in the following.

8.2 Damage Localization and the Reference Value

8.2.1 Mass Alterations at and between Measurement Positions

The idea of introducing a reference value is a logical consequence of former state-
ments: By using two different measurements of the same structural state, a SP2E
result can be computed, which shows the possible numerical accuracy. For structural
health monitoring concepts this is conducted during the baseline phase, which gives
the basis for the actual inspection phase. This formal structure has been described
in accordance with Fassois et al.146 Thus, two measurements of the reference state
should be used for that.

Following the above concept of reference value, its result is depicted in figure 8.6a.
Hence, an average process power P̄d,V of about 10−9(m/s2)2 has been the lower numer-
ical bound in the author’s analyses. This value is plausible, because Rd,V(0) should
tend to be a zero matrix, if no damage occurred.

Besides that, two additional damage scenarios, 100g at M5 and M7, are also shown in
the named figure. Both results are approximately 10−5(m/s2)2, and thus are signifi-
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cantly larger than the reference value. Furthermore, they correctly indicate the right
position of experimentally added mass.
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Figure 8.6: Average Process Power P̄d,V for Mass Alterations

Mass alterations between measurement positions have also been
studied. The result for that is given in figure 8.6b. Here, 1kg has been successively
applied between two accelerometers in three different test scenarios. Again the central
damage identification result P̄d,V is much larger than the determined reference value.

Always these two elements in P̄d,V rise most, where experimentally added mass has
been applied. Furthermore, the average process power of about 10−4(m/s2)2 is larger
than the 100g scenarios, which is plausible. Hence, the localization of additional mass
in between measurement points is experimentally verified.
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8.2.2 Stiffness Degradations

Rather than identifying mass alterations, structural health monitoring systems must
be able to detect and localize stiffness degradations. Therefore, the stiffness of the
laboratory structure has been reduced by successively deepening a saw cut between
M5 and M6. By applying SP2E, the damage shall be localized. Following that, the
results are shown in figure 8.7.
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Figure 8.7: Average Process Power P̄d,V for Stiffness Degradations between M5 and
M6: Saw Cuts 1.5 . . . 4.0mm

Again a reference value was found first by comparing two measurements of the un-
damaged structural state, which led to a plausible value P̄d,V below 10

−9(m/s2)2. Then
a saw cut has been applied. By increasing the experimentally induced damage, the
average process power P̄d,V rises. Furthermore, high values at M5 and M6 indicate
the right damage position. Hence, stiffness reductions are experimentally locatable
by SP2E. Nevertheless, the damage localization results are less clear in comparison to
the case of applied masses.

8.3 Experimental Sensitivity Studies

8.3.1 Experimental Successive Mass Alteration

In this section four experimental sensitivity studies are shown and discussed. In
these studies additional structural mass was applied at the laboratory structure of
figure 7.2 in separate configurations: Four series of measurements, corresponding to
four positions of mass alterations, have been conducted. Here the positions M1, M3,
M5 and M7 were chosen. In each measurement series over 18 experiments have been
carried out, in which additional mass configurations 100g, 200g, 400g, 600g, 1000g and
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1600g were studied. Each experiment was repeated to proof reproducibility. Thus,
magnets have been applied.
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Figure 8.8: Experimental Sensitivity Studies for M1 and M3

The successive mass increase at M1 is considered first, which is depicted
in figure 8.8a. Note here that the left diagram is scaled differently than the right
one. While the first result have already been discussed in connection with figure 8.5,
further experiments are also shown. As can be seen for every mass configuration, the
first measurement position is correctly indicated by SP2E. Furthermore, P̄d,V increases
as heavier additional mass is applied. In connection with confirmed reproducibility
these facts emphasize plausibility of method SP2E.

By looking at figure 8.8a, one may falsely assume to revisit the first bending mode.
This is impossible, because the first natural frequency was omitted in the identification
process, as was explained in section 7.2.
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Based on the results for M1, the experiments have been repeated for an mass alteration
at M3 in figure 8.8b. Here, the only result occurred (100g at M3) where damage was
detected, but not localized. Nevertheless, P̄d,V indicates the right damage position for
mass larger than 100g. Very interestingly, numerical inaccuracies are more present
here.
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Figure 8.9: Experimental Sensitivity Studies for M5 and M7

Finally, the measurement series for M5 and M7 are given in figures 8.9a and 8.9b. The
recognized new insights are revisited here. Again, all damage identification results
P̄d,V indicate the right damage position.

By analysing the given sensitivity studies, the connection between increased values in
the average power P̄d,V and the point of mass alteration becomes evident. Hence, the
localization of experimentally added structural mass was successful.
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8.3.2 Necessity of Projections

Finally, the influence of projection techniques shall be discussed once more. While
figure 8.5 already gave projection results for a single damage case, here its influence
for a whole measurement series shall be analysed. To show the necessity of projection
techniques, their influence is shown at the example of mass alterations at M1 in the
following. The results of sensitivity studies at M3, M5 and M7 are omitted here,
because redundant information is apparent there.
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Figure 8.10: Influence of Projections

To analyse the influence of projections, the difference P̄d − P̄d,V is depicted in figure
8.10. In every mass configuration this noise has a comparable magnitude, which
is plausible because structural alterations should not decrease numerical accuracy.
Furthermore, damage localization of small structural damage (100g and 200g) was
possible only by applying projection techniques. In summary, projection techniques
enhance the damage identification by SP2E and is necessary to allow the localization
of small structural damage.
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9
DISSERTATION SYNTHESIS

9.1 Summary

A new damage identification method on the basis of state projection estimation error
(SP2E) is proposed in this dissertation. It can allow online structural health moni-
toring (SHM) for automatic structural damage localization. To derive that, several
theories have been demonstrated in this thesis. At the beginning first principle based
mechanical systems and resulting structural response determination in time and fre-
quency domain in accordance with force excitations have been discussed. To demon-
strate the explained techniques, a simulated structural dynamics example then was
pointed out.

This then led to the subspace identification of mechanical structures, which applies
known excitations and responses to parametrize a general system accordingly. Here, a
distinction between stochastic and deterministic methods is fundamental for method
derivations. These techniques then entered an operational modal analysis example.

In view of the former methods, the application of corresponding mechanical param-
eters, like the experimental flexibility, seems plausible for damage localization. Nev-
ertheless, an automated SHM technique requires ambient structural excitations, like
wind, vehicle traffic and waves. Thus, stochastic subspace identification techniques
are necessary, which in general are problematic for a gain determination. Here, the
positivity problem to solve a Riccati equation for Kalman gain determinations can be
named as an example. Unfortunately, this would be necessary to apply correspond-
ing mechanical parameters. As a consequence, barely known and new methods have
been introduced and explained afterwards.

A generalization of the Kalman filter is the so called H
∞ estimator. These generalized

systems allow to cope with model and noise uncertainties, which is necessary in view
of former statements. The indefinite quadratic estimation theory, which is based on
projections in Krein spaces, has been elaborated, because this H

∞ theory can be seen
as a direct application of the commonly known Kalman-Yakubovich-Popov (KYP)
Lemma for extended systems.

To give a comprehensive estimator overview, the finite horizon, beginning with time-
varying Kalman filter, and the infinite horizon, formerly known for the Wiener-
Kalman filter, was explained. While the first named approach focuses on indefinite
quadratic forms in time domain, the second approach is devoted to the canonical
spectral factorization of a Popov function. Here, the Popov function’s basic form, the
power spectral density of measurements for the Kalman filter, needed to be extended.
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This then led to the introduction of the central H∞ estimator, an important result of
estimation theory. Finally, the application case of ’filtering signals in additive noise’
was discussed and applied at the formerly introduced structural dynamics example.

By considering all the former theories, the technique ’state projection estimation error’
(SP2E) was finally introduced. In principle it is based on a defined difference process,
applied by estimation errors following the Krein space based H

∞ theory. To analyse
this damage process, the average process power was proposed. The difference process
then was revisited by system theoretic viewpoints, which led to the advantageous
numerical determination of average process power by a Lyapunov equation.

Although the theory of difference process implements inherent measurement noise
reduction, numerical accuracy can be improved even further by projection techniques.
Here, projection methods are applied to system states, whose results are discussed.
In summary, a stable damage identification method was derived.

Very importantly, the newly proposed method SP2E was verified in laboratory ex-
periments. To do so, the subspace identification of a laboratory structure at Leipzig
University of Applied Sciences was elaborated first. Here, the identification was con-
ducted by self-developed software. All chosen identification parameters are justified.
Afterwards, the H

∞ estimation in context of ’filtering signals in additive noise’ was
discussed.

The experimental verification was proven by four experimental sensitivity studies.
While the localization of experimental structural alterations have been discussed in
detail first, an overview of about 100 measurements is given afterwards. These exper-
iments comprise mass alterations and stiffness degradations. A major element of this
are four measurement series, corresponding to four positions of experimental mass
alterations. Additional masses have been separately applied at four different mea-
surement positions. Additional mass configurations in six different scenarios were
studied and in each measurement series over 18 experiments were carried out, con-
sidering a repetition to prove repeatability.

Sensitivity studies are conducted by experimental structural alterations in the labora-
tory, not simulations. In summary, the experiments proved the applicability of SP2E
for damage localization. The experiment have been repeated and results are plausible.

9.2 Conclusions

Automated structural health monitoring requires ambient vibrations. Hence, stochas-
tic identification methods must be utilized. While operational modal analysis allows
the computation of natural frequencies and unscaled mode shapes, damage identi-
fication based on them may be a challenge. Unfortunately, the gain determination
is problematic for stochastic methods, as would be necessary for the determination
of corresponding mechanical parameters. In consequence, a damage identification
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technique based on ambient vibrations, capable of dealing with structural excitation
uncertainties is required.

To overcome the above problems, method SP2E has been proposed on the basis of
output-only identification, H

∞ estimation and oblique projections. By combining
these methods, several advantages arise:

i) Measured processes can be treated as stochastic and deterministic ones.

ii) Disturbance inputs w and v may be unknown due to H
∞ estimation.

iii) White (e.g. FEM) and black-box approaches (e.g. SSI) can be used. Furthermore,
these different model-types can be combined.

iv) Systems with inconsistent model orders can be used, because of developed pro-
jection constraint parameters (Y,Z).

v) State space systems have been used. Hence, time and z-domain problems can
be treated equivalently.

vi) The synchronization and normalization of process d has been introduced on the
basis of a general input y3. This circumvents the gain determination problem.

vii) The usage of a parametrized input Sy3 leads to smooth damage identification
results.

viii) Because estimation theory has been applied, a real-time damage identification
technique is in principle possible.

The proposed method SP2E has comprehensively been evaluated in laboratory exper-
iments. These experiments comprise test scenarios with altered mass and stiffness
configurations. Furthermore, four experimental sensitivity studies were analysed.
Here, structural alteration have been applied experimentally, not in simulations. The
repeated, objective experimental results are very promising. Finally, the requirement
for projection techniques was shown experimentally.

9.3 Prospective Research

While plenty research has already been done on SP2E, from development to verifi-
cation, open scientific questions remain. The author recognizes three main research
areas, which are necessary for SP2E to become industrial standard:

i) SP2E algorithm optimization, especially in view of real-time capability.

ii) Theoretical and practical compensation of environmental and operational con-
ditions (EOC).

iii) Application in large-scale experiments.

The first argument is self-explanatory: Further studies on the SP2E algorithm may
improve numerical accuracy and damage identification results. Here, the path of
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system theoretic methods should be followed further on. Furthermore, a comparison
to modern damage identification techniques, like modal strain energy, might show
advantages and disadvantages for large-scale applications.

Secondly, the method urgently needs an approach to compensate environmental and
operational conditions (EOC). It is well known that these conditions, especially tem-
perature, may have tremendous effects on damage identification results. Usually
natural frequencies are normalized only, but here whole systems need adjustments.
Finally, the experimental work must be continued. Because an application at large
structures, like wind energy plants and bridges, is intended, pilot projects need to be
started first.

Finally, the author recognizes numerous more possible theoretical developments. In
view of the experimental results so far, a remarkable potential of SP2E for future
applications truly is given.
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