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i. Abstract 
The purpose of this research is to investigate fault management methodologies within 

Integrated Modular Avionics (IMA) systems, and develop techniques by which the use of 

dynamic reconfiguration can be implemented to restore higher levels of systems 

redundancy in the event of a systems fault.  

 

A proposed concept of dynamic configuration has been implemented on a test facility that 

allows controlled injection of common faults to a representative IMA system. This facility 

allows not only the observation of the response of the system management activities to 

manage the fault, but also analysis of real time data across the network to ensure 

distributed control activities is maintained. 

 

IMS technologies have evolved as a feasible direction for the next generation of avionic 

systems. Although federated systems are logical to design, certify and implement, they 

have some inherent limitations that are not cost beneficial to the customer over long life-

cycles of complex systems, and hence the fundamental modular design, i.e. common 

processors running modular software functions, provides a flexibility in terms of 

configuration, implementation and upgradability that cannot be matched by well-

established federated avionic system architectures. For example, rapid advances of 

computing technology means that dedicated hardware can become outmoded by 

component obsolescence which almost inevitably makes replacements unavailable during 

normal life-cycles of most avionic systems. To replace the obsolete part with a newer 

design involves a costly re-design and re-certification of any relevant or interacting 

functions with this unit. As such, aircraft are often known to go through expensive mid-life 

updates to upgrade all avionics systems. In contrast, a higher frequency of small capability 

upgrades would maximise the product performance, including cost of development and 

procurement, in constantly changing platform deployment environments.  

 

IMA is by no means a new concept and work has been carried out globally in order to 

mature the capability. There are even examples where this technology has been 



  
 

Abstract 

 

iii 

 

implemented as subsystems on service aircraft. However, IMA flexible configuration 

properties are yet to be exploited to their full extent; it is feasible that identification of 

faults or failures within the system would lead to the exploitation of these properties in 

order to dynamically reconfigure and maintain high levels of redundancy in the event of 

component failure. It is also conceivable to install redundant components such that an IMS 

can go through a process of graceful degradation, whereby the system accommodates a 

number of active failures, but can still maintain appropriate levels of reliability and service. 

This property extends the average maintenance-free operating period, ensuring that the 

platform has considerably less unscheduled down time and therefore increased 

availability.   

 

The content of this research work involved a number of key activities in order to 

investigate the feasibility of the issues outlined above. The first was the creation of a 

representative IMA system and the development of a systems management capability that 

performs the required configuration controls. The second aspect was the development of 

hardware test rig in order to facilitate a tangible demonstration of the IMA capability. 

 

A representative IMA was created using LabVIEW Embedded Tool Suit (ETS) real time 

operating system for minimal PC systems. Although this required further code written to 

perform IMS middleware functions and does not match up to the stringent air safety 

requirements, it provided a suitable test bed to demonstrate systems management 

capabilities. 

 

The overall IMA was demonstrated with a 100kg scale ‘Maglev’ vehicle as a test subject. 

This platform provides a challenging real-time control problem, analogous to an aircraft 

flight control system, requiring the calculation of parallel control loops at a high sampling 

rate in order to maintain magnetic suspension. Although the dynamic properties of the test 

rig are not as complex as a modern aircraft, it has much less stringent operating 

requirements and therefore substantially less risk associated with failure to provide 

service. 
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The main research contributions for the PhD are: 

1. A solution for the dynamic reconfiguration problem for assigning required systems 

functions (namely a distributed, real-time control function with redundant 

processing channels) to available computing resources whilst protecting the 

functional concurrency and time critical needs of the control actions. 

2. A systems management strategy that utilises the dynamic reconfiguration 

properties of an IMA to restore high levels of redundancy in the presence of 

failures. 

3. A Demonstration of the operation of points 1 & 2 on a representative system, 

showing that dynamic configuration can occur whilst the service provision (i.e. real-

time control action) is maintained. 

 

The conclusion summarises the level of success of the implemented system in terms of an 

appropriate dynamic reconfiguration to the response of a fault signal. In addition, it 

highlights the issues with using an IMA to as a solution to operational goals of the target 

hardware, in terms of design and build complexity, overhead and resources.  
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1. Introduction 
This thesis addresses the concept of using dynamic reconfiguration within an avionic 

system to maintain high levels of redundancy in the presence of faults. 

 

The concepts presented are based on the modern avionics architecture known as 

Integrated Modular Avionics (IMA). This solution to on-board computing requirements is 

designed to be flexible by specifying generic hardware resources for which 3rd party avionic 

applications can be developed. Compared to traditional avionics design, IMA reduces the 

complexity and cost of avionics systems by commonality of modules, flexible configuration 

options, and incremental update possibilities. 

 

A further opportunity of IMA is exploiting the flexible configuration to extend operating 

periods of aircraft, even in the presence of failures. By optimising configuration using 

healthy parts of the system; sufficient levels of reliability could be maintained to retain 

operational performance. This thesis considers managing faults at the point of occurrence 

using dynamic reconfiguration (i.e. automatically re-configuring at run-time) to tolerate 

component failures.  

 

1.1. Background 
Future generations of avionics are transitioning from a traditional ‘federated’ design to 

flexible architectures that exploit benefits of modularity.  These benefits are realised 

through potential savings in spares (via savings due to commonality of design), extended 

operating periods between maintenance (via abilities to ‘gracefully degrade’ and tolerate 

faults) and ease of upgradeability (via a software layering mechanism that removes 

dependency between hardware and software components). 

 

A concept proposed and defined for the civilian sector by the standard ARINC 653 (ARINC, 

2006), and in the military sector in DEF-STAN-00-78 (MOD, 2005), is that of Integrated 

Modular Avionics (IMA). The fundamental principle of IMA is that bespoke hardware and 
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software design for a specific function is replaced by generic processing units capable of 

delivering the same functionality by executing software ‘applications’.  

 

This format has the potential to be implemented using conventional systems design in that 

a configuration of hardware resources and software applications can be defined, with 

communications protocols and execution scheduling such that real-time task execution can 

be performed deterministically. This offers benefits over a federated design in that the 

hardware processing resources across the network can be similar, significantly reducing 

the spares and servicing requirements to maintain system availability.  

 

To achieve further benefits of IMA, the flexible architecture can be exploited to 

reconfigure the system when failures occur. This benefit can be realised off-line (between 

operations) or on-line (during operation). In an off-line sense, a new configuration could be 

defined at the point of front-line servicing to extend operation between maintenance 

intervals. If reconfiguration could occur during run time, the system could adapt in order to 

maintain high levels of safety critical operation in the presence of failures.  

1.2. Problem Statement 
The introduction of IMA presents a number of opportunities, as previously highlighted, but 

also brings with it a number of challenges. Aircraft systems have to be certified to an 

incredibly high standard of reliability. This is a complex task that requires complete 

systems understanding to prove that common failure modes are not safety-critical or 

mission-critical. As such, the system design is ‘frozen’ early in the system lifecycle as 

changes to part of the infrastructure can lead to costly re-certification of the whole system 

whole. This makes the concept of reconfiguration (even in an off-line sense) a difficult one 

to introduce to the aviation industry. Current philosophies follow the idea of a ‘multi-static’ 

configuration, whereby a number of system configurations are designed and certified prior 

to operation. Such an approach enables some of the benefits of IMA to be seen, and allows 

some flexibility within the system configuration. IMA systems in service currently utilise 

this approach. 
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To achievement the full benefits of the flexible nature of an IMA, system configuration 

needs to be automatic. In such a case, the system would be capable of continually 

identifying the most effective allocation of applications to resources. This enables the 

restoration of high levels of operational capability shortly after the occurrence of a failure 

and a graceful degradation of the system such that reliability levels can be maintained by 

reconfiguration in the presence of component failure. Such an automatic configuration 

method would have to be robust (such that it does not implement bad configurations) and 

intelligent (such that functional and reliability requirements are not jeopardised by the 

configuration defined). 

 

There are two fundamental principles that are evident when considering the problem of 

assigning avionic functions to system resource; that of assigning functions to specific 

resources (e.g. information input/output points), and that of ensuring point failures are not 

created by assigning redundant processing streams to the same physical resource. 

Alongside this is the temporal configuration problem, in that real-time control or data 

processing tasks need to occur concurrently such that the latest available data is used in 

calculations. Mismanagement of this can have implications such as reducing expected 

closed-loop performance specifications. 

1.3. Contributions 
Further to the problem analysis in the previous section, the main research contributions 

for this PhD are to: 

1. A solution for the dynamic reconfiguration problem for assigning required systems 

functions (namely a distributed, real-time control function with redundant 

processing channels) to available computing resources whilst protecting the 

functional concurrency and time critical needs of the control actions. 

2. A systems management strategy that utilises the dynamic reconfiguration 

properties of an IMA to restore high levels of redundancy in the presence of 

failures. 
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1.4. Objectives 
In order to validate the contributions outlined in section 1.3, the following objectives have 

to be met: 

1. Investigate relevant literature to determine current state-of-the-art in areas such 

as; IMA implementation, Fault management strategies within IMA, and methods for 

assigning avionic functionality to an IMA hardware installation. 

2. Develop a method of automatic configuration/reconfiguration of required avionic 

applications to distributed process resources. 

3. Design and develop a hardware test bed (i.e. a representative IMA system with 

appropriate ‘middleware’ and real-time communication strategy) to enable 

implementation of the automatic configuration/reconfiguration method. 

4. Validate that the IMA implementation is capable of facilitating distributed real-time 

control operations with a range of functional topologies. 

5. Verify the ability of the configuration method to appropriately assign avionic 

applications to available resources using a range of functional topologies and 

available modules. 

6. Verify the ability of the IMA system to reconfigure a distributed real-time control 

functional set (following a fault injection) to an allocation that tolerates component 

failure. 

1.5. Publications 
The following are publications as a result of the work detailed within this thesis. 

Hubbard, P., Goodall, R., Dixon, R., & Mapleston, M. (2008). Integrated Modular Systems 
for Maglev Vehicle Control. In The 20th International Conference on Magnetically 
Levitated Systems and Linear Drives (MAGLEV 2008). San Diego, USA. 

Hubbard, P., Mapleston, M., Goodall, R., & Dixon, R. (2008). Integrated Modular Processing 
for High Performance, High Integrity Control (IMPPIC). In EDCC-7 Seventh European 
Dependable Computing Conference. Kaunas, Lithuania. 
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1.6. Thesis Overview 
This thesis details the key findings and results from the objectives listed in section 1.4. 

Chapter 2 contains a review of appropriate literature to identify the current capability of 

fault management within IMA, and other appropriate technologies and methods of similar 

areas that may have useful input to the study. Chapter 3 considers the findings of Chapter 

2 and defines requirements in order to enable validation of the developed system and 

ensures tests are appropriate for proving the research objectives. Chapter 4 presents the 

real-time task control task (namely air-gap control of a Maglev vehicle) that will be the 

subject of the IMA. The purpose of this is to provide a complex control problem of an 

open-loop unstable system that should remain controlled in the presence of IMA 

component failure. Chapter 5 details the development of the IMA system, including the 

method used for configuring and reconfiguring avionics applications to available processing 

resources. Chapter 6 presents validation of the configuration method by analysing a series 

of configuration tasks and testing the timing properties of the system to ensure distributed 

real-time processing is occurring. Chapter 7 includes the results of a series of laboratory 

tests to observe the system response to IMA component failures. The goal of these tests is 

to show that after an occurrence of a failure, the system can reconfigure to regain previous 

reliability levels, whilst maintaining service provision. Chapter 8 documents the conclusions 

and main findings of the thesis. 
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2. Literature Review 
IMA is a large topic branching into different disciplines and areas of interests resulting in a 

potentially large and diverse reading area. Figure 2-1 below shows the major areas of 

research undertaken and how they overlap to form common ground. Although this figure 

represents the main areas of study, it is not a definitive list of topics. 

 

Figure  2-1 Research Topics 

The following sections are the findings taken from academic publications, text books, 

journal articles and other sources of open information that are pertinent to the above 

topics. 
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2.1. The Developing Need for Improved Avionics 
Over the past few decades, aircraft avionics systems have developed at a staggering rate 

into highly capable, costly and complex systems. This development has been fuelled by an 

end user requirement to exploit the potential capability offered by digital electronic 

devices and by a desire to constantly reduce the cost of maintaining a complex aircraft 

system throughout its lifecycle. 

 

This section outlines these drivers and summarise the related future needs of aircraft 

systems. 

2.1.1. Digital Revolution in Aircraft Systems 

The rapid development in avionic system capability has been fuelled by the explosion of 

digital technology throughout the latter half of 20th century and to the current day. This 

fundamental relationship has been highlighted in a number of texts (Collinson, 2011; Moir, 

Seabridge, & Jukes, 2003, 2006; Moir & Seabridge, 2008). 

 

World War II provided the first major drive for electronics to be embedded on board 

aircraft. These first systems were analogue based and relied on linear relationships for 

communication and processing of data throughout the system. Due to the extreme 

environment of an aircraft, these systems were subject to large amounts of drift and non-

linearities. The alternative to these systems evolved during the 1950s and 1960s as the 

transistor replaced the thermionic valve which eventually led to the widespread use of 

digital electronics in the 1970s. The advent of micro-electronics and the capabilities that 

subsequent digital avionics systems could offer finally proved to be a better solution to 

providing the capabilities required for aircraft. As integrated circuits continue to follow 

development trends as highlighted with ‘rules of thumb’ such as Moore’s Law (Moore, 

2006), highlighted in Figure 2-2, we can expect to see aircraft systems continue to provide 

increasing performance and capability. 
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Figure  2-2 Historical Analysis of Moore's Law  

In the current day, high performance digital technology not only offers the means to 

perform increasingly complex tasks within each individual subsystem, but to integrate 

avionic subsystems effectively creating the capacity to perform even more capable and 

complex functions. 

2.1.2. The Development of Avionics Integration 

The following is a summary of the work done by Zhang, Moir and Collinson (Collinson, 

2011; Moir et al., 2006; Zhang, Pervez, & Sharma, 2003) who have all produced extensive 

works with regards to the development of avionics technologies. 

 

Avionics have the potential to be integrated in different ways to yield different benefits. In 

the 1970s, a non-profit making organisation called Aeronautical Radio Inc. (ARINC) 

suggested that avionics units should have commonality in terms of form, fit and 

functionality – commonly known as F3. The critical aspect of this standardisation is that a 
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Line Replaceable Units (LRU) that meets the F3 specification can be directly replaced by 

another even if the replacement has different interior electronic implementation, or even 

manufactured by a different company. This specification lead to the terminology of Line 

LRUs or LRIs (Line Replaceable Items) which refers to modules that conform to the F3 

criteria. The benefits of this standardisation are widespread. It allowed for an open market 

place to exist for avionic components as well as simplifying the way spare units are 

managed. 

 

In addition to the integration of the physical aspects of LRUs, it was widely recognised that 

passing data between aircraft systems would be a powerful capability. The sharing and 

fusion of data from different sources allows information to be inferred that may not be 

directly available from a single source. A classic example of this is the use of multiple 

sensors for object tracking (Varshney, 1997). In order to manage the sharing of data, it 

became clear that a standard was required for the data interaction of avionics. 

 

During the early phase of this development, items were connected by a single source, 

single sink (or point to point, hard wired) connection wherever a communications channel 

was required. Although effective and logical to a degree, this format found limitations as 

the required amount of data passing between avionics functions increased to meet 

demands for more complex capabilities. 

 

In order to address this issue and to provide consistency across the aerospace community, 

a number of standardised formats of connectivity between LRUs were defined. This section 

will look at three examples of these methods, namely ARINC 429, MIL-STD 1553 and the 

ARINC 629 specifications. 

 

The ARINC 429 databus is a single source, multiple sink (SSMS) communication concept. 

The fundamental concept of a SSMS is that one node can send data to a number of 

recipient equipments via a digital serial link. This solution was adopted in aircraft such as 

the Boeing 757, 767 and the Airbus A300 and A310 
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The main limitation of the ARINC 429 databus is that it is a half-duplex design via a point to 

point communication strategy. In this topology each communication link requires 

dedicated hardware at both the source and sink of the transmission plus a dedicated cable 

to transfer the message. A difficulty with this system is that this set of components can 

only facilitate the transfer of a message in a single direction. For a reply signal to be sent, a 

second communication link inclusive of a duplicate set of hardware is required. 

 

As systems using this topology grew in complexity and more information was required to 

be shared, the length and weight of cabling to facilitate these transfers grew substantially. 

For example, the Boeing 767-200ER contains approximately 90 miles (145km) of electrical 

wiring, clearly a huge maintenance issue. Furthermore, if the requirements of a system 

such as this were to change and extra LRUs are required, the redesign, refit and 

recertification of the system is a complex task. 

 

Figure  2-3 ARINC 429 Example 

A 

B C 

A 

B C 

D 

A. A429 Topology 

This assumes that all LRUs need to 

send and receive information from 

each other. 

It is possible for A to send information 

simultaneously to B and C (shown in 

red). For C to respond, it has to use the 

dedicated connection shown in blue 

B. Addition of LRU 

Shows the additional wiring 

required to facilitate the 

introduction of an extra LRU. 

Again, this assumes that all 

LRUs need to interact with 

every other LRU. 
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An alternative developed to this communications methodology in the military avionics 

domain is the MIL-STD (Military Standard) 1553 databus. Although the specification for the 

MIL-STD 1553 occurred slightly before the ARINC 429, its design has stood the test of time 

and is still widely popular in military avionic systems. 

 

The MIL-STD 1553 is a true data bus. It is a half-duplex system, which means that although 

communication can occur in both directions along the same communication channel, they 

can only be sent one direction at a time. The advantage the 1553 bus has over the ARINC 

429 is that this is a Multiple Source Multiple Sink (MSMS) method meaning that each node 

can send a message to a number of nodes connected to the bus. The general bus structure 

of the MIL-STD 1553 is shown in Figure 2-4 below. 

 

Figure  2-4 Multiplex databus system architecture (Moir & Seabridge, 2008) 

The 1553 communications is controlled from a single node called the bus controller. The 

communication strategy in terms of data size, sender, recipient and timing for each data 

package for the particular avionics configuration implemented is predetermined and 

uploaded onto the controller. This preparation allows each configuration to be tested and 

verified before implementation via the use of software tools to ensure the communication 

meets concurrency and timing criticality requirements. 
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A further feature of the MIL-STD 1553 is the concept of multiplexing. In Figure 2-4, it can 

be seen that there is an option to include parallel channels of identical capability for 

redundancy purposes. 

 

The ARINC 629 data bus is similar in concept to the MIL-STD 1553 bus as it is a true data 

bus, i.e. half duplex and MSMS. It is however of newer specification than the 1553 and 

offers more benefits, such as the capacity for 131 terminals against the 1553’s 31 and a 

data transfer rate of 10 Mbit/sec compared to 1Mbit/sec. This particular system has been 

largely brought into popularity by the Boing 777 aircraft. 

 

The main advantage the MIL-STD 1553 and the ARINC 629 architecture have over the 

ARINC 429 is the relative ease of adding new components. As mentioned before, for the 

ARINC 429, this requires a great deal more connections to satisfy the communication 

criteria. However for the true data buses another component can simply be added onto 

the length of the bus. This is certainly an advantage when it comes to modifying or 

reworking the system but does not remove all the complications with regards to re-testing 

and re-certifying. 

2.1.3. Future Needs for Avionics Systems 

There is a continuing drive from the aerospace industry to improve the quality and cost 

effectiveness of avionics across the entire systems lifecycle, inclusive of design, 

maintenance and upgrade costs. Avionics in general account for 30% of the cost of a new 

aircraft (Collinson, 2011) and carry a further burden with the rest of the lifecycle costs in 

terms of maintenance during operation, the resolution of faults and the cost of 

recertification should an upgrade be required. Figure 2-5 highlights the overall lifecycle 

cost of an aircraft in the form of an iceberg. Although not to scale, it shows how the 

acquisition cost of the aircraft is merely the ‘tip of the iceberg’ and the real cost lies in the 

support required to keep the platform available for use for as much time as possible. It can 

be inferred from here how the development, maintenance, support and upgrade of 

avionics systems relate to many of the different areas highlight in the diagram. 
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Figure  2-5 Aircraft System Lifecycle Cost (Mapleston, 2006b) 

Aerospace companies are therefore seeking to identify the causes for the high cost of 

avionics, and find ways of reducing this. 

 

One of the causes of high avionics cost is that as customers request incremental change to 

existing designs or products to exploit new technology, bespoke platform specific solutions 

are developed to meet this need (Johnson & Omiecinski, 1998). As a result, there is little 

commonality between different aircraft types, resulting in spiralling costs associated with 

avionics equipment. To drive down this cost a requirement for commonality between 

systems and subsystems exists to allow the re-use of components. 

 

A further contributing factor is identified as the early stages in the project at which aircraft 

design is fixed  (Little, 1991). As part of certification, avionics systems designs are frozen at 

an early stage of the procurement cycle. This defines purchasing schemes, system designs, 

etc, that allow the system build to commence. As mentioned previously, by the time the 
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system is in service the requirements have usually changed. In addition to this, the 

technology available to build the system will have progressed and be more capable. The 

inherent problem of attempting to introduce new requirements and technologies, 

however beneficial they may be, is that the systems design, purchasing schemes and 

certification stages may no longer be valid and have to be repeated in order to clear the 

aircraft to fly. In addition to new technology or capability requirements posing problems to 

designs, the problem of component obsolescence is also a substantial issue. The lifecycle 

of an aircraft from initial design to retirement can be the order of 50 years. Even during the 

period from the initial design to manufacture, electronic parts often become outdated and 

stop being produced. This causes problems with the purchase of spare parts for the aircraft 

further down the lifecycle.  

 

It is suggested (Johnson & Omiecinski, 1998; Little, 1991) that a modular approach to 

avionics design offers inherent solutions to these problems. The idea of a common 

processing unit, capable of executing a number of aircraft functions, would solve a number 

of issues. Firstly, if a generic processing module is implemented as a replacement to 

bespoke LRUs, these can be a common component not only throughout a single aircraft 

system but across all aircraft in the fleet, or potentially across all military and civil 

platforms. Clearly the knowledge base required to sustain these component would be 

drastically reduced, simplifying the complexity of maintenance. Secondly, if the software is 

suitably decoupled from the hardware, the software could be re-implemented quite simply 

on upgraded hardware, or vice versa. This removes some problems with obsolescence and 

upgradeability throughout the lifecycle. In addition, life cycle cost will be minimized by 

functional integration as it reduces the amount of duplication of hardware and software 

elements (Morgan, 1991). In line with this theory, Line Replaceable Modules (LRMs) are 

becoming increasingly popular with avionics design as a replacement to LRUs. LRMs are 

designed to provide a solution to the modularity paradigms that LRUs are unable to. This 

modular concept of design is studied in detail in section 2.2.2.3. 

 

The potential cost benefits of implementing a modular system is highlighted by Little 

(Little, 1991): 
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“It has been estimate that if LRMs were substituted for today’s black boxes or LRUs in a 

wing of 72 F-16 A/B fighter aircraft, a 50% reduction in the flight line avionics maintenance 

personnel could be made together with the elimination of the intermediate workshops. This 

represents a total manpower saving of 109 personnel, a reduction from 180 to 71. The 

same analysis showed a reduction in spares types from 437 to 43 and an increase in avionic 

system MTBF from 7.3 hours to 35 hours.” 

 

The key elements identified in the quote above are: 

1. The quoted time for MTBF (Mean Time Between Failure). Having aircraft available 

to fly rather than sitting dormant in a hanger is a key capability for military 

situations and a huge cost benefit to civil aircraft. This increase in reliability of the 

system makes the solution better value to the customer. 

2. The reduction of intermediate workshops results in more availability of the aircraft 

in that the system can be service and repaired on the front line. This means that the 

unit does not have to return back to a main headquarters to be repaired and made 

available. 

3. The reduction of spares not only simplifies repair jobs, but reduces the logistic 

complexity of taking a military system to the front line, or maintaining a civil aircraft 

away from main base. The support infrastructure can be reduced resulting in 

another potential cost saving to the customer. 

  

It is also suggested (Little, 1991) that military customers more specifically have three main 

requirements to utilise the opportunity for modular architectures: 

a) They must provide the desired mission capability. In particular they must allow the 

myriad datastreams obtained from the platform sensors to be more effectively 

integrated for the pilot to improve their situational awareness. Moreover, the 

avionics must be adaptive not only to accommodate new technology when 

appropriate but also more importantly to cope with a rapidly changing threat. 

b) They must be affordable. In particular life-cycle costs must be a design driver from 

initial concept through to, and including, operational service. 
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c) They must exhibit improved reliability, maintainability and availability. This is 

directly related to life-cycle costs which currently are dominated by maintenance 

costs, and the operational need for a flexible but sustained maintenance response 

remote from main operating bases. 

 

A solution to the one or two of the above requirements can be found using conventional 

methods, but only a modulated solution can provide a solution to all three. 

2.1.4. Summary of Future Avionic Requirements 

The top level needs for future avionics systems have been highlighted from two main 

sources (Little, 1991; Sutterfield, Hoschette, & Anton, 2008). The first requirement set 

suggested (Little, 1991) are: 

• Adaptive technology in order to meet changing mission requirements or changing 

technology 

• Affordable through the lifecycle 

• Exhibit improved reliability, maintainability and availability 

 

In order to facilitate the growing capability desires of the customer, and to facilitate the 

overall needs highlighted, the expected technology requirements are to be (Sutterfield et 

al., 2008): 

• Modular hardware operating at processing speeds more than two orders of 

magnitude great than today 

• Dense multiplexing buses 

• Multi-core modular processors 

• Conform to open standards (F3) 

 

The methods by which these capabilities can be implemented, associated with the design 

challenges involved, are discussed in the following sections. 
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2.2. Integrated Modular System Concepts 
Integrated Modular Systems (IMS) have been identified as a potential concept that can 

meet the requirements of future avionics systems as highlighted in the previous section. 

The overall design principle is to utilise modularity throughout the system in order to move 

away from the tightly coupled/federated systems design of previous years. 

 

This section aims to introduce the concepts of IMS and describe the work done to date in 

the development of systems 

2.2.1. Introduction to IMS 

IMS can is also referred to as Integrated Modular Avionics (IMA), or Integrated Modular 

Architectures (also IMA). These systems offer conceptual solutions for future architectures 

for many aerospace programmes, with some limited IMS architectures already 

implemented (such as the Airbus A350 and the Boeing 777). IMS concepts are replacing 

current avionics systems as they have the potential to overcome many issues highlighted in 

the previous sections. 

 

The concept of IMS was formalised in ARINC report 651 entitled “Design Guidance for 

Integrated Modular Architecture”. The concept is one formed around using powerful 

computing modules that provide resource for the independent processing of application 

software (Prisaznuk, 1992). This is facilitated by an appropriate operating system that 

allows different applications to operate side by side on a single module.  

 

Conmy (Conmy, 2006) provides a good introduction to the IMA concept. In this reference, 

the term Integrated Modular Avionics is introduced as: 

“…a blanket term used to describe a distributed real-time computer network aboard an 

aircraft. This network should consist of a number of computing modules capable of 

supporting numerous applications of differing safety criticality levels.” 

These sources highlight the idea of a distributed yet integrated modular architecture, a 

statement which at first appears to contradict itself. However, the processing modules can 
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be connected throughout the aircraft by high speed databuses (such as ARINC 629), then 

the functionality of the different processes can be functionally integrated, albeit physically 

distributed (Jolliffe, 2005; Prisaznuk, 1992; Watkins, 2006). 

 

One of the fundamental benefits of IMA is the modularity with which the system can be 

designed, built and maintained. The idea is that a system can be built to a functional 

specification using or re-using generic building blocks. This applies to the software 

applications as well as the hardware component. It is suggested (Field et al., 1997) that 

IMA consists of 5 ‘building blocks’ that could be used to create any sized architecture, 

namely: 

• Software – the software architecture 

• Hardware/Modules – the hardware architecture 

• Packaging – the environmental conditions of the hardware, the cooling and the 

power conditioning 

• Data transmission – the communication network 

• Low and Medium bandwidth interfacing to sensors/effectors 

 

In summary, IMS provides a capability for interchangeable software and hardware 

components with interfaces well specified by open standards. IMS provides a good option 

to quickly reconfigure the allocation of functions either statically to meet new or changed 

deployment requirements or dynamically to restore higher levels of redundancy should 

faults occur. 

 

The current state of the art IMA enables multiple unrelated applications, with different 

criticalities, to share the same computational platform without interference. The design 

challenge remains to map platform system and subsystem level constraints in timing, 

safety and security. (Gaska, Watkin, & Chen, 2015) 

2.2.1.1. Modular Hardware/Software Integration 

An important aspect of IMS is to remove the closely coupled nature of hardware and 

software which has been a part of avionics for a long time (Collinson, 2011; Field et al., 
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1997; Morgan, 1991). The applications still require appropriate hardware to execute the 

software commands and fulfil function, but it is necessary to make the relationship loosely 

coupled. 

 

The generally agreed solution to this is to use a software architecture known as the ‘three 

layer stack’, which is a simplified version of that found in (Prisaznuk, 1992).  

 

 

Figure  2-6 'Three Layer Stack' Model 

The three layer stack is a fundamental principle for IMS as it provides the mechanism for 

the implementation of modular software upon modular hardware by facilitating well 

defined interface layers between the two. If this interface layer between hardware and 

software can be adequately implemented, the development of software can be performed 

without any direct knowledge of the hardware component. The hardware then becomes 

an unseen service provider of resource, such as facilitating communication or execution of 

functions. This is termed ‘hardware transparency’ (Conmy, 2006). 

 

As applications are intended to be hardware transparent, the underlying hardware can 

theoretically be upgraded or replaced without affecting the design and source code of the 

application software. Conversely, an application can be upgraded or incrementally changed 

without directly affecting other applications, or requiring a hardware change. Furthermore, 

different companies will be capable of the production of parts of the system promoting 
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ease of development and competition for provision. Currently any changes to hardware or 

software require requalification of the system. 

 

The arrangement of software functionality to hardware resources possible with IMS means 

that resource redundancy can be managed in new ways (Prisaznuk, 1992). For example, 

secondary redundancy in resource can be incorporated at component level or the system 

can be reconfigured by moving required software functions to available spare processing 

units. This may be done statically (during system down time) (Little, 1991) or dynamically 

(during operation).  

 

In addition to providing for the hardware/software interface, the three layer stack provides 

a method of defining how to run multiple applications, or avionics functions, on shared 

resources such as processing and memory. If left unchecked this would present a problem 

as there is potential for a number of different safety critical avionics functions, all with 

their own real time constraints to function on shared resources (Lee, Kim, Younis, Zhou, & 

McElroy, 2000). In this situation, the safety case for the aircraft would be compromised 

and a potentially disastrous scenario could arise should one function hog a shared resource 

and delay the execution of another. To avoid this, a robust partitioning mechanism 

including processing resource scheduling needs to be implemented that prevents 

applications interfering with one another. 

 

In terms of the production of an IMS, the final system should display the following 

properties (Conmy, 2006): 

• Technology Transparency - The underlying hardware should not have any impact on 

an application either during development or execution 

• Scheduled Maintenance - The system should have inbuilt capability to operate in 

the presence of failures so that Maintenance Free Operating Periods (MFOPS) can 

be achieved and only scheduled maintenance need occur.  

• Incremental Update - The system should be designed such that applications can be 

inserted/altered with minimum impact on other applications and on the supporting 

safety case 
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Another way of expressing some of the above properties is to say that an IMS should be 

designed as ‘future proof’, i.e. designed with technology transparency and with the 

capacity for incremental update. A future proof system can be described as (Edwards, 

1997): 

“A future proof system remains viable in terms of capability and affordability throughout its 

life cycle, despite the evolution of the technology that it embodies. Evolution of technology 

presents two major challenges to a system: obsolescence and capability growth.” 

A manner in which this can be achieved is to design a truly ‘open’ system architecture. An 

open system is one where no proprietary interface specifications exits that prevent outside 

agencies designing and building components capable of being integrated. It is likely that all 

components will have a specification following a so called F3I guideline (Form, Fit, 

Functionality and Interface). This F3I is a development of the F3 idea introduced by ARINC 

for LRUs. These specifications will exist in the public domain. 

In order to test the openness of a system, BAE SYSTEMS have 7 tests (Edwards, 2001): 

a) Information published & publicly available – open access 

b) Sufficient information provided to allow independent implementation  

c) No royalties – open exploitation 

d) Not dependant on proprietary components or processes 

e) Standards and essential components not restricted by export controls 

f) Possible to create special-to-type items which conform to the interfaces defined by 

the open standards and are interoperable with other items which conform to the 

standards (in modular systems this means that the system builder is not 

constrained to use only the standard modules) 

g) Open to technology growth & system growth – technology transparent. In other 

words, open over a long period of time. 
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2.2.1.2. Why Use IMS? 

IMS has the potential to address the needs identified for future avionics, highlighted in 

section 2.1. Table 2-1 below shows how the features of IMS directly address the key items 

highlighted. Full details on the capabilities mentioned are covered in section 2.2.2. 
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Requirement Feature 

Adaptive Technology to meet 

changing mission 

requirements/technology (Little, 

1991)  

Modular software/hardware design means it is 

possible to incrementally change parts of the system 

more easily than methods today. 

Certification could theoretically be achieved more 

quickly with modular driven design methodologies.  

Affordable through the lifecycle 

(Little, 1991) 

IMS represents lifecycle cost savings in many ways. 

The reduction of spares reduces logistic footprints and 

maintenance complexity is reduced by having similar 

components throughout the system. The reduction in 

onboard components needed (Johnson & Omiecinski, 

1998) reduces weight, power and space requirements. 

Exhibit improved reliability, 

maintainability and availability 

(Little, 1991)  

Maintainability and availability are addressed by the 

benefits highlighted above. If the platform is easier to 

maintain and repair, the platform is more available. 

The commonality of modules also means that it is 

possible to do more maintenance at the front line, 

dramatically increasing availability. 

Reliability can be improved beyond the capabilities of 

conventional means by the utilisation of dynamic 

reconfiguration. 

Modular hardware operating with 

processing speeds more than two 

orders of magnitude great than 

today (Sutterfield et al., 2008)  

IMS applications can be implemented on naturally 

increasingly powerful computers. Incremental 

upgrade capabilities allow IMS to keep track of 

improving technology as it becomes available. 

Table  2-1 Comparison of IMS Capabilities to Highlighted Requirements 

The transfer from a federated to integrated modular solution carries with it not only 

benefits but risks too. Watkins (Watkins & Walter, 2007) offers an insight into these 

implications. Three main benefits of this paradigm shift highlighted here are: 

• IMA Provides opportunity to optimise processing resources 
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• IMA has reduced weight and power requirements  

• IMA lead to an optimised development due to the modular nature of the system 

 

Watkins also mentions that the movement to IMA carries with it risks that should be 

considered. The main warning is based around encouraging companies to take a holistic 

approach to the problem. A Global perspective on the business model and resource 

management is inferred by the introduction of this technology along with requirements for 

maintaining links with legacy systems that may remain part of the system. 

 

A review of the IMA system design trade-offs is presented by Grigg (Grigg, Audsley, 

Fletcher, & Wake, 1999) and are summarised as: 

• Flexibility vs Predictability – The flexible nature of the system potentially 

contradicts fundamental requirements of repeatable predictable performance 

• Integration vs Isoltaion – Functionally and physically coupling systems exposes risks 

of single failures imposing on multiple systems functions 

• Run-time Efficiency vs Technology Transparency – The ability to ‘plug and play’ 

hardware modules has the potential to effect the way data is shared and handled in 

subtle ways, which could affect the efficiency of operation. 

 

2.2.2. IMS Research Areas 

The following sections highlight some of the major challenges with implementing IMS. 

They highlight the cause of the problem and any solutions or potential solutions found. 

 

Each topic identified is explored in detail and although it is attempted to address each 

issue independently, there is a natural crossover of topics that occur.  

2.2.2.1. Standards 

A thorough investigation of IMS standards has been performed in (Stephenson, Nicholson, 

& McDermid, 2006). Here, three standards have been identified and their capabilities 

summarised, which are summarised below: 
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• ARINC 653 (ARINC, 2006b) 

o Defines a uniform ‘Application Executive’ (APEX) interface between the 

hardware and software layers of an avionics computer in order to provide 

the hardware services to the applications. This is similar to the Operating 

System layer as shown in the Three Layer Stack diagram of Figure 2-6. The 

main point of reference of this standard is the specification of time and 

space partitioning. This is where the applications are distributed into 

isolated ‘partitions’ upon the hardware, with independent memory 

allocations and scheduled processor time-slots. 

• Allied Standard Avionics Architecture Council (ASAAC) 

o This standard is generated from a consortium of aerospace organisations 

from UK, France and Germany. It defines interface standards for software, 

communications, common functional modes, packaging and architecture. In 

addition, areas of possible obsolescence are identified for each area, such as 

rack size and electrical connections. 

o The ASAAC standard considers more aspects than ARINC such as file 

handling, threads and debugging.  

• DO-297 (RTCA, 2005) 

o Provides guidance on the certification issues of IMS. The aim of this 

document is to highlight to designers and developers the issues of 

implementing an IMS on board an aircraft. Its concerned largely with the 

qualification of toolsets that generate configuration data and the process by 

which the configuration is loaded into the system. 

 

Further to the APEX standard defined by ARINC 653, ARINC 651 (ARINC, 2006a) details 

potential systems architectures for implementation. The standard ARINC 651 suggests a 

number of hardware configurations (Johnson & Omiecinski, 1998), each with their benefits 

and limitations. It is highlighted that the proposed architecture shown in Figure 2-8 has the 

most plausible solution to the problem. 
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Figure  2-7 Possible IMA architecture based on ARINC 651 architecture C (Johnson, 

Omiecinski 1998) 

Full reconfiguration across the entirety of the avionic system will be impractical as it will be 

too difficult to certify (Johnson & Omiecinski, 1998). However, significant benefits can be 

achieved by reconfiguration within a single cabinet. The theory behind this system is that 

each core can store a number of applications, and some decision making process decides 

which of these is to be executed. It lends itself well to progress to a dynamic 

reconfiguration scheme as no transfer of program code is required during the 

reconfiguration process thereby removing a potential source of a critical failure mode. 

 

ARINC 653 is a key enabler in the development of IMA (Prisaznuk, 2008). The purpose of 

this standard is to define a Real Time Operating System (RTOS) and an 

Application/Executive Interface (APEX) to provide a general purpose interface between 

modular software components and the underlying RTOS, as shown in Figure  2-8. ARINC 

653 does not define hardware components (Prisaznuk, 2008) but does infer requirements 

on their design by specifying needs for memory management and processing control such 

that true partitioning can be achieved by the RTOS between software applications. This 

standardisation of the interfaces will promote competition in development of applications 

as functions will be able to be generated in a modular fashion. 
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Figure  2-8 ARINC 653 System Architecture (Prisaznuk, 2008) 

ARINC 653 is presented in 4 parts defining different aspects of the RTOS. The content of 

these sections are summarised in Table  2-2. 

 

Part 1: Part 2 Part 3 Part 4 

“Required Services” “Extended Services” “Conformity Test 

Specification” 

“Subset Services” 

• Partition Management 

• Process Management 

• Time Management 

• Memory Management 

• Interpartition 

Communication 

• Intrapartition 

Communication 

• Health Monitor 

• File System 

• Sampling Port Data 

Structures 

• Multiple Module 

Schedules 

• Logbooks 

• Sampling Port 

Extensions 

• Service Access Points 

standard test suite 

to validate parts 1&2 

defines data 

exchange 

Table  2-2 ARINC 653 content summary (Prisaznuk, 2008) 
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2.2.2.2. System Design and Certification 

Avionics systems design and integration is a complex undertaking (Schavey & Duba, 2008). 

Requirements not only come from the need to satisfy the desired functionality, but are 

required to minimise space, weight and power. IMA simplifies some of these issues by 

naturally reducing housing requirements (Little, 1991), but introduces different problems, 

such as having a large number of functions developed by independent suppliers all sharing 

the same physical resources. In addition, to realise the full benefit of an IMS, the system 

should have a flexible configuration which may be changeable during the operation of the 

platform. This complicates the certification issue as it may be impossible to conduct a 

safety case assessment for each possible configuration before operation. 

 

A solution to software development is that of Model Driven Development (MDD) (Evans, 

2003). The process discussed is a design philosophy which allows software models, with 

specific requirements and constraints, to be prepared and tested before any actual lines of 

code are produced. This kind of design is very portable and re-useable as should the target 

system be changed, only a reiteration of automated software generation is required to 

update the existing software. This design philosophy has a much greater influence on the 

system management throughout the entire system lifecycle. 

 

Work towards a more complete solution to a model driven approach is presented in 

(Schavey & Duba, 2008). Here it is shown that the resolution of the complexity problem of 

integrating of the separate functionalities designed by independent institutions can only be 

streamlined through the use of model driven methodologies. The development of a 

rigorous set of modelling tools for IMS will allow the development and analysis of 

alternative implementation modes or incremental updates to be performed quickly. 

Optimising the design at ‘Aircraft level’ by considering not only the functional problems, 

but that of space weight and power can make drastic savings (Salzwedel, Fischer, & 

Baumann, 2008). The cost of architecture is quoted as a potential reduction of 72.6%, with 

an 80kg reduction in weight of the whole avionics system and an improvement from 0.99 

to 0.999999999998 when compared to reference architecture, similar to the conclusions in 

(Little, 1991). 
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An extension to the principles used in design processes such as the Department of Defence 

Architecture Framework (DODAF) can be used as a solution to the design problem of IMS 

(Mapleston, 2006b). The idea is to deal with the system in two entities, hardware and 

software. One obviously has an impact on the other, i.e. there needs to be enough 

processing power to execute the desired functionality, but they need to be as loosely 

coupled as possible. Essentially, the software design is approached in terms of 

functionality, i.e. a description of each of the avionics functions is realized and defined, 

much in the same way as MDD. The interactions between each of these avionics functions 

can also be defined. The hardware needs to be designed in terms of processing power 

required, memory requirements and available network bandwidth, along with a suitable 

network architecture put in place. This then allows a logical mapping of software to 

hardware architectures to take place. As part of this mapping a number of rules are 

required to be implemented e.g. redundant functions cannot be mapped onto a generic 

processing module that contains the function it is duplicating. This process allows systems 

configurations to be developed in the design phase of the system. In a similar way, this 

could be performed on-line to help choose an alternate configuration should it be 

necessary, or performed off-line to produce a number of acceptable reconfigurations 

available (Porcarelli, Castaldi, Di Giandomenico, Inverardi, & Bondavalli, 2003). 

 

There are two main issues with the certification of IMS (Hollow, McDermid, & Nicholson, 

2000): 

1. The certification of the re-use of components either from one IMS project to 

another, or as part of a change in configuration or an upgrade in component 

2. The certification of a dynamic, reconfigurable system. As it is possible for a system, 

given a set of conditions, to generate a new configuration that has not been tested, 

it is impossible for this configuration to have been certified. 

 

DO-297 (RTCA, 2005) is working toward having a process by which certification can be 

achieved for new applications and/or modules in an IMS, without the need for re-
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acceptance of the whole system (Elmqvist, Nadjm-Tehrani, Forsberg, & Nordenbro, 2008). 

There are 6 tasks within DO-297 that are followed to achieve this incremental acceptance: 

1. Module Acceptance 

2. Application software or hardware acceptance 

3. IMS system acceptance 

4. Aircraft integration of IMS system – including Validation and Verification (V&V) 

5. Change of modules or applications 

6. Reuse of modules or applications. 

However, the problem still exists on how to change application or configuration without 

re-certifying the entire system. 

 

Not only are there design requirements for hardware and software development, there are 

organisational arrangements that have to be in place to design and commission an IMS 

(Elmqvist et al., 2008; Mazuk, 2008). This is in-line with the standard DO-297 which 

requires certain design development roles to be owned in order for certification to be 

achieved. All references identified suggest that there is a need for good systems 

engineering in order to successfully implement an IMS to its full beneficial capability. 

 

A further three points to consider in the system design problem are highlighted by Watkins 

are are as follows (Watkins & Walter, 2007): 

• The Optimisation of Systems Resources – it is important systems integrators and 

developers have a common goal on how spare resources are utilised. 

• Change containment when hosted systems change – how is the impact of changing 

processing modules minimised when they could alter performance characteristics 

of software applications 

• Change containment when the IMA platform changes – If the platform is modified 

with new capabilities, how can these additions be accounted for without having to 

reconsider the full system. 
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2.2.2.3. Hardware 

The modular design of all parts of an IMS is the key to its success in displaying the three 

attributes outlined in (Conmy, 2006). Already the cost-benefit of using LRMs over LRUs 

have been highlighted in section 2.1, with the case study performed in (Little, 1991) and 

(Salzwedel et al., 2008). It is clear from this how designing modules built to a F3I 

specification can provide long term benefits to the end user. 

 

It is widely proposed that to mount the hardware into the platform, a small number of 

‘racks’ will be used to house a number of LRMs. This concept is demonstrated in Figure 2-9. 

 

Figure  2-9 Integrated Modular Cabinet Comparison (Moir et al., 2006)  

The modules within the rack are connected by a databus known as the ‘backplane bus’. 

This can be connected to the main system bus by the inclusion of a gateway device. 

 

This packaging method is already in use in some aircraft today. One of the main benefits 

found is the potential weight saving of this design. It can be shown (Moir et al., 2006) that 

replacing all the individual power supply units within each discrete LRU by 2 power supply 

modules responsible for a whole rack can have significant weight saving benefits. This also 

increases the redundancy of the power supply and reduces power dissipation. 
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A further description of IMS hardware is shown with an example system implemented in 

the Advanced F-35 Multi-Mission Jet Fighter (Sutterfield et al., 2008). Figure 2-10 shows an 

Avionics rack designed to take a number of standardised modules. Communication takes 

place between inserted modules via a standardised back-plane bus. In addition, the rack 

uses a liquid cooled heat sink method to keep the temperature of the modules within a 

safe operating range. 

 

Figure  2-10 High Density Packaging/Avionics Rack Example (Sutterfield et al., 2008)  

A concept for a standard processing module is shown in Figure  2-11 (Sutterfield et al., 

2008). The module suggested contains a number of standard FPGA (Field Programmable 

Gate Arrays) that can be loaded with the latest cores when upgrades become available. 

This increases the operating life of the processor units because the hardware need not be 

replaced every time there is a change to the processor, resulting in lifecycle cost savings. 

 

Figure  2-11 FPGA Standard Module for Processing (Sutterfield et al., 2008)  
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Recent complications in partitioning systems have arisen from the development of multi-

core processors. (Kim, Yoon, Bradford, & Sha, 2014) suggests a process for managing this 

complication to ensure that the advantages obtained from multicore processors can be 

absorbed with minimal impact on previously designed and validated software functions. 

2.2.2.4. Partitioning 

An architectural design of generic core module produced by Wind River, based on 

requirements from ARINC 653, is outlined in (Parkinson & Kinnan, 2003). The focus here is 

on a design that allows multiple applications to run on a single module, without each 

application unexpectedly affecting one another. 

 

Figure  2-12 Partitioning Scheme for a Core module (Parkinson 2006) 

Figure  2-12 demonstrates a partitioning scheme, originally drafted in (Prisaznuk, 1992), 

that not only protects applications from faults in their neighbours, but allows legacy 

software applications to be executed by the system. The operating system used to enforce 

the partitioning, and ensure resource scheduling to the applications is VxWorks 653. Note 

the similarity of this structure to the three layer stack in Figure 2-6. 
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Moir (Moir & Seabridge, 2008) identified four in-service systems that demonstrate a 

modular partitioning system as described above. These are: 

• Green Hills software with level A, INTEGRITY-178B RTOS on the Sikorsky S-92 

helicopter 

• Lynux Works Lynx-OS level operating system in association with Rockwell Collinson 

the adaptive flight display system on the Bombardier Challenger 300 business jet 

• Wind River Systems with AE653 on the Boeing 767 tanker transport and C-130 

avionics modification program (AMP); 

• CsLEOS RTOS developed by BAE SYSTEMS and certified to DO-178B level A for a-by-

wire flight control system upgrade to the Sikorsky S-92 helicopter 

 

The need for not only spatial but temporal partitioning as a fundamental need of a 

distributed real-time system (Yann-Hang, Daeyoung, Younis, Zhou, & McElroy, 2000). 

Spatial partitioning is performed in hardware where appropriate boundaries prevent cross 

interference between applications or partitions. Where resources are shared, temporal 

partitions are used to prevent interference and ensure each function meets their timing 

constraints. A model presented for Strongly Partitioned Real-Time Systems (SP-RTS) 

demonstrates a solution for temporal and spatial partitioning. The stronger the partitions 

are and the more isolated the applications are and the easier it is for modular certification 

to be applied as a change in configuration has less collateral impact on neighbouring 

functions. Furthermore, requirements for temporal and spatial partitioning drive the 

possible configurations available for a system (Yann-Hang et al., 2000). Configuration 

possibilities can be restricted as each task and communication require timely access to the 

shared communication and processing resources in ways that do not interfere with the 

operational of neighbouring functions. 

 

The temporal problem of the real-time system is one that is holistic, in that it can only be 

assessed by a complete system analysis as opposed to a study of a small part of the system 

(Grigg, 2002). Changes in design to part of the system therefore affect the system as a 

whole. Grigg suggests a ‘reservation-based timing analysis’ that provides the ability to 
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model the timing behaviour of parts of a distributed system, and limits the scope of re-

analysis required for localised changes. 

2.2.2.5. Configuration 

There has been a wide amount of research investigating the methods for allocating real-

time functions to a flexible set of resources whilst maintaining the integrity of the function. 

A technique developed in (Yann-Hang et al., 2000) presents a requirements set in order to 

configure real-time functions upon a single board in terms of managing the processor and 

network timings. This technique uses the deadline requirements of tasks and messages of 

individual functions in order to find a configuration that satisfies them all. 

 

An investigation into further allocation techniques was performed in (Hladik, Cambazard, 

Daplanche, & Jussien, 2008). In similar fashion to (Yann-Hang et al., 2000) a method using 

constraint programming is implemented to solve the problem. The techniques studied 

included graph theory, branch and bound, genetic algorithms, clustering, steepest descent, 

tabu search, simulated annealing, neural networks and dedicated heuristics. It was found 

that for specific problems no technique was more appropriate than the other. It was also 

found that most of these techniques were too dependent on their initial constraint and 

made any changes to the modelled system difficult to implement. 

 

The problem was solved in this instance by splitting the allocation problem into two 

phases. Firstly the applications are allocated based on resource constraints, and then the 

timing for each processing stream is corrected in order to satisfy the real time functions 

based on the overall global timing constraints. This method was found to be a robust 

method of satisfying a large amount of functional sets and achieving good utilisation rates 

of resources and good use of the bandwidth of the communication bus. 

 

Current maturing methods of deriving a configuration are based on a MDD methods 

(Evans, 2003; Schavey & Duba, 2008) and are concerned with producing a series of system 

arrangements known as Blueprints (Grigg et al., 1999; Jolliffe, 2005). By considering the 

hardware, software and configuration requirements, model-based, offline mapping tools 
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can be used to optimise and certify blueprints and store them as a lookup table for later 

reference.  

  

All of these investigations have been concerned with a static reconfiguration scenario, i.e. 

when the system in question is off-line and the allocation of functions are designed and 

assessed before run time. 

2.2.2.6. Reconfiguration 

Reconfiguration is a complex problem, particularly when associated with the safety 

requirements of modern day aircraft. Historically, there is an overriding requirement for 

the demonstrable predictability of the real-time system by off-line analysis (Grigg et al., 

1999). The system designed needs to be certain that the process of reconfiguration will not 

induce a failure, nor implement a non-functional or inadequate configuration. There are 

two fundamental methods that can be utilised to implement reconfiguration; multi-static 

configuration and dynamic reconfiguration. Multi-static and dynamic reconfiguration in the 

following way (Field et al., 1997):  

Multi-static reconfiguration: 

• Completely established at design time 

• The system stores a set of pre-defined configurations. Each configuration explicitly 

identifies the allocation of software (functionality) to hardware (resources) and has 

been checked for predictability, meeting defined time constraints, latencies etc.  

• Contains a set of pre-defined rules or triggers that initiate changes to the system 

from one configuration to another 

Dynamic reconfiguration: 

• Is achieved by using algorithms that are continually running while the system is live 

to determine the next best allocation of software (functionality) to hardware 

(resources). 

• This algorithm considers the requirements of what software functionality is 

required to be executed and the condition of the available resources 
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The ability for the system to change its configuration is one of the primary benefits of IMA 

(Field et al., 1997). This ability supports the maintenance and continued operation of the 

system in the potential presence of faults, all of cost benefit to the user. However Johnson 

(Johnson & Omiecinski, 1998), highlights that there are stringent requirements to the 

reconfiguration process, particularly online reconfiguration, in order for it to be certifiable. 

These requirements are summarized as: 

• Reconfiguration shall reduce the overall redundancy requirement 

• Reconfiguration shall allow maintenance to be deferred 

• Existing System safety requirements shall be met or exceeded 

• The reconfiguration scheme shall not be susceptible to random hardware failure 

• Reconfiguration delays must be short 

• Transient behaviour during reconfiguration must be safely bounded 

• System state must be preserved during reconfiguration. 

 

Because of these stringent requirements, it is likely that for a first step, IMS will be 

implemented without the ability to dynamically reconfigure (Johnson & Omiecinski, 1998). 

This form will utilize the benefits already highlighted of modularity, but will not yet exploit 

the full potential of IMS. This statement is now supported by the various systems already 

highlighted in this document in Section  2.2.4 that have been implemented on aircraft. 

 

Coutinho (Coutinho, 2008), suggests the use of a multi-static approach using an AIDA 

(Analogue Integrated Design Automation) architecture. The system developed is structured 

in a hierarchy with a ‘Systems Manager’ making overriding decisions supported by a lower 

level ‘Module Manager’ which is responsible for managing the service provision to the 

applications. A similar approach is investigated by Porcarelli (Porcarelli et al., 2003) who 

has performed some research into managing reconfiguration. The concept suggested is 

that a number of strategies or functional arrangements are defined off-line to provide 

configurations during run-time. A decision making agent continually assesses which 

strategy is the most appropriate and configures the system accordingly. This study focuses 

on telecommunication networks, rather than the stringent requirements of a hard real-

time application. The most extensive method suggested is by Hollow (Hollow et al., 2000) 
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who proposes that vast numbers of safe reversion configurations can be established offline 

and referred back to as a look-up table when required. 

 

Hollow (Hollow et al., 2000) tells us that current certification practises require an 

assessment of each complete configuration. Therefore, as long as the number of 

configurations generated is low, both the above approaches have good chances of meeting 

certification standards. Utilising multi-static configurations allows the operator to take 

advantage of the modular nature of IMS, and have some capacity to restore system 

functionality in the presence of faults. Salomon (Salomon & Reichel, 2011) is performing 

research into a toolset that will perform the appropriate safety case evaluations for an IMA 

in an attempt to reduce the design time and certification of various configurations. 

Although this process could be seen as quick in terms of the design of a static 

configuration, it does not yet (if it ever will) seem appropriate for the use in automatically 

accrediting configurations at run time during a dynamic reconfiguration problem. 

  

Strunk et al., (Strunk, Knight, & Aiello, 2004) is working towards a reconfiguration process 

that may one day be certifiable to stringent standards. The reconfiguration process in this 

work is performed by a single module, which is responsible for the configuration at any 

one time. This paper addresses many of the problems of dynamic reconfiguration, such as 

the timing of the process. The plan pivots around a utilizing a central controller which 

provides an opportunity for a single point failure to cripple large parts of the system. 

However, having a single decision maker will ease the certification process. 

 

An interesting concept raised by Lopez (Lopez, Royo, Barrado, & Pastor, 2008), is taking a 

wider viewpoint to the reconfiguration problem and investigates not only the 

configuration problem, but also how to use mission requirements and available resources 

to generate the required functional assignment at run time. Lopez provides a good 

framework and process to the dynamic configuration of an aircraft. 

 

Further to the totally autonomous aspect of reconfiguration, research is being performed 

into the inclusion of a Human operator in the reconfiguration decision loop (Dajiang, Jinxia, 
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& Jihong, 2011; Montano & McDermid, 2008). Dajiang et al. (Dajiang et al., 2011), suggests 

a Systems-Theoretic Process Analysis method to involve a pilot into the decision making 

aspects of choosing a new configuration. Involving a human in the process may solve some 

problems with decision making authority and potentially reducing the risk of reconfiguring 

to an inappropriate configuration, but introduce new problems such as the display and 

communication of relevant information to the decision maker who already has a high 

workload demand upon them. 

 

A thorough investigation into a dynamically reconfigurable system was conducted by (Ellis, 

1997) where the primary method of configuration was to upload new configurations over 

the network during the boot process, then use redundant processes stored in RAM as a 

fast access options in the event of errors. It was also highlighted that in the instance of 

failure, redundancy is required by multiplexed systems as well as spare processing capacity 

for re-allocation of tasks.  

2.2.2.7. Network Requirements 

The IMS concept is reliant on function integration of tasks but physical separation across a 

platform. In such hardware implementations, software applications have to exchange 

information via appropriate communication media. There is a pressing need to develop 

higher speed data transfer buses (Zhang et al., 2003), particularly for all the hard, real-time 

tasks that need to be executed in parallel, system wide. High speed data buses do exist in 

the commercial world in the form of high speed Ethernet, but there are stringent 

requirements from avionics specifications that mean Ethernet in its current form is not 

suitable for use on an aircraft. A potential solution to this problem would be to use a fibre 

channel communication that would offer data rates greater than 1Gbit/s. A commercial 

example of this technology already widely used is ‘Firewire’, a communication protocol 

used with standard personal computers (Collinson, 2011). 

 

The reason Ethernet is unsuitable in its current form is because the communication is non-

deterministic. Ethernet uses a collision detection system that detects when two nodes are 

attempting to use the common bus, and delays the sending of the message by a pre-
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determined amount of time until the bus is clear. The result is that the package of 

information cannot be guaranteed to be delivered at a set time under all conditions. In 

simple terms, it is possible to use Ethernet in a deterministic way, by using a collision 

avoidance technique. Each required communication during the process is allocated an 

amount of time to use the bus to send information. By doing this, Ethernet becomes a 

realistic option for real time distributed networks. 

A method named Time Triggered Ethernet (TTE) (Kopetz, Ademaj, Grillinger, & 

Steinhammer, 2005) seeks to formalise the determinism of Ethernet communications for 

purposes of real time communications. In this method, the processor clocks are routinely 

synchronised and messages are assigned a time period in which to be transmitted. 

 

A deterministic Ethernet method that has matured sufficiently for widespread use onboard 

aircraft is AFDX (Avionics Full-Duplex Switched Ethernet) (Bisson & Troshynski, 2003). Here 

a ‘scheduler’, a management method akin to a bus controller, manages the timing of 

communication via defined ‘virtual links’, which are software defined connections between 

data source and destination. 

 

2.2.2.8.  Distributed Control 

There are limitations of traditional real-time system design/analysis when applied to IMA 

(Grigg et al., 1999). Design is conducted by assessing the Worse Case Execution Time 

(WCET) followed by a system wide ‘schedulability’ analysis. This analysis must be repeated 

for the system component under design if any of the following change: 

• Its own timing requirements, WCET or communications requirements 

• The requirements (as above) of any other software components allocated to the 

same shared resource 

• The hardware implementation of any required processing or communication 

resource 

• The overall allocation (mapping) of software components to hardware resources 

This paper goes on to present a useful approach to the temporal aspects of the scheduling 

problem using a resource reservation approach. This is a top-down approach where system 
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timing requirements are considered with a logical architecture definition of systems 

functions and a specified amount of resource that is required to be reserved for its 

execution. This can then be analysed offline with different conceptual hardware 

arrangements in mind. It is evident that this process is not appropriate for a system 

designed with flexibility in mind. In fact, many dynamic system approaches provide little or 

no features to facilitate highly dependable, real-time performance required by critical 

systems (Ford, Bull, Grigg, Guan, & Phillips, 2009). Some of the above issues highlighted 

have been addressed by (Grigg, 2002) where a method is suggested involving a priori 

specification of its timing requirements and testing to show that these have been met 

using timing analysis methods. Using a ‘reservation-based timing analysis’ the approach 

provides an ability to model timing behaviour of parts of the distributed system in isolation 

from the system whole, enabling localised changes to occur without total revalidation. 

 

The problem of creating a hard, real-time distributed system is not a new one and 

techniques exist to ensure concurrent, repeatable systems are developed (Kopetz, 2011). 

However, this theory is based on the concept that a system is designed in a fixed 

configuration then remains unchanged during operation. Clearly these methods require 

adjustment and modification for a reconfigurable application and are more attuned to a 

multi-static approach. 

 

A method suggested as a solution is a Physical Asynchronous/Logically Synchronous (PALS) 

design pattern (Miller, Cofer, Lui, Meseguer, & Al-Nayeem, 2009). This is a method that 

acknowledges the fact that each node within a network will maintain its own time but 

ensures that the message transmissions are logically arranged such that events remain 

concurrent and deadlock or race conditions are avoided. Essentially, a global PALS time 

period is defined and within this period time is allowed for computation and message 

transmissions to occur. Each of these events are allowed time where local clock variations 

will occur relative to the overall global clock. Miller goes on to discuss that this method can 

be applied to IMA with careful consideration between the PALS time definitions and the 

intrinsic IMA timings. This can save complex clock synchronisation techniques between 
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processing units (Grigg et al., 1999)  as each avionics unit will still be subject to their own 

offset, drift and jitter from the true global time (Miller et al., 2009). 

 

A promising solution offered to provide a real-time solution when generating a 

configuration to a given IMA installation is the adoption of dependable, real-time service 

oriented architectures (Tsai, Lee, Cao, Chen, & Xiao, 2006). This solution uses a service-

oriented approach where ‘services’ and ‘consumers’ announce their provisions or needs 

respectively to a service broker (or systems manager)., in a process called ‘service 

discover’. Using the timing and communication needs identified, a recursive search pattern 

can be implemented to identify the ‘optimal’ solution to the configuration. This method 

seems to have been tested in simulation for a variety of service needs but does not offer 

specific examples of configuration solutions. There is some scepticism of this method of 

how a recursive solution can be bounded to a real-time solution.  
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2.2.3. Fault Management in IMS 

A key area of interest as defined by the scope of this work is that of fault management 

within IMS. A thorough investigation into these concepts was performed by Mapleston 

(Mapleston, 2006b). The following is a summary of the work performed in order to 

highlight the key areas. 

 

By comparison to existing fault management techniques, there are four key areas required 

for performing fault management in IMS, and to eliminate failure entirely from the system 

as shown in Figure 2-14. 
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Figure  2-13 Structured Requirements for Fault Management (Mapleston, 2006a)  
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In summary, the four key areas identified are: 

• Avoid Faults: Requiring a Systems Engineering approach to improve capture, 

maintenance and presentation of complex information during all stages of the 

lifecycle. 

• Remove Faults: Requires a capability to predict the risk and identification of faults 

in the aircraft system so they may be removed. 

• Tolerate Faults: Requires the handling of an error via detection, handling, 

confinement and recovery methods in order to maintain the service provided by 

the system. 

• Fault Treatment: Requires the capacity to completely remove the identified fault 

from the system via repair or replacement methods. 

 

The following sections investigate these areas in detail and suggest methods for addressing 

them. 
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2.2.3.1. Fault Avoidance and Removal 

In order to avoid the introduction of faults into a system involves the following 

components: 

• Use of reliable components 

• Reliable techniques for interconnection and assembly of components 

• Screening out of interference 

• Correct and unambiguous requirements specification 

• Proven design methodology 

• System engineering environment to manage complexity 

 

A solution to the above requires a good structure of procedures of system design. 

Fundamentally, this needs to involve a modular design philosophy (Elmqvist et al., 2008; 

Evans, 2003; Schavey & Duba, 2008). Mapleston (Mapleston, 2006b) suggests an 

Architectural Design Approach (ADA) to address these issues, as shown in Figure  2-14. 

 

Figure  2-14 Architectural Design Approach (Mapleston, 2006a)  
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This proposed solution is derived from a process developed to assist the management of 

battlespaces. The commonality of the problem between the management of a flexible 

scope of a battlespace to an IMS is evident in that each has a definable, yet flexible, 

number of differing components that have the capability of performing different tasks 

depending on current assignment. 

 

Furthermore, it is suggested that the system could be design using an Architectural 

Analysis and Design Language (AADL), a shown diagrammatically in Figure  2-15.  The 

benefits of performing this process are that AADL has the ability to: 

• Specify software and hardware systems architectures 

• Specify component interfaces and implementation properties 

• Analyse systems timing, reliability, partition isolation, etc. 

• Enable system integration with tool support 

• Verify source code compliance and middleware behaviour. 

 

 

Figure  2-15 AADL Overview (Mapleston, 2006b)  

Recent extensions on this work include generic model based approaches (Morel, 2014) 

that look to use the integration of physical and functional views to perform safety and 
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health assessments. An additional recent study (Si, Wang, & Liu, 2015) use AADL to model 

the partitioning involved in an IMA to correctly analyse the safety of the system (by 

focussing on the temporal aspect of partition) in the design and development phase. 

2.2.3.2. Fault Tolerance 

Fault tolerance is defined as: “...the capacity of a system to continue to provide a service in 

the presence of faults” (Avizienis, Laprie, & Randell, 2000). Fault tolerance is achieved by 

implementing the following functions within a system: 

• Error detection 

• Error handling 

• Error confinement 

• Error recovery 

The general theme of each of these methods is the concern that each fault arising requires 

the prevention of the fault propagating through the system. The following suggest how 

each of these methods could be implemented in an IMS. 

Error Detection 

There are currently a number of methods for identifying errors in a system.  The likely 

faults to occur within an avionics system are identified as (Mapleston, 2006a): 

Error Detection Mode Description 

Replication Parallel channels not providing identical results 

Timing Worst case execution time exceeded for software component, 

events occurring more often than expected and data timeout via 

communication 

Reversal Inversion of process using output does not replicate original 

input. 

Coding Errors within data 

Reasonableness Check that value falls within a range of acceptability 

Structural Check that all structures defined are filled with correct amount of 

data 

Hardware Built-in Test A series of checks that are designed and built into hardware 
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components in order to be able to detect problems with the 

hardware. 

 

All these methods are achievable to some extent within an IMS with existing, understood 

techniques. 
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Error Handling 

An ideal fault tolerant component capable of error handling is shown in Figure  2-16 (Burns 

& Wellings, 2001). 

 

Figure  2-16 Ideal Fault Tolerant Component (Burns & Wellings, 2001)  

This model suggests that in the event on a detectable error (or exception) the normal 

processing stream is interrupted by; and internal exception, an interface exception, or a 

failure message indicating exception. The component itself should then be able to handle 

the exception and then return as before to the normal processing activity. 

 

Within an IMS, two error handling techniques are identified that should be implemented in 

conjunction (Mapleston, 2006b). These are designed to respond to errors within the 

application and errors within the environment. 
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Figure  2-17 IMS Environment Error Handling (Mapleston, 2006a)  

Where: 

GSM = Global Systems Manager 

EH = Error Handler 

MSL = Module Support Layer 

 

Figure  2-18 IMS Internal Error Handling (Mapleston, 2006a) 

Where an error that affects normal operation is raised by another process or by the 

environment, this arising is always handled by the GSM. The GSM has an oversight to the 

complete system and can therefore advise applications via the application manager about 

the specific course of action to take, such as ignoring erroneous inputs. Handling errors 

may then be thought of as a series of atomic actions across individual systems, with a 

hierarchy of error handling to prevent error propagation.  

Error Confinement 
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Within an IMS, there are many separate elements all working together to perform a task. If 

one of these units were to fail, there is a chance that this error will quickly pollute the 

processing stream and cause widespread failures as a result of a single fault. It is an 

essential part of fault tolerance to confine the damage caused by errors before any error 

recovery can be attempted. 

 

A  potential solution to the problem of error confinement as the implementation of atomic 

actions (Burns & Wellings, 2001). Atomic actions are defined as: 

“An action is atomic if the process performing it are not aware of the existence of any other 

active process, and no other active process is aware of the activity of the process during the 

time the processes are performing the actions”  (Burns & Wellings, 2001) 

 

Figure  2-19 Atomic Actions Examples (Mapleston, 2006b)  
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Figure  2-19 shows an example of atomic actions implemented within a process. Processing 

streams A,B and C are working together to achieve some common goal. The atomic, 

defined by the box in bold, has a well-defined start and end point and clear sideways 

boundaries where no other streams are involved. Figure  2-19 a) shows an atomic action 

where no errors have occurred, and A,B and C have shared information correctly to arrive 

at their conclusions. Figure  2-19 b) shows where error detection mechanisms have been 

included into the process. These are implemented as it is highly unlikely that a processing 

stream can be truly isolated, and will be subject to environmental disturbances. By 

including this error checking it is possible to implement error recovery within the atomic 

action itself. Figure  2-19 c) shows how, at the identification of the error, all processing 

streams are returned to the start point where it is assumed that all inputs were free of 

error. By repeating the process from the beginning, the atomic action can be sure that 

there has been no propagation of the fault. Figure  2-19 d) shows how just one lane can roll 

back in the attempt to recover from the error, without affecting the other streams. Roll-

back, or backwards error recovery, is subject to time constraint issues where the process 

may be required to be deterministic. An alternative method would be to use a forward 

error recovery method where by upon the identification of an error, the process carries on 

straight away using a known correct state. The next section will look at error recovery 

methods in more detail. 

Error Recovery 

One of the most tried and tested methods of error recovery is the reversion to a redundant 

process channel in the event of the detection of a fault with the primary channel. Other 

methods include parallel processing and with voting stages to remove erroneous results 

(Moir & Seabridge, 2008). 

 

Within an IMS there are both opportunities and challenges to implementing redundancy. 

The first challenge is that IMS concepts do not highlight how multiple lanes are 

implemented (Mapleston, 2006a). Redundancy could be achieved by including the 

following fundamental requirements: 
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• Applications should not be aware of replication (i.e. voters and adjudicators should 

sit outside) 

• Messages should be sent from 1 to n in that outputs are replicated seamlessly to all 

channels 

The diagrams in Figure  2-20 shows various ways in which data provided from a sensor can 

be replicated to multiple channels in different ways. 

 

Figure  2-20 Implementing Replication in IMS (Mapleston, 2006a) 

 

 

In addition to this, there is the opportunity to take advantage of the inherent flexibility of 

an IMS. Figure 2-20 shows a system in a set configuration. If redundant processing units 

are available the system could reconfigure in the event of a failure to restore a lost 

processing element to a new physical location. Although this would not recover from the 

error occurrence, it would mitigate the effect of the error by restoring all redundant 

channels. 
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2.2.3.3. Fault Treatment 

Fault treatment is defined as the repair or replacement of faulty system components 

(Mapleston, 2006a). The hardware identified as potential solutions to IMS requirements 

will have a very limited scope on how they can be repaired during flight and the likely 

solution will be tolerate the fault until the component can be replaced at the next 

maintenance. 

 

An outstanding issue highlighted (Little, 1991) is the requirement of future systems to have 

guaranteed maintenance free operating periods. This cost saving measure will allow 

aircraft to fly repeated missions with no maintenance required in between, despite the 

occurance of ‘arisings’ or fault occurances. The side effect of this issue is the improvement 

required in aircraft systems to guarantee a level of performance by tolerating occurring 

faults. In addition to this, aircraft will start to have improved diagnostics systems that can 

identify faults and perform basic preparations for maintenance, reducing the down time of 

the aircraft.  

a) b) c)
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Figure  2-21 Future Fault Treatment Model (Mapleston, 2006a)  

Figure  2-21 shows the model for future fault treatment. Figure 2-21 a) shows a traditional 

maintenance approach. During operation, a fault occurs that is critical enough to require 

Continuous Operation Tolerating 
Fault investigation 
Report Errors and Failures 
Diagnose Causal Faults 
Prepare for Maintenance 
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the pilot to immediately return to base. The aircraft is then subject to a period of fault 

investigation that generates reports on the error signals and failures. This is then used to 

diagnose the fault (if at all possible) then corrected through maintenance activity. The 

vision is that during a phased in approach as shown in Figure  2-21 b), an advanced on-

board diagnosis system would identify the cause of the occurrence, and along with 

appropriate redundancy and safety measures, the aircraft is able to complete the intended 

mission whilst tolerating this fault. During this time, fault investigation, reporting and 

diagnosis could occur remotely, readying the aircraft for maintenance upon arrival. This 

reduces the amount of time the aircraft is out of service. A final implementation is shown 

in Figure  2-21 c). Here, the aircraft is subject to a number of fault occurrences during 

operation, but onboard diagnosis and system reconfiguration enables full safety margins to 

be maintained. This extends the operational capability of the aircraft as maintenance 

activities can be delayed until a convenient period.  

2.3. Examples of IMS implementation 
Often, the implementation of IMS is propriety information and details are not released. 

However, there are some documented cases on the use of IMA in current air vehicles.  

2.3.1. Genesis IMA 

Smiths Aerospace have developed an IMA referred to as ‘Genesis’ (Generic Networked 

Elements for the Synthesis of Integrated Systems) and has been implemented on products 

such as the Boeing 777, the F-22 and the Boeing 787 (Watkins, 2006). The system 

implemented has an open architecture such that third party suppliers can produce 

products to integrate with the architecture. 

 

The way the Genesis system configuration differs from a traditional federated system is 

shown in the differences between Figure  2-22 and Figure  2-23. The IMA makes use of 

‘virtual systems’ whereby each processing stream, or task, functions as if it were housed on 

a single processing unit when they actually are physically separated. 
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Figure  2-22 Federated Systems Architecture (Watkins, 2006)  

 

 

 

Figure  2-23 IMA System Architecture (Watkins, 2006) 

 

The assignment of functions is performed offline and reconfiguration is facilitated by a 

multi-static approach. Configurations are derived using a ‘contract-based’ approach, i.e. by 

a defined set of functions and interface specifications that each component is required to 

have. 
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2.3.2. Modular Avionics Operating System (MAOS) 

BAE Systems (along with partner institutions) have a long running research stream into 

integrated modular systems (Wake, Miller, Moxon, & Fletcher, 1997). The architecture 

developed for this implementation is based on the three-layer stack method described in 

section  2.2.1 and shown here in Figure  2-22. 

 

Figure  2-24 IMA Software Model (Grigg et al., 1999) 

In this case, the Application Interface Layer defined in Figure  2-6 is called the Application to 

Operating System Interface (APOS) and the Hardware Interface Layer is the Module to 

Operating Interface (MOS). 

 

The ‘application manager’, shown in the applications layer in Figure  2-24, is an essential 

part of the overall resource and scheduling management process throughout the whole 

system. It is implemented as an standard application with the addition of management 

authority as it contains information specific to the distribution. It works closely with the 

Operational Systems Manager (OSM), found in the middle layer, which is responsible for 

managed applications system-wide. 

 

The method for deriving configuration is an offline approach that generates a number of 

blueprints of system configuration. These can then be accessed at system run-time in a 
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look-up fashion should different configurations be commanded by the OSM. This is 

essentially a multi-static approach  as found with the Genesis system (Watkins, 2006). 

2.4. Literature Review Summary 
IMA remains a constantly developing field. In the past 20 years it has progress from a 

conceptual need to in-service products such as Genesis (Watkins, 2006) and MAOS (Wake 

et al., 1997). In order to achieve this level of progression, techniques and standards have 

been developed for important parts of IMS such as configuration management and 

partitioning. The development of ARINC 653 has been an important part of development 

as it allows a standard for multiple vendors to work towards a common set of interfaces. 

 

Most IMA developers are progressing towards a multi-static solution in that the benefits of 

multiple configurations are achieved by defining system arrangements off-line and storing 

them in a lookup table for access during run-time. This has many advantages in terms of 

certification, safety cases and overall cost benefits from common, re-useable components.  

 

(Gaska et al., 2015) highlights a key research area for IMA as modelling tools for end-to-

end temporal allocation and for optimizing spatial resource allocation, both fundamentally 

key precursors for autonomous configuration toolsets to be realised. Adopting advanced 

allocation toolsets would provide benefit to the installer as automated allocation of 

functions to processing resources would ease the task of the systems integrator and would 

provide large tolerances to faults during operation. 

 

A move towards a more flexible arrangement in IMA places greater reliance on the on-

board fault management methods within the system. Any decision making element with 

the IMA will be reliant on the outputs of implemented fault detection methods to 

appropriately manage the fault. Such technologies and methods are not yet mature and 

require research to refine. 

 

The main element missing from the literature is examples of dynamically reconfigurable 

systems. There is motivation to continue to develop aircraft with extended operational 
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periods between required maintenance activities. As highlighted by (Mapleston, 2006b) for 

future avionic systems to achieve this they are required to tolerate faults, in that an 

occurrence of fault cannot reduce the required levels of safety such that a mission has to 

be aborted and an aircraft return to base. There is potential that utilising dynamically 

reconfigurable avionics systems would enable this. Having the ability to flexibly utilise 

redundant processing resource to restore full levels of redundancy upon the occurrence of 

a fault means that maintenance activity can be delayed to convenient periods in the 

operational schedule. The operational benefit of this is both in terms of mission success 

(completion of the mission despite the occurrence of a fault) and economics (as 

maintenance intervals can be planned - a move to so-called schedule based maintenance). 

Multi-static solutions can provide some gains in these two areas compared to an avionics 

system with a large degree of flexibility.  

 

Furthermore, reconfiguring a system requires the generation of all timing characteristics 

throughout the system from partitioning processing resource to assignment of network 

bus time for communication processes. The implications of this with regards to the effect 

on the closed-loop, distributed control activities are required to be understood. Therefore, 

one of the key aims of this research is to identify a solution for dynamic reconfiguration 

that assigns required systems functions (i.e. a distributed, real-time control function with 

redundant processing channels) to available computing resources whilst protecting the 

functional concurrency and time critical needs of the control actions. 

 

Dynamically reconfigurable systems currently have lack of certification routes to 

implementation due to the difficulty of proving the reliability of each installation during 

operation. This is an area of primary concern to weigh against the areas of operational 

benefit over multi-static solutions. It is conceivable that developers consider dynamic 

configuration as a ‘marginal gain’ over multi-static configuration methods in terms of 

operation but would require increased complexity and increased risk in developing 

certification methods.  
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When dynamic re-configuration is performed, an increased level of autonomy is assigned 

to the on-board system. The in-ability to arrange of functions correctly can lead to safety 

critical problems such as exceeding timing requirements or insufficient multiplexing of 

tasks for point failures. Interesting thoughts are provided in (Montano & McDermid, 2008) 

by considering at what point Humans are involved in the decision to reconfigure. This 

would require automatic generation of explanations and implications for reconfiguration 

actions in a manner that interfaces with pilot workload. Further research is required to 

understand the level of automation that can be absorbed by the reconfiguration system, 

and which would benefit from situational awareness from the systems operator. 

 

The second part of this research addresses the automation problem. Here a systems 

management strategy is to be researched that utilises dynamic reconfiguration (along with 

automatic health assessment of the system) to restore an IMA to high levels of redundancy 

following the occurrence of a failure. The output of this work will bear in mind the 

requirement to communicate the reconfiguration activity to either a pilot or a remote 

systems operator in real time.  

 

 



 
Fault Management via Dynamic 

Reconfiguration for IMA   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3: 
 

IMA Demonstrator 

System Requirements 



  
Chapter 3 

IMA Demonstrator System Requirements 

 

       65 

 

3. IMA Demonstrator System Requirements 

3.1. Introduction 
The purpose of this chapter is to define the capability requirements of the IMA 

demonstrator in order to investigate and demonstrate the fault management techniques 

within IMA. This chapter will use information gathered in the literature review chapter that 

outlined the techniques implemented in IMA and the identified gaps in capability. 

 

These requirements will not form a formally agreed requirements set, but will identify in a 

logical fashion the outlined requirements for each part of the system. Each section 

contains will describe the composition for this part of the system and a description of the 

functional process. This is then summarised as a set of top-level requirements. The goal 

here is to justify that the developed system is appropriate for verifying techniques in fault 

management for IMA. 

3.2. Top Level System 
The system to be designed has the overall aim of providing a test platform for fault 

management within IMA. The assignment of an IMA to a real time control task will provide 

proof that the systems management will be operating successfully whilst providing a high 

level of service. The overall demonstrator system will consist of the three main elements 

highlighted in Table 3-1. 

  



  
Chapter 3 

IMA Demonstrator System Requirements 

 

       66 

 

Table 3-1 Component Composition of Top Level System 

Item Description 

Maglev Rig The vehicle chassis, sensors and actuators in the form of magnetic 

coils 

IMA The hardware and software elements that make up the distributed 

avionics architecture 

System Operator The trained operator who at the current time is interfacing with the 

system 

 

Figure 3-1 shows how these three elements interact. The ‘systems operator’ (i.e. the 

operator of the rig) will be able to interface with the IMA via a Graphical User Interface 

(GUI) and, in turn, the IMA will pass drive signals and receive sensor data from the Maglev 

hardware. The real time control aspect that is required to maintain electromagnetic 

levitation will therefore be performed by applications situated in the IMA. 

 

 

Figure 3-1 Top Level Systems Diagram 

 

IMA 

System Operator 
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The purpose for the development of this system is to provide a tangible demonstration of 

the concepts under investigation. This demonstration will be a suitable response of the 

IMA to an injected fault signal. It is worth noting here that because this is a developmental 

exercise, it is not intended that the system is designed in order to cope with any random 

fault mode, but be expected to respond appropriately to a number of identified common 

faults. 

 

To observe a response to a fault, it is intended that the system is capable of having faults 

or appropriate fault signal inject during operation. This could be done manually via manual 

interference with signal routing, or by raising a fault code to simulate the identification of 

an occurrence. The system will have to make available appropriate data to show that a 

reasonable response to the fault injection has occurred. 

 

Therefore, the overall operating requirements are: 

1. The IMA shall be able to display to the operator appropriate internal systems 

management information (e.g. current functional allocation, and current 

component health) for verification purposes. 

2. The IMA shall be able to display to the operator real-time information regarding the 

target platform (Maglev rig), such as current position. 

3. The IMA shall be capable of receiving control commands for the target platform. 

4. The IMA shall perform the real time control functions necessary to maintain 

magnetic suspension of the Maglev rig. 

 

The requirements for demonstration of fault management within IMA 

5. The IMA shall allow user to inject fault signals into the system 

6. The IMA shall perform some identified techniques in order to manage the fault 

7. The IMA should maintain service in the presence of fault if possible 

8. The IMA shall provide a tangible output of the systems management actions during 

this response. 
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3.3. IMA 
One of the main constraints of the project is that there is no previously commissioned IMA 

architecture available for further development or modification. It is therefore necessary 

that a complete design and construction of a representative IMA is required. It was 

highlighted in Chapter 2 of that an IMA is an incredibly complex combination of equipment 

and software. As the timescale and resources of this project are limited, an industry 

standard IMA will not be constructed. The main requirement of this system is that it will 

represent the key fundamental capabilities of an IMA that are necessary to demonstrate 

the research achievements. 

 

The general design of each IMA module should follow the three-layer stack architecture, as 

identified in the literature review and shown here in Figure 3-2. 

 

Figure 3-2 Three Layer Stack 

It is essential that the system generated represents the actions of IMA, but does not need 

to strictly adhere to all aviation requirements. For example, it is essential that applications 

are independently controlled, but it is not essential to employ partitioning schemes that 

segregate the applications under all instances of operation or failure. As many of the key 

fundamental principles of IMA should be followed during systems development to ensure 

the appropriateness of the final system for the verification of techniques employed. 
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The functional requirements of the IMA are met by the implementation of appropriate 

‘applications’ within the structure. A specific example of an application in this case will be 

one to control the ‘airgap’ between the magnet pole and the rail (Chapter 4). The 

execution of these applications is supervised by the operating system, often referred to as 

the ‘middleware’. The operating system has a number of required functions. It is 

responsible for managing the access that the applications have to the hardware services 

such as processing and communication resource. It is also responsible for general systems 

management tasks such as the boot process and managing faults arising in the system. As 

such, the hardware needs to be capable of handling the software elements mentioned and 

provide the hardware capabilities required. In order to interact with the other system 

elements highlighted in Figure 3-1, the IMA will need to have analogue data input/output 

capabilities and a suitable interface to allow the operator to control the system elements 

and observe the internal states of interest. 

 

Figure 3-3 shows how the modules of the system can be interfaced with a network in order 

to interact with each other. This diagram highlights how additional hardware can be added 

to the standard module in order to provide interfaces to sensors and actuators. The final 

element of note is that a Graphical User Interface (GUI) can be added to the network to 

provide the required data exchange between the system and the operator. 
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Figure 3-3 IMA Module Integration 

The baseline operating requirements are: 

9. The design of the system shall follow fundamental IMA principles where 

appropriate 

10. Each IMA processing module shall follow the three layer stack architecture 

11. The hardware and software shall be loosely coupled such that, within a limited 

scope, a change in either shall not infer a change in the other. 

12. The operating systems layer, or middle layer, shall manage the availability of the 

hardware resources to the application layer 

 

The required functionality for demonstration: 

13. The operating systems layer shall manage the arising of a limited number of faults 

within the system 

14. A tangible output shall be created showing the management of the fault 

15. The service provided by the system shall not be interrupted during the 

management of the fault 
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3.3.1. IMA Hardware 

All the IMA operating system and applications require hardware resources in order to 

function. In Chapter 2, examples of avionics hardware were highlighted that would be 

capable of performing such role. Due to the constraints of the project, avionics standard 

equipment cannot be incorporated. It is therefore important to identify the key elements 

that are required and select hardware that can accommodate these. 

 

Essentially, the applications and operating system will require basic computing needs, 

namely: 

• Appropriate access to processing resource to execute function 

• Access to physical memory for storage of internal variables 

• Access to communications channels 

• Access to data storage facility 

 

Further to this, Figure 3-3 highlights that some modules require extra hardware 

functionality in the form data acquisition and a graphical user interface in order to interact 

with the operator and the target plarform. An ideal solution here would involve a standard 

processing board with expansion slots to provide extra capabilities where required. 

 

In the spirit of IMA, the hardware should be capable of being replaced without affecting 

the written software. This would suggest that the use of a higher-level language (such as 

C++) compiled on to generic type hardware would provide a reasonable solution. 

Furthermore, hardware rating to avionics standards of reliability will not be required for 

the relatively short time scale of operation expected of the test rig. 

 

The overall requirements are: 

16. The hardware shall be capable of accommodating the required system functionality 

in terms of processing resource, communication resource and I/O expectations.  

17. To a limited scope, hardware shall be generic and a change in a hardware 

component will not affect the fundamental design of the rest of the system. 

18. The hardware shall have data acquisition capabilities where appropriate 
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19. The hardware shall have a networking capability of deterministic communications 

20. The hardware shall be expandable to allow additional hardware capabilities to be 

included 

3.3.2. IMA Middleware/Operating System 

The systems management that forms the middleware of the IMA is the main focus of this 

project. It is also a critical part of any IMA system as it is responsible for the overall 

management and decision making for the system. The middleware architecture to be 

adopted is represented by Figure 3-4.  

 

Figure 3-4 IMA Middleware Architecture 

An IMA comprises of an interacting system comprising of a number of modules connected 

over a network (Figure 3-3). Therefore managing the IMA is a system wide problem 

requiring communication and coordination between the nodes, more so than is highlighted 

in Figure 3-4. This infers that processing time and communication time will have to be 

made available for systems management activities along with the real time requirements 

of the module. 
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The concept of the system shown in Figure 3-4 is that the configuration of the assignment 

of the applications to resources can be changed during system operation. The 

configuration management function will have to have prior knowledge of the overall 

functional requirements of the IMA in terms of the expected applications, their 

communication needs and their own timing requirements. It will also require information 

regarding the current health state of the hardware within the system to prevent allocation 

of functions to a faulty component. An output of the configuration algorithms will be a set 

of instructions to be distributed throughout the network detailing the application 

assignment and the communication structure. 

 

Figure 3-4 highlights how each application accesses communications channels. As opposed 

to directly interfacing with the hardware, the data goes through a communications 

manager in the middleware. By doing this, the communications manager cannot only make 

the network protocols transparent to the applications, but also organises the data such 

that it can be sent in a deterministic fashion.  

 

An important part of the middleware for this application is the fault management function. 

The purpose of this investigation is to perform appropriate fault management techniques 

in order to maintain the service in the presence of faults. This fault manager will need to 

obtain error messages from all significant components of the system, i.e. hardware, 

applications, other modules, in order to make a decision on the appropriate action to take. 

If this is to be an instruction to reconfigure, then this command can be passed back to the 

configuration manager with the new restrictions on assignment criteria. 

 

The requirements for the IMA middleware are: 

21. The middleware shall manage the administrative aspects of the IMA across all 

modules, inclusive of start-up, communications, configuration and faults. 

22. The middleware shall manage accessibility of hardware resources to applications. 

23. The middleware shall enable the execution of applications and communications to 

be performed in a deterministic manner. 
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24. The middleware shall allow the software and hardware disparate such that a 

change in one should not infer a change in the other. 

25. The middleware shall prevent any unwanted interaction between applications to a 

reasonable degree. 

3.3.2.1. Management of Application Access to Hardware Resources 

The common theme of the middleware activities is that of managing the way applications 

interact with the hardware on which they are housed. The purpose of this is to decouple to 

software from the hardware such that their development becomes modular. This is the 

fundamental property that provides many benefits as highlighted in the literature review 

in Chapter 2. 

 

Most of the interactions between software and hardware come from standard library files 

and commands of any normal operating system. For example, if the code requests an 

additional action, this is interpreted by the operating system into low level commands to 

the computer hardware in order to return a result.  

 

A complication within IMA is that of having a number of applications executing upon the 

same module. The middleware has to be responsible for ensuring that applications can 

share resources whilst ensuring that they execute to the timing schedules necessary to 

perform deterministic functions. Further to this, the middleware should be responsible for 

ensuring that applications are segregated from the operations or failures of other 

applications running on the same module. These functions will run alongside the 

communications needs highlighted in Section 3.3.2.4. 

 

Following the design principles of IMA, the final need from the middleware is that it is 

designed to be portable and modular such that it can operate on similar but different 

hardware. This should allow the hardware to be incrementally changed without affecting 

the operating system, and vice versa. 
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Avionics standard middleware has to ensure key functional needs such as partitioning and 

deterministic execution to a very high degree of fidelity. For the purposes of this 

investigation, these items should be part of the developed code but need not match the 

same high levels of reliability or robustness. 

 

The requirements of this component of the system are: 

26. The middleware shall share systems resources between applications 

27. The middleware shall partition applications from all others 

28. The middleware shall ensure that applications are executed in order to meet their 

timing constraints. 

29. The middleware shall be modular and portable 

3.3.2.2. Configuration Management 

The purposes of the configuration manager will be to derive and implement an appropriate 

assignment of software applications to available resources. In order to achieve this, the 

configuration manager will require to know: 

• Details for each of the functional applications, such as how they interact and any 

specific assignment requirements 

• Details of each available resource on the network, such as signal input/output 

capability or graphics output 

• Constraints for the configuration such as any failure reports of components 

 

From this information, it should be possible to either derive a configuration or report an 

error message.  

 

Figure 3-5 Configuration Manager 
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A further complication to the configuration problem is that of assigning a schedule to the 

execution of functions. If the system is to be deterministic, there will be a requirement for 

critical functions of applications distributed across the network to run concurrently and 

meet execution deadlines. This requires the synchronisation of execution network wide 

and synchronisation of communications.  

 

The goal for this project it to utilise a method whereby the configuration is generated 

dynamically. This will mean that for any functional set of applications prepared and any 

number of processing modules attached, the system will generate either an appropriate 

configuration where possible or an error message. This also means that should a fault 

occur in a system component, the configuration computations can be re-executed with the 

new restraints in place. 

 

The requirements are: 

30. The configuration manager shall manage assignment of applications to resource 

following application assignment requirements 

31. The configurations generated shall ensure the applications can execute in a 

deterministic fashion 

32. The configuration/reconfiguration tasks shall be performed in a timely manner 

33. The process of configuration/reconfiguration shall not disrupt the application 

execution flow 

34. To recalculate a new configuration based on constraints from fault signals 

35. To Implement a new configuration without interrupting the service 

3.3.2.3. Fault Management 

The literature review in Chapter 2 identified that in order to provide fault management, 4 

key items should be considered: 

• Fault avoidance 

• Fault removal 

• Fault tolerance 
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• Fault treatment 

 

Fault avoidance and removal are largely concerned with good systems engineering 

practices in design and are not the subject of the investigation here. Fault treatment is 

often covered by a good support network that can diagnose the fault and replace the failed 

component. The focus in this investigation is that of fault tolerance, as in how to 

accommodate the occurrence of a fault whilst maintaining the intended service output. 

The following items were identified in the literature review in order to perform fault 

tolerance: 

• Error detection 

• Error handling 

• Error confinement 

• Error recovery 

 

It can be seen at this stage that Figure 3-4 over simplifies the process of the fault 

management system. The inclusion of a fault management mechanism, or more 

specifically in this case fault tolerance, infers requirements on all aspects of the system.  

 

Ideally, the system will have error detection mechanisms for each component of the 

system with a structured fault reporting system that feeds back to a top level. At this 

central location, a decision can be made as to the next best course of action, based on the 

information provided. If, for example, the solution to the recover from the error is to 

reconfigure then the configuration mechanism can be activated with the new constraints 

applied. 

 

A useful addition to the fault manager is that of an error log. This will have a record of any 

identified faults and the result of the handling decision. This will provide an important 

output to the verification of the fault tolerance process. 

 

The requirements for fault management for this application are: 
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36. The system shall be capable of detecting simple faults in various system 

components, such as applications or hardware modules. 

37. The system shall be capable of handling the occurrence of certain errors. 

38. The system shall be capable of recovering from error by initiating the 

reconfiguration mechanism with new constraints. 

39. Where possible, the system shall confine faults such that their occurrence does not 

propagate system wide. 

40. The system shall maintain a log recording the error that has arisen and the 

resultant action taken. 

3.3.2.4. Communications Management 

A large part of the IMA problem is managing this loosely coupled relationship of hardware 

and software in a deterministic fashion. From the application perspective, data is expected 

at a certain instance in time and makes the output of the function available upon 

completion of execution. The communications manager, as shown in Figure 3-6, will be 

responsible for taking this data and sending it to the appropriate application for which it is 

intended. 

 

Figure 3-6 Application Data Exchange Example 

As an output of the configuration algorithms, the communications manager requires to be 

informed of the timing characteristics for the functionality of the system. It is then 

responsibility for managing the series of communication to achieve real time, deterministic 
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communications whilst maintaining transparency of this process to the housed 

applications. This can be done by interacting locally with the applications housed on the 

same module to retrieve the necessary data and then send this data via a network to the 

appropriate module that houses the target application. The data can then be processed by 

the local communications manager on the receiving module to be passed to the correct 

application.  

 

The communications strategy requires flexibility such that should the functional 

assignment change, the communications structure will also be required to change. It is 

important that should this occur, the transition should be smooth and cannot be allowed 

to cause disruption to the service.  

 

The communication structure is not only responsible for sharing information between 

applications across the network. Previously, it has been mentioned that aspects of the 

systems manager will require communications between modules in order to obtain a 

global picture. It is important that the systems management communications, that may be 

non-deterministic, does not impact on the time critical communications. 

 

The requirements of the communications algorithms are: 

41. It shall provide deterministic communications between applications for assigned 

configuration 

42. It shall ensure that the network communications methodology is transparent to the 

applications 

43. It shall provide communications between systems management components 

44. It shall Ensure that communications of systems management do not impact upon 

the deterministic communications 

45. It shall ensure smooth transition between configurations 

3.3.3. IMA Applications 

The applications within the IMA are the components that will be performing the functional 

tasks assigned to the system. The code within the applications will be task specific, in this 
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case it will be the control algorithms and any supporting functions desired to maintain the 

airgap on the maglev test rig. 

 

The challenge here is to ensure that the modularity of the system is protected such that, 

should the applications or their functional structure change, there should be no change 

inferred on the underlying middleware. The application will have to conform to an 

interface standard such that they can be implemented on any IMA module. The main part 

of this refers to the communications structure, as mentioned in section 3.3.2.4. 

 

Where possible, applications have to be written such that they are not hardware specific. 

In some certain circumstances, applications will require input from specific hardware 

component such as a sensor or a keystroke, and therefore the application requires locating 

on a module with this capability. The application will be require to state this to the 

configuration manager such that this assignment is achieved. 

 

In addition to this, applications have to be controllable in that the systems manager has 

the capability to start/stop applications, schedule the execution and initiate their 

execution in another part of the system. 

 

The requirements of the applications are: 

46. They shall perform a specified task 

47. They shall be controllable by the system manager 

48. They shall communicate with other applications via the communications structure 

49. They shall have an assignment specification 

 

For the purposes of the demonstration, the primary requirements for the applications will 

be to maintain the airgap of the Maglev vehicle. 

3.3.4. Graphical User Interface 

The GUI in this application will be required to have two main functions. The first will be the 

ability for a user to control the inputs associated with the Maglev rig and to monitor any 
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sensor output. The second is to provide an input/output capability to facilitate a tangible 

demonstration of the IMA systems management capabilities. 

 

In order to perform the input/output requirements of controlling the rig itself, the GUI will 

need to take an airgap demand from the user, pass this to the control algorithms for 

processing and output data from all the associated sensors. It may also be required that 

test inputs, such as a sinusoidal input, be used for analysing the control algorithms. 

 

A more important output with regards to this investigation will be the interface detailing 

the systems management activities of the IMA. The GUI should show the current 

configuration of the system in terms of allocation of functional components to processing 

resources. It should also show the relationships between the applications, as in the flow of 

data and parallel processing channels. Further information to display can include 

information about each system component and if a component is in a faulty condition. The 

most important consideration is to make the information tangible to the observer 

 

The baseline requirements are therefore: 

50. The GUI shall provide an input capability for the demand of the Maglev rig 

51. The GUI shall provide an output of sensor data from the Maglev rig 

52. The GUI shall provide a test input capability 

 

For the purposes of the demonstration Fault Management within the system: 

53. The GUI shall display the configuration of the system in a tangible manner 

54. The GUI shall highlight the process flow of the functions 

55. The GUI shall display the health of the system components 

56. The GUI shall display detailed information about each component 

57. The GUI shall provide a fault injection capability 
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3.4. Maglev 
The main requirements instilled on the maglev rig are that it is controllable and 

measurable. The rig should respond to the drive signals given to it, and output reliable 

sensor data. 

 

The rig is designed to be controlled by low voltage PWM signals, one for each magnet. 

These signals are required to be amplified in order to provide sufficient power to the 

magnets in order to magnetically suspend the vehicle. 

 

The sensor outputs of the rig have different levels of critically, in that some signals are 

used for the real time control aspects, and others are used for general monitoring 

purposes. Table 3-2 below shows the sensors already installed on the rig and their purpose 

for use. 

 

Item Description Purpose of Use 

Flux sensor Coil of wire embedded onto 

magnet poleface. Signal is 

integrated to a voltage 

proportional to Flux density. 

Critical - used for real time control. 

Gap Sensor embedded to the 

underside of the chassis.  

Outputs a voltage proportional to 

gap size. 

Critical – used for real time control of 

airgap. 

Current A Hall effect sensor that outputs 

a voltage proportional to current. 

Can be used for real time control, but 

more likely used for monitoring 

purposes 

Temperature Thermocouple embedded into 

the coil. 

Non-critical - Used purely for 

monitoring. 

Table 3-2 Maglev Rig Sensor Descriptions 
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For all sensors it is important that a reasonable level of reliability is obtained such that 

sensor failure does not impact development. The sensors should provide as clean and 

repeatable signal as possible otherwise this will impact on the control design. It is a 

reasonable extension here to design the signals such that they can be failed in order to 

observe how the fault management system responds. 

 

The rig has been designed with redundancy in mind, by duplication of certain elements. 

Each magnet is dual wound, such that it has two separate excitation inputs. Each poleface 

has two search coils embedded into the poleface to measure magnetic flux and two 

temperature sensors. It is therefore possible to take advantage of this arrangement in that 

sensor channels or actuation channels can be failed, and it will be up to the IMA to identify 

this fault mode and respond to it. Figure 3-7 shows the possible duplex sensing 

arrangements for interfacing with the magnet. Full details of the design and build of the 

experimental rig can be found in Appendix C 

 

 

Figure 3-7 Suggested sensor interface between IMA and Magnet 
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Therefore, the requirements are: 

58. The Maglev rig shall be controllable and respond as expected to inputs. 

59. The Maglev rig shall provide clean, repeatable signals. 

 

For the demonstration 

60. The Maglev rig shall allow faults to be injected into it. 

3.5. Summary of Requirements 
The requirements presented here summarise the major considerations for the 

development of a test rig that can demonstrate the main research outputs. A key challenge 

is that of creating a network of computing modules that represent the fundamental 

functionality and attributes of IMA in terms of facilitating the execution of application 

whilst maintaining transparency of the underlying technology and processes. The aim of 

defining and then replicating the features that are essential to fault tolerance is to ensure 

the scientific findings are appropriate to a robust standard architecture. 

 

The requirements are shown to have been satisfied by the Requirements Compliance 

Matrix that can be found in Appendix B. 
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4. IMA Implementation 
This chapter describes the design and function of each component of the physical 

implementation of the representative IMA for this project. A key aspect of this chapter will 

be the description of how software applications are assigned and executed on the available 

processing resources. The ability to sensibly and reliably assign different networks of 

functions to varying levels of resource will be tested in Chapter 6. 

 

Although fault management within this system is intrinsic to its design, the methods of 

managing faults and how the system responds to these will be discussed at depth in 

Chapter 7. 

4.1. Top Level Design 
A fundamental choice of the project was that of the computing capability. The solution 

chosen was to use a real time operating system provided by National Instruments running 

on a standard PC. This real time operating system (RTOS), called Pharlap, is also known as 

LabVIEW ETS (Embedded Tools Suite). When installed as an operating system on a PC, it 

will execute standard LabVIEW code in a deterministic fashion. The library files contained 

as part of the RTOS provide the interface needed for the software to access hardware 

resources such as networking capabilities or sensor inputs. 

 

The issue highlighted with this solution is that LabVIEW ETS is not designed as a 

middleware solution to an IMA implementation. Therefore a certain amount of 

augmentation with custom designed code is required to fulfil the functions necessary for 

this project. The implementation of this solution, as a comparison to the 3 layer stack 

philosophy, is shown in Figure 4-1. 
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Figure 4-1 Practical Implementation of IMA 

The PC itself contains as few extra components as possible. The complete hardware list 

consists of: 

• PC motherboard 

• Intel Celeron D Processor 

• RAM 

• Hard disk drive 

• Intel network PCI card 

• Data acquisition card (where appropriate) 

 

One stipulation using LabVIEW’s Pharlap as the operating system is there is a restriction 

inferred on the choice of components used above. Pharlap is only compatible with a 

certain number of processors, network PCI cards and National Instrument’s own data 

acquisition cards. This fundamentally works against the principles of an open architecture 

in which there are no restrictions on compatibility. For a commercial implementation for 

IMA, this level of constraint would be unacceptable, but for an investigation into systems 

management activities, the solution is adequate. 

 

Aside from this restriction, the solution will allow the demonstration of fundamental IMA 

principles. During development of the system, the original motherboard selected was 

outmoded and  hence irreplaceable. Instead an upgrade of similar specification was 
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purchased and this was inserted as a replacement into the system with no change required 

to the rest of the system.  

 

In summary, the benefits and issues of using this arrangement are highlighted in Error! 

Reference source not found. below: 

 

Benefits Issues 

• Provides a flexible, workable solution to 

the implementation of a representative 

IMA  

• Upgradeable (with certain restrictions) 

• Cheap 

• High performance computing 

• Reliability 

• Augmentation required to perform 

middleware functions 

• Not ‘future proof’ 

• Not an open architectural solution 

Table 4-1 Analysis of LabVIEW implementation of IMA style middleware 

The overall selection above provides a reasonable solution to the problem. A number of 

key functions, as highlighted in Chapter 3, will be required to be written to mimic a true 

IMA middleware. The following sections will detail how these functions are implemented. 

4.2. Systems Management 
An IMA can be considered as a distributed system in that the functional components are 

spread across a number of computing resources connected by a network. One of the 

questions this raises is that of decision making and, more importantly, which element 

makes which decision. Major decisions which encompass the whole IMA such as 

configuration selection will be made at a central location with the result communicated to 

other modules. This results in two considerations, firstly the need for a good reporting 

structure and secondly the introduction of a critical single point failure. 

4.2.1. Systems Management Reporting Structure 

The structure of management within the system takes a hierarchical approach whereby 

there exists a global systems manager, responsible for making system wide decisions, 
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working with local systems managers that control and manage each module. Local systems 

managers will be responsible for reporting faults within these modules to the global 

systems manager and acting upon any instructions received, as shown in Figure 4-2. 

 

 

Figure 4-2 Systems Management Hierarchy 

The global systems manager constantly monitors the health of the hardware components 

and applications of the system. For simplicity, these items are considered healthy or faulty. 

The status of each of these items are retrieved from a number of sources, and collated 

here to gain a systems wide view. Should the status of the system change, such as a 

processing module or application is reported to have failed, the global systems manager 

initiates the reconfiguration algorithms to optimise the allocation of required functionality 

to remaining resources. The new configuration is then communicated to the rest of the 

system and implemented by the local systems managers.  
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4.2.2. Timing and Synchronisation 

The reporting and communication of systems management activities require bus 

bandwidth to function. It is important that this communication does not interfere with the 

‘hard’ real-time functions responsible for real time control loops. 

  

It is assumed that the initial system configuration contains appropriate levels static 

redundancy. This ensure that at the point of a failure occurring during a mission profile, 

the system can continue to provide service during the time it takes to assess the new 

system capability and decide the appropriate course of action to take. At any point, if a 

failure occurs and no reconfiguration of the system will improve current capability as all 

redundant options have been exploited, then the health assessment can be used to inform 

the decision to continue the mission, return to base or ditch the aircraft. 

 

Systems management activities are not ‘real-time’ functions in that the ability of them to 

gather data and function is not affected by transient problems (such as ‘jitter’, signal delay 

and requirement of regular data transfer) as real time control functions are. 

Communication of systems management functions are allocated time on the network bus 

following the completion of real-time functions, as shown in Figure 4-3. This is performed 

by dividing bus time into regular time frames, synchronised by a data packet from the 

global systems manager. Each time frame is segmented such that the systems 

management activities are assigned bus communication bandwidth where interference 

with real time functions is not possible. 
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Figure 4-3 Time Partitioning of Network Bus using Segmented Time Frames (TF) 

This segmentation enables reconfiguration activities to be arranged in the background 

whilst the system continues to operate. Following the identification of a failure, 

information regarding the health is reported via the communication structure to the global 

systems manager. At this stage the global systems manager attempt to identify a new 

configuration that would restore higher levels of redundancy. As mentioned, if all options 

have been used due to previous failures of available system components then the system 

is reliant on the levels of static redundancy in the current configuration. If reconfiguration 

is advised, the new configuration is communicated to the local systems managers whilst 

the system continues to operate in its current state of reduced redundancy. After the new 

configuration is prepared system wide (in that each module is aware of what the new 

assignment and timings of applications and communication packages will be), the new 

configuration is implemented by a message embedded in the synchronisation packet in the 

time frame. Each module instantly discards the previous configuration and implements the 

new. Changes have to be instant and occur at system wide synchronously to ensure that 

no loss of service occurs during transition between configuration states. 

4.2.3. Redundancy in Systems Management 

Single point failures are traditionally compensated for by the implementation of redundant 

processing channels. A similar solution could be applied here to provide a reversion option 

should the module acting as the global systems manager fail. 
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As all processing modules in the system are very similar, the choice as to which one 

performs the global systems management is arbitrary. In this case a node at a fixed IP 

address is chosen and this module is assigned the role of Global Systems Manager at start-

up. 

 

The proposed conceptual solution to the problem is to not only have a global systems 

manager processing health and systems information, but for its actions to be replicated 

and monitored by a number of modules aptly named Shadow Systems Managers. These 

will mimic the actions of the global manager and look for any discrepancies or bad outputs. 

Should the global manager be deemed to have failed, one of the shadow managers will be 

able to assume authority with little or no delay. 

 

Figure 4-4 Systems Management Tolerating Failure 

Figure 4-4 focuses on the middleware sections of the IMA. Reconfiguration in this instance 

will have to occur in this system on two levels. First of all, the systems management level 

itself needs to be reconfigured dynamically. Following this, the application level needs to 

be reconfigured in order to restore the system to an optimum level of functionality and 

redundancy.  
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The solution proposed is a conceptual one in that it has not been employed in the 

developed system. It is described here to justify the chosen solution of a global systems 

manager is a viable one, but in a more demanding environment than this project further 

considerations must be made to guard against the occurrence of a failure. 

 

All of the management level reconfiguration must occur in a transparent manner to the 

applications. 

4.3. Application Design 
In order for the system to control the application with regards to the execution and 

assignment, the system will have to know about the application. Statistical information 

regarding each function requires storing in a location accessible to any decision making 

element within the middleware. This information, along with the assignment of each 

application, forms what is known in IMA as the system Blueprint.  

 

The information required to be stored in the Blueprint can be found in Table 4-2. Most of 

the information is a textual description of the task orientated functions of the system and 

can almost be captured directly from an architectural systems analysis. These items are 

filled in automatically as part of the start-up procedure. The rest of the content is 

populated as a result of the configuration algorithms and will be discussed later.  
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Element Description 

Application Name: The descriptive name of the functional component 

Application Reference #: A unique number assigned to the application 

Assigned to: The processing module identification number to which the 
application is assigned 

Inputs from: Details the name and source application for each of the 
inputs 

Outputs to: Details the name and target application for each of the 
outputs 

Assignment criteria: Contains information relating to the possible assignment of 
each application. This is based on the functional description 
of the system, but essentially ensures that the applications 
are assigned in such a way not to jeopardise any redundant 
channels and to ensure that applications that require certain 
hardware are assigned to the appropriate hardware resource. 
These will be ranked according to importance and the least 
important criteria will be removed should there be no logical 
solution to the configuration. 
Example criteria: 
!app1  - cannot run on same module as application ‘app1’ 
!Input 1 – the application that is the source of input 1 must be 
on another module 

Criticality: States the level of importance to the system. The application 
is flagged as time critical if it is the last function in a network 
of distributed real-time functions. This enables priority over 
less critical functions (such as data display) and could be 
graded depending on the task. (See section 4.4.1.1 for more 
information) 

Run time: The time it takes the application to execute based on worst-
case execution time assessment 

Start time: The time the application is due to start in the time frame (NB 
It is assumed that each application runs once every time 
frame) 

Table 4-2 IMA Blueprint Outline 
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4.3.1. Application specification example 

Figure 4-5 shows a network of functions that have to be performed in a set time frame. 

 

Figure 4-5 A Simple Network of Functions 

This diagram is similar to a critical path analysis where each element is unable to execute 

until its data input is available. Applications B1 and B2 represent a duplicated function 

where B represents the function, and the numeral indicates the channel number. 

 

From here, relevant information for the system blueprint can be captured. Considering 

application ‘B1’, the following can be captured: 

Element Value Explanation 

Application 
Name: 

app B1  

Application 
Reference #: 

# Assigned automatically, but will be a 
unique identifier. 

Assigned to:  Value defined by configuration algorithms 

Inputs from: From Data name 

app A data A2B1 
 

A table is shown here in case more than 
one input is expected 

Outputs to: To Data name 

app C data B12C 
 

 

Assignment 
criteria: 

!B2 It is not desirable to locate the redundant 
process on the same physical resource 

Criticality:  Value only entered if this is the last process 
in the functional tree 
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Run time: <us> This time is taken from experimentation. A 
more ideal measure is making an 
assessment on the amount of computing 
resource required, but a time in micro 
seconds is generally accurate enough 

Start time:  Value is defined by configuration process 

Table 4-3 Example Capture of Application Information 

This textual description is stored with the application such that on start up, the global 

systems manager can assimilate this information. 

4.4. Configuration/Re-configuration 
The purpose of the configuration algorithms is to derive an appropriate allocation of 

applications to computing resources. This assignment should take into consideration: 

• Available processing time on each module 

• Hardware requirements of the applications 

• The requirements for real time, deterministic execution of distributed tasks 

 

The goal is to achieve automatically an appropriate distribution of functions that would 

mimic a manual design of a distributed real time control system. 

 

Functional distribution throughout a standard non-reconfigurable distributed control 

system is normally done by deriving the relative time each activity can function without 

interference within each time frame. A time frame (TF) is a regular division of time in which 

activities are scheduled to occur, and then repeated for as long as necessary. An example 

of how functions might be scheduled to run across the distributed system is shown in 

Figure 4-6. 
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Figure 4-6 Organising a Real Time Distributed Control System 

Figure 4-6 shows how each functional element is assigned not only to a resource, but also a 

slot of time in which to execute. This is true also for communications where each data 

packet has to be scheduled on the network such that collisions are entirely avoided. 

 

This method of arrangement is a classic technique when arranging distributed real time 

systems and as such forms the basis of the design of here. It is essential to maintain the 

concurrency of events to uphold the integrity of the real time control. The designer of the 

system can measure or approximate the time required for each of the tasks or 

communications to take place such that these can be incorporated into the design of the 

control problem.  

 

Previous examples of configuring an IMA have used a multi-static approach where a 

number of configurations are designed, stored in the systems blueprint and reverted to as 

a response to either a change in functional need or a fault. In this project, the 

configuration will be derived dynamically. The algorithms are executed and an assignment 

set is derived based on current information regarding the state of the system. Should the 
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system require a different functional set, or require response to a fault, the configuration 

algorithms will be repeated using current system health inputs as assignment restrictions. 

 

The configuration methodology adopted is based on that highlighted by Yann-Heng (Yann-

Hang, Daeyoung, Younis, Zhou, & McElroy, 2000) but largely focuses on the temporal 

partitioning problem. Yann-Heng highlights the importance of spatial partitioning to 

prevent the propagation or errors between operating applications. Further to Yann-Heng’s 

work, this investigation looks into the additional problem of functional networks where a 

single application may have many inputs derived from an interacting web of functions 

before it can perform its task. The configuration is then stored in the system blueprint and 

communicated to the local systems managers. 

 

Lee (Lee, Kim, Younis, & Zhou, 2000) furthers previous work by discussing how the 

temporal and spatial partitioning drives the configuration of the system. Each task and 

communication must be arranged such that they do not interfere with neighbouring 

functions. Lee demonstrates a system where this is performed in a static manner. In this 

investigation similar principles are studied but with the aim to produce a method of 

autonomous configuration and a resultant robust schedule as part of the system design.  

 

The resource allocation problem is based on the CPRTA (Constraint Pro-gramming for 

solving Real-Time Allocation) method investigated by Hladik (Hladik, Cambazard, 

Daplanche, & Jussien, 2008). The progression from this work is that in this case the 

algorithms are executed at run time, and will be employed to facilitate reconfiguration 

during the system operation. For this to occur, the appropriate systems descriptions 

normally chosen in a static sense will have to be derived automatically in order to bound 

the configuration algorithm. The methods employed here to facilitate this will be described 

at a later stage. 

 

A number of plausible methods exist where a configuration can be derived, such as the use 

of neural networks or Bayesian belief networks. For this project, a recursive placement 

algorithm method is used where applications are placed where they do not contradict 
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assignment criteria provided in the application information (Table 4-3 Example Capture of 

Application Information) 

 

The configuration process implemented is explained using a simple example in section 

4.4.1. 

4.4.1. Configuration Example 

This example will describe the process the system follows in order to assign the network of 

functions described in Figure 4-5 to a set of standard modular processing resources, shown 

in Figure 4-7.  

 

Figure 4-7 Simple Network of IMA Resources 

The functions shown in Figure 4-5 will have interdependency as they are all part of a 

process flow. A complete system is expected to have any number of functional networks 

operating alongside each other. The configuration algorithm developed places each 

functional set in turn to ensure concurrency of the process flow is maintained. As this is an 

initial system configuration, if at any point no solution to the configuration problem can be 

found then essentially the system fails to boot and informs the design team or system 

maintainers that there is a mis-match in available processing and resources to required 

application functionality. 
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The top level process that is followed is shown in the flow chart in Figure 4-8. For further 

detail regarding the algorithm, a pseudo code version describing the whole configuration 

algorithm is included in Appendix D.  

 

Figure 4-8 Recursive Placement Algorithm Process Flow 

The general philosophy behind the process is that the most critical function is identified 

and placed first. The algorithm then attempts to place all necessary pre-requisite functions 

(i.e. all those preceding it in its functional tree) to this critical function, adjusting execution 

orders and timings along the way. Upon completion of the placement of the functional set, 

the allocation and timings are then fixed and are not allowed to be adjusted by later 

allocations. The process is repeated for subsequent functional sets, placing the remaining 

applications around those already assigned. This process is repeated until all functions are 
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placed. If at any stage, a process cannot be completed, an error is returned and the 

configuration fails. 

 

The individual processes (numbered 1 to 5 in Figure 4-8) are explained in the following 

relevant sections. 

 

4.4.1.1. Process 1: Order Functions by Criticality (and Identify Resources) 

The level of criticality of the functions in this case is a simple solution where a function is 

declared ‘time critical’, by entering ‘TC’ in the appropriate field when defining the 

application specification. Although all real-time functions have deadlines to meet, data 

related to a safety critical items such as a flight control function for example, should take 

priority over display data or less critical control activities. In more complex networks of 

functions, criticality will be required to be graded and the process to be described can be 

modified in order to accommodate this. 

 

The process for sorting the functions into criticality is actually quite a simple one, and 

summarised in Figure 4-9. 
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Figure 4-9 Order Functions by Criticality 

Figure 4-9 contains a data store named ‘Order of Functions’. This is an internal variable 

designed to store references to the functions in order of criticality. 

 

Aside from functions marked ‘time critical’, it is also considered that the next most 

important functions are in fact those that perform the actual output required of the 

system. These functions normally have an output to an actuator or to a display screen and 

therefore will have more specific allocation requirements in the IMA hardware. These 

functions are considered more important in order to be placed first. These terminal 

functions are often easily identifiable by analysis of the functional specifications as they 

have no communication data to be output on the network alongside their physical 

interactions with the environment. Process 1.2 “find function with no data output” in 

Figure 4-9 above refers to this search. This process may not provide an optimal solution, 

bus does enable a configuration to be realised that satisfies timing requirements. 
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4.4.1.2. Process 2: Select Next Function 

Selecting the next function to place requires more thought and care than is first envisaged. 

This is brought about by the desire to place functions by following the process flow along 

the functional network. As mentioned earlier, the general procedure is to start by placing 

the last function in the set and working backwards. Where multiple inputs into a function 

occur, each branch has to be pursued in turn in order to be sure that all pre-requisite 

functions are placed. The process followed is similar to a blind search algorithm where the 

first input is followed each time until an initiating function (one with no data inputs) is 

found. The search resumes by selecting the next input at the lowest level branch until all 

avenues have been explored. 

 

The process is described in Figure 4-10. A key feature of this process is the “breadcrumb 

array” - an internal variable that keeps track of the path taken through the functions such 

that it can be retraced when the current avenue has been fully explored. 

 

Figure 4-10 Find Next Function to Place 
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When a functional tree is complete, defined by the decision block 2.3 in Figure 4-10, the 

attributes relating the assignment of these functions is fixed. Other functional sets have to 

be assigned around these functions in order to ensure that the timing specification derived 

is not compromised by later assignments. When this occurs, the algorithm looks for the 

next most critical function calculated earlier and described in section 4.4.1.1. 

4.4.1.3. Process 3: Placing Function on Resources 

Placing a function on a resource has to be performed carefully in order to make sure that 

the assignment criteria are satisfied. The general process is that the algorithm attempts to 

place the function on each resource in turn, moving on only if a contradiction is found in 

the assignment criteria. The process is described in the flow diagram of Figure 4-11. 

 

Figure 4-11 Assign Function to Resource 
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Generally, functions have the requirement to be assigned to a specific type of hardware, 

such as an input/output module, or require to be segregated from redundant processing. 

Further requirements come from the desire to not overload a single resource with too 

many functions.  

 

Should no resource be found that does not contradict the assignment criteria, the entire 

configuration process fails with an error output.  

4.4.1.4. Process 4: Schedule of Application Execution and Communications 

A critical aspect of managing the configuration is ensuring that the resultant arrangement 

is a concurrent process that satisfies the functional flow described in design, such as 

outlined in Figure 4-5. It is important that the process takes into account the arrangement 

on each module such that they execute in the correct order, but considers a system wide 

perspective to take into account pre-requisite functions running on another resources. The 

process therefore follows two main functions, correcting the order of functions placed 

upon the current module, and the correction of timing of each of these functions. Both of 

these processes are executed each time a new function is placed on a module. 

Correcting the execution order upon the module 

This part of the process is the implementation of a sorting algorithm in order to ensure 

that pre-requisite functions are scheduled to execute on the module before later 

functions. The sorting process is described in Figure 4-12. 

 

The resource assignment log, mentioned in the previous section, not only keeps track of 

the assignment of functions to resources, but also records the order and timing of each of 

the functions on each resource. The information is very similar to that recorded in the 

system blueprint but with a view taken from the resources as opposed to the functions. 

 

The process begins by placing the newest function of interest at the front of the module. 

The algorithm then checks if any application scheduled to execute later on the module is 
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actually a pre-requisite of a function scheduled to run sooner. Clearly, this arrangement 

would cause concurrency problems in the overall execution of the functionality. 

 

 

 

 

Figure 4-12 Order Function on Module 

Processes 4.4. and 4.5 describe the identification of an out of order function, and the 

process of swapping them around. A prerequisite function is identified as being out of 

order if it realised that its execution is scheduled to complete after the scheduled start of a 
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subsequent function. Process 4.4 also involves a check to confirm that the functions being 

compared do exist within the same network of functions. This check could be done by 

another ‘blind man’s search’ of the data interactions leading up to this module. This would 

provide a more accurate picture of the relationship but be more timely and complex. 

However, in this instance a more simple check is made in the following way: 

• Is this function part of the same functional tree? 

• Is this function at a lower respective level in the tree according to the breadcrumb 

array? 

If both of these tests are true, then the function is considered a prerequisite.  Although not 

entirely accurate and represents an area for improvement, this was found to be an 

appropriate solution. 

 

If a newly added function is not affected by this sorting algorithm because it is not 

recognised as part of the functional set, the next stage in the process arranges it into an 

appropriate time slot in order to allow access to processing time upon the module. This is 

described in the following section.  

Assign Timing to Execution and Communications 

A critical part in the configuration process is the accurate assignment of timing to the 

execution of the functions and the communications. Without this, the system will not be 

capable of correctly performing distributed real time control algorithms. It is vital that 

functions are scheduled to run concurrently and that communications are arranged to 

support this need and timed to avoid collisions on the databus. 

 

One way of considering the timing problem is working out the earliest possible time 

available for the function to execute. This is dependant on the latest time of two 

considerations: 

• The time the last input is due to be received by the function from its immediate 

prerequisites. 

• The earliest available block of processing time for executing the function on the 

module. 
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A similar pair of considerations applies to the communications structure. The earliest data 

transmission time will be the latest time taken from the following: 

• The time the function completes from which the data originates. 

• The earliest available block of time on the network for transmitting the data packet. 

 

Both these sets of constraints infer that the pre-requisite function has been placed. It can 

be seen that this is slightly contradictory to the process outlined in Figure 4-8, as this 

describes a process that works backward along the functional tree. The timing adjustment 

is actually triggered as the algorithm retraces its steps back up the functional tree. This 

way, as each pre-requisite is placed, the timing of the subsequent function and the 

associated communications are re-evaluated, as shown in Figure 4-13. 

 

 

Figure 4-13 Relationship between search direction and function 

The overall process for assigning a time is as shown in Figure 4-14. 
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Figure 4-14 Process to Assign Timings to Communications and Execution 

Process 4.8 assigns a provisional ‘earliest possible’ execution time for the function 

assigned. This is based on the order in the execution queue that it has been given from the 

process outlined previously. This algorithm derives from the assignment information 

already stored the time at which the current function can execute. This will be equal to the 

end time of the preceding function. 

 

After the pre-requisite functions have also been assigned, it is now possible to schedule 

the communications. This is done by searching an internal variable storing the global 

communications timings. This variable is an array that stores all planned traffic travelling 

along the network. By analysing this array, starting from the time that the preceding 

function is due to end, a gap can be found that is large enough to fit the data transfer in. 

This new data packet information is then added to the global timings array. 
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At this stage, the earliest time that the function of interest can be executed can be now 

found by adjusting the start time of the function to occur after the end of the planned data 

arrival. This information is then recorded. 

4.4.1.5. Process 5: Record all Details in Blueprint 

The final part of the process is to write all values from the important internal variables to 

the system blueprint.  At the end of the configuration process, there are two internal 

variables that contain the information required. These are: 

• Resource Assignment log 

• Global Communications Timing 

 

The Resource Assignment log contains all the schedule and timing information for the 

functions, with a view taken from the resources. This is converted into the blueprint 

format which takes its perspective from a functions point of view. The global 

communications timing variable array contains the information for all the data packets 

upon the network. This is now interrogated and the appropriate timing information is 

written to the input/output data pack information stored in the blueprint. 

 

This information is then communicated to the entire system ready to be implemented. 

4.4.2. Start Up Procedures 

Upon powering up, the system has a number of tasks that require performing, namely: 

• Assignment of management roles (global systems manager, local systems 

managers, etc) 

• Identification of hardware elements and capabilities 

• Identification of applications to be assigned and requirements 

• Assign an initial configuration and begin functional tasks 

 

Before the system is powered up, the hard drives of each processing module are installed 

with software that comprises the IMA middleware and the associated applications. This 

technique is implemented as it avoids any transfer of programming code when 
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applications are re-assigned. Instead applications can be activated or de-activated 

depending on assignment. 

 

The first module powered up is assigned the responsibility of performing global systems 

management duties. As the processing module is already loaded with all the applications 

that could be implemented systems wide, it can already begin to populate the blueprint 

with information. The global management module then begins to wait for other modules 

to make themselves known. 

 

The connection process is designed as an opportunity for each module to introduce itself 

to the systems manager. Not only does it register itself as an available processing module 

on the network, it makes the global systems manager aware of its hardware capabilities, 

i.e. Data input/output. The capability of each module is currently done by defining the 

name of the module upon installing software, but could be done via an automatic self 

check on system start up. 

 

The global systems manager uses this information to populate resource information for 

the configuration algorithm to interrogate, as described in section 4.4.1. It will then wait 

for more modules to introduce themselves, or until the user issues the command to 

initiate configuration. Upon receiving this command, it will attempt to assign the functions 

installed on the system to the resources that have appeared on the network by initiating 

the configuration process. 

4.4.3. Using this Algorithm for Reconfiguration 

Reconfiguration is employed in this system as a method of handling and tolerating faults 

that occur in the IMA. As such, the system will undergo a reconfiguration when it identifies 

an appropriate event that can be solved by reconfiguration. The system will attempt a 

reconfiguration when it is recommended by this systems manager to do so. 

 

A new configuration can be generated by repeating the above process, but placing further 

restrictions on assignments to avoid re-using faulty components. For example, if a module 
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fails, it is removed from the available resource list before the configuration process is run. 

This way the resultant configuration will not have assigned any functions to this resource.  

 

The reconfiguration process during run-time raises key safety concerns. Developing a new 

configuration will take time and is unlikely to completed within a single time-frame. At the 

instance of failure, the IMA must have fault tolerant mechanisms that do not rely on 

reconfiguration to continue to provide service. The solution to this problem is in using 

traditional multiplexing techniques and rules such that the placement of applications on 

modules will not result in the loss of all redundant processing channels should a single 

module or a single application fail. Other inherent design characteristics of IMA, 

particularly good partitioning and fault containments, will prevent a single failure 

propagating throughout the system. 

 

Implementing a new configuration is also an identified area of high operational risk as it 

requires current processes to be stopped and new processes to be started. In terms of a 

safety case, the failure of this process is a critical problem that requires to be addressed. 

 

The particular problem of stopping a set process and starting a new one cannot be 

removed from this system as it would prevent reconfiguration being an option in event of 

failure. However, the risk of failure has been reduced by taking certain steps within the 

design and implementation of the IMA. The first step is in the installation of applications. 

In this architecture, all applications are installed on all modules ready to be executed. 

Implementing a new configuration is performed by instructing which applications to 

execute and which to not. This removes any complications and failure modes that could be 

introduced by physically installing applications during run-time. 

 

This also means that implementing a new configuration can be performed at the end of a 

time frame and be ready to go as the new frame starts by implementing two substitutions 

of data on each module following the communication of the new configuration from the 

Master unit. The first is a variable within the local systems manager that instructs which 

application to execute on this module. The second is the array mapping of data outputs to 
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physical network addresses within the communications manager within each module, and 

changing the times within the frame that these are expected to happen.  

 

The resultant levels of redundancy restored will be dependent on the available remaining 

processing modules. It is possible at this stage to prioritise critical processing channels at 

the expense of those less critical in order to restore higher levels of redundancy. 

 

The reconfiguration process suggested here will mean that, although reconfiguration 

cannot be achieved within a single time frame of a few milliseconds, the system will only 

be operating at a lower level of redundancy for the few time frames it takes to restore 

critical channels. 

4.4.4. Configuration Summary 

The configuration presented here provides a rigorous process for assigning simple 

networks of functions to resources based on a logical assignment method that ensures the 

applications are not placed in contradiction to their operating requirements. 

 

There are a number of ways in which this process could be improved to maximise the 

resources available. An example of this would be the inclusion of an optimisation method 

for the execution timings whereby the most critical functions could be adjusted, as long as 

they still met their delivery time. This may allow less critical functions to run more 

efficiently, or even enable a configuration to be realised at all. 

 

An example of how optimisation can be beneficial is shown in Figure 4-15. The top part of 

the diagram shows the result of a basic configuration of a process stream, with functions 

for input, process and output. This is executed alongside a redundant set of functions with 

lower criticality named Input 2, Process 2, Output 2. By following the above configuration 

process, a configuration that does not contradict placement requirements is obtained, but 

the solution is non-optimal. It can be seen after manual optimisation that the execution 

deadline of both streams can be arranged to meet a hypothetical deadline, as opposed to 

just the primary stream.  
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Although not covered in this research, it would be possible to study and create an 

adjustment method to take advantage of opportunities for overall system improvement at 

the expense of some specific performance criteria. 

 

Figure 4-15 Benefits of Optimisation 

4.5. Synchronisation and Communications 
The ultimate goal of the implementation of the IMA it to provide a flexible architecture 

that meets the requirements of a real time controller. Well-founded methods and 

procedures exist for so called traditional distributed control systems in which the system 

design is static. These methods are designed for systems whose hardware and software 
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components are largely bespoke and are not intended to be changed throughout the 

system’s lifecycle. It is the designer’s responsibility to arrange the communication timings 

and synchronisation of modules in order to maintain a concurrent real time process. In a 

flexible system where the physical location of software components and the time within 

the frame at which these might execute is all changeable, the synchronisation and 

communication will have to be arranged and checked autonomously. Most of this issue has 

been dealt with in the design of the reconfiguration algorithm but it remains to be defined 

how the execution of applications and the timings of communications are performed such 

that these timing needs are met. 

 

The following sections will review the critical aspects of distributed real time control 

systems and comment on how these issues are addressed in this architecture. 

4.5.1. Synchronisation of Modules 

A fundamental issue of running separate processing modules is the synchronisation of the 

processing clock on each hardware module. To ensure concurrency, it is required that each 

time frame within each module is begun at the same instant in time. If this is not the case, 

timeout faults or data packet collisions will occur as variables will not be available to be 

transmitted in their globally allotted time frame. 

 

Although highly complex clock synchronisation techniques exist, in this application it is 

possible to take a higher-level solution to the problem. The key requirement here is to 

ensure that each module begins its time frame at the same instant, allowing for a small 

margin of error that would result in an acceptable level of ‘jitter’ in terms of the resultant 

sample time. 

 

Rather than adjusting the underlying processor clock, the solution undertaken here is to 

use a single data packet as a global synchronisation message to denote the start of a time 

frame. The master module in the system is responsible for the timing and distribution of 

this message. The other modules must have completed any outstanding activity and be 

awaiting this message, ready to begin a new time frame. 
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This method is not without its limitations. Firstly, there is the issue of accuracy of timing. 

This method largely relies on a swift, uninterrupted message to be sent to all modules on 

the network synchronously. Due to the latency of transmission and any intermediary 

software delays, this will never truly be the case. Secondly, there is the introduction of a 

single point failure. If the message fails to send for whatever reason, for example a master 

module failure or a software blip that means this message is missed, then the whole time 

frame is jeopardised. 

 

Despite these shortcomings, experimentation with this method has shown it to have very 

reasonable reliability and accuracy. Although not suitable for high-end applications, it has 

proved to be effective enough for the purposes of this investigation. 

4.5.2. Synchronisation of Applications 

The configuration algorithm assigns the physical location and start time of each 

application. It is now important to ensure that these applications are run at the correct 

moment in order to meet these timing criteria. 

 

The execution timing is achieved in this setting by making each application wait until its 

prerequisite data has arrived. This method guarantees that the most recent data is being 

used in processing and not an out of date value. By not having a separate method for 

controlling the timings for applications and allowing the communications to control the 

process flow, conflict of timings between the two and the need for extra synchronisation is 

removed. Late or missing data can be handled by including appropriate ‘time-outs’ in any 

functions that are waiting for data, with the generation of appropriate error messages.  

4.5.3. Synchronisation of Communications  

As with the application synchronisation, the timing and arrangement of the 

communication to satisfy the concurrency of the functional flow has been defined in the 

reconfiguration algorithm. This section describes the mechanism involved to ensure that 

these timings are achieved. 



  
Chapter 4 

IMA Implementation 

 

       117 

 

 

As part of the configuration process, the communication structure is defined. Details of 

when each data packet can be sent is recorded as part of the overall blueprint of the 

system – effectively stored as an attribute of each application in terms of the input ‘Rx’ 

time and the output ‘Tx’ time. When a new blueprint is distributed, each module can 

search the attributes mentioned to identify when it is required to perform a data transfer. 

This information is used to control the communication timings of each module from the 

application layer of the 3-layer stack. 

 

As mentioned previously, the communications timing controls the execution of the 

applications. For incoming data packets, the software will wait until its allotted time slot 

and then prepare to receive data. When a data packet is received, this triggers the 

execution of the application. The output data of this function is stored until the allotted 

time frame to transmit is reached. 

4.5.3.1. Collision Avoidance 

Ethernet is a serial communication method based on a collision detection mechanism. The 

hardware is designed to identify when two nodes on the network are attempting to send a 

packet, and to wait a random amount of time before attempting a resend. In order to 

achieve as close to real time control as possible a collision avoidance technique must be 

used, as is the case with the MIL-STD-1553 or ARINC 629 bus topologies. 

 

Collision avoidance is normally done with low level programming of the communication 

hardware. Specific time slots for each data packet are designed off-line and programmed 

into the system. This provides a rigorous solution and optimises the use of the databus 

allowing high levels of data transfer. However, Ethernet cards are widely commercially 

available and very low cost in comparison to other methods. This makes them an attractive 

solution if they can be used in a collision avoidance manner. 

 

The way the solution was achieved in this example is to control the timing of data transfer 

in a higher level program. By using the data packet timings from the blueprint, each node 
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can be prepared to send and receive at the appropriate time, ensuring collisions are 

avoided. However, Ethernet cards are not designed to be used in this way and as a result 

introduce extra delays in the system. They are relatively slow to begin a communication as 

each card will always perform a check to see if the databus is clear before attempting to 

transmit. This introduces a delay of around 1ms to each data packet transfer. As a result of 

this, the amount of data transferred along the databus is not restricted by the quoted 

bandwidth of the system but by the number of data transfers that are required to be 

performed within a set time frame. The resultant system, albeit appropriate for this 

example, actually uses a fraction of the available data bandwidth normally available.  

4.5.3.2. Managing Time Critical and Non-Time Critical Data 

Data between applications is not the only information to be sent over the network. Already 

it has been mentioned that a synchronisation signal is being transmitted, as well as 

systems management data used to communicate between the command aspects of the 

system. It is important to manage the so-called overhead data around time-critical data to 

avoid any interference to the real time application.   

 

The time frame in which the applications are scheduled to run concurrently is split into 3 

sequential parts. The first sub-frame allows for the transmission of the ‘drumbeat’ or 

timing-pulse signal from the master module to all others on the network. The second sub-

frame allows enough time for all the data between applications to be passed and the third 

allows for the systems management communications to occur. This division of time is 

shown below in Figure 4-16. Here, 3 modular processors are running a simple concurrent 

series of functions, with Processor 2 designated as the master module. 
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Figure 4-16 Subdivision of Time Frame 

In this system, this order is deliberately chosen with the intention that as much overhead 

processing and data transfer as possible is saved until after the real time functions have 

been completed. As well as helping these real time events to stay concurrent and 

repeatable, it also allows the delay from the acquisition of an input to the output of a 

command signal to be reduced to a minimum, which is particularly beneficial in terms of 

control system performance. 

4.6. Error Recovery 
The focus of this study is in the use of dynamic reconfiguration as a method of responding 

to the occurrence of a fault, in order to restore higher levels of redundancy and capability. 

 

The most pertinent errors to observe in this study will be those that are associated with 

the IMA operation itself, as opposed to errors experienced in the target platform. Although 

it is theoretically possible to use a variety of fault detection methods installed as 

applications to identify faults within the Maglev system, it is more useful to study those 

that will affect the processing or communications within the IMA. 
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For the purposes of this investigation, case studies regarding specific failure modes will be 

studied. Two specific cases will be taken forward, namely: 

• Failure of a processing module 

• Failure of an application to execute 

 

These failures have been chosen as they capture two levels of systems failure. The failure 

of an application is likely to interrupt a single processing stream whereas the failure of a 

module could affect many, dependant on the allocation of tasks. 

 

The precise modes of these failures will be discussed in the following section. Each failure 

mode will be defined along with the expected effects of the failure.  

4.6.1. Processing module failure 

Failure Mode: In this case the module is simulated to have failed to a silent state, as if 

power has been cut to it completely, or the system has ‘hung’. 

 

Effects: Any application executing on this module will no longer respond, including any 

system management activities. The module will not output any random communication to 

consume bandwidth unexpectedly. 

 

Failure Detection: In this case, as the failure is simulated, an automated error message is 

also generated to be sent to the systems manager. Although failure detection methods are 

possible in this circumstance they are not generated here. This message will inform the 

system manager of the specific module that has failed and initiate the reconfiguration 

process. 

 

Expected System Reaction: At the instance of the fault the system will maintain service 

provision. This will be possible as the allocation of any redundant processing channels for 

this service will be arranged such that a single module failure will not prevent these 

executing. The IMA will operate at a lower level of redundancy until reconfiguration has 
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occurred. The system will reconfigure to the highest possible capability using new 

information about available resources. 

 

4.6.2. Application Failure 

Failure Mode: In this case application is simulated to have failed to a silent state. This is as 

if the application has ‘hung’ and is no longer executing. 

 

Effects: The assumption here is that correct partitioning on this module will prevent other 

applications that are sharing the resource from failing. The effects seen will be the absence 

of any data results from the application. Subsequent applications further along the 

processing channel will receive ‘null’ data packets. 

 

Failure Detection: As the failure is simulated, an automated error message is also 

generated to be sent to the systems manager. Although failure detection methods such as 

timeouts and data checking techniques are possible they are not generated here. This 

message will inform the system manager of the specific application that has failed and 

initiate the reconfiguration process. 

 

Expected System Reaction: At the time of the fault, the application will stop sending data 

results for communication. Service provision is expected to be maintained as the initial 

design of a duplex channel will mean there are further channels replicating this service. 

Appropriate data checking methods will allow the selection of the remaining true data 

whilst ignoring any null data. The system will the reconfigure and attempt to place this 

particular application on a different processing module in an attempt to rectify the failure. 

4.6.3. Summary 

Both the failure modes described above can be tested by raising an error code manually to 

simulate the occurrence of the fault. This will then trigger a reconfiguration request with 

any new configuration restrictions included in the call. Suitable logging of the events will 
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occur such that a view of the reconfiguration process can be reported. The results of these 

tests are reported in Chapter 7. 
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5. Configuration and Real-Time Robustness Testing 
The purpose of this chapter is to test the appropriateness of the configuration algorithm 

described in Chapter 5. The algorithm will be given a series of functional networks and 

processing resources to assign them to. In the following chapter, a series of failures will be 

introduced to the system to attempt to observe the successful re-assignment of functions 

such that as much service as possible can be maintained, and graceful degradation is 

achieved. 

 

In addition to these tests, a simple functional network will be implemented on the IMA test 

rig and used to assess the performance of the communications between applications. 

5.1. Validation of the Configuration Algorithm 
This section contains the results of a series of functional allocation problems. The purpose 

of these tests is to demonstrate that the configuration algorithm developed will allocate 

networks of functions to available resources. The applications should be placed such that 

service will be maintained (where applicable) at the instance of: 

• A complete processing module failure 

• A failure of an application 

 

The configuration algorithm will be presented with increasingly complex functional 

networks (i.e. duplex and triplex arrangements) and should place these networks whilst 

maintaining the independent processing channels in the event of a single failure. At this 

stage, reconfiguration is not being assessed, only the ability to sensibly configure simple 

application structures. This will demonstrate that the system arranges applications in order 

to tolerate faults at the instant of occurrence via a traditional redundancy-based method. 

The resultant algorithms are generated only to test the configuration algorithm and are 

not implemented nor execute on the developed IMA network. This allows a freedom to 

experiment with different hypothetical configurations.  
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A hypothetical real-time processing task is defined for the purpose of this benchmark test. 

It is assumed that data is to be collected from a sensing element, processed during each 

sample, with the result informing some actuation activity. This scenario can be extended to 

include duplex or triplex processing channels, multiple sources for sensing or increased 

redundancy in actuation. Escalating the levels of redundancy within the system 

complicates the assignment process for the configuration algorithm. 

 

The following sections show the result of the configuration algorithm for a number of 

application networks based on the above hypothetical description. Each section will 

include: 

• a brief description of the necessary system design in terms of hardware 

requirements 

• A description of the assignment criteria for the functions 

• A diagram showing the allocation of function 

 

In order to restrict the testing to the configuration methodology, any systems 

management processes and communications are ignored. It is also assumed that each 

application takes 2 milliseconds seconds to execute and each communication packet is 

allowed 1 millisecond to transmit and receive. 

 

5.1.1. Single Sensor, Single Process and Single Actuator 

The first functional set of applications to assign is a simple ‘sense, process and actuate’ 

structure as defined in Figure 5-1. The rectangular blocks represent the application and the 

labelled arrows represent the required data communication. 

 

 

Figure 5-1 Single Sense, Process and Actuation 
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As this represents a real time process, the three applications in Figure 5-1 must occur 

concurrently and within the same processing interval (or time frame). Ideally, there should 

be a minimum amount of time between the ‘Sense’ and ‘Actuate’ function. 

 

In order for a configuration to be realised, two processing modules are required: 

• An input/output (I/O) module (Named ‘IOMOD’) – this module has physical links to 

the required sensing and/or actuation hardware 

• A standard processing module (Named ‘Module 1’) 

 

It could be argued that in this case, there need only be a single module equipped with 

sensors and actuators that can also house the processing task, but the arrangement in 

Figure 5-1 is chosen as it is more readily expanded in later scenarios. 

 

Each application can be assigned configuration criteria to ensure it is located on a module 

with the correct capability. These are defined in Table 5-1, and input into the application 

definition as defined in Chapter 5. 
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Application Criteria Description 

Sensor IOMod Placement on the I/O module 

Process Mod* Placement on any generic processing module 

Actuate IOMod Placement on the I/O module 

Table 5-1 Assignment Criteria 

The communication requirements and assignment requirements are input to the 

application definitions (section 5.3.1) and information regarding the available modules is 

manually input (as opposed to having the information automatically generated on a full 

system boot). The configuration algorithm is then executed on a standard PC, with the 

allocation results diagrammatically illustrated in Figure 5-2. 

 

 

Figure 5-2 Allocation results of Single Sensor, Single Process and Single Actuator 

Figure 5-2 shows the available resources down the left hand side (including the network as 

a resource) and a time base along the base. Functions are shown as allocated to a 

processing module and to a period of time in which to execute. Communications are 

allocated to the network and also as a block of time. It can be seen that concurrency of 

events is maintained in that the ‘sense’ application executes before the ‘Sen2Pro’ data 

packet is sent, and resultant applications and communications follow suit. If a 
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communication or application was scheduled to execute before its pre-requisite function 

had finished, then concurrency of events within the time frame is not being facilitated. 

Figure 5-2 shows that the complete time frame in which these functions can repeatable act 

is 8 ms. 

5.1.2. Single Sensor, Duplex Processing, Single Actuator 

This arrangement of functions introduces a redundant processing channel within the 

network. Here, the ‘sense’ application is required to send two communication packages; 

one to each of the ‘process’ applications. In turn, the ‘actuate’ application is required to 

have received two data packets from each of the ‘process’ functions before it can execute 

without raising an error. 

 

Figure 5-3 Single sensor, duplex processing, single actuation 

It is clear in this circumstance that to maintain redundancy within the ‘process’ 

applications, two generic processing modules will be required alongside the input/output 

module as before. Therefore, the required modules are: 

• An input/output (I/O) module (Named ‘IOMOD’) 

• Two standard processing module (Named ‘Module 1’ and ‘Module 2’) 

 

The assignment criteria for each application is summarised in Table 5-1. Here, the 

configuration algorithm is instructed to maintain redundancy between the ‘process’ 

applications by the ‘!ProcessN’ instruction which enforces ‘Do not place this application on 

a module that also hosts ProcessN’. 

 

 

Application Criteria Description 



  
Chapter 5 

Configuration and Real-Time Robustness Testing 

 

       129 

 

Sensor IOMod Placement on the I/O module 

Process1 Mod* 

!Process2 

Placement on any generic processing module 

Not with Process 2 

Process2 Mod* 

!Process1 

Placement on any generic processing module 

Not with Process 1 

Actuate IOMod Placement on the I/O module 

Table 5-2 Assignment criteria for duplex processing 

The result from the configuration algorithm is shown in Figure 5-4. 

 

 

 

Figure 5-4 - Single Sensor, Duplex Processing, Single Actuator 

It can be seen that once again, the applications and communications are placed 

concurrently. Although ‘Process2’ is a parallel function to ‘Process1’, it has to wait an extra 

millisecond for the delivery of data packet ‘SenToPro2’ to execute. Conversely, the 

‘Actuate’ function has to wait for receipt of both datapackets (or appropriate error 

messages) before it can execute. 
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5.1.3. Single Sensor, Triplex Processing, Single Actuator 

The arrangement of these functions is similar to that in the previous section, with the 

addition of a third parallel ‘Process’ application, as shown in Figure 5-5. 

 

 

Figure 5-5 Single sensor, Triplex processing, single actuator 

The third processing channel introduces additional allocation requirements in order to 

preserve the redundancy in the event of a module failure. This is shown in Table 5-3. 

 

Application Criteria Description 

Sensor IOMod Placement on the I/O module 

Process1 Mod* 

!Process2 

!Process3 

Placement on any generic processing module 

Not with Process 2 

Not with Process 3 

Process2 Mod* 

!Process1 

!Process3 

Placement on any generic processing module 

Not with Process 1 

Not with Process 3 

Process3 Mod* 

!Process1 

!Process2 

Placement on any generic processing module 

Not with Process 1 

Not with Process 2 

Actuate IOMod Placement on the I/O module 

Table 5-3 Assignment criteria for triplex processing 



  
Chapter 5 

Configuration and Real-Time Robustness Testing 

 

       131 

 

It can also be surmised that in order to allow this system to be implemented effectively, a 

third generic processing module is required.  The result of the configuration algorithm is 

shown in Figure 5-6. 

 

 

Figure 5-6 Allocation Results of Single Sensor, Triplex Processing, Single Actuator 

 

With this particular arrangement of function, there is some argument that the third 

module may not be necessary. Detailed failure mode analysis may show that, with 

appropriate partitioning in the modules themselves, good enough levels of reliability could 

be achieved even when placing two ‘Process’ applications on one module. However, for 

the purposes of this exercise, a more simple view is adopted. 

Comparing Figure 5-6 and Figure 5-4, it can be seen that the expected end time of the 

‘Actuate’ application is the same. This is a result of two things: in the duplex case the 

process is slowed as some applications have to wait for data to be delivered before they 
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execute; In the triplex case, some applications or data transmissions can execute whilst 

others are waiting.  

5.1.4. Dual Sensors, Triplex Processing, Dual Actuator 

To further complicate the processing and communication requirements, in this case it is 

assumed that both the sensing and actuator functions are duplicated. The resultant 

network of functions is shown in Figure 5-7. 

 

Figure 5-7 Dual sensors, triplex processing, dual actuation 

It is also assumed in this case that the second sensor and actuator require a second 

input/output module on the network. Therefore, the required modules are: 

• Two input/output (I/O) module (Named ‘IoMod1’ and ‘IOMod2’) 

• Three standard processing module (Named ‘Module 1’ ,‘Module 2’ and ‘Module 3’) 

The assignment criteria for this system is defined in Table 5-4. 

 

Application Criteria Description 

Sensor1 IOMod1 Placement on the I/O module 1 

Sensor2 IOMod2 Placement on the I/O module 2 

Process1 Mod* 

!Process2 

!Process3 

Placement on any generic processing module 

Not with Process 2 

Not with Process 3 



  
Chapter 5 

Configuration and Real-Time Robustness Testing 

 

       133 

 

Process2 Mod* 

!Process1 

!Process3 

Placement on any generic processing module 

Not with Process 1 

Not with Process 3 

Process3 Mod* 

!Process1 

!Process2 

Placement on any generic processing module 

Not with Process 1 

Not with Process 2 

Actuate1 IOMod1 Placement on the I/O module 1 

Actuate2 IOMod2 Placement on the I/O module 2 

Table 5-4 Assignment criteria for triplex processing and dual I/O 

The resultant configuration generated is shown in Figure 5-8. 

 

 

Figure 5-8 Allocation Results of Dual sensors, triplex processing, dual actuation 
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The algorithm has successfully arranged applications and communications in a concurrent 

manner. The complete timeframe finishes at 16 ms, a further 6 ms slower than the 

standard triplex processing scenario. It can be seen that the main cause of this delay is the 

availability of the network time in which to transmit the required data packets. 

5.1.5. Dual I/O, Triplex processing and parallel function 

In this case, a function of lower criticality is added introduced to the scenario whereby 

some data is to be collected from the sensors by a data logging application, and sent to a 

user interface for viewing. This functional network is shown in Figure 5-9. 

 

 

Figure 5-9 Dual sensing, triplex processing, dual actuation plus non-critical functions 

In this scenario, a further module is required on the network to display data to a user. 

Therefore, a minimum set of modules required for this network is:  

• Two input/output (I/O) module (Named ‘IoMod1’ and ‘IOMod2’) 

• Three standard processing module (Named ‘Module 1’ ,‘Module 2’ and ‘Module 3’) 

• A graphical user interface module (Named ‘GUI’) 
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The allocation criteria is summarised in Table 5-5 

 

Application Criteria Description 

Sensor1 IOMod1 Placement on the I/O module 1 

Sensor2 IOMod2 Placement on the I/O module 2 

Process1 Mod* 

!Process2 

!Process3 

Placement on any generic processing module 

Not with Process 2 

Not with Process 3 

Process2 Mod* 

!Process1 

!Process3 

Placement on any generic processing module 

Not with Process 1 

Not with Process 3 

Process3 Mod* 

!Process1 

!Process2 

Placement on any generic processing module 

Not with Process 1 

Not with Process 2 

Actuate1 IOMod1 Placement on the I/O module 1 

Actuate2 IOMod2 Placement on the I/O module 2 

DataLog Mod* Placement on any generic processing module 

DataView GUI Placement on the GUI module 

Table 5-5 Assignment Criteria for Dual Sensing, Triplex Processing, Dual Actuation and 

Datalog 

The resultant configuration is shown in Figure 5-10 
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Figure 5-10 Allocation Results of Dual Sensing, Triplex Processing, Dual Actuation and 

Data log 

The goal of the allocation function is to place the non-critical function with minimal 

disruption to the time-critical task. It can be seen that this is largely the case in that 

communications and applications concerned with the time-critical task operate first, then 

the data log task operates afterwards. The only interruption occurs in the transmission of 

‘Sen2ToDlog’ and ‘Send1ToDlog’. There is no logical reason as to why these cannot wait 

until later in the frame to execute. The reason they are placed earlier is that they are 

associated with the applications ‘Sense1’ and ‘Sense2’, which are both time critical 
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functions. By association, some weight is placed to the criticality of the output of these 

functions. The mis-placement of this data packet does cause some delay in the time-critical 

function, but the impact is considered minimal. It can be seen that the ‘Actuate’ functions 

finish by the 18ms mark, only 2 ms slower than the previous case which contained no data 

log function. The configuration algorithm could be optimised to remove this effect, but the 

resultant configuration generated is still a reasonable one and the automatic generation 

algorithm is considered fit for purpose for this investigation. 

5.1.6. Summary 

The above networks contain a simple example of how the configuration mechanism 

derives an appropriate allocation of functions based on the assignment definition defined 

and the available processing resources. For each of the basic functional topologies 

presented a configuration is automatically realised in a way that protects the static 

redundancy channels and maintains appropriate functional partitioning by allocation to 

available resources and temporally to avoid data packet clashes on the network bus. 

 

There have been areas highlighted where the assignment process may be optimised 

further, but these tests have shown that it does ensure concurrency of events and 

maintain appropriate segregation to preserve redundancy in processing channels. 
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5.2. IMS as a Distributed Real Time System 
The restricting element of implementing a real-time structure in this form of IMA is the 

reliability and repeatability of the communication. As described in Chapter 5, the system is 

designed such that the communication and the application execution timings are linked to 

ensure concurrency of events. 

The goal of this section is to observe how well the IMA, in particular the Ethernet 

structure, handles the real time communications tasks.  

5.2.1. Real time attributes testing 

In this experiment, the IMA is provided with a simple token passing function, the design of 

which is shown in Figure 5-11. Here a number is sent from the GUI module and passed via 

numerous applications on other generic IMA modules before being returned to the GUI. 

A further required function is a data packet between the designed GUI and the systems 

management function. This allows the user to interact with various systems management 

activities. Although these items are not discussed here, the function is included for 

completeness as it is required to be included for operation. 

 

 

Figure 5-11 Function Network Design for Token Passing Exercise 
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The applications are assigned to specific modules in order to allow the token to cross the 

network as many times as possible during its transit. The allocation of applications is 

shown in Figure 5-12. 

 

Figure 5-12 Allocation of Token Passing Functions to IMA (3 ms communication time 

allowed) 

Within each module, communication timing data is captured. Each communication activity 

is recorded relative to the start of the global time frame, and each time frame has a time 

stamp for identification defined by the clock on the ‘Server Master’ module. This time 

stamp is communicated as part of the synchronisation signal. Following the execution of 

the above function structure, communication data logs from each module can be 

downloaded and analysed to generate analysis for the entire network. A sample of data 

from a single time frame is shown in Table 5-6. The information captured is: 
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• Timestamp of frame (ms) – the millisecond timer value captured by the master 

module at the start of the frame. This is sent to all modules. 

• Time in frame (ms) – the time within the frame the recorded activity takes place. 

This is timed from the receipt of the ‘go’ data packet. 

• Error Code – records any error occurring with the activity. The most common is a 

timeout error which is captured here. 

• Rx/Tx – Receipt or Transmit. Records the type of activity into sending or receiving. 

• To/From I.P. – records the target IP address of the data packet. This can be cross-

referenced to identify the module name. 

• Variable Name – the name given for the data packet. This is taken from the original 

application definition. 

• Ready From (ms) – shows at what point in the frame the activity is waiting to act. 

The time is measured from the receipt of the ‘go’ data packet. 

 

The data shown in Table 5-6 has been amalgamated from all modules. 

 

Timestamp 

of frame 

(ms) 

Time in 

Frame (ms) 

Error 

Code 

Rx/Tx To/From I.P. Variable Name Ready 

From 

(ms) 

85417 3 0 Tx 192.168.0.3 token_1_2 1 

85417 3 0 Rx 192.168.0.1 token_1_2 1 

85417 7 0 Tx 192.168.0.4 token_2_3 3 

85417 9 0 Rx 192.168.0.3 token_2_3 1 

85417 11 0 Tx 192.168.0.2 token_3_4 9 

85417 12 0 Rx 192.168.0.4 token_3_4 0 

85417 15 0 Tx 192.168.0.4 token_4_5 12 

85417 17 0 Rx 192.168.0.2 token_4_5 11 

85417 19 0 Tx 192.168.0.3 token_5_6 17 

85417 19 0 Rx 192.168.0.4 token_5_6 7 

85417 23 0 Tx 192.168.0.1 token_6_7 19 
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85417 24 0 Rx 192.168.0.3 token_6_7 3 

85417 28 0 Tx 192.168.0.2 Configure 24 

Table 5-6 Sample Communication Data from a Single Time-frame 

 

Using a MATLAB algorithm for the complete amalgamated communication data, the 

following attributes for each communication can be calculated: 

• Average time of occurrence (ms) – average time within the frame the 

communication activity takes place. 

• Variance – the variance in arrival time. This is calculated by: 

𝜎𝜎2 = (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2/𝑛𝑛 

Where 𝜎𝜎2is the variance, 𝑥𝑥𝑖𝑖  is the time of the sample, 𝑥̅𝑥 is the mean arrival time of 

all the samples and 𝑛𝑛 is the number of samples. 

• Number of timeouts – how often the data packet fails to arrive in time. A timeout 

occurs if the allotted communication time has passed, and the data packet has not 

been received. 

• Latest recorded time – the latest time (within the timeout period) that the data 

package is recorded to have arrived. 

 

The following sections record a series of tests where the communication is reduced until 

not enough time is being allowed for the data to be exchanged. 

5.2.1.1. Communication time: 3 ms 

In this experiment, a generous communication time of 3 ms is allowed for each data packet 

transaction, and 200 ms is defined for each time frame. This provides opportunity to 

record timing information on late packets as opposed to counting them only as 

occurrences of timeouts. Furthermore, although the data is recorded in coarse values of 

milliseconds, over 700 time frames are captured for analysis. By analysing a large number 

of samples, a reasonable resolution for timings can be achieved.  

 

Table 5-7 shows a summary of the results. Analysis was only performed on the receipt of 

data packets along with the transmission of the first, as transmission of the others were 
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controlled in such a way that they always occurred exactly on time. The first transmission is 

found to only vary slightly but is thought to be a result of the preceding synchronisation 

data packet.  
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 token_1_2 token_1_2 token_2_3 token_3_4 token_4_5 token_5_6 token_6_7 

 Tx Rx Rx Rx Rx Rx Rx 

Expected 
Time (ms) 

3 3 7 11 15 19 23 

Average 
Time (ms) 

3.233 3.245 8.079 12.291 16.000 20.078 24.084 

Variance 
(ms) 

0.181 0.826 0.990 0.702 0.993 0.989 0.680 

Latest 
(ms) 

5 6 9 14 17 22 26 

Timeouts 0 1 0 0 0 0 18 

Table 5-7 Communication timing results – 3 ms communication time (824 time frames) 

The results in Table 5-7 show that the average receipt time is normally between 0.2 - 1 ms 

after the expected time, with a variance of about 0.75 seconds. Therefore it is expected 

that most data packets are received around 1.75 ms after the expected time, but some 

packets are arriving as much as 3 ms late. 

 

The worst results in Table 5-7 are highlighted. The most timeouts occur on the GUI 

module. This is expected as in this particular experimental setup as this function is hosted 

on a ‘Windows’ PC (for purposes of user interface) as opposed to the specific real-time 

module developed. It is therefore subject to interruption from the operating system. The 

worst performing module is the Master module as it is the latest to process the receipt of 

token_3_4 and the transmission of token_4_5. This fault was found to be in the 

synchronisation of the time frame. The master module broadcasts a message to signal the 

start of the frame, but this message is subject to the same delay and variance as is seen in 

the above communications. It is therefore easier to co-ordinate two servant modules than 

it is to estimate the delay experienced on the master module. 

5.2.1.2. Communication time: 2 ms 

The allocation of the token passing function with 2 ms allowed for communication time is 

shown in Figure 5-13.  
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Figure 5-13 Allocation of Token Passing Functions to IMA (2 ms communication time 

allowed) 

The summarised timing data for the implementation of this configuration is shown in Table 

5-8. 

 

 token_1_

2 

token_1_

2 

token_2_

3 

token_3_

4 

token_4_

5 

token_5_

6 

token_6_

7 

 Tx Rx Rx Rx Rx Rx Rx 

Expecte
d Time 

2 2 5 8 11 14 17 

Average 
Time 

2.793 2.706 6.121 9.202 11.933 14.977 18.059 

Varianc
e 

0.169 0.678 0.982 0.520 0.989 0.475 0.627 
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Latest 4 4 7 10 13 16 20 

Timeout
s 

0 0 0 0 0 0 197 

Table 5-8 Communication timing results – 2 ms communication time (902 time frames) 

It can be seen that the IMA manages the 2 ms communication time reasonably well in that 

the average time and variances of data receipt are similar to the previous 3 ms test. The 

main difference identified is that the GUI module experiences a timeout error nearly 22% 

of the time (197 times out of 902 time frames). Again, the Master module experiences 

marginally worse performance than its peers (i.e. slower to receive token_3_4 and slower 

to transmit token_4_5) which is due to the synchronisation issues highlighted previously.  

5.2.1.3. Communication time: 1 ms 

The final test in this series reduces the allowed communication time to 1 ms. The 

allocation of functions is shown in Figure 5-1. 
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Figure 5-14 Allocation of Token Passing Functions to IMA (1 ms communication time 

allowed) 

The amalgamated timing data is summarised in Table 5-9. 
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 token_1_

2 

token_1_

2 

token_2_

3 

token_3_

4 

token_4_

5 

token_5_

6 

token_6_

7 

 Tx Rx Rx Rx Rx Rx Rx 

Expecte
d Time 1 1 3 5 7 9 11 

Average 
Time 1.178 1.189 3.549 6.000 6.679 9.955 12.040 

Varianc
e 0.147 0.153 0.250 0.000 0.571 0.247 0.568 

Latest 2 2 4 6 8 10 13 

Timeout
s 0 0 148 589 2 159 367 

Table 5-9 Communication timing results - 1 ms communication time (828 time frames) 

It can be seen that in this case, the system experiences a large number of timeout errors 

on a number of modules. This level or unrecorded data invalidates the timing analysis as 

most of it is discarded. Although some communication is transmitted and received, the 

reliability is much too low for any distributed real-time control application. 

5.2.1.4. Summary 

These experiments have shown that the use of Ethernet within the communication 

structure developed does allow for repeatable message communication in a concurrent 

fashion. This is an essential attribute of a distributed real time control system. Although 

the allocation of function was performed in a manual fashion by setting appropriate values 

in the application definitions, the timing structure was generated automatically using the 

configuration algorithm. These tests have shown that the system is capable of generating 

this structure and then maintaining control of it during execution. 

 

In its current form, the IMA is not capable of fast (i.e. greater than ~10Hz sample 

frequency) distributed real time control. Although Ethernet has a theoretically high 

bandwidth, it has been shown here that standard off-the-shelf components cannot provide 

the functional capability for this type of application. Ethernet is designed to send large 
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packets of data in a single direction. This application requires many small packets of data 

to be transmitted and received in a short time scale. The delays highlighted by analysing 

timing data occur as the Ethernet cards require 1-2 milliseconds to assess if the bus is 

empty. Customised Ethernet hardware may be able to remove this inbuilt property. 

 

A further issue in this case is that timing functions within the system can only operate up 

to 1 ms resolution due to use of LabVIEW as a development environment. This in itself 

causes further discrepancy in timings and is troublesome when attempting to synchronise 

different modules. 

 

The implication of this is that distributed real time control of the Maglev rig is difficult as 

the sample rate is too slow. Initial assumptions were that a single time frame containing a 

number of communications could be readily fit into 10 milliseconds. It has been found that 

it is more appropriate to assume that a single time frame will take 100 milliseconds; an 

order of a magnitude slower than expected. 
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5.2.2. Air Gap control 

In order to test the ability of the IMA to operate a real time application, a software 

simulation of the rig dynamics will be used. Here, the parameters of the Maglev rig are 

adjusted such that the dynamic properties react 10 times slower than in reality. The 

distributed IMA can then be tasked with controlling this system. 

 

The full design of the Maglev Rig and airgap control can be found in Appendix A and C. The 

control loop to be implemented is shown in Figure 5-15. 

 

 

Figure 5-15 Air gap control schematic 

The dashed boxes identify the real time applications that are defined to perform this 

function. For the purposes of the demonstration, the gap control is required to be 

distributed on a separate module to the ‘coil_output’ function. 

5.2.2.1. Application Design 

The control laws that need to be executed within each timeframe have been calculated in 

Chapter 4 and it is these functions that will be implemented for airgap control. 

Figure 5-15 shows the required network of functions to be implemented. 
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Figure 5-16 Function Network for Gap Control Structure 

In this realisation of the designed controller, the flux control action is placed within the 

‘coil_output’ application and the gap control action is placed remotely in the ‘gap_control’ 

application. The flux loop described has a high bandwidth so its function will be allocated 

to the input/output module on which the simulated coil is housed. The air gap control loop 

has a lower bandwidth and can be allocated on any of the generic processing modules. In 

this case, the allocation process will be forced to place this function on neither the GUI 

module nor the I/O module in order to make sure the data packets have to use the 

network. 

For the purposes of a user interface, the coil sensor readings are reported back to the user 

via the ‘coil_sensor_output’ application. This is not directly part of the control network 

described above as this data is only ‘for information’ and not part of the time critical loop. 

Further to the control action, the required system management communication between 

the ‘GUI’ and the ‘gui_to_master’ app is present.  

 

For the purposes of testing the control action, data will be recorded from the 

‘send_gap_demand’ application and the ‘coil_output’ application. By using the global time 
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stamp, this data can be collected, amalgamated and analysed after the test has been 

executed to observe the response of the system as a result of the changing input. 

5.2.2.2. IMA Implementation of Distributed Gap Control 

In this implementation, each application was given 1 ms to for execution completion and 

each communication was allocated 3 ms to transmit and receive. The I/O module to which 

the coil is physically connected is also allocated as the server master module. The time 

frame allocated is 50 ms for each iteration. The result of the configuration algorithm to 

these criteria is summarised in Figure 5-16. 

 

 

Figure 5-17 IMA Implementation of Gap Control Functional Network 

The system will be tested around the nominal operating point of a 10 mm air gap. This will 

be done by a +/- 2mm step wave around a centre point of 10 mm. 

5.2.2.3. Results of Gap Control Implementation 

A snapshot of data from this test is shown in Figure 5-17. The full length test lasted for 

over two minutes, and this data is taken from 47 seconds into the test and lasts for a 

positive and negative step change in airgap demand. The blue dashed line represents the 
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gap demand, which was recorded at the point of input on the GUI module. The green solid 

line represents the measured air gap and is recorded on the I/O module. The time of each 

data point is recorded by monitoring the global time stamp of the start of the frame (using 

the central ‘Server Master’ time reference) then adding the recorded offset within the 

frame itself. Due to the communication delays analysed in the previous section, it was 

found that it took approximately 13 ms from the start of the frame for the updated flux 

demand to be implemented. 

 

Figure 5-18 Time Response of Simulated Air Gap to Step Input 

5.2.2.4. Distributed Gap Control Summary 

It can be seen in the results presented Figure 5-17 that the communication method 

implemented is consistent enough to facilitate distributed control architecture. In this 

case, a simulation model has been used as a target test subject as the overall time frame 

could not be reduced sufficiently to operate the real system. 
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However, it has been shown that the design of the IMA is able to automatically allocate 

functions to resources in a manner that ensures concurrency of events and allows the 

establishment of real time, distributed architecture. The next chapter will test the ability of 

the system to maintain these properties during the re-allocation of functions as a response 

to fault occurrence. 
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6. Fault Management within IMA 
This chapter will discuss how certain aspects of fault management are implemented within 

the IMA created for the purposes of this project. It will describe how the system uses the 

configuration/reconfiguration functions available to perform fault management actions. 

The main focus here is on fault tolerance and how this is managed to maintain service in 

the presence of faults. 

6.1. Baseline System Initial Configuration 
As discussed earlier in the thesis, the overall goal of the IMA is to maintain the airgap of a 

maglev test rig. A simple realisation of this was presented in Chapter 6 to test the ability of 

the IMA to maintain an effective control loop. In this Chapter, it is necessary to extend this 

system to include static redundancy, and flexibility within the hardware to allow for the 

possibility of system reconfiguration. 

 

Figure 6-1 shows the control loop required to maintain airgap control and is taken from the 

description of the Maglev rig and subsequent controller design that can be found in 

Appendices A and C. The dashed boxes in Figure 6-1 represent the real-time applications 

that will be defined for implementation. 

 

 

Figure 6-1 Control Loop Realisation for Airgap control 
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It can be seen from Figure 6-1 that some functions are duplicated to provide a level of 

static redundancy. These functions and the redundant channels are best highlighted in the 

function network shown in Figure 6-2. 

 

Figure 6-2 Network of Air Gap Control Functions 

 

The following describes the functions in detail. The ‘Inputs’ and ‘Outputs’ refer specifically 

to network communications requirements and not to physical connections to the 

hardware module. 

 

Application 1: send_gap_demand 

- Description – Collects the airgap demand from the user and provides it as a 
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o initialise - sent to the mathematical model of the coil and allows a 

manual reset of the internal variables within the model. 

- Assignment – GUI 

 

Application 2: send_gap_reading 

- Description – Collects sensor data from I/O module and transmits the latest 

airgap reading to the gap controller. This application differs from 

coil_sensor_output as it is part of the time critical control loop, whereas 

coil_sensor_output is for user reference. 

- Inputs – None. Readings taken from sensors onboard I/O module, which in this 

case is a real-time simulation of a single magnet. 

- Outputs – gap_reading. This is sent to each instance of gap_control, and is 

indexed to reference each specific data packet. 

- Assignment – IOMod 

-  

Application 3: gap_control(1&2) 

- Description – Performs the gap control function defined in Chapter 4. The rate 

this controller can be implemented is defined by the time frame of the network 

communication structure. 

- Inputs – gap_demand, gap reading 

- Outputs – flux_demand 

- Assignment – !GUI.  

 

Application 4: coil_output 

- Description – Performs the flux control loop, and generates the drive signal to 

the coil. In this realisation, the coil model is housed within this application, such 

that the flux feedback becomes a return of an internal variable as opposed to a 

sensor reading. 

- Inputs – flux_demand 
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- Outputs – none. This represents the end of the control functions for this time 

frame. 

- Assignment – IOMod - This has to be placed on the I/O module to interact with 

the coil. 

 

Application 5: coil_sensor_output 

- Description – Provides a communication channel to feed sensor data back to 

the user. By specifying this function separately to the control loop functions 

allows the systems to designate this as ‘low priority’. 

- Inputs – none. The information generated here is obtained from sensor 

readings (or in this case, the mathematical model) 

- Outputs – sensors_2_gui. Contains the flux, current, air gap and drive voltage 

applied. 

- Assignment – IOMod - This has to be placed on the I/O module to interact with 

the coil. 

 

Application 6: get_sensors 

- Description – receives sensor data from the I/O module and provides 

information to the user via a GUI.  

- Inputs – sensors_2_gui 

- Outputs – none. The information is displayed to a user. 

- Assignment – GUI. This has to be placed on the GUI module in order to interact 

with the user. 

 

Application 7: GUI 

- Description – provides the mechanism for the user to interact with the systems 

management functions housed on the ‘Master’ module. It is this application 

that allows the injection of simulated faults.  

- Inputs – none.  

- Outputs  
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o configure – commands the system to go from an initial condition to 

implementing the main function 

o application_control – allows simulated fault signals to be injected to 

an applications 

o module_control – allows simulated fault signals to be injected to a 

module. 

- Assignment – GUI. This has to be placed on the GUI module in order to interact 

with the user. 

 

Application 8: gui_2_master 

- Description – Interprets the information provided by the ‘GUI’ application and 

passes information or commands to the server master functions..  

- Inputs 

o configure 

o application_control 

o module_control  

- Outputs – none. 

- Assignment – Master. Has to be situated with the Master module. 

 

There are four modules available for these resources to be assigned. These are: 

• Server Master – generic module but also houses the server master functions 

• GUI – a module that has user interface input/output abilities 

• IOMod_3 – an input/output module 

• Module_4 – a generic processing unit, with no specific hardware attachments  

 

Using the methods explained in Chapter 5, and tested in Chapter 6, the system 

configuration shown in Figure 6-3 is realised using the above hardware and functional 

architecture and assuming no faults. 
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Figure 6-3 Assignment of functions to resources For duplex gap controller 

*Due to the automatic generation of figures, some text is lost and replaced here for clarity. 

 

This assignment of functions is the starting point for the following tests where failures can 

be simulated in parts of the system and the response observed.  

6.2. System Response to a Single Fault 
This section describes how the system responds to the introduction of simulated faults. It 

will be shown how the fault is initially tolerated before reconfiguration restores higher 

levels of redundancy. 

The following sections detail two different faults, and describe how the system responds to 

their introduction. After each experiment, the system is restored to pre-fault condition to 

allow each fault to be assessed in isolation. 
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6.2.1. Simulation of an Application Failure 

In this failure simulation, a fault will be injected into the application 

“app_gap_controller_1”. This will be injected at a point where the system is in normal 

operation in that the IMA is fully configured and the airgap is following a defined set point. 

This application has been chosen as it represents a time critical function and is a relatively 

straight-forward application to duplicate. 

6.2.1.1. Fault Injection 

The further following assumptions are made about this fault: 

• There will be no output from this application (fail quiet) 

• There will be no propagation of failure from this application to the wider operating 

system (fault containment) 

• It will still be possible to terminate this application. 

• Faulty information being propagated down-stream is protected either by 

information from the Systems Manager (after the fault is reported), or by voting / 

model-based input monitoring (at the instant of failure). 

 

The application directly affected by the introduction of this fault is shown in Figure 6-4. 
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Figure 6-4 Application failure introduced to 'gap_controller_1' 

 

The introduction of this fault creates a change to the functional network of the system as 

an instantaneous result of this failure. It can be seen that the application downstream of 

the failure still receives information from the second gap control application, but the 

system is now operating at a minimal level of redundancy and as such cannot survive a 

failure in the second gap_control application. However, by using traditional methods for 

designing redundancy into the functional network, the system tolerates the initial 

occurrence of the fault. This is highlighted in Figure 6-5, but importantly it provides time 

for reconfiguration activities to occur without interim loss of service. 
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Figure 6-5 Effect of failure on the functional network 

6.2.1.2. Reconfiguration to Restore Higher Levels of Redundancy 

There are a number of available options to managing an application failure, and some of 

which depends on the actual failure mode that occurred. The course of action that is 

adopted here is that the application is forced to re-site on a different processing module. 

This method is chosen as it demonstrates a clear, tangible effort to restore functional 

capability as opposed to subtle methods such as terminating and restarting the 

application.  

 

Forcing an application to be assigned to a different module is realised by adjusting the 

assignment criteria part of the module specification, then re-executing the configuration 

algorithm developed. This forces the configuration algorithm into a different assignment of 

functions, inclusive of the new requirement based on failure.  
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Assignment Criteria for app_gap_controller_1 

Before failure: After failure : 

!GUI 

!app_gap_controller_2 

!GUI 

!app_gap_controller_2 

!Module_4 

Table 6-1 Change in Assignment Criteria as a result of Fault Injection 

The new allocation of functions is shown in Figure 6-6. 

 

Figure 6-6 Allocation of functions as a result of reconfiguration 

The overall result is that the gap control function is housed on ‘IOMod3’. Although it 

appears that only this application has moved, a complete reconfiguration had to occur to 

ensure that the communication schedule was reworked to accommodate different 

application addresses.  
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6.2.1.3. Evaluation of the Reconfiguration Process 

Figure 6-6 shows that some level of redundancy has been restored. At first impression, it 

appears that full redundancy has returned, but only if this assessment is limited to the 

functional network presented in Figure 6-5. The second gap controller is now located 

alongside other time critical applications and introduces a bigger potential impact should a 

failure of module ‘IOMod3’ occur. However, higher levels of redundancy have been 

restored as the duplex gap control function is available once again. 

 

The effect of the above series of events on the overall service provision from the system is 

shown in Figure 6-7. By extracting configuration logs from the Server Master module it was 

possible to obtain a time reference to the configuration activities and observe the effect of 

these on the airgap. The airgap demand is recorded on the GUI module, and the airgap 

reading on IOMod3. During this test the system was commanded to track a square wave 

air gap demand. 

 

 

Figure 6-7 Airgap response during reconfiguration activity 
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It can be seen that the service provision is unaffected by; the introduction of the failure, 

the period over which the failure is tolerated, and the introduction of a new configuration. 

It takes five seconds from the failure introduction to implement the new configuration 

shown in Figure 6-6. 

6.2.2. Simulation of a Processing Module Failure 

In this failure simulation, a fault will be injected into the module “Module4”. As before, the 

failure will be simulated at a point where the system is in normal operation in that the IMA 

is fully configured and the airgap is following a defined set point. The system has been 

restored to initial conditions such that this failure can be observed in isolation to an 

application failure.  

 

Module4 has been chosen as it is the only module on the network with a non-specific role. 

A failure introduced to the GUI, Server Master, or IO Module would result in more complex 

hardware and software redundancy to accommodate and tolerate faults. 

6.2.2.1. Fault Injection 

The further following assumptions are made about this fault: 

• There will be no output from the entire module (fail quiet) 

• There will be no propagation of failure from this module to the wider network 

(fault containment) 

• It will still be possible to terminate and ignore this module. 

• Applications affected downstream of any applications that fail, can select the 

remaining unaffected signal either by information from the Systems Manager, or by 

monitoring the sanity of the inputs. 

 

The module and applications directly affected by this failure are highlighted in Figure 6-8. 
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Figure 6-8 Module failure introduced to module 4 

As before, the effect on the functional network is the same as the previous failure scenario 

as only the gap control application is affected. This is shown in Figure 6-9. Again, the fault 

is tolerated at the instance of failure as a redundant processing channel exists. 
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Figure 6-9 Effect of Module4 failure on the functional network 

6.2.2.2. Reconfiguration to Restore Higher Levels of Redundancy 

In the event of a module failure, the course of action designed is to attempt to reconfigure 

the system, but ignoring this module as an available resource. It is possible to attempt to 

reboot the module as a ‘running repair’, but in this instance it is assumed that it has failed 

and shut down. 

 

The systems manager therefore initiates a reconfiguration request, but removes this 

module as an option for function assignment (Table 6-2). It will therefore only find a new 

configuration if available resource exists on other modules that do not contradict the 

assignment criteria defined in the system design. As a result of this scenario, the allocation 

of function generated by the reconfiguration algorithm is shown in Figure 6-10. 
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Available Modules on the Network 

Before failure: After failure : 

Server_Master 

GUI 

Module_4 

IOMod_3 

Server_Master 

GUI 

IOMod_3 

Table 6-2 Change in available modules as a result of failure 

 

 

Figure 6-10 Allocation of functions as a result of reconfiguration 

The result is that the affected function is reallocated to IOMod_3, restoring some levels of 

redundancy. This is by chance the same restoration method that occurred previously, but 

the movement occurred via different reasoning. 
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6.2.2.3. Evaluation of Reconfiguration Process 

As before, the real time data for the air gap analysis and the configuration information can 

be extracted from event logs situated in each of the processing modules. Figure 6-11 

shows the effect of the introduction of the failure and the reconfiguration on the airgap.  

 

Figure 6-11 Airgap response during reconfiguration activity 

As with the application failure, it can be seen the airgap response is unaffected by the 

systems management activities occurring. Again, the time taken to from the introduction 

of failure to a completed reconfiguration is 5 seconds. 
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introduced. This will demonstrate how the IMA will gracefully degrade from full 

redundancy to lower levels of redundancy whilst maintaining service.  

6.3.1. Failure 1 of 3: Application Failure of gap_control_2 

The first failure in this series is an application failure of one of the gap control applications. 

The assumptions about this failure mode are the same as those described in Section 

6.2.1.1. The application failed is shown in Figure 6-4. 

 

Figure 6-12 Application failure introduced to 'gap_controller_2' 

Following recognition of this failure, the systems manager reconfigures in a manner similar 

to that described in section 6.2.1.2. This is done by removing the Server Master module as 

an option to place the application gap_controller_2 by amending the assignment criteria 

accordingly (Table 6-3).  The resultant configuration is shown in Figure 6-13. 
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Assignment Criteria for app_gap_controller_2 

Before failure: After failure : 

!GUI 

!app_gap_controller_1 

!GUI 

!app_gap_controller_1 

!Server_Master 

Table 6-3 Change in assignment criteria as a result of failure 

 

 

Figure 6-13 Reconfiguration following the failure of the gap_control_2 application 

The solution to the new configuration problem is to swap the locations of the two gap 

control applications. This is a valid response to the software failure as: 

• Assuming no hardware failure, it should be possible to run other similar 

applications on the same module 
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• A single point failure in software design could be projected by ‘dissimilar 

programming’ 

Because dissimilar processing methods were not adopted in this case, the resolution here 

is almost as if gap_controller_2 was simply stopped and re-started. 

6.3.2. Failure 2 of 3: Module Failure of Module_4 

The second failure introduced into this series is the failure of Module_4. 

 

Figure 6-14 Failure of module_4 

Following the introduction of this failure, the system must find a new configuration that 

will avoid placing functions on the failed module, and avoid replacing gap_controller_2 in 

the place it originally failed. As in Section 6.2.2, the modules available to assign resources 

are updated within the Systems Manager before reconfiguration is executed (Table 6-4). 

The resulting configuration is shown in Figure 6-15. 
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Available Modules on the Network 

Before failure: After failure : 

Server_Master 

GUI 

Module_4 

IOMod_3 

Server_Master 

GUI 

IOMod_3 

Table 6-4 Change in available modules as a result of failure 

 

 

Figure 6-15 Configuration as a result of failing module_4 
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6.3.3. Fault 3 of 3: Application Failure of gap_controller_1 

The final failure introduced is to fail gap_controller_1.  

 

Figure 6-16 Failure of gap_controller_1 

Once again, the assignment criteria is adjusted to note this failure, as shown in Table 6-5: 

 

Assignment Criteria for app_gap_controller_1 

Before failure: After failure : 

!GUI 

!app_gap_controller_2 

!GUI 

!app_gap_controller_2 

!Server_Master 

Table 6-5 Change in assignment criteria as a result of failure 

This time, when the reconfiguration algorithm is executed, an error is returned. It is now 

unable to find a new solution to the configuration problem that accommodates all the 
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initial assignment criteria, and the new requirements imposed by failures occurring. The 

Server master therefore leaves the system in this reduced redundant mode. 

 

Despite three failures occurring, the overall effect on the function network is shown in 

Figure 6-17 

 

Figure 6-17 Effect on functional network of three failures 

However, at this point the system can tolerate no more failures in the gap_control 

applications. 

6.3.4. Evaluation of Series of Failures 

The effect of the series of failures can be seen on the time response of the simulated 

airgap as shown in Figure 6-18. 
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Figure 6-18 Time response of airgap during series failures 

Once again, it is seen that the systems management activities are occurring with minimal 

influence on the time response of the airgap as deterministic performance of the control 

loop is maintained. Close observation reveals a slight degradation in response of the airgap 

following the second reconfiguration by the increased amount of overshoot. This occurs as 

there is a subtle difference in the position in the time frame at which activities happen, but 

does not cause significant reduction of the designed controller performance. 

6.4. Summary 
It has been demonstrated that following the introduction of a failure to the IMA, the 

system can reconfigure to re-obtain higher levels of redundancy. Alongside this, it has been 

shown that with careful management, the real time performance of a system can be 

maintained during these activities.  
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From failure identification to the implementation of a new configuration took five seconds. 

During this transition stage the system tolerates the fault by continuing to operate with the 

so called ‘static redundancy’ (i.e. multiplexed processing channels) designed into the 

system. The importance of this design feature is observed in the time response graphs in 

that no disruption to service occurs. If these redundant channels do not exist then there 

would a race between catastrophic failure and ability to initiate a new configuration. By 

accepting these lower levels of redundancy for a small amount of prescribed time, a 

sensible configuration can be realised. 

 

During this investigation, an interesting point arose regarding the type of controller 

implemented in this solution. Here, a phase advance (PA) controller is used for control. 

This type of controller is not highly dependent on the states of the internal variables. By 

this, if the system is in a steady state condition and an internal variable reset occurs, it is 

unlikely that any perturbation of system response would be witnessed. If the controller 

used was an integral based controller the situation would be different. The value of the 

integral is stored within internal variables meaning that reset of these would result in an 

instant change in controller output. In the above examples, the controllers are stopped 

and restarted upon reconfiguration. If integral action is part of the controller then it is 

possible that sharing internal variables would be required upon reconfiguration to prevent 

a disruption to the provision of service. Otherwise transient oscillatory behaviour may be 

observed as a result of the implementation of a new configuration. 

 

Within this demonstration, three failures with specific failures modes have been selected 

that allow graceful degradation of the system to occur. The limitation of hardware 

prevented full redundancy being designed into all parts of the system (such as dual 

inputs/sensing/actuation) which would have allowed different series failure tests to occur 

and a broader demonstration of redundancy. However, the demonstration summarised 

here has shown that with correct initial systems design and the use of reconfiguration to 

exploit flexibility in available resources, higher levels of redundancy can be re-established 

following occurrences of failure.  
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7. Conclusion 
This chapter reviews the methods and results presented in the thesis and assess them 

against the original objectives, as set out in Chapter 1, and highlights how the objectives 

have been achieved and the proposed contributions have been demonstrated. Finally, 

recommendations are made for the future work in the continuation in this line of study. 

7.1. Assessment of Objectives 
In Chapter 1, section 1.4, a series of objectives were identified. The intention is that the 

satisfaction of these objectives would enable the demonstration of the research 

contributions highlighted in section 1.3. Here the objectives have been re-stated with 

reference to the evidence that supports their conclusion. 

 

Objective 1: Investigate relevant literature to determine current state-of-the-art in areas 

such as; IMA implementation, Fault management strategies within IMA, and methods for 

assigning avionic functionality to an IMA hardware installation. 

 

Chapter 2 summarised the key findings from a literature search regarding topics 

appropriate to the research. It was found that many IMA installations were seeking to 

adopt a multi-static approach, whereby a series of validated combinations of software 

assignment to IMA hardware configuration are stored as system blueprints. These 

configurations could then be reverted should the operational need occur. This method 

introduces a number of significant operational savings (such as commonality of parts, 

limited ability to reconfigure to optimise redundancy levels) but could not match the 

expected savings or extended operating periods of a dynamically reconfigurable 

arrangement. 

 

It was identified that there is a lack of evidence of dynamically reconfigurable IMA systems 

in operation. The following reasons have been identified as a cause: 
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• A lack of certification route to implementation due to the possibility of 

configurations being implemented at run-time that have to been specifically 

validated. 

• Dynamic configuration is considered a ‘marginal gain’ over the operational benefits 

available for a multi-static solution 

• The Increase in autonomy assigned to the IMA system is risky in that a 

configuration arrangement may be assigned that does not satisfy fundamental 

operational needs. 

Furthermore, it was highlighted that there is little research in how dynamically 

reconfigurable systems could be used to manage the occurrence of faults in new and novel 

ways. It is this understanding that would allow IMA installations to dramatically extend 

operational periods between scheduled maintenance by tolerating faults via a graceful 

degradation of system availability. However, conclusive research into how these 

mechanisms could be implemented is lacking. 

 

Objective 2: Develop a method of automatic configuration/reconfiguration of required 

avionic applications to distributed process resources 

 

Chapter 4 discusses the method developed to automatically generate a system 

configuration where a function set of software applications is logically assigned to an IMA 

installation. This method considers hardware compatibility, hardware availability and 

temporal constraints when assigning functions. This iterative process ensures that 

software elements are configured such that static redundancy levels are maintained to a 

high standard, and ensures events run concurrently in order to maintain real-time 

execution constraints. 

 

Objective 3: Design and develop a hardware test bed (i.e. a representative IMA system with 

appropriate ‘middleware’ and real-time communication strategy) to enable 

implementation and test of the automatic configuration/reconfiguration method. 
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Chapter 3 of this thesis identified the necessary requirements of a representative IMA 

system that would be constructed for testing new methods of IMA systems management. 

This chapter considered not only the functional requirements necessary to accommodate 

an IMA style arrangement, but also extended these requirements to ensure that 

appropriate observation and data capture could be undertaken in order to validate results. 

 

The requirements were broken down into the IMA sub-functions in order to define how 

each element should behave for the purposes of future testing. Definitions extended to 

hardware requirements (such as processing arrangement and communications needs), and 

software requirements (such as configuration management, communication protocols and 

fault management).  

 

The development of the test installation based on the requirement set is described in 

Chapter 4. Here, it is detailed how the required functional IMA components are 

represented in the laboratory environment by the use of COTS components. A description 

of the general IMA software implementation is also described, including the use of basic 

systems management techniques to manage communication and synchronisation of the 

modules. 

 

Objective 4: Validate that the IMA implementation is capable of facilitating distributed 

real-time control operations with a range of functional topologies 

 

The results for assessing this objective are contained in Chapter 5. In this case, a series of 

conceptual networks of software functions were defined. For each functional network, the 

algorithm was tasked with automatically assigning the software applications to a defined 

IMA arrangement. A graphical output generated from these offline tests showed that the 

configuration algorithm successfully found an arrangement for these systems. It was 

shown that for these configurations, redundant processing channels were preserved and 

applications were placed temporally such that concurrency of events was maintained. 
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Further tests contained in Chapter 5 show how the configuration method could 

accommodate multiple networks of functions, which often have different levels of 

criticality associated with them. The test conducted in Chapter 5.2.2 shows how a real-time 

distributed control algorithm was implemented to manage the airgap of the maglev rig. 

The functional set also included applications required for user input, data reporting and 

systems management activities. 

 

Objective 5: Verify the ability of the configuration method to appropriately assign avionic 

applications to available resources using a range of functional topologies and available 

modules. 

 

Although the results discussed above showed that a configuration could be obtained to 

satisfy operational requirements, it was important to test the efficacy of the 

implementation to operate repeatedly and consistently, particularly with regards to the 

communication methodology. As described in Chapter 5, a test was defined where a 

‘token’ was passed through a long series of applications and systems wide timing data was 

captured and assessed. This allowed a clear analysis of the effectiveness of the 

communication mechanism, inclusive of timing details and the level of repeatability. 

 

Section 5.2.2 shows the effectiveness of distributed, real-time operations by the 

demonstration of an air-gap controller. Here, parts of the ‘gap control’ algorithm have 

been distributed across the IMA system, such that the whole system must perform as 

expected in order to maintain stability of an otherwise unstable system. It was shown that 

the controller performed as expected and real-time, distributed control occurred in a 

repeatable manner. 

 

Objective 6: Verify the ability of the IMA system to reconfigure a distributed real-time 

control functional set (following a fault injection) to an allocation that tolerates component 

failure. 
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Chapter 6 undertook a series of tests where failures were injected into an IMA installation 

during operation. By collating management data from across the system, it was possible to 

trace and observe how the failure occurrence was managed. It was shown that service 

provision (i.e. real-time control of the maglev airgap) was maintained at all stages of the 

fault management process, including the implementation of a new configuration. 

 

The second part of this assessment, also detailed in Chapter 6, showed that a series of 

failures could be introduced to the system and service provision can be maintained to an 

extent. This section showed how the system gracefully degraded from high levels of 

redundancy to minimal levels. The use of reconfiguration extended the possible operating 

period before maintenance would be required or the current mission had to be aborted. 

The results showed that during the fault management processes, service provision was 

maintained at all times. 

 

One finding from this task was that during reconfiguration, a subtle change in the temporal 

arrangement of activities occurred. This had the effect of changing the closed loop 

controller performance by a small amount. Although the system operated well within 

sensible boundaries, it highlighted the importance of ensuring that real-time activities are 

respected not only in terms of processing, but in the system wide implementation. 
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7.2. Assessment of Contributions 
In Chapter 1 of this thesis, a number of research contributions were stated. This section 

intends to identify how each of these contributions have been addressed. 

 

Contribution 1: A solution for the dynamic reconfiguration problem for assigning required 

systems functions (namely a distributed, real-time control function with redundant 

processing channels) to available computing resources whilst protecting the functional 

concurrency and time critical needs of the control actions. 

 

When conducting the literature search for the purpose of this research, it was found that a 

key area of knowledge that lacked completeness was a method by which an IMA 

configuration could be generated at run-time. It was evident from the literature that the 

configuration of applications is more than just a ‘spatial’ problem in that the order of 

events occurring system wide must be considered for maintaining consistency with time-

critical tasks. 

 

The reconfiguration method presented in this thesis, as discussed in Chapter 4, was 

developed to investigate how systems configurations could be generated at run-time. In 

doing so, considerations were not only made regarding matching an avionic function to an 

appropriate resource, but maintaining awareness of reliability conditions and time-critical 

execution requirements. The method developed was tested in Chapter 5 using a series of 

functional networks and the results showed how the systems arranged both ‘spatially’ and 

‘temporally’. This progresses previous work where such configurations are generated off-

line only. 

 

Contribution 2: A systems management strategy that utilises the dynamic reconfiguration 

properties of an IMA to restore high levels of redundancy in the presence of failures. 

 

The main potential benefits of dynamic reconfiguration are the ability to extend mission 

capability in the presence of failures occurring, and to extend maintenance free operating 
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periods by continuing to provide service at sufficient levels of reliability by ‘gracefully 

degrading’. Graceful degradation is the process whereby the system begins with high levels 

of redundancy then constantly reconfigures to make best use of remaining hardware as 

failures occur. These processes are only viable if the re-configuration of the system is 

managed automatically and is not a constant concern to operational staff.  

 

This thesis aims to extend work undertaken to define Fault Management strategies within 

IMA, specifically how reconfiguration can be used to maintain service in the presence of 

faults. The method presented shows how health monitoring can be used to provide up-to-

date information about system availability. This information can then be used to inform an 

automated systems manager to assess if reconfiguration would be beneficial. If so, a new 

configuration can be calculate and initiated using remaining available resource.  

 

The solution to using reconfiguration is presented in Chapter 5, and required a 

consideration of the wider systems requirements to solve. Fundamentally, the system is 

tasked to provide a service in a time-critical manner that cannot be interrupted whilst a 

new configuration is being calculated. The method proposed relied on good systems design 

such that at the instant of failure, service is continued by traditional redundant channels. 

The purpose of dynamic reconfiguration is not to respond instantly as a fault handling 

method, but to operate at a higher level in order make the system safer for when the next 

failure occurs. 

 

In order to prove the efficacy of the above contributions, the methods were tested on the 

representative IMA installation that was described in Chapters 3 and 4. The testing, 

detailed in Chapters 5 and 6, was designed to show the operational benefits and difficulties 

of dynamic reconfiguration in a simplified capacity. 

 

The key test was detailed in Chapter 6. Here, the functional requirement of the system was 

to provide high reliability control calculations for a Maglev vehicle. As such, a series of IMA 

functions were designed with the control law calculations for the air-gap duplicated for 

redundancy. The system was tasked with generating not only the initial systems 
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configuration, but was to reconfigure the arrangement of functions should the health of 

systems component change. A series of simulated failures was injected into the system and 

the resultant configurations were recorded and observed. It was shown that not only was 

service continually provided, but also that this system would degrade gracefully by 

reconfiguring to make use of available redundant processing capacity. This was done by 

gathering and analysing real-time data collected from across the system components. 
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7.3. Future Work and Recommendations 
Although this work demonstrates a method by which automatic configuration within an 

IMA could be used, there remains many areas that require further research and 

clarification. The following subsections highlight and discuss some of these. 

7.3.1. Identified Areas of Good Practice for Reconfigurable IMA 

Some benefits of reconfiguration were highlighted in the discussion to Contribution 2 of 

this thesis. During investigation, some areas were noted that would be positive aspects to 

remain in consideration during any subsequent design and implementation of a 

reconfigurable system. 

 

The design process adopted here relied in an assumption that the initial design of the 

applications and modules allowed a configuration to be found. This initial configuration 

was designed to have a degree of static redundancy. This fundamental decision creates a 

number of key safety features. At the point of failure, the system would retain service 

provision should all partitions be robust such that the failure does not propagate in 

unexpected ways. Secondly, this creates a time window for a better configuration to be 

found. This window could be seconds, minutes or hours (dependant on the resultant levels 

of reliability following the failure) meaning that time can be taken to derive a new sensible 

configuration without attempting to achieve and implement this within a single 

communication time frame window. Finally, if a new system configuration is not possible 

due to lack of redundant processing resource then the system is still in a ‘safe’ state. Again, 

using an assessment of the remaining reliability levels, an informed decision can be made 

about the continuation of the mission. A recommendation here is that methods of 

automatically generating fault effects analysis are applied here and included in the 

decision making process. This would also enable systems designers to decide on the 

required degree of redundancy to provide similar safety levels to current standards. For 

example, could a triplex system now replace a quadraplex system due to the possibility of 

reconfiguration? 



  
Chapter 7 

Conclusions 

 

       189 

 

7.3.2. Certification 

A large amount of research is already underway in the field of certifying IMA. A promising 

solution to simplify this method is the use of ‘modular certification techniques’ where the 

system is not directly certified as a whole, but parts of the system can be considered 

independently. This means a re-use of a part of a system does not require recertification of 

the system whole, saving time and reducing the cost of multiple systems configuration 

definitions. 

 

This method would require extension for use with dynamic systems. Here, the 

configuration would have to be highly automated to allow on-line ‘approval’ of the 

proposed configuration generated due to a change in operational circumstance. Current 

thinking in the way aircraft systems are built and certified are not appropriate for this type 

of solution. Nevertheless, some method is required to confirm that the configuration 

proposed by the automated system is safe to implement on the platform, and provide an 

increase in operational benefits.  

7.3.3. Quantification of Potential Savings 

One of the proofs outstanding from this research is the quantification of the potential 

gains of a dynamically reconfigurable IMA over a multi-static solution. It has been shown 

that dynamic reconfiguration is possible and redundant processing channels can be 

restored by use of spare system capacity. However, a thorough study is required in order 

to balance the risk of undertaking this activity with the benefits gained. At this stage it is 

hard to measure how ‘risky’ reconfiguration is. A thorough analysis into the potential 

hazards is required, along with suggested strategies for mitigating them. This must be 

weighed against the cost benefit of operating an IMA with this capability, such as the 

potential weight saving by carrying a reduced set of avionic hardware. Understanding this 

metric will help inform system design in terms of choosing the right number (of the correct 

type) of processing components to facilitate the functional needs. 
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7.3.4. Controller Lag Approximations 

It was shown that by reconfiguring the communication network, the exact time at which 

data is sent within an overall time frame can never be known. Although it will not ‘jitter’ 

around the time frame when operating in a set configuration, there is the potential to 

subtly adjust the response characteristics by subtle changes in the communication criteria. 

 

As long as good control law design is undertaken and the sample rate of the overall time 

frame is suitably fast, it is unlikely that the variations in control performance would be 

noticed. The possible variations in data communication should be considered at the point 

of control design such that design limits are adhered to in all possible circumstance. 

7.3.5. Configuration Optimisation 

Chapter 4 discussed briefly that although the configuration algorithm developed generated 

a useable functional assignment, there is still room to optimise placement to maximise 

system resources. Improvement here would directly lead to weight savings within the 

avionics package as fewer processing modules would be required to meet the avionics 

needs.  

 

The method of generating resource assignment could readily be changed to an optional 

method which also uses up-to-date system availability information and assignment 

constraints to allocate a network of avionic functions. However, they should all retain the 

fundamental requirements of the allocation problem in that functions require placing not 

only on a resource, but in an allotted period within the time frame of time in order to 

ensure concurrency of the execution stream. 
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A. Maglev Controller Development 

A.1. Mathematical Model of Maglev Rig 
This section describes the process that was undertaken in order to produce a block 

diagram representation of the dynamics of the Maglev system. Electromagnetism, 

especially when involved in electromagnetic levitation, is a complicated process to model 

due to the many inherent non-linear relationships. In order to simplify the model, it is 

preferable to assume linear relationships around a normal operating point. A sensible 

nominal operating point is chosen, and a model is built up by considering simplified linear 

relationships of the important variables for small fluctuations around this point. This is very 

similar to the techniques in building up simplified equations for modelling complex aircraft 

characteristics for development of flight control systems. 

 

The draw back to this modelling technique is that the further away from the normal 

operating point the system goes, the less accurate the model becomes, and the less 

reliable the derived control system is. The solution to the problem lies in producing a 

suitably robust control structure that will cope with these variations in the fundamental 

characteristics of the system. This can be verified by deriving a controller based on a 

central operating point, and then testing this controller against a range of expected 

operating conditions. At this stage it is important to consider the requirements to go from 

a state of rest, to a state of controller levitation where the airgap at the beginning of this 

state will be around 25mm, and will need to move to a steady gap of 10mm. 

 

The four main variables of interest within a magnetic levitating system are: 

• F - Force in Newtons 

• B – Flux density in Teslas 

• G – air gap in meters 

• I – coil current in amps 
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We can assume that a ‘normal’, steady operating point exists. In an aircraft this could be 

defined as “steady, level flight”, but unfortunately, no such description exists here. In this 

condition, let us assume that each of the above variables have a value of F0, B0, G0 and I0. 

 

Therefore at any time of operation, it can be assumed that an instantaneous value of F, B, 

G and I can be stated as: 

iII
gGG
bBB
fFF

+=
+=
+=
+=

0

0

0

0

 

Where f , b , g  and i  all represent small variations around the operating point. 

By now considering the relationships between the variables around the operating point, a 

model can be deduced. 

 

It can be shown that for a constant gap: 

IB ∝  

Also, for a constant current, 

G
B 1
∝  

The relationships of the small variations can be approximated by assuming that they are 

directly proportional and that the gradients can be approximated by using the normal 

operating point values. By doing this and combining the two relationships: 

g
G
Bi

I
Bb

0

0

0

0 −=  (equation 1) 

It can also be shown that: 
2BF ∝  

Therefore, the gradient at the operating point is can be shown to be: 

0

02
B
F

 

And so: 

b
B
Ff

0

02
=   (equation 2) 
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If F0 is the Force required to be exerted on the load to maintain ‘steady level flight’, then F0 

must be equal to the weight of the suspended load. Therefore, and vertical acceleration 

around the normal operating point can be expressed as: 

M
fz =   (equation 3) 

The small variation in air gap is given by the difference between the position of the vehicle 

and the distance from the normal operating point to the track: 

zzg t −=   (equation 4) 

The variable zt represents the position of the track. If it is desired to model the track as a 

disturbance, in order to model the natural non-uniform nature of the track, zt can be 

modelled as a random fluctuation around zero. The characteristics of the distribution will 

be dependant on track quality. For the purposes of control development, this value is set 

to zero. 

 

The next stage in this derivation is to define the electrical dynamics of the system. The 

voltage applied across the coils will be equal to the sum of the demand of the resistive and 

inductive components. Coils have the tendency to resist any voltage applied to them, due 

to electromagnetic inductance of the close wires. Rather than simply including leakage 

inductance, the principle of electromagnetic induction must be applied, as will be shown 

later: 

dt
dbNA

dt
diLRiv 222 ++=  

Where: 

v is the small change of coil voltage from normal operating point 

R is the coil resistance 

N is the number of turns in the coil 

A is the pole face area of the coil 

 

Referring back to equation 1: 

g
G
Bi

I
Bb

0

0

0

0 −=  
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Let: 

0

0

I
BKi = , 

0

0

G
BK g =  

So: 

gKiKb gi −=  

Differentiating both sides with respect to time: 

gKiKb gi  −=  

Substituting into the expression for v: 

( )gKiKNAiLRiv gi  −++= 222  

Re-arranging to make ‘i’ the subject: 

gNAKviNAKiLRi gi  2222 +=++   (equation 5) 

This equation can be manipulated further for assistance in deriving the resultant block 

diagram: 

gNAKve g 21 +=  

So: 

1222 eiNAKiLRi i =++   

Apply Laplace transform: 

( )

1

1

1

)(22
1

)22(2
)22(2

e
sNAKLR

i

eNAKLsRi
eiNAKLsRi

i

i

i
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=
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Letting iL NAKLK +=  

122
1 e

sKR
i

L+
=  

The equations derived above that are used to create the block diagram are: 

1. gKiKb gi −=  

2. bKf b=  

3. 
M
fz =  

4. zzg t −=  
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5. gNAKviNAKiLRi gi  2222 +=++  

 

Where: 

 
0

0

I
BKi = , 

0

0

G
BK g =  and 

0

02
B
FKb =  

A.1.1. Block Diagram Representation 

The above formulae can be represented in block diagram notation as shown in Figure  A-1: 

 

Figure  A-1 Block Diagram of Magnet System 

It can be seen that by including the principle of electromagnetic induction in equation 5, 

the changes in the air gap have an effect on the voltage applied to the coil. This 

relationship would have been neglected if only electrical induction was considered. 

A.1.2. Transfer function derivation from block diagram 

It is useful to express the above block diagram as a transfer function for simulation 

purposes later in the project. The transfer function was derived by a series of block 

diagram simplification steps as described below. The starting point is the block diagram of 

the magnet system as shown in Figure  A-1. This can be simplified to the model shown in 

Figure  A-2: 
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Figure  A-2 Simplified Block diagram 

Redrawing this model to make ‘b’ the obvious output: 

 

Figure  A-3 Transfer function derivation 1 

Moving the term 
2Ms

Kb−  past the junction: 

 

 + 

- 

 

 

 

+ 

+ 
v 

g 

 + 

- 

 

 

 

+ 
+ 

v b



  
Appendix A 

Maglev Controller Development 

 

       xxx 

 

 

Figure  A-4 Transfer function derivation 2 

Closing the loop highlighted by the dashed box using a standard formula for a feedback 

system: 
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Which yields the following block diagram: 

 

Figure  A-5 Transfer function derivation 3 

Which simplifies further to: 
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Figure  A-6 Transfer function derivation 4 

So the transfer function of b(s) over v(s) can be derived, again using a standard formula for 

a feedback system: 
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Solving for the denominator: 

( )( )
( )

( )( )









−








−++=

−−++=

+−−+=

+−+

MK
KRK

s
K

NAK
M
KK

s
K
RsMK

KRKsKKKNAKKKRMsMsK

NAsKKKKRKsKKKRMsMsK

NAsKKKKKMssKR

L

gb

L

igb

L
L

gbgbLgbiL

gbigbgbLL

gbigbL

12

2

2

22

23

23

23

2

 

Thus, the transfer function becomes: 
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A.1.3. Derivation of F0, B0, G0 and I0 

These values have previously been defined as part of the design work for the initial phases 

of the test rig. They have been included here for completeness. As stated previously, they 

represent the nominal operating point that was discussed at the start of this section. 

A.1.3.1. F0 

The Rig is specified to lift 200kg on 4 magnets (one in each corner), therefore 1 magnet is 

to have the capacity to lift 50kg. 

As such: 

F0 = 500N 

A.1.3.2. G0 

G0, is simply the specified airgap between the rail and the magnets. In this design: 

G0 = 10mm 

A.1.3.3. B0 

B0 is the standard value of magnetic flux carried by the poleface. The value chosen was a 

nominal one selected based on experience. From this, design characteristics of the magnet 

could be derived. The chosen value is: 

B0 = 0.5T 

From this choice, the required area of the poleface needed to cope with this value can be 

derived. This is a similar process as to calculating the required thickness of a wire based on 

a specified amount of resistance. The total area of the poleface calculated will take into 

account both polefaces as the ‘resistive effect’ to the electromagnetic flow will double 

because of the two air gaps. 

 

Therefore, from standard electromagnetic physics: 

2
0

002
B

FA µ
=  

Which yields: 
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And thus the required pole diameter of a single magnet can be found: 

mm

D
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40025.0
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π

π

 

A.1.3.4. I0 

I0 is the nominal operating current of the system. The derivation starts by deriving the 

number of ampere turns needed to induce the required amount of flux through the 

electromagnetic circuit. This is rather like calculating the amount of voltage required to 

draw current through an electrical circuit. 

A complete calculation would take into account the flow of flux throughout the entire 

electromagnetic circuit. In practice, this would be similar to taking into account the 

resistance of an entire electromagnetic circuit, i.e. taking into account the resistance of 

copper tracks that join up resisters. The focus is therefore on the resistive nature of the 

two air gaps contained in the electromagnetic loop. 

 

Again, from standard electromagnetic physics: 

G
NIB
2

0µ=  

Note the factor of 2 that appears in the denominator to take into account the two airgaps 

within the loop. 

 

Therefore: 
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To allow for flux leakage: 

ATNI 10000=  

As there are two coils to each magnet, each coil must provide 5000AT. 

Each coil has been built with 456 turns so therefore: 

I0 = 11A 

 

The coil resistance is 1 Ohm. 

A.1.4. Leakage Inductance 

The leakage inductance, L, used is a nominal value based on 5% of the mutual inductance. 

The mutual inductance is give by: 

0

0

I
BNA  

Therefore, the value of ‘L’ is given by: 

H

I
BNAL

00259.0
11

5.00025.045605.0

05.0
0

0

=

×××=

×=

 

This is the value of inductance for a single coil, not for the full magnet. 
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A.1.5. Summary 

Therefore, the following has been derived: 

Description Unit Value 
Operating force of 

each magnet 
0F  500N 

Operating Airgap 0G  0.01m 

Operating flux 
density 

0B  0.5T 

Operating current 0I  11A 

Poleface Area (single 
magnet) 

A 0.0025m2 

Number of turns 
(single coil) 

N 456 

Coil Resistance 
(single coil) 

R 0.5 Ohm 

Coil inductance 
(single coil) 

L 2.59 mH 

00 IB  iK  0.0455 T/A 

00 GB  gK  50 T/m 

002 BF  fK  2000 N/T 

iNAKL +  LK  0.0545 H 

Table  A-1 Summary of derived Maglev system variables 

These values can now be used within the Matlab Simulink model for the design of an 

appropriate controller 

A.2. Controller Design and Development 
The structure of the controller is taken from a known solution as stated in REFERENCE. It 

consists of a flux loop nested by an outer gap loop. In addition to this, it is envisaged that 

upon final implementation, both loops will be implemented digitally. The flux loop will be 

executed locally to the sensors and actuators, but the gap loop will implemented over a 

network. Initial tests show that the approximate frequency that the flux loop can run will 

be 1000Hz, and the gap loop 100Hz. 
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The following describes how the appropriate digital control functions are derived, based on 

the research done in REFERENCE. 

A.2.1. Inner Flux Loop Controller Design 

Consider Figure  A-2, that shows a simplified block diagram of the magnet system: 

 
The feedback loop at the top of the picture is a manipulation of the formula to avoid the 

use of a differentiator when the system is implemented in simulink. The true form of this 

block diagram is shown inFigure  A-7, correctly showing the induced voltage due to the coil 

as a function of flux: 

 

Figure  A-7 Modified block diagram of magnet system 

The aim is to stabilise the inner flux loop by applying a controller that will vary the input 

voltage based on the error between the actual and demanded flux level. Applying a generic 

controller to the above system is represented by the following diagram: 
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Figure  A-8 Flux control loop 

This control loop will have to have appropriate gain and phase margins of GM>6db and 

PM>40degres. 

A.2.1.1. Analogue Controller Design 

A proportional plus integral (PI) controller should provide good control characteristics for 

the inner loop, the design of which is shown in Figure  A-9. This is the simulink model used 

to test the PI controller. 

 

Figure  A-9 Simulink model of flux loop 

The uncompensated Nichols plot of v(s)/b(s) is shown in Figure  A-10: 
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Figure  A-10 Nichols Plot of uncompensated flux loop 

It is necessary to derive values of gain and integral action required to achieve appropriate 

stability margins 

Gain (Gb) 

It can be shown that the open loop transfer function between voltage and flux density at 

high frequencies can be approximated to: 

sNAsv
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Therefore, to give a bandwidth of bf , the flux loop gain needs to be: 

NAfG bb π2=  in units of V/T 

Assuming a bandwidth of 50Hz: 
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Applying this gain yields the Nichols chart shown in Figure  A-11. 
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Figure  A-11 Nichols plot of flux loop with proportional control 

The measure stability attributes are: PM = 91.8 degrees and w = 292 rad/s. 

Integral action 

As can be seen in Figure  A-11, there is a large phase margin (~90 degrees) that can be 

exploited to improve the control response. This allows the introduction of Integral action 

to the controller to ensure a zero steady state error in the flux loop.  

From the Nichols chart above, we can assume that for an optimal response of a PM of 70 

degrees, we require a 20 degree phase shift at 0dB crossover point. 

 

The break frequency of the integral action should be approximately 20Hz. This value will be 

used to see how effective it is. To derive bτ : 
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Applying this to the control loop, the following Nichols chart is obtained. 

 

Figure  A-12 Nichols Plot of PI compensated flux loop 

From this Nichols plot, it is possible to establish that the phase margin of the system is 69.9 

degrees and the closed loop bandwidth is 416 rads/s, which is a closed loop bandwidth of 

66Hz. 

A.2.1.2. Digital Control Design 

The controller described above will be implemented on a digital controller with the 

capacity to sample at 1000Hz. This is below the recommended bandwidth for design by 

emulation, thus design will take place using w-plane design. For this purpose, a zero-order 

hold is introduced to the model to represent this digital controller. 
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Figure  A-13 Digitized representation of flux controller 

The simulink model used to represent the uncompensated system, inclusive of the 

controller sampling zero-order hold is shown in Figure  A-14. 

 

Figure  A-14 Simulink model of sampling in loop 

The Nichols plot of this system is shown in Figure  A-15: 
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Figure  A-15 Nichols Plot of uncompensated system with sampling 

As with the analogue controller, it is necessary to derive appropriate values of gain and 

integral action. 

Gain (Gb) 

It can be shown that the open loop transfer function between voltage and flux density at 

high frequencies can be approximated to: 

sNAsv
sb 1
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Therefore, to give a bandwidth of bf , the flux loop gain needs to be: 
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Applying this gain yields the Nichols chart shown in Figure  A-16. 
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Figure  A-16 Nichols Plot of flux loop with digital proportional control 

The measured stability margins are: PM = 83.4 degrees at w = 293 rad/s. 

Integral action 

As can be seen, there is still a large phase margin (~85 degrees) that can be exploited. As 

such, integral action can be added to the controller to ensure a zero steady state error in 

the flux loop.  

From the Nichols chart above, we can assume that for an optimal response of a PM of 70 

degrees, we require a 15 degree phase shift at 0dB crossover point. 

 

Goodall [insert reference] states that the break frequency of the integral action should be 
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Applying these values to the controller the Nichols chart in Figure  A-17 is obtained. 

 

Figure  A-17 Nichols plot of flux loop with digital controller 

From this Nichols plot, it is possible to establish that the phase margin of the system is 59.3 

degrees and gain margin of 17.3dB. The closed loop bandwidth is 452 rads/s, which is a 

closed loop bandwidth of 71.9Hz. 

A.2.1.3. Digitization of Controller (z) 

The controller that has been designed is in continuous time. The implementation will be on 

a computer and therefore will need digitising. This can be done by applying the bilinear 

transform to the continuous time controller. The controller derived from above is: 
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For Bilinear transform: 
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This can be expressed as: 
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The discrete controller is applied to the simulink diagram in the following way: 

 

Figure  A-18 Flux loop with digital controller 

The Nichols plot in Figure  A-19 shows the discrete time controller system implemented at 

1000Hz. 
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Figure  A-19 Nichols plot of flux loop with 1kHz digital controller 

The phase margin is 61.1 degrees and the gain margin is 16.7 degrees. The closed loop 

bandwidth of the system is 474 rad/s which is equivalent to 75.4Hz. 
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A.2.1.4. Digitisation of Controller (delta) 

The controller design has been performed in continuous time and requires digitising in 

order for this to be implemented on a computer. This can be done by applying the bilinear 

transform using the delta operator and then deriving the real time control equations. 
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For the bilinear transform: 
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 The real time equations are derived as follows. Let: 
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Where ‘y‘ is the output, u is the input and v is an internal variable. The above function is 

expanded below: 
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And also: 

uv =  

(Equation 1) 

Then: 

vqpvy 1)( −+= δδ  

Let: 

 

(Equation 2) 

So: 

qwpvy +=  

(Equation 3) 

Equations 1, 2 and 3 are implemented in that order to perform the control actions. 

A.2.2. Outer Gap-loop Control Design 

A.2.2.1. Analogue Controller Design 

When a controller is applied to the outer loop, the control structure generated for a single 

magnet is as shown in Figure  A-20. 
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Figure  A-20 Control Structure for Maglev system 

The flux loop controller was derived in the previous section ( A.2.1) and was found to be: 

( )
008.0

1008.0700 +
=bC  

The inversion on the gap feedback loop is required to correct the polarity and give a 

positive value of gap. 

The Nichols plot for the uncompensated outer loop is shown in Figure  A-21. 

 

Figure  A-21 Nichols Plot of uncompensated Gap Loop 
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It can be seen that there is a need for phase advance to stabilise the system. 

 

A suitable value of gain, can be found by considering a proportional gain of 10%. Assuming 

the maximum change in gap allowable is 0.005m (5mm), and the maximum change in flux 

density is 1T: 

 
The gradient shown will equal the gain of the controller. 

mTGg /20
005.0

1.0
==  

The Nichols chart obtained by applying this controller is shown in Figure  A-22: 
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Figure  A-22 Nichols Plot of proportional control on gap loop 

A Phase advance controller has the following structure: 
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Where k is the phase advance ratio, gG is the gain andτ is the time constant. 

The value of k is a nominal value and is chosen here to be 5. 

The Phase advance implemented by this controller can be expressed as: 
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At the 0dB point, we require a phase advance of at least 40 degrees. With ‘k’ already 

chosen, and srad /5.28=ω  at 0dB, 
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The Nichols chart in Figure  A-23 shows the response of the system with controller with the 

above parameters. 

 

Figure  A-23 Nichols plot of PA Gap controller applied to system 

This gives a phase margin of 16.1 degrees, and a gain margin of 8.31dB. It can be seen on 

the Nichols chart above that a larger stability margin can be achieved by adjusting the 

active frequency of the controller. As such, the value of τ is adjusted to 0.01. This gives the 

following Nichols plot: 
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Figure  A-24 Nichols plot of adjust PA Gap controller applied to system 

This controller yields a phase margin of 39.6 degrees, and a gain margin of 15.8dB. The 

bandwidth of the system was found to be 12.5Hz. 

 

As a final test, a gap step input of 2mm is put into the loop. The following is a copy of the 

output of the system. 
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Figure  A-25 Step response of system 

As can be seen, the system settles nicely with zero steady state error. 

A.2.2.2. Digital Controller Design 

Initial test show that the outer gap loop will be implemented at around 100Hz. As with the 

flux loop, this is lower than the recommended sampling frequency given the bandwidth of 

the system. As such, a w-plane design will be used to derive a controller. 

 

The control structure inclusive of the sampling delay is shown in Figure  A-26: 
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Figure  A-26 digital control scheme 

Ti is the inner (flux) loop sampling time and Tg is the outer (gap) loop sampling time. The 

Nichols plot for the uncompensated outer loop is shown in Figure  A-27. 

 

Figure  A-27 Nichols plot of Gap loop 

Again, it can be seen that there is a need for phase advance to stabilise the system. 

Using the same value of gain as previously: 
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mTGg /20=  

The Nichols chart obtained by applying this controller is shown in Figure  A-28: 

 

Figure  A-28 Nichols chart of Gap loop with proportional gain controller 

A Phase advance controller has the following structure: 
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Where k is the phase advance ratio, gG is the gain and τ is the time constant. 

The value of k is a nominal value and is chosen here to be 6. 

The Phase advance implemented by this controller can be expressed as: 
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At the 0dB point, we require a phase advance of at least 40 degrees. With ‘k’ already 

selected, and srad /5.28=ω  at 0dB, 
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The Nichols chart in Figure  A-29 shows the response of the system with controller with the 

above parameters. 

 

Figure  A-29 Nichols Plot of PA Gap controller 
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This gives a slight negative phase and gain margin. It can be seen on the Nichols chart 

above that a larger stability margin can be achieved by adjusting the active frequency of 

the controller, and reducing the gain. As such, the value of τ is adjusted to 0.01, and the 

value of gain adjusted to 10. This gives the following Nichols plot: 

 

Figure  A-30 Nichols plot of adjusted PA gap controller 

This controller yields a phase margin of 38.2 degrees, and a gain margin of 12dB.  

A.2.3. Digitisation of Controller (z) 

The controller generated above is a continuous time controller and requires conversion to 

a discrete time controller for implementation on a real time computer. 

 

Once again, this can be done by applying the binomial transform to the continuous 

controller. So: 
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Applying the binomial transform of: 
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This can also be expressed as: 
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A.2.4. Digitisation of Controller (delta) 

The controller design has been performed in continuous time and requires digitising in 

order for this to be implemented on a computer. This can be done by applying the bilinear 

transform using the delta operator and then deriving the real time control equations. 

( ) ( )
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1
+
+

=
w
wkGwC gg τ
τ  
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 The real time equations are derived as follows. Let: 
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1
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Where ‘y‘ is the output, u is the input and v is an internal variable. The above function is 

expanded below: 
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(Equation 1) 

So: 

wuv −=  

(Equation 2) 

Remember that: 

1
1)(

)( −+= δ
δ
δ qδp

v
y  

So: 

qwpvy
vqdpvy

+=
+= −1

1d  

(Equation 3) 
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Equations 1, 2 and 3 are implemented in that order to perform the control actions. 

A.2.5. Step Response Test 

As a final test, a gap step input of 2mm is put into the loop. The following is a copy of the 

output of the system. 

 

Figure  A-31 Step response of digital gap controlled system 

As can be seen, the system overshoots, but does settle with a small oscillatory error. This is 

a result of implementing the gap controller with a slow time period. 
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A.3. Hardware Implementation 
It is possible to represent the system as a controller and physical system. This is more 

appropriate to the physical aspect of the final product. The system boundaries are shown 

in the diagram below. 

 
 

In order to facilitate the interaction between the controller and the physical boundary, 

various transducers have been designed. These sit on the above diagram as thus: 
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From the physics of the system, it is possible to define the maximum and minimum signal 

values expected during the operation of the system. It is normal in analogue systems to 

assume that control signals will have the range V10± . The other signal values are shown 

in Figure  A-32: 

 

Figure  A-32 transducer and power amplification requirements 
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The following sections describe the design and hardware implementation of each of these 

trasnducers. 

A.3.1. Flux Transducer 

The flux transducer design is formed around the concept that a voltage proportional to the 

value of flux density can be ascertained from a search coil, embedded in the pole face of 

the magnet. A value of flux is then derived by integrating this signal, and then multiplying 

by the proportionality constant. It is necessary to include a high pass filter to remove low 

frequency drift in this application. The process can be demonstrated by the block diagram 

in Figure  A-33: 

 

Figure  A-33 Scaling considerations for flux measurement 

The transfer function for the search coil can be shown to be: 

( )
( ) sAN
sb
sv

scsc
sc =  

Where scv  is the search coil voltage, scN is the number of turns in the search coil and scA is 

the area bound by the coil. The proportional constant here is based from the physics of the 

search coil, in that the output voltage is proportional to both the area bound by the coil 

and the number of turns wound. 

 

The transfer function of the self-zeroing integrator is: 

( )22 4.1
i

ss
sF

i
i ωω ++
=  

iω needs to be chosen such that it is substantially lower than the bandwidth of the gap 

loop. Therefore, let: 

sradi /5.1=ω  

Search 
Coil 

Integrator 
(With Filter) 

Flux 
(Tesla
) Sensor Transducer 

Flux 
Signal 

Flux Density 
signal 
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It is also necessary to have the gain of the integrator set in order to scale the sensitivity of 

flux integrator to an appropriate level. 

 

The transducer will be implemented as an operational amplifier circuit. This will be a 

simple and effective method of conditioning the signal before passing into the controller. 

The next sections describe how the operational amplifier circuit was derived to meet the 

above specifications. 

A.3.1.1. Derivations of Op Amp System from Transfer Function 

It is necessary to represent the transfer function: 

( )22 4.1
i

ss
sF

i
i ωω ++
=  

As a block diagram of the form: 

 
This can then be easily converted into an operational amplifier circuit. 

 

The transfer function of the block diagram can be represented as: 

)(1
)('

sGH
sGFi +

=  

)(sFi can be manipulated algebraically into the form of )(' sFi  in the following way: 
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2
2
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Let 
s

sG 1)( =  
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Figure  A-34 feedback loop block diagram 
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Therefore: 
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Let 
s

sH
ii

14.1)( 2ωω +=  

Therefore: 

)()(1
)(

sHsG
sGFi +

=  

A.3.1.2. OpAmp representation of G(s) 

As derived: 

s
sG 1)( =  

In OpAmp circuit form, this requires a simple integrator circuit, as shown in the 

Figure  A-32: 

 

Figure  A-35 OpAmp integrator diagram 

The transfer function is found using complex impedance analysis: 

 

Figure  A-36 Impedance Analysis 
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As the overall gain is 1, it can be said that: 
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fi
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A.3.1.3. OpAmp representation of H(s) 

s
sH

ii
14.1)( 2ωω +=  

This circuit can be considered to be a classic proportional plus integral configuration, 

represented as: 

 

Figure  A-37 OpAmp diagram of H(s) 

Again, using complex impedance analysis: 
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Therefore: 

i
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ω4.1
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2 =  and 2

22

1
i

fi CR
ω=  

A.3.1.4. Full Circuit 

Due to the inverting nature of OpAmps, a further unit gain is required on the feedback 

loop to ensure that the signs are consistent. The condition for this gain is that 33 fi RR = . 

Therefore, the full circuit is as shown in Figure  A-31: 

 

Figure  A-38 Operational Amplifier Circuit for Self-Zeroing Integrator 

In order for the summation to work, 1211 ii RR = .  

Note: All op amps require wiring up shown in Figure  A-39: 
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Figure  A-39 power requirements of OpAmp 

In addition to this, the input and output will require two connections, the second one (not 

shown on full diagram) will be connected to ground. 

A.3.1.5. Derivation of component values 

It was shown that for the OpAmp circuit to represent the transfer function, following 

criteria must be realised: 

1. 1111 =fi CR  

2. 2

22

1
i

fi CR
ω=  

3. i
i

f

R
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ω4.1
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2 =  

The values will be chosen using a standard component values. 

For 1111 =fi CR : 

Let FC f µ2.21 =  

Therefore: 

Ω=
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== − k
C

R
f

i 454
102.2

11
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Using the nearest standard value yields: 

Ω= kRi 47011  

And also: 

Ω== kRR ii 4701211  
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As previously defined: 

sradi /5.1=ω  

Therefore: 

25.25.1 22 ==
i

ω  

So: 

444.0
25.2
1

22 ==fi CR  

Let: 

FC f µ0.12 =  

Therefore: 

Ω=
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== − k
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R
f

i 444
100.1

444.0444.0
6

2
2  

Using nearest standard value: 

Ω= kRi 4702  

For i
i

f

R
R

ω4.1
2

2 = : 

Already defined are: 

Ω= kRi 4702 , sradi /5.1=ω  

So: 

Ω=××== kRR iif 9874700005.14.14.1 22 ω  

Therefore, selecting nearest standard value gives: 

Ω= MRf 12  

In summary: 

Component Value 

1fC  Fµ2.2  

11iR  Ωk470  

12iR  Ωk470  

2fC  Fµ0.1  
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2iR  Ωk470  

2fR  ΩM1  

3iR  Ωk10  

3fR  Ωk10  

Table  A-2 Component Values of Integrator 

A.3.1.6. Calculate Modified Filter Coefficients 

In order to do this, the expression for G(s) and H(s) will be calculated using expressions for 

coefficients based on the chosen component values. This can then be extrapolated to a 

term for the whole system. This will only provide an approximation to the true filter 

coefficients. 

sCR
sG

fi 11

1)( −=  











+=

sCRR
R

sH
fii

f

222

2 1)(  

(NB: the term for H(s) now includes the gain of -1). 

 

The system can be represented as: 

 

Figure  A-40 Block Diagram of transducer circuit 
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It is now possible to substitute the chosen component values into the expression: 
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Remember that: 
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Substitute in values for iω : 
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A.3.1.7. Bode Plot Comparison 

The following figures show the bode plot of the system with the desired filter coefficients 

(represented by F(s)) and the actual filter coefficients (Represented by F’(s)) based on the 

nearest available component values. The purpose of these plots are two fold. Firstly, it 

allows a comparison of the two systems to identify any major differences between the 

two. Secondly, it provides values in terms of gain and phase in order for testing purposes. 

 

Figure  A-41 Bode Plot of F(s) 
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Figure  A-42 Bode Plot of F'(s) 

 

It can be seen that both plots are practically identical, and proves that the component 

values selected are satisfactory for the filter. 

A.3.1.8. Scaling 

The process of converting the flux produced by the magnet into a signal voltage is 

represented mathematically in the block diagram in Figure  A-43. This is a development of 

the diagram discussed earlier. 

 

Figure  A-43 Signal scaling considerations 

Where scv is the search coil voltage and sciv is the voltage produced by the search coil 

integrator. 

 

  b   
 

Search Coil 

 

Integrator (Fi) 



  
Appendix A 

Maglev Controller Development 

 

       lxxvi 

 

The overall low frequency gain of the system can be represented as: 

( )sGANG scscsc =  

The sensitivity required for the system is 20V/T. This is because it is expected for the flux to 

vary by +/-0.1T, and the voltage to be measure between +/-2.0V. 

 

Therefore it can be said that: 

( ) TVsGANG scscsc /20==  

This formula is true if the search coil is made form a single coil of wire. However the search 

coil in this application is formed by a pair of wire windings embedded in each of the 2 

polefaces of the magnet. The configuration of the search coils are shown in Figure  A-44. As 

this system is design with redundancy in mind, 2 independent search coils exist. 

 

Figure  A-44 Flux coil connections 

Each of the two search coils are formed using an inner coil and an outer coil. Therefore the 

equation for the gain of the system must be modified as follows: 

( )
( ) ( )sGANAN

sGANG

scoscoscisci

scscsc

+=
=

 

Where the suffix ‘i’ indicates an inner coil, and ‘o’ indicates an outer coil 

As the number of turns in each of the windings is the same: 

( ) ( )sGAANG scosciscsc +=  

These areas as measure directly from the poleface were found to be: 

Main Coil 

Pole 
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It is also known that the number of turns in each coil is 200. Therefore: 
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The value required for the flux integrator gain can now be calculated: 

( )
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( ) 125
1599.0
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=

=
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sG
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A.3.1.9. Adjusting the Circuit 

In block diagram form, the gain of the system can be increased by 125 in the following 

way: 

 

Figure  A-45 Introducing scaling 

The above figure shows that the dynamics of the system will be identical to the one 

designed, but a gain of 125 is now present. It is possible to introduce this gain of 125 by 

changing resistor 11iR as shown in the circuit in Figure  A-46: 
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Figure  A-46 

It is to be noted that this change is to be made only to 11iR and not to 12iR as this will affect 

the H(s) part of the system as described in the sections above, and affect the dynamics of 

the filter. 

The change in resister value can be described quite simply as: 

125
11

11
i

newi
RR =  

This essentially changes the gain of the forward looking Op amp on the input channel from 

1 to 125. 

So, the new resistor value is: 

Ω=== 3632
125
454

125
11

11
kRR i

newi  

The value for 11iR used is the desired value, not the nearest preferred component value. 

The nearest preferred component value to be implemented for newiR 11 is: 

Ω= 9311 kR newi  

Therefore, the updated component table is: 

Component Value 

1fC  Fµ2.2  

11iR  Ω93k  

12iR  Ωk470  
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2fC  Fµ0.1  

2iR  Ωk470  

2fR  ΩM1  

3iR  Ωk10  

3fR  Ωk10  

A.3.2. Component Selection and Design 

A.3.3. Gap Transducer 

The gap transducers installed on the rig are Sensagap SG10 produced by RDP Electronics. 

They are a non-contact displacement transducer that use a capacitive technique to 

measure the distance from the front ceramic face of the sensor to the target. 

The actual output of the gap transducer will be a voltage in proportion to 0-15mm. This will 

have to be converted to +/- 5mm. Either that or the signal +/-10V will have to be 

reconsidered to represent the range 0-15mm.  

A.3.4. Power Amplifier 

These power amplifiers are designed to be driven by a 20kHz PWM signal from the 

controller, and output a 50V DC PWM drive signal to the magnet coils. Along with the 

circuit design, a 1.5kVA 50DC power supply was manufactured to provide the power 

source. 



  
Appendix A 

Maglev Controller Development 

 

       lxxx 

 

A.3.4.1. Circuit Diagram 

 

Figure  A-47 Power Amplifier Circuit Diagram 

This circuit is an adaptation of a previous design. The basics of the circuit are that it is a 

standard 2 quadrant H bridge power amplification design. It includes an opto-coupler in 

the form of a 74OL6010 chip and a IR2101 MOSFET driver. 

A.3.4.2. Logic to Logic Optocoupler 

This component is included to isolate the input signals from the power part of the circuit. 

The component used is a 74OL6010 logic to logic optocoupler. 

 
The IC is essentially used as a driver for the power electronics and uses LEDs to isolate the 

input signals from the power section. 



  
Appendix A 

Maglev Controller Development 

 

       lxxxi 

 

A.3.4.3. Internal Rectifier 

The internal rectifier IR2101 is use to drive the MOSFETS. Figure  A-48 shows the basic 

make-up of the driver circuit.  

 

Figure  A-48 Internal Rectifier Circuit 

A.3.4.4. Hall Effect Current Transducer 

The HTP25 is a Hall effect current transducer and is used to measure the current produced 

by the circuit. The out +ve wire (as shown in Figure  A-34) is threaded through the eye of 

the transducer in order to excite the coil within it. 

  

The original Hall Effect Transistor circuit is shown in theFigure  A-49: 

 

 

Figure  A-49 Current transducer schematic 

The output of the transducer is required to be input to an analogue to digital converter 

with a range of +/- 5V. As such, the output put through a non-inverting amplifier to achieve 
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the appropriate ratio. The resistor values were chosen as a result of the calculations 

derived below. 

 

The required gain of the overall transducer will be a range of 20A to every 5V output and 

therefore requires a gain of 0.25 V/A. The block diagram in Figure  A-50 represents the 

signal processing aspect of the above system: 

 

Figure  A-50 Scaling considerations 

Where: 

SG = Gain of Hall Effect Sensor (Volts/Amp) 

AG = Amplifier Gain (Volts/Volt) 

As demonstrated in the above figure, but represented here mathematically, 
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The value of SG is known from the use of the HTP25 data sheet, and is found to be: 
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The gain of a non-inverting amplifier can be expressed as: 

2

11
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In order to find the resistor values, we substitute in the desired value of gain: 
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By using preferred component values, the following were chosen. 

Ω=
Ω=
kR
kR

8.6
5.1

2

1  

This errs slightly to the lower side of the overall ratio, but still falls within acceptable 

parameters. 

A.3.4.5. Power MOSFET 

The MOSFET used is the IRFP260N produced by International Rectifier. It is a standard 

MOSFET with appropriate current and voltage capacities to drive the coils at 50V and 20A. 

A.3.4.6. Reed Switch 

During testing, it was found that there was the potential for the coil to draw 50A if a fault 

in the controller software arose. The latest circuit diagram, shown in Appendix C, includes 

a reed switch as an emergency current limiting device. The output +ve connection as 

shown in the diagram requires wrapping around the reed switch the correct number of 

times (3 for the component selected) such that a cut out is induced at around 15-20 Amps. 

The cut out works by pulling the MOSFET input low when the current is above the 

threshold. The circuit will then “limit cycle” until the current demand is reduced. 

A.3.5. Power Supply 

Table  A-3 shows the list of functional components that will require power, and the details 

of this requirement. 

 

Title Description # Power 
connection 

ref: 

Type 
(DC/AC) 

Voltage 
(Volts) 

Current 
(Amps) 

Coil power 
amplifiers 

Amplifies 
controller outputs 
to necessary drive 
signal 

2 1 DC +50 40 
2 DC 0 40 
3 DC +15  
4 DC -15  
5 DC +5  
6 DC 0  

Processing 
Module 

Performs all 
functions for 
control purposes 

N 1 AC 240 1.5 
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Network 
switch 

Directs Ethernet 
packages 

2 1 AC 240  

Flux 
Integrator 

Integrates flux 
density signal to 
achieve flux 

8 1 DC +15  

2 DC 0  
3 DC -15  

Gap Sensor Measures airgap 4 1 DC 15  
2 DC 0  

Table  A-3 Power supply requirements 

It is evident from the table above that there are 4 power sources required: 

• 240V AC 

• +50V DC 

• +/- 15V DC 

• +5V DC 

The power to supply these components is to come directly from a standard 250V mains 

socket. Therefore, a power supply/converter unit will be needed to convert the 250V AC 

into the required DC values above. Table  A-4 details these units. 

Supply Rail Detail of Device 

+50V DC Custom made Power 

Supply 

+/-15V DC Standard lab PSU 

+5V DC Standard lab PSU 

Table  A-4 Power Supply sources 

A.3.5.1. Supply Configuration for Single Magnet Control 

The project has to go through a staged commissioning process to develop the full four-

corner control of the rig. One of the most significant early stages of the project is the 

control of 1 magnet of the rig in isolation. This phase requires a considerably less 

complicated supply configuration than that of the full installation. 
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Figure  A-51 Power Supply to system components 

It can be seen how the scheme in Figure  A-51 can be easily expanded to facilitate 

additional processing modules, sensors and coils, as long as the current is not exceeded by 

any of the sources. 
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B. Requirements Compliance 
Req. # Description Compliance 

Top Level System 

1 The IMA shall be able to display to the operator 

appropriate internal systems management 

information (e.g. current functional allocation, 

and current component health) for verification 

purposes 

Results in Chapters 5 & 6 show screen shots of 

system configuration information 

2 The IMA shall be able to display to the operator 

real-time information regarding the target 

platform (Maglev rig), such as current position 

A Real-time demonstration was given to project 

supervisors 

3 The IMA shall be capable of receiving control 

commands for the target platform 

Results in Chapter 6 shows the system response to 

a changing setpoint command 

4 The IMA shall perform the real time control 

functions necessary to maintain magnetic 

suspension of the Maglev rig 

Results in Chapter 6 show a consistent, stable 

system response to airgap demand changes 

5 The IMA shall allow user to inject fault signals 

into the system 

Chapter 6 details a number of tests that involve 

injected a fault signal into the system 

6 
The IMA shall perform some identified 

techniques in order to manage the fault 

Chapter 4 discusses the methods by which this 

can be achieved. Chapter 6 shows the systems 

manages faults by  

7 The IMA should maintain service in the presence 

of fault if possible 

Results in Chapter 6 show that through a series of 

faults injected, the system maintains service 

8 The IMA shall provide a tangible output of the 

systems management actions during this 

response 

Screenshots of the user interface recorded in 

Chapter 6 show how internal systems 

management states are communicated 

IMA Top Level Requirements 

9 The design of the system shall follow 

fundamental IMA principles where appropriate 
Chapter 4 discusses in detail how this was realised 

10 Each IMA processing module shall follow the 

three layer stack architecture 

Details of the hardware/software architecture can 

be found in Chapter 4 

11 The hardware and software shall be loosely 

coupled such that, within a limited scope, a 

change in either shall not infer a change in the 

other 

Details of the hardware/software architecture can 

be found in Chapter 4 
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Req. # Description Compliance 

12 The operating systems layer, or middle layer, 

shall manage the availability of the hardware 

resources to the application layer 

Details of the hardware/software architecture can 

be found in Chapter 4 

13 The operating systems layer shall manage the 

arising of a limited number of faults within the 

system 

Details of the hardware/software architecture can 

be found in Chapter 4. Results of experiments 

supporting this can be found in Chapter 6. 

14 A tangible output shall be created showing the 

management of the fault 

Screenshots in Chapter 6 show how information 

was conveyed to the user 

15 The service provided by the system shall not be 

interrupted during the management of the fault 

Time-response graphs throughout Chapter 6 show 

this to be the case 

IMA Hardware Requirements 

16 The hardware shall be capable of 

accommodating the required system 

functionality in terms of processing resource, 

communication resource and I/O expectations 

Details of the hardware/software architecture can 

be found in Chapter 4 

17 To a limited scope, hardware shall be generic and 

a change in a hardware component will not affect 

the fundamental design of the rest of the system 

Details of the hardware/software architecture can 

be found in Chapter 4 

18 The hardware shall have data acquisition 

capabilities where appropriate 

Details of the hardware/software architecture can 

be found in Chapter 4 

19 
The hardware shall have a networking capability 

of deterministic communications 

Results of Chapter 5 show how the 

communication structure is deterministic and 

repeatable 

20 
The hardware shall be expandable to allow 

additional hardware capabilities to be included 

Results in Chapter 5 show how the number of 

modules in the system can be easily 

accommodated 

IMA Middleware Requirements 

21 The middleware shall manage the administrative 

aspects of the IMA across all modules, inclusive 

of start-up, communications, configuration and 

faults 

Chapter 4 describes these processes in detail 

22 The middleware shall manage accessibility of 

hardware resources to applications 
Chapter 4 and Appendix D describe the processes 
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Req. # Description Compliance 

23 The middleware shall enable the execution of 

applications and communications to be 

performed in a deterministic manner 

Chapter 4 discusses how the communications and 

applications are managed system wide in a 

deterministic fashion 

24 The middleware shall allow the software and 

hardware disparate such that a change in one 

should not infer a change in the other 

Chapters 5 & 6 show a number of tests where 

different applications were defined and 

implemented on the hardware resources 

25 The middleware shall prevent any unwanted 

interaction between applications to a reasonable 

degree 

Chapter 4 describes the systems architecture and 

Chapter 6 shows that functions were able to be 

switched on and off without cross interference 

26 
The middleware shall share systems resources 

between applications 

The deterministic results in Chapters 5 & 6 show 

that system resources have been partitioned 

effectively 

27 
The middleware shall partition applications from 

all others 

Chapter 4 describes the systems architecture and 

Chapter 6 shows that functions were able to be 

switched on and off without cross interference 

28 The middleware shall ensure that applications 

are executed in order to meet their timing 

constraints 

The deterministic results in Chapters 5 & 6 show 

that system resources have been synchronised 

effectivel 

29 
The middleware shall be modular and portable 

Chapter 4 discusses the limits of this requirement 

with the chosen development environment 

Configuration Management Requirements 

30 The configuration manager shall manage 

assignment of applications to resource following 

application assignment requirements 

Experiments conducted in Chapters 5 & 6 shows 

successful application assignment for a number of 

different cases 

31 The configurations generated shall ensure the 

applications can execute in a deterministic 

fashion 

Experiments conducted in Chapters 6 shows 

successful application assignment for a 

deterministic system 

32 The configuration/reconfiguration tasks shall be 

performed in a timely manner 

The time response graphs in Chapter 6 show the 

time required for a reconfiguration to occur 

33 
The process of configuration/reconfiguration 

shall not disrupt the application execution flow 

Time responses in Chapter 6 show that the control 

algorithms continue to execute during 

reconfiguration activities 

34 To recalculate a new configuration based on 

constraints from fault signals 

Results in Chapter 6 show successful 

reconfiguration in response to fault signals 
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Req. # Description Compliance 

35 To Implement a new configuration without 

interrupting the service 

Time response graphs in Chapter 6 show that 

continual service is provided 

Fault Management Requirements 

36 The system shall be capable of detecting simple 

faults in various system components, such as 

applications or hardware modules 

Chapter 4 shows how faults can be monitored, 

detected and communicated to higher level 

functions 

37 The system shall be capable of handling the 

occurrence of certain errors 

Errors are defined in Chapter 4 and demonstrated 

in Chapter 6. 

38 The system shall be capable of recovering from 

error by initiating the reconfiguration mechanism 

with new constraints 

System management schematics presented in 

Chapter 6 show how this was achieved. 

39 Where possible, the system shall confine faults 

such that their occurrence does not propagate 

system wide 

The system design discussed in Chapter 4 

considers how errors are contained 

40 The system shall maintain a log recording the 

error that has arisen and the resultant action 

taken 

Data presented in Chapter 6 was supported by a 

text activity log  captured during testing 

Communications Management Requirements 

41 It shall provide deterministic communications 

between applications for assigned configuration 

Chapter 5 demonstrated the deterministic 

communication capabilities of the system 

42 
It shall ensure that the network communications 

methodology is transparent to the applications 

Chapter 4 discussed how the blueprint is formed 

and translated into a deterministic network 

description. 

43 It shall provide communications between 

systems management components 

Chapter 4 discusses how systems management 

components communicate 

44 It shall Ensure that communications of systems 

management do not impact upon the 

deterministic communications 

Chapter 4 discusses the time partitioning of the 

network such that this does not occur 

45 
It shall ensure smooth transition between 

configurations 

the time responses in Chapter 6 shows how 

deterministic processes continue during 

transitions 

IMA Applications Requirements 

46 
They shall perform a specified task 

Discussed in Chapter 4, demonstrated in Chapters 

5 & 6 
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Req. # Description Compliance 

47 
They shall be controllable by the system manager 

Discussed in Chapter 4, demonstrated in Chapters 

5 & 6 

48 They shall communicate with other applications 

via the communications structure 

Discussed in Chapter 4, demonstrated in Chapters 

5 & 6 

49 They shall have an assignment specification Discussed in Chapter 4. 

Graphical User Interface Requirements 

50 The GUI shall provide an input capability for the 

demand of the Maglev rig 
Demonstrated to project supervisors 

51 The GUI shall provide an output of sensor data 

from the Maglev rig 

Demonstrated to project supervisors. Supported 

by recorded data presented in Chapter 6. 

52 The GUI shall provide a test input capability Results of test inputs are captured in Chapter 6 

53 The GUI shall display the configuration of the 

system in a tangible manner 

Screenshots in Chapter 6 show how this was 

achieved 

54 The GUI shall highlight the process flow of the 

functions 

Screenshots in Chapter 6 show how this was 

achieved 

55 The GUI shall display the health of the system 

components 

Screenshots in Chapter 6 show how this was 

achieved 

56 The GUI shall display detailed information about 

each component 

Screenshots in Chapter 6 show how this was 

achieved 

57 
The GUI shall provide a fault injection capability 

Demonstrated to project supervisors. Supported 

by recorded data presented in Chapter 6. 

Maglev Rig Requirements 

58 
The Maglev rig shall be controllable and respond 

as expected to inputs. 

The design of the experimental setup is described 

in Appendix C. Results graphs in Chapter 5 and 6 

show system under control. 

59 The Maglev rig shall provide clean, repeatable 

signals 

The design of the experimental setup is described 

in Appendix C 

60 The Maglev rig shall allow faults to be injected 

into it 

The design of the experimental setup is described 

in Appendix C 
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C. Magnetic Levitation Experimental Rig 

C.1. Introduction 
This chapter will describe the design, build and test of the magnetic levitation (maglev) rig 

that is used as a target platform for the IMA installation produced. 

 

The chapter will begin by discussing the relevancy of using a maglev rig as a test platform 

for an avionics system. It will then move on to talk about the rig itself, and the demands 

that the rig has on a control system, by the development and analysis of a mathematical 

model. It is also in the chapter that a controller is derived in order to maintain magnetic 

suspension. The final sections of chapter detail the hardware aspects of implementing the 

controller upon the rig inclusive of verification and test. 

C.2. Magnetic Levitation as a Concept Demonstrator 
The purpose of the overall project is to produce a concept modular avionics system that 

can maintain operational service in the presence of faults. In order to prove that the 

system can perform this function whilst maintaining real time control of a high demand 

control system, a test platform of some form was required for the IMA to drive. 

 

It was conceived that a maglev rig (as a legacy of a previous project) would be useful to this 

IMA investigation due to fundamental similarities between the control law problem 

between maglev airgap control and modern aircraft stability. It can be concluded that both 

systems require: 

• Real time multi input, multi output control for open loop unstable 

• Computing for items such as health management, navigation, etc 

• Certifiable systems that perform to a high level of reliability 

• Lifecycle management in terms of managing obsolescence and changing 

requirements  

 

The main difference is of course that the maglev system will remain attached (albeit 

magnetically) to the guide rails whereas an aircraft is free to move in 6 degrees of 
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freedom. The complexity and risk of a project is significantly reduced when using a maglev 

rig compared to an airborne system. 

 

It is also interesting to note that an IMA technology is directly beneficial to commercial 

maglev systems, even though it is currently an unrealised solution in this area.  

C.3. Electromagnetic Levitation 
Available for use for this investigation is a 200kg capacity Magnetic levitation (Maglev) test 

rig facility. It is considered that the Maglev rig will be an appropriate demonstrator as it 

requires a high demand multi-input, multi-output real time controller to maintain stability 

of a safety critical open-loop unstable system, synonymous to modern, fighter-style 

aircraft. The application of an IMA to this situation will be proof that the architecture is 

capable of deterministic actions whilst reducing the technical risk and certification issues of 

an initial implementation upon an air platform. 

 

In addition to this, many definitions of IMA suggest that the architecture should have 

platform independency such that the system should be transferable between applications 

with minimal change. 

 

This section therefore summarise the investigation of relevant literature regarding the 

operating requirements of Maglev vehicles. 

C.3.1. Maglev background 

The concept of Maglev, or electromagnetic levitation, as a means to provide propulsion 

and levitation for trains has been around for a number of years. The first commercial 

maglev system was implemented at Birmingham International Airport in order to transport 

passengers from the airport terminal to the nearby railway station (R. Goodall, 1985). 

Maglev has an advantage over wheeled vehicles as it generates considerably less friction. 

This means that it can be used in situations where very low friction or very high speed is 

required. 
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C.3.2. Maglev Control Systems 

Goodall (R. Goodall, 1985) suggests a number of different configurations for arranging the 

electromagnet with the track. The following simplified diagram represents the basic 

configuration for a simple single actively controlled magnet on a Maglev vehicle. 

 

 

Figure  4-1 Basic Electromagnet (Goodall 1985) 

Figure  4-1 represents the railway bogie as a suspended load. In reality, this load will be 

mounted above the track, but fixed to the magnets on the lower side of the track. It is 

suggested that a more accurate description of the process is electromagnetic suspension, 

rather than electromagnetic levitation. 

 

The problem remains of developing a suitable robust control solution for this 

electromagnet configuration. Much work has been previously performed on this topic by 

Goodall et al (R M Goodall, 2004; R. Goodall, 1985; Roger M. Goodall, 2000). These papers 

state that an appropriate method to control the airgap between the pole face and the 

track is to use an inner control loop to maintain stability. It is mentioned that three 

possible variables are available to the designer that may be used as an internal loop, 

Rail 

+ . . + 

Suspended Load 

Coil 

Back Iron 
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namely applied voltage, current and flux density. It has been shown that using flux density 

as an inner control loop provides favourable response characteristics. 

C.3.2.1. Suspension 

When Maglev was first conceived, it was thought that a particularly smooth ride could be 

achieved because of the lack of contact between the pole face and the track (R M Goodall, 

2004). The reality is that the individual magnets will respond to small deviations caused by 

track irregularities, generating vibrations and a potentially poor ride quality. 

Electromagnets in a maglev vehicle must do more than just suspend the load, they must 

provide appropriate suspension characteristics. These requirements are defined as: 

• To support the load of the vehicle 

• Guide the vehicle such that it follows the track profile 

• Isolate the vehicle body and its passenger from vibrations caused by track 

irregularities 

 

A solution to the suspension problem is suggested at a later stage in this paper using the 

Maglev system at Birmingham airport as a working example. It is shown that to provide 

appropriate suspension characteristics to each electromagnet, a complementary filter 

arrangement is required, as shown in the following diagram. 

 
Key: 

b = flux density 

g = airgap 

gin = airgap setpoint 

z = acceleration 

zt = track disturbance 

v = voltage 

Cb = flux controller 

Cg = airgap controller 

LP(s) = Low Pass 

HP(s) = High Pass 

 

Figure  4-2 Complimentary Filter Control (Goodall 2004) 

This scheme implements a Low Pass filter (shown as LP(s) in) on the airgap feedback in 

order to provide guidance to the track. A High Pass fliter (shown as HP(s) in) is 
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implemented on the accelerometer feedback to provide isolation from track disturbances. 

In general, this means that the system will maintain minimal changes in vertical 

acceleration, whilst providing good track following properties. 

C.3.2.2. Whole Vehicle Controller 

The main problem to solve is not the control of an individual magnet, but the suspension 

of an entire vehicle consisting of a number of electromagnets. Along with this problem will 

arises issues such as structural coupling. A solution to this problem is to transfer the four 

control loops to a ‘modal controller’, essentially controlling the vehicle in terms of pitch, 

roll and yaw (R M Goodall, 2004). The idea is that these three variables are mainly 

uncoupled, and thus can be dealt with independently. 

 

Figure  4-3 Vehicle Controller - Modal form (Goodall 2004) 

This method has been proved to be successful and robust, using classical control solutions. 

It should be possible to extend the ideas of a LQ state-feedback controller (Michail, 2009). 
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C.4.  Overview of the Experimental Rig 
The maglev test rig is a legacy of a previous project and as such elements such as sensors 

and actuators were already present.  

 

 

Figure  4-4 Maglev Test Rig 

 

Figure  4-5 View of a Single Magnet 

Each magnet is comprised of two cores each of which are dual wound in that each magnet 

can be stimulated from an independent control unit. Also, each pole face contains two 
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‘search coils’ for sensing magnetic flux, as shown in Figure  4-6. This means that each 

magnet is designed with a redundant actuation channel available. 

 

Figure  4-6 Windings around the magnet poles 

C.5.  Control Design and Implementation 
The control strategy for the test rig can be resolved by developing a controller for a single 

magnet, then replicating this controller for each magnet on the vehicle. This can be 

resolved into a full vehicle controller (Section  4.3.2.2) as necessary. The control for a single 

magnet is performed using an inner loop controlling magnetic flux, and an outer loop 

controlling the air gap, as shown in Figure  4-6. 

Main 

Pole CO,S 

CO,F 

CI,F 

CI,S 

Key: 

C = coil 

B = flux search coil 

Subscripts: 

O = outer 

I = inner 

S = start 

BO,F 

BO,S 

BI,F 

BI,S 

Temp 
Sensor (T) 
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Figure  4-7 Control Scheme for a Single Magnet 

A derivation for the linear magnet model is performed by considering small deviations 

around a nominal operating airgap. A simplified block diagram representation of the model 

is shown in Figure  4-8 which is taken from a full derivation that can be found in Appendix 

A. This shows the relationship of the input voltage ′𝑣𝑣′ (defined as a small perturbation 

around the operating point ′𝑉𝑉0′) to airgap change ′𝑔𝑔′ (defined as a small perturbation 

around the operating point ′𝐺𝐺0′). 

The operating parameters of each magnet are found in Table  4-1. 

 

Figure  4-8 Simplified Block Diagram of the Linear Magnet Model 
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Description Parameter Name Value 
Operating Voltage 𝑉𝑉0 11V 
Operating force of 

each magnet 
0F  500N 

Operating Airgap 0G  0.01m 

Operating flux 
density 

0B  0.5T 

Operating current 0I  11A 

Poleface Area (single 
magnet) 

A 0.0025m2 

Number of turns 
(single coil) 

N 456 

Coil Resistance 
(single coil) 

R 0.5 Ohm 

Coil inductance 
(single coil) 

L 2.59 mH 

00 IB  iK  0.0455 T/A 

00 GB  gK  50 T/m 

002 BF  fK  2000 N/T 

iNAKL +  LK  0.0545 H 

Table  4-1 Summary of derived Maglev system variables 

The outer gap loop controller 𝐶𝐶𝑔𝑔(𝑠𝑠) and the inner loop flux controller 𝐶𝐶𝑏𝑏(𝑠𝑠) shown in 

Figure  4-6 are defined by the transfer functions: 

𝐶𝐶𝑏𝑏(𝑠𝑠) = 700 �
0.008𝑠𝑠 + 1

0.008𝑠𝑠
� 

𝐶𝐶𝑔𝑔(𝑠𝑠) = 10 �
0.05𝑠𝑠 + 1
0.01𝑠𝑠 + 1

� 

 

The inner flux controller requires digitising to operating at around 1000Hz. The outer gap 

loop controller requires operation at 20Hz or faster. 
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C.6. Interfacing with the IMA 
It is clear that the interface between the actuators and sensors of the Maglev Rig and the 

IMA architecture (in terms of software and hardware) require definition. In simple terms, 

the IMA will capture gap and flux signals from the magnet coils and calculate the control 

commands to the actuators. The control commands are presented in low-power signals 

that will require amplification to drive the coils of the magnet. 

 

The design of the IMA suggests that any real time control strategy implemented will have 

to take into account the distributed nature of the processing modules. The sensed values 

may have to be communicated across the network to the control algorithm, for the 

command value to be returned. It is therefore sensible that the flux control loop should 

not be required to operate across the network as the time period in which it is required to 

operate is very small (0.001s) and will not allow enough time to transmit sufficient data 

amongst other network traffic. The gap control loop requires a slower time period (0.05s) 

and can operate across the network. Figure  4-9 describes this allocation of function. 

 

Figure  4-9 Possible interface between IMA and magnet 
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The advantages of this arrangement provides flexibility in arranging parallel processing of 

the gap control loop for redundancy, akin to fly-by-wire technologies on-board aircraft. 

Although the flux control loop is executed locally to the sensors and actuator signals, the 

point failure is removed by duplicating this process for each magnet by utilising a second 

I/O module, the dual-wound cores and dual search coil installations. Figure  4-9 represents 

just one possible arrangement for the control implementation of the magnets. 

 

C.7. Experimental Rig Summary 
This chapter has outlined the basic control strategy for maintaining the air gap between 

pole-face and rail and as such infers requirements for the design and distribution of 

applications across the IMA. Omitted from this chapter are details regarding the designs of 

power amplification, power supply and sensor configuration – all of which require 

consideration for the commissioning of the system. This chapter is therefore supported by 

Appendix A that details designs and practical considerations for these items. 

 

Also highlighted within this chapter is the possibility of operating parallel, redundant 

processing channels that infer a further set of requirements on the IMA, such as voting 

mechanisms and appropriate allocation of function. The inclusion of these aspects to the 

IMA will be highlighted in Chapter 5. 
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C. Pseudo code of Configuration Algorithm 

C.1. Placement Algorithm Process 
SUBROUTINE: Order functions by levels of criticality 
 
FOR all applications 

SUBROUTINE: Select next function (using defined functional 
relationships and criticality order) 
 
IF function is not already placed: 
 SUBROUTINE: Assign function to resource 
  IF Unable to place function 
   Exit routine 

SUBROUTINE: Update application execution times 
 END 
END 
 
Record results in systems blueprint 
Record results in communication timing 
Send system blueprint to all modules 
Send communication timing information to all modules 
 

C.1.1. Subroutine: Order functions by levels of criticality 

 
FOR all applications 
 Record all applications listed as highly time critical 
END 
FOR all applications 
 Add to record all applications with actuator outputs 
END 
FOR all applications 
 Add to record all applications with user outputs 
END 
Add to record all other applications 
 
Search record and delete duplicates where listed with a lower 
criticality 
 
  



  
Appendix D 

Pseudo code of Algorithms 

 

       cvi 

 

C.1.2. Subroutine: Select next function 

 
IF first call 
 Select first function from ordered function record 
 
ELSE 
 FOR all applications 

Identify inputs from current selected function from 
Blueprint 

 
Use blueprint and stored search path to select the next 
input to the selected function 
 
Make a record of current search path through functional 
topology 

 
IF no more inputs 

  IF this application has any outputs 
   Retrace the search path to parent function 
   Select this function 

SUBROUTINE: Update communication and 
application execution times 

    
  ELSE 

Select next function from ordered function 
record 
BREAK 

END 
ELSE 

Record that the input that has been explored 
Select the function that provides this input 
BREAK 

END 
END 

END 
 
RETURN selected function 
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C.1.3. Subroutine: Assign function to resource 

FOR all resources 
Retrieve assignment criteria for selected function from 
blueprint 
Retrieve resource availability information from module 
specification 
 
FOR all assignment criteria 
 
 For all functions already assigned to selected resource 
 

IF selected function incompatible with assigned 
functions 
 GOTO ReferencePoint 
END 

   
END 
 
IF assignment criteria incompatible with module 
specification 
 GOTO ReferencePoint 
END 
 

 END 
  
 REPEAT 

FOR all functions assigned to selected resource (reverse 
order) 
 

For all other functions assigned preceding selected 
function 
 

IF selected function is a pre-requisite for 
preceding function 

  Swap position of assignment 
 END 
END 

  END 
 UNTIL: no change in position 
 
 BREAK   
 
 ReferencePoint 
END 
 
Return ability to place function 
Return current selected resource 
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C.1.4. Subroutine: Update application execution times 

For all applications on selected resource 
 IF first call 

Create running sum of execution time - initialise to 
zero 

 END 
 IF function part of network topology of selected function 
  Assign function start time as running sum time 
 END 

Update running sum of execution time: Previous total + worst 
case execution time of current function 

END 
 

C.1.5. Subroutine: Update communication and application execution 
times 

Obtain all outputs from previous child function from Blueprint 
 
For all outputs 
  

IF transaction not yet allocated to communication time 
  Obtain end time of previous child function 
  Search communication record 

 
IF bus available immediately after expected function end 
time 

Assign communication transaction to this available 
slot 

 Update communication record 
ELSE 

Search communication record for earliest time slot 
available following execution end time 
Assign communication transaction to this slot 
Update communication record 

END 
 

END 
END 
 
Extract assigned start time of selected function 
 
IF assigned start time is earlier than scheduled pre-requisite 
transaction 
 Assign new start time to function 
END 
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