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ABSTRACT 

In this thesis a form of the Minimal Controller Synthesis (MCS) algorithm named 
as the reduced order MCS control is presented. The MCS control is a form of Model 
Reference Adaptive Control (MRAC). The thesis concentrates on the use of the reduced 
order MCS instead of the standard MCS control. The reduced order MCS control as well 
as the standard MCS control continuously adapts itself to changes in the plant parameters 
and the system working conditions unlike linear control strategies. The dynamics of the 
hydraulic systems are nonlinear and the parameters of the plant vary with time and working 
conditions therefore using the reduced order MCS control brings many advantages. A lot 
of work has been done in the application of adaptive control in hydraulic field. Adaptive 
control and its applications in hydraulic field will be studied in Chapter 1. 

The simulation of hydraulic systems can be very helpful when choosing suitable 
controller gains satisfying the desired closed-loop. The importance of simulation and 
modelling will be emphasised in Chapter 2. In this chapter, the electrohydraulic actuator 
plant will be modelled and simulated in Simulink. 

Model reduction is widely used in practical applications due to the fact that the 
full model of the plant may not be available in many cases, even if it is available the 
computation of the plant model and the implementation of the controller are time 
consuming. Ten linear model reduction methods will be presented in Chapter 3. 

The stability of the reduced order MCS control will be analytically investigated in 
Chapter 4. The analysis will be carried out for both SISO and MIMO system. The reduced 
order MCS control will be assumed as the standard MCS control in which the controlled 
plant contains some unmodelled dynamics. This unmodelled term will be included in the 
disturbance term. The nature of the disturbance term is crucial, if the disturbance term is 
slowly varying then Popov's method will be used to guarantee the stability of the system. 
In the case of rapidly varying disturbance term the Lyapunov method will be used. Using 
the reduced order MCS control instead of the standard MCS control has many advantages: 
firstly the structure of the controller is simple, secondly in many cases it makes the systems 
more effective and efficient due to the fact that it avoids over parameterisation of the plant. 

In Chapter 5, the MCS control and a Proportional Plus Derivative Feedback 
(P+DFB) control will be implemented on the electrohydraulic actuator plant. The 
performances of the reduced second order MCS control will be compared with the 
conventional control in the face of changes in the working condition. 

The reduced order MCS control of electrohydraulic servomechanisms will be 
used for closed loop control of stroke and load in Chapter 6. The MCS control and a 
Proportional Plus Integral (P+I) Control will be implemented on the ESH material testing 
machine in Chapter 6. The plant has a nominal second order transfer function and the MCS 
control will be implemented in a reduced first order form. The performances of the MCS 
will be compared with the equivalent P+I under load control. 

In Chapter 7, the robustness of the reduced first order MCS control in the case of 
the ESH material testing machine will be investigated by comparative tests. The results will 
be very crucial to show the robustness of the reduced order MCS in practice. 

In Chapter 8, conclusions to this thesis will be presented. Finally, possible future 
improvements and developments will be discussed. 
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LIST OF NOTATIONS 

A is the (nxn) nominal plant parameter matrix. 
A, is the (hxh) reduced order plant parameter matrix. 
Am (hxh) reference model matrix. 
A,, A2 are the effective area of the first and second chambers of the actuator 

respectively. 
AP is the average effective area of the actuator (A, = (A, +A2)/2). 
A, is the (nixni) ith subsystem A matrix (MIMO systems). 

-a;; k is the k`h element of the last row of the matrix A;;.. 
ak is the k`'' element of the last row of the matrix A. 

-am;; k is the k`h element of the last row of the matrix Am;, . 
a, , 

b, are the unknown parameters of the plant. 
DA is the (nxn) matrix that contains the rapidly varying elements of A. 

a; denotes the i' element of the nt (h' row of the reduced order plant matrix A,. ). 
row of the plant A matrix (SISO Systems). 

am, denotes the i'I' element of the h' row of the reference model A. matrix (SISO 
Systems). 

fa, is the last element of &4,. 
&A, is the (hxl) vector related to r and d(x,, t) (SISO reduced order plant). 
B is the (nxl) nominal plant matrix. 
B, is the (hxl) reduced order plant matrix. 
Bm is the (hxl) reference model input matrix. 
b, is the only non-zero element of the B (B, in the case of the reduced order plant). 
C is the output error matrix. 
d(x,, t) is the disturbance term due to the unmodelled dynamics, plant parameters 

variations and nonlinearities in the plant. 
D is the diameter of the specimen. 
d, is the ht element of the vector d(x,, t) (SISO reduced order systems). 
E is the modulus of the elasticity. 
f, is the coefficient of viscous friction. 
f is the first time derivative of a functionj(t). 
F is the force due to the pressure differences. 
G, (s) is the nominal plant transfer function. 
G, (s) is the reduced order plant transfer function. 
h is the reduced order plant state dimension. 
i is the input current. 
Iý is the (hxh) identity matrix. 
J is the moment of inertia. 
kl is the second order MCS position gain. 
k2 is the second order MCS velocity gain. 
k, is the second order MCS adaptive gain. 
kd is the derivative gain. 
kp is the proportional gain. 
k, is the integral gain. 
K is the (kxn) MCS state feedback gain; (typically K(0)=0, MIMO systems). 
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K is the (kxk) MCS forward loop gain; (typically K,. (0)=0, MIMO systems). 
k is the volumetric coefficient. V 

mp is the mass. 
n is the nominal plant state dimension. 
N is the bulk modulus of the oil. 
Q,, Q2 are flows into the actuator chambers C1, C2 respectively. 
Qf is the hydraulic volume flow (Qr = Q, = Q2). 
Q is an (nxn) symmetric positive definite matrix associated with the Lyapunov 

equation. 
P is the supply pressure. 
PV is the pressure drop. 
P is an (nxn) symmetric positive definite matrix solution of Lyapunov function 

equation. 
P,, P2 are pressures in the first and second chambers of the actuator. 
OP is the pres$ure difference of the first and second chambers of the actuator 

(AP=P, -P2). 
r denotes the reference signal. 
r, is the restoring stiffness. 
R denotes the set of real numbers. 
R+ denotes the set of positive real numbers. 
][tw denotes the set of real matrices of dimension (hxh). 
R' .I denotes the set of real matrices of dimension (hxl). 

s is Laplace variable. 
xe denotes the state error vector. 
X is the (nxl) plant state vector. 
X, is the (hxl) reduced order plant state vector. 
xJ is the (nixl) the state vector of the i' subsystem (MIMO systems). 
xm denotes the reference model state vector. 
mi is the (nix1) i' subsystem reference model state vector (MIMO systems). 
1, is the settling time. 
I denotes the time. 
u is the control signal: 
V is a Lyapunov function 
V denotes first derivative of a Lyapunov function. 
Vt is the total half volume. 
V is the effective half volume. 

w is the signal vector defined as, w= [xT, rT 
r 

wn is the natural frequency of the servovalve (rad/sec). 
y is the plant output vector. 

Y), is the nominal plant output vector. 
Y, is the reduced order plant output vector. 
Y. is the output error vector. 
yy denotes the h' element of the vectory, (SISO reduced order plant). 
I'. is the (kxk) matrix that contains the terms a. 
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I'ß is the (kxk) matrix that contains the terms 8. 

6 is the angle of rotation. 
p is the density of the fluid. 

a is the longitudinal stress. 
ay is the yielding stress. 

r is the time constant. 
4' is the damping coefficient of the servovalve. 
4) is the (hxl)vector (SISO reduced order systems) or the (kxh+k) matrix (MIMO 

reduced order systems) that contains the integral gains and the plant parameters. 
'Y is the (hxl) vector (SISO reduced order systems) or the (kxn+k) matrix (MIMO 

reduced order systems) that contains the proportional gains and the elements of 
the plant B matrix. 
is the strain. 

S is the elongation of the bar in tension. 
a is the MCS integral adaption gain (scalar), a)0. 

is the MCS proportional adaption gain (scalar), ý3 z 0. 
0 is the sampling interval. 

6=ß-Q'd 

,f 
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CHAPTER I 

REVIEW OF MODEL REFERENCE ADAPTIVE 

CONTROL TOGETHER WITH ITS REDUCED 

ORDER FORM AND ITS APPLICATIONS IN THE 

HYDRAULIC FIELD 

1.1 - INTRODUCTION 

In real life the unmodelled dynamics and nonlinearities always exists in the plant 

due to the fact that may be the dynamics of the plant is too complex or not completely 

understood. Additionally, parameters of the plant changes depending on the working 

condition and the input signal. For that reason, the effects of the unmodelled dynamics 

should considered for linear controllers implementation therefore, the accuracy of the 

system responses. If the system is containing larger unmodelled dynamics, it seems 

desirable to use model reference adaptive control which requires less knowledge about the 

plant dynamic parameters. 

Reduced order adaptive control can be described as the standard adaptive 

controller together with some unmodelled dynamics. In this type of adaptive control the 

plant is represented by an approximate lower order model. Subsequently some parts of the 

plant are ignored and the unmodelled dynamics are included into the disturbances term. 
The reduced order adaptive control is capable of controlling the system in a stable manner, 

provided that some limitation on the reference model and input signal are considered. 
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Cook and Chen [1] were used such an approach and they showed that the controller is 

stable provided that the input signal is persistently exciting. 
Hydraulic systems are inherently nonlinear and parameters of systems change 

during its operation depending on various reasons. In comparison with linear controller 

strategies using Model reference adaptive controller in hydraulic systems control brings 

many advantages, such as adaptivity to the changes in plant parameters and the working 

conditions and nonlinearities in systems. Using adaptive controller in this field increase the 

efficiency and accuracy of systems. 

The adaptive system is exponentially stable when the input is persistently exciting 

then, it has a sufficiently large amplitude. Under this condition the system will remain 

robust when it is subject to bounded external disturbances. The adaptive system can be 

made robust in the presence of a class of unmodelled dynamics of the plant by suitably 

modifying the adaptive law. 

Adaptive control has connections with other theories. First, there is a very strong 

connection with nonlinear system theory because adaptive systems are inherently 

nonlinear. Secondly, adaptive control also has links with singular perturbations and 

averaging theory because of the separation of the time scales in some adaptive systems. 
Thirdly, adaptive control has connections with stochastic control and parameter 

estimation. This is due to importance of parameter estimation and converge of the 

controller in adaptive systems. Adaptive controller can also be used in the case of system 
identification tests to obtain the nominal transfer function of the system. Later this model 

can be used to design fixed gain controller. 

1.2 - ADAPTIVE CONTROL 

Adaptive controllers have been used for controlling variety of systems since 1950. 
Many research have been done to fully understand and improve adaptive controller theory 

over the years [2] and [3]. Over the years it has been experienced that using adaptive 
controller in systems which are subject sudden changes have many advantages over linear 

controller. Conventional controller can produce good responses provided that the working 
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condition and parameters= of the system are not changing much but they may not be 

accurate when the plant subjects to large parameter variations. 

Adaptive control is not constant feedback control. In the work of Astrom [4], 

adaptive control was simply described as a special type of nonlinear feedback control and 

the states of the process were separated into two categories, which change at different 

rates. The states, which were varying slowly observed as parameters. 

1.2.1 - State-Space Stability Proof of Adaptive Systems 

In the 1960s, there were important development in the adaptive control theory. 

The state-space theory was introduced to describe plants by linear transfer function and 

Lyapunov's stability theory was also introduced to prove the convergence and stability of 

adaptive systems. There were also important developments and improvement in stochastic 

control theory [5]. The converge of model reference adaptive control was proven in [6] by 

using the update law, which was proposed in the 1950s. 

During 1970s, adaptive regulators were implemented simply due to new 
developments in microelectronics. Popov's hyperstability based input-output proofs from 

the late 1970s appear in [7] and in the work of Landau [8]. Stability proofs in the discrete 

time deterministic and stochastic cases also studied at this time from Goodwin and Sin [9]. 

Lyapunov based state-space stability proofs for adaptive systems were showed by 
Narendra, Lin & Valavani in [10]. In this method, an additional feedback term was used to 

ensure that the fist order time derivative of the parameter error vector belongs to the 

stability region. It was shown that systems with relative degree greater than 2 together 

with high frequency unmodelled dynamics to be never exponentially stable. The paper 

presented a complete proof of stability in the case of multivariable continuous adaptive 

control systems. In [11], the stability problem was clearly defined and it was suggested that 

the controller could be stable provided that the output error is bounded. 

Several methods have appeared in the literature discussing specific methods of 
adjusting parameters in the adaptive systems using Lyapunov's direct method, which use a 
model as a reference. In all methods, it has been suggested that the crucial point was the 
determination of conditions under which the entire system is asymptotically stable. 
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Narendra and Tripathi used Lyapunov's direct method to determine the structure 

of stable adaptive systems [12] in 1971. In this work, systems were described by first order 

differential equations. The adjustment of the gain and the time constant was considered. It 

was suggested that output noise and parameter variations in the plant can be compensated 

by introducing new adaptive parameters. The effect of measurement noise in the case of 

higher order system was also considered. The Lyapunov approach has been widely used in 

order to measure the stability of adaptive systems which are subject to bounded (unknown) 

time varying parameter variations. 

By the beginning of 1980's several basic problems had been resolved such as 

identification of the adaptive controller in the case of linear time invariant plants together 

with some additional restrictions on inputs and disturbances [13] and [14). It was first 

studied by Rohrs and co-workers that the stability of adaptive control were very sensitive 
in the presence of unmodelled dynamics and it has to be handled very carefully. The 

controller structure was simplified by neglecting the high frequency modes of the system in 

[15]. 

1.2.2 - Effects of Unmodelled Dynamics & Disturbances 

In the work of Lindorff [16] the effects of disturbance and incomplete parameter 

adaptation on the performance of adaptive control were considered. The Lyapunov theory 

was used to prove the stability of the system. It was shown that parameters in the adaptive 

controller may not converge in the presence of disturbances and high frequency 

unmodelled dynamics unless the input signal is sufficient enough in mid frequency range. 
In the work of Ioannau and Kokotovic [17], the original plant model-reduced 

order model mismatch was characterised by a scalar parameter fc, which was defined as 

the ratio of the modelled (dominant) and unmodelled dynamics of the plant. It was 

assumed that the dominant part of the plant is slow which can be matched by the reduced 
order model. The unmodelled dynamics are fast and they are in the high frequency range. 
In this adaptive law the output error played a dual role in the adjustment of the control 

parameter vector. The scalar constant u appeared as a singular perturbation parameter in 

two-time scale representations of the plant. 
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The development of tools for analysis of transient behaviour of the adaptive 

system-enabled this control strategy to be implemented on practical systems, such as 

reactors, robot manipulators, ship steering systems, advanced flight control systems for 

aircraft and spacecraft and process control. New developments in microelectronics made 

possible to implement the nonlinear laws to existing adaptive control. The research re- 

examines the robustness properties of adaptive control and whether or not adaptive 

controllers were at least as good as fixed gain controllers. 

1.3 - ELECTROHYDRAULIC SYSTEMS 

Electrohydraulic servo systems can be described as the combination of the high 

power of hydraulic actuation and electronic control. Electrohydraulic systems can provide 

very large torques together with fast dynamics, therefore, they have been used in many 

industrial applications, such as: heavy duty robots, materials forming machine and 

materials testing machine. It is difficult to obtain satisfactory results Under linear controller, 

due to fact that the dynamic equations of systems are nonlinear and plant parameters vary 

greatly depending on the set point for various reasons, e. g. the nonlinear relation between 

the flow velocity and the pressure, the hydraulic resistance of flow through the channels, 

Reynolds number, the type of flows, channel geometry and friction factors. 

Standard analogue control strategies are not capable of bringing out the full 

potential of the electrohydraulic servo systems due to nonlinear characteristics of such 

systems. A linear controller can only be implemented for only one operating condition. 

However, even at one operating point the plant characteristics will often vary during 

operations. For that reason, digital controllers have been applied to electrohydraulic servo 

systems, in particular position control systems. In this techniques, usually linearised model 

of the controlled plant has been used for the implementation and the controller parameters 

are changed easily according to variations in systems characteristics and nonlinearities 
Digital controllers have been using in electrohydraulic positioning systems control since 
1970 [18]. Recently, adaptive controllers have been applied to powerful electrohydraulic 

systems easily and cheaply due to use of fast microcomputers. 
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The relationship between the flow and pressure is nonlinear in the servovalve and 

at the range of low tests frequencies its dynamics is negligible. During stress and strain 

tests the servovalve operates very close to its null position. In addition is such tests, supply 

pressure to the servovalve can assume to be constant since the flow rate variations are 

negligible. The unwanted feature of this type of application is the internal and external 

leakage of the actuator. The servovalve operation near its null position has important 

implications for on-line identification and controller adaptation. 

In a hydraulic system the speed of the hydraulic motor can be controlled by 

varying either the pump displacement or the pump speed. The inverter controlled hydraulic 

motor system under a Self-tuning control was studied in [19]. The pump speed changed by 

using an inverter which adjusts the speed of an induction motor. The pump controlled 

system showed faster response with higher accuracy but its efficiency was lower. On the 

other hand the inverter controlled hydraulic systems showed higher accuracy but their 

response was slower and the direction of the hydraulic motor unchangeable. Nevertheless, 

the inverter controlled hydraulic systems have simpler structure and they cost 

comparatively less price. 

The electrohydraulic positioning servo system shows nonlinear behaviour due to 

following reasons: a directional nonlinearity due to use of asymmetric actuator, the 

nonlinear relationship between pressure and flow in the servovalve the square root of the 

pressure drop across the orifice, the characteristics of the system changes during the stroke 

due to the volume changes and saturation of the servovalve and backlash in the actuator. 

The directional nonlinearity does have a significant effect on the system performances 

especially when the load is driven in the extend direction. This nonlinearity can be 

compensated for in software by scaling the valve control signal differently according to its 

sign. Similarly, nonlinearities due to the servovalve saturation can be avoided by limiting 

the control signal in software to be just within the level which saturates the valve. This will 

not allow to saturate the servovalve. 
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1.4 - APPLICATIONS OF ADAPTIVE CONTROL IN THE CASE OF 
ELECTROHYDRAULIC SYSTEMS 

In general, Proportional or Proportional plus Derivative Feedback (P+DFB) 

control are used in position control of hydraulic systems. The reason of that is hydraulic 

positioning systems show integral action due to the nonlinear relationship between the flow 

from the servovalve and the position of the actuator piston. The flow is proportional to the 

velocity of the actuator, therefore these control strategies may produce large steady-state 

error in position control. Similarly, using Proportional plus Integral Control (P+I) or PID 

controller in order to get an zero steady-state error, will result in undesired overshoot or 

even oscillating transient behaviour due to the existence of a natural integrator in the plant. 

In general this makes, conventional controller unsuitable for the position control of 

hydraulic systems. Adaptive controllers are good option in this area, specially if the 

hydraulic actuator has single rod cylinder [20]. 

Direct and indirect adaptive control have been used for the practical application of 

adaptive control to electrohydraulic positioning systems. Model reference (direct) adaptive 

control coefficients are required to obtain a prescribed model following performances 

which are estimated from input-output data therefore, parameters not calculated from a 

plant model. 
Self-tuning (indirect) adaptive control is based on on-line estimated model of the 

original system. The controller continuously adapt itself to the new estimated model. In the 

work of Finney, Self-tuning control was only used for the initial tuning of controller 

parameters [21]. For a full adaptive version the estimator should be modified to forget old 
data, for example by the inclusion of a fixed forgetting factor as used by Vaughan and 
Whiting [22]. Daley implemented a similar method to a rotary hydraulic system in 1987, 

which was studied in [23]. In this work, the Self-tuning control algorithm was applied to a 

rotary electrohydraulic test rig. It was shown that the Self-tuning control algorithm was 

preserved the system stability in the presence of large and sudden changes in the system 

characteristics. When the system controlled under a fixed, gain PID controller subjected to 

similar changes, the controller broke down. Both controllers were shown to perform well 
in nominal 

, 
condition despite the, presence of nonlinearities, measurement noise and load 

disturbances. It was suggested 
- 
that for a satisfactory application of indirect adaptive 
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controller an accurate parameter estimator together with signal filtering are necessary [24]. 

In this work an indirect adaptive controller was implemented to an electrohydraulic servo 

actuator system. Additionally, an method which was not allowing the plant parameters 

increase beyond the certain points used to preserve the system stability. 

An implicit Self-tuning regulator (STR) control was implemented on an single rod 

actuator servo system in [25]. The difference between the implicit and explicit STR is there 

is no need to solve the Diophantine equation in the case implicit STR. In [26], another 

Self-tuning adaptive controller was applied to a single rod actuator positioning system 

based on a pole placement control. In this work the recursive least squares estimator 

approach and a data filter were used together with the pole placement adaptive control. 

This algorithm gave good responses despite the nonlinearities, unmodelled dynamics and 

changes in the system, even when the changes were significant and sudden. In same 

condition an equivalent linear controller did not produced satisfactory responses. The 

steady-state error was occurred partly non-symmetric characteristic of the single rod 

actuator electrohydraulic position system. 

The performances of the implicit and standard STR were compared in [27]. It was 

shown that the implicit STR structure is simpler since the algorithm itself directly 

estimating the controller parameters. Additionally, it was demonstrated that the implicit 

STR yield better control performance in comparison with explicit STR, even under 

variations in operating conditions. 

Nonlinear aspects of the material testing applications makes such applications 

good candidates for adaptive control. Using an adaptive controller in the material testing 

area has many advantages due to the fact that the controller can adapt itself to nonlinear 

changes in the system and specimen unlike linear controller strategies. Therefore, adaptive 

control can be use very effectively in tests involving higher test frequencies and tests 
involving nonlinear specimen deformation such as low cycle fatigue tests. In all closed- 
loop electrohydraulic strain and load control tests, the non-ideal nature of servovalve are 

significant and can be handled effectively by adaptive controller. In [281, a Self-tuning 

control was implemented on a electrohydraulic material testing machine and it was used in 

stroke, . 
load and strain control. A pole-placement controller approach was used for 

controller adaptation. The self-tuning control scheme was shown to be effective in both 

simulation and real life operation. 
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A number of applications of model reference adaptive control to electrohydraulic 

position control systems exist (Edge and Figueredo [29] and [30]). In [31] an adaptive 

controller was designed and implemented on a microcomputer and successfully applied to 

a electrohydraulic positioning system. In this work, the model reference adaptive control 

was implemented based on Lyapunov's stability method and the stability of the position 

control system was examined in the presence of changes in load forces. 

A model reference adaptive controller was implemented to a servohydraulic 

piston motor in which the Bessel prototype transfer function was chosen as the reference 

model in [32]. The adaptive controller was performed better than the PID and model 

following optimal controller when the plant subjected to changes in pressure, loads and 

input signal. This was due to the fact that the adaptive controller adapted itself changes in 

the dynamic parameters of the system. 

Both the direct (Model Reference Adaptive Controller) and indirect (Self-tuning 

controller) have been used in the case of electrohydraulic system control. In many cases 

the adaptive control methods were applied to the systems in a reduced order form and 

satisfactory results were obtained. However, the Self-tuning controller requires on-line 

plant parameter identification. Therefore, the implementation of the Self-tuning controllers 

are time consuming. The structure of the direct adaptive controller, (e. g. the MCS control) 
is simple, therefore easy to implement. 

1.5 - ADAPTIVE CONTROL WITH UNMODELLED DYNAMICS 

In the presence of unmodelled dynamics adaptive controller preserve the system 

stability provided that the input signal is Persistently Exciting (PE). In general, the effects 

of unmodelled dynamics (reduced order adaptive controller) are assumed acting as 
disturbances therefore, it is included into the disturbances term in state-space 

representation of the plant.. Under this condition, the controller possess convergence 

properties which allow certain amount of disturbances can be tolerated [1]. The converge 
between the nominal and the reduced order plant is not global and depends on many 

variables. 
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The concept of stability of adaptive control is that it should be preserved in the 

presence of actual disturbances present in the system. The main difference between 

adaptive control and linear control system is that stability does not depend only on the 

plant and control system but also on the reference input in the case of adaptive control. 

The reference input should be persistently exciting in the case of the nominal adaptive 

system (suppose there is no disturbances and unmodelled dynamics) to preserve the 

stability. 

Exponentially stable adaptive system are stable in the presence of disturbances 

due to the unmodelled dynamics, plant parameters variations and nonlinearities in the 

plant. Exponential stability condition will bring a stability margin which will preserve the 

stability of the adaptive system in the presence of disturbances provided that the input 

signal is persistently exciting [33]. In the case of uniformly asymptotically stable system the 

stability margin will be an equilibrium surface instead of a single equilibrium point and if 

the system becomes unstable then, the equilibrium surface became a locally unstable point 
[10]. 

Fig. 1.1: Adaptive controller with disturbances due to unmodelled dynamics and plant 
parameter variations. 

In Fig. 1.1, x, � is the reference model output, x, is the reduced order plant output, r is the 

reference signal, u is the input signal to the plant, d(x�t) is the disturbance term due to the 

unmodelled dynamics, parameter variations and nonlinearities in the plant and x, is the 

output error signal. 
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Ideally, if the system is disturbances free then, the steady-state error goes to zero 

when time goes to infinity. The stability of adaptive systems can be preserved in the 

presence of internal (unmodelled dynamics) and external disturbances provided that 

maximum magnitude of the disturbance is known [34]. 

Two essential instability mechanisms occur due to unmodelled dynamics in 

adaptive control. The first one is when the adaptive controller gains are very big. This will 

lead to very fast adaptation and finally the instability will take place due to excitation in the 

high frequency range of the plant. The second instability take place when the input signal is 

exciting the high order unmodelled parts of the systems [35]. This kind of instability 

happens rather slowly even for the suitable set small values of the adaptive gains. 

1.6 - REDUCED ORDER MODEL REFERENCE ADAPTIVE CONTROL 

The standard adaptive controller may not be give satisfactory responses in the 

presence of unmodelled dynamics due to ignorance of the high order states of the plant. 

The stability can be preserved under this condition provided that some limitations are set 

on the input and reference signal. Some new adaptive laws were proposed to cope with 

this problem. General characteristics of this methods are that they required very little 

information about the plant parameters therefore, they can easily preserve the system 

stability in the presence of unmodelled dynamics. Park used similar method in [6]. He set a 

suitable set adaptive loop gain to converge the nominal and reduced order system. The 

adaptive system with this new adaptive law shown in Fig. 1.2. Consider a time-invariant 

plant in state-space form 

z(t) = Ax(t) + Bu(t) (1.1) 

where AE W- and BE R`te' and x= 
[x, 

, x2 ,., x,, 
] rxE Rte`' 

. 
The 

variables x(t) and u(t) denote the plant state vector and the control input respectively. The 

stable reference model is given by 

x, � 
(t) = Amxm(t) + Bmr(t) (1.2) 

where x= {x, }, x, � = {x,,,, } are n-dimensional state vectors of the reduced order plant 

and reference model respectively, r(t) is the m-dimensional reference signal and u(t) is the 
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plant input signal of m-dimensional. A, B contain unknown coefficients of the plant. The 

output error is written as 
X, = Xm -X 

z, =Amx. (1)+f (1.3) 

where f= (Am - A)x(t) + Bmr(t) - Bu(t), then the control objective is to manipulate f in 

some way so that limx, (t) = 0. Therefore, Lyapunov's theorem is introduced to (1.3): 

V= xT Pxs +h((D+t') (1.4) 

where (D, 'i' are matrices of parameter vectors 4), (i =1,..., n), `Pß(i = 1,..., m) to be 

defined. Then, equation (1.4) becomes: 

V= -x; Qx, + 2x; Pf +h 

where 

-Q = Am P+ PA, 
� 

(1.5) 

(1.6) 

By Lyapunov's theorem, with any Q>0, it follows that P>0 is a unique solution to 

Equation (1.6), A. is a stable matrix, as assumed. 

Derivatives of model-plant error are sometimes required e. g., M. I. T. rule [36], but 

may be avoided in gain adjustment schemes if the system transfer function is `positive real' 
by using Kalman's lemma. Parks's use of Kalman's lemma (1963), subsequently extended 

by Monopoli and co-workers in [37]. It was shown that the adaptive law 1K, 
ß = A''x1r 

, will 

preserve stability provided that the closed-loop transfer function is strictly positive real. If 

the plant transfer function is positive real then, the set V=0 must be examined to ensure 

asymptotic stability of x,. In feedback schemes plant parameters are adjusted continuously, 

so that in the simplified case treated here, x. -*0. Equation (1.4) can be written as 
nm 

V=x, Px, +ID ;!, +giTqi, 
t=1 i=1 ' 

(i. 7) 

where E, , `F are parameter vectors to be defined in terms of the elements of the 

matrices Am -A and Bm -B which express the parameter error between the model and 

the plant; 
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Fig. 1.2: Reduction of order configuration with adaptive gain (Taken from [6]) 

In this diagram K,,, is the adaptive loop gain which adjusts KmKs to mach the model gain K. 

Hence, the steady-state error will ideally will become zero when times goes to infinity. 

Following Equation (1.5) becomes 

V=-z; Qze+2I xýPf+Z ; O, +Eprq', (1.8) 

Let E define the whole state-space with ý EE where ý is defined by 

T= [x,, (DT,..., (DT,, TT,..., T, ' 
. Let E, c E, where E, is the n-dimensional subspace 

with x, E E,. In Equation (1.7) V is positive definite in E. The basic idea in feedback 

synthesis is to specify (cý, ' 'i) in (1.8) so that 

n 

x; Pf +; O, +`l', =0 (1.9) 
i=t i=t 

and consequently 
V =-x; Qx, (1.10) 

Since Y is only negative semidefinite in E, but negative definite in it may be concluded 

according to the Lyapunov's theorem, that the equilibrium at x, =0 is asymptotically 

stable and equilibrium at ý=0 is stable. It follows that x, -ý 0 and the parameter error 

vectors are bounded. It will be shown in certain cases that --ý 0 if the frequency content 

of the input signal is persistently exciting. 

An extended criteria which made non-positive real transfer functions to positive 
real by multiplying by a polynomial in s with roots of negative real parts was used in [36]. 
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By doing so, the resulting adaptive law required n-m-2 derivatives of the output error 

where n is the number of plant poles and m is the number of plant zeros. It was pointed out 

that the indirect adaptive controller may fail when it is subject to some unmodelled 

dynamics even with full state measurement available and the state variables of the model 

and the nominal plant may not converge. 

1.6.1 - Direct Adaptation 

Direct adaption (Model reference adaptive control) assumes that plant parameters 

are adjustable and updates the controller parameters directly. In the case of indirect 

adaptation (Self tuning regulator), the adjustment takes place external to the plant. The self 

turning regulator first identifies the plant parameters recursively and then uses these 

estimates to update the controller parameters through some fixed transformation. In this 

case, u=r and cb, LP are in turn defined by 4=A. - A, yr = B. -B with columns , , 
'IJ, 

respectively. Then, Equation (1.3) becomes 
ie = Am JCS 'F" 

,f 

where f= (Dx + Tr. 

It is seen that (1.10) can be satisfied if 

c; = -x. - Px, , 
(i=1,..., n) 

'I'i = -x, Pri 
, 

Assuming that the elements A and B are directly adjustable, then (1.11) becomes 

ä; r=x; Pxi 
0 

b; T=x, Pry, 

A. and B, � are the model parameters and it is assumed that they are constant. 

(1.11) 

(1.12) 
(1.13) 

(1.14) 

(1.15) 
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1.7 - THE REDUCED ORDER MODEL REFERENCE ADAPTIVE 
CONTROL DUE TO UNMODELLED DYNAMICS 

Lyapunov equation method is very useful method to prove the global stability of 

the reduced order model reference adaptive controller, therefore it has been widely used in 

this case. A Lyapunov's second law equation was used to prove the stability of the system 

with unknown dynamics in [38]. Additionally, the use of the method was extended in the 

cases of reduced order adaptive systems, systems with disturbances, time varying systems, 

multivariable systems and adaptive observers. Consider a first order SISO nominal plant 

output with unmodelled dynamics which is given as 

x, (s) =Sä u(s) 
P 

(1.16) 

where parameters b and ap are unknown constants of the reduced order plant. The actual 

response is modelled as the output of the nominal plant, with some unstructured dynamics 

represented by a bounded operator D.: 

xp(t) = x, (t)+Dau(t) (1.17) 

A reference model is defined as 

xm(s) = 
am 

r(s) (1.18) 
s+am 

where a, � >0 arbitrarily. Consider the linear model following control (LMFC) law which 

was studied in [39]. In the case of LMFC the feedforward part was represented by a 

positive (or strictly positive) real transfer function. This ensures the global stability (or 

global asymptotic stability) of the system. The LMFC law is 

u=-kx+k, r (1.19) 

where k, , k, are the feedback gain and the feedforward gain respectively, kx E R'X', 

k, E W'. The input signal is given as 

U= OTco (1.20) 
dO. 

_ -kom. (1.21) 

where 0= [9,02 IT= [k, kx IT is the adjustable parameter vector and rp = [r -x, 
]T is 

the regression vector, r is the reference signal and x, is the reduced order plant output 
signal in Fig. 1.3. 
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Fig. 1.3: Block diagram of a model reference adaptive control system (Taken from [42]) 

The controller generates the input u(t) of the plant, using x, �(t), x, (t) and r(t). The 

error between the reduced order plant and reference model output, x, (t) = x, n 
(t) - x, (t) , 

tends to zero asymptotically. The output error signal is 

=x, " 
(1.22) 

Equation (1.21) can written as 

e+ kcP[G(P)coT e] = kq: xM (1.23) 

Equation (1.23) separates the behaviour of the parameters from the other states which in 

this equation are hidden in G and p. In this equation the rate of change of the parameters 

is. governed by the constant k and the rate is quadratic in the components of p. This 

indicates that there are problems in controlling the rate of change of the parameters unless 

the vector sp is bounded. 

The sensitivity of an adaptive system in the presence of unmodelled dynamics and 

nonlinearities can be minimise if the real plant and model parameters converge during the 

operation. In general, exponential stability of adaptive algorithms is achieved when the 

reference input is PE; this will guarantee satisfactory stability properties of the adaptive 

systems. Stability of the adaptive control was studied in paper [40]. It was shown that the 

system is guaranteed to remain stable in the presence of unmodelled dynamics, 
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disturbances, nonlinearities and parameter changes. It was suggested that if the adaptive 

system is exponentially stable, it can tolerate certain levels of disturbances. In practice, it is 

commonly believed that parameter convergence is also an important condition for stability 

of the system. 

In the case of model reference adaptive control, the designer selects an 

appropriate reference model transfer function. The control aim is to design a control 

system to get the plant output x, (t) to track the model output xm (t) , 
in response to 

reference signal r(t) driving the model. 

The stability of the adaptive controller in the case of unmodelled dynamics very 

much depend on the condition when the parameters of the real plant and reduced order 

model are convergence [40]. The loop transfer function can be written as 

L(s) = 
(a. 

-a p) 
/ (s + a,, ), then for the sake of stability the unmodelled dynamics and 

nonlinearities, D. (jco) should satisfied the following condition: 

Jtv+am 1 
I(jwýap) x (a 

--a 
) 

mp 

(1.24) 

for all w>0. Condition (1.24) brings a bound on the model parameter, a., and in general, 

on the bandwidth of the model. After the plant and model parameters convergence: 

ua00 
jw +a. 

r(ja ) 
jO) +ap 

(1.25) 

The term D, (jw) is negligible since its frequency is usually above the model and plant 

bandwidth, so that (1.25) can be written as: 

u(jw) -r(im) (1.26) 

Equation (1.26) suggests that the disturbances term due to unmodelled dynamics, 

nonlinearities and parameter variations can be minimise provided that the spectrum of the 

reference signal is chosen according to the model and the plant bandwidth. 

The nature of the reference signal important in the case of adaptive systems with 
unmodelled dynamics. If the reference signal is square wave then only one parameter of the 

system can be determined [41]. The situation is different under sinusoidal reference signal 
In this case, it is possible to have an unique equilibrium point since a sinusoidal reference 
signal is persistently exciting of second order. Additionally, two parameters of the plant 
can be determined [42]. 
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1.8 - THE REDUCED ORDER MCS CONTROL 

The reduced order MCS control can be described as the nominal MCS control 

with some unmodelled dynamics. In this case, the unmodelled dynamics are considered as 
internal disturbances in the plant. 

The Minimal Control Synthesis (MCS) algorithm was originally developed as an 

extension to the Model Reference Adaptive Control (MRAC) algorithm of Landau [43]. 

The MCS control does not requires plant dynamics parameters for implementation, and it 

still guarantees global asymptotic stability of the closed-loop system [44], [45]. The MCS 

control was first proposed in 1990 [46] as a form of direct adaptive control. The algorithm 
has been implemented on a variety of plants, such as robotic manipulator motion control, 

electrohydraulic servo system control, materials testing machine control (stroke/stress 

control), chaotic systems control,... etc. 
The closed-loop stability proofs have been presented for a large class of 

electromechanical plants with Lagrangian dynamics, despite the fact that no prior 
knowledge was required concerning the nominal values of the plant parameters. The 

implementation of the MCS control requires a minimum amount of information about the 

plant parameters. 
Since 1990, significant extensions to the basic MCS have been presented 

(including a decentralised version), together with sets of implementation studies. An 

overview of the algorithm and its extension was studied in [47]. In this paper, the predicted 
performance characteristics of MCS for all cases were matched in practice. 
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Fig. 1.5: The MCS with unmodelled dynamics 

The reduced order MCS control can get unstable, if the MCS control weights a and 6 

have very big values. 

The Minimal Control Synthesis Identification (MCSID) algorithm [48], enables 

on-line identification of a linearised model of plants dynamics, based upon the MCS 

parameters (gain). It was emphasised that these parameters are not required for the MCS 

control to function; instead, the parameters might be required for simulation exercises, 

conventional controller designs and they can also be useful for, plant diagnosis, monitoring 

and fault detection under closed-loop control. 

The aim of MCS is to achieve an excellent closed-loop performance despite the 

presence of plant parameter variations, external disturbances, plant nonlinearities and 
dynamic coupling within plants, in a similar manner to MRAC. However the MRAC 

algorithm requires plant model identification. The designer is not required to synthesise the 

MCS control gain, since this is done automatically by the algorithm, given arbitrary (often 
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zero) initial conditions. The MCS control can adapt continuously to the unmodelled 

dynamics, plant parameter changes and external disturbances. 

The MCS control will be implemented to the electrohydraulic actuator plant in a 

reduced order form in Chapter 5. The plant has a third order nominal transfer function. 

Normally third order MCS control is required, since the plant itself is third order, but the 

second order MCS will be implemented on the plant. Another application of the reduced 

order MCS control will be load control of the ESH material testing machine in Chapter 6. 

In this case the nominal plant had second order transfer function and the MCS control will 

be implemented in a first order form. It will be shown that the reduced order MCS control 

deals the nonlinearities and parameter changes in the plant. 

1.9 - APPLICATIONS OF THE MCS CONTROL IN 
ELECTROHYDRAULIC FIELD 

The MCS control was implemented first time on a servohydraulic materials 

testing machine in [49]. Comparative robustness tests were conducted between the MCS 

and P+I control, when the plant subject to supply pressure changes. Additionally, the 

reduced order MCS algorithm were introduced for the first time. The reduced order MCS 

control was implemented in SISO form and it preserved the system stability in the face of 

the unmodelled dynamics and parameter variations in specimens and the plant itself. 

Adaptive control has been widely used in closed-loop materials testing 

application. Nonlinear nature of materials under load or strain control due to the changes 

molecular structure of the specimen and the changes in environment make this applications 

good candidates for adaptive control. Another example is low cycle fatigue testing in 

which the stiffness of materials changes each cycle and this can be represented by a 

nonlinear relationship [50] and using adaptive control in this case can prevent instability of 

the system due to the unknown disturbances, unmodelled dynamics and nonlinearities. The 

stability of the reduced order MCS control will be analytically proven in Chapter 4. 
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1.10 - CONCLUSIONS 

In this chapter a review of model reference adaptive control (MRAC) and 

reduced order MRAC have been presented. Another important class of adaptive 

controllers is the self-tuning regulator. Compared to self-tuning controllers, MRAC 

algorithms are simple to implement due to the absence of on-line estimation techniques. 

Additionally, in the case of the MRAC approach, the error may still converge to zero 

without any need of estimating the plant parameters in real time. These advantages can 

clearly be seen in nonlinear plants. 

In MRAC, the basic idea is to drive outputs of an unknown plant to a known 

reference model whereas in self-tuning controllers the basic procedure is to select a design 

for known plant parameters. Therefore, usual assumptions in self-tuning regulators are that 

the plant is linearisible and the control signal is sufficiently rich in frequencies. However, in 

real life these assumptions may not be valid e. g. the plant is nonlinear or the control signal 

may remain constant over a long period of time. These could lead to the generation of an 
incorrect estimator model. 

Lyapunov functions are very useful tools to synthesise adaptation laws. The 

functions offer global stability properties for adaptively controlled systems without any 

restrictions either on the initial conditions of the errors or on the reference signal. The 

disadvantage of this approach is in finding an appropriate Lyapunov function. 

It has been assumed that the reduced order adaptive controller is standard 

adaptive controller in which the controlled plant contains unmodelled parts in its dynamics 

and later on the unmodelled dynamics are treated as a disturbances in the plant. It is shown 
in this chapter that the reduced order model reference adaptive controller can be robust if 

the controller gains are tuned so as not to excite the frequencies in the unmodelled part of 
the plant and additionally, the input signal should be sufficiently enough in the mid- 
frequency range. 

Hydraulic systems exhibit significant nonlinearities, therefore a linear controller is 

not good enough to give satisfactory results. The linear controller can only be optimised 
for one operating point. It has been shown that the model reference adaptive controller 

performs very well in electrohydraulic system control. The controller can adapt rapidly to 

changes in load and supply pressure. 
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A greater variety of material testing situations need to be considered, for instance, 

tests involving higher test frequencies and test involving nonlinear specimen deformation 

characteristics such as low cycle fatigue tests. Therefore using an adaptive controller in 

materials testing has many advantages, especially a model reference adaptive controller 

(e. g. the MCS control). In the case of self-tuning control, higher test frequencies would 

place greater demands on the on-line identification scheme since servovalve dynamics and 

hydraulic and structural resonance's may be excited by the test signal. For the MCS 

control this in not the case, since the MCS does not need on-line or off-line identification 

scheme. 
The MCS control has been used to control the electrohydraulic actuator plant and 

ESH material testing machine. The MCS control is implemented in a reduced order form in 

both cases. Application of the MCS control to those systems will be studied in detailed in 

Chapter 5 and 6 respectively. 

Much of the existing research concerns either algorithms, structures or specific 

applications and a great deal more needs to be understood about the dynamic behaviour of 

adaptive systems. Although, adaptive control has been used in large scale of systems, 
further development is required before it widely adopted in industry: Firstly, to have fast 

adaptation without large tuning transients. Secondly, it is important to develop an adaptive 

controller which preserves the stability under wide range of conditions with any demand 

signal. Finally, to have an adaptive controller which is easy to implement. 

The MCS control has a very simple implementation procedure, hence the design 

of the controller is easy and as it will shown in Chapter 4, it is stable in the presence of 

external disturbances, plant parameter changes, nonlinearities and high frequency 

unmodelled dynamics in the plant. Therefore, the MCS control can be a good option for 

industrial systems control. 
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CHAPTER 2 

HYDRAULIC SYSTEMS MODELLING 

2.1 - INTRODUCTION 

The propose of this chapter is to show the importance of hydraulic systems 

modelling and simulation. The simulation of a hydraulic system control helps the designer 

to choose the suitable parameters satisfying the desired closed loop response. Therefore, 

the determination of the ranges of the controller parameters enables the designer to set-up 

rules for building up an effective hydraulic system based on model reference adaptive 

control. 
Hydraulic control systems have several advantages over other types of systems. A 

comparatively small size hydraulic actuator can produce very large forces or torques to 

provide rapid acceleration or deceleration of a heavy load. For the same power, hydraulic 

actuators are lighter than electrical motors and considerable reduction in size and weight 

can be achieved. This fact is making their use attractive in situations where lesser weight is 

more acceptable, such as aircraft and missiles. In addition, hydraulic fluid can be used to 

carry away the heat generated in the system and it also acts as a lubricant 

Later in this chapter the electrohydraulic actuator plant is modelled and simulated 
by Simulink. The P+DFB and MCS controllers were implemented on the model in 

Simulink and good position responses are generated. 
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2.2 - SERVOHYDRAULIC SYSTEMS 

The dynamics of servohydraulic systems are generally nonlinear and vary with 

time. The nonlinearity is mainly due to the fact that the hydraulic fluid flow rate through an 

orifice is proportional to the square root of the pressure difference across the orifice. 

Coulomb friction and stiction between the piston rod and the sealing are other sources of 

nonlinearity. The parameter of hydraulic systems change depending on many reasons, such 

as temperature changes of the hydraulic oil, air content, mechanical wear and leakage of 

the system. Nonlinear aspects of servohydraulic systems make adaptive controllers such a 

good candidate in this field [t]. 

Hydraulic systems are preferable in many cases due to the fact that for the same 

power they have less weight and smaller size in comparison with other types of systems. 

However, they have some disadvantages such as, the hydraulic power is not immediately 

available and leakage in the system can cause fire hazards. In order to prevent fire hazards 

fire resistant hydraulic fluids are commonly used in the mining industry and in power 

stations which are working in the high pressure. 

For a quite hydraulic system, it is' more desirable to have less transmission 

vibration from the pump. The hydraulic lines transmit both the pump vibration and the 

pressure fluctuations to other parts of the system such as, the actuator, the servovalve, the 

load mass [2]. As a result these parts of the systems vibrates more than the pump which 

cause the structural vibration. 

Flexible hoses are normally in use to connect the pump to the actuator, which are 

causing some disturbance but they also provide isolation of vibration, and to a lesser 

extent, isolation of pressure fluctuation. Noises in hydraulic systems are a serious problem 

which can be prevented by decreasing pressure fluctuation. The isolating effect of hoses 

were investigated by using different types of wave transmission in [3]. The wave properties 

of a single steel braid hose, double steel braid hose, four spiral steel hose and synthetic 
fibre braid hose were compared in this work. In comparison with other type of hoses, the 

textile hose gave the best isolation of pressure fluctuation, although it was not much. 
The steady-state error always exists in hydraulic actuator position control systems 

due to nonlinear relationship between the flow and the position of the actuator. The flow is 

proportional to the velocity of the actuator. Additional nonlinearity exists if the system has 
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a single rod actuator. In this case the flows to the first and second chambers of the 

actuator are not equal. Another nonlinearity in the system is the load mass. In [4], an 

underlapped servovalve was used to derive a single rod actuator hydraulic system and 

dynamics of the system were simplified and improved by neglecting the some parts of the 

system. It was suggested that the effects of load inertia and fluid compressibility can be 

neglected in this kind of system since the load mass is small. 

A proportional relief valve was used in a single rod actuator electrohydraulic 

system to get a zero position error in [5]. The load force and supply pressure were 

adjusted according to the changes in the load force. The technique concentrated on the 

need to have symmetrical underlapping of the servovalve spool, which enables the position 

error to be eliminated. Using an adaptive controller can be a satisfactory choice in this case 

due to the fact that the controller can adapt itself changes in the plant dynamics. 

Servovalve derived hydraulic systems have faster dynamics and high reliability 

therefore, they are in common use. However this kind of systems have low efficiency in 

comparison with load sensing electrohydraulic systems. In [6] load sensing was applied to 

an electrohydraulic system. It was demonstrated that the technique decreased the energy 

consumption and improved the dynamics the hydraulic system. 

2.3 - MULTIVARIABLE HYDRAULIC SYSTEMS 

MODELLING AND SIMULATION 

In order to have a reliable multivariable (NUMO) hydraulic system the following 
factors should considered: i. e. changes in the environment, the topology of the network, 

structure of computer modules, and the software quality. In a first place, a reliable system 

requires a good design method which will produce a model that will be close agreement 

with the real system. Hence, the use of an appropriate communication protocol and system 

scheduling become important in the case of MIMO hydraulic systems. Also, having a 
proper error detection mechanism can be very useful. 

A multivariable Workmaster hydraulic robot was modelled in a simplified form for 
the computed-torque and variable-structure control applications both in simulation and in 
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practice in [7]. The mathematical model of the system was later examined to improve the 

working conditions of the real hydraulic robots. 

A multivariable hydraulic system (multiarm forest or tunnelling machine) was 

controlled by using distributed computer control in [8]. It was demonstrated that the speed 

and reliability of the system can be improve due to distribution in the multivariable system 

structure. Additionally, the method reduced the use of cabling therefore, the cost of the 

system was decreased. In the case multivariable hydraulic systems, adaptive controller (in 

decentralised form) strategies can be a good alternative to overcome the delay and 

disturbance term due to large distribution of these sort of systems. 

2.4 - HYDRAULIC SYSTEMS MODELLING AND SIMULATIONS 

Modelling and simulations are very useful tools in hydraulic systems design and 

control due to the fact that it can help designer to choose suitable configuration of the real 

system. The system can build in the computers memory and necessary changes and 
improvements can be done very easily before the real system is build. The simulation of 
hydraulic systems can be also very helpful in the case of choosing suitable controller gains 
[9]. The simulation results will show how close the mathematical model is to the real plant. 

In order to have satisfactory simulation results it is necessary to have detailed and 

accurate mathematical model of real systems. There are many different computer based 

design software package which have been used hydraulic systems modelling and 

simulations. Some of these methods are given below. 

2.4.1. - Computational Fluid Dynamics (CFD) Simulation 
Techniques 

Computational Fluid Dynamics (CFD) simulation techniques were used to model 
the impedance characteristics of simple cylindrical and sharp-edged orifices in [to]. It was 
demonstrated that the impedance characteristics was relatively independent of mean flow 
in non-cavitation condition. On the other hand the resistance is strongly dependent on the 
mean flow. Edge and Johnston have investigated the impedance characteristics of some 
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hydraulic components [11], [12]. They modelled restrictor valves, single-stage relief valves 

and accumulators simply by using inductive, capacitive and resistive characteristics of the 

components. For some complex components, such as two-stage relief valves, the 

impedance characteristics were developed based on the physical configuration of the real 

component. However satisfactory responses did not generated, the responses which was 

generated from simulations was not close agreement with the measured impedance of the 

relief valves. 

2.4.2 - Using Neural Networks in Modelling of Hydraulic 
Systems 

Neural networks have been used in the case nonlinear system modelling and 

simulation effectively. Hydraulics systems have nonlinear dynamics due to the nonlinear 

relationship between the flow and the position of the actuator and the nonlinear 

characteristics of hydraulic fluids For that reason, artificial neural networks can be used in 

the case hydraulic systems modelling and control [13]. In this work the method was also 

used to model the pressure relief valve and variety of servovalve controlled motor systems. 

2.4.3 - Transmission Line Modelling Method 

Over decades transmission line modelling (TLM) has been applied to variety of 
electrical, mechanical and fluid power systems. An electrohydraulic systems contains all 
these elements therefore, the method was used to model the hydraulic, mechanical and 
electrical parts of the plant in [14]. In this work the parallel simulation method was used 
together with TLM method which increased speed of the simulation. Accurate models for 

cavitation and friction were developed using TLM methods and verified experimentally. It 

was demonstrated that by using transmission line modelling technique the simulated model 
gave responses which are close agreement with the real plant. Normally, the method of 
characteristics (MOC) required more computational effort than TLM. In TLM, the 
component models were simplified due to use of the pressure and flow equations at the 
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transmission line and incorporated into the model. Hence, the line models were not solved 

separately therefore, the total number of models was reduced. 

TLM method was proposed for modelling of the fluid flow in hydraulic pipelines 

by using the distributed parameter model in [i5]. In this work, a method proposed to 

eliminate limit cycle conditions in hydraulic control systems. It was suggested that limit 

cycle conditions were a strong function of certain plant parameters such as backlash in the 

actuator and nonlinear transmission line therefore, it can be eliminated by ignoring (the 

unmodelled dynamics) the certain parts of the plant dynamics. It was pointed out that if the 

hydraulic control system consisting a nonlinear hydraulic transmission line or the hydraulic 

actuator secured by a mechanical structure, it may result in limit cycle conditions. 

Additionally oscillations along the pipelines may be excited by a nonlinear element which 

may lead instability. In order to overcome this problem the pipe length should be kept as 

short as possible. 

2.4.4 - Fault Analysis Method 

Transmission line modelling method tended to be based on heuristic knowledge 

(empirically derived shallow knowledge). It was suggested that, for the sake of more 

accurate models, detailed knowledge (deep knowledge) should also be considered [16]. 

The method was applied to an electrohydraulic control system modelling and simulation by 

using an object oriented library, in which the components were modelled base on deep 

knowledge. It was pointed out that although the method has many useful features still 

there were problems describing the system in the software. Additionally, there were 
difficulties choosing the combination of unexpected and unwanted conditions. 
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2.4.5 - Failure Mode and Effects Analysis and Fault Tree 
Analysis 

In [17] Failure Mode and Effects Analysis (FMEA) was used together with Fault 

Tree Analysis (FTA) to model the unwanted features of a electrohydraulic control system 

In this method, each component was modelled independent of any particular circuit 

configuration as a self-contained unit then, the connectivity information was used to form 

any type of hydraulic systems in the computers memory. The method did not only 

modelled the known unwanted effects of the component dynamics, it also modelled the 

normal effects of the component dynamics. In the case of qualitative simulation, some 

components were selected as active such as electric motors, accumulators, etc. which are 

capable of introducing energy into the system and when simulation started, the software 

activated components, for example an accumulator switched on. The software has the 

capacity to model the behaviour of the components by using the descriptive terms 

therefore it has comparatively less computation. Additionally it was observed that it is very 

flexible for hydraulic systems modelling, any type of systems can be formed by using 

object-oriented software, any changes can be made easily while the simulation running. 

FMEA program was indicated the worst possible, or most extreme, effects of a 
fault. in real system, the effects may not as severe as predicted, due to the fact that the 

simulation method was based on very detailed qualitative reasoning of the system. The 

method was shown the more significant probabilities and features of the system. The 

method was performed manually which was subject to human mistakes. It was suggested, 

that FTA is necessary together with the application of heuristic knowledge and active 

testing of a hydraulic circuit, for a good modelling. 
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2.5 - CONSIDERING THE EFFECTS OF THE BULK MODULUS OF 
HYDRAULIC OILS IN THE CASE OF HYDRAULIC SYSTEMS 
MODELLING 

If the pressure changes are significant in the electrohydraulic system then, using 

the pressure dependent bulk modulus can make models more accurate. In [18], the bulk 

modulus in high pressure pipes were measured pressure-volume-temperature methods 

which is given as follows 

Co =N - 
P (2. i) 

where co is the speed of sound in the fluid, N is the effective bulk modulus and p is the 

density of the fluid. 

Generally, a constant value of the effective bulk modulus have been used in 

hydraulic systems modelling. Therefore, it is assumed that the effective bulk modulus is 

constant during operation of the system. This assumption is not very accurate due to the 
fact that the system loading can vary significantly, e. g., the pressure in the actuator varies 

periodically from the supply pressure to the return pressure. If a hydraulic system is subject 
to large and sudden pressure changes, then it is more reasonable to use the pressure 
dependence effective bulk modulus for accurate plant modelling and simulation. It was 
demonstrated by Edge and Darling [19] that, if a constant effective bulk modulus value is 

used, satisfactory simulation results are difficult to obtain. 
Following factors are considered to have influence on the effective bulk modulus: 

air content of the oil, oil pressure, oil temperature and pipe rigidity. Air content of a 
hydraulic oil depends on the pressure and temperature in the system. Air exists in hydraulic 

systems either in entrained or dissolved form and except very high pressures dissolved air 
does effect the performance of the system. The effective bulk modulus affected badly when 
entrained air present in the system due to the bigger size of the air bubbles in the hydraulic 

oil. 

The temperature of the hydraulic oil influences the effective bulk modulus, 
because it effects the density of the -air content inside the hydraulic oil. At high 

temperature, the effective bulk modulus increases due to the size of small air bubbles in the 
hydraulic oil.. The effect of oil temperature can be ignored when the oil temperature is 

approximately constant during operation of systems. The affects of pipe rigidity also 
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ignored in many practical applications and it is assumed that either the affects are 
insignificant or rigid pipes are in use. 

The effective bulk modulus value of the oil varies depending on oil pressure 

significantly. This was clearly demonstrated by Yu and Lu in [20]. According to the 

authors' experience, the effective bulk modulus value of a particular hydraulic system was 
determined to be 1132 MPa when the load pressure was equal to 1 atmosphere, 1631 MPa 

at 5 MPa and 1686 MPa at 10 MPa. The effective bulk modulus was increased when some 

entrained air become dissolved air due to increase in the hydraulic oil pressure. 

Accurate modelling and simulation of an electrohydraulic system was achieved by 

using a pressure dependent effective bulk modulus in [21]. The work concentrated on the 

relationship between the effective bulk modulus and oil pressure in the hydraulic system 

and other factors such as oil temperature, air content of the oil were assumed to be 

constant. It was demonstrated that the method is efficient, convenient and produced more 

accurate model. Hence, if the pressure in the hydraulic system is varying dramatically with 

working conditions then using the pressure sensitive effective bulk modulus may produce 

more accurate models. 

2.6 - MODELLING AND SIMULATION OF THE ELECTROHYDRAULIC 
ACTUATOR PLANT BY SIMULINK 

Simulink is a program for simulating dynamic systems. Simulink has two phases 

of use: model definition and model analysis. As a extension to Matlab, it works inside of 

window's environment. To facilitate model definition, Simulink adds a new class of 

windows called block diagram windows. In these windows, the model is created and edited 
principally by mouse driven commands. 

Extensive use can be made of Matlab's Control Systems Toolbox and Simulink 

throughout the design and modelling processes. The system can be modelled using Matlab 

and Simulink and subsequently the controller can be implemented using analogue models 
[22]. The paper describes the design methodology used to produce a multivariable control 
system and illustrates the differences between the predicted and actual performance of the 
real electrohydraulic actuator plant. 
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The model can be defined or analysed either by choosing options from the 

Simulink menus or by entering commands in Matlab's command window. With the 

simulation running, the results were directed to the Matlab workspace. 

2.6.1 - The Electrohydraulic Actuator Plant 

The electrohydraulic actuator plant, which is presented in this chapter, has been 

developed in the Aerospace Engineering Department at Bristol University. The increasing 

demands from modern control systems necessitate greater flexibility between controlling 

elements. This has resulted in the combining of electrical signalling with fluid power 

actuators. 
The output from the servo amplifier actuates the torque motor attached to the 

pilot spool. Supply pressure is directed to both spool valves, so that the product of the 

supply pressure and the main spool area produces the force to move the main spool. The 

output flow from the main spool is used to drive the ram piston, which is also provided 

with a feedback loop. The flow force varies with the load pressure in the actuator. 
Switchable accumulators are situated either side of the actuator. The accumulator is an 

energy storage unit allowing hydraulic oil systems to use the energy storage capacity of 

compressed gas. The accumulators consist of a high pressure cylinder containing a rubber 
bag. The bag is normally charged with an inert gas (normally nitrogen). As oil is pumped 
into the cylinder around the bag the pressure will rise. The accumulators can be used as a 

reserve of power in circuits, in which there are short duration high flow demands. The 

accumulator can also be used as a low pass filter, helping to smooth out fluctuations in 

pressure and flow due to the pump action [23]. 
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2.6.2 - Dynamics of the Plant 

The dynamic analysis of the hydraulic system can be made by identifying their 

differential equations of motion. Forming an equation for a hydraulic system is the first 

step for design and control. Before building a real system, however, it is important to 

determine whether the system will be stable. 

It is necessary to examine the parameters, variables and differential equations of 

the system. With the exceptions of geometric and kinematics relationships, the equations 

U 

reduce to either equations of flow (2.4) and to equations of force (or torque, 2.8). In this 

case of the electrohydraulic actuator plant, the equation describing the system dynamics 

were derived analytically using the equations for flow and torque [24]. 

The servovalve is described by a linear transfer function which is published by 

Moog [25]. The electrohydraulic servovalve is a highly nonlinear device that exhibits high 

order, nonlinear response. It has many parts which have so small shape and this is 
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analytically non-ideal. In many cases, it is appropriate for more accurate hydraulic system 

design to use empirical approximations of the measured servovalve response. A very 

adequate nonlinear representation for the servovalve is given in Fig. 2.5. The plant 

dynamics are described by using the actuator and servovalve dynamics. 

2.6.3 - Dynamics of the actuator 

The flow equations: 

Flow in: 

Q, = A, z+V, (2.2) 

and flow out: 

Q2 = A2± - V2 
2 

(2.3) 

Q, and Q2 are flows into chambers C, and Cz in Fig. 2.2. The pressure difference is 

AP=P, -P2 

and similarly 

AJ 

T 

Fig. 2.2: Hydraulic ram 

(2.4) 
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2.6.3.1 - Nonlinear Description of the Actuator 

The force equation is: 

A, P, -A2P2-f,. z-T=mpz ' (2.5) 

where T= 
Je 

Icos6' 
f' is the coefficient of viscous friction, mp is the mass and J is the 

moment of inertia. The system has a single rod actuator. The area in the first chamber of 
the actuator is: 

AZ 
0.84 

In this diagram x= Isin 6 and p=l cos9 and F= AIPI - A2PZ 
. For the sake of simplicity 

the averaged value of Q, and Q2 are used in modelling to produce the load force in the 

actuator. The averaged hydraulic volume flow: 

Qf =Aa, z+Vav(P -PZ) 
2N 

(2.6) 

where, A, and A2 are the effective area of the first and second' chambers of the ram 

respectively, Nis the bulk modulus of the hydraulic oil and Vv is the average volume in the 

rain. The volume (K, ) is provided for the liquid downstream of the valve in one chamber 

or the other when the ram is in the middle piston (Fig. 2.2). The volumetric coefficient: 

kv =v (2.7) 

where V is the effective half volume, V. = Aa�xm, where x, � is the maximum half travel of 

the ram and A,,, is the average effective area of the ram. It is always desirable to decrease 

the total volume, V.,. In a linear actuator, Vm, = V. + V., where Vm is the dead volume 

corresponding to the ducting between the distributor and the actuator and to other 
intermediate volumes. The volumetric coefficient, 1c, can be low as 1.2 for large rams, 

while for small rams it is rarely less than 1.5 or 1.6. For the servohydraulic plant kc is taken 

1.4 [24]. Q1, Q2 are flows into chamber C, and C2. Equation (2.5) can be rewritten as: 

A,,, (PI -P2)-. f z-T=mpz (2.8) 

For the hydraulic system the transfer function of the ram is obtained by eliminating the 
intermediary pressure variable between the flow equation and the force equation. 
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Fig. 2.3: The hydraulic actuator and load 

From (2.6), the pressure difference across the actuators chambers is 

ý1 
'- 

12) = 
Vw 

(2.9) 

Integrating (2.9) with respect to time gives: 

(P, - P2) =JV 
(Q 

f -A,, ±)dx (2.10) 

From, (2.8) and (2.10) 

Aa 
2N `Q 

f- Aý )ciac 
- fsx - 

J8 
= mpz (2.11) 

vlt /co. 5 o 
So, the dynamic equation of the actuator is: 

Ate, r2N (Q_ A x)dx -fsz- 
I- Je 

(2.12) 
mp ,JV. 11 

f `" mp mp 1 cosO 

which becomes: 
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x= jý Ate, [. {s (Q 
f-A, i)dx - 

f' 
z- 

Jkzbc 
(2.13) 

Vom, l mp MP Ic05o 

This equation is described schematically in Simulink as follows: 

Fig. 2.4: The block diagram of the actuator in Simulink. 

In this diagram: K=-, MN=m, J is the inertia of the system and 
VP 

4ý'1VA2 
S=f,, where f, = . The condition for stability can be represented fairly 

p WVc av 

w 
accurately by the relationship C )) f where, the critical frequency of the system, 

0) C 
FýNA 

C. In this case the bulk modulus of the hydraulic oil, N is 2.9x10'9 N/m2, the 

effective area of the ram, A0 is 11.57 cm., the mass, mp is 6.7 kg, the total half volume, V 

is y0, = 84 cm3. The value of o is 94 rad/s and = 0.25, and wf is the open loop gain. 
mf 
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Then, the damping coefficient,, ' was chosen to be 0.24. The flow rate of the rig, Q,.,,. is 

14.7 lt/min, the valve sizing constant, K is 0.0598 and the input current i, is 40 mA. The 

supply pressure of the electrohydraulic actuator plant P. is 110 bar, and the inertia of the 

system is, J is 0.44 kgm 
. The servovalve is described by the nonlinear third order model 

shown as below: 

40 5730.1 
107 

12.987 Xs 
807 + Qf 

in 1 Gain s 91.98s+532900 1+1 
Sum Gain1 Transfer Fcn1 Saturation Gain2 

Transfer Fcn Sum1 out_1 

10 

Gain3 
2 A'a 

7n2 
Gain4 

Fig. 2.5: The third order nonlinear dynamics of the servovalve 

The servovalve is modelled by a third order transfer function (the data received 

from the manufacturing company). Using flow equations and Newton's law the actuator 

dynamics is described by a second order nonlinear model. This to separate model linked by 

using the relationship between the flow and force. Hence, electrohydraulic servo plant is 

described by a nonlinear fifth order model by using Simulink as shown in Figs. 2.4 and 2.5. 

2.7 - SIMULATION TESTS RESULTS 

The electrohydraulic actuator plant was modelled by Simulink. Dynamic 

simulation plays vital and very visible role in the hydraulic system design process. The 

modelling is important to investigate the dynamic behaviour of the system. The plant is 

modelled by a fifth order nonlinear model. The mathematical model of the plant controlled 

in Simulink under second order MCS control (Fig. 2.6). 

The plant described by the following state-space equation: 
z(t) = Ax(t) + Bu + d(t) (2.14) 
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For a given settling time, 1, = 0.25 s, the second-order MCS reference model is 

zm(t) = Amx(t) + Bmr(t) (2.15) 

where A. = 
-256 -32 

and B. 
256 

The MCS control signal, u: 

u(t) = K(t)x(t) + K, (t)r(t) 

together with 
I 

K(t) = Jay, xrdr+ßy. xr 
0 

K, (t)= jay, rdr+ßy. r 
0 

Form the output error signal: 

. 
Ye(t) = Ce(t)xe(t) 

The hyperstable condition is guaranteed if. 

C, =B; P 

where B, = diag[B,,, ... , 
BP]; Be, = [0, 

... ,0 11T 

For second order reference model 

B, 2 1 

and P is the positive definite solution to the Lyapunov equation 

PAm+A4P=-Q ; Q>0 

Q is the arbitrary positive-definite matrix, it was chosen as 

10 0 
Q_ 

01 

then, the output error matrix is 

C, = [0.0195 0.0162 

(2.16) 

(2.17) 

(2.1 s) . 

(2.19) 

(2.20) 
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Fig. 2.6: Block diagram of the electrohydraulic actuator plant under second order MCS. 
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Fig. 2.8: The responses of the model of the plant under MCS control, supply pressure 110 
bar. 
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The results of the model of the electrohydraulic actuator plant under P+DFB 

control are shown in Fig. 2.7. The settling time was t, = 0.25 s, the reference signal was a 

square wave of frequency 0.25 Hz, kp =1 and kd = 0.1 and the amplitude was 1 volt. The 

position responses and gains from the simulation of the electrohydraulic actuator plant 
behaviour under the MCS can be seen in Fig. 2.8 a, b. The settling time, t, = 0.25 s, the 

values of a, ß were { 10,1), the reference signal was a square wave, the frequency was 

0.25 Hz and the amplitude was 1 volt. 

The position responses and gains of the real plant under the MCS can be seen in 
Fig. 5.12 (Chapter 5). The reference signal was a square wave, settling time was 

t, = 0.25 s, frequency was 0.25 Hz, amplitude was 1 Volt and the values of a, jß were 

(0.001,0.0001 },. The corresponding results of the real system under P+DFB are shown in 

Fig. 5.11 (Chapter 5), together with a proportional gain, k,, =1 and a derivative feedback 

gain, kd = 0.1. 

There is reasonable correspondence between the simulated and the actual system 

responses, indicating that the mathematical model of the system, which was calculated 

analytically and modelled by Simulink, is accurate. 

The steady-state error is occurred in both the real and model position responses 
due to the relationship between the flow and position. Additionally, the system has a single 

rod actuator and the mass at the end of the actuator has nonlinear effects. The real plant 
responses are more oscillatory in both the P+DFB and MCS control than the simulated 
plant responses. The reasons of this steady-state error are firstly, in modelling the volumes 
inside the actuator chambers are assumed constant during operation, then for the sake of 
simplicity the averaged form of these volumes is used as the effective volume. In fact, the 

volumes in the first and second chambers are not just equal (due to the use of single rod 
actuator) also they change during dynamic operation of the plant. Secondly, the constant 
bulk modulus was used in Simulink models to bring the simplicity in to modelling which is 

not the case in real plant operation. The bulk modulus changes due to the changes in the 
pressure inside the actuator and servovalve., There so many other, factors which are not 
considered in, this modelling like, the nonlinear dynamics of the accumulators (the 

accumulators dynamics are not included into the model), the plant rigidity and the 
cavitation in the fluid. 
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In the case of the P+DFB control both the real and simulated plant are controlled 

by using same controller gains. The adaptive weights of the MCS control was greater in 

the simulated model due to fact that the computation of the adaptive gains and controller 

itself take longer time in Simulink and using smaller adaptive weights makes this process 

even slower. In comparison to the MCS control P+DFB control has a simple structure 

therefore the calculation in Simulink was rather quick. 

2.8 - CONCLUSIONS 

At the most basic level, modelling of hydraulic systems can enable the users to 

explore the various configuration options and decide which system configuration needs to 

be used to ensure acceptable performance. Once this decision has been made, the sizes of 

the hydraulic system components such as hoses, hydraulic pump units and directional 

control valves can be established. 

In the case of adaptive control of hydraulic systems, since both the controlled 

system and the controller are nonlinear, it is necessary to use simulation to confirm that the 

control strategy is correct. The results from the simulation must of course be validated 

with experiments. 
For industrial fluid power systems, it is often possible to carry out much of the 

initial design work using steady state performance calculations. Simulation can then be 

used to refine performance. 

Numerical simulation of hydraulic systems is used extensively as a design tool, but 

in order to investigate much larger and more complex systems, within an economic time 
frame, faster software and hardware required. 

Reasonable good simulation results are generated in the case of both the P+DFB 

and the MCS controllers from the model of the electrohydraulic actuator plant, which are 

close to the real plant responses. This indicates that the mathematical model of the system 
is accurate and also that Simulink can be a good option for modelling hydraulic systems 
(or any other kind of systems). 
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CHAPTER 3 

A REVIEW OF MODEL REDUCTION METHODS 

3.1 - INTRODUCTION 

The reduced order MCS has a reference model of lower order than the nominal 

plant model, and the modelled part of the plant matches the reference model in order. 

Hence, the unmodelled part of the plant, which represents the fast dynamics of the plant 

can be considered as a disturbance term. Together with the unmodelled dynamics the 

stability of the reduced order MCS incorporating unmodelled plant dynamics will be 

proven in Chapter 4 in the case of both SISO and MIMO systems. If the disturbance term 

is large in magnitude, using EMCS (Extended Minimal Controller Synthesis) may be an 

option to guarantee global asymptotic stability of the system. 

Another possibility may be to use an averaging method, which gives good results 

in the case of SISO first order plant but it is rather difficult to derive the stability of the 

error equation if the relative degree of the plant is greater than one. It is also difficult to 

derive the stability error equation in the case of multivariable systems. 

Later in this chapter, linear model reduction methods are presented. By using 

linear model reduction methods it is possible to reduce the order of the plant and then 

implement the MCS control according to the reduced order plant parameters. Although, 

the MCS control does not need the reduced order plant parameters, they can be still very 

useful when choosing the settling time and sampling interval of the controller. 

Additionally, plant parameters are required in the case of comparative studies, due to the 

fact that linear controller strategies need plant parameters for implementation. 

In the case of the reduced order MCS control, the controller is implemented in 

such way that the controlled plant is higher order than the reference model in terms of 

degree. This procedure reduces the order of the plant automatically due to the fact that the 
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lower order reference model will activate only the dominant part (mid-frequency range) 

and it will ignore high order dynamics of the plant. For this reason, the implementation of 

the reduced order MCS control is very simple and easy. 

The reduced order electrohydraulic actuator plant and ESH material testing 

machine transfer functions which are obtained by conventional model reduction methods 

are given in Tables 3.3-3.6. These transfer functions will be compared with the nominal 

model of the plants which are found from system identification tests in the case of step and 
impulse energy responses. The performances of conventional model reduction methods 

will be compared with the original plant transfer function by step and impulse response 

methods. 

3.2 - MODEL REDUCTION METHODS 

Model reduction methods are presented in two groups in this chapter. The first 

group is adaptive model reduction methods. In this case, the model reduction procedure 

takes place inside the adaptive algorithm. This is due to the fact that the adaptive control 
does not require the plant parameters directly (except the self-tuning regulator). For that 

reason, there is not a direct reduction in the plant order. Instead of that the algorithm uses 

a lower order reference model and the plant matches the reference model in order. Two 

adaptive model reduction methods are presented in this chapter: averaging method and 

extended MCS control algorithm which are studied in sections 3.3-3.4. The extended MCS 

algorithm is an extension of the standard MCS control and it may guarantee the stability of 
the system in the face of large unmodelled dynamics. The second group is linear model 

reduction methods. Most of these methods require a linear description of the plant in the 

state-space form and they are studied in sections 3.6-3.16. In this case, the reduction 

procedures approximate the plant transfer function to a lower order one directly. 

The linear model reduction methods can be use together with the model reference 

adaptive controller as well. The model reference adaptive control algorithm does not 
require the reduced order plant parameters, still they can be very useful to have an idea 

about the suitable controller gains, the reference signal characteristics and comparative 
studies. 
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3.3 - AVERAGING THEORY 

Averaging method was proposed to prove the stability of adaptive systems in the 

presence of unmodelled dynamics, nonlinearities in [i]. Later, the method was improved in 

[2], [3] and [4]. It was demonstrated in [5] that the averaged model of the system is stable 

in a larger scale than the nominal plant model. Additionally, the converge of the averaged 

and original plant model was investigated in this work. 

The characteristic of the reference signal is important in the case of averaged 

adaptive systems. The system may become unstable depending on the property of the 

reference signal. The relationship between the unmodelled dynamics and high frequency 

reference signals were studied in [6]. It was shown that equilibrium is not a unique point 

when the input signal is not persistently exciting therefore, even small disturbances may 

lead unstable responses in the presence of the unmodelled dynamics and nonlinearities in 

the system. It was shown that if the input signal is persistently exciting than the equilibrium 

set will be a point and this will preserve the stability of the system [7], [8] and [9]. 

Averaging method was used to determine the stability of a reduced order adaptive 
systems with relative degree one in [10]. It was pointed out that the method is not easily 

applicable to adaptive systems which have higher order transfer functions or the relative 
degree greater than one. In addition, although the method works well with sinusoidal 

reference signal it does not produce the stable output responses for other types of input 

signal e. g., square wave signal. 

3.4 - THE REDUCED ORDER EXTENDED MCS ALGORITHM 
(ROEMCS) 

Model reduction methods are based on deriving lower order models of original 
higher order systems by simplifying their dynamic equations. Similarly, the reduced order 
MCS control uses a simpler mathematical approximation that retains the key features of 
the original systems. In the case of the reduced order MCS control, the simplicity of the 

controller is achieved by using a lower order reference model. 
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If the disturbance term is rapidly varying due to the high order unmodelled 

dynamics then it could be a good idea to use reduced order EMCS control instead of 

standard reduced order MCS control. It was shown that the effects of rapidly varying plant 

disturbances were substantially reduced in the EMCS [ii]. The EMCS control signal has 

more active nature than the standard MCS signal due to the quasi-switching term. Hence, 

in some case the EMCS control may lead an undesirable oscillations of the plant states it 

may even cause instability due to excitement of the higher order unmodelled dynamics. 

The algorithm is applicable to the control of SISO and MIMO plants. It will be shown in 

Chapter 4 that the standard MCS algorithm is stable in the presence of rapidly varying 

disturbances; thus the plant-reference model signals remain bounded. 

EMCS algorithm guarantees global asymptotic stability of the tracking errors in 

the case of plants, which are subject to unmodelled dynamics in comparison with the MCS 

algorithm. Consider a linear, SISO plant with unmodelled dynamics given as below 

x, = ArXr(t) +Bru(t) +d(x., t) (3.1) 

where A, (t) E R''x' and B, (t) E W`' 
, 

d(x� t) is the disturbance term due to the high order 

unmodelled dynamics and x, +1 
, x2 ,., Xh ]r x, E The variables 

x, (t) and u(t) denote the reduced order plant state vector and control input signal 

respectively, where 

o10... 0 
00 

001... 0 

B, (tý= =0 0 000... 1 
b, 1 

-Q, -a2 -a3 ... -a. 

and 

0 

d(x,, t) _0= bd, 

dl 

The stable, reference model is given by the following state-space equation. 
xm 

(t) 
= Amxm (t) + Bmr(t) 

where A. E R-! ' and B. E R.. "`'. The matrix Ar, and the vector B. are given by 

(3.2) 

(3.3) 
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010... 00 

001... 0 

Am B. =0 (3.4) 

000... 1 

_b. 
] 

-aml -amt -am3 " .. -amn 

The error dynamics of the closed-loop system determined by using (3.1) to (3.3) as follows 

z, (t) = AmxS(t)-(A, -Am)x, (t)-B, u(t)+Bmr(t)-d(x,, t) (3.5) 

where 

X. (t) = X. (t) - x, (t) (3.6) 

The MCS control signal is 

u= K(t)x, (1) + KR (t)r(t) (3.7) 

with 

, K(t) = 
JcZYeX'dT+I3Y. X 
° (3.8) 

r 
R 

(t) =f cy, rd z+ ßy, r K 
0 

Y. = C. x. (3.9) 
C, =bTP 

where the vector b is of dimension (hxl), and is given as: 

b= [0 
... 0 11' (3.10) 

and P is the symmetric positive definite matrix solution to the Lyapunov equation: 

ATP+PAM=-Q; P>0; Q>0 (3.11) 

From equations (3.7), (3.5) and (3.11) a new error dynamics equation is determined as 

z, = Amx. - bwT c- bwT ̀P - bd, (3.12) 

where 

= blabT Px, w (3.13) 

w=[x, rIT (3.14) 

and 

T'= b, QbT Px, w (3.15) 

From Equation (3.1) the SISO EMCS control signal, u, is determined in the following 

form: 
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us = OT +I qJT + )Vi,. (") 

where N is a constant scalar and the sign function is 

1 if Y. >0 
sign(y. ) =0 if Y. - 0 

-1 if y. <0 

and 

eT =, 
SaYerdr] [Icv. 

xdr 
r 

00 

(3.16) 

(3.17) 

(3.18) 

b, is the last (and the only non-zero) entry of matrix b, where b, w, y, and `I' are 

respectively defined by (3.9), (3.10), (3.14) and (3.15). Following, the new MCS law 

(3.16) and (3.12) become: 

z® = A,. x, -bwTc-bwT '-b[d(x�t)+b, Nsign(y, )] (3.19) 

where c is given in (3.13) and d(x,, t) is the disturbance term then, the error x, is globally 

asymptotically stable if following condition is satisfied for all tz0 [11]: 

d(X,, t)s'gn(y, )+b, N lyi+ z0 (3.20) 

If the term b, N is positive, then N is obtained from (3.19) as follows : 

b1 Nz max I d(x� tý ýf I (3.21) 

and b, N>0 for all tz0. The above condition indicating that if 4 is sufficiently small then 

the term 
IY`I + 

may be approximated to 1. Hence, it can be concluded that the SISO 
Iy. I 

. 
EMCS control law, (3.16) yields the globally asymptotically stability of the error, x, for the 

suitable set values of N and 4. The condition (3.21) is not related to the variation of d, 

therefore no matter how rapidly d, is varying, suitable values of N and ý ensure the global 

asymptotic stability of the error x... 

In similar manner to SISO systems, the global asymptotic stability of the MIMO 

EMCS control was proven, in [ii]. The EMCS algorithm was further extended as the 

purely adaptive EMCS algorithm in [12]. New algorithm estimated the amplitude of the 
discontinuous switching term adaptively. 
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3.5- LINEAR MODEL REDUCTION METHODS 

The reduced order models have simpler mathematical structure compare to the 

nominal plant model which retains the crucial dynamics of the original system. There are 

great variety of ways to reduce the order of the higher order plant transfer function. The 

current linear model reduction methods uses either the time domain or the frequency 

domain approach. These methods are based on the classical theories of the mathematical 

approximation or mathematical concepts; such as Pade' approximation, continued fraction 

method and time-moment matching method. 

The model order reduction problem was very closely related to the stabilisation 

problem in [13]. In [14], a model reduction method was introduced based on the 

differentiation of the numerator and denominator polynomials of the higher order transfer 

function. The nominal transfer function of the plant were differentiated as many times as 

required to derive the coefficients of the reduced order transfer function polynomials. 
Linear model reduction methods can be used together with adaptive controllers, 

e. g., a mixed method of Liaw was used to find the reduced order model of the 

interconnected power system in [i5]. After model reduction process the plant was 

controlled under the proposed adaptive controller in [16]. The proposed adaptive 

controller implemented by using a reduced order reference model and it did not required 

the plant parameters for implementation. Although, the adaptive controller required 

minimum knowledge about the plant parameters for implementation still it produced good 

plant output responses. 

A control system with a very high order linear model will be difficult to design 

and control. Therefore, using the reduced order form of the original system is more 
desirable in many cases. Some of linear model reduction methods are given as below 

Routh Method 

Pade' Method 

Initial Time Moments Method 

Frequency Domain Model Reduction Method 

Dominant Mode Model Reduction Method 

Davison Method 

Marshall's Method 
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Stability-Equation Method 

Impulse Energy methods 

Singular Value Decomposition 

Stochastic Model Reduction Method 

Balancing Method 

Optimal Model Reduction Method 

In practice most of the systems work in low or mid-frequency range therefore, in most of 

the applications only dominant dynamics of the plant are in use. Although, the plant can be 

modelled by a high order model, if it is not working in the high frequency range these high 

order dynamics will not contribute much to the plant output response. Hence, a high order 

model could lead to large steady-state errors due to the fact that the plant is over 

parameterised. Hence, the model reduction is vital in many control application for 

satisfactory results. 

Now, each of these linear model reduction methods will reviewed in sections 3.6- 

3.14 and later in this chapter some of these methods will be used to produce the reduced 

order models in the case of both ESH material testing machine and electrohydraulic 

actuator plant. 

3.6 - ROUTH METHOD 

The method uses the expansion of the denominator and the numerator Routh 

array of the higher order original system [17]. The method produces stable reduced order 

models provided that the original plant model is stable. Routh method improves the 

impulse response of the reduced order models. Let us consider a linear time invariant SISO 

system having the transfer function 

fv" + als"-1 �ý, .. +an 
(3.22) 

The above equation, is asymptotically stable and it can be further expanded into the, 
following canonical form: 
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Gp (s) = ß, Cl (s) + ß2C1 (s)C2 (s)+. " "+ß�C, (s)C2 (s)" " "C� (s) 

_ iß, f C1(s) 
(3.23) 

1=1 j=l 

where the Pj (j = 1,2,..., n) are constants and the Cf are the continued fraction expansions. 

Equation (3.23) was described as the alpha-beta expansion of Ge(s). 

n-1 PI nA\ ý'1 1 
a1s+ 

a +, s+. 1 

ans 

l?. zrt) 

Alpha Routh aä = as a2 = a2 aä = a4 a6 = a6 

Table ,,, ao = a, a2 = a3 a4 = a5 "". 

a, =a0 / ao 

a2 =a0 la ö 

a3 =a 
20 /a 3 

0 

as =a o 
la" 

201 
a0 = a2 - aal 

312 
a0 = a2 - a2a2 

4-_23 
a0 a2 - a3a2 

2oi a2 = a4 - aal 

3=12 
a2 - a4 -a 2a4 

423 
a2 = a4 - a3a4 

iot a4 = a6 - a1a6 

Table 3.1: Alpha Routh table 

The first two rows of the alpha Routh table were formed from the coefficients of the 
denominator of G, (s). The remaining elements were calculated as follows 

a j+t =a H -a of 02j2 

aJ+1 _ a/-1 _a ai 
2-aa (3.25) 

a�+, 
_2 

= a^ - afar 
j, j 

If n -j odd, the last equation in (3.25) was replaced by 
j+1 j-1 an-J-1 - an-f+l 

and the aj are given by 
Qo -1 

aj 
ai 

j n. 
0 

(3.26) 

(3.27) 
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Beta Routh bä = b, b2' =b3 bä = bs 
Table bä = b2 b2 = b4 b4 = b6 

ß, = b,, / aö bö = b2 - ß, a? b, ' = b4 - ß, a'4 

-ß2aä /3z = bö / aä 2424 bö =b'-ß2a 2Z 
b2 =b4 

JJs=b,, /a0' ... ... 
4 Q4 =4411 ao 

Table 3.2: Beta Routh table 

The coefficients /3, were formed by using a tabular algorithm as shown in Table 3.2. The 

first two rows of beta Routh table were obtained from the coefficients of the numerator of 
GP(s). The following elements were computed from alpha Routh table as follows 

ßi = boi ao1 

bi+z_b/_Raj -z i 1' /i 

j= 

2,4,..., n- j for 
l 

2,4,..., n -j-l for 

j=1,2,..., n-2 

n-j even 
n-j -1 odd (3.28) 

The reduced order models numerator and denominator Ak(s) and Bks) computed by the 

following algorithm 

A, (s) =a, +I 
B, (s)=ß, 

A2(s) = a, a2s2 +a2s+ 1 

B2(s) = a2/3, s+Q2 

Generally, Bk(s) and Ak(s) can be derived following equations 
Ak 

`S/ 
=ak sAk-1 

\s/ 
+ Ak-2 

\S/ k 

Bk(s)- aksBk_I`sJ +Bk_2(s) + /'k" 

A_1 (s) =0 B_, (s) =0 
A0 (s) =1 B0 (s) =0 

(3.29) 

(3.30) 

where, k is the 'order of the reduced order model. It was suggested that the method is 

applicable to MIMO systems provided that it is modified. 
A simplified form of Routh method used in [18] and [19]. In this method the 

reduced order transfer function was determined directly from 'elements 
of the high-order 
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denominator and numerator Routh stability arrays. The method is computationally simpler 

than the standard Routh method and it improves the frequency response of the reduced 

order models. 

For systems which have imaginary roots or natural integrators in their dynamics 

the standard Routh method can not be apply. The Routh-Hurwitz criterion is suitable for 

such conditions which is one of the modified forms of Routh method [20]. In this method, 

a zero element of the alpha table was replaced by a small number s and the Routh table 

completed in terms of e. 

In comparison with Routh method the reduced order MCS control will not give 
large time-response errors so long as the adaptive weights are big enough to reduce the 

steady-state error to zero. If the adaptive weights are too big then, they may excite the 
high order unmodelled dynamics of the plant which may then cause instability. Similarly, if 

the adaptive weights are very small then the plant response will be slow down and this may 
lead large steady-state error. Additionally, the reduced order MCS control uses the poles 

and zeros of the system which are closest to the imaginary axis automatically therefore 

there is no need to compute the roots of the higher order plant model. 

3.6.1 - New Optimal Routh Method 

The reduced order models produced by Routh method does not fit the time 

response of the original system therefore, they may give large time response errors. To 

overcome this problem while preserving the stability of the reduced order model, a new 

optimal Routh approximation method was proposed which combined Routh approximation 

method with an integral square error (ISE) method in [21]. In this method, the 
denominator of the reduced order transfer function was formulated by using the standard 
Routh method and the numerator was determined by minimising a time response integral 

square error (ISE) criterion. The method is applicable to both continuous and discrete time 
SISO systems. Although, the technique has simple formulation procedure the construction 

of a set of linear equation is rather time consuming. 

In comparison with new optimal Routh method the reduced order MCS control is 

very simple due to the fact that it does not use plant parameter for implementation. 
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3.6.2 - Routh-Approximant Time Domain Model Reduction 

Routh approximant time domain modelling is another modified form of Routh 

approximation method which produces reduced order models via a v-5 expansion [22] 

similar to the a-13 expansion of Hutton and Friedland [18]. The lower order time domain 

model matrices were derived from the original system dynamics parameters by a suitable 

truncation procedure. The method is a time domain model reduction technique based on 

the frequency domain Routh approximant procedure and it is applicable for both SISO and 

MJMO systems. 

3.7 - PADE' METHOD 

Pade" approximation technique or equivalently continued fraction methods has 

many useful features and it is easy to conduct. However, it may produce an unstable 

reduced order model, although the original plant is stable. In order to overcome this 

problem Pade' method was used together with some additional approaches which were 

preserved the reduced order model stability. Firstly, Pade' method was used together with 
Routh stability criteria in order to construct Hurwitz polynomials for the reduced order 

model. The second method was the generalised Pade' approximation technique which 

retained specified dominant roots of the higher order original system in the reduced order 

model. Another approach proposed by Appiah in [23] in this method, the denominator of 

the reduced order transfer function was derived using the original Hurwitz characteristic 

polynomial and the numerator was obtained using Pade' approximation. Let the Pade' 

approximant be defined by 

P� (s) 
_Gp (s) = 

do + d, s- H "+d�-ts"-' (3.31) Q�(s) eo +els+-.. +ems' 

where P. (s) and Q. (s) are polynomials of the original plant transfer *function. After model 
order reduction procedure, let us denote a reduced order model R(s), of order k, is 

required, and let it be of the form 

Rýsý _ 
ao +a, s+"""+ak_Isk"' 

ho +b, s+-.. +h ksk 
(3.32) 

63 



In general, the coefficient of the numerator is given as follows 

ao = born 

a, = boc, + b1co 

ak-1 _' 
bock-1 +b, Ck-2+"'+bk-lcl +bkco 

0= bOc2k-2 +b, c2k-3-F-... +bk-lCk +bkCk-1 

3.7.1 - Pade' Approximant with Time Moments Method 

(3.33) 

In this method Pade' approximation was used together with time moments 

method in order to derive a reduced order model which has the same initial time moments 

as the original plant [24]. The method retained the dominant poles, or any other desired 

poles of the system into the reduced model by using Koenig's theorem in [251. The 

reduced order models generated from this method showed the significant characteristics of 

the original system by fitting the initial time moments of it. 

In comparison with this method the reduced order MCS control is easy to apply 

and it produces stable and accurate reduced order models which have the initial time 

moments that is very close to the original plant without necessity of knowing the reduced 

order plant parameters. 

3.7.2 - Pade' Methods of Hurwitz Polynomial Approximation 

Time moments and Markov parameters approaches were used to construct low- 

degree Hurwitz polynomial from the higher order original system in [17]. Using the 

Hurwitz polynomial, the numerator dynamics of the reduced order transfer function 

models were determined by partial Pade approximation of a given higher order model. It 

was claimed that reduced order models generated from this method are always stable. 
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3.7.3 - Routh- Pade' Approximation 

In this method, the denominator of the reduced order model was derived by using 

Routh stability criterion while the numerator was computed from Pade method in order to 

fit the initial time moments of the original plant [26]. It was demonstrated that the method 

can preserve the stability of the reduced order models. 

3.7.4 - Stable Partial Pade' Approximation 

In stable partial Pade"method, the numerator of the reduced order model was 

obtained by using standard root locus plots [27]. It was shown that the reduced order 

model matched the original plant in the Taylor series accurately. The method improved the 

stability of Pade' approach. 

3.7.5 - The Constrained Suboptimal Pade" Method 

The suboptimal Pade' method is based on the multipoint Pade approximation 

method [28]. It was shown that the method is not complex but it requires great deal of 

computation. 

Constrained suboptimal Pade' model reduction is an another type of Pade' 

method which was developed as, an extension to the suboptimal Pade' method in [29]. The 

method uses the Lagrange multipliers theory in order to produce reduced order models 

which matches the original plant in the initial time response. 

Pade' approximation technique was used in the case of MIMO systems model 
reduction in [30]. The multivariable reduced order model was derived from the partial 

realisations of the system in state-space form. The method needs a great deal of numerical 

computation therefore, it is time consuming. 
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3.8 - REDUCTION OF TRANSFER FUNCTIONS BY THE STABILITY- 
EQUATION METHOD 

The stability-equation model reduction method was performed by ignoring the 

largest poles and zeros of the nominal plant transfer function. It was observed that poles 
and zeros with smaller magnitudes are more dominant therefore, they should retained in 

the reduced order model [31]. Let a higher order system transfer function be given by 

G(s) ==b, �sh +bm_, s"'-'+"""+b, s+bo 
_ 

N(s) 
3.34 

a"s" +a., 
-, s"-' +" " "+al s+ ao D(s) 

where nzm and N(s) and D(s) are the numerator and the denominator of G(s), 

respectively. The above equation can be written as 

N, (s) + N. (s) 
G(s) _ D, (s) +D, (s) (3.35) 

where 

M 
N(s) _ b, s' 

i=0,2.... 
,n 

(3.36) 
N. (s) _ bis' 

t=1,3,... 

and 
n 

D. (s) _ 1: a, s' 

n 
(3.37) 

Da(s) _ a, s' 
i=1,3,. 

Later, Equations (3.36) and (3.37) were factored as 

N, (s) = 
fJ(s2 

+ z; ) 

r=ý 
, �. (3.38) 

N0(s) = sfl(s2 +z; ) 
i=ý 

and 

ID, 
(s) = fl (s2 + P2) 

t=1 
�- (3.39) 

Do(s) = sfl (s2 +pt ) 

; _I 
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m'=ml2 ifmiseven, 

=(m-1)/2 misodd; 

n'=nl2 ifniseven, 

=(n-1)/2 if n is odd; 

and 

Pi (Pi (Pi C... 

Zi (zz (z3 (... 

The coefficients of the reduced stability equations were multiplied by the magnitudes of the 

selected poles and zeros. Hence, the reduced order model matched the original plant in 

steady-state response [34]. Following, the reduced stability equations of G(s) were written 

as 
m'-1 

N, ý (s) = z� 2fJ(S2 +z ) 

W 
m, _t 

(3.40) 
N0 S= sp [I (s2 + Pr ) 

f=t 
The reduced order model was 

Gn-t = 
ý, (s) 

(3.41) 

where 

N'(s) = N. + N, if m is even 

N'(s)=Na' +N, if mis odd 

and 

D'(s) = D. + D, if n is even 

DI(s)=D, +D. if n is odd 

Then, the reduced models of the polynomials N(s) and D(s) were constructed and finally 

the reduced model of G(s) was obtained. 
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3.9 - DOMINANT MODE MODEL REDUCTION METHOD 

Davison's [32] and Marshall [33] methods are both dominant mode model 

reduction methods which retain the dominant roots of the original transfer function of the 

system in the reduced order models. It was shown that the reduced order models produced 
by these methods are stable provided that original plants are stable. However, these 

methods did not produced accurate reduced order models especially when the eigenvalues 

of the original higher order systems are widely separated. The computation of the 

eigenvalues of the original system can be a problem if the order is very high. In order to 

overcome this difficulty some other approaches were used to retain the most dominant part 

of the original system in the reduced order models without computing the eigenvectors and 

eigenvalues of the nominal plant model [34]. 

A multivariable system was composed of a number of slow and fast subsystems 

then the slow subsystems were used to form a reduced order model by using dominant 

mode model reduction method in [35]. It was pointed out that slow dynamics of the system 

are near the origin therefore they are dominant and will produce stable lower order 

models. 
Similarly, Marshall's method retains only the dominant eigenvalues of the original 

plant in reduced order models [36]. In this work, after model reduction process by using 
the proposed method the difference between the higher order system and the reduced 

order model was evaluated by ISE criterion. It was shown that the method may produce a 

good reduced order model provided that most suitable eigenvalues are chosen. 
In the case of the reduced order MCS control, there is no need to select the 

dominant eigenvalues and eigenvectors of the original plant since the reduced order MCS 

algorithm is activating the most dominant part itself. This is obviously an advantage due to 

the fact that it may be a problem to choose the suitable eigenvalues for the reduced order 

models if the eigenvalues of the original plant is widely separated. 
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3.10 - AGGREGATION METHOD 

Aggregation method is also based on the dominant modes of the original system 

in a similar manner to the previous method. In this method the states of the original plant 

state vector was divided into parts to bring out the most significant dynamics of the 

system. This is usually time consuming process and needs a great deal of numerical 

computation. A simplified form of the method was used in [37] by using an equation which 

satisfies the optimal aggregation matrix. 

Aggregation method applied to a higher order system by using Markov 

parameters in [38]. Markov parameters were used to form the aggregation matrix to match 

the time moments of the nominal and reduced order model of the system in order to 

produce accurate models. 

The method have some disadvantages such as, the computation of the 

aggregation matrix can be complicated and if the chosen eigenvalues are not truly 

dominant then, the reduced order model may give large steady-state error. 

3.11 - BALANCED MODEL REDUCTION METHOD 

Balancing model reduction method uses the most controllable and observable part 

of the nominal plant model to produce reduced order models [39]. The method is based on 

the balanced state-space representation of the original plant and it is applicable to both 

continuous and discrete time system. It was shown in [40] there exists co-ordinate systems 
in which grammians were equal and diagonal. Nye are given a linear time invariant 

continuous system in the state-space form 

x= Ax+Bu 

y=Cx 
(3.42) 

where A is nxn, B is nxr and C is mxn. The controllability and observability grammians are 

We = JeAIBBTeATdI (3.43) 
0 
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T 

e 
0 

(3.44) 

are both non-singular for any r>0. If the system is internally balanced then, (3.43) and 

(3.44) can be written as follows 

WZ ýPý = WZ (P) = E2 (3.45) 

where, the matrix P is the similarity transformation and the matrix E2 is diagonal and the 

diagonal positive elements were called the singular values of the system. 

EZ = diag(Q; Q2, ... , Q2) (3.46) 

The internally balanced system was partitioned as 
(xI) 

= 
(All Atz x1 

+ 
B' 

u 
JC2 A2, A22 x2 B2 

(3.47) 

y=(C' CZ x, )(X2) 

where An is kxk and the matrices A� and A22 are square It was shown in [39] that 
2 

IlU dr 

Qk 
Ilxx (, 

0112 

TxZ 6k+l lix1(112 (3.48) j (Iui 11 dt 0 

If o ))° k+, then Ilxz (r)1l((Ilx, (r)ll, suggesting that the part x2 is much less affected by the 

input than the part x,. 

lixi (°)l -11x2 (0)11 (3.49) 

Equation (3.49) indicated that the x2 part of the state affects the output much less than the 

x, part. Therefore, the system (A,,, B1, C, ) may be a good reduced order model of the 

system (3.42). If the system (3.42) is balanced, then every subsystem is asymptotically 

stable and the diagonal grammian matrix W satisfies the Lyapunov equations 

WAT+AW=-BBT 

WA+ ArW = -CCT 
(3.50) 

The two subsystems (An, B;, C) in (3.47) are also balanced and the grammians are given as 
below., 

(i =1,2) (3.51) 
WA;; +A; rW =-C; TC; 
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where W=W, 
0 

0 W2 

For the balanced system the cross-grammian matrix, Wc(P) is given by 
222 

Co 
W= Wo Wc 

W2(P)WZ =W, (P) 
(3.52) 

The cross-grammian matrix W,,, contains information about both controllability and 

observability grammians matrices [41]. Balancing method was used in the case of the LQG 

(Linear Quadratic Gaussian) design problem in [42]. As it was pointed out in [43] that 

Moore's truncated balanced realisation is not close to the optimal reduced order model. 

The balancing method was used to generate reduced order models in the case of a unstable 

plant in [44]. Balancing method was used together with the singular perturbation model 

reduction approach in [45] which gave a new unified technique that combined advantages 

of both methods. 

Balancing and aggregation model reduction methods were compared in [46]. It 

was pointed out that although, in many cases the eigenvalues retained in aggregation 

method were dominant still there were conditions in which the choice of the retained 

eigenvalues were not truly dominant therefore, balancing method is more reliable. 
A stochastic balancing model reduction method was introduced by Desai in [47]. 

The method guaranteed the asymptotic stability of the reduced order models. Pernebo and 
Silverman proposed a new method for stochastic balancing in [48]. Later, this method was 
used to prove the stochastic reduced order model is stable, dissipative, minimal and 

positive real in [49]. 

The standard balancing method is not applicable systems which have natural 
integrators in their dynamics due to the fact that for such system grammians do not exist. 
However, if the system is controllable and observable then, antigrammians do exist. The 

antigrammians of the original system were used for the balancing and model order 
reduction in [50]. 

In comparison with balancing method using the reduced order MCS control has 

many advantages. Firstly, a great deal Of numerical computation will be avoided due to the 
fact that the reduced order MCS control does not need the nominal plant parameters. 
Secondly, it will guarantee to get the most controllable and observable part as a reduced 

order model automatically due to the fact that the reduced order MCS control activates the 
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dominant part of the original plant. The reduced order MCS control can also be used in the 

case of unstable systems and systems with integrator. Using the reduced order MCS 

control in the case of systems with integrators has advantages compared with balancing 

method. The reduced order MCS control does not need to compute the antigammians to 

find out most controllable and observable part of the plant, therefore it is very straight 
forward and still it will guarantee the stability of the reduced order model. Additionally, 

the reduced order MCS will preserve the integrator in the reduced order plant dynamics 

therefore, it is computationally simple and practical implementation is very easy. The 

reduced order MCS control can be implemented in such way that it will guarantee the 

hyperstability of the reduced order models. The reduced order plant parameters will give a 

solution to Lyapunov equation. The implementation of the control is simple and does not 

need the reduced order model parameters of the system. 

3.11.1 -A Fractional Approach to Model Reduction Method 

A fractional model reduction method was used to balance and truncate an 

unstable system in [51]. The method produced stable reduced order models without 
dividing the nominal plant model into stable and unstable parts. The reduced order models 

generated by this method were minimal in terms of controllabilty and observabilty. The 

method preserved the reduced order models stability and retained the dominant part of the 

original system. 

3.12 - IMPULSE ENERGY APPROXIMATION FOR MODEL 
REDUCTION 

It was suggested that if the impulse response energies of the reduced order 

models and the original plant are close then, the reduced order model will be a good 

approximation of the real system [52]. Impulse energy method is based on selection of 

alpha and beta parameters in a similar manner to Routh method and it satisfies the impulse 

response energy criterion better than the ordinary Routh method. It was claimed by Lucas 

that the reduced order model derived by using impulse energy method is better than Routh 
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method [53], this is not true in general, it was shown that even though the impulse 

response energy of the reduced order model was very close agreement with the original 

plant still the lower order model was not good approximation of the full order system in 

[54]. However, if the reduced order model is a good approximation of the nominal plant 

model than it will give impulse response which is close to the real system impulse response 

as a natural consequence. 

3.13 - SINGULAR VALUE DECOMPOSITION 

A singular value decomposition model reduction method was formed by using a 
Hankel matrix which was generated from a set of Markov parameters in [55]. The Markov 

parameter sequence has a property of driving the steady-state error of the reduced order 

models to zero. The reduced order models produced by this method were stable and 
internally balanced. However, the method has some disadvantages such as numerical 

complexity. In comparison with this method the reduced order MCS control has minimum 

numerical computation and it guarantees the global stability of the reduced order model. 

3.14 - OPTIMUM SOLUTION OF MODEL REDUCTION PROBLEM 

An optimal model reduction method was used to generate a reduced order model 
in the case of an unstable plant in [44]. The method retained the unstable part of the plant 
without any changes therefore, only the stable part of the original plant is reduced. The 

method used an explicit solution of the Lyapunov in a Newton-Raphson algorithm. 
Accurate reduced order models were generated due to minimization of the integral-square 

difference between the impulse responses of the original and reduced order models. 
The optimal steady-state reduced order estimator was described by one modified 

Riccati equation and two modified Lyapunov equations in [56]. The method generated 
accurate reduced order models. However, there were fixed order dynamic compensation 
problems which required iterative algorithms. 
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Although, these methods produced accurate reduced order models, they are 

analytically complex and numerical computation is time consuming. In comparison with 

the reduced MCS control algorithm the optimal model reduction methods require very 

accurate linear model of the original plant. For that reason the parameter uncertainties and 

nonlinearities in the plant can prevent obtaining accurate reduced order model in the case 

of the optimal model reduction methods which is obviously not a problem for the reduced 

order MCS control. 

3.15 - FREQUENCY DOMAIN MODEL REDUCTION METHODS 

Frequency domain model reduction methods are capable of deriving accurate 

reduced order models due to the fact that they can retain the dominant mid-frequency 
dynamics in the reduced order model. For that reason, these methods were used together 

with other approaches to improve the accuracy of the reduced order models, e. g., in [57], 

the denominator of the reduced order model was calculated by using the power 
decomposition method while the numerator was derived from the frequency response 

matching technique. 

3.15.1 - Frequency Fitting (F-F) Pade' Method 

For the sake of generating an accurate reduced order model the high frequency 

dynamics of the system should retained in the model as well as the low frequency 

dynamics. Lower order models generated by the standard Pade technique gives accurate 

responses at the low frequency range, but they may get unstable when the plant is working 
in mid-frequency range. To overcome this problem Pade method was used together with 
the frequency-fitting method which are capable of matching the original plant at dominant 

mid-frequency range in [58]. The dominant part of the plant dynamics were retained in 

reduced order model by using the frequency fitting method while the lower frequency 

characteristic was retained by the Pade' approximation method. It was suggested that 
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when the accurate fitting is achieved in the mid-frequency range, the stability problem will 

be solve as a natural consequence. 

Frequency fitting method gives more accurate reduced order model than the 

classical model reduction methods (Routh method, Pade" method, Routh-Pade method, 

Routh-Hurwitz and dominant eigenvalues method) due to the fact that it reflects the 

characteristic of the original system in the dominant-mid frequency range more accurately. 

For this reason, it guarantees the stability of the reduced order models. 

3.16 - APPLICATION OF CONVENTIONAL MODEL REDUCTION 
METHODS ON THE ELECTROHDRAULIC ACTUATOR PLANT 

The nominal transfer function of the electrohydraulic actuator plant was found 

from system identification tests as follows: 

G, 3 
(S) 

_ 
2830 

As + 8.8 + 16j)(s + 8.8 - 16j) (3.53) 

The reduced second order models which are found by conventional model reduction 

methods are given in Table 3.3 and 3.4. The step and impulse responses of the nominal 

transfer function of the electrohydraulic actuator plant together with its reduced order 

models are given in Fig. 3.3 and 3.4 respectively. 

Electro- Routh-Hurwitz Routh Impulse Pade' Methods 
hydraulic Method Stability of Energy of Hurwitz 
Actuator Pade' Method Polynomial 
Plant Method Method 

Second 
Order 
Model 

Gp. (s) s 
333.44 

s3 + 17.7s+3334 
118 G p2(s ) -,, +, 2,, p2ýs )a 33344 G2+ 

17ßs+ 3334 
G p. (s) s 

160.79 
7-+ 18.95s 

Table 3.3: Reduced order models of the electrohydraulic actuator plant 
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Electro- Stability Pade' Balancing Dominant Dominant 
hydraulic Equation Method with Method Mode Model Eigenvalue 
Actuator Method Dominant Reduction and 
Plant Mode Method Frequency 

Reduction Matching 
Method 

Second 
Order 
Model 

117.98 
GP'ts) s 

s'+123s 
Gp_ 283 

'is) 2+14s 
GP 74.71 

: 
ýs)-s'+8ßs _ 

75 GP, (s) 
sý+8.8s 

_ 
102 Gp'(s) 

s2+12s 

Table 3.4: The reduced order models of the electrohydraulic actuator plant 

Discussions: 

The Routh-Hurwitz and impulse energy methods are produced the same reduced 

second order model. This is mainly due to a free integrator inside, of the plant dynamics 

which is treated similarly by both methods. As it is mentioned in section 3.6 and section 
3.12 although these two methods based on Routh stability arrays they are different than 

each other. Similarly, the balancing and dominant mode model reduction methods gave the 

same reduced order model indicating that the selected eigenvalues of the original plant in 

the case of dominant mode model reduction method are truly dominant due to the fact that 
the balancing method retains the most controllable and observable part of the original plant 
in the reduced order model. 
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Fig. 3.1: Step responses of the electrohydraulic actuator plant and its lower order models 
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Fig 3.2: Impulse responses of the electrohydraulic actuator plant and its lower order 
models 

In the case of the electrohydraulic actuator plant Routh method did not generate an 

accurate reduced order model due to a free integrator in the plant dynamics. Hence, the 

alpha table has a zero in its first column. In normal condition, Routh method can not be 

applied. In order to overcome this problem, Routh method is used together with Hurwitz 

criterion to produce an approximation. The zero element of the left column entry is 

replaced by a small number e and the Routh table is completed in terms of e. Another 

difficulty is encountered that was the numerator of the transfer function a constant. Later, 

this constant number is treated as the first element of the beta table. 

In the case of balancing method, the order of the plant is reduced by using 

antigrammians of the plant instead of grammians. This is again due to a free integrator in 

the plant transfer function. As it is mentioned in section 3.10.3, for plants which have free 

integrators in their dynamics grammians do not exist but antigrammians do. 

The first group which includes balancing method, Pade' method of Hurwitz 

polynomial method and dominant mode model reduction method produced second order 

models with a free integrator in them. The model responses are very close agreement with 
the original plant output in both step responses and impulse energy responses as it is 

shown in Fig. 3.1 and 3.2. 
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Dominant eigenvalue and frequency matching method, Routh stability of Pade 

method and stability equation method produced reasonably accurate reduced order 

models. Although, the responses are reasonably good still they are not as good as the first 

group of model reduction methods responses. 

The third group, including: impulse energy response method, Routh method and 

Pade method with dominant method did not produced good models. It can be seen in both 

step responses and impulse responses diagram in Fig. 3.1 and 3.2. 

3.17 - REDUCING THE ORDER OF THE ESH PLANT BY 
CONVENTIONAL MODEL REDUCTION METHODS 

The second order transfer function of the ESH materials testing machine is found 

by a system identification tests under load control, which is given below 

= 
2900 G'2 (s + 87.01)(s + 22.98) 

(3.54) 

The reduced first order models that are found by conventional model reduction methods 

are given in Table 3.5 and 3.6. The step and impulse responses of the nominal transfer 

function of the servohydraulic ESH materials testing machine and its reduced order models 
are given in Fig. 3.3 and 3.4 respectively. 

ESH Routh Routh Balancing Pade 
Materials Method Stability of Method Methods 
Testing Pade' of Hurwitz 
Machine Method Polynomial 

Method 

First 
Order 159- GPI(s) ý) 26.36 Gpý s G= lass p' G= 1593 p' 
Model s+110 s+18.18 s+12.37 s+110 

Table 3.5: The lower order models of the ESH materials testing machine 

79 



ESH Stability Pade Impulse Dominant Dominant 
Materials Equation Method with Energy Mode Eigenvalue 
Testing Method Dominant Method Model and 
Machine Mode Reduction Frequency 

Reduction Method Matching 
Method 

First 
Order sJ c 

2636 
Gpý` GP/s) 

3232 
al Gp, I 

's) - 
110 Gpl(s) Q 

45.29 
Gp(s= 

32321 
'1 

Model s+18.18 s+22.98 s+110 s+22.98 s+22.98 

Table 3.6: The lower order models of the ESH materials testing machine 

Discussions: 

Routh stability of Pade"method and stability equation methods are given the same 

reduced order model. Both methods are based on neglecting roots of the original plant 

model which have larger magnitudes. Pade" method with dominant model reduction and 
dominant eigenvalue and frequency matching method are produced the same reduced first 

order model. In both method the denominator of the reduced order model is formed by 

choosing the dominant eigenvalues of the nominal plant model therefore, the denominator 

is obtained was the same. Subsequently, the denominator polynomials are used to form the 

numerator dynamics in both cases which lead the same constant number as a numerator. 
Routh and Pade' methods of Hurwitz polynomial methods also generated the same 

reduced order models despite the fact that these two methods are considerable different 

than each other in terms model reduction procedure. 
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Fig. 3.3: Step responses of the ESH plant and its lower order models 
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Fig. 3.4: Impulse responses of the ESH machine and its lower order models 

In the case of the ESH materials testing machine, Routh stability of Pade" method, stability 

equation method, dominant eigenvalue and frequency method and Pade method with 

dominant mode reduction method are produced step and impulse responses which are very 

closely following the nominal plant transfer function response of the system as shown in 

Fig 3.3 and 3.4. 

Pade methods of Hurwitz polynomial method and Routh method produced 

acceptable responses. Balancing method, dominant mode model reduction method and 

impulse energy method did not produce very accurate models as shown in Fig 3.3 and 3.4. 

3.18 - CONCLUSIONS 

In this chapter model reduction methods are introduced in the case of both SISO 

and MIMO plants. In the first section of the chapter adaptive model reduction methods are 

presented. The first method was averaging method. Although the method was shown to be 

effective for model reduction, it is rather difficult to derive the error equation if the relative 
degree of the plant is higher than one. The second method was EMCS control. This is a 
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control strategy extension to the standard MCS control and it is a good option in the case 

of plants which are subjected to rapidly varying disturbances. The reduced order MCS 

control can be describe as the standard MCS algorithm in which the controlled plant 

contains high frequency unmodelled dynamics which is treated as the part of the 

disturbances term acting on the system. It is assumed that these unmodelled dynamics may 

lead to rapid variations in the disturbances term unless there is some limitations set on the 

reference model and input signal. Hence, using the reduced order EMCS control in the 

case can be an another option. The stability of the reduced order MCS control (MCS with 

unmodelled dynamics) will be investigated in chapter 4. 

In the second part of this chapter, fifteen different conventional model reduction 

methods are presented. Subsequently, some of these model reduction methods are used to 

reduce the order of both the ESH materials testing machine and electrohydraulic actuator 

plant. Finally, the performance of conventional model reduction methods were compared 

with the original plant transfer function using step and impulse response in Figs. 3.1-3.4. 

Classical model reduction methods are based on mathematical approximation such 

as Pade approximation, the continued fraction method and the time-moment matching 

method. Although, these methods are useful in many practical applications they have some 
disadvantages such as, the reduced order models obtained by those methods may be 

unstable although the original system is stable and they may not be accurate in the mid and 
high-frequency range. 

Some of the conventional model reduction methods gave very close results to the 

real plant transfer function of the ESH materials testing machine, e. g., dominant eigenvalue 

and frequency matching method, balancing method, Routh stability of Pade method, 

stability equation method, Pade method with dominant mode reduction, shown in Fig. 3.3 

and 3.4. 

Routh's method and impulse energy method did not give a good approximation in 

the case of the electrohydraulic actuator plant, due to the fact that the plant contains a free 
integrator, therefore it is rather difficult to arrange the alpha as well as beta table. The 

models produced by dominant mode model reduction method, Pade" method of Hurwitz 

polynomial and balancing method produced very accurate second order models with a free 
integrators inside of them. As it is shown in Fig. 3.1 and 3.2 step and impulse responses 
those models responses are very close agreement with the nominal plant model response. 
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It has been observed that the frequency domain model reduction methods and 

balancing methods produced very accurate reduced order models which are close 

agreement with the original plant responses. This is due to the fact that these methods are 

capable of retaining the most dominant part of the original higher order system. 

It can be concluded that, conventional model reduction techniques may be used in 

the case of reduced order MCS control. In this case, it is useful to find the reduced order 

transfer function of the system to figure out the settling time and sampling interval of the 

MCS control. In addition, the reduced order plant parameters are required in the case of 

conventional controller implementation which are in common use in comparative studies. 
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CHAPTER 4 

THE STABILITY ANALYSIS OF 

THE REDUCED ORDER MCS CONTROL 

4.1 - INTRODUCTION 

In this chapter the stability of the reduced order SISO and MIMO MCS control 

system will be proven by using Popov's and the Lyapunov equation method. Normally, the 

dominant frequencies are in the range of the slow part of the plant which can be matched 

by the reduced order model. In the case of the reduced order MCS control, the reference 

model which has lower order than the nominal plant model has been used and the modelled 

part of the plant matched the reference model in order to represent the slow dynamics of 

the plant. Hence, the fast dynamics of the plant are unmodelled, and included into the 

disturbance term in the state-space representation of the plant. 

The stability of the reduced order MCS to unmodelled plant dynamics is proven 

by both the Popov's hyperstability theory or the Lyapunov function depending on the 

nature of the disturbances. If the disturbances and the plant parameters are slowly varying, 

then Popov's hyperstability theory is used to prove the stability of, the system. If the 

disturbances are rapidly varying then the Lyapunov function is needed to prove the 

stability of the system. 

The stability analysis of the reduced second order electrohydraulic actuator plant 
is proven by the Popov's hyperstability theory and the Lyapunov function. In the normal 

operation case, the nominal plant transfer function is of third order, including a free 
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integrator. In the case of MCS, the plant is represented by a second order transfer function 

(including a free integrator) together with a disturbance term, in a state-space form. 

In a similar manner, the stability of the ESH servohydraulic material testing 

machine is analysed by both methods. Under the MCS control the plant is described by a 

first order transfer function together with a disturbance term in state-space form. It is 

shown that MCS guarantees stability of systems with unmodelled dynamics. Reduced 

order MCS controllers is used very effectively in the case of the higher order plants due to 

simplified dynamics of them. The stability of the reduced order MCS control will be 

proven in the case of both SISO and MIMO systems in this chapter. 

4.2 - THE REDUCED ORDER ADAPTIVE CONTROL 

Adaptive control has been researched for a number of decades. In recent years, 

the algorithm has been applied to variety of systems. The frequency content and magnitude 

of the reference input signal, adaptive gains and initial conditions have crucial effects on 

the stability of the adaptive controls. 

Reduced order adaptive control is described as an standard adaptive control 

together with unmodelled dynamics. Many efforts have been made to formulate and 

analyse reduced order adaptive control schemes. In [1] the stability was proven for a 

reduced order indirect adaptive regulator. The efforts of reduced order direct adaptive 
control were studied in [2], [3] and [4]. 

In order to prove the stability of adaptive control it is convenient to assume that 

the controlled plant is lower order. The dominant frequencies are slow and are in the mid 
frequency range of the plant which can be matched by the reduced order model. The 

unmodelled dynamics effect the closed loop system dynamics different in adaptive control 

than the conventional controller due to the fact that the plant input which is generated by 

adaptive feedback incorporates the unknown plant with the unmodelled fast dynamics. 

If the input signal has more action in the high frequency range the adaptive 

control may become unstable due to excitement in the unmodelled part of the system. This 

simple but fundamental observation has led us to the restriction of the inputs to the class of 
persistently exciting inputs which has more action in the mid frequency range. High 
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frequencies in the input signal can excite high order unmodelled parts of the system and 

hence can lead to instability. 

In the case of MI MO systems each local controller faces the uncertainty of 

unmodelled interactions with other subsystems as well as the unmodelled dynamics in its 

own subsystems. When high order unmodelled dynamics are present, all signals converge 

to a stability set that size depends on controller parameters, the magnitude of disturbances, 

and the reference input signal. 

4.3 - PERSISTENTLY EXCITING INPUTS 

The adaptive control is considered to be stable provided that the input signal is 

persistently exciting, which means it has more action in the mid frequency range but does 

not contain high frequencies in the unmodelled part of the plant. 

The requirement for asymptotic stability is that the input signal u(t) be sufficient 

enough to persistently excite all the modes of the plant, as shown in [5], [6] and [7]. The 

main aim is to consider only the dominant and to neglect the higher order dynamics of the 

system. Hence, input signal will only activate the dominant part of the system. An example 

of a persistently exciting input signal is 
k 

u(t) = Zar sinw, t 
i=l 

(4.1) 

where a are all distinct and positive and a, # 0. High frequencies can be avoided since 

they excite the unmodelled higher order dynamics. It was illustrated in [6] that in the 

presence of high order unmodelled dynamics, high input frequencies may destroy the 

persistently excitation of the input signal. 

4.4 - THE REDUCED ORDER MCS CONTROL 

It is usually an advantage to obtain a reduced order, controller by neglecting the 
high order dynamics of the plant. Using lower order model may produce more accurate 
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results due to the fact that in many cases the generated model of the higher order plant 

may be over parameterised. 

The reduced order MCS control is standard MCS control in which the reference 

model is lower order than the controlled plant therefore the controller contains high order 

unmodelled dynamics which are included into the disturbance terms. The stability of the 

reduced order MCS control will be proven in this section, first by Popov's hyperstability 

theory in the case of small variations, then by Lyapunov function in the case of rapid 

variation in plant parameters and disturbance terms. If the plant is subjected to rapidly 

varying external disturbances and plant parameters, then the boundedness of different 

signals of the plant-reference model is guaranteed. 

4.5 - STABILITY ANALYSES OF THE REDUCED ORDER MCS 
CONTROL BY POPOV'S HYPERSTABILITY THEORY 

4.5.1 - The Reduced Order SISO MCS Algorithm 

The reduced order SISO MCS algorithm is an standard SISO MCS control in 

which the controlled plant contains some high frequency unmodelled dynamics and these 

unmodelled dynamics are included into the disturbance term. Consider a linear, nominal 

plant model described by the following state-space equation 
x= Ax(t) + Bu(t) (4.2) 

where A(t) E Rn- and B(t) E W` and x= [x, 
, x2 ,..., xn ]T xE Rte". The 

variables x(t) and u(t) denote the plant state vector and the control input respectively, 

where 

oio0... 
00i0... 

0000... 

oo0 
0o0 

B(t) == (4.3) 

L-al -a2 -a3 -a4 ... -a� L°1 JL1J 

The reduced order plant model together with unmodelled dynamics may be written as 
z, = A, x, (t)+B, u(t)+d(x,, t) 'k 

(4.4) 
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where 
0 1 0 0 ... 

0 0 -o- 

0 0 1 0 ... 0 0 0 

Ap(t) . , Bi(t) (4.5) 

0 0 0 0 ... 1 

-Ci1 -a2 -a3 -a4 ... -CIti bi 1 

and 

0 

d(x� t) =0 (4.6) 

d, 

The unmodelled dynamics are included into the disturbances term d(x�t). The reduced 

order model has a transfer function of h'th order. Hence, the order of the reduced order 

plant model is n-h degrees lower than the original plant model. It has been observed that 

the plant states are available and the order of the plant is known. Moreover, the 

coefficients ar d, are unknown and assumed to be bounded and time varying. 

The reference model is defined by the following state-space equation. 

. z, 
� 
(t) = Ax. (t) + Bmr(t) (4.7) 

where A. E R! ' and B. E "'. The matrix A. and the vector B. are given by 

0100... 00 

0010... 00 

Am B. = (4.8) 

0000... 1 
-am, -amt -ami -am4 ... -amh 

bm 

The error dynamics of the closed-loop system given by Equations (4.4) to (4.7) are 

z, (t) = Amx, (t) - (A, - Am)x, (t) - Bu(t) + Bmr(t) -d (x,, t) (4.9) 

where I 

x-(t) = Xm (t) - MO (4.10) 

According to Stoten and Benchoubane [8], the disturbance term, d(x,, t) due to unmodelled 

dynamics is bounded and it can be written as below. 

94 



d(Xr 
9 t) = 8A, (t)r (4.11) 

0 
where &A, (t) _ and M, (1) E Rt'e' and r is the reference input r(t) # 0, for all t. 

Normally, the reference signal is a slowly varying therefore, the nature of the disturbance 

d(x,, t) is depend on the variations of &, (I). By partitioning the matrices A,, A. and the 

vectors B,, B. and d(x,, t) into 

A, 
Oh-1.1 'h-1 11 

Am 
°h-1.1 Ih-1 

==, A, 1 
Aml 

ti-i. t B_ 
Oh-I., 

B= 
Oh-l"1 

and d(x t) = 
rd, 

b, 
B. 

bm 

and 

A, 1. _ (lx h) vector, A,, = [-a, -a2 ,..., -ah] 
A,,, _ (lx h) vector, A., = [-a., -a, �Z ,..., -amh ] 

(4.12) 

where &A1(t) term is the unknown variation and unmodelled dynamics in the A, matrix in 

(4.11). Then, (4.4) can be rewritten as: 

x, (t) = (A, +8A, (t))x, (t)+B, u(t) (4.13) 

The changes in A� and B, due to the parameter variations and unmodelled dynamics are 
denoted by &A2 (t) and bB, (t) respectively, then (4.13) becomes: 

1, (t) = (A, +5A, (t))x, (t)+(B, +bB, (t))u(t) (4.14) 

where &A, (t) = &A, (t) + &AZ (t). 

The control signal in the case of MRAC is given as 

u(t) = (-K + bK(t))x, (t) + (KR + bKR)r(t) (4.15) 

In the case of MCS (4.15) is determined by using K=0, and KR =0n,,, 

u(t) = SK(t)x, (t) +8KR (t)r(t) (4.16) 

where K and KR the linear model reference controller gains. Then, the closed-loop plant 
dynamics can be written from (4.14) and (4.15). 

x, (t) _ (A, '+BA, (t))x, (t)+(B, +SB, (t))(8K(t)x, (t)+BKR(t)r(t)) (4.17) 1 
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which becomes 

z, (t) = ýA; (t) + B; (t)SK(t))x, (t) + B, (t)SKR (t)r(t) (4.18) 

where, A, (t) = A, + ö1, (t) and B, (t) = B, + bB, (1). 

The error dynamics of the closed-loop system is derived from (4.7) and (4.18) as follows 

z, (t) = Amx. (t) + (A, 
o 
(t) - B, (t)SK(t))x, (1) 

+ (B, 
O 
(t) - B, (t)SKR (t))r(t) 

(4.19) 

where 
X. \t) = X. 

(t) 
- xr 

(t) 

A", (t) = A,. (t) - A. (t) 

B, o 
(t) = Bm (t) 

Equation (4.19) can be rewritten as 

Sc, (t) = A, 
�x, 

(t)+IhW(t) (4.20) 

where 

W(t) = 
(A, 

0 
(t) - B. (t)SK(t))x, (t) + (Bm (t) - B. (t)8KR (t))r(t) (4.21) 

The feedback system (4.20) was represented by the standard form of two blocks for the 

stability analyses see [9] and Appendix 1: A linear time invariant feedforward block, and 

nonlinear time varying feedback block as shown in Fig. 4.1. 

0, %, + Wt (All ih } Cý 
Zero Demand 

Adaptive Block 
(Nonlinear) 

Fig. 4.1: Error dynamics presented as a nonlinear feedback system 

In Fig. 4.1 W(t) _ -W, (t), and the system is hyperstable if 

1- The feedforward transfer function matrix Ce [sl - A, 
�1-' 

1h is strictly positive 

real (SPR); ' ', 'I`I: (4.22) 
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2- The nonlinear feedback path satisfies Popov's criterion, which is given below: 

jy. 

(t)W. (t)dt z -c2 , for all t, z to (4.23) 
to 

where c is a constant independent of t,. Thus, by using the Kalman-Yacubovitch lemma 

which is given in Appendix 2, we obtain 

y, = B; Px, = Cox, (4.24) 

where C. is the output error matrix, which is determined from the positive definite solution 

of the Lyapunov equation 

PA, 
�+A, 

P=-Q 
, 

Q>0 (4.25) 

as 

C. = B, P, B; = [0, 
... ,0 1] (4.26) 

Substituting (4.21) into (4.23), we get 

jy (t)(B. (t)SK(t) - A, o 
(t))x, (t)dt z -c; (4.27a) 

10 

e jy, '(1)(B, *(I), 5K, R(I) - B. (t))r(t)dt z -c2 (4.27b) 
to 

where 

c; +c2=c2 

From (4.15) and (4.16), the adaptive gains are [10]; 

SK(t) =j0, (T Z+ 02(t) 

SKR 
(4.28) 

(t) =f cu , 
(z)dr +yr2(t) 

0 

where, 

lf(Z)xr \I 
; 

7'Z(t)-'+f(t)X 

(t) 

V I(z)=ay, 
(z)r(r) ; ! Vz(t)=QY. (t)r(t) (4.28a) 

and 

a=[a, aZ ... ah]; ß=[ßl ß2 
... 

ßh] 

Y: = [y11 y. 2 ... Y. h 
]; x: = [x, x2 ... xh ] (4.28b) 

Equation's (4.27a)-(4.27b) are satisfied by the following choices of a and /1 
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a=[0 0 ah] 

ß=[0 ... 0 Qh] 
(4.29) 

where ah and fl, are both of the same sign as b;, Hence the Popov criterion (4.27a) 

expands to 

jb1a, EYInxi JYehx; dr-a. oj/(b. )ah) t z-cr1 (4.30a) 
to 

together with 
h 

dtz-c2 f b;, ßtiy« ýx, 2 (4.30b) 
to W 

where b; t is the last and the only non-zero entry of B, (t) and aro, is the last row elements 

of Aro (t) and 
i2z C11 + C12 = C1 

Following the same pattern (4.27b) is written as below 

Jb., ah.. hr JY. hrdz-b., /(b,, a,, ) t z-cif (4.31a) 
to 

b, 1,8hy 
, r2dt -c22 (4.31b) 

to 

where b, 
� 

is the last and the only non-zero entry of B,, (t) , 
indicating that inequalities 

(4.30b) and (4.31b) are satisfied. In order to satisfy (4.30a) and (4.31a) the following 

integral property is used 

Jktfdtý_kf2(to)/2 (4.32) 
to 

where k is a constant. Comparison with equation (4.30a) gives 

ft = Jyhxdr-a, 
O, /(b,; ah) and k=b;, ah (4.33) 

0 

If the variations in aro; and b,, are not significant then differentiating (4.33) with respect 

to time gives 

A *=Y. hx, 

then (4.30a) becomes 

(4.34) 
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It hh 

(4.35) J kZ fi f. dt Z -kE f12 (to) /2 
ý0 1=1 1=1 

Similarly, comparison with (4.31a) gives 
I 

fl = JY®hrdz-bfl /(b,, a. ) (4.36) 
0 

Again if b,, vary less rapidly than the adaptive process, then 

Al = Yehr (4.37) 

Equation (4.31 a) can written as 
r, 
j 

-Jii 
(to) /2 (4.38) 

to 

The system will remain stable provided that plant parameter variations slower than the 

adaptive process. The inequalities (4.34) and (4.37) can be made arbitrarily close to an 

equality. Therefore, inequalities (4.27a) and (4.27b) are satisfied, since each term in the 

summations satisfies an inequality of the type given in (4.32). Bringing together (4.30a)- 

(4.31b) the Popov criterion (4.23) is satisfied, indicating that the reduced order MCS 

control guaranteed asymptotic hyperstability of the SISO system. The SISO plant 

parameter matrices A(t), B(t) and the plant state matrix x are represented in the reduced 

order plant model as A, (t), B, (t) and x, and unmodelled dynamics due to the reduction in 

the plant order are included into the disturbance term d(x,, t). In this case, it is assumed 

that the disturbances due to the unmodelled dynamics are slowly varying therefore the 

Popov's hyperstability theory is used to prove the stability of the reduced order plant. 

4.5.1.1 - Stability Analyses of the ESH Materials Testing 
Machine by Popov's Hyperstability Theory 

The second order nominal transfer function may be written in a phase canonical form as: 

1il (t) 
=01 Txl (t) 

+ 
1011 

u(t) (4.39) 
x2 (t) 

L-2000 
-110 x2 (t) 

y(t) = [2900 01 x' (t) 
± [0] 

Lx2(t)i 
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The ESH materials testing machine parameters and plant state are represented in the 

reduced first order model as A,, 
, 

B,, and x,,. Then, the reduced first order plant model 

is described by the following state space equation: 

xsl 
(t) 

= A, 
1 x,, 

(t) + B, 
1 u(t) +d (x, 

1 , 
t) (4.40) 

where A, 1 = -a, , 
Br1 = b, 

, then (4.40) becomes 

±. l(i)=(-a1)X, 1(t)+(b1)u(t)+d(x,,, t) (4.41) 

where a, and b, are unknown first order plant parameters. The first order reference model 

is: 

xm (t) = Amxm (t) + Bmr(t) 

zm(t) = (-4 / t, )xm(t) + (4 / tjr(t) (4.42) 

According to [i1], the bounded disturbance vector is written as: 

d(x,,, t) = BA., (t)r (4.43) 

where 

r;, -, 0,1, for all t 

In the case of reduced first order SISO ESH plant 

M, 1 
(t) = 8(a11(t )) 

d(x, lIt) = ga11(t)r (4.44) 

The plant parameters A,, and B,, vary due to the unmodelled dynamics and nonlinearities in 

the plant. These changes can be denoted by &1,2 (t) = &112 (t) and bB,, (t) = bä(t), 

respectively, then (4.41) can be written as 

x,, (t) = (a, +&i(t))x, l(t)+(b, +bb(t))u(t) (4.45) 

where &r(t) = 8A, 1(t) =8A, + a42 = 41(t)+42(t). The MCS control signal is 

u(t) = bx(t)x,, (t)+8K, (t)r(t) (4.46) 

From (4.45) and (4.46) the closed-loop plant dynamics can be written as 
x,, (t) _ 

(A, Q) + B, (t)ÖK(t))x, 
l 
(t) + B, (t)BKRr(t) (4.47) 

where 

A, (t)=a; (t)=a, +&r 

B; (t)=b, (t)=b, +bb 

The error dynamics of the closed-loop system are given by 
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z, = Amx` (t) + (a. 
o 
(t) - b; (t)BK(t))x., (t) + (B,. (t) - b; (t)3KR (t))r(t) (4.48) 

where 

z, (t) = z, 
� 
(t) - z,, (t) ; xs = xm - x., 

ar0 
\t! 

Ar0 
\t/ 

A. 
-a, 

* 
\t/ 

From (4.48), the error dynamics can be written as 

z. (t) = (-4 / 1, )x, (1) + I, w(t) (4.49) 

where, 

w(t) = 
(aro (t) - b, (t)BK(t))x,, (t) + ((4 / t, ) - b; (t)BKR (t))r(t) 

The system is hyperstable if (A., Il 
, 
C. } is a hyperstable block, i. e. 

PA, 
�+ATP =-Q Q>O 

where P is the symmetric positive definite solution of the Lyapunov equation and Q is 

chosen for the first order plant as: 

Q= [1] 
so that 

C, =B, P 

where 

B, _ [1] 
The required closed loop settling time for the ESH machine is t, = 0.35 s. The reference 

model parameters are: 
Am = -4 / tf = -11.402 
B. =4/t, 11.402 
C, =t, /8=0.0438 

and Popov's criterion is satisfied if 

JYi (t)w(t)dt Z -c2, Vt, Z to (4.50) 

The Lyapunov equation can be solved to yield a positive-semidefinite matrix C.. It remains 

to satisfy (4.50), which can be rewritten as 

Jy(t)(b; (t)sK(: ) -aro(t))xr, (t) (4.51a) 
to 
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r, 
fyi (tý(b, (t)SKR (t) - (41 tj))r(t) z -c2 (4.51b) 
to 

where 
z 22 Ci + 02 =0 

Writing 

Y, = [Y�] 
, xi = [xi], a= [a, ] and /. 3 = [ßl] 

the Popov criterion (4.51 a) expands to 
1, [1 

Jbrl'alyelx $y, 
1x1dv-aroil(brl'al 

) tz-c2il (4.52a) 
1 

to 0 

where b;, is the only entry of b, (t) and similarly a, o, is the only entry of a, o 
(t) 

. 
r, 

(4.52b) f b;, /ß, ye, x; dt z _C2 
to 

and (4.51b) expands to 

Jb,, aly., r f y., rdr-41 (b;, a, t, ) t z-cif (4.53a) 
o to 

together with 
r, 
Jb;, ß, y,, r2dt z -c22 (4.53b) 
to 

By inspection, inequalities (4.52b) and (4.53b) are satisfied. To confirm that (4.52a) and 

(4.53a) are satisfied, we use (4.32) integral property, then from (4.52a) one can assign 
t 

11 = Jy1x1dr_ a, 01 I 
(b., a1) and k=b., a, 

0 

It is assumed that a, o, and b;, vary less rapidly than the transient terms in the adaptive laws 

(4.28), f, = y,, x, . 
Therefore, in practice the above approximation can be made arbitrarily 

close to an equality. In a same manner, (4.52a) can be rewritten as 
l1 

ji. ýi Z -i2 
(to) /. 2 0 (4.54) 

to 

In a similar manner, '(4.53a) becomes 

j kj2 fidi z -kf2 (t0) 12 (4.55) 
to 
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where, 
I 

k=b;, a� f2 =$y,, rdr -4/ 
(b, *, a, t, ) and f2=- y,, r 

0 

Hence, inequalities (4.51a) and (4.51b) are satisfied since we may now ensure (4.52a) and 

(4.53a) satisfy an inequality of the type given in (4.32). Therefore the Popov criterion 
(4.50) is also satisfied, as required, together with the strictly positive realness of the 

feedforward transfer function matrix, implying that MCS guarantees the asymptotic 

hyperstability of a reduced first order SISO ESH materials testing machine. 

4.5.1.2 - Stability Proof of the Electrohydraulic Actuator Plant 
by Popov's Hyperstability Theory 

The nominal linearised model is third order, including a free integrator. The third 

order plant transfer function is given in Chapter 5 as: 

G, (s) = 
s3 

2830 
(4.56) 

+ 333.44s . 56) 

The phase canonical form of the nominal plant model is 

x1(t) 010 Tx1(t) 0 
z2 (t) =001 II x2 (t) +0 u(t) 
±3(t) 0 -333.44 -17.6 x3(t) 1 

xl (t) 

y(t) = [283 00 0] x2 (r) + 1011 

x3(t)- 

(4.57) 

The reduced second order plant model is described by the following state-space equation: 
zr2(t) = Ar2 Xr2 (1) + Br2U(t) +d(xr2 0 t) (4.58) 

where A, 2 
01 

=0 
_Q , Bi2 =0b, then the reduced second order plant model including 

>> 

a free integrator is described by the following phase canonical form 

1X, Z1 
(t) 

-01X, 2, +0 
]u(t) 

+ d(X, 2, t) (4.59) zr21(t) Lo -a, x, 
21(t) bi 
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where a, and b, are unknown reduced second order plant parameters and d(x, 2, t) 

represents the disturbance due to the unmodelled dynamics, plant nonlinearities and 

external disturbances. The bounded disturbance vector can always be written as: 

d(x, 2, t) = Ö1, (t)r (4.60) 

The term £A, (t) can be considered as an unknown variation and unmodelled dynamics in 

the A,, matrix, structured according to any variation in 42. Equation (4.60) can be 

rewritten as: 

tr 
d(x, 2, t) = [8 

Then, (4.57) becomes 

Iz, 
Zi 

(t) l- 01 Xr21 (t) 
+0 

]ut+ 0l 
r [±r22 

(t)] 0 
-a, Xr22 

\tl 

[b, 

/ 

Let 

8Arl\tJ 
OO 

=0 x112 (t) 

where &i , 
(t) = 0, due to a free integrator in the plant, so that 

A2 (t)Xr2= (t) 
= 8LY(t)r 

which gives 
8a, , 

(t) = &r(t)r / Xr2= (t) 

(4.61) 

(4.62) 

For the sake of simplicity it is more suitable to have the first row of &4, i 
(t) zero. For the 

cases where, d(t) : ý4- 0,,, 1 whilst x, 2(t) = 0,,., for some xr2 z 0. Then, (4.58) can be 

rewritten in the state-space form as: 

Xr2\t! = 
(Ar2 

+'rl(t))Xr2(t)+Br2u(t) (4.63) 

Consider that parameter changes will occur in {Ar2, Br2}, due to the unmodelled dynamics 

and nonlinearities in the plant. Let these changes be denoted by 8A, 2(t) and iffljt) 

respectively; also let 8A, (t) = &A,, (t) + &Ar2 (t), so that the state equation is now written as 

zi2(t) = (A, 
2 +SA, (t))x, 

2(t)+(Br2 +SB, (t))u(t) (4.64) 

Thus, we define the MCS control input u as 
u(t) = 8K(t)xr2 (t) + &R(t)r(t) (4.65) 
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The second order reference model is known exactly as 

X, 
� 

+ 2C(O 
m+W 

Xm = conT (4.66) 

where, w� is the natural frequency and 4' is the damping ratio of the system, for critical 

damping I and is =4 ý0n 

IXmi (t) 
_01 

Xmi 
(t) 0 

xm2 
(t) L-arni -amt xm2 

(t) 
+ 

[b}(') 

m 

(4.67) 

In (4.67) reference model parameters -am, = -wn; a, ýZ = -2w,, and bm = wn are known 

for a given settling time. In the case of the electrohydraulic actuator plant t, = 0.25 s. 
Hence, (4.67) can be written for the plant as 

1Xml (') 

-01 
Xmi 

(l) 

Xm2(1) -256 -32 Xm2(') 
+ 

256 

(t) 

Therefore, the closed-loop plant dynamics are given by (4.64) and (4.65) 

zr2 (t) = (A; (t) + B; (t)SK(t))x(t) + B, (t)8KR (t)r(t) (4.68) 

where 

A; (tý= A, 2 +SA, (t) and B, (t) = Bi2 +bB, (t) 

From (4.67) and (4.68) the error dynamics of the closed loop system are given by 

xslt/ Amxr(t)+(Ar0(1)-Br (t)SK(t))Xr2(t) 

+ (B. 
- B., (t)&KR (t))r(t) (4.69) 

where 

A,, (t) =Am-A; (t) 

From (4.69), let 

W(t) = (A, 
0 
W-B, (t)SK(t))xi2 (t) + (Bm 

- B; (t)cW, (t))r(t) 

then (4.69) can be rewritten as 

z, (t) = A,, x, + 12W(t) (4.70) 

The stability of (4.70) is investigated by the Popov's hyperstability theory. The system is 

hyperstable if (Am)12, C, } is a hyperstable block, i. e. 

PA, 
�+A�P=-Q, 

Q>O (4.71) 

where P is the positive definite solution to the Lyapunov equation and Q is chosen as: 
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10 0 
Q01 

so that 

C, =B, P 

where 

Bs =[O 11T 

For a given settling time t, = 0.35 s 

A. 
-256 -32 ' 

B. = [256]' 
0C` 

_ [0.0195 0.0162] = 
[] 

and it remains to satisfy (4.23), which can be rewritten as 
t, 

f y, ' (t)(B. (t)oK(t) - Aro(t))r2(t)dt >_ -ci 
tp 

j y; (t)(B, ' (t)SKR (t) - B,. )r(t)dt z -c2 
to 

where 

Ci+C2=C2 

and 
e 

N(t) ay. (z)x i (r)dz + fly, (t)x i (t) 
0 

r 
NR(t) jc'. iz 

r(Z)dr+It'. 
(t)r(t) 

0 

(4.72a) 

(4.72b) 

together with 

Y. = [Y., Y.,. ] x; = [x1 x, ] 

a=[0 a2], ß=[0 ß2] 

Equation (4.72a) is further expanded to: 

Jb; 
2a2Y. 2x[IY. 2xd -a. oz/b2a2 t 2t (4.73a) 

to i=1 1 

where b; 2 is the second and the only non-zero entry of B, (t) 

Jb. 
2Q2Yeax; x2dt z =c12 (4.73b) 
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Similarly (4.72b) is expanded respectively as 

Jb2a2y, 
2r 

$y. 
2rdr-bm2 

/(b; za2) t Z-c 1 (4.74a) 
to o 

b, 
2ß2y 

2r2dt Z -c' 

to 

(4.74b) 

where b, �2 is the second and only non-zero entry of B,. (t). The above equations (4.73b) and 

(4.74b) are satisfied. In order to satisfy (4.73 a) and (4.74a) the integral property (4.32) can 

be used. Then (4.73a) can be written as 

Jkf fidtz-kf2(to)/2 

where 
r 

a2 , . 
fr = 

JYe2x, dT -a / bi2a2 and (i = 1,2) k= b. 
s , 022 

0 

Similarly (4.74a) can be written as 
t 

j=fY. 2r-b, 2/b. 2a2 
0 

(4.75) 

Again, it has been assumed that, biz 
, ar02, and b. 2 vary less rapidly than, the transient 

terms in the adaptive laws and parameter variations occur on a longer time scale than the 

adaptive process. The Popov criteria (4.74a) and (4.74b) are satisfied. Therefore MCS 

ensures asymptotic hyperstability of the reduced second order (including a free integrator) 

electrohydraulic actuator plant. 

The nominal plant parameters and plant states appear in the reduced second order 

model as A, 2 , B, Z . and x, 2 together with unmodelled dynamics which are treated as 
disturbances. 

4.5.2 " Stability Analyses of the Reduced Order MCS in the 
Case of MIMO Systems 

Stability of the MCS algorithm will be investigated in the case of Multi Input 

Multi output (MIMO) systems. The structure of plants under consideration is a 

generalisation of the SISO phase canonical form previously investigated at the beginning of 
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this chapter. Consider the disturbances of a free MIMO plant described by the following 

state space equation: 

. z(t) = A(t)x(t) + B(t)u(t) (4.76) 

where, x= [x� x2 ....., x� ], xE R`and u Wx1 

The matrices A(t), B(t) are given as below 

All ... 
Alk- B11 

... 
B1, 

A(t) B(t) _ (4.76a) 

Ak, ... Aix Bkl ... Box 

where k is the number of degrees of freedom in the plant and ni is the state dimension of 

each degree of freedom. It assumed that kSn. Also: 

010 0--. 00... 
0 

0 0.1 0 -"" 0 
A;; _ AV =0... 0 

(4.76b) 
0.. 01 

aft ... pný 
-a;, i -a;; 2.. -a;; n; 

00 

n) 
B'' =0 BV 

01... k 
(4.76c) 

b;; bu 

U7 +1 U2 ... Uk] (4.77) 

k 

I: ni=n (4.78) 

and 
xT =[X11 xtn X21 ... X2n ... Xkl ... Xk�] 

T 
(4.79) 

Y. =[Y11 ... Yin Y21 ... Yen ... Ykl ... Yk� 

The reduced order plant model together with unmodelled dynamics may be written as: 

5r(1) = A, (t)x, (t) +B, (t)u(t)+d(xr't) (4.80) 

where the matrices A, (t) and B, (t) are 

All ... Alk B� ... Bak 
A, (t) B, (t) (4.80a) 

A. ... ,A 
Bkl ... B 
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where k is the number of degrees of freedom in the plant and hi is the state dimension of 

each degree of freedom. Also: 

0100.. " 00... 
0 

0010 """ 0 

A;.. _ Ar;. =0... 0 
(4.80b) 

0.. 01 
qý; l ... qý; h; 

-giil -gii2 -giihi 

and d(x�t) is defined as: 
d, 0 
d 

d(x�t) =2d; = (4.80c) 
0 (j =1,..., k) 

d,, dli 

The matrix d(x�t) represents the bounded effect of unmodelled dynamics, plant parameter 

variations and nonlinearities in the plant. The integers hi (i= 1,..., h) are assumed to be 

known. The plant parameters and the disturbances di (j = 1,..., h) are assumed to be 
L 

unknown and time varying. The term hi = h, together with 

T 
xr - X11 ... 

Xlh X21 
... 

X2h ... xkl ... Xkh 

(4.81) 
yrd = 

[Yu 
""" Ylh Y21 """ Y2h """ Ykl """ . 

Ykh 

The stable reference model is given as: 
zm = A�, xm + Bmr (4.82) 

where 
Am11 . "" 0 Bm11 

"". 0 

AM B. (4.82a) 
0 ... A, 0 ... Bmkk 

and 

o1o """ 0 
0010... 00 

(4.82b) Ami; B>, =0 
00 "". 01 

bmhf 

-amiil -amii2 -amii3 ... -amiihi 

Then, (4.83) can be rewritten as 

Xý(t) = (Ar +SA, (t))x, (t)+(Br +b$"(t))u(t) (4.83) 
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where, SA, (t) and bB, (t) are the effect of the unmodelled and unknown dynamics in 

A, (t) and B, (t) respectively. The MCS control signal is given in (4.16) then, (4.83) 

becomes 

z, (t) = 
(A; (t) +B, (t))x, (t) + B; (t)SKR (t)r(t) (4.84) 

where, A, (t) = A, + äA, (t) and B, (t) = B, + bB, (t) . The model-following error x. is 

defined as: 

x. (t) = XM(t) - x, Q) (4.85) 

so that from (4.82) and (4.84), the error dynamics of the closed loop system becomes: 

x. (t) = Am (t)x. (t) + (A, 
0 
(t) - B, SK(t))x, (t) 

+(Bru (t) - B, ' (t )bKR (t))r(t) 
(4.86) 

where, A, 0 
(t) = A,. - A; (t) and B, 0 

(t) = B.. A, o(t) will take the following form 

A, o(') =I 

o ... 0 

o ... 0 
ail 

... 

a12 """ 

... ... ... 

pkh 

... 

... ... ... ... ... 
0 """ 0 

0 """ 0 
kkk 

all a12 .. " akh 

The disturbance term due to the unmodelled dynamics may be written as 
d(x,, t) = B, r 

(4.87) 

(4.88) 

where, the reference inputs r, (i = 1,..., h) are different from zero and the matrix B, can 
be written as follows 

f 
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B; _ 

0 """ 0 

b, it ... b, 
ºt 

... ... ... ... ... 

0 """ 0 
(4.89) 

Lh,., ... 
bra 

J 

The matrix (4.89) is bounded and time varying depend on d(x�t) and r(t). By using (4.86) 

and (4.88) each disturbance term dj (j =1,..., k) can be written as: 
h 

dli = Ebrjri (4.90) 

In general, the reference inputs r, (i =1,..., k) are slowly varying, for example a step 

function. Equation (4.86) can be rewritten as: 

z, = Ax. - IhWc (4.91) 

where 

W. - (A, - Am)Xr +B, u+(B, - B. )r (4.92) 

The argument "t" has been dropped for the sake of simplicity and the control input is given 

as 

ur = 
(K«,, 

) +K2(p, ))xi +Z(K, I(Ji) +Kr2(,, ))ri (4.93) 
i-l j 

with 
t 

K1P1 = 
jaPiYPh., 

xidr 

0 
KZPi =, 6PrYPhpxi p =1,..., k 

ti =1,..., h (4.94) 
KºIPi = 

Ja(r)1 + y, hPrldr j =1,..., k 
0 

Ki2pi = ß(r)P; YP, krj 

The sign conditions associated with the application of (4.23) are 
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aP, bPP>0 

r" Pj 
bPP 0 

a`r)P1bPP >0 

, 3(r),, b,, z0 

The vector W. is further expanded to: 

We =j 

0 
kk 

ýýa1 -amii)X, +±b1tu, +b". 
jrj -bmiýri 

1=1 J=ý J=1 

... ... ... ... ... ... ... ... ... 

(4.95) 

(4.96) 

... ... ... ... ... ... ... ... ... 
0 

hkk 

taxi - akk )xi +± bkjuj +Zb, 
p rj - b, 

�kkrk i=1 j=1 j=1 

In order to proof the hyperstability of the reduced order MCS control in the case of 

M1MO systems by Popov's criterion, (4.91) is split into two parts as shown in Fig. 4.1: A 

feedforward block and a feedback block. For the asymptotic hyperstability of x. , the 

following two conditions must be satisfied. 

(a) - the forward block represented by the triple {A,,, Ih, C. } is SPR, 

(b) - the feedback block ensures the integral inequality 

JyWdtý-c T (4.97) 

The B matrix is replaced with . B, due to the unmodelled dynamics and external 

disturbances, with entries b;; and -b; . Let 

B''u=B, u 

where B" is a block diagonal matrix given by 

B" = diag{Bý, I B22 I ... Bam, 

and , 
IT Bi 10 

... 0 bi; 

It is assumed that along control trajectories, 
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h 
bi; '=b, f- bij* /ui 

j *i 

The adaptive weights are described in the following forms 

a= diag([O """ 0 aj [0 """ 0 a2] """ 
/3=diag([O """ 0 ß11 [0 """ 0 ß21 """ 

There are four integral inequalities to satisfy, which 

Following inequality (4.30a) can be expanded, with the in 

as 
r, r 
f bl, 'al 

[ymxn JYIhxiHdr-ai, I (b, 
la1)+... _}. 

to 0 

[0 ... 0 ak11 
(4.98) 

[0 ... 0 ßk D 

are given in (4.30a)-(4.31b). 

troduction of B'' instead of, B, 

r 
Ylhxkh 

JYlhxkhdr-akh I (b, 

lalý 

t 
(4.99a) 

bkkak Ykhxll 
f 

Ykhxlldv-a 1I 
(bkxak) 

0 

-.. +Ykhxkh 
JYkhxkhdr 

-akh 
I1b'ak) dt Z. -c 

0 

Each term in Equation (4.99a) can be written as: 

b, , 
'a, 

[, 
j, j, 

f Y, tixJpdT -äja I (b, ' -j aj) dl 
to 0 

which satisfies a Popov criterion provided that a, has the same sign as b; t' 
. Bringing 

together all such terms in (4.99a) and (4.30a), the Popov's hyperstability criterion will be 

satisfied. Similarly (4.3 Ob), (4.31a) and (4.31b) can be expanded as follows: 
tjl 

ý' 2222ý2222Z 
J 

{b»ß1[yx1 + '.... ý3'Ih kh]+.. 'ýb, ßk[YkhXII+'.. }Y x })dt 
-c 2 (4.99b) 

In a similar manner to (4.3 Ob), each term in (4.99b) can be written as 
r, 

"zi jbrr '#8r 
. 
Yih x1P dt 

to 

satisfies a Popov criterion. Taking together all such terms in (4.99b), inequality (4.30b) 

will be satisfied. Then (4.3la) becomes 
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J b, *iaý 
lhr 

jylhrdz-bmtii /(b11 
1) 

10 0 
t 

+'""+YlhrJYthrdr-bmhl /(b»a1) 

° (4.100a) 

+~ " "+b kk 

l 

a, t Y ,rf ykhrdr - bm, k t 
(b; 'ak ) 

0 

r 

+... +Ykhr f Ykhrd z- bmhk / (bak) dt 2 -ci" I 
0 

Each term in (4.100a) can be expressed as: 
r 

jb� a, Y, hr 
f Ylhrdr-bm,,; / (b, r ai) t 

to 0 

Taking together all such terms in (4.100a), inequality (4.30a) and (4.31a) will be satisfied. 

Together with 

(b; ßl(yhr2)+. . +b (y 
, r2)}dtý-C 

to 

(4.100b) 

t, 

Each term in expression (4.100b) i. e. f b, i'ß, (y 2r2)dt ensures a Popov criterion. Collecting 
to 

together (4.99a), (4.100b) Popov's criterion (4.23) is satisfied therefore, the given MCS 

adaptive law (4.97) guarantees the asymptotic hyperstability of reduced order MIMO 

closed loop systems as required. 

The nominal plant parameters of the HMO systems are replaced with lower 

order plant parameters in the reduced order model together with unmodelled dynamics and 

the unmodelled dynamics are treated as disturbances. It is assumed that the disturbance 

term due to unmodelled dynamics is slowly varying (may be the plant is over 

parameterised), therefore Popov's method is used to prove the stability of the reduced 

order MIMO MCS control. 
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4.6 - STABILITY ANALYSES OF THE REDUCED ORDER MCS 
CONTROL-BY THE LYAPUNOV EQUATION 

The MCS algorithm is stable in the presence of slowly varying disturbances. In 

the previous section the stability of the reduced order MCS control was proven by 

Popov's hyperstability theory. In this section stability of the reduced order MCS control in 

the presence of rapidly varying disturbances due to unmodelled dynamics and 

nonlinearities in plants will be proven by the Lyapunov equation method. The Lyapunov 

function is an important method to prove the stability of plants which are subjected to 

rapidly varying disturbances and it is very suitable in examining the upper bounds of 

convergence'of the error. 

4.6.1 - Stability Proof of the Reduced Order MCS Control in the 
Case of SISO Systems by the Lyapunov Equation 

From (4.4) and (4.7) we obtain: 

z# = A, 
�x, - 

(A, -A. )x, -B, u+B,. r-d(x�t) (4.101) 

where, the disturbance term is d(x� t) = 8A(t)r. Then, equation (4.101) can be written as 

ze=A, 
�x, -'hif 

where 

W= (Ar - A, 
�)xr + Bu + (SAr - B, 

�)r 

(4.103) can be further expanded to: 

0 

W, = 0 
(-a; + am, )x, 

.+ 
bl u+ (&r - bm)r 

The MCS control input u is 

W. E WIX, 

(4.102) 

(4.103) 

(4.104) 
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u= K(t)x, + KR (t)r (4.105) 

The adaptive gains are written as 

K(t) = [k, k2i ... , kh1=K, a(t)+K,. 8(t) (4.106) 
KR(t)=[k, 1 ki2, ... , khI =KRa(t)+KR,, (t) 

where K; 
a 

(t) 
, 

KRa (t) are the integral gains and K, ß 
(t) 

, KR,, (t) are the proportional 

gains. 

Kia\t/ = 
Ja, 

yhxJdr 

to 

Kiß(t) = ß, Yhxi 
(4.107) 

KRa(t) = ýa, yhrdr 
to 
Q. Yhr 

The output error equation is derived from (4.104), (4.105) and (4,106) as follows 

x, = A, 
�x, -bw'(D-bwrT -d(x,, t) (4.108) 

with 

d(x,, t)=[0 0 ... dir; d(x�t)=&A(t)r 

where 

(4.109) 

&4(t) = [0 ... 0 &4(t)] = [0 
... 0 d, ]T (4.110) 

This disturbance is assumed to act only on ht` state, therefore (4.110) can be written as 
d(x,, t) = bwTd, (4.111) 

Then, the error equation becomes 

z, = A. x, -bwr((D +W+d, ) (4.112) 

Equation (4.112) defines a hyperstable system, shown in Fig. 4.2. 

b=[0 """ 0 1]T (4.113) 

W= [x; r]T (4.114) 

cb= b, loy,, x, dr+am, -a,,..., b, f ayhxhdr+amh -a,,, 
0o 

T 
b, f ayhrdr - bm 

0 
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4) =b, abTPx, w (4.116) 

where, « is integral gain vector and b, is the last and the only non-zero entry of the B, 

matrix, and proportional gains vector is 

II _ [bi%Yhx...... blßyhxh, bi, 6yhrl T (4.117) 

The system defined from (4.108), (4.114), (4.116) and (4.117) is an asymptotically 

hyperstable provided that dE L2, hence Popov's hyperstability criterion (4.23) becomes: 

ab, >O 
ßb, z0 

Fig. 4.2: Error dynamics represented as a nonlinear feedback system 

(4.118) 

It is assumed that the disturbances term d(x�t) due to the unmodelled dynamics is rapidly 

varying therefore, the stability of the system is proven by using the Lyapunov equation 

method which is given in Appendix 3. The Lyapunov function can be written for SISO 

plant as below 

Výx,, (D)=x, Px, + (DT(D bla 
(4.119) 

Equation (4.119) is positive for all x, #0 and 4) #0 since P is a symmetric positive 

definite matrix and (b, a) is positive scalar. For the sake of simplicity V (x,, (D) is denoted 

by V in the following section 
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d 
=z; Px. +x, Pie+20 

ro 

di b, a 

= 
(Amx, 

-bwrO-wTtY) 
T Px, +x; P(Amx, -bwrcb-bwrT) 

2 4) 4 (D 
b, a 

dV 
-(-IP'wb' -(TwbT +xe Am) Px, + 

dt 

x, P(Amx. -bwr(D -bwT P)+bäbT (4.120) 

=-x. Qx, -2b, ßx, PbbTPx, wTw 

The above equation is rearranged by using (4.113), (4.4), (4.6) and (4.25) as follows: 

dV 
= -xe Qx, - 2b1ßic, PbbT Px1wT w- 2x; Pbdl (4.121) 

dt 

where, Q is positive definite and PbbT P is positive. The Lyapunov equation will be 

satisfied provided that (4.121) is negative in the x, space. Then, using norm V can be 

written as follows 

V (x. 
, 

(D) :5 -2 min 
(Q)IIX; 112 + 211; 112 

max 
(P)jd I (4.122) 

From (4.113) IIbII =1 

2Zm. (P)IdiI It was shown in [12] that if IIx, II z 
Amin (o) , then V is negative and x, will be in the 

hypersphere stability region A determined by: 

Af A- tXý R IIXýII S 
Za 

max(P)Idl(max i 

2mm(Q) 
(4.123) 

where Id, I 
m., 

is the maximum value of Id(x� t)l and 2. 
max 

(P), A 
m;. 

(Q) are the largest and 

the smallest eigenvalues of P and Q, respectively. 

A SISO plant is represented in the reduced order MCS control by reduced order 
plant parameters together with the unmodelled and unknown dynamics which are assumed 
as disturbances acting on the system. 
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4.6.1.1'- Derivation of a Lyapunov Equation in the Case of ESH 
Materials Testing Machine 

The plant has a second order transfer function during normal operation: under 

load control, the supply pressure is 13.8 MPa. The MCS control algorithm is implemented 

on the machine in a reduced first order form. Therefore, the plant is described by a first 

order model including some unmodelled dynamics which are assumed acting on the system 

as a part of disturbances. In the case of the ESH materials testing machine an arbitrary 

`weighting' matrix chosen as Q= [1], for a given settling time, t, = 0.35 s and the positive 

definite matrix P, which is a solution to the Lyapunov equation, is found to be 
P= [0.0438] 

Equation (4.121) can be written in the case of the ESH materials testing machine as 
dV 

= _xTl[l]xel 2b1Abcel(0.0438)(0.0438)xelwT w- 2x7, sl(0.0438)d1 (4.124) dt 

x 
=1, w='ß=0.001 where x, = [x`1 _ [x1], b, 

r 

Then (4.124) can be rewritten as 

7=-X .= -xý -3.8369x10-"x2 
(x; + r2) - 0.0876x, d1 

t 
(4.125) 

In this equality -x, ' and -x; 
(x; +r2) are negative definite terms. Therefore, if d, =0 then 

the first derivative of the Lyapunov function (4.124) is strictly negative; hence asymptotic 

stability is assured. When dl # 0, it was shown in [12] that a residual tracking error is 

present whose estimate is given by 

llx, 115 0.0876Id, l (4.126) 

From (4.125), it is observed that if Ilx. (I z 0.0876jd, I, then V is negative. It can be 

concluded that x, enters the hypersphere region A defined by: 

A= (x, 

.W/ 
llx. I) 

S 0.0876Id, 1 

Max 

) 
(4.127) 

where Id, (m. denotes the maximum value of Id (x� t)l . 
As it is shown above the Lyapunov's method is used to prove the stability of the 

reduced first order ESH materials testing machine. 
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4.6.1.2 - Derivation of a Lyapunov Equation in the Case of the 
Electrohydraulic Actuator Plant 

The plant has a third order transfer function in normal operation (accumulators 

on, supply pressure 110 bar). The MCS control is implemented in a second order SISO 

form. In fact, the plant is higher order than MCS. It has been observed that MCS possesses 

a degree of robustness to mismatches in orders, e. g. [12], [13]. The plant can be described 

by a second order transfer function together with a disturbance term due to the unmodelled 

terms and nonlinearities in the plant as shown below 

zt 01 xý 00 
[±2 =0 

al x2 
+1u+ dj (4.128) 

10 
An arbitrary "weighting" matrix was chosen as Q=00 

1 and for a given settling time, 

t, = 0.25 sa positive definite matrix to the Lyapunov equation solution, P was ; where 
4.7812 0.0195 

P 
0.0195 0.0162 

From (4.121), the Lyapunov function for the electrohydraulic actuator plant can be written 

as 

dy_ 10 0 x., 
ar -[x`' x`z 01x, z 

4.7812 0.0195 0 
- 2b, ß[x,, x, 2 0.0195 0.0162 1 

O1 

x`' x, 
[x1 

x2 r] x2 I- 2[x11 

x. z 
r 

1 
4.7812 0.0195 
0.0195 0.0162 

F4.7812 Q0195 -[O 
x`2 0.0195 0.0162 1' 

The adaptive weight 8 was ß=0.0001, then (4.129) becomes 

dýr 
= -(I OX 2+x 2) - 0.0002(0.0195xe, + 0.0162xe2 )2 (x2 + x2 +r 2) 

dt 

- 0.0390x, 1 + 0.0324xe2)dl 

(4.129) 

(4.130) 

In (4.130), -(1Ox ; +x 2) and -0.0002(0.0195x;, +0.0162x; 2)2(x; +xZ +r2) are 

negative definite. If d, = 0, then the first derivative of the Lyapunov function (4.130) is 
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strictly negative, hence asymptotic stability assured. When d, # 0, then a residual tracking 

error is presented by 
Ik. II 5 0.9562ld1Im. (4.131) 

From (4.131), it is observed that if Ilx. llz 0.95621d, 1, then V is negative. It can be 

concluded that x, enters the hypersphere region A defined by: 

A= {X. Ä/ IIx. II 
S 0.9562Id, 

1 
! (4.132) 

where Id, Im denotes the maximum value of Id (x� t)l . The stability of the reduced second 

order electrohydraulic actuator plant is proved by Lyapunov equation method. 

4.6.2 - Derivation of the Lyapunov Equation in the Case of 
MIMO Systems 

As for SISO plants, Lyapunov functions can be used in the case of the reduced 

order MIMO MCS control systems stability analysis. The general structure of the reduced 

order MIMO systems was given in section 4.5.2. Consider (4.80) with d(x�t) =0 and with 
the reference input elements slowly varying, then the error equation (4.86) with the 

multivariable MCS law of (4.93) is rewritten as: 
z, = A�x, -B, (DW-B, `YW (4.133) 

where B, and A. matrices are given in (4.80a) and (4.82a) respectively. Furthermore, 

(D , 
'Y and Ware defined as: 

a)= [q)l 1>2 
... (Dk ]T 

with 

(P = bPPrj«piyphx; dr+amPi 
-a 1,..., 

0 

tT 
IJPPJ Q'Ply? hr, Jck+bmpý 

0 

T= ['I', Y'2 ... Tk 1r 

TP = 
[bPPß 

plyphxr 'b,, PJyphrr 

l 

j= (1,..., k) 

(4.134) 

(4.135) 

121 



W= [x,, r]T (4.136) 

In order to satisfy the Lyapunov equation, the feedforward transfer function matrix 

C, [SI - Am ]-' B, must be strictly positive real. Hence, by using Kalman-Yakubovitch 

lemma, we obtain 

yin 

yen 
= B, Px, = C, x, (4.137) 

Ykh 
where P is the solution to the Lyapunov equation 

A, P+PA, 
� =-Q 

P>0 (4.138) 
Q>0 

Subsequently, the matrices C, 'F are written as: 

c) = I', B, Px, WT (4.139) 

W=rB, Px. WT (4.140) 

where 

a, b� 0 ... 0 
0 

ra = 
a2b22 0... 

0 

0 ... 0 akbk 
ß, b� 0 

... 
0 

0 
/32b22 

0... 

0 
0 ... 0 8kb, 

From (4.133), the Lyapunov function is defined as 

V((D, x. ) = x; Px, +I 
ab 

(DpýP (4.141) 
PP DP 

For the asymptotic - hyperstability, all pf (p should satisfy following 

condition, a pbvp > 0. When differentiating - ̀(4.141) along the trajectories (4.133), we 

obtain 

122 



k 

=x. Px +x, Px, +21: _1p p 
P=1 

ctp 
pp . 

_ 
(-WTTTBT 

- WT(D TBT +xT Am) Px, +. (4.142) 
k 

x, P(Amx. -B(DW-B`FW)+2a b P' PP 

By using (4.138), (4.139) and (4.140) the above equation is simplified to: 

V= -xr Qx, - 2WT Wx; PBI',, 'BT Px, (4.143) 

where PBrflrBT P is positive semidefinite matrix. In (4.143) the terms, -x; Qx, and 

-WTWx. PBF BrPx, are a negative definite and a negative semidefinite respectively. 

Indicating that V is always negative in the x. space, provided that x. *0 and x� cb are 

bounded, then 

OD 
fVdt<co 
0 

Let us consider (4.133), if x is bounded then x, is uniformly continuous, hence V is 

uniformly continuous and following we have 

1imV = 0, limx, = 0,1imI =0 
e- OD t-40 r-+O 

The above results indicate that the Lyapunov equation method guaranteed the stability of 

the reduced order MIMO MCS control in the presence of rapidly varying disturbances due 

to the unmodelled dynamics, plant parameters change and nonlinearities in the plant. 

4.7 - CONCLUSIONS 

In this chapter the stability of the reduced order MCS algorithm has been proven 
for SISO and MIMO plants. The reduced order MCS is considered as the standard MCS 

control in which the controlled plant contains some unmodelled dynamics and the 

unmodelled dynamics is treated as a part of the disturbances term which is acting on the 

system. Therefore, disturbances have a crucial importance in the case of the reduced order 
MCS algorithm stability analyses. 

In the first section, disturbances due to unmodelled dynamics are considered 

slowly varying (maybe the plants are over parameterised), hence parameters variation are 
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very slow, almost insignificant. In this case the stability of the systems are proven by 

Popov's hyperstability theory. In the second section the disturbances due to unmodelled 

dynamics are considered as rapidly varying and a Lyapunov function is proposed to prove 

the hyperstability of SISO and MIMO systems. 

It has been proven in both cases MCS guarantees the hyperstability of the reduced 

order plant. In practice MCS appears to be quite insensitive and robust to mismatches in 

orders. The stability of the reduced second order MCS control in the case of the 

electrohydraulic actuator plant is proven both by Popov's hyperstability theory and the 

Lyapunov function. Similarly, the stability of the reduced first order MCS control is 

proven in the case of the electrohydraulic ESH materials testing machine by using both 

methods. 
In practice, the order of systems are limited. Most of the systems have an order 

less than 5. The MCS control can be very effectively implemented in only first or second 

order form hence, in many cases the reduced order models are maximum 2 or 3 degrees 

lower order than the estimated original plant model. 

The adaptive system with higher order unmodelled dynamics are gain sensitive 

and even small disturbances can cause instability. To overcome instability problem in the 

case of the reduced order MCS, the adaptive weights (a and ßj should not be increased 

beyond a certain point. The larger adaptive weights will activate the higher order 

unmodelled part of the system and this could lead a instability. In addition, if the reference 

signal is rich in high frequency content this will also excite higher order dynamics of the 

system. 

In practice, using the reduced order MCS control has several advantages as 
follows: Firstly most of the systems work in the low or mid frequency range, therefore 
implementing lower order controllers or modelling systems with a lower order model can 
be very effective since the high order dynamics of the system are not contributing much 
into the plant output response. Secondly, if the system model is more than 5" order the 
implementation of the controller can be computationally very cumbersome and it may not 
give a sensible result due to the fact that the plant is over parameterised. Thirdly, the 
implementation of the reduced order MCS controller is very easy and it does not require 
lower order plant parameters for implementation. In the case of the reduced order MCS 

control implementation, the control scheme uses a reference model which is lower order 
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than the estimated nominal plant model and the reference model matches the dominant part 

of the plant in order. 

It can be concluded that in practice initial states, parameters and disturbances can 

not be beyond certain bounds, therefore it is not necessary to guarantee stability beyond 

these bounds and it has been proven that the reduced order MCS is robust in the presence 

of bounded disturbances due to the unmodelled dynamics, plant parameter changes and 

nonlinearities in the plant. 
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CHAPTER 5 

APPLICATION OF MCS TO AN 

ELECTROHYDRAULIC ACTUATOR PLANT 

TOGETHER WITH COMPARATIVE 

IMPLEMENTATION STUDIES 

5.1 - INTRODUCTION 

The purpose of this chapter is to present the results of the application of the 

Minimal Controller Synthesis (MCS) algorithm on an electrohydraulic actuator plant. The 

results obtained using the MCS algorithm are compared with those produced by 

Proportional Plus Derivative Feedback (P+DFB) control in the latter part of this chapter. 

The aim of the MCS is to achieve excellent closed loop control despite the 

presence of plant parameter variations, external disturbances, plant nonlinearities and 

dynamic coupling within the plant, in a similar manner to MRAC. 

The Minimal Controller Synthesis (MCS) algorithm has been shown to be 

effective in a number of diverse areas. The MCS algorithm is a good control strategy. In 

particular, this chapter shows how the algorithm is successfully applied to the control of an 

electrohydraulic actuator plant. The MCS algorithm appeared to be robust against the 

unknown plant dynamics, external disturbances and parameter variations within the plant. 
In this chapter, the MCS is implemented in a second order reduced order form. In 

its nominal condition, the plant has a third order transfer function. For the electrohydraulic 

actuator plant, MCS can be recommended as a robust controller against the plant 

parameter changes, external disturbances and nonlinearities in the plant. 
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5.2 - THE ELECTROHYDRAULIC ACTUATOR PLANT 

The electrohydraulic actuator plant consists of a hydraulic pump, a two-stage 

servo valve, two accumulators, a single rod actuator and a hydraulic arm in Fig. 2.1. The 

gas charged accumulators placed either side of the actuator have a high compliance and 

suppress high frequency supply pressure fluctuations at the servovalve resulting from high 

frequency fluctuations in the load flow. 

The hydraulic pump can supply a maximum pressure of 172 bar. During the tests, 

the maximum pressure supplied by the hydraulic pump is limited to 110 bar. The constant 

pressure hydraulic power supply is an integral part of the actuation system, with flexible 

hoses connecting this power supply to the valves which direct the flow to the actuator. 

The electrohydraulic servovalve consists of a pilot spool valve and main spool, having an 

electrical feedback path to the servo amplifier. 

From the system identification tests, it is found that the numerator term is a gain 

and this gain term is very sensitive to changes in operating conditions. The position error 

problem occurred when operating with a load force. 

5.2.1 - The Actuator Linearization 

From Newton's second law and Equation (2.9) (in Chapter 2) we can obtain: 

Ap(PI-P2)-f, ±-T=mpz (5.1) 
where f, is the coefficient of friction, mp is the mass of the hydraulic arm as shown in 

Fig. 2.1, Fis the force on the actuator piston, Ap is the effective mean area of the actuator, 

and T is the force due to the mass of inertia which is comparable small therefore it can be 

neglected. The actuator is a single rod actuator therefore, the effective area of the first 

chamber is larger than the second one. The ratio of the effective area of the actuator 

chambers can be represented accurately by the relationship 
A, = 0.86A2 (5.2) 

Al + A2 
and the effective mean area of the actuator, A., =2 

From equation (5.1), it follows that: 
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(PI - PZ) =Ä 
(M,. t + ftzý (5.3) 

Differentiating (5.3) with respect to time gives: 

(J , -i )= Ä (m, Y +i zý (5.4) 

From Equations (2.2) and (2.3), the hydraulic flow equations 

Flow in: 

=A i+ 
VN` (5.5) 

Flow out: 

Q2= A2 z-1" (5.6) 

The tank pressure is assumed atmospheric hence, mean flow rate is 

Qf = Aa, ±+V. "`p, -P2) (5.7) 
N 

where V,, is the average volume, Va,, = 
V' 2V2 

. 
Although, the volume changes during the 

operation of the system it is assumed constant in this case for the sake of simplicity. From 

equation (5.4) and (5.7) 

Qf = A2, ±+ 
Va (mpx+ fx) (5.8) 

NA, 

Taking the Laplace transform of (5.8) 

NAa, Qf= 
s3+f S2+ 

NAB, 
S (5.9) 

Vamp mp Vý, m p 

which gives: 

NAQ, 

x (5.10) = 
Vimp 

z r3+ . 
f, 

s2 + 
NA°" 

s 
mp Vamp 

The linear representation of the system is constructed from Equations (5.1), (5.3), (5.4), 

(5.7) and (5.10) as shown in Fig. 5.1. 
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Fig. 5.1: Linear description of the electrohydraulic actuator plant. 

The control flow, Q, Q will change with valve sizing constant, electrical input current and 

pressure drop. These characteristics are modelled well by the theoretical square-root 

relationship for sharp-edged orifices: 

Qf=Ki P� (5.11) 

where K is the valve sizing constant, i is the input current to the servovalve and P, is the 

pressure drop. 

5.2.2 - Flow Control Servovalve (E760 Moog Valve) 

The plant is actuated by a standard Moog E760 four way double acting 

servovalve which is operated by a torque motor/flapper. The servovalve is connected to 

the cylinder/actuator arm. In flow control servovalves under constant load the control flow 

is proportional to the electrical input current. The load pressures effect the flow of the 

servovalve as shown in Fig. 5.2. The centre of this plot is the null stability region in which 

the load effects is negligible. 

Appropriate transfer functions for standard Moog E760 servovalve were given in 

[1]. The electrohydraulic servovalve has many nonlinear, characteristics. In addition, many 

parts of the servovalve is so small therefore it is not easy to analyse. 

i 
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Fig. 5.2: Flow control servovalve (flow-load pressure) 

The dynamic response of Moog flow control servovalve was described in the low 

frequency range by the following first order transfer function: 

Q (s) 

_(1 
I(s) 

(5.12) 

where K is the servovalve static flow gain at zero load frequency drop and z is the 

apparent servovalve time constant (seconds). In the mid frequency range, the servovalve 

was represented by a second order transfer function. Most of these transfer functions were 

linear, which approximated the response of actual servovalve when operating without 

saturation shown in Fig. 5.3. 
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5.3 - LINEARIZATION OF THE SYSTEM 

The electrohydraulic actuator plant contains significant nonlinear elements 
(servovalve, mass of the hydraulic arm). It is necessary to know a linearised representation 

of the plant for the design of a conventional fixed gain controller for the comparative test 

[2]. The transfer function of the plant can be written from the input/output relationship as: 

Gp(s) = 
ü(S) 

= G, (s)G2(s) (5.13) () 

where GI (s) is the actuator transfer function and G2(s) is the servovalve transfer function. 

Each part of the plant modelled as follows: 

NAa� 
V 

G1 (s) =p2 (5.14) 

s, + 
f(-p-) 

s+ 
NAB, 

m Va�m 
p 

G2(s)=, 
2 

K2 

S 
(5.15) 

+-+1 O)�2 rv� 

where Kl is the servovalve gain, co, is the natural frequency, ý is the damping coefficient 

of the servovalve, mp is the mass of the actuator hydraulic arm, f, is the coefficient of 
friction of the actuator cylinder, Y. is the average volume of the cylinder and N is the bulk 

modulus of the hydraulic oil. 
As a result of this description, the linearised model of the plant is of 5t` order, 

including a free integrator. In this case various further simplifications can justifiably be 

made. For instance, the pole of the G2(s) is typically much faster than those of Gi(s), so 
that the plant can be modelled by a 3`d order transfer function. Another possibility is in the 
low frequency range the servovalve can be represented by a first order transfer function 

therefore, the plant can be described by a 4`h order model. And similarly, the relative 
locations of the servovalve and actuator arm poles can lead to 2°d order models with a free 
integrator. 
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5.4 - SYSTEM IDENTIFICATION TESTS 

The system identification program is a part of the "WinCtrl". "WinCtrl" is a 

windows based controller software package developed by [3] and it runs under 
Windows 3.1. The software is very flexible, it allows the user to conduct the system 
identification tests on systems under conventional controllers or the MCS control. 

Controller hardware is a 386 PC machine equipped with 12-bit D/A and A/D converters. 

Several system identifications tests are conducted on the open loop plant, which 

yielded number of transfer function models for different operating conditions which are 

listed below: 

[1] - Supply pressure 110 bar, accumulators on; 
[2] - Supply pressure 110 bar, accumulators off, 

The system identification tests are implemented on the plant under a proportional control 

using different amplitudes (low and high amplitudes) and frequency ranges (low and mid- 
frequency ranges). 

Order Condition [1]: Condition [2]: 
110 bar; 110 bar; 
Accum. on Accum. off 

5 num=5.6746x 106 num=1.31 x 106 
den roots: den roots: 
0; -7.9-j26; -7.9+j26; 0; -35+j25; -35-j25; 
-24+' 15; -24- 15 -24; -3.2 

4 num=9.11 x 104 num=7.08x 10° 
den roots: den roots: 
0; -15.5; -7.5 1+j22.9; 0; -4.32; -35.8+j23.1; 
-7.51-'22.9 -35-j23.1 

3 num=2.83x103 num=17.9x103 
den roots: den roots: 
0; -8.80+j 16; 0; -40.9+j20.3; 
-8.80-' 16 -40-j20.3 

2 num=62.4 num =108 
den roots: den roots: 
0; -4.58 0; -10.3 

Table 5.1: Identified plant transfer function data. 

The transfer function of the electrohydraulic actuator plant is found by a system 
identification test. The system is 'subjected to a swept sinusoidal input signal u, which 
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produced a corresponding output y under the proportional controller. The test signal was a 

swept sinusoidal signal of frequency 1 to 12 Hz and amplitude 1 Volt. The proportional 

controller gain was k, =7 and sampling interval A=5 ms. Hence, the system identification 

tests are carried out in mid-frequency range. In this way, the dominant part of the plant is 

modelled as the transfer functions of the system. 

For Condition [1], the 5``' order model poles are dominated by the conjugate pair 

at s=7.9 ± j26 for this reason the actuator arm poles at s= -24 ± j15 may be ignored. 

Similarly the 4" order model poles are dominated by the conjugated pair at 

s=7.51 ± j22.9 so that the actuator arm pole at s= -15 can (as an approximation) be 

ignored. This ensures that the given 3 ̀d order model is relevant in Condition [1] for the 

normal operation case. 

2.5 

2 

1.5 

Volts 
1 

yp5 

0.5- 

0- 

-0.5- y 

-1 2468 10 12 14 
Time(Seconds) 

Fig. 5.4: Fifth order model (supply pressure is 110 bar, accumulators on) 
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Fig. 5.5: The nominal third order plant model (supply pressure is 110 bar, accumulators on) 
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Fig. 5.6: The second order model (supply pressure is 110 bar, accumulators off) 
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For Condition [2], the given 2"d order model is a justifiable approximation of these 

condition dynamics. The fourth and fifth order models are not matched by any of these 

conditions, showing such models are over parameterised. It is observed that the plant has a 

nominal third order transfer function in the mid frequency range with a free integrator. 

Therefore the second order model which are derived from system identification tests can 

be considered as lower order models of the original system which is the most relevant 

approximation for condition [2]. 

It is possible to compare the reduced order models of the original plant which are 

derived from system identification tests with the models produced from linear model 

reduction methods. It is assumed that the second order model that is derived from system 

identification tests is a good second order approximation of the original plant therefore, it 

is compared with the lower second order models which are derived from linear model 

reduction methods in Chapter 3. It is observed that Routh stability of Pade' method, 

dominant eigenvalue and frequency matching method, balancing method and stability 

equation method are produced second order models which are very close agreement with 

the second order model that is derived from system identification tests. This indicates that 

some of linear model reduction methods can be used very effectively in the case of 

producing lower order models from the nominal transfer function of the original plant. 

Hence, the reduced order models are derived without conducting system identification 

tests which are comparatively easy and need less time so, in many cases using linear model 

reduction methods may be preferable. 

The plant dynamics are changed by changing the plant supply pressure and/or the 

accumulators settings. The plant has higher bandwidth when the accumulators are 

switched off As it is shown in Fig. 5.7, the system is more stable when accumulators are 

switched off having higher bandwidth is the indication of it. Although, the plant is little 

more noisy when it is working in this condition still, it shows its full performances due to 

the fact the hydraulic fluid can be fully compress and the nonlinear effect of accumulator 

can be avoided when they are in off position. 
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5.5 - IMPLEMENTATION OF CONTROLLERS 

In this case the reference r is chosen as a square wave. "WinCtrl" software 

package is used to implement both the Proportional Plus Derivative Feedback control and 

the MCS control strategies. 

During the experiments, the control problem is to ensure that the measured 

distance y closely tracks a given reference signal r, despite changes in servohydraulic 

characteristics. 

5.5.1 - Proportional Plus Derivative Feedback Control (P+DFB) 

Firstly, the Proportional Plus Derivative Feedback Control is implemented to 

control the electrohydraulic actuator rig. This control strategy requires knowledge of the 

plant dynamics, in the same way as do other conventional controllers. The third order 

model is chosen as the nominal (condition [1]) transfer function of the system and is shown 
in Fig. 5.8 (labelled `Gp'), which indicates sufficient low frequency gain (the free 

integrator is the main reason), but a requirement to increase the margins (from 2.1 dB and 

55°) and closed-loop bandwidth (from 10 rad/s). A P+DFB Controller is implemented with 

a proportional gain k, = 1.0 and a derivative feedback gain kd = 0.1. The resulting open 
loop transfer function plots are also shown in Fig. 5.8 (labelled ̀ GH'), which yield margins 

of co dB and 610, plus the bandwidth is raised to 18.2 rad/s. The closed-loop step response 

stý settling time is predicted to be t, 
4 

sts 0.4 s, with an oscillatory component 0.61x182) 

containing approximately two overshoots, this is assumed to be an acceptable 

performance. The controller is implemented in discrete-time as follows: 

u(k) =k pe(k) - kpkd [y(k) - y(k - i)] 1A (5.16) 

where u(k) is the current control signal, e(k) the current tracking error, y(k) the current 

measured actuator arm position and A is the sampling interval. 
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5.5.2 - The MCS Control 

For the MCS case, the plant model is not required. The synthesis procedure 

commences with the derivation of a reference model equation. The reference model 

parameters {Am, B. ) are deduced from the settling time IS together with zero steady-state 

errors. Firstly, an estimate is made of the nominal plant order and the order of the MCS 

algorithm matches this figure. The plant would normally expect to implement a 3`d-order 

algorithm. A third order MCS formulation would normally be necessary, since the plant is 

itself third order. The second order MCS reference model is used to control the system. 

The MCS control possesses a degree of robustness to such mismatches in orders. It is 

claimed that the reference model could even be removed from the design and the reference 

signal r could be fed directly into the adaption algorithm [4]. The second order MCS 

control is implemented to control the plant. The discrete-time second order MCS 

equations are: Second order MCS control equations (i =1,2) are summarised below, in 

discrete-time scalar form: 

u(k) = kr (k)r(k) + kl(k)xl (k) + k2 (k)x2 (k) (5.17) 

k,. (k) = kr (k -1) + ßye (k)r(k) - oye (k -1)r(k - 1) (5.18) 

k1(k) = k, (k -1) + ßY, (k)x1(k) - oy, (k -1)x, (k -1); i=1,2 (5.19) 

Ye (k) _ 16/t2 )xei(lc) 
+ (4 / ts)xe2 (k) (5.20) 

Xej (k) = xmi (k) - xi (k) (5.21) 

xmi (k) = xmi (k -1) + dicm2 (k -1) (5.22) 

xm2(k) _ 
(-160/is)xml(k-1)+(1-8Et /ts)xm2(k-1) 

+(16A / ts)r(k -1) (5.23) 

where, a=ß- aA , where (a, ß) are the adaptive weights, with a ratio of a/Q= 10 and 

a>0. The adaptive weights are chosen empirically. Values found to be suitable in this 

case are a=0.001 and fl = 0.0001, the values' having been deduced to be a good 

compromise between the speed of adaption and noise propagation. The values of 
(kr, kl, k2) are the adaptive forward, position and velocity gains, r is the reference signal, 

x, (=y) is the measured actuator arm position, y, is the output error, x, � is the reference 
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model states and j is the stepresponse settling time of the reference model, f=0.25 in the 

following tests together with the sampling interval, A=5 ms. 

Second Order MCS Reference Model 

Second order system can be describe as: 

im +2CCVnzm +CVnxm = Cvnr (5.24) 

Here, COn is the natural frequency, ý is the damping coefficient of the system, where =1 

(i. e., the critically damping) and is =4 40) 
n 

The reference model is 

im = Amxm + Bmr (5.25) 

where Am = 
-0) 

2 
-20J 

B,,, 2 
nn co, n 

The required closed-loop step response settling-time is t=0.25. The reference model 

parameters are: 

01 
An _ 

-256 -32 ' Bm _ 
[2056] 

The output error matrix is 

C. =[16/tj 4/tj} 

C, = [256 161 
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5.6 - COMPARATIVE IMPLEMENTATION TESTS 

5.6.1 - Step Response Tests 

In these cases the supply pressure is kept to 110 bar and accumulators were on- 
line. The conventional P+DFB Controller is implemented with the rig in the nominal 

condition (condition [1]) in steady state form. The result of the plant displacement is 

shown in Fig. 5.9. In this plot `xm' is the desired response and `xl' is the actual response 

of the system. There is good correspondence between the desired and actual responses 

apart from small steady-state errors due to the fact that the flow is proportional to the 

velocity of the actuator. In addition, the effect of other nonlinearities existing in the system 

such as, the spool valve stiction, the friction of the actuator and leakage of the plant. 

1.5 

0.5 

to 0 

-0.5 

-1 

-1.50 

Fig. 5.9: P+DFB result for the nominal case (steady-state condition) 
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The result of the system under P+DFB control is shown in Fig. 5.9. The 

corresponding system responses under the MCS control are shown in Fig. 5.1Oa, b. There 

are no significant differences in response between the P+DFB case and the MCS. So, MCS 

matches the performance of this well-tuned conventional controller, without the need for 

system identification and controller synthesis. 

This shows that the third order model and also P+DFB synthesis are well 

designed. The initial adaptive stage of the MCS control response is shown in Fig. 5.11 a 

and the gains themselves are shown in Fig. 5.11b. One should note that in this case, for the 

MCS control, there is no requirement for the system identification and controller synthesis. 

In the case of both controller there is a spike at the beginning of each step and 

following a steady state error due to the nonlinear relationship between the flow from the 

servovalve and the position of the actuator. The flow is proportional to the velocity of the 

hydraulic actuator arm. The plant responses in both cases is nonlinear due to nonlinear 

nature of the hydraulic systems such as, nonlinear behaviour of the hydraulic fluid, friction 

in the actuator and leakage in the system. Another nonlinearity in the system was the 

accumulators were on-line during the tests. 

In case of both controllers the steady state error is positive when the piston of the 

actuator is extract and it is negative when it is retract position due to the nonlinear effects 

of the mass. The mass is rather heavy (6.7 kg) when the amplitude is negative the piston of 

the actuator is in the retract position and the mass of the hydraulic arm pushes the piston 
back in to the another end of the actuator forcefully beyond the demand signal. When the 

piston in the extract position the force due to the mass of inertia opposes against the load 

force. 
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Fig. 5.10: MCS step response for the nominal case (in steady-state condition) 
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Fig. 5.11: Initial adaption for the nominal case of the MCS step response. 
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5.6.2 - Sinusoidal Tests; Condition [1] to [2]; Supply Pressure 
is 110 Bar; Accumulators Switched Off and On 

Changing the accumulators to be suddenly off-line and then on-line again 

produces significant changes in the plant dynamics. The aim of this set of tests is to 

compare the efficiency of MCS in the face of such changes, when compared with the 
P+DFB controller. 

The bandwidth of the closed-loop control system is an excellent measurement of 

the range of stability of the system. The plant has a reasonable high bandwidth when the 

accumulators are in the circuit. If the accumulators are switched on, then the plant 

responses to the sudden changes in the pressure, frequency an amplitude are rather smooth 

and less noisy compare to the condition in which the accumulators are switched offf. 
When the accumulators are switched off the plant has a larger bandwidth 

therefore it is more steady and the nonlinear effect of the accumulators are neglected. 
However, the plant responded to the sudden changes in the pressure, amplitude and 
frequency rather roughly together with noise. In addition, relatively large bandwidths mean 

that the settling time of the system is sufficiently small. 
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Fig. 5.12: The P+DFB controller tracking error, accumulators switched off and on, 
supply pressure is 110 bar. 

The tracking error ('xm-xl') response for the P+DFB control is showed in Fig. 5.12. The 

reference signal was a sine wave of frequency 3 Hz, amplitude was 2 volt, ko = 1.2 and 

kd = 0.1. The corresponding MCS result is shown in Fig. 5.13. with a sine wave reference 

signal of the settling time was t, = 0.25s, frequency was 3 Hz, amplitude was 2 Volt and 

the values of a, ý3 were (0.01,0.001). A comparison of these figures shows that the 
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MCS controller outperformed the P+DFB. Fig. 5.14 reveals that the MCS produces a 

control signal with a greater amplitude and with more effect. The corresponding integral 

square error (ISE) criterion for each closed-loop response shows in Fig. 5.15, that shows 
MCS has less slope than P+DFB whether the accumulators are on-line or off-line. When 

accumulators are off position the plant responses has larger amplitude in the case of both 

controllers, indicating that the plant has higher performance and it is more robust. 
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Fig. 5.13: MSC control tracking error, supply pressure 110 bar, accumulators switched 
off and on. 1- 
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Fig. 5.15: ISE criteria response; supply pressure is 110 bar, accumulators switched off 
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In the case of P+DFB control the error is twice larger than the MCS control. When 

accumulators are switched off the error increased more rapidly in the case of both 

controllers as it is shown in Fig. 15. Under the MCS controller the plant responded to the 

changes in its dynamics rather smoothly and rapidly. The plant parameter changes is 

introduced by varying accumulators position (on or off). The responses to this sudden 

changes in the case of P+DFB control are more rough and noisy. Indicating that the MCS 

control can be a good candidate: in the case of systems which are subject to sudden 

changes in their working environments or their dynamics e. g., aeroplane. 
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5.7 - CONCLUSIONS 

In this chapter the MCS algorithm has been applied to an electrohydraulic 

actuator plant. The MCS algorithm is applied in Single Input Single Output (SISO) form. 

For the nominal operation case, the third order transfer function model is seen to be an 

appropriate choice, and this model is used to design a P+DFB controller for the plant. The 

P+DFB control matched the design expectations when the plant is operated under the 

nominal condition. 

The MCS algorithm is implemented on the plant and the closed loop results are 

compared with those produced by P+DFB. Under the nominal operating condition, the 

two controllers produced very similar responses, despite the MCS controller not requiring 

the plant dynamic parameters. Like other conventional controllers, the P+DFB control 
design requires the plant parameters for implementation. 

This is the second known application of the MCS to the servohydraulic field. The 

first known application of the MCS to a servohydraulic problem was given in the paper by 

Stoten [4]. Excellent implementation results were also generated from this application. 
The MCS algorithm is implemented in a simplified reduced order form. The 

electrohydraulic actuator plant has a third order transfer function and the MCS reference 

model was second order. The plant was higher order than the MCS controller. This 

indicates that the MCS can be quite insensitive to such mismatches. 
It has been experienced that the plant can be controlled under the reduced first 

order MCS control as well, in this condition smaller adaptive weights, a and ß are 

required. In addition, the settling time of the system will be larger to cope with high order 

unmodelled dynamics. The high order unmodelled dynamics are larger in the case of the 

reduced first order MCS compare to the reduced second order one. The plant works in the 
low-frequency range under the reduced first order MCS control. However, the plant 

output response gets rather slow and noisy, indicating that the reduced first order MCS 

control is not capable of showing the whole features of the plant therefore it is not the 
ideal solution for electrohydraulic actuator plant. 

The nominal plant model has the third order transfer function. It is observed that 
the reduced second order MCS control is able to activate the dominant part of the plant 
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and it guarantees the asymptotic stability of the system. The plant output response is rapid 

together with comparatively small noise. 

Simulation and experimental studies have been presented and these indicated that 

the MCS control produces excellent results. The MCS control is shown to produce 

excellent controlled responses which are in close agreement with the desired responses. 
As it is shown by the ISE plot in Fig. 5.15 the MCS controller performed better 

than a conventional control strategy, indicating that, for the electrohydraulic actuator plant 

the MCS control algorithm can be recommended as a robust controller against the effects 

of plant parameter variations, external disturbances and plant nonlinearities on closed-loop 

performances. 
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CHAPTER-6 

IMPLEMENTATION OF MCS ON A 

SERVOHYDRAULIC MATERIALS TESTING 

MACHINE UNDER LOAD CONTROL 

6.1 - INTRODUCTION 

The main objective of this chapter is to present the application of the Minimal 

Controller Synthesis (MCS) algorithm on a servohydraulic materials testing machine. The 

algorithm has been shown to be effective in a number of areas. It has a simple structure 

with relatively few computational requirements per time step. The MCS controller has 

been shown to be robust in the presence of unknown external disturbances and 

unmodelled dynamics in the plant. 

MCS requires no prior knowledge of the plant parameters for implementation, 

and yet is guaranteed to provide global asymptotic stability of the closed-loop system, 
unlike conventional, linear control strategies e. g. P+I. Additionally, the designer is not 
require to synthesize the MCS controller gains, since this done automatically by the 

algorithm, given arbitrary (often zero) initial conditions. 

The chapter starts with properties of materials being tested. Then, the MCS and 
P+I control algorithms are sythesized and implemented on the ESH material testing 

machine under load control. During these tests, only the 10 mm diameter aluminium 
specimens were used. It is shown that the MCS produces better results than those 

produced by an equivalent P+I control algorithm. 
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6.2 - PROPERTIES OF MATERIALS 

A thorough understanding of mechanical behaviour is essential for the safe design 

of all structures, whether buildings, bridges or machines. This is the reason why mechanics 

of materials is used in many engineering fields. In materials testing applications, the static 

and dynamic properties of materials are measured by conducting tension, compression and 

temperature tests. 

To investigate the stress and strains of a specimen it is loaded in tension as shown 
in Fig. 6.1. The specimen has a cylindrical cross-sectional area. To investigate the stress 

and strains in this specimen, it is loaded by axial forces P either side of it. In Fig. 6.1 a, the 

first plot is showing the original length of the specimen (L) before the loads are applied 

and the second one is showing the elongated specimen after the loads are applied. The 

axial forces are produced the internal stress in the specimen which are shown in Fig. 61b, 

for the sake of clarity the specimen is cut at the section mit imaginatively The force per 

unit area is called the stress which is denoted by a and given by the equation 
P 
AP (6.1) 

where Ap is the cross-sectional area of the bar and P is the applied load. The axial stress a 
in the specimen is calculated by dividing the load P by the cross-sectional area, AP. For the 

specimen with a cylindrical cross-sectional area, Ap is given below 

rrD2 A, - 4 (6.2) 

where D is the diameter of the specimen. The strain can be described as the elongation of 
the per unit length, denoted by c (epsilon) and given by the equation 

6 ýL (6.3) 

where S is the elongation of the bar and L is the unloaded length of the bar. If the material 
is linearly elastic then, it follows Hooke's law, so that the longitudinal stress and strain can 
be related by the equation a= EE, where E is the modulus of the elasticity. Then the 

elongation of the specimen can be written as follows 

s=PL 
E4 (6.4) 
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Fig. 6.1: Prismatic bar in tension. 

P 

Under the action of the force P, the specimen elongates an amount 6, so that the total 

length becomes L+5, where L is the original length. The stiffness k is described as the 

force to produce a unit elongation, that is, k=P/8. 

6.2.1 - Stiffness in Elastic Region 

Consider the specimen in Fig. 6.1 is loaded statically in tension or compression 

tests in its elastic region and then it is unloaded as shown in Fig. 6.2. In elastic region no 

matter how many times this task is repeated it will return to its original dimension without 

significant changes in its properties. This is called elasticity. In this case, the applied load 

is below the elastic limit of the material. In general, the elastic limit is slightly beyond, or 

nearly the same as, the proportional limit of materials. 

157 



a (stress) 

+v 

-Co +8a 

......... 
-a'o 

Fig. 6.2: Stress-strain diagram 
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If we consider e and a representing strain and stress respectively and co and Qo their 

maximum values, the hysteresis representation may be represented as in Fig. 6.3. 

Fig 6.3: Hysteresis loop resulting from fully-reversed stress cycling when the material is 
in elastic region 

6.2.2 - Stiffness in Elastic-Plastic Region 

If the specimen is loaded statically in tension then, -unloaded statically and loaded 

again in compression in its plastic region the stress-strain "curve for a such deformation 

sequence will form a hysteresis loop, which is shown in Fig. 6.4. 

In Fig. 6.5, the specimen is repeatedly loaded in tension/compression tests 
(fatigue) in the plastic region then, the internal structure and physical dimensions of the 
specimen will be changed. In this plot Ac represents the plastic strain range, since elastic 
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strains are comparatively small. When a material such as steel or aluminium is loaded 

under a reversed fatigue test into the plastic region, after the first cycle the ductility will be 

reduced. 

Stress 

Qy 

Initial ""I Stress Range 
Loading �cy. 

Total Strain 
Strain 

Ac 

Fig. 6.4: Hysteresis loop resulting from fully-reversed stress cycling when the maximum 
stress reached in each cycle greater than the yield stress. 

Under a reversed fatigue tests in plastic region fatigue will finally take place starting from 

one to a few thousand cycles depending on the load force and properties of the material. 

This type of failure is called as low cycle fatigue. 

6.2.3 - Stress-Strain Diagram 

The stress-strain diagram gives important information about the mechanical 

properties of materials. In general when materials are loaded under the load force the 

diagram starts with a slope. In this case the stress is proportional to the strain until the 

proportional limit and materials behave elastically. Beyond this point the proportionality 

no longer exist. After the proportional limit even a little increment in the load can cause 

rapid increase in strain. If materials are loaded in tension or compression beyond the 

proportional limit considerable amount of elongation occurs without increment in the load 

force. This is called as yielding and the corresponding stress is the yielding stress [1]. In 

the yielding region materials behave perfectly plastic. 
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6.3 - ADVANTAGES OF USING THE MCS CONTROL IN MATERIALS 
TESTING APPLICATIONS 

Adaptive control techniques are often used for a plant with unknown and time 

varying dynamics. Especially a Model Reference Adaptive Control (MRAC) technique can 

make the plant output coincide with a reference output. Since electrohydraulic servo 

system are often used under varying conditions, the application of this technique to an 

servohydraulic materials testing machine is expected to be very powerful and useful [2]. 

The Minimal Controller Synthesis (MCS) algorithm was originally developed by Stoten 

and Benchoubane [3] as an extension to the Model Reference Adaptive Control algorithm 

of Landau [4]. However, the MCS control algorithm does not requires plant model 

identification, unlike the MRAC control. 

In recent years, adaptive controller have been used in the case of electrohydraulic 

systems. Using digital controller have many advantages over analogue controllers 

therefore, they have been widely used in many industries and in the area of materials 

testing applications due to their consistency, flexibility and ease of use. The adaptive 

control is implemented in both discrete and continuous time. Digital controller benefits 

from new developments in electronic hardware. By using faster computers the efficiency 

and the capacity of the materials testing applications can be improved considerably. 
in the manually controlled analogue controller parameters such as the demand 

mean level and amplitude, limit setting and controller gains are set using potentiometers. 
In the case of the ESH materials testing machine, analogue signals are restricted to the 

area of the transducers, servovalve, LVDT's and load cell, as shown in Fig. 6.5. In this 

diagram a 486 PC machine equipped with 12 bit D/A and A/D converters, that converts 

analogue output signals from the LVDT, load cell or extensometer into digital form and 
digital signal from computer into analogue form and sends to the plant. Every parameter 

can be manually adjusted from computer keyboard and complete test set up can be stored 

and recalled from the computer. A major advantage of digital systems for materials testing 

machines is that the intelligence of the system can be used to make the machine easier and 

safer to operate. 

The specimens have sometimes nonlinear properties. In addition, the properties of 
materials change when they are tested in their plastic region. The stiffness of the specimen 
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decreases during fatigue tests. Using adaptive controllers in such applications have many 

advantages due to the fact that they can adapt themselves to the changes in the specimen 

properties and in the testing machine itself. 

In this case, the controller problem is to ensure there is a good correspondence 
between the desired and actual responses despite changes in specimen (for example crack 

growths, effects of high temperatures and modulus variations) and in the test machine 
itself. During most materials tests the characteristic of the specimen changes, therefore 

adaptive control is needed. 

6.4 - THE ESH MATERIALS TESTING MACHINE 

In order to measure the mechanical properties of materials a small specimens of 
the material is tested by using materials testing machine under tension, compression, 
fatigue testing. The ESH materials testing machine which is presented in this chapter, has 
been developed in the Material Laboratory, the Mechanical Engineering Department at 
Bristol University. The plant consists of servo hydraulics, a load cell and a test specimen, 
with input u and output y and induced loads are measured by a load cell in series with the 

actuator ram. 
The rig, shown schematically in Fig. 6.5, is actuated by a standard servohydraulic 

system. During materials testing, the control problem is to ensure that the measured force 

y closely tracks for a given reference signal despite changes in specimen and 
servohydraulic characteristics. 
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Fig. 6.5: Servo-hydraulic materials testing machine (in tension). 

6.5 - DYNAMICS OF THE ESH MATERIALS TESTING MACHINE 

The dynamics analysis of the ESH materials testing machine can be made by 

identifying its differential equation of motion. The dynamics of the system as depicted in 

Fig. 6.6, contains significant nonlinear elements due to the nature of hydraulic systems: 

servovalve dynamics, nonlinear effects of hydraulic fluids. The system consists of a double 

ended, balanced actuator, a servovalve, a fixed displacement pump. The hydraulic pump 

produces constant supply by using a pressure control valve. 
The test specimen is analysed by a mass-spring-damper combination in Fig. 6.6, 

including the effect of the mass of the actuator, this combination is symbolised as M. 
, 

k, 
, 

and Bp respectively. 

The servovalve is a highly nonlinear device. The load flow is represented by the 

square-root relationship for the servovalve therefore, the relationship between the flow and 
the pressure is nonlinear. In the case of materials testing applications the effects of the 
servovalve can be neglected since the load flow variations are very small in such tests. 
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F 

Fig. 6.6: Hydraulic system of materials testing machine 

'P 

In this diagram Q,, Q2 are flows into the first and second chambers of the actuator. The 

leakage flow Q, and the flow due to compressibility Q, from the actuator are written as 
follows: 

Q, =CPPL (6.5) 

Q`=4NC PL (6.6) 
P 

where C. is total actuator leakage coefficient, V is total volume of hydraulic oil in the 

actuator, N is bulk modulus of hydraulic oil. The load flow from the actuator can be 

written as below 

QL = Q, + Q, (6.7) 
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The load pressure is: 

PLP, -P2 (6.8) 

where, P, and P2 are pressures into first and second chambers of the actuator. The plant 

dynamics were depicted in Fig. 6.7. In this diagram QL is load flow, s is Laplace variable, E 

is strain, A. is actuator cross-sectional area and L is gage length of test specimen. 

u 
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QL 
+11X, 

Servovalve L 
Dynamics AP Is 

. _............ _ _... _.... . _........ _...... _.......... _.......... ý f Actuator and 
V, Specimen CP 1+4NC s rMas+Bpl 

Dynamics 
P 

P` 
1 FL + F 

A + k, 

Fig 6.7: Block diagram of linearized materials testing machine dynamics 

6.5.1 - Under Load Control 

The nominal linearization model is of second order under load control. From 
Newton's law the actuator dynamics together with specimen can be written as: 

FL -Fk- F, =Maa (6.9) 

F 

Fk 
1 k` B, 1 

F. 

M. 

II Aclualor 
Ft 

Fig. 6.8: Dynamics of the actuator and specimen 
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In Equation (6.9) 

FL = PLAP 

Fk = ksx, 

F, = Bpzp 

(6.10) 

where FL is load force, Fk is spring force, and F, is the friction force, and M, is total mass 

of the piston and load referred to piston, k, is specimen spring constant. Then, Equation 

(6.9) becomes 

FL = Maxp -FBp. 
Cp +k, xp (6.11) 

In Equation (6.11), B, is viscous damping coefficient for actuator and load, xp is actuator 

displacement. Load force can be written as: 

FL = APPL (6.12) 

where PL is the load pressure. From (6.7), the load flow can be written as follows 

v QL = PLOP + PL (6.13) 
4NCP 

If we take the Laplace transform of the above equation 

V 
QL = Pi CP +S (6.14) 4NCP 

From (6.14) the load pressure can be written as 

Pi 
QVf 

(6.15) 

P +4NCP S 

F=F, t=k, x, andx, =k zp=k , zpkg 

Equation (6.11) can written as: 

then, 

PLAp -B¢zp -k, xp = Mazp (6.16) 

PLAp-F 
k, Bp 

- F=F (6.17) 

Taking the Laplace transform of Equation (6.17) becomes: 

Bk 
PLAp=F s2+ s+ f (6.18) 
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Substituting (6.15) into (6.18) we get 

QABk L°= Frs 2+'S+ (6.19) 
C+ys 

m` Mt 

4NCp 

So, the dynamics of the plant under load control can written from : 
QLAP 

Vt 

F 
Cp+4NCps 

L()_ 
(6.20) QL 

s2 + 
Bp 

s+ 
k` 

Mý Mý 

In this model the servovalve dynamics is ignored as shown in Fig. 6.8. 

6.6 - THE ALUMINIUM TEST SPECIMENS 

The test specimen is installed between the two grips of the testing machine and 
then loaded in tension or compression. The specimens are made of aluminium (stress is 

a= 150 MPa and Young's modulus is E= 72 GPa), with diameter Dl = 10 mm and 
length L=120 mm and gauge length of 22 mm is shown in Fig. 6.9. 
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Fig. 6.9: The aluminium specimens 
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Aluminium and many of its alloys do not have a clearly determinable yielding 

point and they show considerable amount of ductility'. A typical stress-strain diagram for 

aluminium alloy is shown in Fig. 6.10. In this diagram, there is a linear region that is 

starting from point 0 to P, in which Hooke's Law holds and stress is proportional to 

strain. Then, a non-linear region follows starting from point P in Fig. 6.10 which can be 

defined by an appropriate mathematical function. 

a 

0 

a=f(s) 
Y 

PNonlinear 

"4-0.002 offset 

E. 

Linear elastic 

Fig. 6.10: Types of idealised non-linear stress-strain diagram for aluminium alloys. 

In this diagram: E is the elasticity modulus that is often called Young's Modulus, 8 is the 

elongation, a is the stress and c is the strain of the material. Aluminium alloys have 

proportional limit in the range of 70 to 420 MPa and ultimate stress of 140 to 560 MPa. 
The yielding stress of the material is determined by the offset method since it does not 
have a clearly definable yielding point. The method is based on an arbitrary rule therefore 
its is not depending on the properties of the material. As it shown in Fig. 6.10 an offset 
line drawn on the stress-strain diagram parallel to the first part of the diagram (starting 
from point 0 to P in Fig. 6.10) together with offset strain of 0.002 (%0.002). The 
intersection of the offset line and the stress-strain line is determined the yielding stress 
(point Y in Fig. 6.10). This is called the offset yielding stress. For aluminium, the offset 
yield stress is slightly above the proportional limit. 

* Materials that undergo large strains before failure are classified as ductile. 
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6.7 - THE ESH SERVOHYDRAULIC MATERIALS TESTING MACHINE 
UNDER FATIGUE TESTS 

Servohydraulic materials testing machines are widely used in the case of high 

frequency reversal load tests such as fatigue tests. These types of machines are capable of 

applying high-frequency alternating loads on specimens in tension or compression control. 

Electromechanical machines are not well suited for this kind of tests. The main mechanical 

components of a servohydraulic materials testing machine is shown Fig. 6.11. In this 

diagram, the crosshead can be moved and clamped at any position up and down the 

columns to tests specimens of different lengths. In general, grips are normally hydraulically 

operated. In the case of ESH materials testing machine the lower and upper grips are 

mechanically operated. The top part of the actuator is a large screw bolt, and a loading nut 

can be moved up and down to clamp test specimen at its length and collets (the smaller 

rings, see in Fig. 6.9) the ends of the specimen firmly to prevent slipping. The columns are 
fixed to the base platen which also carries the hydraulic actuator. 

4 

Ups 

Loi 

Plate 

Fig. 6.11: Servohydraulic materials testing machine 
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The actuator piston position is monitored and controlled using an internal linear variable 

differential transformer (LVDT) as the feedback transducer, and the force applied to the 

specimen is measured by the load cell mounted beneath the crosshead. 

In the case of strain measurement, an extensometer is attached to the specimen to 

provide a more accurate measure of extension than can be obtained from the LVDT which 
is sensitive to load frame deflections. For ESH materials testing machine 1 Volt 

corresponds 5 kN. The dynamics of the servohydraulic machine are effected by the 

following parameters: The capacity of the actuator, the flow rate of the servovalve, the 

stiffness of the load frame, grip mass, the stiffness of the specimen, transducers accuracy, 

the applied load. Under load control, when the stiffness of the specimen decreased the 

steady-state error will increase due to the lower controller gain. 

6.7.6 - Dynamic and Static Loading 

Dynamic loading is different than static loading. In dynamic tension or 

compression loading the elongation and the stress in the specimen are initially zero then, 

with suddenly applied load they will reach to a certain value. Dynamically applied load 

causes vibrations in the specimen. During this kind of tests the kinetic energy of the mass 

produces additional elongation in the specimen. For that reason dynamic loads may 
produce an elongation which is twice larger than the elongation that is produced the 

equivalent static load. In contrast static load applies slowly, gradually increasing from zero 
to its maximum value, and then remaining constant therefore, the equilibrium between the 

applied load and the resisting force in the specimen always exist. 

6.8 - THE CONTROL LOOP 

The Fig. 6.12 shows control loops of the ESH materials testing machine. Three 

control modes are provided: actuator position control, specimen load control and 
specimen strain control. 
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Fig. 6.12: Position, load and strain control. 

A mode selector used to select which conditioned transducer signal is to be controlled 

variable x(t). The function of the MCS control is to produce an appropriate control signal 

u(t) to drive the testing machine actuator in a direction which minimises the error e(t): 
e(t) = xm 

(t) 
- x(t) (6.21) 

where xm(t) is the demand signal which is usually derived from a computer. The output 

goes directly to the servovalve which controls the actuator, i. e. it acts as the power 

amplifier. 

6.9 - SYSTEM IDENTIFICATION 

Conventional control synthesis requires prior knowledge of the plant dynamics. In 

this case, a series of system identification tests are conducted on the open-loop plant. Test 

specimens are made of aluminium with D, _ X10 mm. During these tests, the plant is 

subjected to a swept sinusoidal input signal u under Proportional load control using the 
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aluminium specimens which produced a corresponding output y (load). The supply 

pressure is kept at its nominal value of 13.8 MPa during these tests and amplitude was 
0.8 V (a corresponding load of 4.5 kN). 

The compliance of the supporting structure on which the actuator, test specimen, 

and associated fixtures dynamics are negligible for the low frequency test considered, but 

could be significant if the test signal frequencies are increased. Therefore, at high 

frequencies a second order model is relevant for the ESH materials testing machine. 

The test results are generated from a swept sinusoid input signal, with data 

analysed by the Matlab System Identification Toolbox macro oe (output-error method). At 

high frequencies, the average second order transfer function is found to be: 

GP (s) =2 
2900 

s +110s+2000 
(6.22) 

The response yp2 predicted from the original input u in Fig. 6.13. The second order model 
is judged to be acceptable for the high frequencies, due to given very close correspondence 

between yp2 and y. 

At low test frequencies the plant can be modelled as a first order. This is because 

of the servovalve dynamics and load inertial and friction effects are negligible at low 

frequencies. 
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Fig. 6.13: The nominal second order plant model (supply pressure 13.8 MPa, under 
proportional load control, aluminium specimen with ý 10 mm) 

6.10 - CHOOSING THE LINEAR CONTROLLER STRATEGIES FOR 
THE ESH MACHINE 

A suitable set proportional gain reduces the steady-state error. The servovalve 

opening is proportional to the servo error. When the gain increased the error gets smaller. 

If the proportional gain is high enough materials testing machine is much more able to 

closely follow demand signal. Too high proportional gain value could result, though, in 

oscillatory plant response, it can even cause instability. 

Integral gain is necessary in materials testing applications to apply static loads 

accurately and drive the steady-state error to zero. In addition, it also removes other 

offsets (the servovalve null offset) in the control loop. Integral action essentially affects the 

performance of the machine in the low-frequency range. In the high-frequency range it 

does not have significant affect. If integral gain is too high then, the plant response 
becomes though together with low-frequency overshoot. 
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The plant response becomes faster with derivative action due to the fact it makes 

possible to set higher proportional gain and introduces damping into the control loop. It 

also increases the systems accuracy. An unwanted effect of derivative gain is that it can 

make systems noisy in the high frequency range due to increase in the proportional gain. 
Therefore, P+I controller is chosen as a good option in the case of controlling the 

ESH materials testing machine. 

6.11 - IMPLEMENTATION OF CONTROLLERS (P+I, MCS 
CONTROLLERS) 

Running under Windows 3.1, all controllers are implemented via Winctrl4. 

Winctrl4 is a windows based controller software package developed and improved by [s]. 

It is used to implement the various controller strategies including conventional and 
adaptive controllers. Controller hardware was a 486 PC machine equipped with 12 bit 

D/A and A/D converters. 

6.11.1 - Proportional Plus Integral (P+I) Controller 

Proportional Plus Integral (P+I) controller is a linear, conventional control 

synthesis. This control strategy requires a plant transfer function for implementation. A 

p+I controller implemented for the aluminium specimens with Dl = 10 mm diameter under 

load control. 
Increasing the derivative gain at high frequency exaggerates signal noise. The 

resonance in the actuator and the load frame affect the performance of the materials testing 

machine badly. Especially, under load control the mass attached to the load cell moves 

with any frame resonance. As a result of this, the measured load will be different from the 

actual load which is imposed on the specimen. In addition, the detected inertia force 

reduces stability of the machine. In fact, derivative action actually makes the resonance 

worse and in this condition using P+I control can be a better option. 
The P+I controller strategy is implemented to reduce steady-state errors to zero. 

The second order plant roots are placed at s, = -22.9844 and s2 _ -87.016. The 
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corresponding first order dominant root is then assigned to s= -11 rad/s, corresponding a 

step-response settling time of about 0.35 s. This design is summarised in the root's loci 

plot of Fig. 6.14, where the parameter along the loci is k= 2900 k,. To get a reasonably 

damped response, the controller zero is placed at: 

s=_ 
kf 

= 12 rad/s kp 

Thus, suitable values of the integral and proportional gains are kf = 24, k, = 2. The P+I 

controller is implemented in a discrete time (ZOHDE) form, with the gains as k, =2 and k, 

= 24, thus 

u(k) = u(k-1)+kpx, (k)-(kp -k, A)x, (k-1) 

x, (k) = r(k) - y(k) 

where u(k) is the current control signal, x, (k) the current tracking error between reference 

and plant output signal, y(k) the current measured load signal which is applied on 

specimens and 0 is the sampling interval. 
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Fig. 6.14: Loci of roots for P+I control with k, /kp = 12 

Given _ the desired closed-loop settling time of 0.35 s, a reasonable choice of 0 was 
A50.35 / 10 = 35 ms. In fact, the actual choice was A= 20 ms. 

s=-22.9844 

. 'Zero at s=-12 

"Dominant root at s=-11 
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6.11.2 - The MCS Control 

For the MCS case, the plant transfer function is not required by the control 

algorithm. Details of the MCS algorithm, including stability proofs, have been presented in 

[6], [7] and Chapter 4. As mentioned before, the aluminium specimens with b10 mm used 

in this set of tests under the MCS load control. Firstly, an estimate is made of the nominal 

plant order, and order of the MCS matches this figure. 

In this case the ESH material testing machine has second order plant dynamics, 

therefore a second-order MCS formulation would normally be necessary. The MCS 

control was implemented in a simplified reduced first order form. The fact that the plant 

was higher order than the MCS algorithm indicates that the MCS control possesses a 
degree of robustness to mismatches in orders. In Particular, relatively low order MCS 

controllers can be very effective in the control of higher order plants. First order MCS 

control equation is summarised below, in discrete time scalar form: 

u(k) = K(k)x(k) + K, (k)r(k) (6.23) 

K(k) = K(k -1) + f3y, xT (k) - ay, (k -1)xr (k -1) (6.24) 

K, (k) = K, (k -1) + ßy. r r (k) - °y. (k -1)rT (k -1) (6.25) 

y, (k) = C. x. (k) (6.26) 

x, (k) = x, � 
(k) - x(k) (6.27) 

where a=ß- ad and A is the sampling interval of the discrete time process. The 

reference model parameters are chosen in order to have stable plant state trajectories x, 

which is guaranteed to follow reference model state trajectories x, � closely. The first order 
MCS reference model is 

xm (t) = Amx(t) + Bmr(t) (6.28) 

where A. =-41t, and B. =4/t, 

Equation (6.28) can be written as 

x(t) = (-4 / tj)x(t) +(4 / t, )r(t) (6.29) 

The hyperstable condition is guaranteed if. 

Ce = ZP 
(6.30) 

In this equation 
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,e -ill 
and P is the positive definite solution to the Lyapunov equation 

PA�, +A'P=-Q ; Q>O (6.31) 

and the `weighting' matrix Q in the Lyapunov equation , which was chosen as Q= [1]. 

The values of adaptive weights were a=0.01 and ß=0.001. The first order reference 

model parameters are: 

A, 
� =-4/t, =-11.4286, B. =4/t,, =11.4286 and C. =t, /8=0.0438 

6.12 - COMPARATIVE TESTS 

6.12.1 - Step Response Tests 

The conventional P+I controller was implemented on the plant. In this case the 

reference signal was a square wave of amplitude 1.5 V and frequency 0.25 Hz. The 

controller gains was k, =2 and k, = 24. The P+I controller yielded the steady state 

responses shown in Figs. 6.15. There is good correspondence between the desired and 

actual responses indicating that the second order plant model from system identification 

tests is well founded and the P+I control is well implemented. The load was applied on 

specimens gradually (static loading). 

With the initial conditions on the adaptive gains set to zero, the adaptive rates are 

chosen empirically; values found to be suitable in this case are a=0.01 and p=0.001, the 

values having been deduced as providing a good compromise between the rate of adaption 

and noise propagation. The MCS yielded the steady-state responses shown in Fig. 6.16a 

and MCS controller gains and input signal shown in Fig. 6.16b and c, indicating that the 

MCS control performs better than P+I, without the necessity for system identification and 

controller synthesis. The initial adaptive stage of the MCS controller is shown in Fig. 

6.17a, b and c, the adaption and response tracking are seen to be both rapid and accurate. 
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Fig. 6.15: P+I step response, supply pressure 13.8 MPa, load 7.5 W. 
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Fig. 6.16: MCS step response, supply pressure 13.8 MPa, load 7.5 W. 
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Fig. 6.17: MCS step response, supply 13.8 MPa, load 7.5 kN, initial adaption 
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Discussions 

Both controller are implemented by using an aluminium specimen with 
ý 10 mm. In the case of step response tests there is a spike at the beginning of each step 

changes, then the steady-state error becomes zero. The spikes occurs due to the nonlinear 

relationship between the flow and the position of the actuator and sudden changes in the 

amplitude of the input signal. In the case of P+I controller spikes are higher than the MCS 

controller indicating that the MCS controller can cope better with changes in the input 

signal and the plant parameters than the P+I controller as it can be seen in Fig. 6.16. The 

steady-state error driven to zero by integral gain. Initial MCS control results are shown in 

Fig. 6.17, the plant response under load controller shown in Fig. 6.17a, spikes get smaller 

after 14 seconds, which is more suitable in materials testing. At the beginning the adaptive 

gains are zero as shown in Fig. 6.17b and they gradually increased. After approximately 14 

seconds the gains did not increase much indicating that the controller preserves the 

stability of the system. 

6.12.2 - Sinusoidal Tests 

In this case supply pressure was set at 13.8 MPa during the tests. The reference 

signal was chosen as a sine wave of frequency 0.25 Hz and amplitude of 2V (10 kN). A 

reasonable choice of A was A= 20 ms. 

The resulting transient response for P+I control is shown in Fig. 6.18. There is a 

good, correspondence between the desired and actual responses. The reference model 

shown as . ̀xm', together with the actual response Y. Plots of corresponding MCS results 

are shown in Fig. 6.19a. In this diagram the desired response shown as ̀ xm' together with 
the actual response Y. MCS controller gains and input signal shown in Fig. 6.19b and c. 

In order to show the effectiveness of MCS during the initial adaption phase, the 
supply pressure kept at 13.8 MPa and the amplitude of the reference signal was 
2V (10 kN). Initially, only small control signal and gain values generated by the 

controller, after 2 s, the adaption and response tracking are seen to be both rapid and 
accurate; see Figs. 6.20a, b and c. 
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Fig. 6.18: P+I transient response, supply pressure 13.8 MPa, load 10 kN. 
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Fig. 6.19: MCS transient response, supply pressure 13.8 MPa, load 10 kN. 
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Discussions 

In the case sinusoidal tests the plant responses are smoother than step response 

tests due to gradual changes in the sinusoidal input signal for both controllers. The steady- 

state error in the case of the MCS controller is smaller than the P+I controller as shown in 

Figs. 6.18 and 6.19. It is observed that small plant parameter variations occurs when the 

amplitude of the input signal is changed. Initial sinusoidal MCS results shown in Fig. 6.20, 

the controller gains started from zero, rapidly adapt to the changes in the plant and 

environment. After 16 seconds gains are settle down and did not increased much 

afterwards as shown in Fig. 6.20b. 

6.13 - CONCLUSIONS 

In this chapter the Minimal Controller Synthesis (MCS) algorithm has been 

applied to the ESH Servo-hydraulic Materials testing machine. The MCS algorithm was 

applied in Single Input Single Output (SISO) form. For nominal operating conditions 
(supply pressure 13.8 MPa, load 7.5 kN), the second order transfer function model was 

seen to be an appropriate choice, and this model was used to design a P+I controller for 

the plant. Proportional Plus Integral controller (P+I) matched the design expectations. The 

MCS algorithm was implemented on the servo-hydraulic rig, and the closed-loop results 

compared with those produced by P+I control under load control. The MCS controller 

performed better than a well designed P+I, despite MCS requiring no plant dynamic 

parameters. Proportional Plus Integral controller design requires plant system 
identification, like other conventional controllers. The MCS algorithm was implemented in 

a simplified reduced-order form. The servo-hydraulic rig has a second-order transfer 
function and the MCS reference model was first-order. The plant was higher order than 

the MCS controller. This indicates that MCS appears to be quite insensitive to such 

mismatches. The MCS algorithm can be recommended as a robust controller for the 

servohydraulic materials testing machine. The algorithm copes with parameter variations 
in specimens (small plant parameters variation introduced when the amplitude of the input 

signal is changed) and in the test machine itself (nonlinear effects of the hydraulic fluids 
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and servovalve dynamics). ̀ Bumpless transfer' between load, strain and position control 

can be accommodated with ease, and simultaneous MCS control of temperature cycles is 

perfectly viable [s]. 

Adaptive control is suitable for use with materials testing machines which have to 

test a variety of specimen of very different, and sometimes non-linear, stiffness. 

Additionally, during the fatigue tests, the stiffness of the specimen decreases as fatigue 

cracks propagate and a controller which can continuously adapt to the changing specimen 

characteristics has obvious advantages. The MCS control can be recommended for the 

materials testing machines as a robust controller against the effects of plant parameter 

variations, external disturbances and plant nonlinearities (which are high pressure and 

temperature changes, aeration and cavitation problems) on closed-loop performances. This 

feature of the MCS control will be detailed in the following chapter (Chapter 7). 
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CHAPTER 7 

COMPARATIVE ROBUSTNESS 

TESTS AND STRAIN MEASUREMENT 

UNDER MCS LOAD CONTROL 

7.1 - INTRODUCTION 

The purpose of this chapter is to show the robustness of the MCS control, in the 

presence of plant parameters changes, plant nonlinearities, external disturbances and 

unmodelled dynamics, under load control. The results of the MCS control will be 

compared with a conventional, linear P+I load control. 
The MCS and P+I control algorithms have been implemented on the ESH 

materials testing machine as detailed in Chapter 6. It has been shown that the MCS control 

outperformed a well designed P+I control. In this chapter, the robustness of the MCS 

control will be investigated in the presence of plant parameter changes due to use of 
different types of specimen. The chapter begins with a linear description of the plant under 
load control. Then, the results of the MCS and P+I control algorithms on the ESH 

materials testing machine are presented. During the tests presented in this chapter, four 

different specimens in terms of materials and diameters have been used. It is shown that 

the MCS control performed better than P+I control algorithm, in both elastic and elastic- 

plastic region, despite MCS requiring no plant dynamic parameters. 

The MCS control algorithm can be recommended as a robust controller for servo 
hydraulic materials testing machine. The algorithm coped with various specimens, which 
have different materials and diameters under equivalent implementation condition (same 
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controller gains, reference signal and reference model). It is shown that the MCS algorithm 

outperforms a well-designed conventional controller, especially when the plant is subjected 

to gross parameter changes and unmodelled dynamics. Finally, the main conclusions of this 

chapter are listed. 

7.2 - PROCESS DYNAMICS IN CLOSED-LOOP MATERIALS 
TESTING AND MODELLING UNDER LOAD CONTROL 

Closed-loop control accuracy is crucial in materials testing applications due to the 
fact that even smaller overshoots or undershoots can cause undesirable result in tension or 

compression tests therefore, controller tuning is also important in such tests. The suitable 

controller parameter values for any one test depend on the nature of the test, the specimen 

characteristics and the dynamics of the materials testing machine. Normally, these values 

vary from test to test. Manual tuning of the controller parameters can be a serious problem 

especially many controller parameters need to be reset during the operation of the 

machine. For that reason it is more desirable to use digital controller in material testing 

applications. 
The controller parameters needs to adjusted according to the changes in the plant 

parameters for satisfactory plant output response. The plant dynamics changes enormously 
during materials testing due to the changes in specimens and the machine characteristics. 
Using adaptive control in this field have many advantages, such as adaptivity to the 

changes in the working condition. Users do not redesign the controller for new condition 

since the controller itself doing this task automatically. 

7.3 - USING THE MCS LOAD CONTROL IN THE CASE OF STRAIN 
MEASUREMENT 

7.3.1 - Strain Measurement by Contacting Specimens 

.. s :ýr 

In general, strain measurement techniques uses direct contact with the test 

specimen surface which requires high degree of skill and patience by the users [1]. Surface 
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preparation of the testpiece is particularly important for the accuracy of the test. In tension 

or compression, strain is defined as the elongation per unit of the gauge length, and 

described as follows 

_ 
1-10 

10 (7. i) 

where I is the gauge length at any time and lo is the original gauge length. This expression 

is satisfactory for elastic strains since 1-1a is small. For plastic deformation the gauge length 

will change considerably, therefore using natural strain, e. is more suitable in such cases 

which is given below 

E�=1nj 
0 

8� =1n(c + 1) 

(7.2) 

Equations (7.1) and (7.2) give similar results for strains less than 0.1. If strain is below this 

value, it is reasonable to use the first equation to measure strain. For larger strains, and 
depending on the application, it is more appropriate to use (7.2) when converting output 

signals. There are many contact strain measurement techniques which are currently in use, 

some of this methods are given as follows: capacitance strain gauge; foil strain gauge; the 

electrical, wire resistance strain gauge; servo controlled strain gauge. Transducers are 

converted displacement into an electrical voltage output and they have been widely used in 

the case of strain measurement. 

7.3.2 - The LVDT Extensometer (5 mm) 

Linear Variable Differential Transformer (LVDT) device, with good linearity and 
low cost they have become very common in creep laboratories. Under load control, the 
device produces an error when the direction of the loading changes. The internal spring of 

the LVDT is the source of this error. Additionally, LVDT devices are also sensitive to 
ambient changes and the presence of magnetic fields. The long standing LVDT's are best 

used in their more traditional role in the low temperatures (below 250 °C), but they are not 
1'11 11 - 
effective at high temperatures. 
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Fig 7.1: The top and bottom plates of the LVDT extensometer. 

The LVDT extensometer, which is presented in this section, has been made in the 

Mechanical Engineering Department Workshop at Bristol. The extensometer consists of 

two parallel rectangular plates each of width 39 mm and height 5 mm and two LVDT's 

which are placed either side of the bottom plate, shown in Fig. 7.1. The bottom plate has 

two holes with 08 mm either side of each corner which is 5 mm away from the plate 

edges, so that two LVDT's can be placed in these holes and fixed by two M3 screws at 

zero position. The two LVDT's have a range of 5 mm which corresponds to ±10 V. Both 

plates have a hole in the middle of them with g25.5 mm which will help to drag these 

plates on the specimens. Two plates are fixed in the middle of the specimens with -15 mm 

gauge length. In order to get fixed gauge length two collets had been used during the 

installation of the plates on the specimens, which have 10 mm height. The specimens are 
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made of aluminium (Q = 150 MPa and Young's modulus is E= 72 GPa), and steel 
(Q = 320 MPa and Young's modulus is E= 210 GPa), specimens with D, = c10 mm, 

shown in Fig 7.2. 

Rad 25 Rad 25 

025.35 
_L" -. -. -. -. _. -. -. -. _. -. _. _. -. _. -. -. -. _. -. _. _. _. -. _. _. -. -. _. _ 

r 
mm _. _ - -" j 

X25.35 
mm 

L 

0175 
mm 

D, =010 
J0173 

mm 

Rad 25 Rad 25 
mm mm 120 mm 

Fig. 7.2: The aluminium and steel specimen with 010 nun. 

The collets made installation easy, by providing complete support to the 

specimens, and preventing the slip of the plates and the specimens, therefore it made 
possible to have predetermined fixed gauge length. Contact between the plates and the 

specimens is made by three M3 screws, for this reason, three M3 tap are located on the 
neck of the top and bottom plates, as shown in Fig. 7.3. 

Fig . 7.3: The test specimen and extensiometer 
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All together, there are'6 M3 taps located as 120° from each other on the neck of 

the top and bottom plates, to provide good contact between the specimens and the plates. 

The structure of the extensometery is rather simple and it is designed for only room 

temperature. Alignment and bonding of the strain gauge require a high degree of skill and 

the process of installing a gauge is time consuming. After fixing the extensometer on the 

specimens, the whole construction was loaded to the ESH materials testing machine under 

MCS load control, as shown in Fig. 7.4. 

Fig. 7.4: Test specimen under MCS load control 

7.3.3 - Implementation of the MCS Control 

The MCS control was implemented in two degrees of freedom form, there was 

no control action in the second degree (strain) of the controller. In fact, this 

implementation is only for controlling the load signal. The strain signal is not controlled. 

Therefore it can be treated as SISO MCS. While the specimen is controlled under MCS 

load control the strain signal is read and logged by the controller. Thus, the second degree 

of the control used as measurement channel of the strain signal. 

Controller hardware consisted of a 486 PC machine equipped with 12-bit D/A 

and A/D converters. In the case of the aluminium alloy specimens with D, = 010 mm, the 

reference r was chosen as a sine wave of frequency 0.4 Hz, and amplitude 2 V. This 

amplitude corresponds to the elastic region (a = 150 MPa) for the aluminium specimens. 

The desired settling time was t, = 0.2 s, a reasonable choice of A was A= 10 ms. The 

adaptive rates are chosen empirically, the values are a=0.1 and 6=0.01. The stiffness 
diagram for the aluminium specimens in elastic region is shown in Fig. 7.5a, where k is the 

192 



stiffness of the specimen. The control input and MCS gains are shown in Figs. 7.5b and c. 

In the elastic region, the modulus of elasticity of the specimens can be computed from 

Hooke's Law (a = Es). The corresponding, the elasticity modulus and the strain signals 

are shown in Figs. 7.5d and e respectively. In the case of perfectly plastic region the 

amplitude of the reference signal was 2.7 V (13.5 kN). The stiffness of the aluminium alloy 

specimens in plastic region is shown in Fig. 7.6a, together with control signal, gains and 

strain signal in Figs. 7.6b, c and d respectively. Following the stiffness signal, the steel 

specimens with D2 = ý7 mm produced in elastic region as shown in Fig. 7.7a. In this case, 

the reference signal was a sine wave of amplitude 2.5 V and frequency 0.4 Hz. The desired 

settling time was t, = 0.4 s, a suitable choice of A was A= 20 ms. The adaptive rates 

were a=0.01 and /3 = 0.001. Corresponding control signal, MCS gains, the modulus of 

elasticity and strain signals are shown in Figs. 7.7b, c, d and e. The stiffness of the steel 

specimens in elastic-plastic region is shown in Fig. 7.8a, together with the control input, 

" MCS gains, and strain signals are shown in Fig 7.8b, c, and d. In this case the amplitude of 

the reference signal was 3.4 V. The standard yielding point for the aluminium alloy given 

as Qy =120 - 200 MPa. The corresponding yielding point measured by MCS is 

a, = 150 MPa (see in Fig. 7.6a). In the case of the steel specimens the standard yielding 

point is given as ay = 300 - 670 MPa. Following the yielding point, MCS produced, 

a,, = 320 MPa as shown in Fig. 7.8a. The results produced by the MCS control are in the 

range of the actual values, indicating that the MCS control can be used in strain and 

-- stiffness measurement very effectively. The results confirmed that the robustness of the 
MCS control in the presence of unmodelled dynamics as proven in Chapter 4. 

i 
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7.4 - COMPARATIVE ROBUSTNESS TESTS 

Both P+I and MCS control have been implemented on the ESH material testing 

machine in Chapter 6. In this case, the aluminium specimens with O 10 mm taken as the 

standard tests specimens, then both P+I and the MCS controllers implemented for the 

standard test condition under load control. 

7.4.1 - Tests Specimens 

The specimens which are used in comparative elastic and elastic-plastic step 

response tests shown in Figs. 7.9-7.10. 

Rad 25 mm Rad 25 mm 
22 mm 

\ 

i. 22 mm i 

/k 
2 mm 

025.35mm I -- -- ---------------------------------- 
102535 

0175 
m 

010 
mm 

0175 
mm 

Rad 25 mm Rad 25 mm 
120 mm 

Fig. 7.9: The aluminium and steel specimens with q10 mm. 

All together four different specimens used in this set of tests which are given as 
below: 

1- Aluminium specimens 

1.1 - The specimens with D, = O10 mm 

1.2 - The specimens with D2 = ý7 mm 

2- Steel specimens 

2.1 - The specimens with D, = q10 mm 

2.2 - The specimens with D. = ¢7 mm 
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Fig 7.10: The steel and aluminium specimen with c7 mm. 

7.4.2 - Stiffness of Specimens 

In the case of axially loaded test specimen the stiffness is defined in the same 

manner as axially loaded bar (in Fig. 6.3), that is, the stiffness k is the force required to 

produce a unit elongation. The elongation of the axially loaded specimen can written as: 

S. (7.3) 
P 

where P is the axial force, L is the unloaded length of the specimen, E is the elasticity 

modulus and Ap is the cross-sectional area of the specimen, which is given as: 

z 
Ap = (7.4) 

where D is diameter of the specimen. The stiffness of the specimen can be written as 

below: 

k= 
EAP 

L 

or from Equation (7.4) 

k_E; rDz (7.5) 

In table 7.1 Eý, is the modulus of elasticity of the aluminium alloy specimens, E,, is the 

modulus of elasticity of the steel specimens, k010 is the stiffness of aluminium specimens 

with D, = 010 mm, -k 7 is the stiffness of aluminium specimens with D2 = 07 mm, k,, o is 
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the stiffness of steel specimens with D, = ¢10 mm and ks, is the stiffness of steel 

specimens with D. = q57 mm. From table 7.1, four different specimens stiffness differences 

were computed in terms of percentage, which are shown below: 

k,, o is % 65.713 less than k,, o, 

k,, o is % 30.0291 less than ka7, 

k,, o is % 51 bigger than k,,. 

The Specimens 
with O10 mm 

The Specimens 
with ý7 mm 

Aluminium 
Alloy k. 10 = 

Eau' kau = 
Earýi 

4L 4L 
ka, o = 47124 N/mm ka, = 23091 N/mm 

EN24T (Steel) 
E 

rl 
Earý2 

s kýio - 4L 
k 

,ý- 4L 
k210 =137440 N/mm k, 7 = 67348 N/mm 

Table 7.1: Stiffness of specimens 

7.4.3 - The First Set of Tests (Elastic Region) 

In the case of first set of tests (elastic step response tests), both the MCS and P+I 

controllers performed in the elastic region. The first set of tests consisted of square wave 

reference signal, of frequency 0.25 Hz and amplitude equivalent to 0.9 V, which was 

correspond to 4.5 kN (applied load on specimens). This amplitude corresponds to 

dynamics in elastic region for all specimens, therefore first set of the tests can be called as 

elastic step response tests. It was required that the P+I and MCS controllers yield critically 
damped closed-loop responses which settled in 0.35 s. In all cases supply pressure kept on 

13.8 MPa during the tests. 

For the first set of tests, the steel and aluminium specimens with a cylindrical test 

section is used and the test specimens deformation restricted to the elastic region. 

204 



2 

1 

ö 

-v Co 0 -i-1 

xm 

14 16 18 20 -`0 246 8 10 12 
Time (Seconds) 

(a) Reference model and plant output signal 

4 

Cl) 
ö0 
> 

-2 

A 

2 

--, 2468 10 12 14 16 18 20 
Time (Seconds) 

y 

(b) Control signal 

Fig. 7.11: P+I control step response, the aluminiüni specimens with 010 mm 

205 



2 

a 0 

-2 0 2468 10 12 14 16 18 20 
Time (Seconds) 

(a) Plant and reference model output signals 

5 

N 
Ö0 
.ý 

-5 ý 
0 246 tj 10 12 14 16 18 20 

Time (Seconds) 

(b) Control signal 

Fig. 7.12: P+I control step response, the aluminium specimens with c7 mm 

206 



I 

2 

U) 
ö 
ý0 
cri 
0 
r' -1 

16 18 20 -4- 0246 8 10 12 14 
Time (Seconds) 

(a) Plant and reference model output signals 

02468 10 12 14 16 18 20 
Time (Seconds) 

4 

2 

Co 

-2 

U 

(b) Control signal 

Fig. 7.13: P+I control step response, the steel specimens with c10 mm 

207 



2 

0 
v cu 
J 

-1 

-2 0 

(a) Reference model and plant output signals 

4 

2 

0 0 

-2 

02468 10 12 14 16 18 20 
Time (Seconds) 

(b) Control signal 

Fig. 7.14: P+I control step response, the steel specimens with q7 rmn 

208 

2468 10 12 14 16 18 20 
Time (Seconds) 



2 

N 

ö 

v 
0 

-2 0 

2 

I 

(a) MCS control step response, reference and output signals 

U) 
ö0 

-1 

-2 0 246 8 10 12 
Time (Seconds) 

14 16 18 20 

(b) MCS gains 

4 

2 

U) ö0 

-2 

-4 0 2468 10 , 12 14 16 18 20 
Time (Seconds) 

(c) Control signal 

Fig. 7.15: The responses of the MCS control, the aluminium specimens with X10 mm 

209 

2468 10 12 14 16 18 20 
Time (Seconds) 



2 

1 
N 

0 
0- 

0 
O 
J 

-1 

-2 0 

2- 

1 

U) ö0 
> 

-1 

-2 0 

4 

2 

(a) MCS control step response, reference and output signals 

24 

(b) MCS gains 

68 10 12 14 16 18 20 
Time (Seconds) 

Cl) 
. aý 
O0 

-2 1i 

-4 02468 10 12 14 16 18 20 

., 
Time (Seconds) 

(c) Control signal 

Fig. 7.16: The responses of the MCS control, the aluminium specimens with q7 mm 

210 

2468 10 12 14 16 18 20 
Time (Seconds) 



2 

U) 
ö 
110- 

J 
-1 

-2 0 

2 

1 

(a) MCS control step response, reference and output signals 

U) 
ö0 
> 

-'-2- 0 

2 

1 

ö0 

-2 02468 10 12 14 16 18 20 
Time (Seconds) 

(c) Control signal 

Fig. 7.17: The responses of the MCS control, the steel specimens with q10 mm 

24 

(b) MCS gains 

68 10 12 14 16 18 20 
Time, (Seconds) 

211 

24 -6 8 10 12 14 16 18 20 
Time (Seconds) 



2 

ö 

v m 0 J 
-1 

-2 0 

2 

I 

c ö0 
> 

-1 

2 468 10 12 14 16 18 20 
Time (Seconds) 

(a) MCS control step response, reference and output signals 

-2 ý 
0 

4 

2 

246 

(b) MCS gains 

Time (Seconds) 

N 

0 

-2 

-40 2468 10 12 14 16 18 20 
Time (Seconds) 

(c) Control signal 

Fig. 7.18: The responses of the MCS control, the steel specimens with 07 mm 
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7.4.3.1 - The Results and Discussions of the First Set of 
Tests 

The MCS and P+I controller are implemented in Chapter 6 by using an aluminium 

specimens with 10 mm diameter. The relevant designs are shown in Table 7.3 and Table 

7.4. Under the nominal condition (the aluminium specimens with O10 mm) P+I load 

control responses are shown in Fig. 7.11a, together with control signal shown in 

Fig. 7.1 lb. The plant responded rather roughly to the changes in the amplitude of the input 

signal. There is a good correspondence between desired and actual responses, apart from 

small overshoots and undershoots beginning of each period due to the nonlinear 

relationship between the flow and the position in the servovalve and the sudden changes in 

the amplitude of the input signal. This indicates that the second order model and also P+I 

synthesis are well designed. The responses of the MCS control in the nominal case is 

shown in Fig. 7.15a, there is a small spikes in comparison with P+I control at the begining 

of each step changes. The responses were satisfactory. The MCS gains are shown in 

Fig. 7.15b, they are steady and do not vary much which is good indication of the stability 

of the controller. 
Except the aluminium specimens with X10 mm, other specimens with different 

diameters or different materials are considered away than the nominal condition. Same 

controller gains and input signals are used for all specimens. In elastic region all specimens 

are tested under 4.5 kN force. The MCS control in the case of steel specimens with X10 

mm, q7 mm are shown in Fig. 7.17 and 7.18 respectively. The error is slightly bigger due 

to changes in the specimens characteristics. The MCS control result in the case of the 

aluminium specimens with q7 mm is shown in Fig. 7.16. The error is smaller than the 

nominal case. The corresponding P+I controller responses in the case of aluminium 

specimens with q7 mm, steel specimens with. 010 mm and 07 mm are shown in Fig. 7.12, 

T, 13 and 7.14 respectively. In general, the steady-state error in the case of the MCS 

control is smaller than the P+I control, indicating that the MCS control can adapt itself to 

the changes in the specimens stiffness in elastic region better than the P+I controller. 
In the elastic region the slow part of the plant is dominant, due to using small 

amplitude (comparatively small load). In the 
_case of MCS the steady-state error can be 
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made zero using higher adaptive gains or increasing the controller amplitudes. The integral 

square error criterion is used to quantify the tracking performance of each of the controller 

strategies which were applied to the aluminium and steel specimens with different stiffness 

and yielding stress. In elastic region, the MCS controller performed significantly better 

than a conventional, P+I control, in the case of both the aluminium and steel specimens, 

the fact most noticeably demonstrated by the ISE plots in Figs. 7.19 and 7.20. 

Away from nominal operation, the linear plant model parameters changed. 

Therefore, the effects of nonlinearity and noise due to unmodelled dynamics which 

appeared in the plant dynamics, hence in the plant responses. In Figs 7.19 and 7.20, the 

MCS control produced a smaller tracking ISE in both the nominal condition and away than 

the nominal operating condition (in the case of the steel specimens with 07 - 10 mm and 

the aluminium specimens with 07 mm). Another important point was that tracking ISE of 

the steel specimens was larger than those in the aluminium specimens in the case of both 

controllers, due to significant changes in the plant parameters. 
1-f 

7.4.4 - The Second Set of Tests (Elastic-Plastic Region) 

The second set of tests is called as elastic-plastic step response tests. In this set of 
tests specimens were tested in elastic-plastic region. Firstly, it is necessary to know the 

yielding stress of the EN24T and aluminium alloy specimens, then to figure out the loads 

which can be applied on each specimen in plastic region. 
For the steel specimens, beyond proportional point, the proportionality between 

stress and strain no longer exists. Beyond the proportional limit, the strain begins to 
increase more rapidly, for each increment in the stress until yielding point, beginning at this 
point, the steel starts to yield. After the proportional limit, the steel behaves perfectly 
plastic. Therefore, for second set of the tests in the case of steel specimens it is crucial that 
the test is being conducted beyond the proportional limit, ideally in the perfectly plastic 
region. 

The steel specimens are made of EN24T, a high quality alloy steel that can 
provide in the hardened and tempered condition to a tensile range of 87-102 kg/mm2. 
Content of the material is: % 0.36 - 0.44 carbon, % 0.1 - 0.35 silicon, % 0.45 - 0.7 
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manganese, % 1.3 - 1.70 nickel, %1 - 1.40 chromium, % 0.2 - 0.35 molybdenum. The 

steel exhibits good ductility and shock resisting properties combined with resistance to 

wear. A stress- strain tests was carried out using steel specimens with 07 mm under the 

MCS control. From a stress-strain test, it was observed that the proportional limit of the 

specimens is 300 MPa and yielding stress is ay -- 320 MPa shown in Fig. 7.8a. In this 

diagram k is the stiffness of the specimens. This test consisted of sine wave reference signal 

of frequency 0.4 Hz, and amplitude equivalent to 3.4 V. The settling time was t, = 0.4 s, 

and reasonable choice of A was A= 20 ms. Empirically chosen adaptive rates are 

a= 0.01 and 8=0.001. The elasticity modulus of the specimens is E= 210 GPa. 

Therefore, 2.2 V (11 kN) and 5.2 V (26 kN) of amplitudes corresponds to loads in the 

plastic region for steel specimens with 07 mm and 010 mm respectively. 

The aluminium test specimens are made of an aluminium alloy which has the 

yielding stress of ay= 140-150 MPa and Young's modulus of E= 72 GPa. Many 

aluminium alloys do not have clearly definable yielding point, a typical stress-strain 
diagram is shown in Fig. 6.4. In this diagram, a line drawn on the stress-strain diagram 

parallel to the initial linear part of the curve (Hooke's law holds and material is elastic in 

this region) but offset by some standard amount of strain curve. The intersection of the 

offset line and the stress-strain curve gives the yield stress. For aluminium the offset yield 

stress is slightly above the proportional limit. 

Under a MCS stress-strain test, it was found that the offset yielding stress of 
aluminium specimens with X10 mm is ay, = 140-150 MPa shown in Fig. 7.6a. In this 

test, the demand signal was sine wave of amplitude 2.5 V (12.5 kN) and frequency 0.4 Hz. 

Reasonable choice of settling time was 1, = 0.2 s and sampling interval A= 10 ms. The 

adaptive rates are chosen empirically; values found to be suitable in this case area = 0.1 

and ß=0.01. In this diagram k is the stiffness of the specimens. In the second set of tests, 

1.2 V (6 kN) and 2.2 V (11 kN) amplitudes are applied on the aluminium specimens with 
ý7 mm and 010 mm respectively, which were beyond the proportional limit. Therefore, 

the tests were conducted in the perfectly plastic region. 
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The Specimens 
with X10 mm 

The specimens 
with q$7 mm 

Aluminium ay, ; ts 150 MPa cry., 150 MPa 
Alloy PL=11i PL=6kN 

PL=2.2V PL=1.2V 

EN24T (Steel) a se 320 MPa a 320 MPa 

PL=26 kN PL=12 kN 
PL=52V PL=2.4V 

Table 7.2: Applied load on specimens in elastic-plastic region 

Reference model signal in all cases were equivalent to critically damped response 

to a square wave of frequency 0.4 Hz. The settling time of the reference model, following 

a constant demand, was t, = 0.35 s with zero error in steady state. The controller gains of 

each controller strategy were kept same as in the first set of tests, which were a=0.01 

and 8=0.001 in the case of MCS. Similarly, k, =2 and k, = 24 for P+I control. This was 

the standard test signal applied to all cases. In the case of the first set of tests amplitude of 

controller kept constant at 0.9 V (4.5 kN) in the case of four specimens. 

Each specimen needs different load to reach its plastic region. Therefore, in the 

second set of tests amplitude of the controller was varied due to use of two different 

materials which have different yielding stresses and stiffness. Clearly, mechanical and 

chemical properties of aluminium alloy and EN24T steel are considerably different from 

each other. In addition, using the same material two different specimens made by changing 

cross-sectional area which were A, = 78.5398 mm2 and A. = 38.4845 mm2. Overall, four 

different specimens in terms of materials and diameters; therefore, four different 

amplitudes which correspond to applied load on specimens are used in this set of tests. 

These amplitudes are as follows: 1.2 V for the aluminium specimens with q7 mm, 2.2 V 

for the aluminium specimens with 010 mm, 2.4 V for the steel specimens with 07 mm, 

and 5.2 V for the steel specimens with X10 mm. Applied load for each specimen together 

with yielding stress of materials is shown in Table 7.2. 
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The Steel 
Specimens 
with X10 mm 

The Steel 
Specimens 
with ý7 mm 

The Aluminium 
Specimens 
with X10 mm 

The Aluminium 
Specimens 
with 07 mm 

k, =2, k; =24, k, =2, k, =24, kp=2, ki=24, k=2, k, =24, 
amp = 0.9 V, amp = 0.9 V, amp = 0.9 V, amp = 0.9 V, 

Elastic frq=0.4Hz, frq = 0.4 Hz, frq=0.4Hz, frq = 0.4 Hz, 
Region t, = 0.35 s, t, = 0.35 s, 1, = 0.35 s, t, = 0.35 s, 

A =20 ms A= 20 ms A= 20 ms A= 20 ms 

k, =2, k, =24, k, =2, k; =24, kp=2, k, =24, k, =2, k, =24, 
amp = 5.2 V, amp = 2.4. V, amp = 2.2 V, amp = 1.2 V, 

Elastic-Plastic frq=0.4Hz, frq=0.4Hz, frq=0.4Hz, frq=0.4Hz, 
Region t, = 0.35 s, t, = 0.35 s, t, = 0.35 s, t, = 0.35 s, 

A=20 ms A=20 ms c1=20 ms A=20 ms 

Table 7.3: P+I controller gains and reference signal variables. 

Steel 
Specimens 
with b10 mm 

Steel 
Specimens 
with O7 mm 

Aluminium 
Specimens 
with q10 mm 

Aluminium 
Specimens 
with 07 mm 

a=0.01, a=0.01, a=0.01, a=0.01, 
ß=0.001, ß=0.001, 3=0.001, /3=0.001, 

Elastic amp = 0.9 V, amp = 0.9 V, amp = 0.9 V, amp = 0.9 V, 
Region frq=0.4Hz, frq=0.4Hz, frq = 0.4 Hz, frq=0.4Hz, 

t, = 0.35 s, t, = 0.35 s, t, = 0.35 s, t, = 0.35 s, 
A=20 ms A=20 ms A=20 ms 0=20 ms 

a=0.01, a=0.01, a=0.01, a=0.01, 
ß=0.001, /j=0.001, /3=0.001, /3=0.001, 

Elastic-Plastic amp = 5.2 V, amp = 2.4 V, amp = 2.2 V, amp = 1.2 V, 
Region frq=0.4Hz, frq=0.4Hz, frq=0.4Hz, frq = 0.4 Hz, 

t, = 0.35 s, tf = 0.35 s, t, = 0.35 s, t, = 0.35 s, A= 20 ms 0 =20 ms A= 20 ms A= 20 ms 

Table 7.4: 'MCS control gains and reference signal variables. 
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Fig. 7.21: The responses of P+I control, the aluminium specimens with 010 nun 
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Fig. 7.22: The responses of P+I control, the aluminium specimens with 07 mm 
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Fig 7.23: The responses of P+I control, the steel specimen with 010 mm 
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Fig. 7.24: The responses of P+I control, the steel specimens with 07 mm 
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Fig. 7.25: The responses of the MCS control, the aluminium specimens with 010 mm 
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Fig. 7.26: The responses of the MCS control, the aluminium specimens with ý7 rim 
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Fig. 7.27: The responses of the MCS control, the steel specimens with ý10 mm 
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Fig. 7.28: The responses of the MCS control, the steel specimens with 07 mm 
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Fig. 7.29: ISE criteria responses of P+I controller, supply pressure 13.8 MPa, elastic- 
plastic region. 
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Fig. 7.30: ISE criteria responses of the MCS control, supply pressure 13.8 MPa, elastic- 
plastic region 
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7.4.4.1 - The Results and Discussions of the Second Set 
of Tests 

In the first set of tests the amplitude of the tests was limited as 0.9 V (4.5 kN) for 

all specimens, therefore the changes in the plant parameters was limited as well. In the case 

of second set of tests, the changes in the plant parameters are more significant due to the 

fact that each specimen was tested beyond its proportional limits (plastic region), therefore 

the dynamics of the specimens had more effect in the plant dynamics. 

Following the step reference signals a P+I controller produced the set of results in 

the case of aluminium specimens with 010 and 07 mm and steel specimens with 010 mm 

and 07 mm are shown in Figs. 7.21,7.22,7.23 and 7.24 respectively. The results showed 

that manual tuning of controller gains, k? and k, are crucial in the case of P+I control in 

order to get noise free, zero steady-state plant output. In all cases the P+I control give 

stable responses. The steady-state errors and spikes are bigger than the MCS control for 

all specimens, otherwise the controller is stable. 

The results presented here show that effective control in material testing can be 

achieved using the MCS control. The plant responses are virtually indistinguishable from 

the reference model outputs. Therefore, the responses are very satisfactory, shown in 

Figs 7.25,7.26,7.27 and 7.28 in the case of aluminium specimens with 010 mm, 07 mm 

and steel specimens with 010 mm, 07 mm. respectively, together with MCS control gains. 

The gains are very rapid, subsequently they settle to new levels that are appropriate for the 

new applied load on specimens. It is shown that the transient terms are rapid and noise is 

not a problem. The corresponding control signals are shown in Figs. 7.25c-7.28c: 

compared with P+I controller response in Figs. 7.21b-7.24b. The steady-state errors in the 

case steel specimens is bigger than the aluminium specimens due the fact that great plant 

parameters variations occurs due to use of different materials. In general the MCS control 

adapts itself very smoothly to the changes in the plant parameters. The steady-state error 

was very small, there was afvery small spike at the bottom of the each step. The actuator is 

in retract position at the bottom of the each step and the load force pushes the specimen 
down beyond the demand signal. The bottom grip is not firmly fixed as the top grip due to 

the fact that it is attached to' the actuator piston therefore, every little movement and the 
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nonlinearities in the actuator causes disturbances in the output signal when the amplitude 

of the input signal is negative. 

It is shown that, in the case of the steel specimens control signals are 

comparatively more noisy than the aluminium specimens, due to relatively large variations 

in stiffness. It is observed that control signals were large and noisy in P+I control when 
compared with those produced by MCS. 

In the elastic-plastic region the MCS control has outperformed the P+I controller, 
the fact is most clearly demonstrated in the ISE plots, Figs 7.29 and 7.30. As it is shown 

the ISE error in the case of the MCS control is far less than the P+I controller for all four 

specimens. 

7.5 - CONCLUSIONS 

This chapter is concerned with comparative implementation studies of the 
Minimal Controller Synthesis (MCS) algorithm applied to a material load control problem. 
Certainly the MCS responses were superior to those resulting from the implementation of 
a conventional proportional plus integral (P+I) fixed gain, linear, controller. 

In considering robustness of the MCS control and P+I controller, when 
comparing their effectiveness in elastic and elastic-plastic region, it was observed that since 
tests are consistent (same controller gains, amplitude, frequency, sampling interval, settling 
time) in their nature, the MCS control is more effective at both conditions than P+I 

control. Additionally, the MCS control was robust in the presence of parameter changes in 

specimens (for example crack growths and modulus of elasticity variation) and in the test 
machine itself. 

Parameter changes were introduced due to use of specimens with different 
diameters and materials in these tests. It was observed that MCS responses were virtually 
unaffected, and yet the P+I responses were significantly effected. A fact was more clearly 
demonstrated by the ISE plots in Figs. 7.19 and 7.20 for elastic region and in Figs. 7.29 

and 7.30 for elastic-plastic region. In addition, the dynamics of the servovalve and load 
inertial and frictional effects have been ignored in all the control systems designs (including 
MCS, since the dimension of the reference model state is only 1). Additionally, control 
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signal was large and noisy in elastic-plastic region than in elastic region, due to large and 

rapid plant parameter variations. 

In order to design structures and components using modem engineering materials, 

it is essential to have a good understanding of the materials stress and strain 

characteristics. Since strain is directly related to a dimensional change, it can be measured 

on small specimen. In this case, the accuracy of the measuring device is crucial. It was 

shown that the MCS algorithm can be used in strain and stiffness measurements very 

effectively. 

Furthermore, the MCS control offers the potential of improving the effectiveness 

of control. Due to adaptation mechanism the MCS control feedback and feedforward gains 

change continuously according to plant parameters change and nonlinearities in the plant. 

Similarly, reasonable control is achieved by P+I control. However, the latter requires 

manual tuning of proportional gain k, and integral gain k, It was observed that control 

signal was larger and more noisy in the case of P+I control than MCS. 

However, the servovalve stiction has had an effect on the MCS and P+I responses 
in elastic region. In the second set of tests the steady-state error is bigger than the first set 

of tests due to the larger variations of the specimens characteristics, unmodelled dynamics 

and nonlinearieties in the system. The steady-state error is insignificant in the case of the 

MCS control, but it was significant in the case of P+I control. Indicating that MCS is a 

robust controller in the presence of plant parameter changes, nonlinearities and external 
disturbances. Therefore, it is suitable for systems which are working under different 

operating conditions. 
The MCS algorithm was implemented in a simplified reduced first order form. 

The nominal plant was of a second order. The fact that the MCS was of lower order than 

the plant. Indicating, that MCS appears to be robust and quite insensitive to such 

mismatches. 
Since electrohydraulic servomechanisms are widely used for a great variety of 

closed loop material testing application, many applications can benefit from MCS control 

performance. In particular in all closed loop electrohydraulic load, strain and temperature 

cycle tests, the nonlinear aspect of servovalve are significant in high frequency and it can 
be handled effectively by the MCS control. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

8.1 - INTRODUCTION 

Adaptive control has been researched for number of decades. In recent years, 
however, consistent levels of system performance have resulted in greater attention being 

devoted to it. In this thesis the application of the MCS control in the electrohydraulic field 
is presented together with stability analysis. 

The main purpose of this chapter is to make final conclusions about the 

application of the MCS control in the electrohydraulic field together with robustness 

analysis which are explained in detail in previous chapters. Later in this chapter, the 

possible improvements and applications of the MCS control including the reduced order 
MCS control in the case of electrohydraulic systems will be discussed. 

The importance of modelling and simulation of the hydraulic systems is 

emphasised in Chapter 2. In this chapter, some modelling methods which are being used in 

this field are also discussed. Modelling and simulation of hydraulic systems has many 

advantages and it has been successfully used in this field. 

The conventional model reduction methods are discussed together with adaptive 

model reduction methods in Chapter 3. Various model reduction methods are explained in 

this chapter. Subsequently, the servohydraulic actuator plant and the ESH materials testing 

machine transfer functions are reduced by using conventional model reduction methods. 
Some of the model reduction methods produced very accurate reduced order models 

which are in very close agreement with the response of the nominal plant models. 
Although the MCS control does not need plant parameters, these parameters are still 

needed in the case of comparative studies. 
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The robustness of the MCS control in the presence unmodelled dynamics is 

proven by either Popov's hyperstability or Lyapunov's function depending on the nature of 

the disturbances due to the unmodelled dynamics in Chapter 4. Later in this chapter, the 

stability of the electrohydraulic actuator plant and ESH material testing machine in the 

presence of unmodelled dynamics are proven using both methods. 

The MCS control is implemented in a reduced order form in the case of position 

control of the electrohydraulic actuator plant in Chapter 5. The plant had a nominal third 

order model and the MCS control is implemented in reduced second order form. The MCS 

control is implemented one degree lower than the nominal plant model. Very satisfactory 

results are generated. The results of the MCS control responses are compared with those 

produced using P+DFB control. 

Another application of the reduced order MCS control in the servohydraulic field 

was on the ESH material testing machine in this thesis (Chapter 6). In this case, the plant 
had a second order nominal plant model and the MCS control is implemented in first order 
form. Again, the MCS control produced very satisfactory results compared with results 

which are generated from P+I control. It is shown that the MCS is robust in the presence 

of plant parameters changes, nonlinearities, external disturbances and changes in the 

specimens. 
The MCS control is used in the case of strain measurement and satisfactory 

results are derived in Chapter 7. Both aluminium alloys and EN24 steel specimens are used 
and specimens are controlled under cyclic MCS load control. These test results were very 
useful to find the yielding point of each material. Although each material has a known 

yielding point which is given by the manufacturing company but those numbers are not 
accurate enough, their values being higher than those obtained during testing. The exact 

yielding point is important, especially during the second set of tests where the elastic 
boundary is found to ensure that the tests are carried out in elastic-plastic region. 

8.2 - ADAPTIVE CONTROL 

Important theoretical results on stability and structure of the adaptive controller 
have been established. Much theoretical work still remains to be done. Laboratory 
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experiments and industrial applications have contributed to a better understanding of the 

practical aspects of adaptive control. In some cases, an arbitrary small disturbance can 
destabilise an adaptive system which is otherwise proved to be bounded-input bounded- 

state (BIBS) stable (Exponential stability or global asymptotic stability). Exponentially 

stable systems can tolerate a certain amount of disturbance. First, it is worth pointing out 

that the nominal adaptive system (assuming there are no disturbances and unmodelled 
dynamics) is exponentially stable. The robustness of the MCS control is investigated both 

analytically and empirically on the electrohydraulic actuator rig. Additionally, the 

robustness of the reduced order MCS controller is proven in the case of both the 

electrohydraulic actuator plant and the ESH material testing machine in Chapter 4. The 

practical concept of robustness is that stability should be preserved in the presence of 

actual disturbances present in the system. The main difference from classical linear control 

system robustness margins is that robustness depends not only on the plant and control 

system but also on the reference input. The reference input should guarantee persistent 

excitation of the nominal adaptive system. The exponential stability of the adaptive system 
is guaranteed by a persistency excitation (PE) condition. This will lead to a robustness 

margin, that is, bounds on disturbances and unmodelled dynamics which will not destroy 

the stability of the adaptive system. 

8.3 - HYDRAULIC SYSTEMS 

The field of hydraulics is wide and it has been very effectively used in the 
industrial machines. There has been a considerable amount of improvement in system 
performance utilising hydraulics. One such application is an electrohydraulic robotics 
system. Electric motors are found unsatisfactory due to their poor power and heavy 

weight. Some features of the hydraulic system include low friction (since the hydraulic oil 
being used in most cases act as lubricant), high capacity to take up heavy loads with little 

amount of energy consumption (the hydraulic cranes), the portability and flexibility to 
transfer power from applications near by (if two robots with similar moments are needed 
the piping can be arranged such that the fluid power can be divided to both robots). 
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8.4 - MODELLING AND SIMULATION OF HYDRAULIC SYSTEMS 

Modelling and simulation of hydraulic systems are extensively used as a design 

tool. In order to investigate larger and more complex systems within an economic time 

frame. Simulation of hydraulic systems is crucial, as it may indicate whether or not the 

designed system will be stable. In addition, it may be helpful in choosing a suitable 

configuration for a given application. Also, it may help in choosing suitable controller 

parameters satisfying stable closed-loop system response. Many different modelling 

methods and software packages have been used to model and analyse the hydraulic 

systems. Some of those methods are presented in Chapter 2. In this chapter the 

electrohydraulic actuator plant is modelled and simulated by Simulink. Simulink is a 

software package for analysing and simulating dynamic systems. It is shown that there is a 

good correspondence between the simulated and the actual system responses, indicating 

that the mathematical model of the system which is analysed and modelled by Simulink is 

accurate. 

8.5 - APPLICATIONS OF ADAPTIVE CONTROL IN 
ELECTROHYDRAULIC SERVO FIELD 

Adaptive control has been applied to electrohydraulic systems (position control of 
hydraulic system, material testing machine) using both direct (Model Reference Adaptive 

control) and indirect (Self-tuning regulator) methods. In the case of the direct method 
(MRAC) the controller parameters are estimated directly from input-output data, and not 
calculated from the plant model. By contrast, in indirect adaptive control (or self-tuning 

regulator) the parameters are derived from the estimated model. If the estimated model is 
far from the real plant, then the controller will not perform accurately. Generally, plant 
models always contain some nonlinearities and unmodelled dynamics, and therefore Model 
Reference Adaptive control is more accurate than Self-tuning regulators and it is easy to 
implement. The hydraulic system equations are nonlinear and parameters of hydraulic 

systems vary greatly. Hydraulic systems exhibit significant nonlinearities. Using linear 

control theory in the case of the position control of hydraulic actuator does not produce 
satisfactory performance. The adaptive control can adapt itself the sudden changes in the 
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plant and good performance can be obtained despite the presence of many nonlinear 

characteristics. 

8.6 - ROBUSTNESS OF ADAPTIVE CONTROL IN THE CASE OF 
UNMODELLED DYNAMICS 

Adaptive control method ensures the stability of the plant with unmodelled 

dynamics. It has been shown that if the reference input is persistently exciting, then 

adaptive control possesses convergence properties which are strong enough to ensure that 

disturbances can be tolerated to some extent. 

Adaptive control with unmodelled dynamics can be unstable without any 

disturbances. Two main instability mechanisms occur due to the unmodelled dynamics. In 

the first one, instability occurs due to increments in the adaptive gains while the second 

one is less obvious; it occurs when the reference input had too much energy in the 

frequency range of the unmodelled dynamics. For those reasons, choosing a suitable 

reference model is crucial in the case of adaptive control with unmodelled dynamics. The 

dynamics of the whole structure are slowed down by the unmodelled part of the plant, 
hence the controller gains should not excite the high frequency modes of the system. This 

is important to preserve the stability of the system. 

8.7 - THE MCS CONTROL 

8.7.1 - Application of the MCS Control in Servohydraulic Field 

It has been shown that MCS works very effectively in servohydraulic applications. 
The MCS control can adapt to changes in pressure and temperature, and therefore it 

performs better than a linear controller strategy. The MCS control can be used very 

effectively in the case of hydraulic positioning systems. These type of systems are gain 
sensitive, in other words the set points may change greatly for a variety of reasons. The 

changes are even bigger in the case of hydraulic positioning systems with single rod 
actuator. In addition, in the case of material testing field the MCS control can adapt to 
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changes in the specimens as well as in the system itself. This was very clearly demonstrated 

in Chapter 7. 

8.7.2 - Applications of the MCS Control in Materials Testing 
Applications 

The MCS control has been used in the materials testing field. The MCS control 

was first implemented in the materials testing machine in [1] and very satisfactory result 

were generated. In Chapter 6, the MCS controller is implemented on the ESH materials 

testing machine under load control. The derived results are better than the conventional 
P+DFB controller despite the fact that MCS does not need plant parameters for 

implementation, and it can still adapt to plant parameter variations due to the changes in 

pressures, temperatures and in the specimens. This fact is very clearly demonstrated in 

Chapter 7. In this chapter, specimens having different diameters and materials have been 

used and performance of the MCS control is compared with the P+DFB control. The 

second set of tests was very useful to show the robustness of the MCS control in the 

presence of unmodelled dynamics and parameter variations in the plant. The two 

controllers are implemented in the case of the aluminium specimens with q10 mm. It is 

shown that the MCS control performed better than a well tuned P+DFB control in both 

elastic and plastic regions. The fact is shown very clearly by ISE plots. This indicates that 
the MCS can adapt to changes in the plant parameters. 

The MCS control is used in the case of strain measurement as well in Chapter 7. 
These strain measurements is used to obtain the proportional limits of the specimens. After 
the proportional limit, the material behave plastically. In Chapter 7, the second set of tests 
are planned to be carried out in the elastic-plastic region, therefore it was important to 
know for each type of specimens when the specimens start to behave plastically. 
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8.7.3 - Application of the MCS Control On the Electrohydraulic 
Actuator Plant 

The MCS can overcome the difficulties related to the strong nonlinear 

characteristic of the electrohydraulic systems. In the case of a hydraulic positioning system, 

the MCS control achieved zero steady-state error in the face of load disturbances. Most 

importantly, it showed a high degree of robustness and good performance in the presence 

of nonlinearities, unmodelled dynamics and parameter variations in the plant. Position 

control of a single-rod actuator systems are gain sensitive. This type of system always 

gives position errors when operating with a load force. The MCS control is implemented 

on the electrohydraulic single-rod actuator plant in Chapter S. It is shown that the MCS 

can overcome the nonlinearities in the plant. The results of the MCS position control is 

compared with those produced by P+DFB in the Chapter. Under the nominal operating 

condition, the two controllers produced very similar responses despite the fact that the 

MCS does not require plant dynamic parameters. Away from normal operating condition 
(accumulators switched on and supply pressure is 110 bar), the MCS control performed 
better than a well tuned P+DFB controller. 

8.8 - THE REDUCED ORDER ADAPTIVE CONTROLLER 

Implementing the MCS controller in a reduced order form has many advantages. 
Firstly, the structure of the closed-loop system will be simplified. In many cases, although 
the transfer function of the plant is derived from the system identification test, there are 
always some nonlinearities, disturbances and unmodelled dynamics in plants. In some other 
cases, the plants may be over-parameterised. Additionally, even if the plants have higher 

order dynamics, if they are not working in the high frequency range then the higher order 
dynamics will not be activated and the plant will behave rather like a lower order one. 
Hence, using a reduced order controller in the low frequency range can avoid complication 
of the controller structure. Therefore, depending on the systems working conditions, the 
reduced order controller will make the whole controller structure simple and more 
efficient. 
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Two points are important in this case. The first is choosing suitable values for the 

adaptive weights. Secondly, choosing a reasonable value for the settling time. Both values 

should be chosen to not excite the high frequency modes of the plant which are found in 

the unmodelled part of the plant, and will be discussed in the following sections 

(sections 8.9.1,8.9.2). 

8.9 - THE REDUCED ORDER MCS CONTROL 

The reduced order MCS controller is a form of the standard MCS controller, in 

which the controlled plant contains some unmodelled dynamics term inside the controller 

structure. The order of the controller reference model is therefore less than the nominal 

transfer function of the system. Generally the slower parts of the plant, which are more 
dominant than the fast part of the system, can be matched by the reduced order MCS 

control. The fast parts of the plant unmodelled (neglected) and included into the 
disturbance term. Then, the whole structure is represented in state space form. It is 

assumed that fast part of the plant does not contribute much to the plant output response if 

the system is working in low or mid frequency range. The robustness of the reduced order 
MCS controller is proven by Popov's and Lyapunov's method depending on the nature of 
the disturbance term in Chapter 4. 

8.9.1 - Applications of the Reduced Order MCS Control 

In the case ESH material testing machine, the first order SISO MCS control is 

implemented. Under the load control the plant is described by a second order nominal plant 
transfer function. It has been shown that the MCS control can cope with the unmodelled 
dynamics, parameter changes in the plant parameter due to the changes in the pressures, 
temperatures and the changes in the specimens. Similarly, the electrohydraulic actuator 
plant is modelled in Simulink by a 5th order transfer function. Subsequently, the system 
identification made it clear that no model matched the fifth order models. The fifth order 
models are over parameterised. The third order model was relevant for the nominal 
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operating condition (accumulators on-line, supply pressure is 110 bar). Hence, the 

electrohydraulic actuator plant is controlled under the second order SISO MCS control. In 

both cases the MCS was lower order than the plants. The results were very satisfactory, as 
is shown in Chapter 5,6,7. 

8.9.2 - Stability of the Reduced Order MCS Control (Lyapunov 
and Popov's theory) 

Lyapunov's direct method is a powerful tool to prove the stability of the reduced 

order MCS control. In general, unmodelled dynamics always exist in the plant model. It 

has been assumed that if the disturbance term due to the unmodelled dynamics, plant 

nonlinearities and parameter variations is small then Popov's method is suitable to prove 
the stability of the reduced order MCS system. If the disturbance term is large and rapidly 

varying then the Lyapunov's method is more suitable to guarantee the stability of the 

whole system. The stability of the reduced order MCS control is proven in Chapter 4, in 

the case of both SISO and MIMO systems. It has been shown that the MCS control is 

stable in the presence of unmodelled dynamics provided that the input signal is persistently 

exciting and the controller parameters are chosen to not excite the high frequency modes 

which are taking place in the unmodelled part of the plant. In this chapter the stability of 
the reduced order MCS control is proven using both Popov's and Lyapunov's methods. 

8.9.3 - Choosing Suitable Settling-time in the Case of Reduced 
Order MCS Control 

Choosing a suitable settling time of the MCS control in the case of a plant with 
unmodelled dynamics is crucial. When the unmodelled dynamics are introduced into the 

system, it is assumed that some parts of the plant have negligible effects on plant output 
result. Therefore, the slower part of the plant dynamics has been used. Compared to the 

nominal plant the reduced order plant has slower, dynamics. The reduced order MCS 

control can produce very good response if the system is operated in low or mid frequency 
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range. Hence, it is necessary to use a larger value for the settling time compared to the 

nominal case assuming that the closed loop system is slower. 

8.9.4 - Choosing Suitable Values for Adaptive Weights a and ß 
in the Case of the Reduced Order MCS Control 

The speed of the adaptation can be increased by increasing the value of the 

integral gain coefficient a. The higher values of a will therefore excite the high frequency 

modes of the plant which are assumed to take place in the unmodelled part of the plant. In 

this case smaller values of integral gain are used compare to the plant without any 

unmodelled dynamics (the nominal plant transfer function). 

The influence of the proportional gain coefficients 8 is to reduce the magnitude of 

the ultimate region of convergence of the error, x, as ß is increased. Hence, the increment 

in the proportional gain will decrease the output error. For slow and medium plants, 
increasing the proportional gain will decrease the output error. However in the case of the 

plants which are subjected to the rapidly varying external disturbances, unmodelled 

dynamics, or the plant which is working in the high frequency range, large values of 6 can 

lead to large output errors even instability. Very large adaptive gains (a, 6) can cause 
instability. Therefore, they should not increased beyond a certain point. 

8.10 - FUTURE WORK 

8.10.1 - Application of the MCS Control on MIMO 
Electrohydraulic Systems 

The stability of the MCS control in MIMO servohydraulic systems may be 
investigated. The MCS control can be implemented on a large hydraulic system (e. g. 

electrohydraulic multi arm manipulators, earthquake rig, widely distributed 

electrohydraulic systems, etc. ). The MCS can be very efficient in the case of multivariable 

servohydraulic systems, which are known to suffer from plant order changes under 
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different operating conditions. The MCS control can be implemented in centralised or 

decentralised form. 

8.10.2 - Implementation of the Reduced Order MCS Control on 
MIMO Servohydraulic System 

One of the future investigations of the reduced order MCS control could be 

implementation of the MCS control in MIMO servo-hydraulic fields. The reduced order 

MIMO MCS control will simplify the dynamics of the electrohydraulic system, due to the 

fact that it will ignore the high frequency modes of the system. The reduced order MCS 

control will simplify the structure of the MIMO servohydraulic system and it will make it 

possible to control the large or widely distributed servohydraulic systems in a stable 

manner. 

Another possibility is using the reduced order MIMO MCS control in the case of 
large interconnected non-servohydraulic systems. The reduced order MIMO MCS 

controller can be implemented in either centralised or decentralised form. 

8.10.3 - Temperature Cycle 

In general, during the temperature cyclic loading materials behave nonlinearly 

with high temperature. At high temperature the strength of most materials falls, due to the 
increasing mobility of dislocations, coupled with a general reduction in the strength of 
interatomic bonds and therefore of the rigidity of the lattice. 

At high temperature, a small amount of internal intergranular cracking can occur 
over extended time periods. Nonlinear material oscillations are encountered during thermal 
cycling. Other nonlinearities include: 

(1) - Temperature is not well distributed along the length of gauges. 
(2) - Temperature changes during tests 

According to [2], a thermal cycle could lead to unexpected early failure. This indicates the 
possibility that a temperature cycle promotes more rapid failure than an isothermal test. 
Adaptive control will preserve the stability of the system in the presence of the 
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nonlinearities due to the peaks of oscillations and other sudden changes in the specimen. 

Further, using the MCS control in the case of temperature cycling will bring many 

advantages, such as rapid adaptation to the changes in the specimens as well as in the 

systems. 

8.10.3.1 - Thermal Strain Control 

Thermal strain is a special class of elastic strain that results from expansion with 
increasing temperature or contraction with decreasing temperature. Increased temperature 

causes the atoms in a solid to vibrate by a larger amount. Thermal effects are generally 

greater at higher temperatures. The coefficient of thermal expansion increases with 

temperature. 

The most direct method of using strain gauges is bonding to the material surface, 

but this method can not be used at high temperature; and the cyclic life of strain gauges is 

limited when operating at high strains. Again, the MCS control can be a good option in the 

case of thermal strain control. 

8.10.3.2 - Thermal Fatigue Testing 

Changing the temperature usually affects the fatigue crack growth rate, with 
higher temperature often causing faster growth. If a material is tested in a temperature 

range where creep occurs, creep strains will contribute to the inelastic deformation in the 

test. Fracture toughness generally increases with temperature. The coefficient of thermal 

expansion will decrease rapidly when the temperature is increased. Physical properties of 

the material vary with temperature. Moreover, greater creep strain occurs if the speed of 

the test is slower, as a slower test provided more time for the creep strain to accumulate. 
Using the MCS control in the case of thermal fatigue testing can be very helpful to 

overcome the nonlinearities and parameter variations in the plant and specimens. 
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8.11 - THE MCS STRAIN CONTROL (UNDER ROOM TEMPERATURE) 

The interpretation of strain becomes extremely important when a strain controlled 

test is undertaken in an axially loaded machine. In the case of fatigue test, if the material 

cyclically hardens or softens, the ratio of elastic to plastic strains cannot be held constant 

by this method of displacement control. To overcome this problem, the instantaneous load 

signal may be fed to a microprocessor that determines the elastic displacement from 

knowledge of load and Young's modulus. Another further implementation of the MCS 

control in the material testing field can be strain control in room temperature. Under 

plastic strain control, the materials behaves nonlinearly, therefore using the MCS control in 

this case has many advantages because it can adapt itself to sudden changes in the both 

plant and the specimens. 

8.12 - FATIGUE TESTING UNDER THE MCS CONTROL (ROOM 
TEMPERATURE) 

Under fatigue testing, materials are subjected to repeated loading. In general, one 

or more tiny cracks start in the material, and these grow until complete failure occurs. 
Prevention of fatigue fracture is a vital aspect of design for machines, vehicles and 

structures that are subjected to repeated loading or vibration. In fatigue, materials are 
tested under a cyclic load which is lower than the proportional limit of the material. The 

test therefore take place completely in the elastic region. After thousands or millions of 
repeated loads the structure of the material changes. Using the MCS control or the 

reduced order MCS control in fatigue testing may bring advantages due to the adaptability 

of the MCS control to changes inside the specimens. 

8.13 - THE MIMO MCS CONTROL IN MATERIALS TESTING FIELD 

For servohydraulic materials testing machine the MIMO MCS algorithm can be a 
very good option. In this case, the MCS could be implemented in both centralised and 
decentralised form. The decentralised MCS algorithm uses only local information of each 
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subsystem. Therefore, the synthesis of each MCS control input is simplified. Additionally, 

this property helps to extent the controller structure when it is needed, e. g. when the 

additional parts are added into the interconnected systems. In certain circumstances it is 

important to control two variables at the same time. In the case of material testing field the 

MIMO MCS control can be used to control two variables such as, stress-temperature, 

strain-temperature at the same time. 
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APPENDIX I 

POPOV'S HYPERSTABILITY THEORY 

The hyperstability theory was developed by Popov as a generalisation of the 

absolute stability problem [1]. It was shown in this work that the absolute stability of 

feedback systems that can be represented by the standard form, consisting of two blocks, a 

linear system in the feedforward block and a nonlinear system in the feedback block as 

shown in Fig. 1. 

Linear time- 
invariant block 

0,41 +uI X=Ax+Bu Iy 
y=Cx+D 

W (y. ) [Nonlinear time y, 
varvina feedback 

Fig. 1: Standard Nonlinear Time-Varying Feedback System 

The feedback block is assumed to varying an input-output relation of the form 

W(y, )y, z0 
W(y, )=o (A1.1) 

where y, and W(y. ) are scalar and are respectively the input and the output of the nonlinear 

time-varying block. It was observed that the feedback system shown in Fig. 1 is absolutely 

stable if, it is asymptotically stable for all the feedback blocks satisfying the condition 
(A1.1). 

The hyperstability theory is a generalisation of the absolute stability problem 
where the feedback block in Fig. 1 is assumed to satisfy a more general input-output 

relation, i. e.: 
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y; Wdi z-co 
ro 

(A1.2) 

where cö is a positive constant independent of t,. The stability properties of the feedback 

system (in Fig. 1) are entirely dependent on the feedforward block characteristics if the 

feedback block satisfies inequality (A1.2). 

Definition 1: 

The linear completely controllable and observable system is given as 
z=Ax-BW 
y, =Cx-DW 

(A1.3) 

where the dimensions of x, W and y, are respectively n, m and m, is hyperstable for all 
feedback blocks satisfying (A1.2) if there exist two constant 5((5 > 0) and y(y z 0) so that 

the solution of (A1.3) satisfies the following inequality: 

IIx(t), 1I < 8(Ilx(0)II + r) for all t, tz0 (A1.4) 

Definition 2: 

The linear system (A1.3) is asymptotically hyperstable if it is hyperstable and if. 

limx(t) =0 (A1.5) 

Definition 3: 

The linear system (A1.3) is hyperstable if there exist two constants ßo and ß, so 
that the following inequality : 

rl 
f 

-WT (r)y, (r)dt +ß0lIx(to)112 Z ß1IIx(ti)112 (Al. 6) 
to 

is satisfied for all t, ý to and for all functions Wand y. that satisfy inequality (A1.2). 
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If we interpret quantity 2 
xT (t, )x(t, ) as the stored energy at instant t,, then by 

setting fß, = X32 =2, we observe that the hyperstability condition (Al. 6) corresponds to a 

passivity condition, where the stored energy at instant t, must be less or equal to the initial 

energy 
(4xT(0)x(01)) 

plus the added energy between to and t,. 

Moreover, it is well known that a linear passive network is characterised by a 

positive real transfer function matrix, see [2]. We therefore obtain an equivalent definition 

to the hyperstability condition (Al. 6). 

Theorem 1: 

The linear system (A1.3) is hyperstable for all the feedback blocks verifying 

inequality (Al. 2) if the transfer function matrix G. (s) = C[SI - A]-'B +D is positive real. 

Theorem 2: 

The linear system (Al. 3) is asymptotically hyperstable for all the feedback 

systems satisfying inequality (Al. 2) if the transfer function matrix 
GP (s) = C[SI - A]-'B +D is strictly positive real. 
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APPENDIX 2 

POSITIVE REAL TRANSFER FUNCTIONS 

Definition I 

A rational function G, (s) of the complex variable s=o. + jcw is positive real 

(PR) [1] if the following conditions are satisfied: 

1- Ge(s) is real for real s. 

2- Ge(s) has no poles in the open right half plane, Re(s) > 0. 

3- The poles of G, (s) on the axis Re(s) =0 are distinct, and the associated 

residues are real and positive (or null). 

4- For all real m for which s= jw is not a pole of GP(s), we have 

Re[G, (s)] z0 

Definition 2 

A rational function G, (s) of the complex variable s=a+ jw is strictly 

positive real if the following conditions are satisfied: 

1-G, (s) is real for real s. 

2-G, (s) has no poles in the closed right half plane Re(s) = 0. 

3- Re[(G, (s))] >0 for all w. 

Property I 

If GP(s) = 
n(s) is a positive real function, then we have: () 

1- n(s) and d(s) have real coefficients. 

2-1/G, (s) is also positive real function. 
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3- n(s) and d(s) are Hurwitz polynomials. 

4- The order of n(s) does not differ from the order of d(s) by more than ±1. 

Property 2 

If G,, (s) and Gp2(s) are positive real functions, then we have: 

1- a, G,, (s) + a2G, 2 
(s) is positive real (provided that al and a2 c W>0). 

2 
1+ GP, ýsýG 

Z 
ýsý 

is positive real. 
P 

Definition 3 

An nxn matrix Ge(s) of real functions is positive real if the following 

conditions are satisfied: 

1- All elements of Ge(s) do not have poles in the open right half plane, Re(s) 

>0. 
2- The poles of any element of Ge(s) on the axis Re(s) =0 are distinct, and 

the associated residue matrix is a positive semidefinite Hermitian. 

3- The matrix Gp (joo) + G, (- jw) is a positive semidefinite Hermitian for all 

real values of w which are not a pole of any element of G, (s). 

Definition 4 

An nxn matrix G, (s) of real rational functions is strictly positive real if the 

following conditions are satisfied: 
1- All elements of Gp(s) are analytic in the closed right half plane Re(s) z 0. 

2- The matrix Gp(jw) + GP (- ja) is a positive definite Hermitian for all real 

w. _ 
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Kalman-Yacubovitch Lemma 

i- Consider the linear system: 
z= Ax+Bu 

y= Cx 

The transfer function matrix C(sI - A)-' B is a positive real matrix if, and only if, there 

exists a symmetric positive definite matrix P and a symmetric positive semidefinite 

matrix Q such that: 

PA+ATP=-Q 

C=BTP 

2- The transfer function matrix C(sI - A)-' B is a strictly positive real matrix if, and 

only if, there exists a symmetric positive definite matrix P and a symmetric positive 
definite matrix Q such that: 

PA+ATP=-Q 

C=BTP 

3- Consider the linear time varying system: 

x= A(t)x + B(t)u 

y= C(t)x 

The transfer function matrix C(t)[sI - A(t)]-' B(t) is a positive real matrix if and only 

if there exists a symmetric positive definite matrix P(t) and a symmetric positive 
semidefinite matrix Q(t) such that: 

P(I)A(t) + A(t)T P(t) + P(t) = -Q(t) 
C(t) = B(t)r P(t) 

For the strictly positive realness condition, the matrix Q(t) must be positive definite. 
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APPENDIX 3 

LYAPUNOV'S STABILITY THEORY 

Consider the free system described by the following differential equation: 

i=f (x, t) (A3.1) 

where xER. It is assumed that the function f(x, t) is sufficiently smooth so that the 

equation has a unique solution starting at any initial state xo at any time to. We further 

assume that there exists a unique vector solution s(t, xo, to), differentiable in t, such that, 

for any fixed xo and to: 

(D(to, xoto) = xo 

dt 
c(t, x0, to) -f 

(cD(t, xo, to ), t) 

Definition 1 

An equilibrium state x, of the free dynamic system (A3.1) is stable if for every real 

number .6>0 there exists a real number 5(c, to) >0 such that the condition Ilxo - x, 11 SS 

implies II(D(t, xo, to) - x, 115 E for all t> to . 

Definition 2 

An equilibrium state x, of the free dynamics system (A3.1) is asymptotically stable 
if.. 

1- it is stable 

2- every motion starting sufficiently near x, converges to x, as t tends to infinity. 
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Definition 3 

An equilibrium state x, of the free dynamic system (A3.1) is globally 

asymptotically stable if 

1- it is stable 

2- every motion converges to x, uniformly in xo for llxo 11 :5r is fixed but 

arbitrarly large. 

Definition 4 

An equilibrium state x, of the free dynamic system (A3.1) is uniformly 

asymptotically stable if 

1- it is stable 
2- every motion starting sufficiently starting near x, converges to x. uniformly in 

to, i. e. the term 5 does not depend on to. 

Theorem (Lyapunov) 

Consider the free dynamical system 

z=f (z, t) (A3.2) 

where f(O, t) =0 for all t. Suppose there exists a scalar function V(x, t) [1] and [2] with 

continuous first partial derivatives with resspect to x and t such that V(0, t) =0 and 

1- V(x, t) is positive definite, i. e. there exists a continuous, nondecreasing scalar 

function a such that a(O) =0 and all t and all x*0 

0<a (Ilxlj) SV (x, t) 

2- There exists a continuous scalar function y such that KO) = 0. so that the 

derivative V of V along the motion starting at t, x satisfies, for all t and x ;t0: 

V(x, t) _- V(x, t) <_ -y(llxl5 <0 
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3- a(llxl) -* °° as IIxil --> °° 

then the equilibrium state x, =0 is globally asymptotically stable and V(x, t) is called a 
Lyapunov function of the sysstem (A3.2). 

For the uniform asymptotic stability of the equilibrium state x1 = 0, condition (3) 

is replaced by the following condition: 

- there exists a continuous, nondecreasing scalar function 6 such that 8(0) = 0, 

and all t, we have: 

V(x, t) _ , fl(jjxV) 
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Abstract - This paper describes the application of the direct 

adaptive minimal control synthesis (MCS) algorithm to a 

specific problem In electrohydraulic control. In particular, 
comparative Implementation studies are presented of a typical 

servohydraulic positioning system, as used In aerospace 
applications. It Is shown that MCS outperforms a well-designed 
conventional controller, especially when the plant is subjected 
to gross internal parameter changes. 

LYIRODUCTION 

The adaptive MCS algorithm was first proposed in 1990 
[1] as a form of direct adaptive control for multivariable plant 
subject to unknown (but bounded) plant parameter changes and 
external disturbances. In addition, closed-loop stability and 
robustness proofs were presented for the large class of 
(electromechanical) plant with Lagrangian dynamics - despite the 
fact that no a priori knowledge was required concerning the 
nominal values of the plant parameters. The implemented form of 
MCS therefore required a minimal amount of information on the 
plant, and since no on-line plant estimation procedure was required, 
only a minimal amount of control code (cf a PID controller) was 
necessary. These attributes of minimal design input and coding 
requirements led to the coining of the controller's name. Since 
1990, significant extensions to the basic MCS algorithm have been 

presented (including a decentralised version), together with sets of 
iinplementation studies. An overview of the algorithm, its 

extensions, together with implementation case studies, is presented 
in [2]. In all the cases described in [2], the predicted performance 
characteristics of MCS were matched in practice. 

Of particular relevance to this paper is a study briefly 
described in [2], and in more detail in (3), concerning the MCS 

control of a servohydraulically actuated materials testing machine. 
The problem investigated in [3] was the load (force) control of a 
fatigue test specimen subjected to varying degrees of crack 
propagation. Although (3] indicated that MCS held much promise 
for application to the field of servohydraulic control, the test rig 
used was of a rather specific nature, and atypical of a wide range of 
practice. Hence, one of the main objectives of this paper is to 
present the application of MCS to the control of a typical 
servohydraulic positioning system as used, for example, within 
aerospace systems for actuation of flight control surfaces. 

The remainder of this paper is structured as follows: in the 
next section, the test rig is described, together with the dynamic 
modelling and system identification results., Then, the linear fixed 

gain and MCS control system designs are presented, followed by, the 
comparative test results. Finally, the main conclusions to the paper 
are presented together with further implications for MCS control 
within this general field. 

PLANT DYNAMICS AND SYST Em IDENTIFICATION TESTS 

The plant consists of Moog E760 torque motor/flapper 
operated four-way double-acting servovalve, hydraulically connected 
to a cylinder/actuator arm. The actuator cylinder has a diameter of 
32mm, the actuator arm has a stroke of approximately 100mm, and 
the end of the arm is connected to an inertial load representing an 
aircraft control surface. See Fig 1. In this arrangement there is no 
representation of the effect of aerodynamic forces (which would 
normally produce a restoring force on the actuator arm in flight). 
However, the rig is in all other respects quite representative of 
servohydraulic systems used in aerospace (and other) systems. 
The input to the plant is the control voltage, u, applied to the torque 
motor current amplifier, and the output, y, is an LVDT measure of 
the actuator arm displacement, xj. 

Switchable accumulators are situated either side of the 
actuator arm piston; in normal use these devices would generate a 
source of energy to smooth out hydraulic pressure fluctuations 
and/or make provision for short-term increases in load. In the 
context of the tests described in this paper, the switching of the 
accumulators is a method for changing the plant parameters - thus 
providing a mechanism for gauging closed-loop system robustness. 
Another method of plant parameter variation used in the tests is to 
lower the supply pressure - from 11. OMPa to 1.41v1Pa (ie 1600psi to 
200psi). 

Accumulator Accumulator ,(\ Load 

Actuator cylinder/arm 

ILwr 

/Aa. adjust /Ace, adjust 
P, adjust 

Amp Servovalve P, 

Fig I Senvohydraulic test rig 

The dynamics of systems as depicted in Fig I are kno%sn 
to contain significant non-linear elements, eg see (4], (5]. However, 
a linearised representation of the input/output relationship is used in 
the design of a conventional fixed-gain controller for the 
comparative tests. A typical transfer function model is then given 
by (4), [5], (61: 

Gi(s) = y(s) / u(s) = G, (s)G3(s)0, (s) 



where Gi(s) represents the amplifier/torque motor transfer function, 
G2(s) is the servovalve transfer function and G,, (s) is the actuator 
arias transfer function. Each of these terms is typically modelled as 
follows: 

K, 
I+ zls 

K2 G3(s)= 

S= 
+2ý2s+1 

G3(s) - 
K3 

S{1 +; s) 

Consequently, the nominal linearised model is of 5s'-order, 
including a free integrator. However, various further simplifications 
can be justifiably made. For example, the pole of G! (s) is typically 
much faster than those of G2(s) and G3(s), so that the plant can be 
adequately modelled by a 4th order transfer function. Similarly, the 
relative locations of the servovalve and actuator arm poles can lead 
to Std- and 2nd-order models (all including the free integrator). 

A series of system identification tests were conducted on 
the open-loop plant, which yielded a number of transfer function 
models for different operating conditions (as discussed above, and 
summarised in row I of Table 1). The test results were generated 
from a swept sinusoid input signal, with data analysed by the 
Matlab System Identification Toolbox macro oe (output-error 
method). Consistent 5th-order models were not generated by the 
method, leading to the conclusion that such models were over- 
parameterised, and that the torque motor pole was indeed much 
faster than all the others. Hence, Table 1 shows the resulting 4th-, 
3rd- and 2nd-order transfer function numerators and denominator 
roots, under the different operating conditions [A]-[C]. 

Condition (A]: Condition (}3]: Condition (C]: 
11. OMPa; 1I. OMPa; 1.4MPa; 

Order Accum. on Accu n. off Accum. on 
4 num=9.11x10' num=7.08x10' num=22.1x10' den roots: den roots: den roots: 0; " 15.5; 0; - 4.32; 0; - 30.1; 

-7.51 ij22.9 -35.8± j23.1 -33.5±j27.6 
3 num=2.83x10' num=17.9x10' num=4.60x10' den roots: den roots: den roots: 0; -8.80±j16.0 0; -40.9±j20.3 0; -27.8±j20.4 
2 num = 62.4 num - 108 nunc = 47.2 den roots: den roots: den roots: 0; -4.58 0; -103 0; -9.19 

Table I Identified plant transfer function data 

Several points are worth noting from this table: 

(i) For Condition [A], the 4`"-order model poles are 
dominated by the conjugate pair at s= -7.51 t j22.9, so that the 
actuator arm pole at s= -15.5 may (as an approximation) be 
ignored. This justifies the use of the given Y -order model for 
Condition [A] - ie the normal operation case. 

(ii) For Condition [B], the above situation is reversed, for now 
the pole associated with the actuator arm provides the dominant 
component of the dynamics. Hence, the given 2d-order model is a 
justifiable approximation of Condition (B) dynamics. 

(iii) For Condition [C], the servovalve and actuator arm poles 
are equally significant, and the given 4th order model is the most justifiable approximation in this case. 

(iv) The conventionäl controller will be designed for the 
nominal operation of the plant, ie Condition (A), with the third 
order model for G. (s) being used. 

(v) Changes in the plant supply pressure and/or accumulator 
settings have significant effects on the plant parameters and plant 
dominant dynamics. 

CONTROLLER DESIGNS 

Conventional Fixed Gain Control 
Bode plots for the nominal (Condition [A]) third order 

plant transfer function are shown in Fig 2 (labelled `Gp'), indicating 
that there is sufficient low frequency gain (due to the free 
integrator), but a requirement to increase the margins (from 2.1d13 
and 5511) and the closed-loop bandwidth (from 10 rad/s). A 
proportional-plus-derivative feedback (P+DFB) controller was 
proposed with a proportional gain ko = 1.0 and a derivative 
feedback gain ke = 0.1. The resulting open-loop transfer function 
plots are also shown in Fig 2 (labelled 'GH'), which yield margins 
of oo dB and 61 °, plus a bandwidth of 18.2 rad/s. The closed-loop 
step response settling time was therefore predicted to be 
t, - 4/(0.61x18.2) - 0.4s, with an oscillatory component containing 
approximately two overshoots - this was deemed to be an 
acceptable performance. In discrete-time, the implemented form of 
the controller was: 

u(k) = k, e(k) - k, k, [y(k) - y(k -1)] /A (1) 

where u(k) was the current control signal, e(k) the current tracking 
error, y(k) the current measured actuator arm position and A the 
sampling interval. 
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Fig 2 Plant and plant/controller Bode plots 
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MCS Control 
Details of the MCS structure have been presented 

elsewhere (eg [1]-[3]). Often, an a priori estimate is made of the 
nominal plant order, and the order of the MCS algorithm matches 
this figure - hence, for the given nominal plant, one would normally 
expect to implement a 3d-order algorithm. However, it has been 
observed, eg [3], that MCS possesses a degree of robustness to 
mismatches in orders. In particular relatively low order MCS 
controllers can be very effective in the control of higher order 
plants. 

Therefore, one objective of this work is to provide further 

experimental evidence of this form of robustness via 
implementation of the 2"-orderMCS equations (i = 1,2) which are 
summarised below, in discrete-time scalar form: 

u(k) = k, (k)r(k) + k, (k)xi(k) + k, (k)x, (k) (2) 
k, (k) = k, (k -1) + ßy, (k)r(k) - oy, (k -1)r(k -1) (3) 

k, (k) = k, (k -1)+ßy, (k)x, (k) - oy, (k -1)x, (k-1) (4) 

y, (k) = (16 / t, )x,, (k)+(4 / t, )x,, (k) (5) 
xr(k) = xr(k)-x, (k) (6) 
Y. i(k) = x, (k -1) + Ar., (k -1) (7) 

x,,; (k)=(-16A1t; )x,,, (k-1)+(1-8i Ii, )x,,, (k-1) (8) 
+(16G/l, )r(k-1) 

1-lere, ß=ß- aA, where (a, ß) are the adaptive weights, with a 
typical ratio of Wß = 10 and a>0. During the tests presented in 
the next section, the values of the adaptive weights were fixed at 
0.001 and 0.0001, these values having been deduced experimentally 
as providing a good compromise between the speed of adaption and 
noise propagation. Also, (k, k, k2) arc the adaptive forward, 
positional and velocity gains, r is the reference signal, x, (= y) is 
the measured actuator arm position, x2 is the measured velocity, y, 
is the output error (which ensures positive realness of the forward 
loop error dynamics, (1]), x, 1 are the reference model states and t, 
(=0.25s in the following tests) is the step response settling time of 
the reference model. Thus, (2) is a standard state feedback control 
equation with adaptive gains given by (3), (4). Coefficients in the 
output error equation (5) ensure positive realness of the forward 
error dynamics by satisfying, in turn, an associated Lyapunov 
equation [1]. The coefficients in the reference model equations (7), 
(8) ensure, to a first approximation, that the ideal step response is 
critically damped, with a settling time of t, and zero steady state 
error. It may be noted that (2){8) contain no explicit (or implicit) 
reference to any plant parameter values. 

CONTARATIVE L'1PLE:. ENTATION TESTS 

Step response tests; Condition [A]; Supply pressure 11.011Pa; 

-iccuniulators on-line. 
The conventional P+DFB response with the rig in the 

nominal configuration, viz a supply pressure of 11.0MPa and the 
accumulators on-line, is shown in Fig 3. In this case, the demand 
was a square wave of amplitude 1.0V and frequency 0.25Hz. (All 
controllers were implemented via IVinCtrl [7], on a 436 PC, with 
0=5. Oms). The desired response - as specified by r, = 0.25s - is 
shown in Fig 3 as 'xml', together with the actual response 'xl'. 
There is good correspondence between the desired and actual 

responses (apart from small steady-state errors due to spool valve 
stiction), indicating that the third order plant model and P+DFB 
synthesis are well-founded. 
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Fig 3 P+DFB step response for the nominal case 

With the initial conditions on the adaptive gains set to 
zero, the MCS yielded the steady state response (ie when the gains 
were in a quasi-static state) shown in Fig 4a, together with the gains 
themselves in Fig 4b. There is no significant difference in response 
from the P+DFB case, and so MCS matches the performance of this 
well-tuned conventional controller - however, without the necessity 
for system identification and controller synthesis. The initial 
adaptive stage of the MCS controller is shown in Fig 5. 
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Sinusoidal tests; Condition [AJ-[B]; Supply pressure 11. OMPa; 
Accumulators switched. 

Switching the accumulators suddenly off-line, and then 

on-line again, produces significant changes in the plant dynamics. 
The purpose of this set of tests is to compare the efficacy of MCS 
in the face of such changes, when compared with the P+DFB 

controller. The demand signal in this case was a sinusoid of 
amplitude 2.0V and frequency 3.0Hz - sufficient to test the closed- 
loop systems near to the expected bandwidth of the nominal plant. 

The resulting tracking error (`xml-xl') for P+DFB control 
is shown in Fig 6a, whilst that of MCS is in Fig 6b. Comparing 
these figures, it is evident that the MCS controller has out- 

performed P+DFB. A comparison of the corresponding controls in 

Fig 7 reveals that MCS produces a signal with a greater amplitude 
and (in this case) with more effect. The difference in performance 
is most evident in Fig 8, plots of the corresponding integral-square- 

error (ISE) criterion for each closed-loop response. Of particular 
note is the slope of the ISE plot during each section of the test - the 
slope for MCS remains less than that for P+DFB, whether the 
accumulators are on-line or off-line. 
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Fig 6a P+DFB Fig 6b MCS 
Fig 6 Tracking error, supply 11. OMPa; accumulators switched 
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Sinusoidal tests, Condition [A]-(C]; Supply pressure varied; 
Accumulators on-line 

In order to investigate the robustness of MCS in the face 
of supply changes, the sinusoidal tests were repeated with the 
accumulators on-line, but with a decrease in the pressure. This 
decrease was from the nominal 11. OMPa to I. 4MPa (ie to 
approximately 13% of the normal operating pressure) over a period 
of about 6s. The significance of this test, over and above it being 
another demonstration of MCS robustness in the face of plant 
parameter variations, is that in practice a coupled servohydraulic 
system can be subjected to a decrease in supply pressure, following 
increased demands from other services. In such circumstances, the 
affected system should be able to perform the given task with 
minimum disturbance. 

Fig 9a presents the P+DFB tracking error under the stated 
test conditions, with the corresponding MCS results being shown in 
Fig 9b. Again, comparison of the figures shows that MCS has out- 
performed P+DFB. Plots of the corresponding control signals in 
Fig 10 clearly show the greater contribution of MCS as the pressure 
is decreased - the control signal reaches the servovalve solenoid 
amplifier saturation limits of ±2.5V on each cycle. During periods 
of saturation, an anti-windup strategy is vital; in this case the 
adaptive gains are locked at their current values, and then released 
when Jul < 2.5 

. 
The excellence of MCS performance is further 

amplified by the ISE plots in Fig 11, whereby the rate of increase of 
the MCS ISE is always less than that of P+DFB. Exact parity of the 
transients in the pressure supply was not achievable, and so only the 
steady state (ie 'straight-line') sections of the plots are of 
significance. 
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Fig 7a P+DFB Fig 7b MCS 
Fig 7 Control signals; supply i i. OMPa; accumulators switched 
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Fig 9 Tracking error, supply decreased; accumulators on-line 
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Fig 10 Control signals; supply decreased; accumulators on-line 

2 

1.5 
N 

N 
Z 

N1 
P 
C 

Y 
V 
A 
S 

0.5- 

0.9 
0 

P+DFB 

MCS 

5 
time / (s) 10 

follows: 
The main conclusions to be drawn from this paper are as 

" Linear models of a typical servohydraulic system have been 
derived under a number of operating conditions. For nominal 
operations, a 3rd-order transfer function model was seen to be an 
appropriate choice, and this particular model was used to design 
a fixed gain proportional-plus-derivative feedback (P+DFB) 
controller for the plant. The closed-loop performance of the 
P+DFB controller matched the design expectations when the 
plant was operated under nominal conditions. 

" Away from nominal operations, the linear plant model changed 
in order and in parameter values. Under these circumstances, it 
was seen that the P+DFB performance deteriorated 
significantly. 

" The direct adaptive minimal control synthesis (MCS) algorithm 
was implemented on the servohydraulic plant, and the closed- 
loop results compared with those produced by P+DFB. Under 
nominal operating conditions, the two controllers produced very 
similar responses, despite the fact that MCS required neither 
prior, nor on-line, estimates of the plant dynamic parameters. 

" When the plant was operated away from the nominal condition, 
the MCS algorithm significantly outperformed P+DFB -a fact 
most noticeably demonstrated by the ISE plots in Figs 8 and 11. 

" The robustness of MCS to plant parameter variations has been 
proven in, for example, (1). However, this paper has 
demonstrated, for a specific case, that MCS also possesses a 
degree of robustness to plant order changes. In particular, a 2"d- 
order MCS algorithm produced excellent closed-loop responses 
under the nominal operating condition (when the plant was 
approximately 3rd-order), and under other operating conditions 
(when the plant was approximately 2nd- or 0-order). 

" Robustness issues of MCS to changes in plant order will be the 
subject of a formal analysis in future work on this topic. In 
particular, this feature of MCS will be applied to multivariable 
servohydraulic systems powered by a single supply -a common 
design feature of (aerospace) servohydraulic systems, which are 
known to suffer from plant order changes tinder different 
operating conditions. 
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