
i

Fault Management via Dynamic
Reconfiguration for Integrated Modular

Avionics

by

Peter David Hubbard

A Doctoral Thesis submitted in partial fulfilment of the requirements

for the award of Doctor of Philosophy of

Loughborough University

May 2015

© by Peter David Hubbard 2015

Abstract

ii

i. Abstract
The purpose of this research is to investigate fault management methodologies within

Integrated Modular Avionics (IMA) systems, and develop techniques by which the use of

dynamic reconfiguration can be implemented to restore higher levels of systems

redundancy in the event of a systems fault.

A proposed concept of dynamic configuration has been implemented on a test facility that

allows controlled injection of common faults to a representative IMA system. This facility

allows not only the observation of the response of the system management activities to

manage the fault, but also analysis of real time data across the network to ensure

distributed control activities is maintained.

IMS technologies have evolved as a feasible direction for the next generation of avionic

systems. Although federated systems are logical to design, certify and implement, they

have some inherent limitations that are not cost beneficial to the customer over long life-

cycles of complex systems, and hence the fundamental modular design, i.e. common

processors running modular software functions, provides a flexibility in terms of

configuration, implementation and upgradability that cannot be matched by well-

established federated avionic system architectures. For example, rapid advances of

computing technology means that dedicated hardware can become outmoded by

component obsolescence which almost inevitably makes replacements unavailable during

normal life-cycles of most avionic systems. To replace the obsolete part with a newer

design involves a costly re-design and re-certification of any relevant or interacting

functions with this unit. As such, aircraft are often known to go through expensive mid-life

updates to upgrade all avionics systems. In contrast, a higher frequency of small capability

upgrades would maximise the product performance, including cost of development and

procurement, in constantly changing platform deployment environments.

IMA is by no means a new concept and work has been carried out globally in order to

mature the capability. There are even examples where this technology has been

Abstract

iii

implemented as subsystems on service aircraft. However, IMA flexible configuration

properties are yet to be exploited to their full extent; it is feasible that identification of

faults or failures within the system would lead to the exploitation of these properties in

order to dynamically reconfigure and maintain high levels of redundancy in the event of

component failure. It is also conceivable to install redundant components such that an IMS

can go through a process of graceful degradation, whereby the system accommodates a

number of active failures, but can still maintain appropriate levels of reliability and service.

This property extends the average maintenance-free operating period, ensuring that the

platform has considerably less unscheduled down time and therefore increased

availability.

The content of this research work involved a number of key activities in order to

investigate the feasibility of the issues outlined above. The first was the creation of a

representative IMA system and the development of a systems management capability that

performs the required configuration controls. The second aspect was the development of

hardware test rig in order to facilitate a tangible demonstration of the IMA capability.

A representative IMA was created using LabVIEW Embedded Tool Suit (ETS) real time

operating system for minimal PC systems. Although this required further code written to

perform IMS middleware functions and does not match up to the stringent air safety

requirements, it provided a suitable test bed to demonstrate systems management

capabilities.

The overall IMA was demonstrated with a 100kg scale ‘Maglev’ vehicle as a test subject.

This platform provides a challenging real-time control problem, analogous to an aircraft

flight control system, requiring the calculation of parallel control loops at a high sampling

rate in order to maintain magnetic suspension. Although the dynamic properties of the test

rig are not as complex as a modern aircraft, it has much less stringent operating

requirements and therefore substantially less risk associated with failure to provide

service.

Abstract

iv

The main research contributions for the PhD are:

1. A solution for the dynamic reconfiguration problem for assigning required systems

functions (namely a distributed, real-time control function with redundant

processing channels) to available computing resources whilst protecting the

functional concurrency and time critical needs of the control actions.

2. A systems management strategy that utilises the dynamic reconfiguration

properties of an IMA to restore high levels of redundancy in the presence of

failures.

3. A Demonstration of the operation of points 1 & 2 on a representative system,

showing that dynamic configuration can occur whilst the service provision (i.e. real-

time control action) is maintained.

The conclusion summarises the level of success of the implemented system in terms of an

appropriate dynamic reconfiguration to the response of a fault signal. In addition, it

highlights the issues with using an IMA to as a solution to operational goals of the target

hardware, in terms of design and build complexity, overhead and resources.

v

For those who say ‘about time’, this is for you:

But most of all, for my Wife and Daughter.

Acknowledgements

vi

i. Acknowledgements
I would like to thank both EPSRC and BAE Systems for funding this research activity. I also

extend my thanks to my industrial supervisor, Matt Mapleston, and to my Academic

supervisors Roger Goodall and Roger Dixon for supporting me through to the bitter end.

Their support has gone above and beyond the expectations of supervisors and I hope I do

your efforts service. Thanks also to my examiners for taking the time to read and critique

this work in order to scientifically validate the findings.

Thanks to the support from my friends and family, both to those that ‘got it’ and to those

that still don’t really understand! I thank you all the same and I’m glad you are there. I’d

like to thank my Wife, Ella, who has been through this with me from the start and offered

her support throughout (with varying amounts of patience!), and I’m also going to thank

my daughter, Elsie, even though she’s just turned up.

And finally, thanks to Rekha Patel, for providing a solution that no one else knew.

Pete.

Contents

 vii

iii. Contents

i. Abstract .. ii

ii. Acknowledgements .. v

iii. Contents ... vii

iv. List of Figures .. xii

v. List of Tables ... xv

1. Introduction .. 1

1.1. Background ... 2

1.2. Problem Statement ... 3

1.3. Contributions... 4

1.4. Objectives .. 5

1.5. Publications ... 5

1.6. Thesis Overview .. 6

2. Literature Review .. 7

2.1. The Developing Need for Improved Avionics ... 9

2.1.1. Digital Revolution in Aircraft Systems .. 9

2.1.2. The Development of Avionics Integration .. 10

2.1.3. Future Needs for Avionics Systems .. 14

2.1.4. Summary of Future Avionic Requirements .. 18

2.2. Integrated Modular System Concepts .. 19

2.2.1. Introduction to IMS .. 19

2.2.1.1. Modular Hardware/Software Integration ... 20

2.2.1.2. Why Use IMS? .. 24

2.2.2. IMS Research Areas ... 26

2.2.2.1. Standards ... 26

2.2.2.2. System Design and Certification .. 30

2.2.2.3. Hardware .. 33

Contents

 viii

2.2.2.4. Partitioning ... 35

2.2.2.5. Configuration.. 37

2.2.2.6. Reconfiguration .. 38

2.2.2.7. Network Requirements... 41

2.2.2.8. Distributed Control ... 42

2.2.3. Fault Management in IMS ... 45

2.2.3.1. Fault Avoidance and Removal .. 48

2.2.3.2. Fault Tolerance ... 50

2.2.3.3. Fault Treatment .. 57

2.3. Examples of IMS implementation .. 58

2.3.1. Genesis IMA ... 58

2.3.2. Modular Avionics Operating System (MAOS) .. 60

2.4. Literature Review Summary ... 61

 3. IMA Demonstrator System Requirements ... 64

3.1. Introduction .. 65

3.2. Top Level System ... 65

3.3. IMA .. 68

3.3.1. IMA Hardware .. 71

3.3.2. IMA Middleware/Operating System .. 72

3.3.2.1. Management of Application Access to Hardware Resources 74

3.3.2.2. Configuration Management ... 75

3.3.2.3. Fault Management ... 76

3.3.2.4. Communications Management .. 78

3.3.3. IMA Applications .. 79

3.3.4. Graphical User Interface .. 80

3.4. Maglev ... 82

3.5. Summary of Requirements ... 84

4. IMA Implementation ... 85

Contents

 ix

4.1. Top Level Design ... 86

4.2. Systems Management ... 88

4.2.1. Systems Management Reporting Structure ... 88

4.2.2. Timing and Synchronisation ... 90

4.2.3. Redundancy in Systems Management ... 91

4.3. Application Design... 93

4.3.1. Application specification example ... 95

4.4. Configuration/Re-configuration .. 96

4.4.1. Configuration Example .. 99

4.4.1.1. Process 1: Order Functions by Criticality (and Identify Resources) 101

4.4.1.2. Process 2: Select Next Function .. 103

4.4.1.3. Process 3: Placing Function on Resources .. 104

4.4.1.4. Process 4: Schedule of Application Execution and Communications 105

4.4.1.5. Process 5: Record all Details in Blueprint ... 110

4.4.2. Start Up Procedures ... 110

4.4.3. Using this Algorithm for Reconfiguration .. 111

4.4.4. Configuration Summary ... 113

4.5. Synchronisation and Communications ... 114

4.5.1. Synchronisation of Modules ... 115

4.5.2. Synchronisation of Applications ... 116

4.5.3. Synchronisation of Communications ... 116

4.5.3.1. Collision Avoidance ... 117

4.5.3.2. Managing Time Critical and Non-Time Critical Data 118

4.6. Error Recovery ... 119

4.6.1. Processing module failure .. 120

4.6.2. Application Failure ... 121

4.6.3. Summary .. 121

5. Configuration and Real-Time Robustness Testing 123

5.1. Validation of the Configuration Algorithm ... 124

5.1.1. Single Sensor, Single Process and Single Actuator ... 125

Contents

 x

5.1.2. Single Sensor, Duplex Processing, Single Actuator .. 128

5.1.3. Single Sensor, Triplex Processing, Single Actuator ... 130

5.1.4. Dual Sensors, Triplex Processing, Dual Actuator ... 132

5.1.5. Dual I/O, Triplex processing and parallel function ... 134

5.1.6. Summary .. 137

5.2. IMS as a Distributed Real Time System ... 138

5.2.1. Real time attributes testing ... 138

5.2.1.1. Communication time: 3 ms .. 141

5.2.1.2. Communication time: 2 ms .. 143

5.2.1.3. Communication time: 1 ms .. 145

5.2.1.4. Summary .. 147

5.2.2. Air Gap control ... 149

5.2.2.1. Application Design .. 149

5.2.2.2. IMA Implementation of Distributed Gap Control 151

5.2.2.3. Results of Gap Control Implementation ... 151

5.2.2.4. Distributed Gap Control Summary ... 152

6. Fault Management within IMA.. 154

6.1. Baseline System Initial Configuration ... 155

6.2. System Response to a Single Fault .. 160

6.2.1. Simulation of an Application Failure .. 161

6.2.1.1. Fault Injection ... 161

6.2.1.2. Reconfiguration to Restore Higher Levels of Redundancy 163

6.2.1.3. Evaluation of the Reconfiguration Process .. 165

6.2.2. Simulation of a Processing Module Failure .. 166

6.2.2.1. Fault Injection ... 166

6.2.2.2. Reconfiguration to Restore Higher Levels of Redundancy 168

6.2.2.3. Evaluation of Reconfiguration Process .. 170

6.3. System Response to a Series of Faults .. 170

6.3.1. Failure 1 of 3: Application Failure of gap_control_2 171

6.3.2. Failure 2 of 3: Module Failure of Module_4 .. 173

Contents

 xi

6.3.3. Fault 3 of 3: Application Failure of gap_controller_1 175

6.3.4. Evaluation of Series of Failures .. 176

6.4. Summary ... 177

7. Conclusion .. 179

7.1. Assessment of Objectives ... 180

7.2. Assessment of Contributions .. 185

7.3. Future Work and Recommendations .. 188

7.3.1. Identified Areas of Good Practice for Reconfigurable IMA 188

7.3.2. Certification .. 189

7.3.3. Quantification of Potential Savings ... 189

7.3.4. Controller Lag Approximations .. 190

7.3.5. Configuration Optimisation ... 190

v. References ... xvi

vi. Appendix A: Maglev Controller Development ... xxiii

vii. Appendix B: Requirements Compliance ... lxxxvi

viii. Appendix C: Magnetic Levitation Experimental Rig xcii

ix. Appendix D: Psuedo Code of Configuration Algorithm civ

Contents

 xii

iv. List of Figures
Figure 2-1 Research Topics .. 8

Figure 2-2 Historical Analysis of Moore's Law ... 10

Figure 2-3 ARINC 429 Example .. 12

Figure 2-4 Multiplex databus system architecture (Moir & Seabridge, 2008) 13

Figure 2-5 Aircraft System Lifecycle Cost (Mapleston, 2006b) .. 15

Figure 2-6 'Three Layer Stack' Model .. 21

Figure 2-7 Possible IMA architecture based on ARINC 651 architecture C (Johnson,

Omiecinski 1998) ... 28

Figure 2-8 ARINC 653 System Architecture (Prisaznuk, 2008) .. 29

Figure 2-9 Integrated Modular Cabinet Comparison (Moir et al., 2006) 33

Figure 2-10 High Density Packaging/Avionics Rack Example (Sutterfield et al., 2008) 34

Figure 2-11 FPGA Standard Module for Processing (Sutterfield et al., 2008) 34

Figure 2-12 Partitioning Scheme for a Core module (Parkinson 2006) 35

Figure 2-13 Structured Requirements for Fault Management (Mapleston, 2006a) 46

Figure 2-14 Architectural Design Approach (Mapleston, 2006a) .. 48

Figure 2-15 AADL Overview (Mapleston, 2006b) .. 49

Figure 2-16 Ideal Fault Tolerant Component (Burns & Wellings, 2001) 52

Figure 2-17 IMS Environment Error Handling (Mapleston, 2006a) 53

Figure 2-18 IMS Internal Error Handling (Mapleston, 2006a) ... 53

Figure 2-19 Atomic Actions Examples (Mapleston, 2006b)... 54

Figure 2-20 Implementing Replication in IMS (Mapleston, 2006a)....................................... 56

Figure 2-21 Future Fault Treatment Model (Mapleston, 2006a) .. 57

Figure 2-22 Federated Systems Architecture (Watkins, 2006) .. 59

Figure 2-23 IMA System Architecture (Watkins, 2006) ... 59

Figure 2-24 IMA Software Model (Grigg et al., 1999).. 60

Figure 3-1 Top Level Systems Diagram .. 66

Figure 3-2 Three Layer Stack .. 68

Figure 3-3 IMA Module Integration ... 70

Figure 3-4 IMA Middleware Architecture .. 72

Contents

 xiii

Figure 3-5 Configuration Manager .. 75

Figure 3-6 Application Data Exchange Example .. 78

Figure 3-7 Suggested sensor interface between IMA and Magnet 83

Figure 4-1 Practical Implementation of IMA ... 87

Figure 4-2 Systems Management Hierarchy .. 89

Figure 4-3 Time Partitioning of Network Bus using Segmented Time Frames (TF) 91

Figure 4-4 Systems Management Tolerating Failure ... 92

Figure 4-5 A Simple Network of Functions .. 95

Figure 4-6 Organising a Real Time Distributed Control System .. 97

Figure 4-7 Simple Network of IMA Resources ... 99

Figure 4-8 Recursive Placement Algorithm Process Flow ... 100

Figure 4-9 Order Functions by Criticality ... 102

Figure 4-10 Find Next Function to Place .. 103

Figure 4-11 Assign Function to Resource .. 104

Figure 4-12 Order Function on Module ... 106

Figure 4-13 Relationship between search direction and function 108

Figure 4-14 Process to Assign Timings to Communications and Execution 109

Figure 4-15 Benefits of Optimisation ... 114

Figure 4-16 Subdivision of Time Frame ... 119

Figure 5-1 Single Sense, Process and Actuation .. 125

Figure 5-2 Allocation results of Single Sensor, Single Process and Single Actuator 127

Figure 5-3 Single sensor, duplex processing, single actuation .. 128

Figure 5-4 - Single Sensor, Duplex Processing, Single Actuator .. 129

Figure 5-5 Single sensor, Triplex processing, single actuator .. 130

Figure 5-6 Allocation Results of Single Sensor, Triplex Processing, Single Actuator 131

Figure 5-7 Dual sensors, triplex processing, dual actuation .. 132

Figure 5-8 Allocation Results of Dual sensors, triplex processing, dual actuation 133

Figure 5-9 Dual sensing, triplex processing, dual actuation plus non-critical functions 134

Figure 5-10 Allocation Results of Dual Sensing, Triplex Processing, Dual Actuation and Data

log... 136

Figure 5-11 Function Network Design for Token Passing Exercise 138

Contents

 xiv

Figure 5-12 Allocation of Token Passing Functions to IMA (3 ms communication time

allowed) ... 139

Figure 5-13 Allocation of Token Passing Functions to IMA (2 ms communication time

allowed) ... 144

Figure 5-14 Allocation of Token Passing Functions to IMA (1 ms communication time

allowed) ... 146

Figure 5-15 Air gap control schematic ... 149

Figure 5-16 Function Network for Gap Control Structure ... 150

Figure 5-17 IMA Implementation of Gap Control Functional Network 151

Figure 5-18 Time Response of Simulated Air Gap to Step Input ... 152

Figure 6-1 Control Loop Realisation for Airgap control ... 155

Figure 6-2 Network of Air Gap Control Functions ... 156

Figure 6-3 Assignment of functions to resources For duplex gap controller 160

Figure 6-4 Application failure introduced to 'gap_controller_1' ... 162

Figure 6-5 Effect of failure on the functional network .. 163

Figure 6-6 Allocation of functions as a result of reconfiguration .. 164

Figure 6-7 Airgap response during reconfiguration activity .. 165

Figure 6-8 Module failure introduced to module 4 ... 167

Figure 6-9 Effect of Module4 failure on the functional network .. 168

Figure 6-10 Allocation of functions as a result of reconfiguration 169

Figure 6-11 Airgap response during reconfiguration activity .. 170

Figure 6-12 Application failure introduced to 'gap_controller_2' 171

Figure 6-13 Reconfiguration following the failure of the gap_control_2 application 172

Figure 6-14 Failure of module_4 .. 173

Figure 6-15 Configuration as a result of failing module_4 .. 174

Figure 6-16 Failure of gap_controller_1 .. 175

Figure 6-17 Effect on functional network of three failures ... 176

Figure 6-18 Time response of airgap during series failures .. 177

Contents

 xv

v. List of Tables

Table 2-1 Comparison of IMS Capabilities to Highlighted Requirements 25

Table 2-2 ARINC 653 content summary (Prisaznuk, 2008) .. 29

Table 3-1 Component Composition of Top Level System .. 66

Table 3-2 Maglev Rig Sensor Descriptions ... 82

Table 4-1 Analysis of LabVIEW implementation of IMA style middleware 88

Table 4-2 IMA Blueprint Outline .. 94

Table 4-3 Example Capture of Application Information .. 96

Table 5-1 Assignment Criteria .. 127

Table 5-2 Assignment criteria for duplex processing .. 129

Table 5-3 Assignment criteria for triplex processing ... 130

Table 5-4 Assignment criteria for triplex processing and dual I/O 133

Table 5-5 Assignment Criteria for Dual Sensing, Triplex Processing, Dual Actuation and

Datalog ... 135

Table 5-6 Sample Communication Data from a Single Time-frame 141

Table 5-7 Communication timing results – 3 ms communication time (824 time frames). 143

Table 5-8 Communication timing results – 2 ms communication time (902 time frames). 145

Table 5-9 Communication timing results - 1 ms communication time (828 time frames) . 147

Table 6-1 Change in Assignment Criteria as a result of Fault Injection 164

Table 6-2 Change in available modules as a result of failure .. 169

Table 6-3 Change in assignment criteria as a result of failure .. 172

Table 6-4 Change in available modules as a result of failure .. 174

Table 6-5 Change in assignment criteria as a result of failure .. 175

Fault Management via Dynamic

Reconfiguration for IMA

CHAPTER 1:

Introduction

Chapter 1

Introduction

 2

1. Introduction
This thesis addresses the concept of using dynamic reconfiguration within an avionic

system to maintain high levels of redundancy in the presence of faults.

The concepts presented are based on the modern avionics architecture known as

Integrated Modular Avionics (IMA). This solution to on-board computing requirements is

designed to be flexible by specifying generic hardware resources for which 3rd party avionic

applications can be developed. Compared to traditional avionics design, IMA reduces the

complexity and cost of avionics systems by commonality of modules, flexible configuration

options, and incremental update possibilities.

A further opportunity of IMA is exploiting the flexible configuration to extend operating

periods of aircraft, even in the presence of failures. By optimising configuration using

healthy parts of the system; sufficient levels of reliability could be maintained to retain

operational performance. This thesis considers managing faults at the point of occurrence

using dynamic reconfiguration (i.e. automatically re-configuring at run-time) to tolerate

component failures.

1.1. Background
Future generations of avionics are transitioning from a traditional ‘federated’ design to

flexible architectures that exploit benefits of modularity. These benefits are realised

through potential savings in spares (via savings due to commonality of design), extended

operating periods between maintenance (via abilities to ‘gracefully degrade’ and tolerate

faults) and ease of upgradeability (via a software layering mechanism that removes

dependency between hardware and software components).

A concept proposed and defined for the civilian sector by the standard ARINC 653 (ARINC,

2006), and in the military sector in DEF-STAN-00-78 (MOD, 2005), is that of Integrated

Modular Avionics (IMA). The fundamental principle of IMA is that bespoke hardware and

Chapter 1

Introduction

 3

software design for a specific function is replaced by generic processing units capable of

delivering the same functionality by executing software ‘applications’.

This format has the potential to be implemented using conventional systems design in that

a configuration of hardware resources and software applications can be defined, with

communications protocols and execution scheduling such that real-time task execution can

be performed deterministically. This offers benefits over a federated design in that the

hardware processing resources across the network can be similar, significantly reducing

the spares and servicing requirements to maintain system availability.

To achieve further benefits of IMA, the flexible architecture can be exploited to

reconfigure the system when failures occur. This benefit can be realised off-line (between

operations) or on-line (during operation). In an off-line sense, a new configuration could be

defined at the point of front-line servicing to extend operation between maintenance

intervals. If reconfiguration could occur during run time, the system could adapt in order to

maintain high levels of safety critical operation in the presence of failures.

1.2. Problem Statement
The introduction of IMA presents a number of opportunities, as previously highlighted, but

also brings with it a number of challenges. Aircraft systems have to be certified to an

incredibly high standard of reliability. This is a complex task that requires complete

systems understanding to prove that common failure modes are not safety-critical or

mission-critical. As such, the system design is ‘frozen’ early in the system lifecycle as

changes to part of the infrastructure can lead to costly re-certification of the whole system

whole. This makes the concept of reconfiguration (even in an off-line sense) a difficult one

to introduce to the aviation industry. Current philosophies follow the idea of a ‘multi-static’

configuration, whereby a number of system configurations are designed and certified prior

to operation. Such an approach enables some of the benefits of IMA to be seen, and allows

some flexibility within the system configuration. IMA systems in service currently utilise

this approach.

Chapter 1

Introduction

 4

To achievement the full benefits of the flexible nature of an IMA, system configuration

needs to be automatic. In such a case, the system would be capable of continually

identifying the most effective allocation of applications to resources. This enables the

restoration of high levels of operational capability shortly after the occurrence of a failure

and a graceful degradation of the system such that reliability levels can be maintained by

reconfiguration in the presence of component failure. Such an automatic configuration

method would have to be robust (such that it does not implement bad configurations) and

intelligent (such that functional and reliability requirements are not jeopardised by the

configuration defined).

There are two fundamental principles that are evident when considering the problem of

assigning avionic functions to system resource; that of assigning functions to specific

resources (e.g. information input/output points), and that of ensuring point failures are not

created by assigning redundant processing streams to the same physical resource.

Alongside this is the temporal configuration problem, in that real-time control or data

processing tasks need to occur concurrently such that the latest available data is used in

calculations. Mismanagement of this can have implications such as reducing expected

closed-loop performance specifications.

1.3. Contributions
Further to the problem analysis in the previous section, the main research contributions

for this PhD are to:

1. A solution for the dynamic reconfiguration problem for assigning required systems

functions (namely a distributed, real-time control function with redundant

processing channels) to available computing resources whilst protecting the

functional concurrency and time critical needs of the control actions.

2. A systems management strategy that utilises the dynamic reconfiguration

properties of an IMA to restore high levels of redundancy in the presence of

failures.

Chapter 1

Introduction

 5

1.4. Objectives
In order to validate the contributions outlined in section 1.3, the following objectives have

to be met:

1. Investigate relevant literature to determine current state-of-the-art in areas such

as; IMA implementation, Fault management strategies within IMA, and methods for

assigning avionic functionality to an IMA hardware installation.

2. Develop a method of automatic configuration/reconfiguration of required avionic

applications to distributed process resources.

3. Design and develop a hardware test bed (i.e. a representative IMA system with

appropriate ‘middleware’ and real-time communication strategy) to enable

implementation of the automatic configuration/reconfiguration method.

4. Validate that the IMA implementation is capable of facilitating distributed real-time

control operations with a range of functional topologies.

5. Verify the ability of the configuration method to appropriately assign avionic

applications to available resources using a range of functional topologies and

available modules.

6. Verify the ability of the IMA system to reconfigure a distributed real-time control

functional set (following a fault injection) to an allocation that tolerates component

failure.

1.5. Publications
The following are publications as a result of the work detailed within this thesis.

Hubbard, P., Goodall, R., Dixon, R., & Mapleston, M. (2008). Integrated Modular Systems
for Maglev Vehicle Control. In The 20th International Conference on Magnetically
Levitated Systems and Linear Drives (MAGLEV 2008). San Diego, USA.

Hubbard, P., Mapleston, M., Goodall, R., & Dixon, R. (2008). Integrated Modular Processing
for High Performance, High Integrity Control (IMPPIC). In EDCC-7 Seventh European
Dependable Computing Conference. Kaunas, Lithuania.

Chapter 1

Introduction

 6

1.6. Thesis Overview
This thesis details the key findings and results from the objectives listed in section 1.4.

Chapter 2 contains a review of appropriate literature to identify the current capability of

fault management within IMA, and other appropriate technologies and methods of similar

areas that may have useful input to the study. Chapter 3 considers the findings of Chapter

2 and defines requirements in order to enable validation of the developed system and

ensures tests are appropriate for proving the research objectives. Chapter 4 presents the

real-time task control task (namely air-gap control of a Maglev vehicle) that will be the

subject of the IMA. The purpose of this is to provide a complex control problem of an

open-loop unstable system that should remain controlled in the presence of IMA

component failure. Chapter 5 details the development of the IMA system, including the

method used for configuring and reconfiguring avionics applications to available processing

resources. Chapter 6 presents validation of the configuration method by analysing a series

of configuration tasks and testing the timing properties of the system to ensure distributed

real-time processing is occurring. Chapter 7 includes the results of a series of laboratory

tests to observe the system response to IMA component failures. The goal of these tests is

to show that after an occurrence of a failure, the system can reconfigure to regain previous

reliability levels, whilst maintaining service provision. Chapter 8 documents the conclusions

and main findings of the thesis.

Fault Management via Dynamic

Reconfiguration for IMA

CHAPTER 2:

Literature Review

Chapter 2

Literature Review

 8

2. Literature Review
IMA is a large topic branching into different disciplines and areas of interests resulting in a

potentially large and diverse reading area. Figure 2-1 below shows the major areas of

research undertaken and how they overlap to form common ground. Although this figure

represents the main areas of study, it is not a definitive list of topics.

Figure 2-1 Research Topics

The following sections are the findings taken from academic publications, text books,

journal articles and other sources of open information that are pertinent to the above

topics.

Chapter 2

Literature Review

 9

2.1. The Developing Need for Improved Avionics
Over the past few decades, aircraft avionics systems have developed at a staggering rate

into highly capable, costly and complex systems. This development has been fuelled by an

end user requirement to exploit the potential capability offered by digital electronic

devices and by a desire to constantly reduce the cost of maintaining a complex aircraft

system throughout its lifecycle.

This section outlines these drivers and summarise the related future needs of aircraft

systems.

2.1.1. Digital Revolution in Aircraft Systems

The rapid development in avionic system capability has been fuelled by the explosion of

digital technology throughout the latter half of 20th century and to the current day. This

fundamental relationship has been highlighted in a number of texts (Collinson, 2011; Moir,

Seabridge, & Jukes, 2003, 2006; Moir & Seabridge, 2008).

World War II provided the first major drive for electronics to be embedded on board

aircraft. These first systems were analogue based and relied on linear relationships for

communication and processing of data throughout the system. Due to the extreme

environment of an aircraft, these systems were subject to large amounts of drift and non-

linearities. The alternative to these systems evolved during the 1950s and 1960s as the

transistor replaced the thermionic valve which eventually led to the widespread use of

digital electronics in the 1970s. The advent of micro-electronics and the capabilities that

subsequent digital avionics systems could offer finally proved to be a better solution to

providing the capabilities required for aircraft. As integrated circuits continue to follow

development trends as highlighted with ‘rules of thumb’ such as Moore’s Law (Moore,

2006), highlighted in Figure 2-2, we can expect to see aircraft systems continue to provide

increasing performance and capability.

Chapter 2

Literature Review

 10

Figure 2-2 Historical Analysis of Moore's Law

In the current day, high performance digital technology not only offers the means to

perform increasingly complex tasks within each individual subsystem, but to integrate

avionic subsystems effectively creating the capacity to perform even more capable and

complex functions.

2.1.2. The Development of Avionics Integration

The following is a summary of the work done by Zhang, Moir and Collinson (Collinson,

2011; Moir et al., 2006; Zhang, Pervez, & Sharma, 2003) who have all produced extensive

works with regards to the development of avionics technologies.

Avionics have the potential to be integrated in different ways to yield different benefits. In

the 1970s, a non-profit making organisation called Aeronautical Radio Inc. (ARINC)

suggested that avionics units should have commonality in terms of form, fit and

functionality – commonly known as F3. The critical aspect of this standardisation is that a

Chapter 2

Literature Review

 11

Line Replaceable Units (LRU) that meets the F3 specification can be directly replaced by

another even if the replacement has different interior electronic implementation, or even

manufactured by a different company. This specification lead to the terminology of Line

LRUs or LRIs (Line Replaceable Items) which refers to modules that conform to the F3

criteria. The benefits of this standardisation are widespread. It allowed for an open market

place to exist for avionic components as well as simplifying the way spare units are

managed.

In addition to the integration of the physical aspects of LRUs, it was widely recognised that

passing data between aircraft systems would be a powerful capability. The sharing and

fusion of data from different sources allows information to be inferred that may not be

directly available from a single source. A classic example of this is the use of multiple

sensors for object tracking (Varshney, 1997). In order to manage the sharing of data, it

became clear that a standard was required for the data interaction of avionics.

During the early phase of this development, items were connected by a single source,

single sink (or point to point, hard wired) connection wherever a communications channel

was required. Although effective and logical to a degree, this format found limitations as

the required amount of data passing between avionics functions increased to meet

demands for more complex capabilities.

In order to address this issue and to provide consistency across the aerospace community,

a number of standardised formats of connectivity between LRUs were defined. This section

will look at three examples of these methods, namely ARINC 429, MIL-STD 1553 and the

ARINC 629 specifications.

The ARINC 429 databus is a single source, multiple sink (SSMS) communication concept.

The fundamental concept of a SSMS is that one node can send data to a number of

recipient equipments via a digital serial link. This solution was adopted in aircraft such as

the Boeing 757, 767 and the Airbus A300 and A310

Chapter 2

Literature Review

 12

The main limitation of the ARINC 429 databus is that it is a half-duplex design via a point to

point communication strategy. In this topology each communication link requires

dedicated hardware at both the source and sink of the transmission plus a dedicated cable

to transfer the message. A difficulty with this system is that this set of components can

only facilitate the transfer of a message in a single direction. For a reply signal to be sent, a

second communication link inclusive of a duplicate set of hardware is required.

As systems using this topology grew in complexity and more information was required to

be shared, the length and weight of cabling to facilitate these transfers grew substantially.

For example, the Boeing 767-200ER contains approximately 90 miles (145km) of electrical

wiring, clearly a huge maintenance issue. Furthermore, if the requirements of a system

such as this were to change and extra LRUs are required, the redesign, refit and

recertification of the system is a complex task.

Figure 2-3 ARINC 429 Example

A

B C

A

B C

D

A. A429 Topology

This assumes that all LRUs need to

send and receive information from

each other.

It is possible for A to send information

simultaneously to B and C (shown in

red). For C to respond, it has to use the

dedicated connection shown in blue

B. Addition of LRU

Shows the additional wiring

required to facilitate the

introduction of an extra LRU.

Again, this assumes that all

LRUs need to interact with

every other LRU.

Chapter 2

Literature Review

 13

An alternative developed to this communications methodology in the military avionics

domain is the MIL-STD (Military Standard) 1553 databus. Although the specification for the

MIL-STD 1553 occurred slightly before the ARINC 429, its design has stood the test of time

and is still widely popular in military avionic systems.

The MIL-STD 1553 is a true data bus. It is a half-duplex system, which means that although

communication can occur in both directions along the same communication channel, they

can only be sent one direction at a time. The advantage the 1553 bus has over the ARINC

429 is that this is a Multiple Source Multiple Sink (MSMS) method meaning that each node

can send a message to a number of nodes connected to the bus. The general bus structure

of the MIL-STD 1553 is shown in Figure 2-4 below.

Figure 2-4 Multiplex databus system architecture (Moir & Seabridge, 2008)

The 1553 communications is controlled from a single node called the bus controller. The

communication strategy in terms of data size, sender, recipient and timing for each data

package for the particular avionics configuration implemented is predetermined and

uploaded onto the controller. This preparation allows each configuration to be tested and

verified before implementation via the use of software tools to ensure the communication

meets concurrency and timing criticality requirements.

Chapter 2

Literature Review

 14

A further feature of the MIL-STD 1553 is the concept of multiplexing. In Figure 2-4, it can

be seen that there is an option to include parallel channels of identical capability for

redundancy purposes.

The ARINC 629 data bus is similar in concept to the MIL-STD 1553 bus as it is a true data

bus, i.e. half duplex and MSMS. It is however of newer specification than the 1553 and

offers more benefits, such as the capacity for 131 terminals against the 1553’s 31 and a

data transfer rate of 10 Mbit/sec compared to 1Mbit/sec. This particular system has been

largely brought into popularity by the Boing 777 aircraft.

The main advantage the MIL-STD 1553 and the ARINC 629 architecture have over the

ARINC 429 is the relative ease of adding new components. As mentioned before, for the

ARINC 429, this requires a great deal more connections to satisfy the communication

criteria. However for the true data buses another component can simply be added onto

the length of the bus. This is certainly an advantage when it comes to modifying or

reworking the system but does not remove all the complications with regards to re-testing

and re-certifying.

2.1.3. Future Needs for Avionics Systems

There is a continuing drive from the aerospace industry to improve the quality and cost

effectiveness of avionics across the entire systems lifecycle, inclusive of design,

maintenance and upgrade costs. Avionics in general account for 30% of the cost of a new

aircraft (Collinson, 2011) and carry a further burden with the rest of the lifecycle costs in

terms of maintenance during operation, the resolution of faults and the cost of

recertification should an upgrade be required. Figure 2-5 highlights the overall lifecycle

cost of an aircraft in the form of an iceberg. Although not to scale, it shows how the

acquisition cost of the aircraft is merely the ‘tip of the iceberg’ and the real cost lies in the

support required to keep the platform available for use for as much time as possible. It can

be inferred from here how the development, maintenance, support and upgrade of

avionics systems relate to many of the different areas highlight in the diagram.

Chapter 2

Literature Review

 15

Figure 2-5 Aircraft System Lifecycle Cost (Mapleston, 2006b)

Aerospace companies are therefore seeking to identify the causes for the high cost of

avionics, and find ways of reducing this.

One of the causes of high avionics cost is that as customers request incremental change to

existing designs or products to exploit new technology, bespoke platform specific solutions

are developed to meet this need (Johnson & Omiecinski, 1998). As a result, there is little

commonality between different aircraft types, resulting in spiralling costs associated with

avionics equipment. To drive down this cost a requirement for commonality between

systems and subsystems exists to allow the re-use of components.

A further contributing factor is identified as the early stages in the project at which aircraft

design is fixed (Little, 1991). As part of certification, avionics systems designs are frozen at

an early stage of the procurement cycle. This defines purchasing schemes, system designs,

etc, that allow the system build to commence. As mentioned previously, by the time the

Chapter 2

Literature Review

 16

system is in service the requirements have usually changed. In addition to this, the

technology available to build the system will have progressed and be more capable. The

inherent problem of attempting to introduce new requirements and technologies,

however beneficial they may be, is that the systems design, purchasing schemes and

certification stages may no longer be valid and have to be repeated in order to clear the

aircraft to fly. In addition to new technology or capability requirements posing problems to

designs, the problem of component obsolescence is also a substantial issue. The lifecycle

of an aircraft from initial design to retirement can be the order of 50 years. Even during the

period from the initial design to manufacture, electronic parts often become outdated and

stop being produced. This causes problems with the purchase of spare parts for the aircraft

further down the lifecycle.

It is suggested (Johnson & Omiecinski, 1998; Little, 1991) that a modular approach to

avionics design offers inherent solutions to these problems. The idea of a common

processing unit, capable of executing a number of aircraft functions, would solve a number

of issues. Firstly, if a generic processing module is implemented as a replacement to

bespoke LRUs, these can be a common component not only throughout a single aircraft

system but across all aircraft in the fleet, or potentially across all military and civil

platforms. Clearly the knowledge base required to sustain these component would be

drastically reduced, simplifying the complexity of maintenance. Secondly, if the software is

suitably decoupled from the hardware, the software could be re-implemented quite simply

on upgraded hardware, or vice versa. This removes some problems with obsolescence and

upgradeability throughout the lifecycle. In addition, life cycle cost will be minimized by

functional integration as it reduces the amount of duplication of hardware and software

elements (Morgan, 1991). In line with this theory, Line Replaceable Modules (LRMs) are

becoming increasingly popular with avionics design as a replacement to LRUs. LRMs are

designed to provide a solution to the modularity paradigms that LRUs are unable to. This

modular concept of design is studied in detail in section 2.2.2.3.

The potential cost benefits of implementing a modular system is highlighted by Little

(Little, 1991):

Chapter 2

Literature Review

 17

“It has been estimate that if LRMs were substituted for today’s black boxes or LRUs in a

wing of 72 F-16 A/B fighter aircraft, a 50% reduction in the flight line avionics maintenance

personnel could be made together with the elimination of the intermediate workshops. This

represents a total manpower saving of 109 personnel, a reduction from 180 to 71. The

same analysis showed a reduction in spares types from 437 to 43 and an increase in avionic

system MTBF from 7.3 hours to 35 hours.”

The key elements identified in the quote above are:

1. The quoted time for MTBF (Mean Time Between Failure). Having aircraft available

to fly rather than sitting dormant in a hanger is a key capability for military

situations and a huge cost benefit to civil aircraft. This increase in reliability of the

system makes the solution better value to the customer.

2. The reduction of intermediate workshops results in more availability of the aircraft

in that the system can be service and repaired on the front line. This means that the

unit does not have to return back to a main headquarters to be repaired and made

available.

3. The reduction of spares not only simplifies repair jobs, but reduces the logistic

complexity of taking a military system to the front line, or maintaining a civil aircraft

away from main base. The support infrastructure can be reduced resulting in

another potential cost saving to the customer.

It is also suggested (Little, 1991) that military customers more specifically have three main

requirements to utilise the opportunity for modular architectures:

a) They must provide the desired mission capability. In particular they must allow the

myriad datastreams obtained from the platform sensors to be more effectively

integrated for the pilot to improve their situational awareness. Moreover, the

avionics must be adaptive not only to accommodate new technology when

appropriate but also more importantly to cope with a rapidly changing threat.

b) They must be affordable. In particular life-cycle costs must be a design driver from

initial concept through to, and including, operational service.

Chapter 2

Literature Review

 18

c) They must exhibit improved reliability, maintainability and availability. This is

directly related to life-cycle costs which currently are dominated by maintenance

costs, and the operational need for a flexible but sustained maintenance response

remote from main operating bases.

A solution to the one or two of the above requirements can be found using conventional

methods, but only a modulated solution can provide a solution to all three.

2.1.4. Summary of Future Avionic Requirements

The top level needs for future avionics systems have been highlighted from two main

sources (Little, 1991; Sutterfield, Hoschette, & Anton, 2008). The first requirement set

suggested (Little, 1991) are:

• Adaptive technology in order to meet changing mission requirements or changing

technology

• Affordable through the lifecycle

• Exhibit improved reliability, maintainability and availability

In order to facilitate the growing capability desires of the customer, and to facilitate the

overall needs highlighted, the expected technology requirements are to be (Sutterfield et

al., 2008):

• Modular hardware operating at processing speeds more than two orders of

magnitude great than today

• Dense multiplexing buses

• Multi-core modular processors

• Conform to open standards (F3)

The methods by which these capabilities can be implemented, associated with the design

challenges involved, are discussed in the following sections.

Chapter 2

Literature Review

 19

2.2. Integrated Modular System Concepts
Integrated Modular Systems (IMS) have been identified as a potential concept that can

meet the requirements of future avionics systems as highlighted in the previous section.

The overall design principle is to utilise modularity throughout the system in order to move

away from the tightly coupled/federated systems design of previous years.

This section aims to introduce the concepts of IMS and describe the work done to date in

the development of systems

2.2.1. Introduction to IMS

IMS can is also referred to as Integrated Modular Avionics (IMA), or Integrated Modular

Architectures (also IMA). These systems offer conceptual solutions for future architectures

for many aerospace programmes, with some limited IMS architectures already

implemented (such as the Airbus A350 and the Boeing 777). IMS concepts are replacing

current avionics systems as they have the potential to overcome many issues highlighted in

the previous sections.

The concept of IMS was formalised in ARINC report 651 entitled “Design Guidance for

Integrated Modular Architecture”. The concept is one formed around using powerful

computing modules that provide resource for the independent processing of application

software (Prisaznuk, 1992). This is facilitated by an appropriate operating system that

allows different applications to operate side by side on a single module.

Conmy (Conmy, 2006) provides a good introduction to the IMA concept. In this reference,

the term Integrated Modular Avionics is introduced as:

“…a blanket term used to describe a distributed real-time computer network aboard an

aircraft. This network should consist of a number of computing modules capable of

supporting numerous applications of differing safety criticality levels.”

These sources highlight the idea of a distributed yet integrated modular architecture, a

statement which at first appears to contradict itself. However, the processing modules can

Chapter 2

Literature Review

 20

be connected throughout the aircraft by high speed databuses (such as ARINC 629), then

the functionality of the different processes can be functionally integrated, albeit physically

distributed (Jolliffe, 2005; Prisaznuk, 1992; Watkins, 2006).

One of the fundamental benefits of IMA is the modularity with which the system can be

designed, built and maintained. The idea is that a system can be built to a functional

specification using or re-using generic building blocks. This applies to the software

applications as well as the hardware component. It is suggested (Field et al., 1997) that

IMA consists of 5 ‘building blocks’ that could be used to create any sized architecture,

namely:

• Software – the software architecture

• Hardware/Modules – the hardware architecture

• Packaging – the environmental conditions of the hardware, the cooling and the

power conditioning

• Data transmission – the communication network

• Low and Medium bandwidth interfacing to sensors/effectors

In summary, IMS provides a capability for interchangeable software and hardware

components with interfaces well specified by open standards. IMS provides a good option

to quickly reconfigure the allocation of functions either statically to meet new or changed

deployment requirements or dynamically to restore higher levels of redundancy should

faults occur.

The current state of the art IMA enables multiple unrelated applications, with different

criticalities, to share the same computational platform without interference. The design

challenge remains to map platform system and subsystem level constraints in timing,

safety and security. (Gaska, Watkin, & Chen, 2015)

2.2.1.1. Modular Hardware/Software Integration

An important aspect of IMS is to remove the closely coupled nature of hardware and

software which has been a part of avionics for a long time (Collinson, 2011; Field et al.,

Chapter 2

Literature Review

 21

1997; Morgan, 1991). The applications still require appropriate hardware to execute the

software commands and fulfil function, but it is necessary to make the relationship loosely

coupled.

The generally agreed solution to this is to use a software architecture known as the ‘three

layer stack’, which is a simplified version of that found in (Prisaznuk, 1992).

Figure 2-6 'Three Layer Stack' Model

The three layer stack is a fundamental principle for IMS as it provides the mechanism for

the implementation of modular software upon modular hardware by facilitating well

defined interface layers between the two. If this interface layer between hardware and

software can be adequately implemented, the development of software can be performed

without any direct knowledge of the hardware component. The hardware then becomes

an unseen service provider of resource, such as facilitating communication or execution of

functions. This is termed ‘hardware transparency’ (Conmy, 2006).

As applications are intended to be hardware transparent, the underlying hardware can

theoretically be upgraded or replaced without affecting the design and source code of the

application software. Conversely, an application can be upgraded or incrementally changed

without directly affecting other applications, or requiring a hardware change. Furthermore,

different companies will be capable of the production of parts of the system promoting

Chapter 2

Literature Review

 22

ease of development and competition for provision. Currently any changes to hardware or

software require requalification of the system.

The arrangement of software functionality to hardware resources possible with IMS means

that resource redundancy can be managed in new ways (Prisaznuk, 1992). For example,

secondary redundancy in resource can be incorporated at component level or the system

can be reconfigured by moving required software functions to available spare processing

units. This may be done statically (during system down time) (Little, 1991) or dynamically

(during operation).

In addition to providing for the hardware/software interface, the three layer stack provides

a method of defining how to run multiple applications, or avionics functions, on shared

resources such as processing and memory. If left unchecked this would present a problem

as there is potential for a number of different safety critical avionics functions, all with

their own real time constraints to function on shared resources (Lee, Kim, Younis, Zhou, &

McElroy, 2000). In this situation, the safety case for the aircraft would be compromised

and a potentially disastrous scenario could arise should one function hog a shared resource

and delay the execution of another. To avoid this, a robust partitioning mechanism

including processing resource scheduling needs to be implemented that prevents

applications interfering with one another.

In terms of the production of an IMS, the final system should display the following

properties (Conmy, 2006):

• Technology Transparency - The underlying hardware should not have any impact on

an application either during development or execution

• Scheduled Maintenance - The system should have inbuilt capability to operate in

the presence of failures so that Maintenance Free Operating Periods (MFOPS) can

be achieved and only scheduled maintenance need occur.

• Incremental Update - The system should be designed such that applications can be

inserted/altered with minimum impact on other applications and on the supporting

safety case

Chapter 2

Literature Review

 23

Another way of expressing some of the above properties is to say that an IMS should be

designed as ‘future proof’, i.e. designed with technology transparency and with the

capacity for incremental update. A future proof system can be described as (Edwards,

1997):

“A future proof system remains viable in terms of capability and affordability throughout its

life cycle, despite the evolution of the technology that it embodies. Evolution of technology

presents two major challenges to a system: obsolescence and capability growth.”

A manner in which this can be achieved is to design a truly ‘open’ system architecture. An

open system is one where no proprietary interface specifications exits that prevent outside

agencies designing and building components capable of being integrated. It is likely that all

components will have a specification following a so called F3I guideline (Form, Fit,

Functionality and Interface). This F3I is a development of the F3 idea introduced by ARINC

for LRUs. These specifications will exist in the public domain.

In order to test the openness of a system, BAE SYSTEMS have 7 tests (Edwards, 2001):

a) Information published & publicly available – open access

b) Sufficient information provided to allow independent implementation

c) No royalties – open exploitation

d) Not dependant on proprietary components or processes

e) Standards and essential components not restricted by export controls

f) Possible to create special-to-type items which conform to the interfaces defined by

the open standards and are interoperable with other items which conform to the

standards (in modular systems this means that the system builder is not

constrained to use only the standard modules)

g) Open to technology growth & system growth – technology transparent. In other

words, open over a long period of time.

Chapter 2

Literature Review

 24

2.2.1.2. Why Use IMS?

IMS has the potential to address the needs identified for future avionics, highlighted in

section 2.1. Table 2-1 below shows how the features of IMS directly address the key items

highlighted. Full details on the capabilities mentioned are covered in section 2.2.2.

Chapter 2

Literature Review

 25

Requirement Feature

Adaptive Technology to meet

changing mission

requirements/technology (Little,

1991)

Modular software/hardware design means it is

possible to incrementally change parts of the system

more easily than methods today.

Certification could theoretically be achieved more

quickly with modular driven design methodologies.

Affordable through the lifecycle

(Little, 1991)

IMS represents lifecycle cost savings in many ways.

The reduction of spares reduces logistic footprints and

maintenance complexity is reduced by having similar

components throughout the system. The reduction in

onboard components needed (Johnson & Omiecinski,

1998) reduces weight, power and space requirements.

Exhibit improved reliability,

maintainability and availability

(Little, 1991)

Maintainability and availability are addressed by the

benefits highlighted above. If the platform is easier to

maintain and repair, the platform is more available.

The commonality of modules also means that it is

possible to do more maintenance at the front line,

dramatically increasing availability.

Reliability can be improved beyond the capabilities of

conventional means by the utilisation of dynamic

reconfiguration.

Modular hardware operating with

processing speeds more than two

orders of magnitude great than

today (Sutterfield et al., 2008)

IMS applications can be implemented on naturally

increasingly powerful computers. Incremental

upgrade capabilities allow IMS to keep track of

improving technology as it becomes available.

Table 2-1 Comparison of IMS Capabilities to Highlighted Requirements

The transfer from a federated to integrated modular solution carries with it not only

benefits but risks too. Watkins (Watkins & Walter, 2007) offers an insight into these

implications. Three main benefits of this paradigm shift highlighted here are:

• IMA Provides opportunity to optimise processing resources

Chapter 2

Literature Review

 26

• IMA has reduced weight and power requirements

• IMA lead to an optimised development due to the modular nature of the system

Watkins also mentions that the movement to IMA carries with it risks that should be

considered. The main warning is based around encouraging companies to take a holistic

approach to the problem. A Global perspective on the business model and resource

management is inferred by the introduction of this technology along with requirements for

maintaining links with legacy systems that may remain part of the system.

A review of the IMA system design trade-offs is presented by Grigg (Grigg, Audsley,

Fletcher, & Wake, 1999) and are summarised as:

• Flexibility vs Predictability – The flexible nature of the system potentially

contradicts fundamental requirements of repeatable predictable performance

• Integration vs Isoltaion – Functionally and physically coupling systems exposes risks

of single failures imposing on multiple systems functions

• Run-time Efficiency vs Technology Transparency – The ability to ‘plug and play’

hardware modules has the potential to effect the way data is shared and handled in

subtle ways, which could affect the efficiency of operation.

2.2.2. IMS Research Areas

The following sections highlight some of the major challenges with implementing IMS.

They highlight the cause of the problem and any solutions or potential solutions found.

Each topic identified is explored in detail and although it is attempted to address each

issue independently, there is a natural crossover of topics that occur.

2.2.2.1. Standards

A thorough investigation of IMS standards has been performed in (Stephenson, Nicholson,

& McDermid, 2006). Here, three standards have been identified and their capabilities

summarised, which are summarised below:

Chapter 2

Literature Review

 27

• ARINC 653 (ARINC, 2006b)

o Defines a uniform ‘Application Executive’ (APEX) interface between the

hardware and software layers of an avionics computer in order to provide

the hardware services to the applications. This is similar to the Operating

System layer as shown in the Three Layer Stack diagram of Figure 2-6. The

main point of reference of this standard is the specification of time and

space partitioning. This is where the applications are distributed into

isolated ‘partitions’ upon the hardware, with independent memory

allocations and scheduled processor time-slots.

• Allied Standard Avionics Architecture Council (ASAAC)

o This standard is generated from a consortium of aerospace organisations

from UK, France and Germany. It defines interface standards for software,

communications, common functional modes, packaging and architecture. In

addition, areas of possible obsolescence are identified for each area, such as

rack size and electrical connections.

o The ASAAC standard considers more aspects than ARINC such as file

handling, threads and debugging.

• DO-297 (RTCA, 2005)

o Provides guidance on the certification issues of IMS. The aim of this

document is to highlight to designers and developers the issues of

implementing an IMS on board an aircraft. Its concerned largely with the

qualification of toolsets that generate configuration data and the process by

which the configuration is loaded into the system.

Further to the APEX standard defined by ARINC 653, ARINC 651 (ARINC, 2006a) details

potential systems architectures for implementation. The standard ARINC 651 suggests a

number of hardware configurations (Johnson & Omiecinski, 1998), each with their benefits

and limitations. It is highlighted that the proposed architecture shown in Figure 2-8 has the

most plausible solution to the problem.

Chapter 2

Literature Review

 28

Figure 2-7 Possible IMA architecture based on ARINC 651 architecture C (Johnson,

Omiecinski 1998)

Full reconfiguration across the entirety of the avionic system will be impractical as it will be

too difficult to certify (Johnson & Omiecinski, 1998). However, significant benefits can be

achieved by reconfiguration within a single cabinet. The theory behind this system is that

each core can store a number of applications, and some decision making process decides

which of these is to be executed. It lends itself well to progress to a dynamic

reconfiguration scheme as no transfer of program code is required during the

reconfiguration process thereby removing a potential source of a critical failure mode.

ARINC 653 is a key enabler in the development of IMA (Prisaznuk, 2008). The purpose of

this standard is to define a Real Time Operating System (RTOS) and an

Application/Executive Interface (APEX) to provide a general purpose interface between

modular software components and the underlying RTOS, as shown in Figure 2-8. ARINC

653 does not define hardware components (Prisaznuk, 2008) but does infer requirements

on their design by specifying needs for memory management and processing control such

that true partitioning can be achieved by the RTOS between software applications. This

standardisation of the interfaces will promote competition in development of applications

as functions will be able to be generated in a modular fashion.

Chapter 2

Literature Review

 29

Figure 2-8 ARINC 653 System Architecture (Prisaznuk, 2008)

ARINC 653 is presented in 4 parts defining different aspects of the RTOS. The content of

these sections are summarised in Table 2-2.

Part 1: Part 2 Part 3 Part 4

“Required Services” “Extended Services” “Conformity Test

Specification”

“Subset Services”

• Partition Management

• Process Management

• Time Management

• Memory Management

• Interpartition

Communication

• Intrapartition

Communication

• Health Monitor

• File System

• Sampling Port Data

Structures

• Multiple Module

Schedules

• Logbooks

• Sampling Port

Extensions

• Service Access Points

standard test suite

to validate parts 1&2

defines data

exchange

Table 2-2 ARINC 653 content summary (Prisaznuk, 2008)

Chapter 2

Literature Review

 30

2.2.2.2. System Design and Certification

Avionics systems design and integration is a complex undertaking (Schavey & Duba, 2008).

Requirements not only come from the need to satisfy the desired functionality, but are

required to minimise space, weight and power. IMA simplifies some of these issues by

naturally reducing housing requirements (Little, 1991), but introduces different problems,

such as having a large number of functions developed by independent suppliers all sharing

the same physical resources. In addition, to realise the full benefit of an IMS, the system

should have a flexible configuration which may be changeable during the operation of the

platform. This complicates the certification issue as it may be impossible to conduct a

safety case assessment for each possible configuration before operation.

A solution to software development is that of Model Driven Development (MDD) (Evans,

2003). The process discussed is a design philosophy which allows software models, with

specific requirements and constraints, to be prepared and tested before any actual lines of

code are produced. This kind of design is very portable and re-useable as should the target

system be changed, only a reiteration of automated software generation is required to

update the existing software. This design philosophy has a much greater influence on the

system management throughout the entire system lifecycle.

Work towards a more complete solution to a model driven approach is presented in

(Schavey & Duba, 2008). Here it is shown that the resolution of the complexity problem of

integrating of the separate functionalities designed by independent institutions can only be

streamlined through the use of model driven methodologies. The development of a

rigorous set of modelling tools for IMS will allow the development and analysis of

alternative implementation modes or incremental updates to be performed quickly.

Optimising the design at ‘Aircraft level’ by considering not only the functional problems,

but that of space weight and power can make drastic savings (Salzwedel, Fischer, &

Baumann, 2008). The cost of architecture is quoted as a potential reduction of 72.6%, with

an 80kg reduction in weight of the whole avionics system and an improvement from 0.99

to 0.999999999998 when compared to reference architecture, similar to the conclusions in

(Little, 1991).

Chapter 2

Literature Review

 31

An extension to the principles used in design processes such as the Department of Defence

Architecture Framework (DODAF) can be used as a solution to the design problem of IMS

(Mapleston, 2006b). The idea is to deal with the system in two entities, hardware and

software. One obviously has an impact on the other, i.e. there needs to be enough

processing power to execute the desired functionality, but they need to be as loosely

coupled as possible. Essentially, the software design is approached in terms of

functionality, i.e. a description of each of the avionics functions is realized and defined,

much in the same way as MDD. The interactions between each of these avionics functions

can also be defined. The hardware needs to be designed in terms of processing power

required, memory requirements and available network bandwidth, along with a suitable

network architecture put in place. This then allows a logical mapping of software to

hardware architectures to take place. As part of this mapping a number of rules are

required to be implemented e.g. redundant functions cannot be mapped onto a generic

processing module that contains the function it is duplicating. This process allows systems

configurations to be developed in the design phase of the system. In a similar way, this

could be performed on-line to help choose an alternate configuration should it be

necessary, or performed off-line to produce a number of acceptable reconfigurations

available (Porcarelli, Castaldi, Di Giandomenico, Inverardi, & Bondavalli, 2003).

There are two main issues with the certification of IMS (Hollow, McDermid, & Nicholson,

2000):

1. The certification of the re-use of components either from one IMS project to

another, or as part of a change in configuration or an upgrade in component

2. The certification of a dynamic, reconfigurable system. As it is possible for a system,

given a set of conditions, to generate a new configuration that has not been tested,

it is impossible for this configuration to have been certified.

DO-297 (RTCA, 2005) is working toward having a process by which certification can be

achieved for new applications and/or modules in an IMS, without the need for re-

Chapter 2

Literature Review

 32

acceptance of the whole system (Elmqvist, Nadjm-Tehrani, Forsberg, & Nordenbro, 2008).

There are 6 tasks within DO-297 that are followed to achieve this incremental acceptance:

1. Module Acceptance

2. Application software or hardware acceptance

3. IMS system acceptance

4. Aircraft integration of IMS system – including Validation and Verification (V&V)

5. Change of modules or applications

6. Reuse of modules or applications.

However, the problem still exists on how to change application or configuration without

re-certifying the entire system.

Not only are there design requirements for hardware and software development, there are

organisational arrangements that have to be in place to design and commission an IMS

(Elmqvist et al., 2008; Mazuk, 2008). This is in-line with the standard DO-297 which

requires certain design development roles to be owned in order for certification to be

achieved. All references identified suggest that there is a need for good systems

engineering in order to successfully implement an IMS to its full beneficial capability.

A further three points to consider in the system design problem are highlighted by Watkins

are are as follows (Watkins & Walter, 2007):

• The Optimisation of Systems Resources – it is important systems integrators and

developers have a common goal on how spare resources are utilised.

• Change containment when hosted systems change – how is the impact of changing

processing modules minimised when they could alter performance characteristics

of software applications

• Change containment when the IMA platform changes – If the platform is modified

with new capabilities, how can these additions be accounted for without having to

reconsider the full system.

Chapter 2

Literature Review

 33

2.2.2.3. Hardware

The modular design of all parts of an IMS is the key to its success in displaying the three

attributes outlined in (Conmy, 2006). Already the cost-benefit of using LRMs over LRUs

have been highlighted in section 2.1, with the case study performed in (Little, 1991) and

(Salzwedel et al., 2008). It is clear from this how designing modules built to a F3I

specification can provide long term benefits to the end user.

It is widely proposed that to mount the hardware into the platform, a small number of

‘racks’ will be used to house a number of LRMs. This concept is demonstrated in Figure 2-9.

Figure 2-9 Integrated Modular Cabinet Comparison (Moir et al., 2006)

The modules within the rack are connected by a databus known as the ‘backplane bus’.

This can be connected to the main system bus by the inclusion of a gateway device.

This packaging method is already in use in some aircraft today. One of the main benefits

found is the potential weight saving of this design. It can be shown (Moir et al., 2006) that

replacing all the individual power supply units within each discrete LRU by 2 power supply

modules responsible for a whole rack can have significant weight saving benefits. This also

increases the redundancy of the power supply and reduces power dissipation.

Chapter 2

Literature Review

 34

A further description of IMS hardware is shown with an example system implemented in

the Advanced F-35 Multi-Mission Jet Fighter (Sutterfield et al., 2008). Figure 2-10 shows an

Avionics rack designed to take a number of standardised modules. Communication takes

place between inserted modules via a standardised back-plane bus. In addition, the rack

uses a liquid cooled heat sink method to keep the temperature of the modules within a

safe operating range.

Figure 2-10 High Density Packaging/Avionics Rack Example (Sutterfield et al., 2008)

A concept for a standard processing module is shown in Figure 2-11 (Sutterfield et al.,

2008). The module suggested contains a number of standard FPGA (Field Programmable

Gate Arrays) that can be loaded with the latest cores when upgrades become available.

This increases the operating life of the processor units because the hardware need not be

replaced every time there is a change to the processor, resulting in lifecycle cost savings.

Figure 2-11 FPGA Standard Module for Processing (Sutterfield et al., 2008)

Chapter 2

Literature Review

 35

Recent complications in partitioning systems have arisen from the development of multi-

core processors. (Kim, Yoon, Bradford, & Sha, 2014) suggests a process for managing this

complication to ensure that the advantages obtained from multicore processors can be

absorbed with minimal impact on previously designed and validated software functions.

2.2.2.4. Partitioning

An architectural design of generic core module produced by Wind River, based on

requirements from ARINC 653, is outlined in (Parkinson & Kinnan, 2003). The focus here is

on a design that allows multiple applications to run on a single module, without each

application unexpectedly affecting one another.

Figure 2-12 Partitioning Scheme for a Core module (Parkinson 2006)

Figure 2-12 demonstrates a partitioning scheme, originally drafted in (Prisaznuk, 1992),

that not only protects applications from faults in their neighbours, but allows legacy

software applications to be executed by the system. The operating system used to enforce

the partitioning, and ensure resource scheduling to the applications is VxWorks 653. Note

the similarity of this structure to the three layer stack in Figure 2-6.

Chapter 2

Literature Review

 36

Moir (Moir & Seabridge, 2008) identified four in-service systems that demonstrate a

modular partitioning system as described above. These are:

• Green Hills software with level A, INTEGRITY-178B RTOS on the Sikorsky S-92

helicopter

• Lynux Works Lynx-OS level operating system in association with Rockwell Collinson

the adaptive flight display system on the Bombardier Challenger 300 business jet

• Wind River Systems with AE653 on the Boeing 767 tanker transport and C-130

avionics modification program (AMP);

• CsLEOS RTOS developed by BAE SYSTEMS and certified to DO-178B level A for a-by-

wire flight control system upgrade to the Sikorsky S-92 helicopter

The need for not only spatial but temporal partitioning as a fundamental need of a

distributed real-time system (Yann-Hang, Daeyoung, Younis, Zhou, & McElroy, 2000).

Spatial partitioning is performed in hardware where appropriate boundaries prevent cross

interference between applications or partitions. Where resources are shared, temporal

partitions are used to prevent interference and ensure each function meets their timing

constraints. A model presented for Strongly Partitioned Real-Time Systems (SP-RTS)

demonstrates a solution for temporal and spatial partitioning. The stronger the partitions

are and the more isolated the applications are and the easier it is for modular certification

to be applied as a change in configuration has less collateral impact on neighbouring

functions. Furthermore, requirements for temporal and spatial partitioning drive the

possible configurations available for a system (Yann-Hang et al., 2000). Configuration

possibilities can be restricted as each task and communication require timely access to the

shared communication and processing resources in ways that do not interfere with the

operational of neighbouring functions.

The temporal problem of the real-time system is one that is holistic, in that it can only be

assessed by a complete system analysis as opposed to a study of a small part of the system

(Grigg, 2002). Changes in design to part of the system therefore affect the system as a

whole. Grigg suggests a ‘reservation-based timing analysis’ that provides the ability to

Chapter 2

Literature Review

 37

model the timing behaviour of parts of a distributed system, and limits the scope of re-

analysis required for localised changes.

2.2.2.5. Configuration

There has been a wide amount of research investigating the methods for allocating real-

time functions to a flexible set of resources whilst maintaining the integrity of the function.

A technique developed in (Yann-Hang et al., 2000) presents a requirements set in order to

configure real-time functions upon a single board in terms of managing the processor and

network timings. This technique uses the deadline requirements of tasks and messages of

individual functions in order to find a configuration that satisfies them all.

An investigation into further allocation techniques was performed in (Hladik, Cambazard,

Daplanche, & Jussien, 2008). In similar fashion to (Yann-Hang et al., 2000) a method using

constraint programming is implemented to solve the problem. The techniques studied

included graph theory, branch and bound, genetic algorithms, clustering, steepest descent,

tabu search, simulated annealing, neural networks and dedicated heuristics. It was found

that for specific problems no technique was more appropriate than the other. It was also

found that most of these techniques were too dependent on their initial constraint and

made any changes to the modelled system difficult to implement.

The problem was solved in this instance by splitting the allocation problem into two

phases. Firstly the applications are allocated based on resource constraints, and then the

timing for each processing stream is corrected in order to satisfy the real time functions

based on the overall global timing constraints. This method was found to be a robust

method of satisfying a large amount of functional sets and achieving good utilisation rates

of resources and good use of the bandwidth of the communication bus.

Current maturing methods of deriving a configuration are based on a MDD methods

(Evans, 2003; Schavey & Duba, 2008) and are concerned with producing a series of system

arrangements known as Blueprints (Grigg et al., 1999; Jolliffe, 2005). By considering the

hardware, software and configuration requirements, model-based, offline mapping tools

Chapter 2

Literature Review

 38

can be used to optimise and certify blueprints and store them as a lookup table for later

reference.

All of these investigations have been concerned with a static reconfiguration scenario, i.e.

when the system in question is off-line and the allocation of functions are designed and

assessed before run time.

2.2.2.6. Reconfiguration

Reconfiguration is a complex problem, particularly when associated with the safety

requirements of modern day aircraft. Historically, there is an overriding requirement for

the demonstrable predictability of the real-time system by off-line analysis (Grigg et al.,

1999). The system designed needs to be certain that the process of reconfiguration will not

induce a failure, nor implement a non-functional or inadequate configuration. There are

two fundamental methods that can be utilised to implement reconfiguration; multi-static

configuration and dynamic reconfiguration. Multi-static and dynamic reconfiguration in the

following way (Field et al., 1997):

Multi-static reconfiguration:

• Completely established at design time

• The system stores a set of pre-defined configurations. Each configuration explicitly

identifies the allocation of software (functionality) to hardware (resources) and has

been checked for predictability, meeting defined time constraints, latencies etc.

• Contains a set of pre-defined rules or triggers that initiate changes to the system

from one configuration to another

Dynamic reconfiguration:

• Is achieved by using algorithms that are continually running while the system is live

to determine the next best allocation of software (functionality) to hardware

(resources).

• This algorithm considers the requirements of what software functionality is

required to be executed and the condition of the available resources

Chapter 2

Literature Review

 39

The ability for the system to change its configuration is one of the primary benefits of IMA

(Field et al., 1997). This ability supports the maintenance and continued operation of the

system in the potential presence of faults, all of cost benefit to the user. However Johnson

(Johnson & Omiecinski, 1998), highlights that there are stringent requirements to the

reconfiguration process, particularly online reconfiguration, in order for it to be certifiable.

These requirements are summarized as:

• Reconfiguration shall reduce the overall redundancy requirement

• Reconfiguration shall allow maintenance to be deferred

• Existing System safety requirements shall be met or exceeded

• The reconfiguration scheme shall not be susceptible to random hardware failure

• Reconfiguration delays must be short

• Transient behaviour during reconfiguration must be safely bounded

• System state must be preserved during reconfiguration.

Because of these stringent requirements, it is likely that for a first step, IMS will be

implemented without the ability to dynamically reconfigure (Johnson & Omiecinski, 1998).

This form will utilize the benefits already highlighted of modularity, but will not yet exploit

the full potential of IMS. This statement is now supported by the various systems already

highlighted in this document in Section 2.2.4 that have been implemented on aircraft.

Coutinho (Coutinho, 2008), suggests the use of a multi-static approach using an AIDA

(Analogue Integrated Design Automation) architecture. The system developed is structured

in a hierarchy with a ‘Systems Manager’ making overriding decisions supported by a lower

level ‘Module Manager’ which is responsible for managing the service provision to the

applications. A similar approach is investigated by Porcarelli (Porcarelli et al., 2003) who

has performed some research into managing reconfiguration. The concept suggested is

that a number of strategies or functional arrangements are defined off-line to provide

configurations during run-time. A decision making agent continually assesses which

strategy is the most appropriate and configures the system accordingly. This study focuses

on telecommunication networks, rather than the stringent requirements of a hard real-

time application. The most extensive method suggested is by Hollow (Hollow et al., 2000)

Chapter 2

Literature Review

 40

who proposes that vast numbers of safe reversion configurations can be established offline

and referred back to as a look-up table when required.

Hollow (Hollow et al., 2000) tells us that current certification practises require an

assessment of each complete configuration. Therefore, as long as the number of

configurations generated is low, both the above approaches have good chances of meeting

certification standards. Utilising multi-static configurations allows the operator to take

advantage of the modular nature of IMS, and have some capacity to restore system

functionality in the presence of faults. Salomon (Salomon & Reichel, 2011) is performing

research into a toolset that will perform the appropriate safety case evaluations for an IMA

in an attempt to reduce the design time and certification of various configurations.

Although this process could be seen as quick in terms of the design of a static

configuration, it does not yet (if it ever will) seem appropriate for the use in automatically

accrediting configurations at run time during a dynamic reconfiguration problem.

Strunk et al., (Strunk, Knight, & Aiello, 2004) is working towards a reconfiguration process

that may one day be certifiable to stringent standards. The reconfiguration process in this

work is performed by a single module, which is responsible for the configuration at any

one time. This paper addresses many of the problems of dynamic reconfiguration, such as

the timing of the process. The plan pivots around a utilizing a central controller which

provides an opportunity for a single point failure to cripple large parts of the system.

However, having a single decision maker will ease the certification process.

An interesting concept raised by Lopez (Lopez, Royo, Barrado, & Pastor, 2008), is taking a

wider viewpoint to the reconfiguration problem and investigates not only the

configuration problem, but also how to use mission requirements and available resources

to generate the required functional assignment at run time. Lopez provides a good

framework and process to the dynamic configuration of an aircraft.

Further to the totally autonomous aspect of reconfiguration, research is being performed

into the inclusion of a Human operator in the reconfiguration decision loop (Dajiang, Jinxia,

Chapter 2

Literature Review

 41

& Jihong, 2011; Montano & McDermid, 2008). Dajiang et al. (Dajiang et al., 2011), suggests

a Systems-Theoretic Process Analysis method to involve a pilot into the decision making

aspects of choosing a new configuration. Involving a human in the process may solve some

problems with decision making authority and potentially reducing the risk of reconfiguring

to an inappropriate configuration, but introduce new problems such as the display and

communication of relevant information to the decision maker who already has a high

workload demand upon them.

A thorough investigation into a dynamically reconfigurable system was conducted by (Ellis,

1997) where the primary method of configuration was to upload new configurations over

the network during the boot process, then use redundant processes stored in RAM as a

fast access options in the event of errors. It was also highlighted that in the instance of

failure, redundancy is required by multiplexed systems as well as spare processing capacity

for re-allocation of tasks.

2.2.2.7. Network Requirements

The IMS concept is reliant on function integration of tasks but physical separation across a

platform. In such hardware implementations, software applications have to exchange

information via appropriate communication media. There is a pressing need to develop

higher speed data transfer buses (Zhang et al., 2003), particularly for all the hard, real-time

tasks that need to be executed in parallel, system wide. High speed data buses do exist in

the commercial world in the form of high speed Ethernet, but there are stringent

requirements from avionics specifications that mean Ethernet in its current form is not

suitable for use on an aircraft. A potential solution to this problem would be to use a fibre

channel communication that would offer data rates greater than 1Gbit/s. A commercial

example of this technology already widely used is ‘Firewire’, a communication protocol

used with standard personal computers (Collinson, 2011).

The reason Ethernet is unsuitable in its current form is because the communication is non-

deterministic. Ethernet uses a collision detection system that detects when two nodes are

attempting to use the common bus, and delays the sending of the message by a pre-

Chapter 2

Literature Review

 42

determined amount of time until the bus is clear. The result is that the package of

information cannot be guaranteed to be delivered at a set time under all conditions. In

simple terms, it is possible to use Ethernet in a deterministic way, by using a collision

avoidance technique. Each required communication during the process is allocated an

amount of time to use the bus to send information. By doing this, Ethernet becomes a

realistic option for real time distributed networks.

A method named Time Triggered Ethernet (TTE) (Kopetz, Ademaj, Grillinger, &

Steinhammer, 2005) seeks to formalise the determinism of Ethernet communications for

purposes of real time communications. In this method, the processor clocks are routinely

synchronised and messages are assigned a time period in which to be transmitted.

A deterministic Ethernet method that has matured sufficiently for widespread use onboard

aircraft is AFDX (Avionics Full-Duplex Switched Ethernet) (Bisson & Troshynski, 2003). Here

a ‘scheduler’, a management method akin to a bus controller, manages the timing of

communication via defined ‘virtual links’, which are software defined connections between

data source and destination.

2.2.2.8. Distributed Control

There are limitations of traditional real-time system design/analysis when applied to IMA

(Grigg et al., 1999). Design is conducted by assessing the Worse Case Execution Time

(WCET) followed by a system wide ‘schedulability’ analysis. This analysis must be repeated

for the system component under design if any of the following change:

• Its own timing requirements, WCET or communications requirements

• The requirements (as above) of any other software components allocated to the

same shared resource

• The hardware implementation of any required processing or communication

resource

• The overall allocation (mapping) of software components to hardware resources

This paper goes on to present a useful approach to the temporal aspects of the scheduling

problem using a resource reservation approach. This is a top-down approach where system

Chapter 2

Literature Review

 43

timing requirements are considered with a logical architecture definition of systems

functions and a specified amount of resource that is required to be reserved for its

execution. This can then be analysed offline with different conceptual hardware

arrangements in mind. It is evident that this process is not appropriate for a system

designed with flexibility in mind. In fact, many dynamic system approaches provide little or

no features to facilitate highly dependable, real-time performance required by critical

systems (Ford, Bull, Grigg, Guan, & Phillips, 2009). Some of the above issues highlighted

have been addressed by (Grigg, 2002) where a method is suggested involving a priori

specification of its timing requirements and testing to show that these have been met

using timing analysis methods. Using a ‘reservation-based timing analysis’ the approach

provides an ability to model timing behaviour of parts of the distributed system in isolation

from the system whole, enabling localised changes to occur without total revalidation.

The problem of creating a hard, real-time distributed system is not a new one and

techniques exist to ensure concurrent, repeatable systems are developed (Kopetz, 2011).

However, this theory is based on the concept that a system is designed in a fixed

configuration then remains unchanged during operation. Clearly these methods require

adjustment and modification for a reconfigurable application and are more attuned to a

multi-static approach.

A method suggested as a solution is a Physical Asynchronous/Logically Synchronous (PALS)

design pattern (Miller, Cofer, Lui, Meseguer, & Al-Nayeem, 2009). This is a method that

acknowledges the fact that each node within a network will maintain its own time but

ensures that the message transmissions are logically arranged such that events remain

concurrent and deadlock or race conditions are avoided. Essentially, a global PALS time

period is defined and within this period time is allowed for computation and message

transmissions to occur. Each of these events are allowed time where local clock variations

will occur relative to the overall global clock. Miller goes on to discuss that this method can

be applied to IMA with careful consideration between the PALS time definitions and the

intrinsic IMA timings. This can save complex clock synchronisation techniques between

Chapter 2

Literature Review

 44

processing units (Grigg et al., 1999) as each avionics unit will still be subject to their own

offset, drift and jitter from the true global time (Miller et al., 2009).

A promising solution offered to provide a real-time solution when generating a

configuration to a given IMA installation is the adoption of dependable, real-time service

oriented architectures (Tsai, Lee, Cao, Chen, & Xiao, 2006). This solution uses a service-

oriented approach where ‘services’ and ‘consumers’ announce their provisions or needs

respectively to a service broker (or systems manager)., in a process called ‘service

discover’. Using the timing and communication needs identified, a recursive search pattern

can be implemented to identify the ‘optimal’ solution to the configuration. This method

seems to have been tested in simulation for a variety of service needs but does not offer

specific examples of configuration solutions. There is some scepticism of this method of

how a recursive solution can be bounded to a real-time solution.

Chapter 2

Literature Review

 45

2.2.3. Fault Management in IMS

A key area of interest as defined by the scope of this work is that of fault management

within IMS. A thorough investigation into these concepts was performed by Mapleston

(Mapleston, 2006b). The following is a summary of the work performed in order to

highlight the key areas.

By comparison to existing fault management techniques, there are four key areas required

for performing fault management in IMS, and to eliminate failure entirely from the system

as shown in Figure 2-14.

Chapter 2

Literature Review

 46

Figure 2-13 Structured Requirements for Fault Management (Mapleston, 2006a)

Chapter 2

Literature Review

 47

In summary, the four key areas identified are:

• Avoid Faults: Requiring a Systems Engineering approach to improve capture,

maintenance and presentation of complex information during all stages of the

lifecycle.

• Remove Faults: Requires a capability to predict the risk and identification of faults

in the aircraft system so they may be removed.

• Tolerate Faults: Requires the handling of an error via detection, handling,

confinement and recovery methods in order to maintain the service provided by

the system.

• Fault Treatment: Requires the capacity to completely remove the identified fault

from the system via repair or replacement methods.

The following sections investigate these areas in detail and suggest methods for addressing

them.

Chapter 2

Literature Review

 48

2.2.3.1. Fault Avoidance and Removal

In order to avoid the introduction of faults into a system involves the following

components:

• Use of reliable components

• Reliable techniques for interconnection and assembly of components

• Screening out of interference

• Correct and unambiguous requirements specification

• Proven design methodology

• System engineering environment to manage complexity

A solution to the above requires a good structure of procedures of system design.

Fundamentally, this needs to involve a modular design philosophy (Elmqvist et al., 2008;

Evans, 2003; Schavey & Duba, 2008). Mapleston (Mapleston, 2006b) suggests an

Architectural Design Approach (ADA) to address these issues, as shown in Figure 2-14.

Figure 2-14 Architectural Design Approach (Mapleston, 2006a)

Chapter 2

Literature Review

 49

This proposed solution is derived from a process developed to assist the management of

battlespaces. The commonality of the problem between the management of a flexible

scope of a battlespace to an IMS is evident in that each has a definable, yet flexible,

number of differing components that have the capability of performing different tasks

depending on current assignment.

Furthermore, it is suggested that the system could be design using an Architectural

Analysis and Design Language (AADL), a shown diagrammatically in Figure 2-15. The

benefits of performing this process are that AADL has the ability to:

• Specify software and hardware systems architectures

• Specify component interfaces and implementation properties

• Analyse systems timing, reliability, partition isolation, etc.

• Enable system integration with tool support

• Verify source code compliance and middleware behaviour.

Figure 2-15 AADL Overview (Mapleston, 2006b)

Recent extensions on this work include generic model based approaches (Morel, 2014)

that look to use the integration of physical and functional views to perform safety and

Chapter 2

Literature Review

 50

health assessments. An additional recent study (Si, Wang, & Liu, 2015) use AADL to model

the partitioning involved in an IMA to correctly analyse the safety of the system (by

focussing on the temporal aspect of partition) in the design and development phase.

2.2.3.2. Fault Tolerance

Fault tolerance is defined as: “...the capacity of a system to continue to provide a service in

the presence of faults” (Avizienis, Laprie, & Randell, 2000). Fault tolerance is achieved by

implementing the following functions within a system:

• Error detection

• Error handling

• Error confinement

• Error recovery

The general theme of each of these methods is the concern that each fault arising requires

the prevention of the fault propagating through the system. The following suggest how

each of these methods could be implemented in an IMS.

Error Detection

There are currently a number of methods for identifying errors in a system. The likely

faults to occur within an avionics system are identified as (Mapleston, 2006a):

Error Detection Mode Description

Replication Parallel channels not providing identical results

Timing Worst case execution time exceeded for software component,

events occurring more often than expected and data timeout via

communication

Reversal Inversion of process using output does not replicate original

input.

Coding Errors within data

Reasonableness Check that value falls within a range of acceptability

Structural Check that all structures defined are filled with correct amount of

data

Hardware Built-in Test A series of checks that are designed and built into hardware

Chapter 2

Literature Review

 51

components in order to be able to detect problems with the

hardware.

All these methods are achievable to some extent within an IMS with existing, understood

techniques.

Chapter 2

Literature Review

 52

Error Handling

An ideal fault tolerant component capable of error handling is shown in Figure 2-16 (Burns

& Wellings, 2001).

Figure 2-16 Ideal Fault Tolerant Component (Burns & Wellings, 2001)

This model suggests that in the event on a detectable error (or exception) the normal

processing stream is interrupted by; and internal exception, an interface exception, or a

failure message indicating exception. The component itself should then be able to handle

the exception and then return as before to the normal processing activity.

Within an IMS, two error handling techniques are identified that should be implemented in

conjunction (Mapleston, 2006b). These are designed to respond to errors within the

application and errors within the environment.

Chapter 2

Literature Review

 53

Figure 2-17 IMS Environment Error Handling (Mapleston, 2006a)

Where:

GSM = Global Systems Manager

EH = Error Handler

MSL = Module Support Layer

Figure 2-18 IMS Internal Error Handling (Mapleston, 2006a)

Where an error that affects normal operation is raised by another process or by the

environment, this arising is always handled by the GSM. The GSM has an oversight to the

complete system and can therefore advise applications via the application manager about

the specific course of action to take, such as ignoring erroneous inputs. Handling errors

may then be thought of as a series of atomic actions across individual systems, with a

hierarchy of error handling to prevent error propagation.

Error Confinement

Chapter 2

Literature Review

 54

Within an IMS, there are many separate elements all working together to perform a task. If

one of these units were to fail, there is a chance that this error will quickly pollute the

processing stream and cause widespread failures as a result of a single fault. It is an

essential part of fault tolerance to confine the damage caused by errors before any error

recovery can be attempted.

A potential solution to the problem of error confinement as the implementation of atomic

actions (Burns & Wellings, 2001). Atomic actions are defined as:

“An action is atomic if the process performing it are not aware of the existence of any other

active process, and no other active process is aware of the activity of the process during the

time the processes are performing the actions” (Burns & Wellings, 2001)

Figure 2-19 Atomic Actions Examples (Mapleston, 2006b)

Chapter 2

Literature Review

 55

Figure 2-19 shows an example of atomic actions implemented within a process. Processing

streams A,B and C are working together to achieve some common goal. The atomic,

defined by the box in bold, has a well-defined start and end point and clear sideways

boundaries where no other streams are involved. Figure 2-19 a) shows an atomic action

where no errors have occurred, and A,B and C have shared information correctly to arrive

at their conclusions. Figure 2-19 b) shows where error detection mechanisms have been

included into the process. These are implemented as it is highly unlikely that a processing

stream can be truly isolated, and will be subject to environmental disturbances. By

including this error checking it is possible to implement error recovery within the atomic

action itself. Figure 2-19 c) shows how, at the identification of the error, all processing

streams are returned to the start point where it is assumed that all inputs were free of

error. By repeating the process from the beginning, the atomic action can be sure that

there has been no propagation of the fault. Figure 2-19 d) shows how just one lane can roll

back in the attempt to recover from the error, without affecting the other streams. Roll-

back, or backwards error recovery, is subject to time constraint issues where the process

may be required to be deterministic. An alternative method would be to use a forward

error recovery method where by upon the identification of an error, the process carries on

straight away using a known correct state. The next section will look at error recovery

methods in more detail.

Error Recovery

One of the most tried and tested methods of error recovery is the reversion to a redundant

process channel in the event of the detection of a fault with the primary channel. Other

methods include parallel processing and with voting stages to remove erroneous results

(Moir & Seabridge, 2008).

Within an IMS there are both opportunities and challenges to implementing redundancy.

The first challenge is that IMS concepts do not highlight how multiple lanes are

implemented (Mapleston, 2006a). Redundancy could be achieved by including the

following fundamental requirements:

Chapter 2

Literature Review

 56

• Applications should not be aware of replication (i.e. voters and adjudicators should

sit outside)

• Messages should be sent from 1 to n in that outputs are replicated seamlessly to all

channels

The diagrams in Figure 2-20 shows various ways in which data provided from a sensor can

be replicated to multiple channels in different ways.

Figure 2-20 Implementing Replication in IMS (Mapleston, 2006a)

In addition to this, there is the opportunity to take advantage of the inherent flexibility of

an IMS. Figure 2-20 shows a system in a set configuration. If redundant processing units

are available the system could reconfigure in the event of a failure to restore a lost

processing element to a new physical location. Although this would not recover from the

error occurrence, it would mitigate the effect of the error by restoring all redundant

channels.

Chapter 2

Literature Review

 57

2.2.3.3. Fault Treatment

Fault treatment is defined as the repair or replacement of faulty system components

(Mapleston, 2006a). The hardware identified as potential solutions to IMS requirements

will have a very limited scope on how they can be repaired during flight and the likely

solution will be tolerate the fault until the component can be replaced at the next

maintenance.

An outstanding issue highlighted (Little, 1991) is the requirement of future systems to have

guaranteed maintenance free operating periods. This cost saving measure will allow

aircraft to fly repeated missions with no maintenance required in between, despite the

occurance of ‘arisings’ or fault occurances. The side effect of this issue is the improvement

required in aircraft systems to guarantee a level of performance by tolerating occurring

faults. In addition to this, aircraft will start to have improved diagnostics systems that can

identify faults and perform basic preparations for maintenance, reducing the down time of

the aircraft.

a) b) c)

La
nd

Take Off

Land
Take Off

Ta
ke

 O
ff

Take Off

Ta
ke

 O
ff

Figure 2-21 Future Fault Treatment Model (Mapleston, 2006a)

Figure 2-21 shows the model for future fault treatment. Figure 2-21 a) shows a traditional

maintenance approach. During operation, a fault occurs that is critical enough to require

Continuous Operation Tolerating
Fault investigation
Report Errors and Failures
Diagnose Causal Faults
Prepare for Maintenance

Chapter 2

Literature Review

 58

the pilot to immediately return to base. The aircraft is then subject to a period of fault

investigation that generates reports on the error signals and failures. This is then used to

diagnose the fault (if at all possible) then corrected through maintenance activity. The

vision is that during a phased in approach as shown in Figure 2-21 b), an advanced on-

board diagnosis system would identify the cause of the occurrence, and along with

appropriate redundancy and safety measures, the aircraft is able to complete the intended

mission whilst tolerating this fault. During this time, fault investigation, reporting and

diagnosis could occur remotely, readying the aircraft for maintenance upon arrival. This

reduces the amount of time the aircraft is out of service. A final implementation is shown

in Figure 2-21 c). Here, the aircraft is subject to a number of fault occurrences during

operation, but onboard diagnosis and system reconfiguration enables full safety margins to

be maintained. This extends the operational capability of the aircraft as maintenance

activities can be delayed until a convenient period.

2.3. Examples of IMS implementation
Often, the implementation of IMS is propriety information and details are not released.

However, there are some documented cases on the use of IMA in current air vehicles.

2.3.1. Genesis IMA

Smiths Aerospace have developed an IMA referred to as ‘Genesis’ (Generic Networked

Elements for the Synthesis of Integrated Systems) and has been implemented on products

such as the Boeing 777, the F-22 and the Boeing 787 (Watkins, 2006). The system

implemented has an open architecture such that third party suppliers can produce

products to integrate with the architecture.

The way the Genesis system configuration differs from a traditional federated system is

shown in the differences between Figure 2-22 and Figure 2-23. The IMA makes use of

‘virtual systems’ whereby each processing stream, or task, functions as if it were housed on

a single processing unit when they actually are physically separated.

Chapter 2

Literature Review

 59

Figure 2-22 Federated Systems Architecture (Watkins, 2006)

Figure 2-23 IMA System Architecture (Watkins, 2006)

The assignment of functions is performed offline and reconfiguration is facilitated by a

multi-static approach. Configurations are derived using a ‘contract-based’ approach, i.e. by

a defined set of functions and interface specifications that each component is required to

have.

Chapter 2

Literature Review

 60

2.3.2. Modular Avionics Operating System (MAOS)

BAE Systems (along with partner institutions) have a long running research stream into

integrated modular systems (Wake, Miller, Moxon, & Fletcher, 1997). The architecture

developed for this implementation is based on the three-layer stack method described in

section 2.2.1 and shown here in Figure 2-22.

Figure 2-24 IMA Software Model (Grigg et al., 1999)

In this case, the Application Interface Layer defined in Figure 2-6 is called the Application to

Operating System Interface (APOS) and the Hardware Interface Layer is the Module to

Operating Interface (MOS).

The ‘application manager’, shown in the applications layer in Figure 2-24, is an essential

part of the overall resource and scheduling management process throughout the whole

system. It is implemented as an standard application with the addition of management

authority as it contains information specific to the distribution. It works closely with the

Operational Systems Manager (OSM), found in the middle layer, which is responsible for

managed applications system-wide.

The method for deriving configuration is an offline approach that generates a number of

blueprints of system configuration. These can then be accessed at system run-time in a

Functional
Applications

Application
Systems

Management

Operating
System

Operational
Systems

Management

Module Support Layer

APOS

MOS

Blueprints

Chapter 2

Literature Review

 61

look-up fashion should different configurations be commanded by the OSM. This is

essentially a multi-static approach as found with the Genesis system (Watkins, 2006).

2.4. Literature Review Summary
IMA remains a constantly developing field. In the past 20 years it has progress from a

conceptual need to in-service products such as Genesis (Watkins, 2006) and MAOS (Wake

et al., 1997). In order to achieve this level of progression, techniques and standards have

been developed for important parts of IMS such as configuration management and

partitioning. The development of ARINC 653 has been an important part of development

as it allows a standard for multiple vendors to work towards a common set of interfaces.

Most IMA developers are progressing towards a multi-static solution in that the benefits of

multiple configurations are achieved by defining system arrangements off-line and storing

them in a lookup table for access during run-time. This has many advantages in terms of

certification, safety cases and overall cost benefits from common, re-useable components.

(Gaska et al., 2015) highlights a key research area for IMA as modelling tools for end-to-

end temporal allocation and for optimizing spatial resource allocation, both fundamentally

key precursors for autonomous configuration toolsets to be realised. Adopting advanced

allocation toolsets would provide benefit to the installer as automated allocation of

functions to processing resources would ease the task of the systems integrator and would

provide large tolerances to faults during operation.

A move towards a more flexible arrangement in IMA places greater reliance on the on-

board fault management methods within the system. Any decision making element with

the IMA will be reliant on the outputs of implemented fault detection methods to

appropriately manage the fault. Such technologies and methods are not yet mature and

require research to refine.

The main element missing from the literature is examples of dynamically reconfigurable

systems. There is motivation to continue to develop aircraft with extended operational

Chapter 2

Literature Review

 62

periods between required maintenance activities. As highlighted by (Mapleston, 2006b) for

future avionic systems to achieve this they are required to tolerate faults, in that an

occurrence of fault cannot reduce the required levels of safety such that a mission has to

be aborted and an aircraft return to base. There is potential that utilising dynamically

reconfigurable avionics systems would enable this. Having the ability to flexibly utilise

redundant processing resource to restore full levels of redundancy upon the occurrence of

a fault means that maintenance activity can be delayed to convenient periods in the

operational schedule. The operational benefit of this is both in terms of mission success

(completion of the mission despite the occurrence of a fault) and economics (as

maintenance intervals can be planned - a move to so-called schedule based maintenance).

Multi-static solutions can provide some gains in these two areas compared to an avionics

system with a large degree of flexibility.

Furthermore, reconfiguring a system requires the generation of all timing characteristics

throughout the system from partitioning processing resource to assignment of network

bus time for communication processes. The implications of this with regards to the effect

on the closed-loop, distributed control activities are required to be understood. Therefore,

one of the key aims of this research is to identify a solution for dynamic reconfiguration

that assigns required systems functions (i.e. a distributed, real-time control function with

redundant processing channels) to available computing resources whilst protecting the

functional concurrency and time critical needs of the control actions.

Dynamically reconfigurable systems currently have lack of certification routes to

implementation due to the difficulty of proving the reliability of each installation during

operation. This is an area of primary concern to weigh against the areas of operational

benefit over multi-static solutions. It is conceivable that developers consider dynamic

configuration as a ‘marginal gain’ over multi-static configuration methods in terms of

operation but would require increased complexity and increased risk in developing

certification methods.

Chapter 2

Literature Review

 63

When dynamic re-configuration is performed, an increased level of autonomy is assigned

to the on-board system. The in-ability to arrange of functions correctly can lead to safety

critical problems such as exceeding timing requirements or insufficient multiplexing of

tasks for point failures. Interesting thoughts are provided in (Montano & McDermid, 2008)

by considering at what point Humans are involved in the decision to reconfigure. This

would require automatic generation of explanations and implications for reconfiguration

actions in a manner that interfaces with pilot workload. Further research is required to

understand the level of automation that can be absorbed by the reconfiguration system,

and which would benefit from situational awareness from the systems operator.

The second part of this research addresses the automation problem. Here a systems

management strategy is to be researched that utilises dynamic reconfiguration (along with

automatic health assessment of the system) to restore an IMA to high levels of redundancy

following the occurrence of a failure. The output of this work will bear in mind the

requirement to communicate the reconfiguration activity to either a pilot or a remote

systems operator in real time.

Fault Management via Dynamic

Reconfiguration for IMA

CHAPTER 3:

IMA Demonstrator

System Requirements

Chapter 3

IMA Demonstrator System Requirements

 65

3. IMA Demonstrator System Requirements

3.1. Introduction
The purpose of this chapter is to define the capability requirements of the IMA

demonstrator in order to investigate and demonstrate the fault management techniques

within IMA. This chapter will use information gathered in the literature review chapter that

outlined the techniques implemented in IMA and the identified gaps in capability.

These requirements will not form a formally agreed requirements set, but will identify in a

logical fashion the outlined requirements for each part of the system. Each section

contains will describe the composition for this part of the system and a description of the

functional process. This is then summarised as a set of top-level requirements. The goal

here is to justify that the developed system is appropriate for verifying techniques in fault

management for IMA.

3.2. Top Level System
The system to be designed has the overall aim of providing a test platform for fault

management within IMA. The assignment of an IMA to a real time control task will provide

proof that the systems management will be operating successfully whilst providing a high

level of service. The overall demonstrator system will consist of the three main elements

highlighted in Table 3-1.

Chapter 3

IMA Demonstrator System Requirements

 66

Table 3-1 Component Composition of Top Level System

Item Description

Maglev Rig The vehicle chassis, sensors and actuators in the form of magnetic

coils

IMA The hardware and software elements that make up the distributed

avionics architecture

System Operator The trained operator who at the current time is interfacing with the

system

Figure 3-1 shows how these three elements interact. The ‘systems operator’ (i.e. the

operator of the rig) will be able to interface with the IMA via a Graphical User Interface

(GUI) and, in turn, the IMA will pass drive signals and receive sensor data from the Maglev

hardware. The real time control aspect that is required to maintain electromagnetic

levitation will therefore be performed by applications situated in the IMA.

Figure 3-1 Top Level Systems Diagram

IMA

System Operator

Chapter 3

IMA Demonstrator System Requirements

 67

The purpose for the development of this system is to provide a tangible demonstration of

the concepts under investigation. This demonstration will be a suitable response of the

IMA to an injected fault signal. It is worth noting here that because this is a developmental

exercise, it is not intended that the system is designed in order to cope with any random

fault mode, but be expected to respond appropriately to a number of identified common

faults.

To observe a response to a fault, it is intended that the system is capable of having faults

or appropriate fault signal inject during operation. This could be done manually via manual

interference with signal routing, or by raising a fault code to simulate the identification of

an occurrence. The system will have to make available appropriate data to show that a

reasonable response to the fault injection has occurred.

Therefore, the overall operating requirements are:

1. The IMA shall be able to display to the operator appropriate internal systems

management information (e.g. current functional allocation, and current

component health) for verification purposes.

2. The IMA shall be able to display to the operator real-time information regarding the

target platform (Maglev rig), such as current position.

3. The IMA shall be capable of receiving control commands for the target platform.

4. The IMA shall perform the real time control functions necessary to maintain

magnetic suspension of the Maglev rig.

The requirements for demonstration of fault management within IMA

5. The IMA shall allow user to inject fault signals into the system

6. The IMA shall perform some identified techniques in order to manage the fault

7. The IMA should maintain service in the presence of fault if possible

8. The IMA shall provide a tangible output of the systems management actions during

this response.

Chapter 3

IMA Demonstrator System Requirements

 68

3.3. IMA
One of the main constraints of the project is that there is no previously commissioned IMA

architecture available for further development or modification. It is therefore necessary

that a complete design and construction of a representative IMA is required. It was

highlighted in Chapter 2 of that an IMA is an incredibly complex combination of equipment

and software. As the timescale and resources of this project are limited, an industry

standard IMA will not be constructed. The main requirement of this system is that it will

represent the key fundamental capabilities of an IMA that are necessary to demonstrate

the research achievements.

The general design of each IMA module should follow the three-layer stack architecture, as

identified in the literature review and shown here in Figure 3-2.

Figure 3-2 Three Layer Stack

It is essential that the system generated represents the actions of IMA, but does not need

to strictly adhere to all aviation requirements. For example, it is essential that applications

are independently controlled, but it is not essential to employ partitioning schemes that

segregate the applications under all instances of operation or failure. As many of the key

fundamental principles of IMA should be followed during systems development to ensure

the appropriateness of the final system for the verification of techniques employed.

Chapter 3

IMA Demonstrator System Requirements

 69

The functional requirements of the IMA are met by the implementation of appropriate

‘applications’ within the structure. A specific example of an application in this case will be

one to control the ‘airgap’ between the magnet pole and the rail (Chapter 4). The

execution of these applications is supervised by the operating system, often referred to as

the ‘middleware’. The operating system has a number of required functions. It is

responsible for managing the access that the applications have to the hardware services

such as processing and communication resource. It is also responsible for general systems

management tasks such as the boot process and managing faults arising in the system. As

such, the hardware needs to be capable of handling the software elements mentioned and

provide the hardware capabilities required. In order to interact with the other system

elements highlighted in Figure 3-1, the IMA will need to have analogue data input/output

capabilities and a suitable interface to allow the operator to control the system elements

and observe the internal states of interest.

Figure 3-3 shows how the modules of the system can be interfaced with a network in order

to interact with each other. This diagram highlights how additional hardware can be added

to the standard module in order to provide interfaces to sensors and actuators. The final

element of note is that a Graphical User Interface (GUI) can be added to the network to

provide the required data exchange between the system and the operator.

Chapter 3

IMA Demonstrator System Requirements

 70

Figure 3-3 IMA Module Integration

The baseline operating requirements are:

9. The design of the system shall follow fundamental IMA principles where

appropriate

10. Each IMA processing module shall follow the three layer stack architecture

11. The hardware and software shall be loosely coupled such that, within a limited

scope, a change in either shall not infer a change in the other.

12. The operating systems layer, or middle layer, shall manage the availability of the

hardware resources to the application layer

The required functionality for demonstration:

13. The operating systems layer shall manage the arising of a limited number of faults

within the system

14. A tangible output shall be created showing the management of the fault

15. The service provided by the system shall not be interrupted during the

management of the fault

Chapter 3

IMA Demonstrator System Requirements

 71

3.3.1. IMA Hardware

All the IMA operating system and applications require hardware resources in order to

function. In Chapter 2, examples of avionics hardware were highlighted that would be

capable of performing such role. Due to the constraints of the project, avionics standard

equipment cannot be incorporated. It is therefore important to identify the key elements

that are required and select hardware that can accommodate these.

Essentially, the applications and operating system will require basic computing needs,

namely:

• Appropriate access to processing resource to execute function

• Access to physical memory for storage of internal variables

• Access to communications channels

• Access to data storage facility

Further to this, Figure 3-3 highlights that some modules require extra hardware

functionality in the form data acquisition and a graphical user interface in order to interact

with the operator and the target plarform. An ideal solution here would involve a standard

processing board with expansion slots to provide extra capabilities where required.

In the spirit of IMA, the hardware should be capable of being replaced without affecting

the written software. This would suggest that the use of a higher-level language (such as

C++) compiled on to generic type hardware would provide a reasonable solution.

Furthermore, hardware rating to avionics standards of reliability will not be required for

the relatively short time scale of operation expected of the test rig.

The overall requirements are:

16. The hardware shall be capable of accommodating the required system functionality

in terms of processing resource, communication resource and I/O expectations.

17. To a limited scope, hardware shall be generic and a change in a hardware

component will not affect the fundamental design of the rest of the system.

18. The hardware shall have data acquisition capabilities where appropriate

Chapter 3

IMA Demonstrator System Requirements

 72

19. The hardware shall have a networking capability of deterministic communications

20. The hardware shall be expandable to allow additional hardware capabilities to be

included

3.3.2. IMA Middleware/Operating System

The systems management that forms the middleware of the IMA is the main focus of this

project. It is also a critical part of any IMA system as it is responsible for the overall

management and decision making for the system. The middleware architecture to be

adopted is represented by Figure 3-4.

Figure 3-4 IMA Middleware Architecture

An IMA comprises of an interacting system comprising of a number of modules connected

over a network (Figure 3-3). Therefore managing the IMA is a system wide problem

requiring communication and coordination between the nodes, more so than is highlighted

in Figure 3-4. This infers that processing time and communication time will have to be

made available for systems management activities along with the real time requirements

of the module.

Chapter 3

IMA Demonstrator System Requirements

 73

The concept of the system shown in Figure 3-4 is that the configuration of the assignment

of the applications to resources can be changed during system operation. The

configuration management function will have to have prior knowledge of the overall

functional requirements of the IMA in terms of the expected applications, their

communication needs and their own timing requirements. It will also require information

regarding the current health state of the hardware within the system to prevent allocation

of functions to a faulty component. An output of the configuration algorithms will be a set

of instructions to be distributed throughout the network detailing the application

assignment and the communication structure.

Figure 3-4 highlights how each application accesses communications channels. As opposed

to directly interfacing with the hardware, the data goes through a communications

manager in the middleware. By doing this, the communications manager cannot only make

the network protocols transparent to the applications, but also organises the data such

that it can be sent in a deterministic fashion.

An important part of the middleware for this application is the fault management function.

The purpose of this investigation is to perform appropriate fault management techniques

in order to maintain the service in the presence of faults. This fault manager will need to

obtain error messages from all significant components of the system, i.e. hardware,

applications, other modules, in order to make a decision on the appropriate action to take.

If this is to be an instruction to reconfigure, then this command can be passed back to the

configuration manager with the new restrictions on assignment criteria.

The requirements for the IMA middleware are:

21. The middleware shall manage the administrative aspects of the IMA across all

modules, inclusive of start-up, communications, configuration and faults.

22. The middleware shall manage accessibility of hardware resources to applications.

23. The middleware shall enable the execution of applications and communications to

be performed in a deterministic manner.

Chapter 3

IMA Demonstrator System Requirements

 74

24. The middleware shall allow the software and hardware disparate such that a

change in one should not infer a change in the other.

25. The middleware shall prevent any unwanted interaction between applications to a

reasonable degree.

3.3.2.1. Management of Application Access to Hardware Resources

The common theme of the middleware activities is that of managing the way applications

interact with the hardware on which they are housed. The purpose of this is to decouple to

software from the hardware such that their development becomes modular. This is the

fundamental property that provides many benefits as highlighted in the literature review

in Chapter 2.

Most of the interactions between software and hardware come from standard library files

and commands of any normal operating system. For example, if the code requests an

additional action, this is interpreted by the operating system into low level commands to

the computer hardware in order to return a result.

A complication within IMA is that of having a number of applications executing upon the

same module. The middleware has to be responsible for ensuring that applications can

share resources whilst ensuring that they execute to the timing schedules necessary to

perform deterministic functions. Further to this, the middleware should be responsible for

ensuring that applications are segregated from the operations or failures of other

applications running on the same module. These functions will run alongside the

communications needs highlighted in Section 3.3.2.4.

Following the design principles of IMA, the final need from the middleware is that it is

designed to be portable and modular such that it can operate on similar but different

hardware. This should allow the hardware to be incrementally changed without affecting

the operating system, and vice versa.

Chapter 3

IMA Demonstrator System Requirements

 75

Avionics standard middleware has to ensure key functional needs such as partitioning and

deterministic execution to a very high degree of fidelity. For the purposes of this

investigation, these items should be part of the developed code but need not match the

same high levels of reliability or robustness.

The requirements of this component of the system are:

26. The middleware shall share systems resources between applications

27. The middleware shall partition applications from all others

28. The middleware shall ensure that applications are executed in order to meet their

timing constraints.

29. The middleware shall be modular and portable

3.3.2.2. Configuration Management

The purposes of the configuration manager will be to derive and implement an appropriate

assignment of software applications to available resources. In order to achieve this, the

configuration manager will require to know:

• Details for each of the functional applications, such as how they interact and any

specific assignment requirements

• Details of each available resource on the network, such as signal input/output

capability or graphics output

• Constraints for the configuration such as any failure reports of components

From this information, it should be possible to either derive a configuration or report an

error message.

Figure 3-5 Configuration Manager

Chapter 3

IMA Demonstrator System Requirements

 76

A further complication to the configuration problem is that of assigning a schedule to the

execution of functions. If the system is to be deterministic, there will be a requirement for

critical functions of applications distributed across the network to run concurrently and

meet execution deadlines. This requires the synchronisation of execution network wide

and synchronisation of communications.

The goal for this project it to utilise a method whereby the configuration is generated

dynamically. This will mean that for any functional set of applications prepared and any

number of processing modules attached, the system will generate either an appropriate

configuration where possible or an error message. This also means that should a fault

occur in a system component, the configuration computations can be re-executed with the

new restraints in place.

The requirements are:

30. The configuration manager shall manage assignment of applications to resource

following application assignment requirements

31. The configurations generated shall ensure the applications can execute in a

deterministic fashion

32. The configuration/reconfiguration tasks shall be performed in a timely manner

33. The process of configuration/reconfiguration shall not disrupt the application

execution flow

34. To recalculate a new configuration based on constraints from fault signals

35. To Implement a new configuration without interrupting the service

3.3.2.3. Fault Management

The literature review in Chapter 2 identified that in order to provide fault management, 4

key items should be considered:

• Fault avoidance

• Fault removal

• Fault tolerance

Chapter 3

IMA Demonstrator System Requirements

 77

• Fault treatment

Fault avoidance and removal are largely concerned with good systems engineering

practices in design and are not the subject of the investigation here. Fault treatment is

often covered by a good support network that can diagnose the fault and replace the failed

component. The focus in this investigation is that of fault tolerance, as in how to

accommodate the occurrence of a fault whilst maintaining the intended service output.

The following items were identified in the literature review in order to perform fault

tolerance:

• Error detection

• Error handling

• Error confinement

• Error recovery

It can be seen at this stage that Figure 3-4 over simplifies the process of the fault

management system. The inclusion of a fault management mechanism, or more

specifically in this case fault tolerance, infers requirements on all aspects of the system.

Ideally, the system will have error detection mechanisms for each component of the

system with a structured fault reporting system that feeds back to a top level. At this

central location, a decision can be made as to the next best course of action, based on the

information provided. If, for example, the solution to the recover from the error is to

reconfigure then the configuration mechanism can be activated with the new constraints

applied.

A useful addition to the fault manager is that of an error log. This will have a record of any

identified faults and the result of the handling decision. This will provide an important

output to the verification of the fault tolerance process.

The requirements for fault management for this application are:

Chapter 3

IMA Demonstrator System Requirements

 78

36. The system shall be capable of detecting simple faults in various system

components, such as applications or hardware modules.

37. The system shall be capable of handling the occurrence of certain errors.

38. The system shall be capable of recovering from error by initiating the

reconfiguration mechanism with new constraints.

39. Where possible, the system shall confine faults such that their occurrence does not

propagate system wide.

40. The system shall maintain a log recording the error that has arisen and the

resultant action taken.

3.3.2.4. Communications Management

A large part of the IMA problem is managing this loosely coupled relationship of hardware

and software in a deterministic fashion. From the application perspective, data is expected

at a certain instance in time and makes the output of the function available upon

completion of execution. The communications manager, as shown in Figure 3-6, will be

responsible for taking this data and sending it to the appropriate application for which it is

intended.

Figure 3-6 Application Data Exchange Example

As an output of the configuration algorithms, the communications manager requires to be

informed of the timing characteristics for the functionality of the system. It is then

responsibility for managing the series of communication to achieve real time, deterministic

Chapter 3

IMA Demonstrator System Requirements

 79

communications whilst maintaining transparency of this process to the housed

applications. This can be done by interacting locally with the applications housed on the

same module to retrieve the necessary data and then send this data via a network to the

appropriate module that houses the target application. The data can then be processed by

the local communications manager on the receiving module to be passed to the correct

application.

The communications strategy requires flexibility such that should the functional

assignment change, the communications structure will also be required to change. It is

important that should this occur, the transition should be smooth and cannot be allowed

to cause disruption to the service.

The communication structure is not only responsible for sharing information between

applications across the network. Previously, it has been mentioned that aspects of the

systems manager will require communications between modules in order to obtain a

global picture. It is important that the systems management communications, that may be

non-deterministic, does not impact on the time critical communications.

The requirements of the communications algorithms are:

41. It shall provide deterministic communications between applications for assigned

configuration

42. It shall ensure that the network communications methodology is transparent to the

applications

43. It shall provide communications between systems management components

44. It shall Ensure that communications of systems management do not impact upon

the deterministic communications

45. It shall ensure smooth transition between configurations

3.3.3. IMA Applications

The applications within the IMA are the components that will be performing the functional

tasks assigned to the system. The code within the applications will be task specific, in this

Chapter 3

IMA Demonstrator System Requirements

 80

case it will be the control algorithms and any supporting functions desired to maintain the

airgap on the maglev test rig.

The challenge here is to ensure that the modularity of the system is protected such that,

should the applications or their functional structure change, there should be no change

inferred on the underlying middleware. The application will have to conform to an

interface standard such that they can be implemented on any IMA module. The main part

of this refers to the communications structure, as mentioned in section 3.3.2.4.

Where possible, applications have to be written such that they are not hardware specific.

In some certain circumstances, applications will require input from specific hardware

component such as a sensor or a keystroke, and therefore the application requires locating

on a module with this capability. The application will be require to state this to the

configuration manager such that this assignment is achieved.

In addition to this, applications have to be controllable in that the systems manager has

the capability to start/stop applications, schedule the execution and initiate their

execution in another part of the system.

The requirements of the applications are:

46. They shall perform a specified task

47. They shall be controllable by the system manager

48. They shall communicate with other applications via the communications structure

49. They shall have an assignment specification

For the purposes of the demonstration, the primary requirements for the applications will

be to maintain the airgap of the Maglev vehicle.

3.3.4. Graphical User Interface

The GUI in this application will be required to have two main functions. The first will be the

ability for a user to control the inputs associated with the Maglev rig and to monitor any

Chapter 3

IMA Demonstrator System Requirements

 81

sensor output. The second is to provide an input/output capability to facilitate a tangible

demonstration of the IMA systems management capabilities.

In order to perform the input/output requirements of controlling the rig itself, the GUI will

need to take an airgap demand from the user, pass this to the control algorithms for

processing and output data from all the associated sensors. It may also be required that

test inputs, such as a sinusoidal input, be used for analysing the control algorithms.

A more important output with regards to this investigation will be the interface detailing

the systems management activities of the IMA. The GUI should show the current

configuration of the system in terms of allocation of functional components to processing

resources. It should also show the relationships between the applications, as in the flow of

data and parallel processing channels. Further information to display can include

information about each system component and if a component is in a faulty condition. The

most important consideration is to make the information tangible to the observer

The baseline requirements are therefore:

50. The GUI shall provide an input capability for the demand of the Maglev rig

51. The GUI shall provide an output of sensor data from the Maglev rig

52. The GUI shall provide a test input capability

For the purposes of the demonstration Fault Management within the system:

53. The GUI shall display the configuration of the system in a tangible manner

54. The GUI shall highlight the process flow of the functions

55. The GUI shall display the health of the system components

56. The GUI shall display detailed information about each component

57. The GUI shall provide a fault injection capability

Chapter 3

IMA Demonstrator System Requirements

 82

3.4. Maglev
The main requirements instilled on the maglev rig are that it is controllable and

measurable. The rig should respond to the drive signals given to it, and output reliable

sensor data.

The rig is designed to be controlled by low voltage PWM signals, one for each magnet.

These signals are required to be amplified in order to provide sufficient power to the

magnets in order to magnetically suspend the vehicle.

The sensor outputs of the rig have different levels of critically, in that some signals are

used for the real time control aspects, and others are used for general monitoring

purposes. Table 3-2 below shows the sensors already installed on the rig and their purpose

for use.

Item Description Purpose of Use

Flux sensor Coil of wire embedded onto

magnet poleface. Signal is

integrated to a voltage

proportional to Flux density.

Critical - used for real time control.

Gap Sensor embedded to the

underside of the chassis.

Outputs a voltage proportional to

gap size.

Critical – used for real time control of

airgap.

Current A Hall effect sensor that outputs

a voltage proportional to current.

Can be used for real time control, but

more likely used for monitoring

purposes

Temperature Thermocouple embedded into

the coil.

Non-critical - Used purely for

monitoring.

Table 3-2 Maglev Rig Sensor Descriptions

Chapter 3

IMA Demonstrator System Requirements

 83

For all sensors it is important that a reasonable level of reliability is obtained such that

sensor failure does not impact development. The sensors should provide as clean and

repeatable signal as possible otherwise this will impact on the control design. It is a

reasonable extension here to design the signals such that they can be failed in order to

observe how the fault management system responds.

The rig has been designed with redundancy in mind, by duplication of certain elements.

Each magnet is dual wound, such that it has two separate excitation inputs. Each poleface

has two search coils embedded into the poleface to measure magnetic flux and two

temperature sensors. It is therefore possible to take advantage of this arrangement in that

sensor channels or actuation channels can be failed, and it will be up to the IMA to identify

this fault mode and respond to it. Figure 3-7 shows the possible duplex sensing

arrangements for interfacing with the magnet. Full details of the design and build of the

experimental rig can be found in Appendix C

Figure 3-7 Suggested sensor interface between IMA and Magnet

Chapter 3

IMA Demonstrator System Requirements

 84

Therefore, the requirements are:

58. The Maglev rig shall be controllable and respond as expected to inputs.

59. The Maglev rig shall provide clean, repeatable signals.

For the demonstration

60. The Maglev rig shall allow faults to be injected into it.

3.5. Summary of Requirements
The requirements presented here summarise the major considerations for the

development of a test rig that can demonstrate the main research outputs. A key challenge

is that of creating a network of computing modules that represent the fundamental

functionality and attributes of IMA in terms of facilitating the execution of application

whilst maintaining transparency of the underlying technology and processes. The aim of

defining and then replicating the features that are essential to fault tolerance is to ensure

the scientific findings are appropriate to a robust standard architecture.

The requirements are shown to have been satisfied by the Requirements Compliance

Matrix that can be found in Appendix B.

Fault Handling via Dynamic

Reconfiguration for IMA

CHAPTER 4:

IMA Implementation

Chapter 4

IMA Implementation

 86

4. IMA Implementation
This chapter describes the design and function of each component of the physical

implementation of the representative IMA for this project. A key aspect of this chapter will

be the description of how software applications are assigned and executed on the available

processing resources. The ability to sensibly and reliably assign different networks of

functions to varying levels of resource will be tested in Chapter 6.

Although fault management within this system is intrinsic to its design, the methods of

managing faults and how the system responds to these will be discussed at depth in

Chapter 7.

4.1. Top Level Design
A fundamental choice of the project was that of the computing capability. The solution

chosen was to use a real time operating system provided by National Instruments running

on a standard PC. This real time operating system (RTOS), called Pharlap, is also known as

LabVIEW ETS (Embedded Tools Suite). When installed as an operating system on a PC, it

will execute standard LabVIEW code in a deterministic fashion. The library files contained

as part of the RTOS provide the interface needed for the software to access hardware

resources such as networking capabilities or sensor inputs.

The issue highlighted with this solution is that LabVIEW ETS is not designed as a

middleware solution to an IMA implementation. Therefore a certain amount of

augmentation with custom designed code is required to fulfil the functions necessary for

this project. The implementation of this solution, as a comparison to the 3 layer stack

philosophy, is shown in Figure 4-1.

Chapter 4

IMA Implementation

 87

Figure 4-1 Practical Implementation of IMA

The PC itself contains as few extra components as possible. The complete hardware list

consists of:

• PC motherboard

• Intel Celeron D Processor

• RAM

• Hard disk drive

• Intel network PCI card

• Data acquisition card (where appropriate)

One stipulation using LabVIEW’s Pharlap as the operating system is there is a restriction

inferred on the choice of components used above. Pharlap is only compatible with a

certain number of processors, network PCI cards and National Instrument’s own data

acquisition cards. This fundamentally works against the principles of an open architecture

in which there are no restrictions on compatibility. For a commercial implementation for

IMA, this level of constraint would be unacceptable, but for an investigation into systems

management activities, the solution is adequate.

Aside from this restriction, the solution will allow the demonstration of fundamental IMA

principles. During development of the system, the original motherboard selected was

outmoded and hence irreplaceable. Instead an upgrade of similar specification was

Chapter 4

IMA Implementation

 88

purchased and this was inserted as a replacement into the system with no change required

to the rest of the system.

In summary, the benefits and issues of using this arrangement are highlighted in Error!

Reference source not found. below:

Benefits Issues

• Provides a flexible, workable solution to

the implementation of a representative

IMA

• Upgradeable (with certain restrictions)

• Cheap

• High performance computing

• Reliability

• Augmentation required to perform

middleware functions

• Not ‘future proof’

• Not an open architectural solution

Table 4-1 Analysis of LabVIEW implementation of IMA style middleware

The overall selection above provides a reasonable solution to the problem. A number of

key functions, as highlighted in Chapter 3, will be required to be written to mimic a true

IMA middleware. The following sections will detail how these functions are implemented.

4.2. Systems Management
An IMA can be considered as a distributed system in that the functional components are

spread across a number of computing resources connected by a network. One of the

questions this raises is that of decision making and, more importantly, which element

makes which decision. Major decisions which encompass the whole IMA such as

configuration selection will be made at a central location with the result communicated to

other modules. This results in two considerations, firstly the need for a good reporting

structure and secondly the introduction of a critical single point failure.

4.2.1. Systems Management Reporting Structure

The structure of management within the system takes a hierarchical approach whereby

there exists a global systems manager, responsible for making system wide decisions,

Chapter 4

IMA Implementation

 89

working with local systems managers that control and manage each module. Local systems

managers will be responsible for reporting faults within these modules to the global

systems manager and acting upon any instructions received, as shown in Figure 4-2.

Figure 4-2 Systems Management Hierarchy

The global systems manager constantly monitors the health of the hardware components

and applications of the system. For simplicity, these items are considered healthy or faulty.

The status of each of these items are retrieved from a number of sources, and collated

here to gain a systems wide view. Should the status of the system change, such as a

processing module or application is reported to have failed, the global systems manager

initiates the reconfiguration algorithms to optimise the allocation of required functionality

to remaining resources. The new configuration is then communicated to the rest of the

system and implemented by the local systems managers.

Chapter 4

IMA Implementation

 90

4.2.2. Timing and Synchronisation

The reporting and communication of systems management activities require bus

bandwidth to function. It is important that this communication does not interfere with the

‘hard’ real-time functions responsible for real time control loops.

It is assumed that the initial system configuration contains appropriate levels static

redundancy. This ensure that at the point of a failure occurring during a mission profile,

the system can continue to provide service during the time it takes to assess the new

system capability and decide the appropriate course of action to take. At any point, if a

failure occurs and no reconfiguration of the system will improve current capability as all

redundant options have been exploited, then the health assessment can be used to inform

the decision to continue the mission, return to base or ditch the aircraft.

Systems management activities are not ‘real-time’ functions in that the ability of them to

gather data and function is not affected by transient problems (such as ‘jitter’, signal delay

and requirement of regular data transfer) as real time control functions are.

Communication of systems management functions are allocated time on the network bus

following the completion of real-time functions, as shown in Figure 4-3. This is performed

by dividing bus time into regular time frames, synchronised by a data packet from the

global systems manager. Each time frame is segmented such that the systems

management activities are assigned bus communication bandwidth where interference

with real time functions is not possible.

Chapter 4

IMA Implementation

 91

Figure 4-3 Time Partitioning of Network Bus using Segmented Time Frames (TF)

This segmentation enables reconfiguration activities to be arranged in the background

whilst the system continues to operate. Following the identification of a failure,

information regarding the health is reported via the communication structure to the global

systems manager. At this stage the global systems manager attempt to identify a new

configuration that would restore higher levels of redundancy. As mentioned, if all options

have been used due to previous failures of available system components then the system

is reliant on the levels of static redundancy in the current configuration. If reconfiguration

is advised, the new configuration is communicated to the local systems managers whilst

the system continues to operate in its current state of reduced redundancy. After the new

configuration is prepared system wide (in that each module is aware of what the new

assignment and timings of applications and communication packages will be), the new

configuration is implemented by a message embedded in the synchronisation packet in the

time frame. Each module instantly discards the previous configuration and implements the

new. Changes have to be instant and occur at system wide synchronously to ensure that

no loss of service occurs during transition between configuration states.

4.2.3. Redundancy in Systems Management

Single point failures are traditionally compensated for by the implementation of redundant

processing channels. A similar solution could be applied here to provide a reversion option

should the module acting as the global systems manager fail.

Chapter 4

IMA Implementation

 92

As all processing modules in the system are very similar, the choice as to which one

performs the global systems management is arbitrary. In this case a node at a fixed IP

address is chosen and this module is assigned the role of Global Systems Manager at start-

up.

The proposed conceptual solution to the problem is to not only have a global systems

manager processing health and systems information, but for its actions to be replicated

and monitored by a number of modules aptly named Shadow Systems Managers. These

will mimic the actions of the global manager and look for any discrepancies or bad outputs.

Should the global manager be deemed to have failed, one of the shadow managers will be

able to assume authority with little or no delay.

Figure 4-4 Systems Management Tolerating Failure

Figure 4-4 focuses on the middleware sections of the IMA. Reconfiguration in this instance

will have to occur in this system on two levels. First of all, the systems management level

itself needs to be reconfigured dynamically. Following this, the application level needs to

be reconfigured in order to restore the system to an optimum level of functionality and

redundancy.

Local Systems
Manager 1

Local Systems
Manager 2

Global Systems
Manager

Shadow
Systems

Manager 1

Shadow
Systems

Manager 2

Local Systems
Manager 1

Local Systems
Manager 2

Global Systems
Manager

Shadow
Systems

Manager 2

Chapter 4

IMA Implementation

 93

The solution proposed is a conceptual one in that it has not been employed in the

developed system. It is described here to justify the chosen solution of a global systems

manager is a viable one, but in a more demanding environment than this project further

considerations must be made to guard against the occurrence of a failure.

All of the management level reconfiguration must occur in a transparent manner to the

applications.

4.3. Application Design
In order for the system to control the application with regards to the execution and

assignment, the system will have to know about the application. Statistical information

regarding each function requires storing in a location accessible to any decision making

element within the middleware. This information, along with the assignment of each

application, forms what is known in IMA as the system Blueprint.

The information required to be stored in the Blueprint can be found in Table 4-2. Most of

the information is a textual description of the task orientated functions of the system and

can almost be captured directly from an architectural systems analysis. These items are

filled in automatically as part of the start-up procedure. The rest of the content is

populated as a result of the configuration algorithms and will be discussed later.

Chapter 4

IMA Implementation

 94

Element Description

Application Name: The descriptive name of the functional component

Application Reference #: A unique number assigned to the application

Assigned to: The processing module identification number to which the
application is assigned

Inputs from: Details the name and source application for each of the
inputs

Outputs to: Details the name and target application for each of the
outputs

Assignment criteria: Contains information relating to the possible assignment of
each application. This is based on the functional description
of the system, but essentially ensures that the applications
are assigned in such a way not to jeopardise any redundant
channels and to ensure that applications that require certain
hardware are assigned to the appropriate hardware resource.
These will be ranked according to importance and the least
important criteria will be removed should there be no logical
solution to the configuration.
Example criteria:
!app1 - cannot run on same module as application ‘app1’
!Input 1 – the application that is the source of input 1 must be
on another module

Criticality: States the level of importance to the system. The application
is flagged as time critical if it is the last function in a network
of distributed real-time functions. This enables priority over
less critical functions (such as data display) and could be
graded depending on the task. (See section 4.4.1.1 for more
information)

Run time: The time it takes the application to execute based on worst-
case execution time assessment

Start time: The time the application is due to start in the time frame (NB
It is assumed that each application runs once every time
frame)

Table 4-2 IMA Blueprint Outline

Chapter 4

IMA Implementation

 95

4.3.1. Application specification example

Figure 4-5 shows a network of functions that have to be performed in a set time frame.

Figure 4-5 A Simple Network of Functions

This diagram is similar to a critical path analysis where each element is unable to execute

until its data input is available. Applications B1 and B2 represent a duplicated function

where B represents the function, and the numeral indicates the channel number.

From here, relevant information for the system blueprint can be captured. Considering

application ‘B1’, the following can be captured:

Element Value Explanation

Application
Name:

app B1

Application
Reference #:

Assigned automatically, but will be a
unique identifier.

Assigned to: Value defined by configuration algorithms

Inputs from: From Data name

app A data A2B1

A table is shown here in case more than
one input is expected

Outputs to: To Data name

app C data B12C

Assignment
criteria:

!B2 It is not desirable to locate the redundant
process on the same physical resource

Criticality: Value only entered if this is the last process
in the functional tree

Chapter 4

IMA Implementation

 96

Run time: <us> This time is taken from experimentation. A
more ideal measure is making an
assessment on the amount of computing
resource required, but a time in micro
seconds is generally accurate enough

Start time: Value is defined by configuration process

Table 4-3 Example Capture of Application Information

This textual description is stored with the application such that on start up, the global

systems manager can assimilate this information.

4.4. Configuration/Re-configuration
The purpose of the configuration algorithms is to derive an appropriate allocation of

applications to computing resources. This assignment should take into consideration:

• Available processing time on each module

• Hardware requirements of the applications

• The requirements for real time, deterministic execution of distributed tasks

The goal is to achieve automatically an appropriate distribution of functions that would

mimic a manual design of a distributed real time control system.

Functional distribution throughout a standard non-reconfigurable distributed control

system is normally done by deriving the relative time each activity can function without

interference within each time frame. A time frame (TF) is a regular division of time in which

activities are scheduled to occur, and then repeated for as long as necessary. An example

of how functions might be scheduled to run across the distributed system is shown in

Figure 4-6.

Chapter 4

IMA Implementation

 97

Figure 4-6 Organising a Real Time Distributed Control System

Figure 4-6 shows how each functional element is assigned not only to a resource, but also a

slot of time in which to execute. This is true also for communications where each data

packet has to be scheduled on the network such that collisions are entirely avoided.

This method of arrangement is a classic technique when arranging distributed real time

systems and as such forms the basis of the design of here. It is essential to maintain the

concurrency of events to uphold the integrity of the real time control. The designer of the

system can measure or approximate the time required for each of the tasks or

communications to take place such that these can be incorporated into the design of the

control problem.

Previous examples of configuring an IMA have used a multi-static approach where a

number of configurations are designed, stored in the systems blueprint and reverted to as

a response to either a change in functional need or a fault. In this project, the

configuration will be derived dynamically. The algorithms are executed and an assignment

set is derived based on current information regarding the state of the system. Should the

Chapter 4

IMA Implementation

 98

system require a different functional set, or require response to a fault, the configuration

algorithms will be repeated using current system health inputs as assignment restrictions.

The configuration methodology adopted is based on that highlighted by Yann-Heng (Yann-

Hang, Daeyoung, Younis, Zhou, & McElroy, 2000) but largely focuses on the temporal

partitioning problem. Yann-Heng highlights the importance of spatial partitioning to

prevent the propagation or errors between operating applications. Further to Yann-Heng’s

work, this investigation looks into the additional problem of functional networks where a

single application may have many inputs derived from an interacting web of functions

before it can perform its task. The configuration is then stored in the system blueprint and

communicated to the local systems managers.

Lee (Lee, Kim, Younis, & Zhou, 2000) furthers previous work by discussing how the

temporal and spatial partitioning drives the configuration of the system. Each task and

communication must be arranged such that they do not interfere with neighbouring

functions. Lee demonstrates a system where this is performed in a static manner. In this

investigation similar principles are studied but with the aim to produce a method of

autonomous configuration and a resultant robust schedule as part of the system design.

The resource allocation problem is based on the CPRTA (Constraint Pro-gramming for

solving Real-Time Allocation) method investigated by Hladik (Hladik, Cambazard,

Daplanche, & Jussien, 2008). The progression from this work is that in this case the

algorithms are executed at run time, and will be employed to facilitate reconfiguration

during the system operation. For this to occur, the appropriate systems descriptions

normally chosen in a static sense will have to be derived automatically in order to bound

the configuration algorithm. The methods employed here to facilitate this will be described

at a later stage.

A number of plausible methods exist where a configuration can be derived, such as the use

of neural networks or Bayesian belief networks. For this project, a recursive placement

algorithm method is used where applications are placed where they do not contradict

Chapter 4

IMA Implementation

 99

assignment criteria provided in the application information (Table 4-3 Example Capture of

Application Information)

The configuration process implemented is explained using a simple example in section

4.4.1.

4.4.1. Configuration Example

This example will describe the process the system follows in order to assign the network of

functions described in Figure 4-5 to a set of standard modular processing resources, shown

in Figure 4-7.

Figure 4-7 Simple Network of IMA Resources

The functions shown in Figure 4-5 will have interdependency as they are all part of a

process flow. A complete system is expected to have any number of functional networks

operating alongside each other. The configuration algorithm developed places each

functional set in turn to ensure concurrency of the process flow is maintained. As this is an

initial system configuration, if at any point no solution to the configuration problem can be

found then essentially the system fails to boot and informs the design team or system

maintainers that there is a mis-match in available processing and resources to required

application functionality.

Chapter 4

IMA Implementation

 100

The top level process that is followed is shown in the flow chart in Figure 4-8. For further

detail regarding the algorithm, a pseudo code version describing the whole configuration

algorithm is included in Appendix D.

Figure 4-8 Recursive Placement Algorithm Process Flow

The general philosophy behind the process is that the most critical function is identified

and placed first. The algorithm then attempts to place all necessary pre-requisite functions

(i.e. all those preceding it in its functional tree) to this critical function, adjusting execution

orders and timings along the way. Upon completion of the placement of the functional set,

the allocation and timings are then fixed and are not allowed to be adjusted by later

allocations. The process is repeated for subsequent functional sets, placing the remaining

applications around those already assigned. This process is repeated until all functions are

Chapter 4

IMA Implementation

 101

placed. If at any stage, a process cannot be completed, an error is returned and the

configuration fails.

The individual processes (numbered 1 to 5 in Figure 4-8) are explained in the following

relevant sections.

4.4.1.1. Process 1: Order Functions by Criticality (and Identify Resources)

The level of criticality of the functions in this case is a simple solution where a function is

declared ‘time critical’, by entering ‘TC’ in the appropriate field when defining the

application specification. Although all real-time functions have deadlines to meet, data

related to a safety critical items such as a flight control function for example, should take

priority over display data or less critical control activities. In more complex networks of

functions, criticality will be required to be graded and the process to be described can be

modified in order to accommodate this.

The process for sorting the functions into criticality is actually quite a simple one, and

summarised in Figure 4-9.

Chapter 4

IMA Implementation

 102

Figure 4-9 Order Functions by Criticality

Figure 4-9 contains a data store named ‘Order of Functions’. This is an internal variable

designed to store references to the functions in order of criticality.

Aside from functions marked ‘time critical’, it is also considered that the next most

important functions are in fact those that perform the actual output required of the

system. These functions normally have an output to an actuator or to a display screen and

therefore will have more specific allocation requirements in the IMA hardware. These

functions are considered more important in order to be placed first. These terminal

functions are often easily identifiable by analysis of the functional specifications as they

have no communication data to be output on the network alongside their physical

interactions with the environment. Process 1.2 “find function with no data output” in

Figure 4-9 above refers to this search. This process may not provide an optimal solution,

bus does enable a configuration to be realised that satisfies timing requirements.

Chapter 4

IMA Implementation

 103

4.4.1.2. Process 2: Select Next Function

Selecting the next function to place requires more thought and care than is first envisaged.

This is brought about by the desire to place functions by following the process flow along

the functional network. As mentioned earlier, the general procedure is to start by placing

the last function in the set and working backwards. Where multiple inputs into a function

occur, each branch has to be pursued in turn in order to be sure that all pre-requisite

functions are placed. The process followed is similar to a blind search algorithm where the

first input is followed each time until an initiating function (one with no data inputs) is

found. The search resumes by selecting the next input at the lowest level branch until all

avenues have been explored.

The process is described in Figure 4-10. A key feature of this process is the “breadcrumb

array” - an internal variable that keeps track of the path taken through the functions such

that it can be retraced when the current avenue has been fully explored.

Figure 4-10 Find Next Function to Place

Chapter 4

IMA Implementation

 104

When a functional tree is complete, defined by the decision block 2.3 in Figure 4-10, the

attributes relating the assignment of these functions is fixed. Other functional sets have to

be assigned around these functions in order to ensure that the timing specification derived

is not compromised by later assignments. When this occurs, the algorithm looks for the

next most critical function calculated earlier and described in section 4.4.1.1.

4.4.1.3. Process 3: Placing Function on Resources

Placing a function on a resource has to be performed carefully in order to make sure that

the assignment criteria are satisfied. The general process is that the algorithm attempts to

place the function on each resource in turn, moving on only if a contradiction is found in

the assignment criteria. The process is described in the flow diagram of Figure 4-11.

Figure 4-11 Assign Function to Resource

Chapter 4

IMA Implementation

 105

Generally, functions have the requirement to be assigned to a specific type of hardware,

such as an input/output module, or require to be segregated from redundant processing.

Further requirements come from the desire to not overload a single resource with too

many functions.

Should no resource be found that does not contradict the assignment criteria, the entire

configuration process fails with an error output.

4.4.1.4. Process 4: Schedule of Application Execution and Communications

A critical aspect of managing the configuration is ensuring that the resultant arrangement

is a concurrent process that satisfies the functional flow described in design, such as

outlined in Figure 4-5. It is important that the process takes into account the arrangement

on each module such that they execute in the correct order, but considers a system wide

perspective to take into account pre-requisite functions running on another resources. The

process therefore follows two main functions, correcting the order of functions placed

upon the current module, and the correction of timing of each of these functions. Both of

these processes are executed each time a new function is placed on a module.

Correcting the execution order upon the module

This part of the process is the implementation of a sorting algorithm in order to ensure

that pre-requisite functions are scheduled to execute on the module before later

functions. The sorting process is described in Figure 4-12.

The resource assignment log, mentioned in the previous section, not only keeps track of

the assignment of functions to resources, but also records the order and timing of each of

the functions on each resource. The information is very similar to that recorded in the

system blueprint but with a view taken from the resources as opposed to the functions.

The process begins by placing the newest function of interest at the front of the module.

The algorithm then checks if any application scheduled to execute later on the module is

Chapter 4

IMA Implementation

 106

actually a pre-requisite of a function scheduled to run sooner. Clearly, this arrangement

would cause concurrency problems in the overall execution of the functionality.

Figure 4-12 Order Function on Module

Processes 4.4. and 4.5 describe the identification of an out of order function, and the

process of swapping them around. A prerequisite function is identified as being out of

order if it realised that its execution is scheduled to complete after the scheduled start of a

Chapter 4

IMA Implementation

 107

subsequent function. Process 4.4 also involves a check to confirm that the functions being

compared do exist within the same network of functions. This check could be done by

another ‘blind man’s search’ of the data interactions leading up to this module. This would

provide a more accurate picture of the relationship but be more timely and complex.

However, in this instance a more simple check is made in the following way:

• Is this function part of the same functional tree?

• Is this function at a lower respective level in the tree according to the breadcrumb

array?

If both of these tests are true, then the function is considered a prerequisite. Although not

entirely accurate and represents an area for improvement, this was found to be an

appropriate solution.

If a newly added function is not affected by this sorting algorithm because it is not

recognised as part of the functional set, the next stage in the process arranges it into an

appropriate time slot in order to allow access to processing time upon the module. This is

described in the following section.

Assign Timing to Execution and Communications

A critical part in the configuration process is the accurate assignment of timing to the

execution of the functions and the communications. Without this, the system will not be

capable of correctly performing distributed real time control algorithms. It is vital that

functions are scheduled to run concurrently and that communications are arranged to

support this need and timed to avoid collisions on the databus.

One way of considering the timing problem is working out the earliest possible time

available for the function to execute. This is dependant on the latest time of two

considerations:

• The time the last input is due to be received by the function from its immediate

prerequisites.

• The earliest available block of processing time for executing the function on the

module.

Chapter 4

IMA Implementation

 108

A similar pair of considerations applies to the communications structure. The earliest data

transmission time will be the latest time taken from the following:

• The time the function completes from which the data originates.

• The earliest available block of time on the network for transmitting the data packet.

Both these sets of constraints infer that the pre-requisite function has been placed. It can

be seen that this is slightly contradictory to the process outlined in Figure 4-8, as this

describes a process that works backward along the functional tree. The timing adjustment

is actually triggered as the algorithm retraces its steps back up the functional tree. This

way, as each pre-requisite is placed, the timing of the subsequent function and the

associated communications are re-evaluated, as shown in Figure 4-13.

Figure 4-13 Relationship between search direction and function

The overall process for assigning a time is as shown in Figure 4-14.

Chapter 4

IMA Implementation

 109

Figure 4-14 Process to Assign Timings to Communications and Execution

Process 4.8 assigns a provisional ‘earliest possible’ execution time for the function

assigned. This is based on the order in the execution queue that it has been given from the

process outlined previously. This algorithm derives from the assignment information

already stored the time at which the current function can execute. This will be equal to the

end time of the preceding function.

After the pre-requisite functions have also been assigned, it is now possible to schedule

the communications. This is done by searching an internal variable storing the global

communications timings. This variable is an array that stores all planned traffic travelling

along the network. By analysing this array, starting from the time that the preceding

function is due to end, a gap can be found that is large enough to fit the data transfer in.

This new data packet information is then added to the global timings array.

Chapter 4

IMA Implementation

 110

At this stage, the earliest time that the function of interest can be executed can be now

found by adjusting the start time of the function to occur after the end of the planned data

arrival. This information is then recorded.

4.4.1.5. Process 5: Record all Details in Blueprint

The final part of the process is to write all values from the important internal variables to

the system blueprint. At the end of the configuration process, there are two internal

variables that contain the information required. These are:

• Resource Assignment log

• Global Communications Timing

The Resource Assignment log contains all the schedule and timing information for the

functions, with a view taken from the resources. This is converted into the blueprint

format which takes its perspective from a functions point of view. The global

communications timing variable array contains the information for all the data packets

upon the network. This is now interrogated and the appropriate timing information is

written to the input/output data pack information stored in the blueprint.

This information is then communicated to the entire system ready to be implemented.

4.4.2. Start Up Procedures

Upon powering up, the system has a number of tasks that require performing, namely:

• Assignment of management roles (global systems manager, local systems

managers, etc)

• Identification of hardware elements and capabilities

• Identification of applications to be assigned and requirements

• Assign an initial configuration and begin functional tasks

Before the system is powered up, the hard drives of each processing module are installed

with software that comprises the IMA middleware and the associated applications. This

technique is implemented as it avoids any transfer of programming code when

Chapter 4

IMA Implementation

 111

applications are re-assigned. Instead applications can be activated or de-activated

depending on assignment.

The first module powered up is assigned the responsibility of performing global systems

management duties. As the processing module is already loaded with all the applications

that could be implemented systems wide, it can already begin to populate the blueprint

with information. The global management module then begins to wait for other modules

to make themselves known.

The connection process is designed as an opportunity for each module to introduce itself

to the systems manager. Not only does it register itself as an available processing module

on the network, it makes the global systems manager aware of its hardware capabilities,

i.e. Data input/output. The capability of each module is currently done by defining the

name of the module upon installing software, but could be done via an automatic self

check on system start up.

The global systems manager uses this information to populate resource information for

the configuration algorithm to interrogate, as described in section 4.4.1. It will then wait

for more modules to introduce themselves, or until the user issues the command to

initiate configuration. Upon receiving this command, it will attempt to assign the functions

installed on the system to the resources that have appeared on the network by initiating

the configuration process.

4.4.3. Using this Algorithm for Reconfiguration

Reconfiguration is employed in this system as a method of handling and tolerating faults

that occur in the IMA. As such, the system will undergo a reconfiguration when it identifies

an appropriate event that can be solved by reconfiguration. The system will attempt a

reconfiguration when it is recommended by this systems manager to do so.

A new configuration can be generated by repeating the above process, but placing further

restrictions on assignments to avoid re-using faulty components. For example, if a module

Chapter 4

IMA Implementation

 112

fails, it is removed from the available resource list before the configuration process is run.

This way the resultant configuration will not have assigned any functions to this resource.

The reconfiguration process during run-time raises key safety concerns. Developing a new

configuration will take time and is unlikely to completed within a single time-frame. At the

instance of failure, the IMA must have fault tolerant mechanisms that do not rely on

reconfiguration to continue to provide service. The solution to this problem is in using

traditional multiplexing techniques and rules such that the placement of applications on

modules will not result in the loss of all redundant processing channels should a single

module or a single application fail. Other inherent design characteristics of IMA,

particularly good partitioning and fault containments, will prevent a single failure

propagating throughout the system.

Implementing a new configuration is also an identified area of high operational risk as it

requires current processes to be stopped and new processes to be started. In terms of a

safety case, the failure of this process is a critical problem that requires to be addressed.

The particular problem of stopping a set process and starting a new one cannot be

removed from this system as it would prevent reconfiguration being an option in event of

failure. However, the risk of failure has been reduced by taking certain steps within the

design and implementation of the IMA. The first step is in the installation of applications.

In this architecture, all applications are installed on all modules ready to be executed.

Implementing a new configuration is performed by instructing which applications to

execute and which to not. This removes any complications and failure modes that could be

introduced by physically installing applications during run-time.

This also means that implementing a new configuration can be performed at the end of a

time frame and be ready to go as the new frame starts by implementing two substitutions

of data on each module following the communication of the new configuration from the

Master unit. The first is a variable within the local systems manager that instructs which

application to execute on this module. The second is the array mapping of data outputs to

Chapter 4

IMA Implementation

 113

physical network addresses within the communications manager within each module, and

changing the times within the frame that these are expected to happen.

The resultant levels of redundancy restored will be dependent on the available remaining

processing modules. It is possible at this stage to prioritise critical processing channels at

the expense of those less critical in order to restore higher levels of redundancy.

The reconfiguration process suggested here will mean that, although reconfiguration

cannot be achieved within a single time frame of a few milliseconds, the system will only

be operating at a lower level of redundancy for the few time frames it takes to restore

critical channels.

4.4.4. Configuration Summary

The configuration presented here provides a rigorous process for assigning simple

networks of functions to resources based on a logical assignment method that ensures the

applications are not placed in contradiction to their operating requirements.

There are a number of ways in which this process could be improved to maximise the

resources available. An example of this would be the inclusion of an optimisation method

for the execution timings whereby the most critical functions could be adjusted, as long as

they still met their delivery time. This may allow less critical functions to run more

efficiently, or even enable a configuration to be realised at all.

An example of how optimisation can be beneficial is shown in Figure 4-15. The top part of

the diagram shows the result of a basic configuration of a process stream, with functions

for input, process and output. This is executed alongside a redundant set of functions with

lower criticality named Input 2, Process 2, Output 2. By following the above configuration

process, a configuration that does not contradict placement requirements is obtained, but

the solution is non-optimal. It can be seen after manual optimisation that the execution

deadline of both streams can be arranged to meet a hypothetical deadline, as opposed to

just the primary stream.

Chapter 4

IMA Implementation

 114

Although not covered in this research, it would be possible to study and create an

adjustment method to take advantage of opportunities for overall system improvement at

the expense of some specific performance criteria.

Figure 4-15 Benefits of Optimisation

4.5. Synchronisation and Communications
The ultimate goal of the implementation of the IMA it to provide a flexible architecture

that meets the requirements of a real time controller. Well-founded methods and

procedures exist for so called traditional distributed control systems in which the system

design is static. These methods are designed for systems whose hardware and software

Chapter 4

IMA Implementation

 115

components are largely bespoke and are not intended to be changed throughout the

system’s lifecycle. It is the designer’s responsibility to arrange the communication timings

and synchronisation of modules in order to maintain a concurrent real time process. In a

flexible system where the physical location of software components and the time within

the frame at which these might execute is all changeable, the synchronisation and

communication will have to be arranged and checked autonomously. Most of this issue has

been dealt with in the design of the reconfiguration algorithm but it remains to be defined

how the execution of applications and the timings of communications are performed such

that these timing needs are met.

The following sections will review the critical aspects of distributed real time control

systems and comment on how these issues are addressed in this architecture.

4.5.1. Synchronisation of Modules

A fundamental issue of running separate processing modules is the synchronisation of the

processing clock on each hardware module. To ensure concurrency, it is required that each

time frame within each module is begun at the same instant in time. If this is not the case,

timeout faults or data packet collisions will occur as variables will not be available to be

transmitted in their globally allotted time frame.

Although highly complex clock synchronisation techniques exist, in this application it is

possible to take a higher-level solution to the problem. The key requirement here is to

ensure that each module begins its time frame at the same instant, allowing for a small

margin of error that would result in an acceptable level of ‘jitter’ in terms of the resultant

sample time.

Rather than adjusting the underlying processor clock, the solution undertaken here is to

use a single data packet as a global synchronisation message to denote the start of a time

frame. The master module in the system is responsible for the timing and distribution of

this message. The other modules must have completed any outstanding activity and be

awaiting this message, ready to begin a new time frame.

Chapter 4

IMA Implementation

 116

This method is not without its limitations. Firstly, there is the issue of accuracy of timing.

This method largely relies on a swift, uninterrupted message to be sent to all modules on

the network synchronously. Due to the latency of transmission and any intermediary

software delays, this will never truly be the case. Secondly, there is the introduction of a

single point failure. If the message fails to send for whatever reason, for example a master

module failure or a software blip that means this message is missed, then the whole time

frame is jeopardised.

Despite these shortcomings, experimentation with this method has shown it to have very

reasonable reliability and accuracy. Although not suitable for high-end applications, it has

proved to be effective enough for the purposes of this investigation.

4.5.2. Synchronisation of Applications

The configuration algorithm assigns the physical location and start time of each

application. It is now important to ensure that these applications are run at the correct

moment in order to meet these timing criteria.

The execution timing is achieved in this setting by making each application wait until its

prerequisite data has arrived. This method guarantees that the most recent data is being

used in processing and not an out of date value. By not having a separate method for

controlling the timings for applications and allowing the communications to control the

process flow, conflict of timings between the two and the need for extra synchronisation is

removed. Late or missing data can be handled by including appropriate ‘time-outs’ in any

functions that are waiting for data, with the generation of appropriate error messages.

4.5.3. Synchronisation of Communications

As with the application synchronisation, the timing and arrangement of the

communication to satisfy the concurrency of the functional flow has been defined in the

reconfiguration algorithm. This section describes the mechanism involved to ensure that

these timings are achieved.

Chapter 4

IMA Implementation

 117

As part of the configuration process, the communication structure is defined. Details of

when each data packet can be sent is recorded as part of the overall blueprint of the

system – effectively stored as an attribute of each application in terms of the input ‘Rx’

time and the output ‘Tx’ time. When a new blueprint is distributed, each module can

search the attributes mentioned to identify when it is required to perform a data transfer.

This information is used to control the communication timings of each module from the

application layer of the 3-layer stack.

As mentioned previously, the communications timing controls the execution of the

applications. For incoming data packets, the software will wait until its allotted time slot

and then prepare to receive data. When a data packet is received, this triggers the

execution of the application. The output data of this function is stored until the allotted

time frame to transmit is reached.

4.5.3.1. Collision Avoidance

Ethernet is a serial communication method based on a collision detection mechanism. The

hardware is designed to identify when two nodes on the network are attempting to send a

packet, and to wait a random amount of time before attempting a resend. In order to

achieve as close to real time control as possible a collision avoidance technique must be

used, as is the case with the MIL-STD-1553 or ARINC 629 bus topologies.

Collision avoidance is normally done with low level programming of the communication

hardware. Specific time slots for each data packet are designed off-line and programmed

into the system. This provides a rigorous solution and optimises the use of the databus

allowing high levels of data transfer. However, Ethernet cards are widely commercially

available and very low cost in comparison to other methods. This makes them an attractive

solution if they can be used in a collision avoidance manner.

The way the solution was achieved in this example is to control the timing of data transfer

in a higher level program. By using the data packet timings from the blueprint, each node

Chapter 4

IMA Implementation

 118

can be prepared to send and receive at the appropriate time, ensuring collisions are

avoided. However, Ethernet cards are not designed to be used in this way and as a result

introduce extra delays in the system. They are relatively slow to begin a communication as

each card will always perform a check to see if the databus is clear before attempting to

transmit. This introduces a delay of around 1ms to each data packet transfer. As a result of

this, the amount of data transferred along the databus is not restricted by the quoted

bandwidth of the system but by the number of data transfers that are required to be

performed within a set time frame. The resultant system, albeit appropriate for this

example, actually uses a fraction of the available data bandwidth normally available.

4.5.3.2. Managing Time Critical and Non-Time Critical Data

Data between applications is not the only information to be sent over the network. Already

it has been mentioned that a synchronisation signal is being transmitted, as well as

systems management data used to communicate between the command aspects of the

system. It is important to manage the so-called overhead data around time-critical data to

avoid any interference to the real time application.

The time frame in which the applications are scheduled to run concurrently is split into 3

sequential parts. The first sub-frame allows for the transmission of the ‘drumbeat’ or

timing-pulse signal from the master module to all others on the network. The second sub-

frame allows enough time for all the data between applications to be passed and the third

allows for the systems management communications to occur. This division of time is

shown below in Figure 4-16. Here, 3 modular processors are running a simple concurrent

series of functions, with Processor 2 designated as the master module.

Chapter 4

IMA Implementation

 119

Figure 4-16 Subdivision of Time Frame

In this system, this order is deliberately chosen with the intention that as much overhead

processing and data transfer as possible is saved until after the real time functions have

been completed. As well as helping these real time events to stay concurrent and

repeatable, it also allows the delay from the acquisition of an input to the output of a

command signal to be reduced to a minimum, which is particularly beneficial in terms of

control system performance.

4.6. Error Recovery
The focus of this study is in the use of dynamic reconfiguration as a method of responding

to the occurrence of a fault, in order to restore higher levels of redundancy and capability.

The most pertinent errors to observe in this study will be those that are associated with

the IMA operation itself, as opposed to errors experienced in the target platform. Although

it is theoretically possible to use a variety of fault detection methods installed as

applications to identify faults within the Maglev system, it is more useful to study those

that will affect the processing or communications within the IMA.

Chapter 4

IMA Implementation

 120

For the purposes of this investigation, case studies regarding specific failure modes will be

studied. Two specific cases will be taken forward, namely:

• Failure of a processing module

• Failure of an application to execute

These failures have been chosen as they capture two levels of systems failure. The failure

of an application is likely to interrupt a single processing stream whereas the failure of a

module could affect many, dependant on the allocation of tasks.

The precise modes of these failures will be discussed in the following section. Each failure

mode will be defined along with the expected effects of the failure.

4.6.1. Processing module failure

Failure Mode: In this case the module is simulated to have failed to a silent state, as if

power has been cut to it completely, or the system has ‘hung’.

Effects: Any application executing on this module will no longer respond, including any

system management activities. The module will not output any random communication to

consume bandwidth unexpectedly.

Failure Detection: In this case, as the failure is simulated, an automated error message is

also generated to be sent to the systems manager. Although failure detection methods are

possible in this circumstance they are not generated here. This message will inform the

system manager of the specific module that has failed and initiate the reconfiguration

process.

Expected System Reaction: At the instance of the fault the system will maintain service

provision. This will be possible as the allocation of any redundant processing channels for

this service will be arranged such that a single module failure will not prevent these

executing. The IMA will operate at a lower level of redundancy until reconfiguration has

Chapter 4

IMA Implementation

 121

occurred. The system will reconfigure to the highest possible capability using new

information about available resources.

4.6.2. Application Failure

Failure Mode: In this case application is simulated to have failed to a silent state. This is as

if the application has ‘hung’ and is no longer executing.

Effects: The assumption here is that correct partitioning on this module will prevent other

applications that are sharing the resource from failing. The effects seen will be the absence

of any data results from the application. Subsequent applications further along the

processing channel will receive ‘null’ data packets.

Failure Detection: As the failure is simulated, an automated error message is also

generated to be sent to the systems manager. Although failure detection methods such as

timeouts and data checking techniques are possible they are not generated here. This

message will inform the system manager of the specific application that has failed and

initiate the reconfiguration process.

Expected System Reaction: At the time of the fault, the application will stop sending data

results for communication. Service provision is expected to be maintained as the initial

design of a duplex channel will mean there are further channels replicating this service.

Appropriate data checking methods will allow the selection of the remaining true data

whilst ignoring any null data. The system will the reconfigure and attempt to place this

particular application on a different processing module in an attempt to rectify the failure.

4.6.3. Summary

Both the failure modes described above can be tested by raising an error code manually to

simulate the occurrence of the fault. This will then trigger a reconfiguration request with

any new configuration restrictions included in the call. Suitable logging of the events will

Chapter 4

IMA Implementation

 122

occur such that a view of the reconfiguration process can be reported. The results of these

tests are reported in Chapter 7.

Fault Handling via Dynamic

Reconfiguration for IMA

CHAPTER 5:

Configuration and Real-

Time Robustness Testing

Chapter 5

Configuration and Real-Time Robustness Testing

 124

5. Configuration and Real-Time Robustness Testing
The purpose of this chapter is to test the appropriateness of the configuration algorithm

described in Chapter 5. The algorithm will be given a series of functional networks and

processing resources to assign them to. In the following chapter, a series of failures will be

introduced to the system to attempt to observe the successful re-assignment of functions

such that as much service as possible can be maintained, and graceful degradation is

achieved.

In addition to these tests, a simple functional network will be implemented on the IMA test

rig and used to assess the performance of the communications between applications.

5.1. Validation of the Configuration Algorithm
This section contains the results of a series of functional allocation problems. The purpose

of these tests is to demonstrate that the configuration algorithm developed will allocate

networks of functions to available resources. The applications should be placed such that

service will be maintained (where applicable) at the instance of:

• A complete processing module failure

• A failure of an application

The configuration algorithm will be presented with increasingly complex functional

networks (i.e. duplex and triplex arrangements) and should place these networks whilst

maintaining the independent processing channels in the event of a single failure. At this

stage, reconfiguration is not being assessed, only the ability to sensibly configure simple

application structures. This will demonstrate that the system arranges applications in order

to tolerate faults at the instant of occurrence via a traditional redundancy-based method.

The resultant algorithms are generated only to test the configuration algorithm and are

not implemented nor execute on the developed IMA network. This allows a freedom to

experiment with different hypothetical configurations.

Chapter 5

Configuration and Real-Time Robustness Testing

 125

A hypothetical real-time processing task is defined for the purpose of this benchmark test.

It is assumed that data is to be collected from a sensing element, processed during each

sample, with the result informing some actuation activity. This scenario can be extended to

include duplex or triplex processing channels, multiple sources for sensing or increased

redundancy in actuation. Escalating the levels of redundancy within the system

complicates the assignment process for the configuration algorithm.

The following sections show the result of the configuration algorithm for a number of

application networks based on the above hypothetical description. Each section will

include:

• a brief description of the necessary system design in terms of hardware

requirements

• A description of the assignment criteria for the functions

• A diagram showing the allocation of function

In order to restrict the testing to the configuration methodology, any systems

management processes and communications are ignored. It is also assumed that each

application takes 2 milliseconds seconds to execute and each communication packet is

allowed 1 millisecond to transmit and receive.

5.1.1. Single Sensor, Single Process and Single Actuator

The first functional set of applications to assign is a simple ‘sense, process and actuate’

structure as defined in Figure 5-1. The rectangular blocks represent the application and the

labelled arrows represent the required data communication.

Figure 5-1 Single Sense, Process and Actuation

Chapter 5

Configuration and Real-Time Robustness Testing

 126

As this represents a real time process, the three applications in Figure 5-1 must occur

concurrently and within the same processing interval (or time frame). Ideally, there should

be a minimum amount of time between the ‘Sense’ and ‘Actuate’ function.

In order for a configuration to be realised, two processing modules are required:

• An input/output (I/O) module (Named ‘IOMOD’) – this module has physical links to

the required sensing and/or actuation hardware

• A standard processing module (Named ‘Module 1’)

It could be argued that in this case, there need only be a single module equipped with

sensors and actuators that can also house the processing task, but the arrangement in

Figure 5-1 is chosen as it is more readily expanded in later scenarios.

Each application can be assigned configuration criteria to ensure it is located on a module

with the correct capability. These are defined in Table 5-1, and input into the application

definition as defined in Chapter 5.

Chapter 5

Configuration and Real-Time Robustness Testing

 127

Application Criteria Description

Sensor IOMod Placement on the I/O module

Process Mod* Placement on any generic processing module

Actuate IOMod Placement on the I/O module

Table 5-1 Assignment Criteria

The communication requirements and assignment requirements are input to the

application definitions (section 5.3.1) and information regarding the available modules is

manually input (as opposed to having the information automatically generated on a full

system boot). The configuration algorithm is then executed on a standard PC, with the

allocation results diagrammatically illustrated in Figure 5-2.

Figure 5-2 Allocation results of Single Sensor, Single Process and Single Actuator

Figure 5-2 shows the available resources down the left hand side (including the network as

a resource) and a time base along the base. Functions are shown as allocated to a

processing module and to a period of time in which to execute. Communications are

allocated to the network and also as a block of time. It can be seen that concurrency of

events is maintained in that the ‘sense’ application executes before the ‘Sen2Pro’ data

packet is sent, and resultant applications and communications follow suit. If a

Chapter 5

Configuration and Real-Time Robustness Testing

 128

communication or application was scheduled to execute before its pre-requisite function

had finished, then concurrency of events within the time frame is not being facilitated.

Figure 5-2 shows that the complete time frame in which these functions can repeatable act

is 8 ms.

5.1.2. Single Sensor, Duplex Processing, Single Actuator

This arrangement of functions introduces a redundant processing channel within the

network. Here, the ‘sense’ application is required to send two communication packages;

one to each of the ‘process’ applications. In turn, the ‘actuate’ application is required to

have received two data packets from each of the ‘process’ functions before it can execute

without raising an error.

Figure 5-3 Single sensor, duplex processing, single actuation

It is clear in this circumstance that to maintain redundancy within the ‘process’

applications, two generic processing modules will be required alongside the input/output

module as before. Therefore, the required modules are:

• An input/output (I/O) module (Named ‘IOMOD’)

• Two standard processing module (Named ‘Module 1’ and ‘Module 2’)

The assignment criteria for each application is summarised in Table 5-1. Here, the

configuration algorithm is instructed to maintain redundancy between the ‘process’

applications by the ‘!ProcessN’ instruction which enforces ‘Do not place this application on

a module that also hosts ProcessN’.

Application Criteria Description

Chapter 5

Configuration and Real-Time Robustness Testing

 129

Sensor IOMod Placement on the I/O module

Process1 Mod*

!Process2

Placement on any generic processing module

Not with Process 2

Process2 Mod*

!Process1

Placement on any generic processing module

Not with Process 1

Actuate IOMod Placement on the I/O module

Table 5-2 Assignment criteria for duplex processing

The result from the configuration algorithm is shown in Figure 5-4.

Figure 5-4 - Single Sensor, Duplex Processing, Single Actuator

It can be seen that once again, the applications and communications are placed

concurrently. Although ‘Process2’ is a parallel function to ‘Process1’, it has to wait an extra

millisecond for the delivery of data packet ‘SenToPro2’ to execute. Conversely, the

‘Actuate’ function has to wait for receipt of both datapackets (or appropriate error

messages) before it can execute.

Chapter 5

Configuration and Real-Time Robustness Testing

 130

5.1.3. Single Sensor, Triplex Processing, Single Actuator

The arrangement of these functions is similar to that in the previous section, with the

addition of a third parallel ‘Process’ application, as shown in Figure 5-5.

Figure 5-5 Single sensor, Triplex processing, single actuator

The third processing channel introduces additional allocation requirements in order to

preserve the redundancy in the event of a module failure. This is shown in Table 5-3.

Application Criteria Description

Sensor IOMod Placement on the I/O module

Process1 Mod*

!Process2

!Process3

Placement on any generic processing module

Not with Process 2

Not with Process 3

Process2 Mod*

!Process1

!Process3

Placement on any generic processing module

Not with Process 1

Not with Process 3

Process3 Mod*

!Process1

!Process2

Placement on any generic processing module

Not with Process 1

Not with Process 2

Actuate IOMod Placement on the I/O module

Table 5-3 Assignment criteria for triplex processing

Chapter 5

Configuration and Real-Time Robustness Testing

 131

It can also be surmised that in order to allow this system to be implemented effectively, a

third generic processing module is required. The result of the configuration algorithm is

shown in Figure 5-6.

Figure 5-6 Allocation Results of Single Sensor, Triplex Processing, Single Actuator

With this particular arrangement of function, there is some argument that the third

module may not be necessary. Detailed failure mode analysis may show that, with

appropriate partitioning in the modules themselves, good enough levels of reliability could

be achieved even when placing two ‘Process’ applications on one module. However, for

the purposes of this exercise, a more simple view is adopted.

Comparing Figure 5-6 and Figure 5-4, it can be seen that the expected end time of the

‘Actuate’ application is the same. This is a result of two things: in the duplex case the

process is slowed as some applications have to wait for data to be delivered before they

Chapter 5

Configuration and Real-Time Robustness Testing

 132

execute; In the triplex case, some applications or data transmissions can execute whilst

others are waiting.

5.1.4. Dual Sensors, Triplex Processing, Dual Actuator

To further complicate the processing and communication requirements, in this case it is

assumed that both the sensing and actuator functions are duplicated. The resultant

network of functions is shown in Figure 5-7.

Figure 5-7 Dual sensors, triplex processing, dual actuation

It is also assumed in this case that the second sensor and actuator require a second

input/output module on the network. Therefore, the required modules are:

• Two input/output (I/O) module (Named ‘IoMod1’ and ‘IOMod2’)

• Three standard processing module (Named ‘Module 1’ ,‘Module 2’ and ‘Module 3’)

The assignment criteria for this system is defined in Table 5-4.

Application Criteria Description

Sensor1 IOMod1 Placement on the I/O module 1

Sensor2 IOMod2 Placement on the I/O module 2

Process1 Mod*

!Process2

!Process3

Placement on any generic processing module

Not with Process 2

Not with Process 3

Chapter 5

Configuration and Real-Time Robustness Testing

 133

Process2 Mod*

!Process1

!Process3

Placement on any generic processing module

Not with Process 1

Not with Process 3

Process3 Mod*

!Process1

!Process2

Placement on any generic processing module

Not with Process 1

Not with Process 2

Actuate1 IOMod1 Placement on the I/O module 1

Actuate2 IOMod2 Placement on the I/O module 2

Table 5-4 Assignment criteria for triplex processing and dual I/O

The resultant configuration generated is shown in Figure 5-8.

Figure 5-8 Allocation Results of Dual sensors, triplex processing, dual actuation

Chapter 5

Configuration and Real-Time Robustness Testing

 134

The algorithm has successfully arranged applications and communications in a concurrent

manner. The complete timeframe finishes at 16 ms, a further 6 ms slower than the

standard triplex processing scenario. It can be seen that the main cause of this delay is the

availability of the network time in which to transmit the required data packets.

5.1.5. Dual I/O, Triplex processing and parallel function

In this case, a function of lower criticality is added introduced to the scenario whereby

some data is to be collected from the sensors by a data logging application, and sent to a

user interface for viewing. This functional network is shown in Figure 5-9.

Figure 5-9 Dual sensing, triplex processing, dual actuation plus non-critical functions

In this scenario, a further module is required on the network to display data to a user.

Therefore, a minimum set of modules required for this network is:

• Two input/output (I/O) module (Named ‘IoMod1’ and ‘IOMod2’)

• Three standard processing module (Named ‘Module 1’ ,‘Module 2’ and ‘Module 3’)

• A graphical user interface module (Named ‘GUI’)

Chapter 5

Configuration and Real-Time Robustness Testing

 135

The allocation criteria is summarised in Table 5-5

Application Criteria Description

Sensor1 IOMod1 Placement on the I/O module 1

Sensor2 IOMod2 Placement on the I/O module 2

Process1 Mod*

!Process2

!Process3

Placement on any generic processing module

Not with Process 2

Not with Process 3

Process2 Mod*

!Process1

!Process3

Placement on any generic processing module

Not with Process 1

Not with Process 3

Process3 Mod*

!Process1

!Process2

Placement on any generic processing module

Not with Process 1

Not with Process 2

Actuate1 IOMod1 Placement on the I/O module 1

Actuate2 IOMod2 Placement on the I/O module 2

DataLog Mod* Placement on any generic processing module

DataView GUI Placement on the GUI module

Table 5-5 Assignment Criteria for Dual Sensing, Triplex Processing, Dual Actuation and

Datalog

The resultant configuration is shown in Figure 5-10

Chapter 5

Configuration and Real-Time Robustness Testing

 136

Figure 5-10 Allocation Results of Dual Sensing, Triplex Processing, Dual Actuation and

Data log

The goal of the allocation function is to place the non-critical function with minimal

disruption to the time-critical task. It can be seen that this is largely the case in that

communications and applications concerned with the time-critical task operate first, then

the data log task operates afterwards. The only interruption occurs in the transmission of

‘Sen2ToDlog’ and ‘Send1ToDlog’. There is no logical reason as to why these cannot wait

until later in the frame to execute. The reason they are placed earlier is that they are

associated with the applications ‘Sense1’ and ‘Sense2’, which are both time critical

Chapter 5

Configuration and Real-Time Robustness Testing

 137

functions. By association, some weight is placed to the criticality of the output of these

functions. The mis-placement of this data packet does cause some delay in the time-critical

function, but the impact is considered minimal. It can be seen that the ‘Actuate’ functions

finish by the 18ms mark, only 2 ms slower than the previous case which contained no data

log function. The configuration algorithm could be optimised to remove this effect, but the

resultant configuration generated is still a reasonable one and the automatic generation

algorithm is considered fit for purpose for this investigation.

5.1.6. Summary

The above networks contain a simple example of how the configuration mechanism

derives an appropriate allocation of functions based on the assignment definition defined

and the available processing resources. For each of the basic functional topologies

presented a configuration is automatically realised in a way that protects the static

redundancy channels and maintains appropriate functional partitioning by allocation to

available resources and temporally to avoid data packet clashes on the network bus.

There have been areas highlighted where the assignment process may be optimised

further, but these tests have shown that it does ensure concurrency of events and

maintain appropriate segregation to preserve redundancy in processing channels.

Chapter 5

Configuration and Real-Time Robustness Testing

 138

5.2. IMS as a Distributed Real Time System
The restricting element of implementing a real-time structure in this form of IMA is the

reliability and repeatability of the communication. As described in Chapter 5, the system is

designed such that the communication and the application execution timings are linked to

ensure concurrency of events.

The goal of this section is to observe how well the IMA, in particular the Ethernet

structure, handles the real time communications tasks.

5.2.1. Real time attributes testing

In this experiment, the IMA is provided with a simple token passing function, the design of

which is shown in Figure 5-11. Here a number is sent from the GUI module and passed via

numerous applications on other generic IMA modules before being returned to the GUI.

A further required function is a data packet between the designed GUI and the systems

management function. This allows the user to interact with various systems management

activities. Although these items are not discussed here, the function is included for

completeness as it is required to be included for operation.

Figure 5-11 Function Network Design for Token Passing Exercise

token_1_gui
(GUI)

token_2
(Generic
Module)

token_7_gui
(GUI)

GUI
(GUI)

gui_to_
master

(Master)

token_1_2
token_3
(Generic
Module)

token_4
(Generic
Module)

token_5
(Generic
Module)

token_6
(Generic
Module)

token_2_3

token_4_5 token_5_6

token_3_4

token_6_7

Configure, application control,...

Chapter 5

Configuration and Real-Time Robustness Testing

 139

The applications are assigned to specific modules in order to allow the token to cross the

network as many times as possible during its transit. The allocation of applications is

shown in Figure 5-12.

Figure 5-12 Allocation of Token Passing Functions to IMA (3 ms communication time

allowed)

Within each module, communication timing data is captured. Each communication activity

is recorded relative to the start of the global time frame, and each time frame has a time

stamp for identification defined by the clock on the ‘Server Master’ module. This time

stamp is communicated as part of the synchronisation signal. Following the execution of

the above function structure, communication data logs from each module can be

downloaded and analysed to generate analysis for the entire network. A sample of data

from a single time frame is shown in Table 5-6. The information captured is:

Chapter 5

Configuration and Real-Time Robustness Testing

 140

• Timestamp of frame (ms) – the millisecond timer value captured by the master

module at the start of the frame. This is sent to all modules.

• Time in frame (ms) – the time within the frame the recorded activity takes place.

This is timed from the receipt of the ‘go’ data packet.

• Error Code – records any error occurring with the activity. The most common is a

timeout error which is captured here.

• Rx/Tx – Receipt or Transmit. Records the type of activity into sending or receiving.

• To/From I.P. – records the target IP address of the data packet. This can be cross-

referenced to identify the module name.

• Variable Name – the name given for the data packet. This is taken from the original

application definition.

• Ready From (ms) – shows at what point in the frame the activity is waiting to act.

The time is measured from the receipt of the ‘go’ data packet.

The data shown in Table 5-6 has been amalgamated from all modules.

Timestamp

of frame

(ms)

Time in

Frame (ms)

Error

Code

Rx/Tx To/From I.P. Variable Name Ready

From

(ms)

85417 3 0 Tx 192.168.0.3 token_1_2 1

85417 3 0 Rx 192.168.0.1 token_1_2 1

85417 7 0 Tx 192.168.0.4 token_2_3 3

85417 9 0 Rx 192.168.0.3 token_2_3 1

85417 11 0 Tx 192.168.0.2 token_3_4 9

85417 12 0 Rx 192.168.0.4 token_3_4 0

85417 15 0 Tx 192.168.0.4 token_4_5 12

85417 17 0 Rx 192.168.0.2 token_4_5 11

85417 19 0 Tx 192.168.0.3 token_5_6 17

85417 19 0 Rx 192.168.0.4 token_5_6 7

85417 23 0 Tx 192.168.0.1 token_6_7 19

Chapter 5

Configuration and Real-Time Robustness Testing

 141

85417 24 0 Rx 192.168.0.3 token_6_7 3

85417 28 0 Tx 192.168.0.2 Configure 24

Table 5-6 Sample Communication Data from a Single Time-frame

Using a MATLAB algorithm for the complete amalgamated communication data, the

following attributes for each communication can be calculated:

• Average time of occurrence (ms) – average time within the frame the

communication activity takes place.

• Variance – the variance in arrival time. This is calculated by:

𝜎𝜎2 = (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2/𝑛𝑛

Where 𝜎𝜎2is the variance, 𝑥𝑥𝑖𝑖 is the time of the sample, 𝑥̅𝑥 is the mean arrival time of

all the samples and 𝑛𝑛 is the number of samples.

• Number of timeouts – how often the data packet fails to arrive in time. A timeout

occurs if the allotted communication time has passed, and the data packet has not

been received.

• Latest recorded time – the latest time (within the timeout period) that the data

package is recorded to have arrived.

The following sections record a series of tests where the communication is reduced until

not enough time is being allowed for the data to be exchanged.

5.2.1.1. Communication time: 3 ms

In this experiment, a generous communication time of 3 ms is allowed for each data packet

transaction, and 200 ms is defined for each time frame. This provides opportunity to

record timing information on late packets as opposed to counting them only as

occurrences of timeouts. Furthermore, although the data is recorded in coarse values of

milliseconds, over 700 time frames are captured for analysis. By analysing a large number

of samples, a reasonable resolution for timings can be achieved.

Table 5-7 shows a summary of the results. Analysis was only performed on the receipt of

data packets along with the transmission of the first, as transmission of the others were

Chapter 5

Configuration and Real-Time Robustness Testing

 142

controlled in such a way that they always occurred exactly on time. The first transmission is

found to only vary slightly but is thought to be a result of the preceding synchronisation

data packet.

Chapter 5

Configuration and Real-Time Robustness Testing

 143

 token_1_2 token_1_2 token_2_3 token_3_4 token_4_5 token_5_6 token_6_7

 Tx Rx Rx Rx Rx Rx Rx

Expected
Time (ms)

3 3 7 11 15 19 23

Average
Time (ms)

3.233 3.245 8.079 12.291 16.000 20.078 24.084

Variance
(ms)

0.181 0.826 0.990 0.702 0.993 0.989 0.680

Latest
(ms)

5 6 9 14 17 22 26

Timeouts 0 1 0 0 0 0 18

Table 5-7 Communication timing results – 3 ms communication time (824 time frames)

The results in Table 5-7 show that the average receipt time is normally between 0.2 - 1 ms

after the expected time, with a variance of about 0.75 seconds. Therefore it is expected

that most data packets are received around 1.75 ms after the expected time, but some

packets are arriving as much as 3 ms late.

The worst results in Table 5-7 are highlighted. The most timeouts occur on the GUI

module. This is expected as in this particular experimental setup as this function is hosted

on a ‘Windows’ PC (for purposes of user interface) as opposed to the specific real-time

module developed. It is therefore subject to interruption from the operating system. The

worst performing module is the Master module as it is the latest to process the receipt of

token_3_4 and the transmission of token_4_5. This fault was found to be in the

synchronisation of the time frame. The master module broadcasts a message to signal the

start of the frame, but this message is subject to the same delay and variance as is seen in

the above communications. It is therefore easier to co-ordinate two servant modules than

it is to estimate the delay experienced on the master module.

5.2.1.2. Communication time: 2 ms

The allocation of the token passing function with 2 ms allowed for communication time is

shown in Figure 5-13.

Chapter 5

Configuration and Real-Time Robustness Testing

 144

Figure 5-13 Allocation of Token Passing Functions to IMA (2 ms communication time

allowed)

The summarised timing data for the implementation of this configuration is shown in Table

5-8.

 token_1_

2

token_1_

2

token_2_

3

token_3_

4

token_4_

5

token_5_

6

token_6_

7

 Tx Rx Rx Rx Rx Rx Rx

Expecte
d Time

2 2 5 8 11 14 17

Average
Time

2.793 2.706 6.121 9.202 11.933 14.977 18.059

Varianc
e

0.169 0.678 0.982 0.520 0.989 0.475 0.627

Chapter 5

Configuration and Real-Time Robustness Testing

 145

Latest 4 4 7 10 13 16 20

Timeout
s

0 0 0 0 0 0 197

Table 5-8 Communication timing results – 2 ms communication time (902 time frames)

It can be seen that the IMA manages the 2 ms communication time reasonably well in that

the average time and variances of data receipt are similar to the previous 3 ms test. The

main difference identified is that the GUI module experiences a timeout error nearly 22%

of the time (197 times out of 902 time frames). Again, the Master module experiences

marginally worse performance than its peers (i.e. slower to receive token_3_4 and slower

to transmit token_4_5) which is due to the synchronisation issues highlighted previously.

5.2.1.3. Communication time: 1 ms

The final test in this series reduces the allowed communication time to 1 ms. The

allocation of functions is shown in Figure 5-1.

Chapter 5

Configuration and Real-Time Robustness Testing

 146

Figure 5-14 Allocation of Token Passing Functions to IMA (1 ms communication time

allowed)

The amalgamated timing data is summarised in Table 5-9.

Chapter 5

Configuration and Real-Time Robustness Testing

 147

 token_1_

2

token_1_

2

token_2_

3

token_3_

4

token_4_

5

token_5_

6

token_6_

7

 Tx Rx Rx Rx Rx Rx Rx

Expecte
d Time 1 1 3 5 7 9 11

Average
Time 1.178 1.189 3.549 6.000 6.679 9.955 12.040

Varianc
e 0.147 0.153 0.250 0.000 0.571 0.247 0.568

Latest 2 2 4 6 8 10 13

Timeout
s 0 0 148 589 2 159 367

Table 5-9 Communication timing results - 1 ms communication time (828 time frames)

It can be seen that in this case, the system experiences a large number of timeout errors

on a number of modules. This level or unrecorded data invalidates the timing analysis as

most of it is discarded. Although some communication is transmitted and received, the

reliability is much too low for any distributed real-time control application.

5.2.1.4. Summary

These experiments have shown that the use of Ethernet within the communication

structure developed does allow for repeatable message communication in a concurrent

fashion. This is an essential attribute of a distributed real time control system. Although

the allocation of function was performed in a manual fashion by setting appropriate values

in the application definitions, the timing structure was generated automatically using the

configuration algorithm. These tests have shown that the system is capable of generating

this structure and then maintaining control of it during execution.

In its current form, the IMA is not capable of fast (i.e. greater than ~10Hz sample

frequency) distributed real time control. Although Ethernet has a theoretically high

bandwidth, it has been shown here that standard off-the-shelf components cannot provide

the functional capability for this type of application. Ethernet is designed to send large

Chapter 5

Configuration and Real-Time Robustness Testing

 148

packets of data in a single direction. This application requires many small packets of data

to be transmitted and received in a short time scale. The delays highlighted by analysing

timing data occur as the Ethernet cards require 1-2 milliseconds to assess if the bus is

empty. Customised Ethernet hardware may be able to remove this inbuilt property.

A further issue in this case is that timing functions within the system can only operate up

to 1 ms resolution due to use of LabVIEW as a development environment. This in itself

causes further discrepancy in timings and is troublesome when attempting to synchronise

different modules.

The implication of this is that distributed real time control of the Maglev rig is difficult as

the sample rate is too slow. Initial assumptions were that a single time frame containing a

number of communications could be readily fit into 10 milliseconds. It has been found that

it is more appropriate to assume that a single time frame will take 100 milliseconds; an

order of a magnitude slower than expected.

Chapter 5

Configuration and Real-Time Robustness Testing

 149

5.2.2. Air Gap control

In order to test the ability of the IMA to operate a real time application, a software

simulation of the rig dynamics will be used. Here, the parameters of the Maglev rig are

adjusted such that the dynamic properties react 10 times slower than in reality. The

distributed IMA can then be tasked with controlling this system.

The full design of the Maglev Rig and airgap control can be found in Appendix A and C. The

control loop to be implemented is shown in Figure 5-15.

Figure 5-15 Air gap control schematic

The dashed boxes identify the real time applications that are defined to perform this

function. For the purposes of the demonstration, the gap control is required to be

distributed on a separate module to the ‘coil_output’ function.

5.2.2.1. Application Design

The control laws that need to be executed within each timeframe have been calculated in

Chapter 4 and it is these functions that will be implemented for airgap control.

Figure 5-15 shows the required network of functions to be implemented.

Chapter 5

Configuration and Real-Time Robustness Testing

 150

Figure 5-16 Function Network for Gap Control Structure

In this realisation of the designed controller, the flux control action is placed within the

‘coil_output’ application and the gap control action is placed remotely in the ‘gap_control’

application. The flux loop described has a high bandwidth so its function will be allocated

to the input/output module on which the simulated coil is housed. The air gap control loop

has a lower bandwidth and can be allocated on any of the generic processing modules. In

this case, the allocation process will be forced to place this function on neither the GUI

module nor the I/O module in order to make sure the data packets have to use the

network.

For the purposes of a user interface, the coil sensor readings are reported back to the user

via the ‘coil_sensor_output’ application. This is not directly part of the control network

described above as this data is only ‘for information’ and not part of the time critical loop.

Further to the control action, the required system management communication between

the ‘GUI’ and the ‘gui_to_master’ app is present.

For the purposes of testing the control action, data will be recorded from the

‘send_gap_demand’ application and the ‘coil_output’ application. By using the global time

send_gap_
demand

(GUI)

gap_control
(Generic
Module)

coil_output
(IOModule)gap_demand

flu
x_

demand

send_gap_
reading

(IOModule)

GUI
(GUI)

gui_to_
master

(Master)

coil_sensor_
output

(IOModule)

get_sensors
(GUI)

gap_reading

Configure, application control,...

initialise

sensors2gui

Chapter 5

Configuration and Real-Time Robustness Testing

 151

stamp, this data can be collected, amalgamated and analysed after the test has been

executed to observe the response of the system as a result of the changing input.

5.2.2.2. IMA Implementation of Distributed Gap Control

In this implementation, each application was given 1 ms to for execution completion and

each communication was allocated 3 ms to transmit and receive. The I/O module to which

the coil is physically connected is also allocated as the server master module. The time

frame allocated is 50 ms for each iteration. The result of the configuration algorithm to

these criteria is summarised in Figure 5-16.

Figure 5-17 IMA Implementation of Gap Control Functional Network

The system will be tested around the nominal operating point of a 10 mm air gap. This will

be done by a +/- 2mm step wave around a centre point of 10 mm.

5.2.2.3. Results of Gap Control Implementation

A snapshot of data from this test is shown in Figure 5-17. The full length test lasted for

over two minutes, and this data is taken from 47 seconds into the test and lasts for a

positive and negative step change in airgap demand. The blue dashed line represents the

Chapter 5

Configuration and Real-Time Robustness Testing

 152

gap demand, which was recorded at the point of input on the GUI module. The green solid

line represents the measured air gap and is recorded on the I/O module. The time of each

data point is recorded by monitoring the global time stamp of the start of the frame (using

the central ‘Server Master’ time reference) then adding the recorded offset within the

frame itself. Due to the communication delays analysed in the previous section, it was

found that it took approximately 13 ms from the start of the frame for the updated flux

demand to be implemented.

Figure 5-18 Time Response of Simulated Air Gap to Step Input

5.2.2.4. Distributed Gap Control Summary

It can be seen in the results presented Figure 5-17 that the communication method

implemented is consistent enough to facilitate distributed control architecture. In this

case, a simulation model has been used as a target test subject as the overall time frame

could not be reduced sufficiently to operate the real system.

48 50 52 54 56 58 60 62 64 66
0.005

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

Time into Test (s)

A
ir

G
ap

 S
iz

e
(m

)

Air Gap Demand
Air Gap Reading

Chapter 5

Configuration and Real-Time Robustness Testing

 153

However, it has been shown that the design of the IMA is able to automatically allocate

functions to resources in a manner that ensures concurrency of events and allows the

establishment of real time, distributed architecture. The next chapter will test the ability of

the system to maintain these properties during the re-allocation of functions as a response

to fault occurrence.

Fault Management via Dynamic

Reconfiguration for IMA

CHAPTER 6:

Fault Management

Within IMA

Chapter 6

Fault Management Within IMA

 155

6. Fault Management within IMA
This chapter will discuss how certain aspects of fault management are implemented within

the IMA created for the purposes of this project. It will describe how the system uses the

configuration/reconfiguration functions available to perform fault management actions.

The main focus here is on fault tolerance and how this is managed to maintain service in

the presence of faults.

6.1. Baseline System Initial Configuration
As discussed earlier in the thesis, the overall goal of the IMA is to maintain the airgap of a

maglev test rig. A simple realisation of this was presented in Chapter 6 to test the ability of

the IMA to maintain an effective control loop. In this Chapter, it is necessary to extend this

system to include static redundancy, and flexibility within the hardware to allow for the

possibility of system reconfiguration.

Figure 6-1 shows the control loop required to maintain airgap control and is taken from the

description of the Maglev rig and subsequent controller design that can be found in

Appendices A and C. The dashed boxes in Figure 6-1 represent the real-time applications

that will be defined for implementation.

Figure 6-1 Control Loop Realisation for Airgap control

gap_control (2)

coil_outputgap_control (1)

Magnet
Model

send_gap_reading

Airgap
Control

Flux
Controller

gap demand
+ - + -

flux

Air gap
flux
demand

Chapter 6

Fault Management Within IMA

 156

It can be seen from Figure 6-1 that some functions are duplicated to provide a level of

static redundancy. These functions and the redundant channels are best highlighted in the

function network shown in Figure 6-2.

Figure 6-2 Network of Air Gap Control Functions

The following describes the functions in detail. The ‘Inputs’ and ‘Outputs’ refer specifically

to network communications requirements and not to physical connections to the

hardware module.

Application 1: send_gap_demand

- Description – Collects the airgap demand from the user and provides it as a

reference for the gap control loop.

- Inputs – None. The reference is input from the user via the GUI.

- Outputs

o gap_demand - sent to each instance of gap_control and is indexed

accordingly.

send_gap_
demand

gap_control
(1) coil_output

gap_demand_1

flux_demand_1send_gap_
reading

GUI gui_to_
master

coil_sensor_
output get_sensors

gap_reading_1

Configure, application control,...

Initialise

sensors2gui

gap_control
(2)

gap_reading_2

gap_dem
and_2

flu
x_demand_2

Chapter 6

Fault Management Within IMA

 157

o initialise - sent to the mathematical model of the coil and allows a

manual reset of the internal variables within the model.

- Assignment – GUI

Application 2: send_gap_reading

- Description – Collects sensor data from I/O module and transmits the latest

airgap reading to the gap controller. This application differs from

coil_sensor_output as it is part of the time critical control loop, whereas

coil_sensor_output is for user reference.

- Inputs – None. Readings taken from sensors onboard I/O module, which in this

case is a real-time simulation of a single magnet.

- Outputs – gap_reading. This is sent to each instance of gap_control, and is

indexed to reference each specific data packet.

- Assignment – IOMod

-

Application 3: gap_control(1&2)

- Description – Performs the gap control function defined in Chapter 4. The rate

this controller can be implemented is defined by the time frame of the network

communication structure.

- Inputs – gap_demand, gap reading

- Outputs – flux_demand

- Assignment – !GUI.

Application 4: coil_output

- Description – Performs the flux control loop, and generates the drive signal to

the coil. In this realisation, the coil model is housed within this application, such

that the flux feedback becomes a return of an internal variable as opposed to a

sensor reading.

- Inputs – flux_demand

Chapter 6

Fault Management Within IMA

 158

- Outputs – none. This represents the end of the control functions for this time

frame.

- Assignment – IOMod - This has to be placed on the I/O module to interact with

the coil.

Application 5: coil_sensor_output

- Description – Provides a communication channel to feed sensor data back to

the user. By specifying this function separately to the control loop functions

allows the systems to designate this as ‘low priority’.

- Inputs – none. The information generated here is obtained from sensor

readings (or in this case, the mathematical model)

- Outputs – sensors_2_gui. Contains the flux, current, air gap and drive voltage

applied.

- Assignment – IOMod - This has to be placed on the I/O module to interact with

the coil.

Application 6: get_sensors

- Description – receives sensor data from the I/O module and provides

information to the user via a GUI.

- Inputs – sensors_2_gui

- Outputs – none. The information is displayed to a user.

- Assignment – GUI. This has to be placed on the GUI module in order to interact

with the user.

Application 7: GUI

- Description – provides the mechanism for the user to interact with the systems

management functions housed on the ‘Master’ module. It is this application

that allows the injection of simulated faults.

- Inputs – none.

- Outputs

Chapter 6

Fault Management Within IMA

 159

o configure – commands the system to go from an initial condition to

implementing the main function

o application_control – allows simulated fault signals to be injected to

an applications

o module_control – allows simulated fault signals to be injected to a

module.

- Assignment – GUI. This has to be placed on the GUI module in order to interact

with the user.

Application 8: gui_2_master

- Description – Interprets the information provided by the ‘GUI’ application and

passes information or commands to the server master functions..

- Inputs

o configure

o application_control

o module_control

- Outputs – none.

- Assignment – Master. Has to be situated with the Master module.

There are four modules available for these resources to be assigned. These are:

• Server Master – generic module but also houses the server master functions

• GUI – a module that has user interface input/output abilities

• IOMod_3 – an input/output module

• Module_4 – a generic processing unit, with no specific hardware attachments

Using the methods explained in Chapter 5, and tested in Chapter 6, the system

configuration shown in Figure 6-3 is realised using the above hardware and functional

architecture and assuming no faults.

Chapter 6

Fault Management Within IMA

 160

Figure 6-3 Assignment of functions to resources For duplex gap controller

*Due to the automatic generation of figures, some text is lost and replaced here for clarity.

This assignment of functions is the starting point for the following tests where failures can

be simulated in parts of the system and the response observed.

6.2. System Response to a Single Fault
This section describes how the system responds to the introduction of simulated faults. It

will be shown how the fault is initially tolerated before reconfiguration restores higher

levels of redundancy.

The following sections detail two different faults, and describe how the system responds to

their introduction. After each experiment, the system is restored to pre-fault condition to

allow each fault to be assessed in isolation.

...
co

nt
ro

lle
r_

2*

...
co

nt
ro

lle
r_

1*

...
ga

p_
de

m
an

d*

...
ga

p_
re

ad
in

g*

Chapter 6

Fault Management Within IMA

 161

6.2.1. Simulation of an Application Failure

In this failure simulation, a fault will be injected into the application

“app_gap_controller_1”. This will be injected at a point where the system is in normal

operation in that the IMA is fully configured and the airgap is following a defined set point.

This application has been chosen as it represents a time critical function and is a relatively

straight-forward application to duplicate.

6.2.1.1. Fault Injection

The further following assumptions are made about this fault:

• There will be no output from this application (fail quiet)

• There will be no propagation of failure from this application to the wider operating

system (fault containment)

• It will still be possible to terminate this application.

• Faulty information being propagated down-stream is protected either by

information from the Systems Manager (after the fault is reported), or by voting /

model-based input monitoring (at the instant of failure).

The application directly affected by the introduction of this fault is shown in Figure 6-4.

Chapter 6

Fault Management Within IMA

 162

Figure 6-4 Application failure introduced to 'gap_controller_1'

The introduction of this fault creates a change to the functional network of the system as

an instantaneous result of this failure. It can be seen that the application downstream of

the failure still receives information from the second gap control application, but the

system is now operating at a minimal level of redundancy and as such cannot survive a

failure in the second gap_control application. However, by using traditional methods for

designing redundancy into the functional network, the system tolerates the initial

occurrence of the fault. This is highlighted in Figure 6-5, but importantly it provides time

for reconfiguration activities to occur without interim loss of service.

...
co

nt
ro

lle
r_

2

...
co

nt
ro

lle
r_

1

...
ga

p_
de

m
an

d
...

ga
p_

re
ad

in
g

Chapter 6

Fault Management Within IMA

 163

Figure 6-5 Effect of failure on the functional network

6.2.1.2. Reconfiguration to Restore Higher Levels of Redundancy

There are a number of available options to managing an application failure, and some of

which depends on the actual failure mode that occurred. The course of action that is

adopted here is that the application is forced to re-site on a different processing module.

This method is chosen as it demonstrates a clear, tangible effort to restore functional

capability as opposed to subtle methods such as terminating and restarting the

application.

Forcing an application to be assigned to a different module is realised by adjusting the

assignment criteria part of the module specification, then re-executing the configuration

algorithm developed. This forces the configuration algorithm into a different assignment of

functions, inclusive of the new requirement based on failure.

send_gap_
demand

gap_control
(1) coil_output

gap_demand_1

flux_demand_1send_gap_
reading

GUI gui_to_
master

coil_sensor_
output get_sensors

gap_reading_1

Configure, application control,...

Initialise

sensors2gui

gap_control
(2)

gap_reading_2

gap_dem
and_2

flu
x_demand_2

Chapter 6

Fault Management Within IMA

 164

Assignment Criteria for app_gap_controller_1

Before failure: After failure :

!GUI

!app_gap_controller_2

!GUI

!app_gap_controller_2

!Module_4

Table 6-1 Change in Assignment Criteria as a result of Fault Injection

The new allocation of functions is shown in Figure 6-6.

Figure 6-6 Allocation of functions as a result of reconfiguration

The overall result is that the gap control function is housed on ‘IOMod3’. Although it

appears that only this application has moved, a complete reconfiguration had to occur to

ensure that the communication schedule was reworked to accommodate different

application addresses.

...
co

nt
ro

lle
r_

2

...
co

nt
ro

lle
r_

1

...
ga

p_
de

m
an

d
...

ga
p_

re
ad

in
g

Chapter 6

Fault Management Within IMA

 165

6.2.1.3. Evaluation of the Reconfiguration Process

Figure 6-6 shows that some level of redundancy has been restored. At first impression, it

appears that full redundancy has returned, but only if this assessment is limited to the

functional network presented in Figure 6-5. The second gap controller is now located

alongside other time critical applications and introduces a bigger potential impact should a

failure of module ‘IOMod3’ occur. However, higher levels of redundancy have been

restored as the duplex gap control function is available once again.

The effect of the above series of events on the overall service provision from the system is

shown in Figure 6-7. By extracting configuration logs from the Server Master module it was

possible to obtain a time reference to the configuration activities and observe the effect of

these on the airgap. The airgap demand is recorded on the GUI module, and the airgap

reading on IOMod3. During this test the system was commanded to track a square wave

air gap demand.

Figure 6-7 Airgap response during reconfiguration activity

35 40 45 50 55

0.006

0.008

0.01

0.012

0.014

0.016

Time into Test (s)

A
ir

G
ap

 S
iz

e
(m

)

Air Gap Demand
Air Gap Reading

Failure
Introduced

Reconfiguration
Completed

Chapter 6

Fault Management Within IMA

 166

It can be seen that the service provision is unaffected by; the introduction of the failure,

the period over which the failure is tolerated, and the introduction of a new configuration.

It takes five seconds from the failure introduction to implement the new configuration

shown in Figure 6-6.

6.2.2. Simulation of a Processing Module Failure

In this failure simulation, a fault will be injected into the module “Module4”. As before, the

failure will be simulated at a point where the system is in normal operation in that the IMA

is fully configured and the airgap is following a defined set point. The system has been

restored to initial conditions such that this failure can be observed in isolation to an

application failure.

Module4 has been chosen as it is the only module on the network with a non-specific role.

A failure introduced to the GUI, Server Master, or IO Module would result in more complex

hardware and software redundancy to accommodate and tolerate faults.

6.2.2.1. Fault Injection

The further following assumptions are made about this fault:

• There will be no output from the entire module (fail quiet)

• There will be no propagation of failure from this module to the wider network

(fault containment)

• It will still be possible to terminate and ignore this module.

• Applications affected downstream of any applications that fail, can select the

remaining unaffected signal either by information from the Systems Manager, or by

monitoring the sanity of the inputs.

The module and applications directly affected by this failure are highlighted in Figure 6-8.

Chapter 6

Fault Management Within IMA

 167

Figure 6-8 Module failure introduced to module 4

As before, the effect on the functional network is the same as the previous failure scenario

as only the gap control application is affected. This is shown in Figure 6-9. Again, the fault

is tolerated at the instance of failure as a redundant processing channel exists.

...
co

nt
ro

lle
r_

1

...
co

nt
ro

lle
r_

2

...
ga

p_
de

m
an

d
...

ga
p_

re
ad

in
g

Chapter 6

Fault Management Within IMA

 168

Figure 6-9 Effect of Module4 failure on the functional network

6.2.2.2. Reconfiguration to Restore Higher Levels of Redundancy

In the event of a module failure, the course of action designed is to attempt to reconfigure

the system, but ignoring this module as an available resource. It is possible to attempt to

reboot the module as a ‘running repair’, but in this instance it is assumed that it has failed

and shut down.

The systems manager therefore initiates a reconfiguration request, but removes this

module as an option for function assignment (Table 6-2). It will therefore only find a new

configuration if available resource exists on other modules that do not contradict the

assignment criteria defined in the system design. As a result of this scenario, the allocation

of function generated by the reconfiguration algorithm is shown in Figure 6-10.

send_gap_
demand

gap_control
(1) coil_output

gap_demand_1

flux_demand_1send_gap_
reading

GUI gui_to_
master

coil_sensor_
output get_sensors

gap_reading_1

Configure, application control,...

Initialise

sensors2gui

gap_control
(2)

gap_reading_2

gap_dem
and_2

flu
x_demand_2

Chapter 6

Fault Management Within IMA

 169

Available Modules on the Network

Before failure: After failure :

Server_Master

GUI

Module_4

IOMod_3

Server_Master

GUI

IOMod_3

Table 6-2 Change in available modules as a result of failure

Figure 6-10 Allocation of functions as a result of reconfiguration

The result is that the affected function is reallocated to IOMod_3, restoring some levels of

redundancy. This is by chance the same restoration method that occurred previously, but

the movement occurred via different reasoning.

...
co

nt
ro

lle
r_

1

...
co

nt
ro

lle
r_

2

...
ga

p_
de

m
an

d
...

ga
p_

re
ad

in
g

Chapter 6

Fault Management Within IMA

 170

6.2.2.3. Evaluation of Reconfiguration Process

As before, the real time data for the air gap analysis and the configuration information can

be extracted from event logs situated in each of the processing modules. Figure 6-11

shows the effect of the introduction of the failure and the reconfiguration on the airgap.

Figure 6-11 Airgap response during reconfiguration activity

As with the application failure, it can be seen the airgap response is unaffected by the

systems management activities occurring. Again, the time taken to from the introduction

of failure to a completed reconfiguration is 5 seconds.

6.3. System Response to a Series of Faults
This section shows how the IMA structure degrades gracefully in the presence of occurring

faults in order to make best use of the available resources. The performance of the system

during and after the introduction of each fault is monitored. Unlike the experiments in

Section 7.2, the system remains in its resultant condition to allow a sequential failure to be

20 25 30 35 40 45
5

6

7

8

9

10

11

12

13

14
x 10

-3

Time into Test (s)

A
ir

G
ap

 S
iz

e
(m

)

Air Gap Demand
Air Gap Reading

Failure
Introduced

Reconfiguration
Completed

Chapter 6

Fault Management Within IMA

 171

introduced. This will demonstrate how the IMA will gracefully degrade from full

redundancy to lower levels of redundancy whilst maintaining service.

6.3.1. Failure 1 of 3: Application Failure of gap_control_2

The first failure in this series is an application failure of one of the gap control applications.

The assumptions about this failure mode are the same as those described in Section

6.2.1.1. The application failed is shown in Figure 6-4.

Figure 6-12 Application failure introduced to 'gap_controller_2'

Following recognition of this failure, the systems manager reconfigures in a manner similar

to that described in section 6.2.1.2. This is done by removing the Server Master module as

an option to place the application gap_controller_2 by amending the assignment criteria

accordingly (Table 6-3). The resultant configuration is shown in Figure 6-13.

...
co

nt
ro

lle
r_

2

...
co

nt
ro

lle
r_

1

...
ga

p_
de

m
an

d
...

ga
p_

re
ad

in
g

Chapter 6

Fault Management Within IMA

 172

Assignment Criteria for app_gap_controller_2

Before failure: After failure :

!GUI

!app_gap_controller_1

!GUI

!app_gap_controller_1

!Server_Master

Table 6-3 Change in assignment criteria as a result of failure

Figure 6-13 Reconfiguration following the failure of the gap_control_2 application

The solution to the new configuration problem is to swap the locations of the two gap

control applications. This is a valid response to the software failure as:

• Assuming no hardware failure, it should be possible to run other similar

applications on the same module

...
co

nt
ro

lle
r_

2

...
co

nt
ro

lle
r_

1

...
ga

p_
de

m
an

d
...

ga
p_

re
ad

in
g

Chapter 6

Fault Management Within IMA

 173

• A single point failure in software design could be projected by ‘dissimilar

programming’

Because dissimilar processing methods were not adopted in this case, the resolution here

is almost as if gap_controller_2 was simply stopped and re-started.

6.3.2. Failure 2 of 3: Module Failure of Module_4

The second failure introduced into this series is the failure of Module_4.

Figure 6-14 Failure of module_4

Following the introduction of this failure, the system must find a new configuration that

will avoid placing functions on the failed module, and avoid replacing gap_controller_2 in

the place it originally failed. As in Section 6.2.2, the modules available to assign resources

are updated within the Systems Manager before reconfiguration is executed (Table 6-4).

The resulting configuration is shown in Figure 6-15.

...
co

nt
ro

lle
r_

2

...
co

nt
ro

lle
r_

1

...
ga

p_
de

m
an

d
...

ga
p_

re
ad

in
g

Chapter 6

Fault Management Within IMA

 174

Available Modules on the Network

Before failure: After failure :

Server_Master

GUI

Module_4

IOMod_3

Server_Master

GUI

IOMod_3

Table 6-4 Change in available modules as a result of failure

Figure 6-15 Configuration as a result of failing module_4

...
co

nt
ro

lle
r_

2

...
co

nt
ro

lle
r_

1

...
ga

p_
de

m
an

d
...

ga
p_

re
ad

in
g

Chapter 6

Fault Management Within IMA

 175

6.3.3. Fault 3 of 3: Application Failure of gap_controller_1

The final failure introduced is to fail gap_controller_1.

Figure 6-16 Failure of gap_controller_1

Once again, the assignment criteria is adjusted to note this failure, as shown in Table 6-5:

Assignment Criteria for app_gap_controller_1

Before failure: After failure :

!GUI

!app_gap_controller_2

!GUI

!app_gap_controller_2

!Server_Master

Table 6-5 Change in assignment criteria as a result of failure

This time, when the reconfiguration algorithm is executed, an error is returned. It is now

unable to find a new solution to the configuration problem that accommodates all the

Chapter 6

Fault Management Within IMA

 176

initial assignment criteria, and the new requirements imposed by failures occurring. The

Server master therefore leaves the system in this reduced redundant mode.

Despite three failures occurring, the overall effect on the function network is shown in

Figure 6-17

Figure 6-17 Effect on functional network of three failures

However, at this point the system can tolerate no more failures in the gap_control

applications.

6.3.4. Evaluation of Series of Failures

The effect of the series of failures can be seen on the time response of the simulated

airgap as shown in Figure 6-18.

send_gap_
demand

gap_control
(1) coil_output

gap_demand_1

flux_demand_1send_gap_
reading

GUI gui_to_
master

coil_sensor_
output get_sensors

gap_reading_1

Configure, application control,...

Initialise

sensors2gui

gap_control
(2)

gap_reading_2

gap_dem
and_2

flu
x_demand_2

Chapter 6

Fault Management Within IMA

 177

Figure 6-18 Time response of airgap during series failures

Once again, it is seen that the systems management activities are occurring with minimal

influence on the time response of the airgap as deterministic performance of the control

loop is maintained. Close observation reveals a slight degradation in response of the airgap

following the second reconfiguration by the increased amount of overshoot. This occurs as

there is a subtle difference in the position in the time frame at which activities happen, but

does not cause significant reduction of the designed controller performance.

6.4. Summary
It has been demonstrated that following the introduction of a failure to the IMA, the

system can reconfigure to re-obtain higher levels of redundancy. Alongside this, it has been

shown that with careful management, the real time performance of a system can be

maintained during these activities.

20 30 40 50 60 70 80
0.005

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

Time into Test (s)

A
ir

G
ap

 S
iz

e
(m

)

Air Gap Demand
Air Gap Reading

Fa
ilu

re
 o

f g
ap

_c
on

tr
ol

le
r_

2

Re
co

nf
ig

ur
at

io
n

im
pl

em
en

te
d

Fa
ilu

re
 o

f m
od

ul
e_

4

Re
co

nf
ig

ur
at

io
n

im
pl

em
en

te
d

Fa
ilu

re
 o

f g
ap

_c
on

tr
ol

le
r_

1

Chapter 6

Fault Management Within IMA

 178

From failure identification to the implementation of a new configuration took five seconds.

During this transition stage the system tolerates the fault by continuing to operate with the

so called ‘static redundancy’ (i.e. multiplexed processing channels) designed into the

system. The importance of this design feature is observed in the time response graphs in

that no disruption to service occurs. If these redundant channels do not exist then there

would a race between catastrophic failure and ability to initiate a new configuration. By

accepting these lower levels of redundancy for a small amount of prescribed time, a

sensible configuration can be realised.

During this investigation, an interesting point arose regarding the type of controller

implemented in this solution. Here, a phase advance (PA) controller is used for control.

This type of controller is not highly dependent on the states of the internal variables. By

this, if the system is in a steady state condition and an internal variable reset occurs, it is

unlikely that any perturbation of system response would be witnessed. If the controller

used was an integral based controller the situation would be different. The value of the

integral is stored within internal variables meaning that reset of these would result in an

instant change in controller output. In the above examples, the controllers are stopped

and restarted upon reconfiguration. If integral action is part of the controller then it is

possible that sharing internal variables would be required upon reconfiguration to prevent

a disruption to the provision of service. Otherwise transient oscillatory behaviour may be

observed as a result of the implementation of a new configuration.

Within this demonstration, three failures with specific failures modes have been selected

that allow graceful degradation of the system to occur. The limitation of hardware

prevented full redundancy being designed into all parts of the system (such as dual

inputs/sensing/actuation) which would have allowed different series failure tests to occur

and a broader demonstration of redundancy. However, the demonstration summarised

here has shown that with correct initial systems design and the use of reconfiguration to

exploit flexibility in available resources, higher levels of redundancy can be re-established

following occurrences of failure.

Fault Management via Dynamic

Reconfiguration for IMA

CHAPTER 7:

Conclusion

Chapter 7

Conclusions

 180

7. Conclusion
This chapter reviews the methods and results presented in the thesis and assess them

against the original objectives, as set out in Chapter 1, and highlights how the objectives

have been achieved and the proposed contributions have been demonstrated. Finally,

recommendations are made for the future work in the continuation in this line of study.

7.1. Assessment of Objectives
In Chapter 1, section 1.4, a series of objectives were identified. The intention is that the

satisfaction of these objectives would enable the demonstration of the research

contributions highlighted in section 1.3. Here the objectives have been re-stated with

reference to the evidence that supports their conclusion.

Objective 1: Investigate relevant literature to determine current state-of-the-art in areas

such as; IMA implementation, Fault management strategies within IMA, and methods for

assigning avionic functionality to an IMA hardware installation.

Chapter 2 summarised the key findings from a literature search regarding topics

appropriate to the research. It was found that many IMA installations were seeking to

adopt a multi-static approach, whereby a series of validated combinations of software

assignment to IMA hardware configuration are stored as system blueprints. These

configurations could then be reverted should the operational need occur. This method

introduces a number of significant operational savings (such as commonality of parts,

limited ability to reconfigure to optimise redundancy levels) but could not match the

expected savings or extended operating periods of a dynamically reconfigurable

arrangement.

It was identified that there is a lack of evidence of dynamically reconfigurable IMA systems

in operation. The following reasons have been identified as a cause:

Chapter 7

Conclusions

 181

• A lack of certification route to implementation due to the possibility of

configurations being implemented at run-time that have to been specifically

validated.

• Dynamic configuration is considered a ‘marginal gain’ over the operational benefits

available for a multi-static solution

• The Increase in autonomy assigned to the IMA system is risky in that a

configuration arrangement may be assigned that does not satisfy fundamental

operational needs.

Furthermore, it was highlighted that there is little research in how dynamically

reconfigurable systems could be used to manage the occurrence of faults in new and novel

ways. It is this understanding that would allow IMA installations to dramatically extend

operational periods between scheduled maintenance by tolerating faults via a graceful

degradation of system availability. However, conclusive research into how these

mechanisms could be implemented is lacking.

Objective 2: Develop a method of automatic configuration/reconfiguration of required

avionic applications to distributed process resources

Chapter 4 discusses the method developed to automatically generate a system

configuration where a function set of software applications is logically assigned to an IMA

installation. This method considers hardware compatibility, hardware availability and

temporal constraints when assigning functions. This iterative process ensures that

software elements are configured such that static redundancy levels are maintained to a

high standard, and ensures events run concurrently in order to maintain real-time

execution constraints.

Objective 3: Design and develop a hardware test bed (i.e. a representative IMA system with

appropriate ‘middleware’ and real-time communication strategy) to enable

implementation and test of the automatic configuration/reconfiguration method.

Chapter 7

Conclusions

 182

Chapter 3 of this thesis identified the necessary requirements of a representative IMA

system that would be constructed for testing new methods of IMA systems management.

This chapter considered not only the functional requirements necessary to accommodate

an IMA style arrangement, but also extended these requirements to ensure that

appropriate observation and data capture could be undertaken in order to validate results.

The requirements were broken down into the IMA sub-functions in order to define how

each element should behave for the purposes of future testing. Definitions extended to

hardware requirements (such as processing arrangement and communications needs), and

software requirements (such as configuration management, communication protocols and

fault management).

The development of the test installation based on the requirement set is described in

Chapter 4. Here, it is detailed how the required functional IMA components are

represented in the laboratory environment by the use of COTS components. A description

of the general IMA software implementation is also described, including the use of basic

systems management techniques to manage communication and synchronisation of the

modules.

Objective 4: Validate that the IMA implementation is capable of facilitating distributed

real-time control operations with a range of functional topologies

The results for assessing this objective are contained in Chapter 5. In this case, a series of

conceptual networks of software functions were defined. For each functional network, the

algorithm was tasked with automatically assigning the software applications to a defined

IMA arrangement. A graphical output generated from these offline tests showed that the

configuration algorithm successfully found an arrangement for these systems. It was

shown that for these configurations, redundant processing channels were preserved and

applications were placed temporally such that concurrency of events was maintained.

Chapter 7

Conclusions

 183

Further tests contained in Chapter 5 show how the configuration method could

accommodate multiple networks of functions, which often have different levels of

criticality associated with them. The test conducted in Chapter 5.2.2 shows how a real-time

distributed control algorithm was implemented to manage the airgap of the maglev rig.

The functional set also included applications required for user input, data reporting and

systems management activities.

Objective 5: Verify the ability of the configuration method to appropriately assign avionic

applications to available resources using a range of functional topologies and available

modules.

Although the results discussed above showed that a configuration could be obtained to

satisfy operational requirements, it was important to test the efficacy of the

implementation to operate repeatedly and consistently, particularly with regards to the

communication methodology. As described in Chapter 5, a test was defined where a

‘token’ was passed through a long series of applications and systems wide timing data was

captured and assessed. This allowed a clear analysis of the effectiveness of the

communication mechanism, inclusive of timing details and the level of repeatability.

Section 5.2.2 shows the effectiveness of distributed, real-time operations by the

demonstration of an air-gap controller. Here, parts of the ‘gap control’ algorithm have

been distributed across the IMA system, such that the whole system must perform as

expected in order to maintain stability of an otherwise unstable system. It was shown that

the controller performed as expected and real-time, distributed control occurred in a

repeatable manner.

Objective 6: Verify the ability of the IMA system to reconfigure a distributed real-time

control functional set (following a fault injection) to an allocation that tolerates component

failure.

Chapter 7

Conclusions

 184

Chapter 6 undertook a series of tests where failures were injected into an IMA installation

during operation. By collating management data from across the system, it was possible to

trace and observe how the failure occurrence was managed. It was shown that service

provision (i.e. real-time control of the maglev airgap) was maintained at all stages of the

fault management process, including the implementation of a new configuration.

The second part of this assessment, also detailed in Chapter 6, showed that a series of

failures could be introduced to the system and service provision can be maintained to an

extent. This section showed how the system gracefully degraded from high levels of

redundancy to minimal levels. The use of reconfiguration extended the possible operating

period before maintenance would be required or the current mission had to be aborted.

The results showed that during the fault management processes, service provision was

maintained at all times.

One finding from this task was that during reconfiguration, a subtle change in the temporal

arrangement of activities occurred. This had the effect of changing the closed loop

controller performance by a small amount. Although the system operated well within

sensible boundaries, it highlighted the importance of ensuring that real-time activities are

respected not only in terms of processing, but in the system wide implementation.

Chapter 7

Conclusions

 185

7.2. Assessment of Contributions
In Chapter 1 of this thesis, a number of research contributions were stated. This section

intends to identify how each of these contributions have been addressed.

Contribution 1: A solution for the dynamic reconfiguration problem for assigning required

systems functions (namely a distributed, real-time control function with redundant

processing channels) to available computing resources whilst protecting the functional

concurrency and time critical needs of the control actions.

When conducting the literature search for the purpose of this research, it was found that a

key area of knowledge that lacked completeness was a method by which an IMA

configuration could be generated at run-time. It was evident from the literature that the

configuration of applications is more than just a ‘spatial’ problem in that the order of

events occurring system wide must be considered for maintaining consistency with time-

critical tasks.

The reconfiguration method presented in this thesis, as discussed in Chapter 4, was

developed to investigate how systems configurations could be generated at run-time. In

doing so, considerations were not only made regarding matching an avionic function to an

appropriate resource, but maintaining awareness of reliability conditions and time-critical

execution requirements. The method developed was tested in Chapter 5 using a series of

functional networks and the results showed how the systems arranged both ‘spatially’ and

‘temporally’. This progresses previous work where such configurations are generated off-

line only.

Contribution 2: A systems management strategy that utilises the dynamic reconfiguration

properties of an IMA to restore high levels of redundancy in the presence of failures.

The main potential benefits of dynamic reconfiguration are the ability to extend mission

capability in the presence of failures occurring, and to extend maintenance free operating

Chapter 7

Conclusions

 186

periods by continuing to provide service at sufficient levels of reliability by ‘gracefully

degrading’. Graceful degradation is the process whereby the system begins with high levels

of redundancy then constantly reconfigures to make best use of remaining hardware as

failures occur. These processes are only viable if the re-configuration of the system is

managed automatically and is not a constant concern to operational staff.

This thesis aims to extend work undertaken to define Fault Management strategies within

IMA, specifically how reconfiguration can be used to maintain service in the presence of

faults. The method presented shows how health monitoring can be used to provide up-to-

date information about system availability. This information can then be used to inform an

automated systems manager to assess if reconfiguration would be beneficial. If so, a new

configuration can be calculate and initiated using remaining available resource.

The solution to using reconfiguration is presented in Chapter 5, and required a

consideration of the wider systems requirements to solve. Fundamentally, the system is

tasked to provide a service in a time-critical manner that cannot be interrupted whilst a

new configuration is being calculated. The method proposed relied on good systems design

such that at the instant of failure, service is continued by traditional redundant channels.

The purpose of dynamic reconfiguration is not to respond instantly as a fault handling

method, but to operate at a higher level in order make the system safer for when the next

failure occurs.

In order to prove the efficacy of the above contributions, the methods were tested on the

representative IMA installation that was described in Chapters 3 and 4. The testing,

detailed in Chapters 5 and 6, was designed to show the operational benefits and difficulties

of dynamic reconfiguration in a simplified capacity.

The key test was detailed in Chapter 6. Here, the functional requirement of the system was

to provide high reliability control calculations for a Maglev vehicle. As such, a series of IMA

functions were designed with the control law calculations for the air-gap duplicated for

redundancy. The system was tasked with generating not only the initial systems

Chapter 7

Conclusions

 187

configuration, but was to reconfigure the arrangement of functions should the health of

systems component change. A series of simulated failures was injected into the system and

the resultant configurations were recorded and observed. It was shown that not only was

service continually provided, but also that this system would degrade gracefully by

reconfiguring to make use of available redundant processing capacity. This was done by

gathering and analysing real-time data collected from across the system components.

Chapter 7

Conclusions

 188

7.3. Future Work and Recommendations
Although this work demonstrates a method by which automatic configuration within an

IMA could be used, there remains many areas that require further research and

clarification. The following subsections highlight and discuss some of these.

7.3.1. Identified Areas of Good Practice for Reconfigurable IMA

Some benefits of reconfiguration were highlighted in the discussion to Contribution 2 of

this thesis. During investigation, some areas were noted that would be positive aspects to

remain in consideration during any subsequent design and implementation of a

reconfigurable system.

The design process adopted here relied in an assumption that the initial design of the

applications and modules allowed a configuration to be found. This initial configuration

was designed to have a degree of static redundancy. This fundamental decision creates a

number of key safety features. At the point of failure, the system would retain service

provision should all partitions be robust such that the failure does not propagate in

unexpected ways. Secondly, this creates a time window for a better configuration to be

found. This window could be seconds, minutes or hours (dependant on the resultant levels

of reliability following the failure) meaning that time can be taken to derive a new sensible

configuration without attempting to achieve and implement this within a single

communication time frame window. Finally, if a new system configuration is not possible

due to lack of redundant processing resource then the system is still in a ‘safe’ state. Again,

using an assessment of the remaining reliability levels, an informed decision can be made

about the continuation of the mission. A recommendation here is that methods of

automatically generating fault effects analysis are applied here and included in the

decision making process. This would also enable systems designers to decide on the

required degree of redundancy to provide similar safety levels to current standards. For

example, could a triplex system now replace a quadraplex system due to the possibility of

reconfiguration?

Chapter 7

Conclusions

 189

7.3.2. Certification

A large amount of research is already underway in the field of certifying IMA. A promising

solution to simplify this method is the use of ‘modular certification techniques’ where the

system is not directly certified as a whole, but parts of the system can be considered

independently. This means a re-use of a part of a system does not require recertification of

the system whole, saving time and reducing the cost of multiple systems configuration

definitions.

This method would require extension for use with dynamic systems. Here, the

configuration would have to be highly automated to allow on-line ‘approval’ of the

proposed configuration generated due to a change in operational circumstance. Current

thinking in the way aircraft systems are built and certified are not appropriate for this type

of solution. Nevertheless, some method is required to confirm that the configuration

proposed by the automated system is safe to implement on the platform, and provide an

increase in operational benefits.

7.3.3. Quantification of Potential Savings

One of the proofs outstanding from this research is the quantification of the potential

gains of a dynamically reconfigurable IMA over a multi-static solution. It has been shown

that dynamic reconfiguration is possible and redundant processing channels can be

restored by use of spare system capacity. However, a thorough study is required in order

to balance the risk of undertaking this activity with the benefits gained. At this stage it is

hard to measure how ‘risky’ reconfiguration is. A thorough analysis into the potential

hazards is required, along with suggested strategies for mitigating them. This must be

weighed against the cost benefit of operating an IMA with this capability, such as the

potential weight saving by carrying a reduced set of avionic hardware. Understanding this

metric will help inform system design in terms of choosing the right number (of the correct

type) of processing components to facilitate the functional needs.

Chapter 7

Conclusions

 190

7.3.4. Controller Lag Approximations

It was shown that by reconfiguring the communication network, the exact time at which

data is sent within an overall time frame can never be known. Although it will not ‘jitter’

around the time frame when operating in a set configuration, there is the potential to

subtly adjust the response characteristics by subtle changes in the communication criteria.

As long as good control law design is undertaken and the sample rate of the overall time

frame is suitably fast, it is unlikely that the variations in control performance would be

noticed. The possible variations in data communication should be considered at the point

of control design such that design limits are adhered to in all possible circumstance.

7.3.5. Configuration Optimisation

Chapter 4 discussed briefly that although the configuration algorithm developed generated

a useable functional assignment, there is still room to optimise placement to maximise

system resources. Improvement here would directly lead to weight savings within the

avionics package as fewer processing modules would be required to meet the avionics

needs.

The method of generating resource assignment could readily be changed to an optional

method which also uses up-to-date system availability information and assignment

constraints to allocate a network of avionic functions. However, they should all retain the

fundamental requirements of the allocation problem in that functions require placing not

only on a resource, but in an allotted period within the time frame of time in order to

ensure concurrency of the execution stream.

References

xvii

v. References

ARINC, 2006a. 651-1 Design Guidance for Integrated Modular Avionics.

ARINC, 2006b. 653P0-1 Avionics Application Software Standard Interface, Part 0.

Avizienis, A., Laprie, J.-C. & Randell, B., 2000. Fundamental Concepts of Reliability. In Third
Information Survivability Workshop.

Bisson, K. & Troshynski, T., 2003. Switched Ethernet testing for avionics applications.
AUTOTESTCON 2003. IEEE Systems Readiness Technology Conference. Proceedings,
pp.546–550.

Burns, A. & Wellings, A.J., 2001. Real-time systems and programming languages: Ada 95,
real-time Java, and real-time POSIX, Addison Wesley.

Charara, H. & Fraboul, C., 2005. Modelling and simulation of an avionics full duplex
switched Ethernet. Telecommunications, 2005. Advanced Industrial Conference on
Telecommunications/service Assurance with Partial and Intermittent Resources
Conference/e-learning on Telecommunications Workshop. aict/sapir/elete 2005.
Proceedings, pp.207–212.

Collinson, R.P.G., 2011. Introduction to avionics systems, Springer.

Conmy, P. & McDermid, J., 2001. High level failure analysis for Integrated Modular
Avionics. In Proceedings of the Sixth Australian workshop on Safety critical systems
and software - Volume 3. SCS ’01. Darlinghurst, Australia, Australia: Australian
Computer Society, Inc., pp. 13–21. Available at:
http://dl.acm.org/citation.cfm?id=563780.563783.

Conmy, P.M., 2006. Safety Analysis of Computer Resource Management Software.
University of York Department of Computer Science-Publications-YCST, 7.

Coutinho, R.M.A., 2008. Aspects on Architecture for Independent Distributed Avionics
(AIDA). Digital Avionics Systems Conference, 2008. DASC 2008. IEEE/AIAA 27th,
pp.1.A.1–1–1.A.1–9.

Dajiang, S., Jinxia, A. & Jihong, Z., 2011. A new approach to improve safety of
reconfiguration in Integrated Modular Avionics. In Digital Avionics Systems Conference
(DASC), 2011 IEEE/AIAA 30th. pp. 1C4–1–1C4–12.

Dedieu, C. & Loffler, E., 2000. Modular Avionics Upgrade: The Cost Effective Solution to
Adapt Existing Fighters to the Operational Requirements of Today’s Battlefield, DTIC
Document.

References

xviii

Deng, Z. & Liu, J.W.S., 1997. Scheduling real-time applications in an open environment. In
Real-Time Systems Symposium, 1997. Proceedings., The 18th IEEE. pp. 308–319.

Edwards, R.A., 1997. Exploiting the Potential of Integrated Modular Avionics. In Proc. of
ERA Avionics Conference and Exhibition.

Ellis, S.M., 1997. Dynamic software reconfiguration for fault-tolerant real-time avionic
systems. Microprocessors and Microsystems, 21(1), pp.29–39. Available at:
http://www.sciencedirect.com/science/article/pii/S0141933197000173.

Elmqvist, J. et al., 2008. Demonstration of a formal method for incremental qualification of
IMA systems. Digital Avionics Systems Conference, 2008. DASC 2008. IEEE/AIAA 27th,
pp.5.D.3–1–5.D.3–8.

Elston, J., Argrow, B. & Frew, E., 2005. A distributed avionics package for small uavs. AIAA
Infotech@ Aerospace, pp.733–742.

Evans, A., 2003. Model Driven Development - Fact or Fiction?

Field, D. et al., 1997. Software techniques for IMA-system management, system security
and blueprints. In Proc. of ERA Avionics Conference and Exhibition.

Ford, B. et al., 2009. Adaptive architectures for future highly dependable, real time
systems. In Conference on Systems Engineering Research CSER2009. Loughborough,
UK: Research School of Systems Engineering, Loughborough University. Available at:
https://dspace.lboro.ac.uk/2134/11751.

Gaska, T., Watkin, C. & Chen, Y., 2015. Integrated Modular Avionics ??? Past, present, and
future. Aerospace and Electronic Systems Magazine, IEEE, 30(9), pp.12–23.

Goodall, R., 1985. The Theory of Electromagnetic Levitation. Physics in Technology, 16,
pp.207–213.

Goodall, R.M., 2004. Dynamics and control requirements for ems maglev suspensions. In
Proceedings of the 18th International Conference on Magnetically Levitated Systems
and Linear Drives. Shangai: {\copyright} Roger M. Goodall.

Goodall, R.M., 2000. On the robustness of flux feedback control for electro-magnetic
Maglev controllerso Title. In Proceedings of the 16th International Conference on
Magnetically-Levitated Systems and Linear Drives. Rio de Janeiro.

Grigg, A. et al., 1999. A Method for Design and Analysis of Next Generation Aircraft
Computer Systems. In Proc. of INCOSE Conference on Systems Engineering. Citeseer.

Grigg, A., 2002. Reservation-Based Timing Analysis (A Partitioned Timing Analysis Model for
Distributed Real-Time Systems). York.

References

xix

Hampp, J., 2007. Industry Progress Towards an IMA Software Solution.

Hladik, P.-E. et al., 2008. Solving a real-time allocation problem with constraint
programming. Journal of Systems and Software, 81(1), pp.132–149. Available at:
http://www.sciencedirect.com/science/article/pii/S0164121207000672.

Hollow, P., McDermid, J. & Nicholson, M., 2000. Approaches to certification of
reconfigurable IMA systems. In Proceedings 10th International Symposium of the
International Coucil on Systems Engineering.

Johnson, D.M. & Omiecinski, T.A., 1998. The feasibility and benefits of dynamic
reconfiguration in integrated modular avionics. Aeronautical Journal, 102(1012),
pp.99–105. Available at: http://cat.inist.fr/?aModele=afficheN&cpsidt=2183299
[Accessed February 11, 2013].

Jolliffe, G., 2005. Producing a safety case for IMA blueprints. Digital Avionics Systems
Conference, 2005. DASC 2005. The 24th, 2, p.14 pp. Vol. 2.

Kim, J.-E. et al., 2014. Integrated Modular Avionics (IMA) Partition Scheduling with Conflict-
Free I/O for Multicore Avionics Systems. Computer Software and Applications
Conference (COMPSAC), 2014 IEEE 38th Annual, pp.321–331.

Kopetz, H., 2011. Real-time systems : design principles for distributed embedded
applications, New York: Springer.

Kopetz, H. et al., 2005. The time-triggered Ethernet (TTE) design. Object-Oriented Real-
Time Distributed Computing, 2005. ISORC 2005. Eighth IEEE International Symposium
on, pp.22–33.

Lee, Y.H. et al., 2000. Scheduling tool and algorithm for integrated modular avionics
systems. In Digital Avionics Systems Conference, 2000. Proceedings. DASC. The 19th.
pp. 1C2/1–1C2/8 vol.1.

Lee, Y.-H. et al., 2000. Resource scheduling in dependable integrated modular avionics. In
Dependable Systems and Networks, 2000. DSN 2000. Proceedings International
Conference on. pp. 14–23.

Linling, S., Wenjin, Z. & Kelly, T., 2011. Do safety cases have a role in aircraft certification?
Procedia Engineering, 17, pp.358–368. Available at:
http://www.sciencedirect.com/science/article/pii/S1877705811027202.

Lisagor, O., Sun, L. & Kelly, T., 2010. The illusion of method: challenges of model-based
safety assessment. In 28th International System Safety Conference (ISSC)[submitted
to]. Citeseer.

References

xx

Little, R., 1991. Advanced avionics for military needs. Computing & Control Engineering
Journal, 2(1), pp.29–34.

Liu, B., 2016. Approach for integrated modular avionics reconfiguration modelling and
reliability analysis based on AADL. IET Software, 10(1), pp.18–25(7). Available at:
http://digital-library.theiet.org/content/journals/10.1049/iet-sen.2014.0179.

Lopez, J. et al., 2008. Modular avionics for seamless reconfigurable UAS missions. Digital
Avionics Systems Conference, 2008. DASC 2008. IEEE/AIAA 27th, pp.1.A.3–1–1.A.3–10.

Mapleston, M., 2006a. Fault Management in Advanced Architectures.

Mapleston, M., 2006b. Fault Management in Integrated Modular Systems.

Mazuk, D., 2008. IMA Resource Allocation process. Digital Avionics Systems Conference,
2008. DASC 2008. IEEE/AIAA 27th, pp.1.B.2–1–1.B.2–6.

Michail, K., 2009. Optimised configuration of sensing elements for control and fault
tolerance applied to an electro-magnetic suspension system. Loughborough
University. Available at: https://dspace.lboro.ac.uk/2134/5806.

Miller, S.P. et al., 2009. Implementing logical synchrony in integrated modular avionics. In
Digital Avionics Systems Conference, 2009. DASC ’09. IEEE/AIAA 28th. pp. 1.A.3–1–
1.A.3–12.

MOD, 2005. ASAAC Standards Part 1 Proposed Standards for Architecture,

Moir, I. & Seabridge, A., 2008. Aircraft Systems: Mechanical, Electrical and Avionics
Subsystems Integration, Wiley.

Moir, I., Seabridge, A. & Jukes, M., 2006. Military avionics systems, John Wiley & Sons.

Moir, I., Seabridge, A.G. & Jukes, M., 2003. Civil avionics systems, American Institute of
Aeronautics and Astronautics Bury St. Edmunds,, UK.

Montano, G. & McDermid, J., 2008. Human involvement in dynamic reconfiguration of
Integrated Modular Avionics. In Digital Avionics Systems Conference, 2008. DASC
2008. IEEE/AIAA 27th. pp. 4.A.2–1–4.A.2–13.

Moore, G.E., 2006. Cramming more components onto integrated circuits, Reprinted from
Electronics, volume 38, number 8, April 19, 1965, pp. 114 ff. Solid-State Circuits
Newsletter, IEEE, 11(5), pp.33–35.

Morel, M., 2014. Model-based safety approach for early validation of integrated and
modular avionics architectures. In Model-Based Safety and Assessment. Springer, pp.
57–69.

References

xxi

Morgan, M.J., 1991. Integrated modular avionics for next-generation commercial airplanes.
In Aerospace and Electronics Conference, 1991. NAECON 1991., Proceedings of the
IEEE 1991 National. pp. 43–49 vol.1.

O. Lisagor. J A McDermid, D.J.P., 2006. Towards a Practicable Process for Automated Safety
Analysis. In ISSC.

Parkinson, P. & Kinnan, L., 2003. Safety-critical software development for integrated
modular avionics. Embedded System Engineering, 11(7), pp.40–41.

Parr, G.R. & Edwards, R., 1999. Integrated modular avionics. Air & Space Europe, 1(2),
pp.72–75. Available at:
http://www.sciencedirect.com/science/article/pii/S1290095899800185.

Porcarelli, S. et al., 2003. An approach to manage reconfiguration in fault-tolerant
distributed systems. In Proceedings of the ICSE Workshop on Software Architecture for
Dependable Systems. pp. 71–76.

Prisaznuk, P.J., 2008. ARINC 653 role in Integrated Modular Avionics (IMA). In Digital
Avionics Systems Conference, 2008. DASC 2008. IEEE/AIAA 27th. pp. 1.E.5–1–1.E.5–10.

Prisaznuk, P.J., 1992. Integrated modular avionics. Aerospace and Electronics Conference,
1992. NAECON 1992., Proceedings of the IEEE 1992 National, pp.39–45 vol.1.

Randell, B. & Xu, J.I.E., The Evolution of the Recovery Block Concept. , pp.1–24.

RTCA, 2005. DO-297 Integrated Modular Avionics (IMA) Development Guidance and
Certification Considerations,

Salomon, U. & Reichel, R., 2011. Automatic safety computation for IMA systems. In Digital
Avionics Systems Conference (DASC), 2011 IEEE/AIAA 30th. pp. 7C3–1–7C3–9.

Salzwedel, H., Fischer, N. & Baumann, T., 2008. Aircraft level optimization of avionics
architectures. Digital Avionics Systems Conference, 2008. DASC 2008. IEEE/AIAA 27th,
pp.1.B.4–1–1.B.4–7.

Schavey, T. & Duba, S., 2008. Streamlining IMA integration through model-driven
methodologies. Digital Avionics Systems Conference, 2008. DASC 2008. IEEE/AIAA
27th, pp.1.B.3–1–1.B.3–5.

Scottsdael, L.Y. & Glendale, J.T., 2002. Flight Control Module Merged into the Integrated
Modular Avionics.

Si, C., Wang, S. & Liu, B., 2015. A model driven multi-constraint safety analysis method for
integrated modular avionics systems on time domain. Prognostics and System Health
Management Conference (PHM), 2015, pp.1–6.

References

xxii

Stephenson, Z., Nicholson, M. & McDermid, J., 2006. Flexibility and Mangeability of IMS
Projects. In ISSC.

Strunk, E.A., Knight, J.C. & Aiello, M.A., 2004. Distributed reconfigurable avionics
architectures. In Digital Avionics Systems Conference, 2004. DASC 04. The 23rd. pp.
10.B.4–101–10 Vol.2.

Sutterfield, B., Hoschette, J.A. & Anton, P., 2008. Future integrated modular avionics for jet
fighter mission computers. Digital Avionics Systems Conference, 2008. DASC 2008.
IEEE/AIAA 27th, pp.1.A.4–1–1.A.4–11.

Tsai, W.T. et al., 2006. RTSOA: Real-Time Service-Oriented Architecture. Service-Oriented
System Engineering, 2006. SOSE ’06. Second IEEE International Workshop, pp.49–56.

Varshney, P.K., 1997. Multisensor data fusion. Electronics & Communication Engineering
Journal, 9(6), pp.245–253.

Wake, A.S. et al., 1997. Modular avionics operating system — software concept.
Microprocessors and Microsystems, 21(1), pp.63–68. Available at:
http://www.sciencedirect.com/science/article/pii/S0141933197000215.

Wartel, F. et al., 2013. Measurement-based probabilistic timing analysis: Lessons from an
integrated-modular avionics case study. Industrial Embedded Systems (SIES), 2013 8th
IEEE International Symposium on, pp.241–248.

Watkins, C.B., 2006a. Integrated Modular Avionics: Managing the Allocation of Shared
Intersystem Resources. 25th Digital Avionics Systems Conference, 2006 IEEE/AIAA,
pp.1–12.

Watkins, C.B., 2006b. Integrated Modular Avionics: Managing the Allocation of Shared
Intersystem Resources. 25th Digital Avionics Systems Conference, 2006 IEEE/AIAA,
pp.1–12.

Watkins, C.B. & Walter, R., 2007. Transitioning from federated avionics architectures to
Integrated Modular Avionics. In Digital Avionics Systems Conference, 2007. DASC ’07.
IEEE/AIAA 26th. pp. 2.A.1–1–2.A.1–10.

Yann-Hang, L. et al., 2000. Resource scheduling in dependable integrated modular avionics.
In Dependable Systems and Networks, 2000. DSN 2000. Proceedings International
Conference on. pp. 14–23.

Zhang, J.-G., Pervez, A. & Sharma, A.B., 2003. Avionics data buses: an overview. Aerospace
and Electronic Systems Magazine, IEEE, 18(2), pp.18–22.

Fault Management via Dynamic

Reconfiguration for IMA

APPENDIX A:

Maglev Controller

Development

Appendix A

Maglev Controller Development

 xxiv

A. Maglev Controller Development

A.1. Mathematical Model of Maglev Rig
This section describes the process that was undertaken in order to produce a block

diagram representation of the dynamics of the Maglev system. Electromagnetism,

especially when involved in electromagnetic levitation, is a complicated process to model

due to the many inherent non-linear relationships. In order to simplify the model, it is

preferable to assume linear relationships around a normal operating point. A sensible

nominal operating point is chosen, and a model is built up by considering simplified linear

relationships of the important variables for small fluctuations around this point. This is very

similar to the techniques in building up simplified equations for modelling complex aircraft

characteristics for development of flight control systems.

The draw back to this modelling technique is that the further away from the normal

operating point the system goes, the less accurate the model becomes, and the less

reliable the derived control system is. The solution to the problem lies in producing a

suitably robust control structure that will cope with these variations in the fundamental

characteristics of the system. This can be verified by deriving a controller based on a

central operating point, and then testing this controller against a range of expected

operating conditions. At this stage it is important to consider the requirements to go from

a state of rest, to a state of controller levitation where the airgap at the beginning of this

state will be around 25mm, and will need to move to a steady gap of 10mm.

The four main variables of interest within a magnetic levitating system are:

• F - Force in Newtons

• B – Flux density in Teslas

• G – air gap in meters

• I – coil current in amps

Appendix A

Maglev Controller Development

 xxv

We can assume that a ‘normal’, steady operating point exists. In an aircraft this could be

defined as “steady, level flight”, but unfortunately, no such description exists here. In this

condition, let us assume that each of the above variables have a value of F0, B0, G0 and I0.

Therefore at any time of operation, it can be assumed that an instantaneous value of F, B,

G and I can be stated as:

iII
gGG
bBB
fFF

+=
+=
+=
+=

0

0

0

0

Where f , b , g and i all represent small variations around the operating point.

By now considering the relationships between the variables around the operating point, a

model can be deduced.

It can be shown that for a constant gap:

IB ∝

Also, for a constant current,

G
B 1
∝

The relationships of the small variations can be approximated by assuming that they are

directly proportional and that the gradients can be approximated by using the normal

operating point values. By doing this and combining the two relationships:

g
G
Bi

I
Bb

0

0

0

0 −= (equation 1)

It can also be shown that:
2BF ∝

Therefore, the gradient at the operating point is can be shown to be:

0

02
B
F

And so:

b
B
Ff

0

02
= (equation 2)

Appendix A

Maglev Controller Development

 xxvi

If F0 is the Force required to be exerted on the load to maintain ‘steady level flight’, then F0

must be equal to the weight of the suspended load. Therefore, and vertical acceleration

around the normal operating point can be expressed as:

M
fz = (equation 3)

The small variation in air gap is given by the difference between the position of the vehicle

and the distance from the normal operating point to the track:

zzg t −= (equation 4)

The variable zt represents the position of the track. If it is desired to model the track as a

disturbance, in order to model the natural non-uniform nature of the track, zt can be

modelled as a random fluctuation around zero. The characteristics of the distribution will

be dependant on track quality. For the purposes of control development, this value is set

to zero.

The next stage in this derivation is to define the electrical dynamics of the system. The

voltage applied across the coils will be equal to the sum of the demand of the resistive and

inductive components. Coils have the tendency to resist any voltage applied to them, due

to electromagnetic inductance of the close wires. Rather than simply including leakage

inductance, the principle of electromagnetic induction must be applied, as will be shown

later:

dt
dbNA

dt
diLRiv 222 ++=

Where:

v is the small change of coil voltage from normal operating point

R is the coil resistance

N is the number of turns in the coil

A is the pole face area of the coil

Referring back to equation 1:

g
G
Bi

I
Bb

0

0

0

0 −=

Appendix A

Maglev Controller Development

 xxvii

Let:

0

0

I
BKi = ,

0

0

G
BK g =

So:

gKiKb gi −=

Differentiating both sides with respect to time:

gKiKb gi  −=

Substituting into the expression for v:

()gKiKNAiLRiv gi  −++= 222

Re-arranging to make ‘i’ the subject:

gNAKviNAKiLRi gi  2222 +=++ (equation 5)

This equation can be manipulated further for assistance in deriving the resultant block

diagram:

gNAKve g 21 +=

So:

1222 eiNAKiLRi i =++ 

Apply Laplace transform:

()

1

1

1

)(22
1

)22(2
)22(2

e
sNAKLR

i

eNAKLsRi
eiNAKLsRi

i

i

i

++
=

=++
=++

Letting iL NAKLK +=

122
1 e

sKR
i

L+
=

The equations derived above that are used to create the block diagram are:

1. gKiKb gi −=

2. bKf b=

3.
M
fz =

4. zzg t −=

Appendix A

Maglev Controller Development

 xxviii

5. gNAKviNAKiLRi gi  2222 +=++

Where:

0

0

I
BKi = ,

0

0

G
BK g = and

0

02
B
FKb =

A.1.1. Block Diagram Representation

The above formulae can be represented in block diagram notation as shown in Figure A-1:

Figure A-1 Block Diagram of Magnet System

It can be seen that by including the principle of electromagnetic induction in equation 5,

the changes in the air gap have an effect on the voltage applied to the coil. This

relationship would have been neglected if only electrical induction was considered.

A.1.2. Transfer function derivation from block diagram

It is useful to express the above block diagram as a transfer function for simulation

purposes later in the project. The transfer function was derived by a series of block

diagram simplification steps as described below. The starting point is the block diagram of

the magnet system as shown in Figure A-1. This can be simplified to the model shown in

Figure A-2:

i
3

g
2

b
1

Load Dynamics

1

M
Integrator 2

1
s

Integrator

1
s

Gain 4

2*N*Area

Gain 3

Kg

Gain 2

Kg

Gain 1

Kb

Gain

Ki

Derivative

du /dt

Coil Impedance

1

2*Kls+2*R

zt
2

v
1

i b f

b_dot

z_dotdot gz_dot g_dot

zt_dot

Appendix A

Maglev Controller Development

 xxix

Figure A-2 Simplified Block diagram

Redrawing this model to make ‘b’ the obvious output:

Figure A-3 Transfer function derivation 1

Moving the term
2Ms

Kb− past the junction:

 +

-

+

+
v

g

 +

-

+
+

v b

Appendix A

Maglev Controller Development

 xxx

Figure A-4 Transfer function derivation 2

Closing the loop highlighted by the dashed box using a standard formula for a feedback

system:

gb

gb

KKMs
Ms
Ms

KK

sGH
sGsF

−
=

−
=

+
=

2

2

2
1

1
)(1

)()(

Which yields the following block diagram:

Figure A-5 Transfer function derivation 3

Which simplifies further to:

 +

-

+ +
v b

+ +

v b

Appendix A

Maglev Controller Development

 xxxi

Figure A-6 Transfer function derivation 4

So the transfer function of b(s) over v(s) can be derived, again using a standard formula for

a feedback system:

()()

()()

()() NAsKKKKKMssKR
MsK

KKMssKRMs
NAMsKKK

KKMssKR
MsK

GH
G

sv
sb

gbigbL

i

gbL

gbi

gbL

i

22

2
2

1

2

1)(
)(

2

2

2

2

2

2

+−+
=

−+
+

−+
=

−
=

Solving for the denominator:

()()
()

()()









−








−++=

−−++=

+−−+=

+−+

MK
KRK

s
K

NAK
M
KK

s
K
RsMK

KRKsKKKNAKKKRMsMsK

NAsKKKKRKsKKKRMsMsK

NAsKKKKKMssKR

L

gb

L

igb

L
L

gbgbLgbiL

gbigbgbLL

gbigbL

12

2

2

22

23

23

23

2

Thus, the transfer function becomes:

MK
KRK

s
K

NAK
M
KK

s
K
Rs

s
K
K

MK
KRK

s
K

NAK
M
KK

s
K
RsMK

MsK
sv
sb

L

gb

L

igb

L

L

i

L

gb

L

igb

L
L

i

−







−++

=









−








−++

=

1

2

12
)(
)(

23

2

23

2

+ +

v b

Appendix A

Maglev Controller Development

 xxxii

A.1.3. Derivation of F0, B0, G0 and I0

These values have previously been defined as part of the design work for the initial phases

of the test rig. They have been included here for completeness. As stated previously, they

represent the nominal operating point that was discussed at the start of this section.

A.1.3.1. F0

The Rig is specified to lift 200kg on 4 magnets (one in each corner), therefore 1 magnet is

to have the capacity to lift 50kg.

As such:

F0 = 500N

A.1.3.2. G0

G0, is simply the specified airgap between the rail and the magnets. In this design:

G0 = 10mm

A.1.3.3. B0

B0 is the standard value of magnetic flux carried by the poleface. The value chosen was a

nominal one selected based on experience. From this, design characteristics of the magnet

could be derived. The chosen value is:

B0 = 0.5T

From this choice, the required area of the poleface needed to cope with this value can be

derived. This is a similar process as to calculating the required thickness of a wire based on

a specified amount of resistance. The total area of the poleface calculated will take into

account both polefaces as the ‘resistive effect’ to the electromagnetic flow will double

because of the two air gaps.

Therefore, from standard electromagnetic physics:

2
0

002
B

FA µ
=

Which yields:

Appendix A

Maglev Controller Development

 xxxiii

2

2

2

7

50
005.0

5.0
5001042

cm
m

Atotal

=

≈

×××
=

−π

And thus the required pole diameter of a single magnet can be found:

mm

D

DA

56

40025.0
4

2

=

×
=∴

=

π

π

A.1.3.4. I0

I0 is the nominal operating current of the system. The derivation starts by deriving the

number of ampere turns needed to induce the required amount of flux through the

electromagnetic circuit. This is rather like calculating the amount of voltage required to

draw current through an electrical circuit.

A complete calculation would take into account the flow of flux throughout the entire

electromagnetic circuit. In practice, this would be similar to taking into account the

resistance of an entire electromagnetic circuit, i.e. taking into account the resistance of

copper tracks that join up resisters. The focus is therefore on the resistive nature of the

two air gaps contained in the electromagnetic loop.

Again, from standard electromagnetic physics:

G
NIB
2

0µ=

Note the factor of 2 that appears in the denominator to take into account the two airgaps

within the loop.

Therefore:

Appendix A

Maglev Controller Development

 xxxiv

AT

BGNI

8000
104

5.001.02

2

7

0

00

≈
×

××
=

=

−π

µ

To allow for flux leakage:

ATNI 10000=

As there are two coils to each magnet, each coil must provide 5000AT.

Each coil has been built with 456 turns so therefore:

I0 = 11A

The coil resistance is 1 Ohm.

A.1.4. Leakage Inductance

The leakage inductance, L, used is a nominal value based on 5% of the mutual inductance.

The mutual inductance is give by:

0

0

I
BNA

Therefore, the value of ‘L’ is given by:

H

I
BNAL

00259.0
11

5.00025.045605.0

05.0
0

0

=

×××=

×=

This is the value of inductance for a single coil, not for the full magnet.

Appendix A

Maglev Controller Development

 xxxv

A.1.5. Summary

Therefore, the following has been derived:

Description Unit Value
Operating force of

each magnet
0F 500N

Operating Airgap 0G 0.01m

Operating flux
density

0B 0.5T

Operating current 0I 11A

Poleface Area (single
magnet)

A 0.0025m2

Number of turns
(single coil)

N 456

Coil Resistance
(single coil)

R 0.5 Ohm

Coil inductance
(single coil)

L 2.59 mH

00 IB iK 0.0455 T/A

00 GB gK 50 T/m

002 BF fK 2000 N/T

iNAKL + LK 0.0545 H

Table A-1 Summary of derived Maglev system variables

These values can now be used within the Matlab Simulink model for the design of an

appropriate controller

A.2. Controller Design and Development
The structure of the controller is taken from a known solution as stated in REFERENCE. It

consists of a flux loop nested by an outer gap loop. In addition to this, it is envisaged that

upon final implementation, both loops will be implemented digitally. The flux loop will be

executed locally to the sensors and actuators, but the gap loop will implemented over a

network. Initial tests show that the approximate frequency that the flux loop can run will

be 1000Hz, and the gap loop 100Hz.

Appendix A

Maglev Controller Development

 xxxvi

The following describes how the appropriate digital control functions are derived, based on

the research done in REFERENCE.

A.2.1. Inner Flux Loop Controller Design

Consider Figure A-2, that shows a simplified block diagram of the magnet system:

The feedback loop at the top of the picture is a manipulation of the formula to avoid the

use of a differentiator when the system is implemented in simulink. The true form of this

block diagram is shown inFigure A-7, correctly showing the induced voltage due to the coil

as a function of flux:

Figure A-7 Modified block diagram of magnet system

The aim is to stabilise the inner flux loop by applying a controller that will vary the input

voltage based on the error between the actual and demanded flux level. Applying a generic

controller to the above system is represented by the following diagram:

 +

-

+

+
v

g

 +

-

+

+
v

g

b

Appendix A

Maglev Controller Development

 xxxvii

Figure A-8 Flux control loop

This control loop will have to have appropriate gain and phase margins of GM>6db and

PM>40degres.

A.2.1.1. Analogue Controller Design

A proportional plus integral (PI) controller should provide good control characteristics for

the inner loop, the design of which is shown in Figure A-9. This is the simulink model used

to test the PI controller.

Figure A-9 Simulink model of flux loop

The uncompensated Nichols plot of v(s)/b(s) is shown in Figure A-10:

v

b

g

i

magnet_modelStep
Scope

taub.s+1

taub.s

PI

Gb

Gb

Linear Magnet
Model

 +

-

+

+
v

g

b

+

- bin

Appendix A

Maglev Controller Development

 xxxviii

Figure A-10 Nichols Plot of uncompensated flux loop

It is necessary to derive values of gain and integral action required to achieve appropriate

stability margins

Gain (Gb)

It can be shown that the open loop transfer function between voltage and flux density at

high frequencies can be approximated to:

sNAsv
sb 1
)(
)(
≈

Therefore, to give a bandwidth of bf , the flux loop gain needs to be:

NAfG bb π2= in units of V/T

Assuming a bandwidth of 50Hz:

TVG
TV

NAfG

b

bb

/700
/716

1050456502

2
4

≈∴
=

××××=

=
−π

π

Applying this gain yields the Nichols chart shown in Figure A-11.

Open-Loop Phase (deg)

O
pe

n-
Lo

op
 G

ai
n

(d
B)

-360 -315 -270 -225 -180 -135 -90 -45 0
-100

-80

-60

-40

-20

0

20

40

 6 dB
 3 dB

 1 dB
 0.5 dB

 0.25 dB
 0 dB

 -1 dB

 -3 dB
 -6 dB

 -12 dB

 -20 dB

 -40 dB

 -60 dB

 -80 dB

 -100 dB

Appendix A

Maglev Controller Development

 xxxix

Figure A-11 Nichols plot of flux loop with proportional control

The measure stability attributes are: PM = 91.8 degrees and w = 292 rad/s.

Integral action

As can be seen in Figure A-11, there is a large phase margin (~90 degrees) that can be

exploited to improve the control response. This allows the introduction of Integral action

to the controller to ensure a zero steady state error in the flux loop.

From the Nichols chart above, we can assume that for an optimal response of a PM of 70

degrees, we require a 20 degree phase shift at 0dB crossover point.

The break frequency of the integral action should be approximately 20Hz. This value will be

used to see how effective it is. To derive bτ :

008.0
40

1
2

1
20

==∴

=

=

π
τ

π
τ

b

b
b

b

f

Hzf

Open-Loop Phase (deg)

O
pe

n-
Lo

op
 G

ai
n

(d
B)

-360 -315 -270 -225 -180 -135 -90 -45 0
-100

-80

-60

-40

-20

0

20

40

 6 dB

 3 dB

 1 dB

 0.5 dB

 0.25 dB

 0 dB

 -1 dB

 -3 dB

 -6 dB

 -12 dB

 -20 dB

 -40 dB

 -60 dB

 -80 dB

 -100 dB

Appendix A

Maglev Controller Development

 xl

Applying this to the control loop, the following Nichols chart is obtained.

Figure A-12 Nichols Plot of PI compensated flux loop

From this Nichols plot, it is possible to establish that the phase margin of the system is 69.9

degrees and the closed loop bandwidth is 416 rads/s, which is a closed loop bandwidth of

66Hz.

A.2.1.2. Digital Control Design

The controller described above will be implemented on a digital controller with the

capacity to sample at 1000Hz. This is below the recommended bandwidth for design by

emulation, thus design will take place using w-plane design. For this purpose, a zero-order

hold is introduced to the model to represent this digital controller.

Open-Loop Phase (deg)

O
pe

n-
Lo

op
 G

ai
n

(d
B)

-360 -315 -270 -225 -180 -135 -90 -45 0
-80

-60

-40

-20

0

20

40

 6 dB

 3 dB

 1 dB

 0.5 dB

 0.25 dB

 0 dB

 -1 dB

 -3 dB

 -6 dB

 -12 dB

 -20 dB

 -40 dB

 -60 dB

 -80 dB

Appendix A

Maglev Controller Development

 xli

Figure A-13 Digitized representation of flux controller

The simulink model used to represent the uncompensated system, inclusive of the

controller sampling zero-order hold is shown in Figure A-14.

Figure A-14 Simulink model of sampling in loop

The Nichols plot of this system is shown in Figure A-15:

magnet _model

v

b

g

i
Zero -Order

Hold
Step

Scope

Linear Magnet
Model

-
i

b

g

v ZOH
T

Appendix A

Maglev Controller Development

 xlii

Figure A-15 Nichols Plot of uncompensated system with sampling

As with the analogue controller, it is necessary to derive appropriate values of gain and

integral action.

Gain (Gb)

It can be shown that the open loop transfer function between voltage and flux density at

high frequencies can be approximated to:

sNAsv
sb 1
)(
)(
≈

Therefore, to give a bandwidth of bf , the flux loop gain needs to be:

NAfG bb π2= in units of V/T

Assuming a bandwidth of 50Hz:

TVG
TV

NAfG

b

bb

/700
/716

1050456502

2
4

≈∴
=

××××=

=
−π

π

Applying this gain yields the Nichols chart shown in Figure A-16.

Open-Loop Phase (deg)

O
pe

n-
Lo

op
 G

ai
n

(d
B)

-360 -315 -270 -225 -180 -135 -90 -45 0
-80

-60

-40

-20

0

20

40

 6 dB

 3 dB

 1 dB

 0.5 dB

 0.25 dB

 0 dB

 -1 dB

 -3 dB

 -6 dB

 -12 dB

 -20 dB

 -40 dB

 -60 dB

 -80 dB

Appendix A

Maglev Controller Development

 xliii

Figure A-16 Nichols Plot of flux loop with digital proportional control

The measured stability margins are: PM = 83.4 degrees at w = 293 rad/s.

Integral action

As can be seen, there is still a large phase margin (~85 degrees) that can be exploited. As

such, integral action can be added to the controller to ensure a zero steady state error in

the flux loop.

From the Nichols chart above, we can assume that for an optimal response of a PM of 70

degrees, we require a 15 degree phase shift at 0dB crossover point.

Goodall [insert reference] states that the break frequency of the integral action should be

approximately 20Hz. This value will be used to see how effective it is. To derive bτ :

008.0
40

1
2

1
20

==∴

=

=

π
τ

π
τ

b

b
b

b

f

Hzf

Open-Loop Phase (deg)

O
pe

n-
Lo

op
 G

ai
n

(d
B)

-360 -315 -270 -225 -180 -135 -90 -45 0
-80

-60

-40

-20

0

20

40

 6 dB
 3 dB

 1 dB

 0.5 dB
 0.25 dB

 0 dB

 -1 dB

 -3 dB

 -6 dB

 -12 dB

 -20 dB

 -40 dB

 -60 dB

 -80 dB

Appendix A

Maglev Controller Development

 xliv

Applying these values to the controller the Nichols chart in Figure A-17 is obtained.

Figure A-17 Nichols plot of flux loop with digital controller

From this Nichols plot, it is possible to establish that the phase margin of the system is 59.3

degrees and gain margin of 17.3dB. The closed loop bandwidth is 452 rads/s, which is a

closed loop bandwidth of 71.9Hz.

A.2.1.3. Digitization of Controller (z)

The controller that has been designed is in continuous time. The implementation will be on

a computer and therefore will need digitising. This can be done by applying the bilinear

transform to the continuous time controller. The controller derived from above is:

() 






 +
=

w
wGwC
b

b
b τ
τ 1

Where:

s
TVG

b

b

008.0
/700

=
=

τ

For Bilinear transform:

Open-Loop Phase (deg)

O
pe

n-
Lo

op
 G

ai
n

(d
B)

-360 -315 -270 -225 -180 -135 -90 -45 0
-80

-60

-40

-20

0

20

40

 6 dB
 3 dB

 1 dB

 0.5 dB
 0.25 dB

 0 dB

 -1 dB

 -3 dB

 -6 dB

 -12 dB

 -20 dB

 -40 dB

 -60 dB

 -80 dB

Appendix A

Maglev Controller Development

 xlv

()
()1

1

1
12

−

−

+
−

⇒
zT
zw

So:

()

()
()
()
()

() ()
()

() () ()
1

1

1

11

1

11

1

1

1

1

22
22

22
22

12
112

1
12

1
1
12

−

−

−

−−

−

−−

−

−

−

−

−
−++

=









−

++−
=









−

++−
=





























+
−

+







+
−

=

z
zTGTGzC

z
TzTzG

z
zTzG

zT
z

zT
z

GzC

bb

bbbb

bb

bb
b

b

b
b

b

b

b

ττ
ττ

ττ
ττ

τ
τ

τ

τ

This can be expressed as:

() 1

1

10
10

−

−

+
+

=
zbbbb
zababzC

Where:

()
()

b

b

bb

bb

bb
bb

TGab
TGab

τ
τ

τ
τ

21
20

21
20

−=
=

−=
+=

The discrete controller is applied to the simulink diagram in the following way:

Figure A-18 Flux loop with digital controller

The Nichols plot in Figure A-19 shows the discrete time controller system implemented at

1000Hz.

magnet _model

v

b

g

i
Zero -Order

Hold
Step

Scope

Discrete Filter

a0.+a1z -1

b0.+b1z -1

Appendix A

Maglev Controller Development

 xlvi

Figure A-19 Nichols plot of flux loop with 1kHz digital controller

The phase margin is 61.1 degrees and the gain margin is 16.7 degrees. The closed loop

bandwidth of the system is 474 rad/s which is equivalent to 75.4Hz.

Open-Loop Phase (deg)

O
pe

n-
Lo

op
 G

ai
n

(d
B)

-360 -315 -270 -225 -180 -135 -90 -45 0
-80

-60

-40

-20

0

20

40

 6 dB
 3 dB

 1 dB

 0.5 dB
 0.25 dB

 0 dB

 -1 dB

 -3 dB

 -6 dB

 -12 dB

 -20 dB

 -40 dB

 -60 dB

 -80 dB

 b

Appendix A

Maglev Controller Development

 xlvii

A.2.1.4. Digitisation of Controller (delta)

The controller design has been performed in continuous time and requires digitising in

order for this to be implemented on a computer. This can be done by applying the bilinear

transform using the delta operator and then deriving the real time control equations.

() 






 +
=

w
wGwC
b

b
b τ
τ 1

Where:

s
TVG

b

b

008.0
/700

=
=

τ

For the bilinear transform:

()δ
δ
+

⇒
2
2

T
w

Therefore:

()

()

()
()

()

()

()

()

1

1

1

1

2
2

2
22

2
22

2
22

2
22

2
2

1
2
2

1

−

−

−

+=

++
=

++
=

++
=








 ++
=








 ++
=



























+

+







+

=








 +
=

δ

δ
τ

τ
τ

τ
δτ

δτ
δτ
δτ
δτ

δτ
δδτ

δ
δτ

δ
δτ

τ
τ

qp

TGTG

TGTG

TGTG

TTG

TG

T

TG

w
wGwC

b

b
b

b

b

b

bbb

b

bbb

b

b
b

b

b
b

b

b

b

b

b
b

Where:

Appendix A

Maglev Controller Development

 xlviii

()

b

b

b

bb

TGq

TGp

τ

τ
τ

=

+
=

2
2

 The real time equations are derived as follows. Let:

() 1

)(
)(

)(
)(−+=×= δ

δ
δ

δ
δ qp

u
v

v
ywC

Where ‘y‘ is the output, u is the input and v is an internal variable. The above function is

expanded below:

1
)(
)(
)(
)(1

=

+= −

δ
δ

δ
δ
δ

u
v

qp
v
y

And also:

uv =

(Equation 1)

Then:

vqpvy 1)(−+= δδ

Let:

(Equation 2)

So:

qwpvy +=

(Equation 3)

Equations 1, 2 and 3 are implemented in that order to perform the control actions.

A.2.2. Outer Gap-loop Control Design

A.2.2.1. Analogue Controller Design

When a controller is applied to the outer loop, the control structure generated for a single

magnet is as shown in Figure A-20.

vww
vw

+=∴
= −1δ

Appendix A

Maglev Controller Development

 xlix

Figure A-20 Control Structure for Maglev system

The flux loop controller was derived in the previous section (A.2.1) and was found to be:

()
008.0

1008.0700 +
=bC

The inversion on the gap feedback loop is required to correct the polarity and give a

positive value of gap.

The Nichols plot for the uncompensated outer loop is shown in Figure A-21.

Figure A-21 Nichols Plot of uncompensated Gap Loop

Open-Loop Phase (deg)

O
pe

n-
Lo

op
 G

ai
n

(d
B)

-360 -315 -270 -225 -180 -135 -90 -45 0
-60

-50

-40

-30

-20

-10

0

10

20

30

40

 b

 6 dB

 3 dB

 1 dB

 0.5 dB

 0.25 dB

 0 dB

 -1 dB

 -3 dB

 -6 dB

 -12 dB

 -20 dB

 -40 dB

 -60 dB

Linear Magnet
Model

-
i

b

g

v
-

+

invert

Appendix A

Maglev Controller Development

 l

It can be seen that there is a need for phase advance to stabilise the system.

A suitable value of gain, can be found by considering a proportional gain of 10%. Assuming

the maximum change in gap allowable is 0.005m (5mm), and the maximum change in flux

density is 1T:

The gradient shown will equal the gain of the controller.

mTGg /20
005.0

1.0
==

The Nichols chart obtained by applying this controller is shown in Figure A-22:

g (in m)

b (in T)

0.005

-0.005

10%
(=0.1T)

1.0 -1.0

Appendix A

Maglev Controller Development

 li

Figure A-22 Nichols Plot of proportional control on gap loop

A Phase advance controller has the following structure:

()
()1

1)(
+
+

=
s
skGsC gg τ
τ

Where k is the phase advance ratio, gG is the gain andτ is the time constant.

The value of k is a nominal value and is chosen here to be 5.

The Phase advance implemented by this controller can be expressed as:

() ()

()







−






=







−






+=

+∠−+∠+∠=

∠=∠

−−

−−−

τωτω

τωτω

τωτω

1tan1tan

1tan1tantan

11
)()(

11

111

k

k
G

jjkG
jωCsC

g

g

gg

At the 0dB point, we require a phase advance of at least 40 degrees. With ‘k’ already

chosen, and srad /5.28=ω at 0dB,

Open-Loop Phase (deg)

O
pe

n-
Lo

op
 G

ai
n

(d
B)

-360 -315 -270 -225 -180 -135 -90 -45 0
-60

-50

-40

-30

-20

-10

0

10

20

30

40

 6 dB

 3 dB

 1 dB

 0.5 dB

 0.25 dB

 0 dB

 -1 dB

 -3 dB

 -6 dB

 -12 dB

 -20 dB

 -40 dB

 -60 dB

 b

Appendix A

Maglev Controller Development

 lii

()

()

()
()

0334.0
6.119

4
839.05.285

51
)40tan(

1

1

11)40tan(

1tan1tan40 11

=∴
−
−

=

−××
−

=

−
−

=

−
=

−=−







−






=− −−

t

ω
t

tω

tωtω

tωtω

k
k

k
k

k

k

The Nichols chart in Figure A-23 shows the response of the system with controller with the

above parameters.

Figure A-23 Nichols plot of PA Gap controller applied to system

This gives a phase margin of 16.1 degrees, and a gain margin of 8.31dB. It can be seen on

the Nichols chart above that a larger stability margin can be achieved by adjusting the

active frequency of the controller. As such, the value of τ is adjusted to 0.01. This gives the

following Nichols plot:

Open-Loop Phase (deg)

O
pe

n-
Lo

op
 G

ai
n

(d
B)

-360 -315 -270 -225 -180 -135 -90 -45 0
-60

-50

-40

-30

-20

-10

0

10

20

30

40

 6 dB

 3 dB

 1 dB

 0.5 dB

 0.25 dB

 0 dB

 -1 dB

 -3 dB

 -6 dB

 -12 dB

 -20 dB

 -40 dB

 -60 dB

 l b

Appendix A

Maglev Controller Development

 liii

Figure A-24 Nichols plot of adjust PA Gap controller applied to system

This controller yields a phase margin of 39.6 degrees, and a gain margin of 15.8dB. The

bandwidth of the system was found to be 12.5Hz.

As a final test, a gap step input of 2mm is put into the loop. The following is a copy of the

output of the system.

Open-Loop Phase (deg)

O
pe

n-
Lo

op
 G

ai
n

(d
B)

-360 -315 -270 -225 -180 -135 -90 -45 0
-60

-50

-40

-30

-20

-10

0

10

20

30

40

 6 dB

 3 dB

 1 dB

 0.5 dB

 0.25 dB

 0 dB

 -1 dB

 -3 dB

 -6 dB

 -12 dB

 -20 dB

 -40 dB

 -60 dB

Appendix A

Maglev Controller Development

 liv

Figure A-25 Step response of system

As can be seen, the system settles nicely with zero steady state error.

A.2.2.2. Digital Controller Design

Initial test show that the outer gap loop will be implemented at around 100Hz. As with the

flux loop, this is lower than the recommended sampling frequency given the bandwidth of

the system. As such, a w-plane design will be used to derive a controller.

The control structure inclusive of the sampling delay is shown in Figure A-26:

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3
x 10

-3

Time (s)

G
ap

 (m
)

Step response to 2mm gap change input

Appendix A

Maglev Controller Development

 lv

Figure A-26 digital control scheme

Ti is the inner (flux) loop sampling time and Tg is the outer (gap) loop sampling time. The

Nichols plot for the uncompensated outer loop is shown in Figure A-27.

Figure A-27 Nichols plot of Gap loop

Again, it can be seen that there is a need for phase advance to stabilise the system.

Using the same value of gain as previously:

Open-Loop Phase (deg)

O
pe

n-
Lo

op
 G

ai
n

(d
B)

-360 -315 -270 -225 -180 -135 -90 -45 0
-80

-60

-40

-20

0

20

40

60

80

 6 dB
 3 dB

 1 dB
 0.5 dB

 0.25 dB
 0 dB

 -1 dB

 -3 dB
 -6 dB

 -12 dB

 -20 dB

 -40 dB

 -60 dB

 -80 dB

Linear Magnet
Model

-
i

b

g

v
-

+

invert

ZOH
Tb

ZOH
Tg

Appendix A

Maglev Controller Development

 lvi

mTGg /20=

The Nichols chart obtained by applying this controller is shown in Figure A-28:

Figure A-28 Nichols chart of Gap loop with proportional gain controller

A Phase advance controller has the following structure:

()
()1

1)(
+
+

=
s
skGsC gg τ
τ

Where k is the phase advance ratio, gG is the gain and τ is the time constant.

The value of k is a nominal value and is chosen here to be 6.

The Phase advance implemented by this controller can be expressed as:

() ()

()







−






=







−






+=

+∠−+∠+∠=

∠=∠

−−

−−−

τωτω

τωτω

τωτω

1tan1tan

1tan1tantan

11
)()(

11

111

k

k
G

jjkG
jωCsC

g

g

gg

Open-Loop Phase (deg)

O
pe

n-
Lo

op
 G

ai
n

(d
B)

-360 -315 -270 -225 -180 -135 -90 -45 0
-80

-60

-40

-20

0

20

40

60

80

100

120

 6 dB
 3 dB

 1 dB
 0.5 dB

 0.25 dB
 0 dB

 -1 dB
 -3 dB
 -6 dB

 -12 dB
 -20 dB

 -40 dB

 -60 dB

 -80 dB

Appendix A

Maglev Controller Development

 lvii

At the 0dB point, we require a phase advance of at least 40 degrees. With ‘k’ already

selected, and srad /5.28=ω at 0dB,

()

()

()
()

0348.0
5.143

5
839.05.286

61
)40tan(

1

1

11)40tan(

1tan1tan40 11

=∴
−
−

=

−××
−

=

−
−

=

−
=

−=−







−






=− −−

t

ω
t

tω

tωtω

tωtω

k
k

k
k

k

k

The Nichols chart in Figure A-29 shows the response of the system with controller with the

above parameters.

Figure A-29 Nichols Plot of PA Gap controller

Open-Loop Phase (deg)

O
pe

n-
Lo

op
 G

ai
n

(d
B)

-360 -315 -270 -225 -180 -135 -90 -45 0
-80

-60

-40

-20

0

20

40

60

80

100

120
 l b

 6 dB
 3 dB

 1 dB
 0.5 dB

 0.25 dB
 0 dB

 -1 dB
 -3 dB
 -6 dB

 -12 dB
 -20 dB

 -40 dB

 -60 dB

 -80 dB

Appendix A

Maglev Controller Development

 lviii

This gives a slight negative phase and gain margin. It can be seen on the Nichols chart

above that a larger stability margin can be achieved by adjusting the active frequency of

the controller, and reducing the gain. As such, the value of τ is adjusted to 0.01, and the

value of gain adjusted to 10. This gives the following Nichols plot:

Figure A-30 Nichols plot of adjusted PA gap controller

This controller yields a phase margin of 38.2 degrees, and a gain margin of 12dB.

A.2.3. Digitisation of Controller (z)

The controller generated above is a continuous time controller and requires conversion to

a discrete time controller for implementation on a real time computer.

Once again, this can be done by applying the binomial transform to the continuous

controller. So:

() ()
()1

1
+
+

=
w
wkGwC gg τ
τ

Where:

Open-Loop Phase (deg)

O
pe

n-
Lo

op
 G

ai
n

(d
B)

-360 -315 -270 -225 -180 -135 -90 -45 0
-80

-60

-40

-20

0

20

40

60

80

100

 6 dB
 3 dB

 1 dB
 0.5 dB

 0.25 dB
 0 dB

 -1 dB

 -3 dB
 -6 dB

 -12 dB
 -20 dB

 -40 dB

 -60 dB

 -80 dB

 l b

Appendix A

Maglev Controller Development

 lix

01.0
5

10

=
=

=

τ
k

Gg

Applying the binomial transform of:

()
()1

1

1
12

−

−

+
−

⇒
zT
zw

So:

()

()
()
()
()

() ()()
() ()()

()
()

() () ()
() () 1

1

11

11

11

11

1

1

1

1

22
22

22
22

112
112

1
1
12

1
1
12

−

−

−−

−−

−−

−−

−

−

−

−

−++
−++

=

++−
++−

=

++−
++−

=









+

+
−









+








+
−

=

zTT
zkTGkTG

zC

TzTz
TzTzkkG

zTz
zTzkG

zT
z
zT
zk

GzC

gg
g

g

g

gg

ττ
ττ

ττ
ττ

τ
τ

τ

τ

This can also be expressed as:

() 1

1

10
10

−

−

+
+

=
zbgbg
zagagzCg

Where:

()
()

τ
τ

τ

τ

21
20

21

20

−=
+=

−=

+=

Tbg
Tbg

kTGag
kTGag

g

g

A.2.4. Digitisation of Controller (delta)

The controller design has been performed in continuous time and requires digitising in

order for this to be implemented on a computer. This can be done by applying the bilinear

transform using the delta operator and then deriving the real time control equations.

() ()
()1

1
+
+

=
w
wkGwC gg τ
τ

Appendix A

Maglev Controller Development

 lx

Where:

s
k

G

b

g

01.0
5

10

=
=

=

τ

For the bilinear transform:

()δ
δ
+

⇒
2
2

T
w

Therefore:

() ()
()

()

()
()()
()()

()
()
()
()
()
() ()

()
()
() ()

()

1
1

1
1

1

1

1

1

1

2
21

2
2

2
2

2
21

2
2

2
2

22
22

22
22

22
22

1
2
2

1
2

2

1
1

−

−

−

−

−

−

+
+

=

+
+

+
+

+
+

=

+
+

+
+

+
+

=

++
++

=

++
++

=

++
++

=









+

+









+

+
=

+
+

=

δ
δ

δ
τ

δ
ττ

τ

δ
τ

δ
ττ

τ
δτ
δτ

δτδ
δτδ
δτδ
δτδ

δ
τδ
δ

τδ

τ
τ

δ
qδp

T
T

T
TG

T
TkG

T
T

T
T

T
Tk

G

TT
TTkG

TT
TTkG

T
TkG

T

T
k

G

w
wkGwC

gg

g

g

g

g

g

gg

Where:

Appendix A

Maglev Controller Development

 lxi

()
()

()T
Td

Gq
T

TkG
p

g

g

+
=

=
+
+

=

τ

τ
τ

2
2

2
2

1

 The real time equations are derived as follows. Let:

() 1
1

1
1

1)(
)(

)(
)(

−

−

+
+

=×=
δ
δ

δ
δ

δ
δ

δ
qδp

u
v

v
ywC

Where ‘y‘ is the output, u is the input and v is an internal variable. The above function is

expanded below:

1
1

1
1

1
1

)(
)(
)(
)(

−

−

+
=

+=

δδ
δ

δ
δ
δ

δu
v

qδp
v
y

So:

()
vduv

udv
du

v

1
1

1
1

1
1

1

1
1

)(
)(

−

−

−

−=

=+

+
=

d

d

dd
d

Let:

vdww
vdw

1

1
1

+=∴
= −d

(Equation 1)

So:

wuv −=

(Equation 2)

Remember that:

1
1)(

)(−+= δ
δ
δ qδp

v
y

So:

qwpvy
vqdpvy

+=
+= −1

1d

(Equation 3)

Appendix A

Maglev Controller Development

 lxii

Equations 1, 2 and 3 are implemented in that order to perform the control actions.

A.2.5. Step Response Test

As a final test, a gap step input of 2mm is put into the loop. The following is a copy of the

output of the system.

Figure A-31 Step response of digital gap controlled system

As can be seen, the system overshoots, but does settle with a small oscillatory error. This is

a result of implementing the gap controller with a slow time period.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Appendix A

Maglev Controller Development

 lxiii

A.3. Hardware Implementation
It is possible to represent the system as a controller and physical system. This is more

appropriate to the physical aspect of the final product. The system boundaries are shown

in the diagram below.

In order to facilitate the interaction between the controller and the physical boundary,

various transducers have been designed. These sit on the above diagram as thus:

Linear Magnet
Model

+

-

i

b

g

v
-

+

 invert

Controller Physical System

Appendix A

Maglev Controller Development

 lxiv

From the physics of the system, it is possible to define the maximum and minimum signal

values expected during the operation of the system. It is normal in analogue systems to

assume that control signals will have the range V10± . The other signal values are shown

in Figure A-32:

Figure A-32 transducer and power amplification requirements

Linear Magnet
Model

+

-
i

b

v
-

+

invert

Controller Physical System
Flux

Transducer

Gap
Transducer

PA

Linear Magnet
Model

-

-
i

b

v
-

+

invert

Controller Physical System
Flux

Transducer

Gap
Transducer

PA

Appendix A

Maglev Controller Development

 lxv

The following sections describe the design and hardware implementation of each of these

trasnducers.

A.3.1. Flux Transducer

The flux transducer design is formed around the concept that a voltage proportional to the

value of flux density can be ascertained from a search coil, embedded in the pole face of

the magnet. A value of flux is then derived by integrating this signal, and then multiplying

by the proportionality constant. It is necessary to include a high pass filter to remove low

frequency drift in this application. The process can be demonstrated by the block diagram

in Figure A-33:

Figure A-33 Scaling considerations for flux measurement

The transfer function for the search coil can be shown to be:

()
() sAN
sb
sv

scsc
sc =

Where scv is the search coil voltage, scN is the number of turns in the search coil and scA is

the area bound by the coil. The proportional constant here is based from the physics of the

search coil, in that the output voltage is proportional to both the area bound by the coil

and the number of turns wound.

The transfer function of the self-zeroing integrator is:

()22 4.1
i

ss
sF

i
i ωω ++
=

iω needs to be chosen such that it is substantially lower than the bandwidth of the gap

loop. Therefore, let:

sradi /5.1=ω

Search
Coil

Integrator
(With Filter)

Flux
(Tesla
) Sensor Transducer

Flux
Signal

Flux Density
signal

Appendix A

Maglev Controller Development

 lxvi

It is also necessary to have the gain of the integrator set in order to scale the sensitivity of

flux integrator to an appropriate level.

The transducer will be implemented as an operational amplifier circuit. This will be a

simple and effective method of conditioning the signal before passing into the controller.

The next sections describe how the operational amplifier circuit was derived to meet the

above specifications.

A.3.1.1. Derivations of Op Amp System from Transfer Function

It is necessary to represent the transfer function:

()22 4.1
i

ss
sF

i
i ωω ++
=

As a block diagram of the form:

This can then be easily converted into an operational amplifier circuit.

The transfer function of the block diagram can be represented as:

)(1
)('

sGH
sGFi +

=

)(sFi can be manipulated algebraically into the form of)(' sFi in the following way:

()

2
2

22

114.11

1

4.1

ss

s

ss
sF

i

i

i

i
i

ωω

ωω

++
=

++
=

Let
s

sG 1)(=

u

w

Figure A-34 feedback loop block diagram

Appendix A

Maglev Controller Development

 lxvii

Therefore:







 ++

=

++
=

s
sG

sG
s

sGsG

sGF

i

i

i

i

i

14.1)(1

)(

1)(4.1)(1

)(

2

2

ωω

ωω

Let
s

sH
ii

14.1)(2ωω +=

Therefore:

)()(1
)(

sHsG
sGFi +

=

A.3.1.2. OpAmp representation of G(s)

As derived:

s
sG 1)(=

In OpAmp circuit form, this requires a simple integrator circuit, as shown in the

Figure A-32:

Figure A-35 OpAmp integrator diagram

The transfer function is found using complex impedance analysis:

Figure A-36 Impedance Analysis

Appendix A

Maglev Controller Development

 lxviii

Where

1

2

1

1)(
Z
Z

v
vsG

i

o −==

So:

sC
Z

f 1
2

1
= and 11 iRZ =

Therefore

sCRR
sC

sG
fii

f

111

1 1
1

)(−=−=

As the overall gain is 1, it can be said that:

1

11

11

11

=

=

fi

fi

CR
CR

A.3.1.3. OpAmp representation of H(s)

s
sH

ii
14.1)(2ωω +=

This circuit can be considered to be a classic proportional plus integral configuration,

represented as:

Figure A-37 OpAmp diagram of H(s)

Again, using complex impedance analysis:

1

2

2

2)(
Z
Z

v
vsH

i

o −==

In this case:

sC
RZ

f
f

2
22

1
+= and 21 iRZ =

Appendix A

Maglev Controller Development

 lxix

So:











+−=

+
−=

−=

sCRR
R

R
sC

R

Z
ZsH

fii

f

i

f
f

222

2

2

2
2

1

2

1

1

)(

Therefore:

i
i

f

R
R

ω4.1
2

2 = and 2

22

1
i

fi CR
ω=

A.3.1.4. Full Circuit

Due to the inverting nature of OpAmps, a further unit gain is required on the feedback

loop to ensure that the signs are consistent. The condition for this gain is that 33 fi RR = .

Therefore, the full circuit is as shown in Figure A-31:

Figure A-38 Operational Amplifier Circuit for Self-Zeroing Integrator

In order for the summation to work, 1211 ii RR = .

Note: All op amps require wiring up shown in Figure A-39:

From
Search
Coil

Output

Appendix A

Maglev Controller Development

 lxx

Figure A-39 power requirements of OpAmp

In addition to this, the input and output will require two connections, the second one (not

shown on full diagram) will be connected to ground.

A.3.1.5. Derivation of component values

It was shown that for the OpAmp circuit to represent the transfer function, following

criteria must be realised:

1. 1111 =fi CR

2. 2

22

1
i

fi CR
ω=

3. i
i

f

R
R

ω4.1
2

2 =

The values will be chosen using a standard component values.

For 1111 =fi CR :

Let FC f µ2.21 =

Therefore:

Ω=
×

== − k
C

R
f

i 454
102.2

11
6

1
11

Using the nearest standard value yields:

Ω= kRi 47011

And also:

Ω== kRR ii 4701211

For 2

22

1
i

fi CR
ω= :

+
-

+15V

-15V
GND

Appendix A

Maglev Controller Development

 lxxi

As previously defined:

sradi /5.1=ω

Therefore:

25.25.1 22 ==
i

ω

So:

444.0
25.2
1

22 ==fi CR

Let:

FC f µ0.12 =

Therefore:

Ω=
×

== − k
C

R
f

i 444
100.1

444.0444.0
6

2
2

Using nearest standard value:

Ω= kRi 4702

For i
i

f

R
R

ω4.1
2

2 = :

Already defined are:

Ω= kRi 4702 , sradi /5.1=ω

So:

Ω=××== kRR iif 9874700005.14.14.1 22 ω

Therefore, selecting nearest standard value gives:

Ω= MRf 12

In summary:

Component Value

1fC Fµ2.2

11iR Ωk470

12iR Ωk470

2fC Fµ0.1

Appendix A

Maglev Controller Development

 lxxii

2iR Ωk470

2fR ΩM1

3iR Ωk10

3fR Ωk10

Table A-2 Component Values of Integrator

A.3.1.6. Calculate Modified Filter Coefficients

In order to do this, the expression for G(s) and H(s) will be calculated using expressions for

coefficients based on the chosen component values. This can then be extrapolated to a

term for the whole system. This will only provide an approximation to the true filter

coefficients.

sCR
sG

fi 11

1)(−=











+=

sCRR
R

sH
fii

f

222

2 1)(

(NB: the term for H(s) now includes the gain of -1).

The system can be represented as:

Figure A-40 Block Diagram of transducer circuit

So let:

u

w

+
+

Appendix A

Maglev Controller Development

 lxxiii

2211121

22

11

2
2211121

2

11

222

2

11

11

'

1

1

11

1

111

1
)()(1

)()(

fififii

f

fi

fififii

f

fi

fii

f

fi

fi

i

CRCR
s

CRR
R

s

s
CR

sCRCRsCRR
R

sCR

sCRR
R

sCR

sCR

sHsG
sGsF

++
−=

++
−=











++

−
=

−
=

It is now possible to substitute the chosen component values into the expression:

058.2058.2
967.0

0.14702.2470
1

2.2470470
1

2.2470
1

1

1

)(

2

2

221111211

22

111'

++
−=

×××
+

××
+

×−=

++
−=

ss
s

kk
s

kk
Ms

s
k

CRCR
s

CRR
R

s

s
CR

sF

fififii

f

fi
i

µµµ

µ

Remember that:

()22 4.1
i

ss
sF

i
i ωω ++
=

Substitute in values for iω :

25.21.22 ++
=

ss
sFi

Appendix A

Maglev Controller Development

 lxxiv

A.3.1.7. Bode Plot Comparison

The following figures show the bode plot of the system with the desired filter coefficients

(represented by F(s)) and the actual filter coefficients (Represented by F’(s)) based on the

nearest available component values. The purpose of these plots are two fold. Firstly, it

allows a comparison of the two systems to identify any major differences between the

two. Secondly, it provides values in terms of gain and phase in order for testing purposes.

Figure A-41 Bode Plot of F(s)

Appendix A

Maglev Controller Development

 lxxv

Figure A-42 Bode Plot of F'(s)

It can be seen that both plots are practically identical, and proves that the component

values selected are satisfactory for the filter.

A.3.1.8. Scaling

The process of converting the flux produced by the magnet into a signal voltage is

represented mathematically in the block diagram in Figure A-43. This is a development of

the diagram discussed earlier.

Figure A-43 Signal scaling considerations

Where scv is the search coil voltage and sciv is the voltage produced by the search coil

integrator.

 b

Search Coil

Integrator (Fi)

Appendix A

Maglev Controller Development

 lxxvi

The overall low frequency gain of the system can be represented as:

()sGANG scscsc =

The sensitivity required for the system is 20V/T. This is because it is expected for the flux to

vary by +/-0.1T, and the voltage to be measure between +/-2.0V.

Therefore it can be said that:

() TVsGANG scscsc /20==

This formula is true if the search coil is made form a single coil of wire. However the search

coil in this application is formed by a pair of wire windings embedded in each of the 2

polefaces of the magnet. The configuration of the search coils are shown in Figure A-44. As

this system is design with redundancy in mind, 2 independent search coils exist.

Figure A-44 Flux coil connections

Each of the two search coils are formed using an inner coil and an outer coil. Therefore the

equation for the gain of the system must be modified as follows:

()
() ()sGANAN

sGANG

scoscoscisci

scscsc

+=
=

Where the suffix ‘i’ indicates an inner coil, and ‘o’ indicates an outer coil

As the number of turns in each of the windings is the same:

() ()sGAANG scosciscsc +=

These areas as measure directly from the poleface were found to be:

Main Coil

Pole

Appendix A

Maglev Controller Development

 lxxvii

4
2

4
2

10270.2
4

017.0

10726.5
4

027.0

−

−

×==

×==

π

π

sco

sci

A

A

It is also known that the number of turns in each coil is 200. Therefore:

() ()
() ()

()
()sGG

sGG
sGG

sGAANG

sc

sc

sc

scosciscsc

1599.0
10996.7200

10270.2726.5200
4

4

=
××=

×+=

+=

−

−

The value required for the flux integrator gain can now be calculated:

()

()

() 125
1599.0
20

1599.020

=∴

=

=

sG

sG

sG

A.3.1.9. Adjusting the Circuit

In block diagram form, the gain of the system can be increased by 125 in the following

way:

Figure A-45 Introducing scaling

The above figure shows that the dynamics of the system will be identical to the one

designed, but a gain of 125 is now present. It is possible to introduce this gain of 125 by

changing resistor 11iR as shown in the circuit in Figure A-46:

u

w u

w
12

Appendix A

Maglev Controller Development

 lxxviii

Figure A-46

It is to be noted that this change is to be made only to 11iR and not to 12iR as this will affect

the H(s) part of the system as described in the sections above, and affect the dynamics of

the filter.

The change in resister value can be described quite simply as:

125
11

11
i

newi
RR =

This essentially changes the gain of the forward looking Op amp on the input channel from

1 to 125.

So, the new resistor value is:

Ω=== 3632
125
454

125
11

11
kRR i

newi

The value for 11iR used is the desired value, not the nearest preferred component value.

The nearest preferred component value to be implemented for newiR 11 is:

Ω= 9311 kR newi

Therefore, the updated component table is:

Component Value

1fC Fµ2.2

11iR Ω93k

12iR Ωk470

From
Search
Coil

Output

Appendix A

Maglev Controller Development

 lxxix

2fC Fµ0.1

2iR Ωk470

2fR ΩM1

3iR Ωk10

3fR Ωk10

A.3.2. Component Selection and Design

A.3.3. Gap Transducer

The gap transducers installed on the rig are Sensagap SG10 produced by RDP Electronics.

They are a non-contact displacement transducer that use a capacitive technique to

measure the distance from the front ceramic face of the sensor to the target.

The actual output of the gap transducer will be a voltage in proportion to 0-15mm. This will

have to be converted to +/- 5mm. Either that or the signal +/-10V will have to be

reconsidered to represent the range 0-15mm.

A.3.4. Power Amplifier

These power amplifiers are designed to be driven by a 20kHz PWM signal from the

controller, and output a 50V DC PWM drive signal to the magnet coils. Along with the

circuit design, a 1.5kVA 50DC power supply was manufactured to provide the power

source.

Appendix A

Maglev Controller Development

 lxxx

A.3.4.1. Circuit Diagram

Figure A-47 Power Amplifier Circuit Diagram

This circuit is an adaptation of a previous design. The basics of the circuit are that it is a

standard 2 quadrant H bridge power amplification design. It includes an opto-coupler in

the form of a 74OL6010 chip and a IR2101 MOSFET driver.

A.3.4.2. Logic to Logic Optocoupler

This component is included to isolate the input signals from the power part of the circuit.

The component used is a 74OL6010 logic to logic optocoupler.

The IC is essentially used as a driver for the power electronics and uses LEDs to isolate the

input signals from the power section.

Appendix A

Maglev Controller Development

 lxxxi

A.3.4.3. Internal Rectifier

The internal rectifier IR2101 is use to drive the MOSFETS. Figure A-48 shows the basic

make-up of the driver circuit.

Figure A-48 Internal Rectifier Circuit

A.3.4.4. Hall Effect Current Transducer

The HTP25 is a Hall effect current transducer and is used to measure the current produced

by the circuit. The out +ve wire (as shown in Figure A-34) is threaded through the eye of

the transducer in order to excite the coil within it.

The original Hall Effect Transistor circuit is shown in theFigure A-49:

Figure A-49 Current transducer schematic

The output of the transducer is required to be input to an analogue to digital converter

with a range of +/- 5V. As such, the output put through a non-inverting amplifier to achieve

0V

-15V

Vs+

o/p

Vs-

200R

-
+

1K0

1K5

TL071
Current o/p

HTP2
+15V

Appendix A

Maglev Controller Development

 lxxxii

the appropriate ratio. The resistor values were chosen as a result of the calculations

derived below.

The required gain of the overall transducer will be a range of 20A to every 5V output and

therefore requires a gain of 0.25 V/A. The block diagram in Figure A-50 represents the

signal processing aspect of the above system:

Figure A-50 Scaling considerations

Where:

SG = Gain of Hall Effect Sensor (Volts/Amp)

AG = Amplifier Gain (Volts/Volt)

As demonstrated in the above figure, but represented here mathematically,

25.0=×= As
I GG

I
V

The value of SG is known from the use of the HTP25 data sheet, and is found to be:

25.1
2.0
25.0

2.0

==∴

=

A

S

G

G

The gain of a non-inverting amplifier can be expressed as:

2

11
R
RGA +=

In order to find the resistor values, we substitute in the desired value of gain:

25.0

125.1

2

1

2

1

=

+=

R
R

R
R

 Coil
Curren
t

Amplifie

Signal
Voltag
e

HTP 25

= 0.25V/A

Appendix A

Maglev Controller Development

 lxxxiii

By using preferred component values, the following were chosen.

Ω=
Ω=
kR
kR

8.6
5.1

2

1

This errs slightly to the lower side of the overall ratio, but still falls within acceptable

parameters.

A.3.4.5. Power MOSFET

The MOSFET used is the IRFP260N produced by International Rectifier. It is a standard

MOSFET with appropriate current and voltage capacities to drive the coils at 50V and 20A.

A.3.4.6. Reed Switch

During testing, it was found that there was the potential for the coil to draw 50A if a fault

in the controller software arose. The latest circuit diagram, shown in Appendix C, includes

a reed switch as an emergency current limiting device. The output +ve connection as

shown in the diagram requires wrapping around the reed switch the correct number of

times (3 for the component selected) such that a cut out is induced at around 15-20 Amps.

The cut out works by pulling the MOSFET input low when the current is above the

threshold. The circuit will then “limit cycle” until the current demand is reduced.

A.3.5. Power Supply

Table A-3 shows the list of functional components that will require power, and the details

of this requirement.

Title Description # Power
connection

ref:

Type
(DC/AC)

Voltage
(Volts)

Current
(Amps)

Coil power
amplifiers

Amplifies
controller outputs
to necessary drive
signal

2 1 DC +50 40
2 DC 0 40
3 DC +15
4 DC -15
5 DC +5
6 DC 0

Processing
Module

Performs all
functions for
control purposes

N 1 AC 240 1.5

Appendix A

Maglev Controller Development

 lxxxiv

Network
switch

Directs Ethernet
packages

2 1 AC 240

Flux
Integrator

Integrates flux
density signal to
achieve flux

8 1 DC +15

2 DC 0
3 DC -15

Gap Sensor Measures airgap 4 1 DC 15
2 DC 0

Table A-3 Power supply requirements

It is evident from the table above that there are 4 power sources required:

• 240V AC

• +50V DC

• +/- 15V DC

• +5V DC

The power to supply these components is to come directly from a standard 250V mains

socket. Therefore, a power supply/converter unit will be needed to convert the 250V AC

into the required DC values above. Table A-4 details these units.

Supply Rail Detail of Device

+50V DC Custom made Power

Supply

+/-15V DC Standard lab PSU

+5V DC Standard lab PSU

Table A-4 Power Supply sources

A.3.5.1. Supply Configuration for Single Magnet Control

The project has to go through a staged commissioning process to develop the full four-

corner control of the rig. One of the most significant early stages of the project is the

control of 1 magnet of the rig in isolation. This phase requires a considerably less

complicated supply configuration than that of the full installation.

Appendix A

Maglev Controller Development

 lxxxv

Figure A-51 Power Supply to system components

It can be seen how the scheme in Figure A-51 can be easily expanded to facilitate

additional processing modules, sensors and coils, as long as the current is not exceeded by

any of the sources.

Coil
Power

240V

Coil
Power

Lab PSU

+50V
0V DC

+15V
+5V DC
0V DC

-15V DC

Gap
Sensor

Flux
Integrator

Network
Switch

Processin
g

Coil

Gap
Current

Flux

Fault Management via Dynamic

Reconfiguration for IMA

APPENDIX B:

Requirements Compliance

Appendix B

Requirements Compliance

 lxxxvii

B. Requirements Compliance
Req. # Description Compliance

Top Level System

1 The IMA shall be able to display to the operator

appropriate internal systems management

information (e.g. current functional allocation,

and current component health) for verification

purposes

Results in Chapters 5 & 6 show screen shots of

system configuration information

2 The IMA shall be able to display to the operator

real-time information regarding the target

platform (Maglev rig), such as current position

A Real-time demonstration was given to project

supervisors

3 The IMA shall be capable of receiving control

commands for the target platform

Results in Chapter 6 shows the system response to

a changing setpoint command

4 The IMA shall perform the real time control

functions necessary to maintain magnetic

suspension of the Maglev rig

Results in Chapter 6 show a consistent, stable

system response to airgap demand changes

5 The IMA shall allow user to inject fault signals

into the system

Chapter 6 details a number of tests that involve

injected a fault signal into the system

6
The IMA shall perform some identified

techniques in order to manage the fault

Chapter 4 discusses the methods by which this

can be achieved. Chapter 6 shows the systems

manages faults by

7 The IMA should maintain service in the presence

of fault if possible

Results in Chapter 6 show that through a series of

faults injected, the system maintains service

8 The IMA shall provide a tangible output of the

systems management actions during this

response

Screenshots of the user interface recorded in

Chapter 6 show how internal systems

management states are communicated

IMA Top Level Requirements

9 The design of the system shall follow

fundamental IMA principles where appropriate
Chapter 4 discusses in detail how this was realised

10 Each IMA processing module shall follow the

three layer stack architecture

Details of the hardware/software architecture can

be found in Chapter 4

11 The hardware and software shall be loosely

coupled such that, within a limited scope, a

change in either shall not infer a change in the

other

Details of the hardware/software architecture can

be found in Chapter 4

Appendix B

Requirements Compliance

 lxxxviii

Req. # Description Compliance

12 The operating systems layer, or middle layer,

shall manage the availability of the hardware

resources to the application layer

Details of the hardware/software architecture can

be found in Chapter 4

13 The operating systems layer shall manage the

arising of a limited number of faults within the

system

Details of the hardware/software architecture can

be found in Chapter 4. Results of experiments

supporting this can be found in Chapter 6.

14 A tangible output shall be created showing the

management of the fault

Screenshots in Chapter 6 show how information

was conveyed to the user

15 The service provided by the system shall not be

interrupted during the management of the fault

Time-response graphs throughout Chapter 6 show

this to be the case

IMA Hardware Requirements

16 The hardware shall be capable of

accommodating the required system

functionality in terms of processing resource,

communication resource and I/O expectations

Details of the hardware/software architecture can

be found in Chapter 4

17 To a limited scope, hardware shall be generic and

a change in a hardware component will not affect

the fundamental design of the rest of the system

Details of the hardware/software architecture can

be found in Chapter 4

18 The hardware shall have data acquisition

capabilities where appropriate

Details of the hardware/software architecture can

be found in Chapter 4

19
The hardware shall have a networking capability

of deterministic communications

Results of Chapter 5 show how the

communication structure is deterministic and

repeatable

20
The hardware shall be expandable to allow

additional hardware capabilities to be included

Results in Chapter 5 show how the number of

modules in the system can be easily

accommodated

IMA Middleware Requirements

21 The middleware shall manage the administrative

aspects of the IMA across all modules, inclusive

of start-up, communications, configuration and

faults

Chapter 4 describes these processes in detail

22 The middleware shall manage accessibility of

hardware resources to applications
Chapter 4 and Appendix D describe the processes

Appendix B

Requirements Compliance

 lxxxix

Req. # Description Compliance

23 The middleware shall enable the execution of

applications and communications to be

performed in a deterministic manner

Chapter 4 discusses how the communications and

applications are managed system wide in a

deterministic fashion

24 The middleware shall allow the software and

hardware disparate such that a change in one

should not infer a change in the other

Chapters 5 & 6 show a number of tests where

different applications were defined and

implemented on the hardware resources

25 The middleware shall prevent any unwanted

interaction between applications to a reasonable

degree

Chapter 4 describes the systems architecture and

Chapter 6 shows that functions were able to be

switched on and off without cross interference

26
The middleware shall share systems resources

between applications

The deterministic results in Chapters 5 & 6 show

that system resources have been partitioned

effectively

27
The middleware shall partition applications from

all others

Chapter 4 describes the systems architecture and

Chapter 6 shows that functions were able to be

switched on and off without cross interference

28 The middleware shall ensure that applications

are executed in order to meet their timing

constraints

The deterministic results in Chapters 5 & 6 show

that system resources have been synchronised

effectivel

29
The middleware shall be modular and portable

Chapter 4 discusses the limits of this requirement

with the chosen development environment

Configuration Management Requirements

30 The configuration manager shall manage

assignment of applications to resource following

application assignment requirements

Experiments conducted in Chapters 5 & 6 shows

successful application assignment for a number of

different cases

31 The configurations generated shall ensure the

applications can execute in a deterministic

fashion

Experiments conducted in Chapters 6 shows

successful application assignment for a

deterministic system

32 The configuration/reconfiguration tasks shall be

performed in a timely manner

The time response graphs in Chapter 6 show the

time required for a reconfiguration to occur

33
The process of configuration/reconfiguration

shall not disrupt the application execution flow

Time responses in Chapter 6 show that the control

algorithms continue to execute during

reconfiguration activities

34 To recalculate a new configuration based on

constraints from fault signals

Results in Chapter 6 show successful

reconfiguration in response to fault signals

Appendix B

Requirements Compliance

 xc

Req. # Description Compliance

35 To Implement a new configuration without

interrupting the service

Time response graphs in Chapter 6 show that

continual service is provided

Fault Management Requirements

36 The system shall be capable of detecting simple

faults in various system components, such as

applications or hardware modules

Chapter 4 shows how faults can be monitored,

detected and communicated to higher level

functions

37 The system shall be capable of handling the

occurrence of certain errors

Errors are defined in Chapter 4 and demonstrated

in Chapter 6.

38 The system shall be capable of recovering from

error by initiating the reconfiguration mechanism

with new constraints

System management schematics presented in

Chapter 6 show how this was achieved.

39 Where possible, the system shall confine faults

such that their occurrence does not propagate

system wide

The system design discussed in Chapter 4

considers how errors are contained

40 The system shall maintain a log recording the

error that has arisen and the resultant action

taken

Data presented in Chapter 6 was supported by a

text activity log captured during testing

Communications Management Requirements

41 It shall provide deterministic communications

between applications for assigned configuration

Chapter 5 demonstrated the deterministic

communication capabilities of the system

42
It shall ensure that the network communications

methodology is transparent to the applications

Chapter 4 discussed how the blueprint is formed

and translated into a deterministic network

description.

43 It shall provide communications between

systems management components

Chapter 4 discusses how systems management

components communicate

44 It shall Ensure that communications of systems

management do not impact upon the

deterministic communications

Chapter 4 discusses the time partitioning of the

network such that this does not occur

45
It shall ensure smooth transition between

configurations

the time responses in Chapter 6 shows how

deterministic processes continue during

transitions

IMA Applications Requirements

46
They shall perform a specified task

Discussed in Chapter 4, demonstrated in Chapters

5 & 6

Appendix B

Requirements Compliance

 xci

Req. # Description Compliance

47
They shall be controllable by the system manager

Discussed in Chapter 4, demonstrated in Chapters

5 & 6

48 They shall communicate with other applications

via the communications structure

Discussed in Chapter 4, demonstrated in Chapters

5 & 6

49 They shall have an assignment specification Discussed in Chapter 4.

Graphical User Interface Requirements

50 The GUI shall provide an input capability for the

demand of the Maglev rig
Demonstrated to project supervisors

51 The GUI shall provide an output of sensor data

from the Maglev rig

Demonstrated to project supervisors. Supported

by recorded data presented in Chapter 6.

52 The GUI shall provide a test input capability Results of test inputs are captured in Chapter 6

53 The GUI shall display the configuration of the

system in a tangible manner

Screenshots in Chapter 6 show how this was

achieved

54 The GUI shall highlight the process flow of the

functions

Screenshots in Chapter 6 show how this was

achieved

55 The GUI shall display the health of the system

components

Screenshots in Chapter 6 show how this was

achieved

56 The GUI shall display detailed information about

each component

Screenshots in Chapter 6 show how this was

achieved

57
The GUI shall provide a fault injection capability

Demonstrated to project supervisors. Supported

by recorded data presented in Chapter 6.

Maglev Rig Requirements

58
The Maglev rig shall be controllable and respond

as expected to inputs.

The design of the experimental setup is described

in Appendix C. Results graphs in Chapter 5 and 6

show system under control.

59 The Maglev rig shall provide clean, repeatable

signals

The design of the experimental setup is described

in Appendix C

60 The Maglev rig shall allow faults to be injected

into it

The design of the experimental setup is described

in Appendix C

Fault Management via Dynamic

Reconfiguration for IMA

APPENDIX C:

Magnetic Levitation

Experimental Rig

Appendix C

Magnetic Levitation Experimental Rig

 xciii

C. Magnetic Levitation Experimental Rig

C.1. Introduction
This chapter will describe the design, build and test of the magnetic levitation (maglev) rig

that is used as a target platform for the IMA installation produced.

The chapter will begin by discussing the relevancy of using a maglev rig as a test platform

for an avionics system. It will then move on to talk about the rig itself, and the demands

that the rig has on a control system, by the development and analysis of a mathematical

model. It is also in the chapter that a controller is derived in order to maintain magnetic

suspension. The final sections of chapter detail the hardware aspects of implementing the

controller upon the rig inclusive of verification and test.

C.2. Magnetic Levitation as a Concept Demonstrator
The purpose of the overall project is to produce a concept modular avionics system that

can maintain operational service in the presence of faults. In order to prove that the

system can perform this function whilst maintaining real time control of a high demand

control system, a test platform of some form was required for the IMA to drive.

It was conceived that a maglev rig (as a legacy of a previous project) would be useful to this

IMA investigation due to fundamental similarities between the control law problem

between maglev airgap control and modern aircraft stability. It can be concluded that both

systems require:

• Real time multi input, multi output control for open loop unstable

• Computing for items such as health management, navigation, etc

• Certifiable systems that perform to a high level of reliability

• Lifecycle management in terms of managing obsolescence and changing

requirements

The main difference is of course that the maglev system will remain attached (albeit

magnetically) to the guide rails whereas an aircraft is free to move in 6 degrees of

Appendix C

Magnetic Levitation Experimental Rig

 xciv

freedom. The complexity and risk of a project is significantly reduced when using a maglev

rig compared to an airborne system.

It is also interesting to note that an IMA technology is directly beneficial to commercial

maglev systems, even though it is currently an unrealised solution in this area.

C.3. Electromagnetic Levitation
Available for use for this investigation is a 200kg capacity Magnetic levitation (Maglev) test

rig facility. It is considered that the Maglev rig will be an appropriate demonstrator as it

requires a high demand multi-input, multi-output real time controller to maintain stability

of a safety critical open-loop unstable system, synonymous to modern, fighter-style

aircraft. The application of an IMA to this situation will be proof that the architecture is

capable of deterministic actions whilst reducing the technical risk and certification issues of

an initial implementation upon an air platform.

In addition to this, many definitions of IMA suggest that the architecture should have

platform independency such that the system should be transferable between applications

with minimal change.

This section therefore summarise the investigation of relevant literature regarding the

operating requirements of Maglev vehicles.

C.3.1. Maglev background

The concept of Maglev, or electromagnetic levitation, as a means to provide propulsion

and levitation for trains has been around for a number of years. The first commercial

maglev system was implemented at Birmingham International Airport in order to transport

passengers from the airport terminal to the nearby railway station (R. Goodall, 1985).

Maglev has an advantage over wheeled vehicles as it generates considerably less friction.

This means that it can be used in situations where very low friction or very high speed is

required.

Appendix C

Magnetic Levitation Experimental Rig

 xcv

C.3.2. Maglev Control Systems

Goodall (R. Goodall, 1985) suggests a number of different configurations for arranging the

electromagnet with the track. The following simplified diagram represents the basic

configuration for a simple single actively controlled magnet on a Maglev vehicle.

Figure 4-1 Basic Electromagnet (Goodall 1985)

Figure 4-1 represents the railway bogie as a suspended load. In reality, this load will be

mounted above the track, but fixed to the magnets on the lower side of the track. It is

suggested that a more accurate description of the process is electromagnetic suspension,

rather than electromagnetic levitation.

The problem remains of developing a suitable robust control solution for this

electromagnet configuration. Much work has been previously performed on this topic by

Goodall et al (R M Goodall, 2004; R. Goodall, 1985; Roger M. Goodall, 2000). These papers

state that an appropriate method to control the airgap between the pole face and the

track is to use an inner control loop to maintain stability. It is mentioned that three

possible variables are available to the designer that may be used as an internal loop,

Rail

+ . . +

Suspended Load

Coil

Back Iron

Pole

Appendix C

Magnetic Levitation Experimental Rig

 xcvi

namely applied voltage, current and flux density. It has been shown that using flux density

as an inner control loop provides favourable response characteristics.

C.3.2.1. Suspension

When Maglev was first conceived, it was thought that a particularly smooth ride could be

achieved because of the lack of contact between the pole face and the track (R M Goodall,

2004). The reality is that the individual magnets will respond to small deviations caused by

track irregularities, generating vibrations and a potentially poor ride quality.

Electromagnets in a maglev vehicle must do more than just suspend the load, they must

provide appropriate suspension characteristics. These requirements are defined as:

• To support the load of the vehicle

• Guide the vehicle such that it follows the track profile

• Isolate the vehicle body and its passenger from vibrations caused by track

irregularities

A solution to the suspension problem is suggested at a later stage in this paper using the

Maglev system at Birmingham airport as a working example. It is shown that to provide

appropriate suspension characteristics to each electromagnet, a complementary filter

arrangement is required, as shown in the following diagram.

Key:

b = flux density

g = airgap

gin = airgap setpoint

z = acceleration

zt = track disturbance

v = voltage

Cb = flux controller

Cg = airgap controller

LP(s) = Low Pass

HP(s) = High Pass

Figure 4-2 Complimentary Filter Control (Goodall 2004)

This scheme implements a Low Pass filter (shown as LP(s) in) on the airgap feedback in

order to provide guidance to the track. A High Pass fliter (shown as HP(s) in) is

Appendix C

Magnetic Levitation Experimental Rig

 xcvii

implemented on the accelerometer feedback to provide isolation from track disturbances.

In general, this means that the system will maintain minimal changes in vertical

acceleration, whilst providing good track following properties.

C.3.2.2. Whole Vehicle Controller

The main problem to solve is not the control of an individual magnet, but the suspension

of an entire vehicle consisting of a number of electromagnets. Along with this problem will

arises issues such as structural coupling. A solution to this problem is to transfer the four

control loops to a ‘modal controller’, essentially controlling the vehicle in terms of pitch,

roll and yaw (R M Goodall, 2004). The idea is that these three variables are mainly

uncoupled, and thus can be dealt with independently.

Figure 4-3 Vehicle Controller - Modal form (Goodall 2004)

This method has been proved to be successful and robust, using classical control solutions.

It should be possible to extend the ideas of a LQ state-feedback controller (Michail, 2009).

Appendix C

Magnetic Levitation Experimental Rig

 xcviii

C.4. Overview of the Experimental Rig
The maglev test rig is a legacy of a previous project and as such elements such as sensors

and actuators were already present.

Figure 4-4 Maglev Test Rig

Figure 4-5 View of a Single Magnet

Each magnet is comprised of two cores each of which are dual wound in that each magnet

can be stimulated from an independent control unit. Also, each pole face contains two

Appendix C

Magnetic Levitation Experimental Rig

 xcix

‘search coils’ for sensing magnetic flux, as shown in Figure 4-6. This means that each

magnet is designed with a redundant actuation channel available.

Figure 4-6 Windings around the magnet poles

C.5. Control Design and Implementation
The control strategy for the test rig can be resolved by developing a controller for a single

magnet, then replicating this controller for each magnet on the vehicle. This can be

resolved into a full vehicle controller (Section 4.3.2.2) as necessary. The control for a single

magnet is performed using an inner loop controlling magnetic flux, and an outer loop

controlling the air gap, as shown in Figure 4-6.

Main

Pole CO,S

CO,F

CI,F

CI,S

Key:

C = coil

B = flux search coil

Subscripts:

O = outer

I = inner

S = start

BO,F

BO,S

BI,F

BI,S

Temp
Sensor (T)

Appendix C

Magnetic Levitation Experimental Rig

 c

Figure 4-7 Control Scheme for a Single Magnet

A derivation for the linear magnet model is performed by considering small deviations

around a nominal operating airgap. A simplified block diagram representation of the model

is shown in Figure 4-8 which is taken from a full derivation that can be found in Appendix

A. This shows the relationship of the input voltage ′𝑣𝑣′ (defined as a small perturbation

around the operating point ′𝑉𝑉0′) to airgap change ′𝑔𝑔′ (defined as a small perturbation

around the operating point ′𝐺𝐺0′).

The operating parameters of each magnet are found in Table 4-1.

Figure 4-8 Simplified Block Diagram of the Linear Magnet Model

Linear Magnet
Model

+

-
i

b

g

v
-

+

Controller Physical System

 +

-

+

+
v

g

Appendix C

Magnetic Levitation Experimental Rig

 ci

Description Parameter Name Value
Operating Voltage 𝑉𝑉0 11V
Operating force of

each magnet
0F 500N

Operating Airgap 0G 0.01m

Operating flux
density

0B 0.5T

Operating current 0I 11A

Poleface Area (single
magnet)

A 0.0025m2

Number of turns
(single coil)

N 456

Coil Resistance
(single coil)

R 0.5 Ohm

Coil inductance
(single coil)

L 2.59 mH

00 IB iK 0.0455 T/A

00 GB gK 50 T/m

002 BF fK 2000 N/T

iNAKL + LK 0.0545 H

Table 4-1 Summary of derived Maglev system variables

The outer gap loop controller 𝐶𝐶𝑔𝑔(𝑠𝑠) and the inner loop flux controller 𝐶𝐶𝑏𝑏(𝑠𝑠) shown in

Figure 4-6 are defined by the transfer functions:

𝐶𝐶𝑏𝑏(𝑠𝑠) = 700 �
0.008𝑠𝑠 + 1

0.008𝑠𝑠
�

𝐶𝐶𝑔𝑔(𝑠𝑠) = 10 �
0.05𝑠𝑠 + 1
0.01𝑠𝑠 + 1

�

The inner flux controller requires digitising to operating at around 1000Hz. The outer gap

loop controller requires operation at 20Hz or faster.

Appendix C

Magnetic Levitation Experimental Rig

 cii

C.6. Interfacing with the IMA
It is clear that the interface between the actuators and sensors of the Maglev Rig and the

IMA architecture (in terms of software and hardware) require definition. In simple terms,

the IMA will capture gap and flux signals from the magnet coils and calculate the control

commands to the actuators. The control commands are presented in low-power signals

that will require amplification to drive the coils of the magnet.

The design of the IMA suggests that any real time control strategy implemented will have

to take into account the distributed nature of the processing modules. The sensed values

may have to be communicated across the network to the control algorithm, for the

command value to be returned. It is therefore sensible that the flux control loop should

not be required to operate across the network as the time period in which it is required to

operate is very small (0.001s) and will not allow enough time to transmit sufficient data

amongst other network traffic. The gap control loop requires a slower time period (0.05s)

and can operate across the network. Figure 4-9 describes this allocation of function.

Figure 4-9 Possible interface between IMA and magnet

Appendix C

Magnetic Levitation Experimental Rig

 ciii

The advantages of this arrangement provides flexibility in arranging parallel processing of

the gap control loop for redundancy, akin to fly-by-wire technologies on-board aircraft.

Although the flux control loop is executed locally to the sensors and actuator signals, the

point failure is removed by duplicating this process for each magnet by utilising a second

I/O module, the dual-wound cores and dual search coil installations. Figure 4-9 represents

just one possible arrangement for the control implementation of the magnets.

C.7. Experimental Rig Summary
This chapter has outlined the basic control strategy for maintaining the air gap between

pole-face and rail and as such infers requirements for the design and distribution of

applications across the IMA. Omitted from this chapter are details regarding the designs of

power amplification, power supply and sensor configuration – all of which require

consideration for the commissioning of the system. This chapter is therefore supported by

Appendix A that details designs and practical considerations for these items.

Also highlighted within this chapter is the possibility of operating parallel, redundant

processing channels that infer a further set of requirements on the IMA, such as voting

mechanisms and appropriate allocation of function. The inclusion of these aspects to the

IMA will be highlighted in Chapter 5.

Fault Management via Dynamic

Reconfiguration for IMA

APPENDIX D:

Pseudo-code of

Configuration Algorithm

Appendix D

Pseudo code of Algorithms

 cv

C. Pseudo code of Configuration Algorithm

C.1. Placement Algorithm Process
SUBROUTINE: Order functions by levels of criticality

FOR all applications

SUBROUTINE: Select next function (using defined functional
relationships and criticality order)

IF function is not already placed:
 SUBROUTINE: Assign function to resource
 IF Unable to place function
 Exit routine

SUBROUTINE: Update application execution times
 END
END

Record results in systems blueprint
Record results in communication timing
Send system blueprint to all modules
Send communication timing information to all modules

C.1.1. Subroutine: Order functions by levels of criticality

FOR all applications
 Record all applications listed as highly time critical
END
FOR all applications
 Add to record all applications with actuator outputs
END
FOR all applications
 Add to record all applications with user outputs
END
Add to record all other applications

Search record and delete duplicates where listed with a lower
criticality

Appendix D

Pseudo code of Algorithms

 cvi

C.1.2. Subroutine: Select next function

IF first call
 Select first function from ordered function record

ELSE
 FOR all applications

Identify inputs from current selected function from
Blueprint

Use blueprint and stored search path to select the next
input to the selected function

Make a record of current search path through functional
topology

IF no more inputs

 IF this application has any outputs
 Retrace the search path to parent function
 Select this function

SUBROUTINE: Update communication and
application execution times

 ELSE

Select next function from ordered function
record
BREAK

END
ELSE

Record that the input that has been explored
Select the function that provides this input
BREAK

END
END

END

RETURN selected function

Appendix D

Pseudo code of Algorithms

 cvii

C.1.3. Subroutine: Assign function to resource

FOR all resources
Retrieve assignment criteria for selected function from
blueprint
Retrieve resource availability information from module
specification

FOR all assignment criteria

 For all functions already assigned to selected resource

IF selected function incompatible with assigned
functions
 GOTO ReferencePoint
END

END

IF assignment criteria incompatible with module
specification
 GOTO ReferencePoint
END

 END

 REPEAT

FOR all functions assigned to selected resource (reverse
order)

For all other functions assigned preceding selected
function

IF selected function is a pre-requisite for
preceding function

 Swap position of assignment
 END
END

 END
 UNTIL: no change in position

 BREAK

 ReferencePoint
END

Return ability to place function
Return current selected resource

Appendix D

Pseudo code of Algorithms

 cviii

C.1.4. Subroutine: Update application execution times

For all applications on selected resource
 IF first call

Create running sum of execution time - initialise to
zero

 END
 IF function part of network topology of selected function
 Assign function start time as running sum time
 END

Update running sum of execution time: Previous total + worst
case execution time of current function

END

C.1.5. Subroutine: Update communication and application execution
times

Obtain all outputs from previous child function from Blueprint

For all outputs

IF transaction not yet allocated to communication time
 Obtain end time of previous child function
 Search communication record

IF bus available immediately after expected function end
time

Assign communication transaction to this available
slot

 Update communication record
ELSE

Search communication record for earliest time slot
available following execution end time
Assign communication transaction to this slot
Update communication record

END

END
END

Extract assigned start time of selected function

IF assigned start time is earlier than scheduled pre-requisite
transaction
 Assign new start time to function
END

	i TitlePage
	Abstract
	i. Abstract

	Acknowledgements
	i. Acknowledgements

	Table of Contents V2
	iii. Contents
	iv. List of Figures
	v. List of Tables

	Chapter 1 Introduction V2
	Chapter 1:
	Introduction
	1. Introduction
	1.1. Background
	1.2. Problem Statement
	1.3. Contributions
	1.4. Objectives
	1.5. Publications
	1.6. Thesis Overview

	Chapter 2 Literature Review V2
	Chapter 2:
	Literature Review
	2. Literature Review
	2.1. The Developing Need for Improved Avionics
	2.1.1. Digital Revolution in Aircraft Systems
	2.1.2. The Development of Avionics Integration
	2.1.3. Future Needs for Avionics Systems
	2.1.4. Summary of Future Avionic Requirements

	2.2. Integrated Modular System Concepts
	2.2.1. Introduction to IMS
	2.2.1.1. Modular Hardware/Software Integration
	2.2.1.2. Why Use IMS?

	2.2.2. IMS Research Areas
	2.2.2.1. Standards
	2.2.2.2. System Design and Certification
	2.2.2.3. Hardware
	2.2.2.4. Partitioning
	2.2.2.5. Configuration
	2.2.2.6. Reconfiguration
	2.2.2.7. Network Requirements
	2.2.2.8. Distributed Control

	2.2.3. Fault Management in IMS
	2.2.3.1. Fault Avoidance and Removal
	2.2.3.2. Fault Tolerance
	Error Detection
	Error Handling
	Error Confinement
	Error Recovery

	2.2.3.3. Fault Treatment

	2.3. Examples of IMS implementation
	2.3.1. Genesis IMA
	2.3.2. Modular Avionics Operating System (MAOS)

	2.4. Literature Review Summary

	Chapter 3 System Requirements new V2
	Chapter 3:
	IMA Demonstrator
	System Requirements
	3. IMA Demonstrator System Requirements
	3.1. Introduction
	3.2. Top Level System
	3.3. IMA
	3.3.1. IMA Hardware
	3.3.2. IMA Middleware/Operating System
	3.3.2.1. Management of Application Access to Hardware Resources
	3.3.2.2. Configuration Management
	3.3.2.3. Fault Management
	3.3.2.4. Communications Management

	3.3.3. IMA Applications
	3.3.4. Graphical User Interface

	3.4. Maglev
	3.5. Summary of Requirements

	Chapter 4 IMS Systems Design V2
	Chapter 4:
	IMA Implementation
	4. IMA Implementation
	4.1. Top Level Design
	4.2. Systems Management
	4.2.1. Systems Management Reporting Structure
	4.2.2. Timing and Synchronisation
	4.2.3. Redundancy in Systems Management

	4.3. Application Design
	4.3.1. Application specification example

	4.4. Configuration/Re-configuration
	4.4.1. Configuration Example
	4.4.1.1. Process 1: Order Functions by Criticality (and Identify Resources)
	4.4.1.2. Process 2: Select Next Function
	4.4.1.3. Process 3: Placing Function on Resources
	4.4.1.4. Process 4: Schedule of Application Execution and Communications
	Correcting the execution order upon the module
	Assign Timing to Execution and Communications

	4.4.1.5. Process 5: Record all Details in Blueprint

	4.4.2. Start Up Procedures
	4.4.3. Using this Algorithm for Reconfiguration
	4.4.4. Configuration Summary

	4.5. Synchronisation and Communications
	4.5.1. Synchronisation of Modules
	4.5.2. Synchronisation of Applications
	4.5.3. Synchronisation of Communications
	4.5.3.1. Collision Avoidance
	4.5.3.2. Managing Time Critical and Non-Time Critical Data

	4.6. Error Recovery
	4.6.1. Processing module failure
	4.6.2. Application Failure
	4.6.3. Summary

	Chapter 5 Configuration Testing V2
	Chapter 5:
	Configuration and Real-Time Robustness Testing
	5. Configuration and Real-Time Robustness Testing
	5.1. Validation of the Configuration Algorithm
	5.1.1. Single Sensor, Single Process and Single Actuator
	5.1.2. Single Sensor, Duplex Processing, Single Actuator
	5.1.3. Single Sensor, Triplex Processing, Single Actuator
	5.1.4. Dual Sensors, Triplex Processing, Dual Actuator
	5.1.5. Dual I/O, Triplex processing and parallel function
	5.1.6. Summary

	5.2. IMS as a Distributed Real Time System
	5.2.1. Real time attributes testing
	5.2.1.1. Communication time: 3 ms
	5.2.1.2. Communication time: 2 ms
	5.2.1.3. Communication time: 1 ms
	5.2.1.4. Summary

	5.2.2. Air Gap control
	5.2.2.1. Application Design
	5.2.2.2. IMA Implementation of Distributed Gap Control
	5.2.2.3. Results of Gap Control Implementation
	5.2.2.4. Distributed Gap Control Summary

	Chapter 6 Fault Management within IMS V3
	Chapter 6:
	Fault Management
	Within IMA
	6. Fault Management within IMA
	6.1. Baseline System Initial Configuration
	6.2. System Response to a Single Fault
	6.2.1. Simulation of an Application Failure
	6.2.1.1. Fault Injection
	6.2.1.2. Reconfiguration to Restore Higher Levels of Redundancy
	6.2.1.3. Evaluation of the Reconfiguration Process

	6.2.2. Simulation of a Processing Module Failure
	6.2.2.1. Fault Injection
	6.2.2.2. Reconfiguration to Restore Higher Levels of Redundancy
	6.2.2.3. Evaluation of Reconfiguration Process

	6.3. System Response to a Series of Faults
	6.3.1. Failure 1 of 3: Application Failure of gap_control_2
	6.3.2. Failure 2 of 3: Module Failure of Module_4
	6.3.3. Fault 3 of 3: Application Failure of gap_controller_1
	6.3.4. Evaluation of Series of Failures

	6.4. Summary

	Chapter 7 Conclusions V3
	Chapter 7:
	Conclusion
	7. Conclusion
	7.1. Assessment of Objectives
	7.2. Assessment of Contributions
	7.3. Future Work and Recommendations
	7.3.1. Identified Areas of Good Practice for Reconfigurable IMA
	7.3.2. Certification
	7.3.3. Quantification of Potential Savings
	7.3.4. Controller Lag Approximations
	7.3.5. Configuration Optimisation

	References V2
	v. References

	Appendix A - Controller Development V2
	Appendix A:
	Maglev Controller Development
	A. Maglev Controller Development
	A.1. Mathematical Model of Maglev Rig
	A.1.1. Block Diagram Representation
	A.1.2. Transfer function derivation from block diagram
	A.1.3. Derivation of F0, B0, G0 and I0
	A.1.3.1. F0
	A.1.3.2. G0
	A.1.3.3. B0
	A.1.3.4. I0

	A.1.4. Leakage Inductance
	A.1.5. Summary

	A.2. Controller Design and Development
	A.2.1. Inner Flux Loop Controller Design
	A.2.1.1. Analogue Controller Design
	Gain (Gb)
	Integral action
	A.2.1.2. Digital Control Design
	Gain (Gb)
	Integral action
	A.2.1.3. Digitization of Controller (z)
	A.2.1.4. Digitisation of Controller (delta)

	A.2.2. Outer Gap-loop Control Design
	A.2.2.1. Analogue Controller Design
	A.2.2.2. Digital Controller Design

	A.2.3. Digitisation of Controller (z)
	A.2.4. Digitisation of Controller (delta)
	A.2.5. Step Response Test
	A.2.6.

	A.3. Hardware Implementation
	A.3.1. Flux Transducer
	A.3.1.1. Derivations of Op Amp System from Transfer Function
	A.3.1.2. OpAmp representation of G(s)
	A.3.1.3. OpAmp representation of H(s)
	A.3.1.4. Full Circuit
	A.3.1.5. Derivation of component values
	A.3.1.6. Calculate Modified Filter Coefficients
	A.3.1.7. Bode Plot Comparison
	A.3.1.8. Scaling
	A.3.1.9. Adjusting the Circuit

	A.3.2. Component Selection and Design
	A.3.3. Gap Transducer
	A.3.4. Power Amplifier
	A.3.4.1. Circuit Diagram
	A.3.4.2. Logic to Logic Optocoupler
	A.3.4.3. Internal Rectifier
	A.3.4.4. Hall Effect Current Transducer
	A.3.4.5. Power MOSFET
	A.3.4.6. Reed Switch

	A.3.5. Power Supply
	A.3.5.1. Supply Configuration for Single Magnet Control

	Appendix B - Requirements Compliance
	Appendix B:
	Requirements Compliance
	B. Requirements Compliance

	Appendix C - Maglev Rig
	Appendix C:
	Magnetic Levitation Experimental Rig
	C. Magnetic Levitation Experimental Rig
	C.1. Introduction
	C.2. Magnetic Levitation as a Concept Demonstrator
	C.3. Electromagnetic Levitation
	C.3.1. Maglev background
	C.3.2. Maglev Control Systems
	C.3.2.1. Suspension
	C.3.2.2. Whole Vehicle Controller

	C.4. Overview of the Experimental Rig
	C.5. Control Design and Implementation
	C.6. Interfacing with the IMA
	C.7. Experimental Rig Summary

	Appendix D - Psuedo Code
	Appendix D:
	Pseudo-code of Configuration Algorithm
	C. Pseudo code of Configuration Algorithm
	C.1. Placement Algorithm Process
	C.1.1. Subroutine: Order functions by levels of criticality
	C.1.2. Subroutine: Select next function
	C.1.3. Subroutine: Assign function to resource
	C.1.4. Subroutine: Update application execution times
	C.1.5. Subroutine: Update communication and application execution times

