11,681 research outputs found

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    Simulation of Mixed Critical In-vehicular Networks

    Full text link
    Future automotive applications ranging from advanced driver assistance to autonomous driving will largely increase demands on in-vehicular networks. Data flows of high bandwidth or low latency requirements, but in particular many additional communication relations will introduce a new level of complexity to the in-car communication system. It is expected that future communication backbones which interconnect sensors and actuators with ECU in cars will be built on Ethernet technologies. However, signalling from different application domains demands for network services of tailored attributes, including real-time transmission protocols as defined in the TSN Ethernet extensions. These QoS constraints will increase network complexity even further. Event-based simulation is a key technology to master the challenges of an in-car network design. This chapter introduces the domain-specific aspects and simulation models for in-vehicular networks and presents an overview of the car-centric network design process. Starting from a domain specific description language, we cover the corresponding simulation models with their workflows and apply our approach to a related case study for an in-car network of a premium car

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    A new approach on communications architectures for intelligent transportation systems

    Get PDF
    A Vehicular Adhoc Network (VANET) is a generic communications conceptualization that can be applied to Intelligent Transportation Systems (ITS) and its main goal is to allow exchange of information between moving vehicles, fixed infrastructures, pedestrians with personal devices, and all other electronic devices able to connect to a VANET environment. Information exchange between different stakeholders brings a relevant potential to the development of applications to help users in different areas such as traffic safety and efficiency, infotainment and personal comfort. However, due to the expected heterogeneity (different processing power and storage capabilities, communications technologies and mobility patterns) and large scale on the number of devices involved, application interoperability in VANET contexts can be a challenging problem. Non-agnostic standard communications architectures for ITS systems have some deploying limitations and lack important specific implementation details. This paper presents an agnostic VANET architecture (it permits the use of several communication technologies in an open and modular framework), which is an adaption of present standards approach, to be deployed on ITS systems as a mean to overcome their main limitations. (C) 2017 The Authors. Published by Elsevier B.V.This work has been sponsored by the Portugal Incentive System for Research and Technological Development. Project in co-promotion no 002797/2015 (INNOVCAR 2015-2018), and also by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013

    5G-PPP Software Network Working Group:Network Applications: Opening up 5G and beyond networks 5G-PPP projects analysis

    Get PDF
    As part of the 5G-PPP Initiative, the Software Network Working Group prepared this white paper to demystify the concept of the Network Applications. In fact, the Network Application ecosystem is more than the introduction of new vertical applications that have interaction capabilities. It refers to the need for a separate middleware layer to simplify the implementation and deployment of vertical systems on a large scale. Specifically, third parties or network operators can contribute to Network Applications, depending on the level of interaction and trust. Different implementations have been conducted by the different projects considering different API types and different level of trust between the verticals and the owner of 5G platforms. In this paper, the different approaches considered by the projects are summarized. By analysing them, it appears three options of interaction between the verticals and the 5G platform owner: - aaS Model: it is the model where the vertical application consumes the Network Applications as a service. The vertical application deployed in the vertical service provider domain. It connects with the 3GPP network systems (EPS, 5GS) in one or more PLMN operator domain. - Hybrid: it is the model where the vertical instantiates a part of its Vertical App in the operator domain like the EDGE. The other part remains in the vertical domain. A similar approach has been followed in TS 23.286 related to the deployment of V2X server. - Coupled/Delegated: it is the model where the vertical delegates its app to the operator. The Network Applications will be composed and managed by the operator. This approach is the one followed in the platforms like 5G-EVE. In addition, the paper brings an analysis of the different API type deployed. It appears that the abstraction from network APIs to service APIs is necessary to hide the telco complexity making APIs easy to consume for verticals with no telco expertise and to adress data privacy requirements

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India
    corecore