1,132 research outputs found

    Obstructive Sleep Apnea Detection based on ECG Signal using Statistical Features of Wavelet Subband

    Get PDF
    One of the respiratory disorders is obstructive sleep apnea (OSA). OSA occurs when a person sleeps. OSA causes breathing to stop momentarily due to obstruction in the airways. In this condition, people with OSA will be deprived of oxygen, sleep awake and short of breath. Diagnosis of OSA by a doctor can be done by confirming the patient\u27s complaints during sleep, sleep patterns, and other symptoms that point to OSA. Another way of diagnosing OSA is a polysomnography (PSG) examination in the laboratory to analyze apnea and hypopnea. However, this examination tends to be high cost and time consuming. An alternative diagnostic tool is an electrocardiogram (ECG) examination referring to changes in the mechanism of ECG-derived respiration (EDR). So digital ECG signal analysis is a potential tool for OSA detection. Therefore, in this study, it is proposed to classify OSA based on ECG signals using wavelets and statistical parameters. Statistical parameters include mean, variance, skewness kurtosis entropy calculated on the signal decomposition results. The validation performance of the proposed method is carried out using a support vector machine, k-nearest neighbor (k-NN), and ensemble classifier. The proposed method produces the highest accuracy of 89.2% using a bagged tree where all features are used as predictors. From this study, it is hoped that ECG signal analysis can be used to complete clinical diagnosis in detecting OSA

    A knowledge model for the development of a framework for hypnogram construction

    Get PDF
    The final publication is available via http://dx.doi.org/10.1016/j.knosys.2016.11.016[Abstract] We describe a proposal of a knowledge model for the development of a framework for hypnogram construction from intelligent analysis of pulmonology and electrophysiological signals. Throughout the twentieth century, after the development of electroencephalography (EEG) by Hans Berger, there have been multiple studies on human sleep and its structure. Polysomnography (PSG), a sleep study from several biophysiological variables, gives us the hypnogram, a graphic representation of the stages of sleep as a function of time. This graph, when analyzed in conjunction with other physiological parameters, such as the heart rate or the amount of oxygen in arterial blood, has become a valuable diagnostic tool for different clinical problems that can occur during sleep and that often cause poor quality sleep. Currently, the gold standard for the detection of sleep events and for the correct classification of sleep stages are the rules published by the American Academy of Sleep Medicine (AASM), version 2.2. Based on the standards available to date, different studies on methods of automatic analysis of sleep and its stages have been developed but because of the different development and validation procedures used in existing methods, a rigorous and useful comparative analysis of results and their ability to correctly classify sleep stages is not possible. In this sense, we propose an approach that ensures that sleep stage classification task is not affected by the method for extracting PSG features and events. This approach is based on the development of a knowledge-intensive base system (KBS) for classifying sleep stages and building the corresponding hypnogram. For this development we used the CommonKADS methodology, that has become a de facto standard for the development of KBSs. As a result, we present a new knowledge model that can be used for the subsequent development of an intelligent system for hypnogram construction that allows us to isolate the process of signal processing to identify sleep stages so that the hypnograms obtained become comparable, independently of the signal analysis techniques.Xunta de Galicia; GRC2014/035Ministerio de Economía y Competitividad; TIN2013-40686-

    Complexity Analysis of Electroencephalogram Dynamics in Patients with Parkinson’s Disease

    Get PDF

    CES-513 Stages for Developing Control Systems using EMG and EEG Signals: A survey

    Get PDF
    Bio-signals such as EMG (Electromyography), EEG (Electroencephalography), EOG (Electrooculogram), ECG (Electrocardiogram) have been deployed recently to develop control systems for improving the quality of life of disabled and elderly people. This technical report aims to review the current deployment of these state of the art control systems and explain some challenge issues. In particular, the stages for developing EMG and EEG based control systems are categorized, namely data acquisition, data segmentation, feature extraction, classification, and controller. Some related Bio-control applications are outlined. Finally a brief conclusion is summarized.

    Detection of EEG K-complexes using fractal dimension of time-frequency images technique coupled with undirected graph features

    Get PDF
    K-complexes identification is a challenging task in sleep research. The detection of k-complexes in electroencephalogram (EEG) signals based on visual inspection is time consuming, prone to errors, and requires well-trained knowledge. Many existing methods for k-complexes detection rely mainly on analyzing EEG signals in time and frequency domains. In this study, an efficient method is proposed to detect k-complexes from EEG signals based on fractal dimension (FD) of time frequency (T-F) images coupled with undirected graph features. Firstly, an EEG signal is partitioned into smaller segments using a sliding window technique. Each EEG segment is passed through a spectrogram of short time Fourier transform (STFT) to obtain the T-F images. Secondly, the box counting method is applied to each T-F image to discover the FDs in EEG signals. A vector of FD features are extracted from each T-F image and then mapped into an undirected graph. The structural properties of the graphs are used as the representative features of the original EEG signals for the input of a least square support vector machine (LS-SVM) classifier. Key graphic features are extracted from the undirected graphs. The extracted graph features are forwarded to the LS-SVM for classification. To investigate the classification ability of the proposed feature extraction combined with the LS-SVM classifier, the extracted features are also forwarded to a k-means classifier for comparison. The proposed method is compared with several existing k-complexes detection methods in which the same datasets were used. The findings of this study shows that the proposed method yields better classification results than other existing methods in the literature. An average accuracy of 97% for the detection of the k-complexes is obtained using the proposed method. The proposed method could lead to an efficient tool for the scoring of automatic sleep stages which could be useful for doctors and neurologists in the diagnosis and treatment of sleep disorders and for sleep research

    Snoring and arousals in full-night polysomnographic studies from sleep apnea-hypopnea syndrome patients

    Get PDF
    SAHS (Sleep Apnea-Hypopnea Syndrome) is recognized to be a serious disorder with high prevalence in the population. The main clinical triad for SAHS is made up of 3 symptoms: apneas and hypopneas, chronic snoring and excessive daytime sleepiness (EDS). The gold standard for diagnosing SAHS is an overnight polysomnographic study performed at the hospital, a laborious, expensive and time-consuming procedure in which multiple biosignals are recorded. In this thesis we offer improvements to the current approaches to diagnosis and assessment of patients with SAHS. We demonstrate that snoring and arousals, while recognized key markers of SAHS, should be fully appreciated as essential tools for SAHS diagnosis. With respect to snoring analysis (applied to a 34 subjects¿ database with a total of 74439 snores), as an alternative to acoustic analysis, we have used less complex approaches mostly based on time domain parameters. We concluded that key information on SAHS severity can be extracted from the analysis of the time interval between successive snores. For that, we built a new methodology which consists on applying an adaptive threshold to the whole night sequence of time intervals between successive snores. This threshold enables to identify regular and non-regular snores. Finally, we were able to correlate the variability of time interval between successive snores in short 15 minute segments and throughout the whole night with the subject¿s SAHS severity. Severe SAHS subjects show a shorter time interval between regular snores (p=0.0036, AHI cp(cut-point): 30h-1) and less dispersion on the time interval features during all sleep. Conversely, lower intra-segment variability (p=0.006, AHI cp: 30h-1) is seen for less severe SAHS subjects. Also, we have shown successful in classifying the subjects according to their SAHS severity using the features derived from the time interval between regular snores. Classification accuracy values of 88.2% (with 90% sensitivity, 75% specificity) and 94.1% (with 94.4% sensitivity, 93.8% specificity) for AHI cut-points of severity of 5 and 30h-1, respectively. In what concerns the arousal study, our work is focused on respiratory and spontaneous arousals (45 subjects with a total of 2018 respiratory and 2001 spontaneous arousals). Current beliefs suggest that the former are the main cause for sleep fragmentation. Accordingly, sleep clinicians assign an important role to respiratory arousals when providing a final diagnosis on SAHS. Provided that the two types of arousals are triggered by different mechanisms we hypothesized that there might exist differences between their EEG content. After characterizing our arousal database through spectral analysis, results showed that the content of respiratory arousals on a mild SAHS subject is similar to that of a severe one (p>>0.05). Similar results were obtained for spontaneous arousals. Our findings also revealed that no differences are observed between the features of these two kinds of arousals on a same subject (r=0.8, p<0.01 and concordance with Bland-Altman analysis). As a result, we verified that each subject has almost like a fingerprint or signature for his arousals¿ content and is similar for both types of arousals. In addition, this signature has no correlation with SAHS severity and this is confirmed for the three EEG tracings (C3A2, C4A1 and O1A2). Although the trigger mechanisms of the two arousals are known to be different, our results showed that the brain response is fairly the same for both of them. The impact that respiratory arousals have in the sleep of SAHS patients is unquestionable but our findings suggest that the impact of spontaneous arousals should not be underestimated

    Sleep Apnea Identification using HRV Features of ECG Signals

    Get PDF
    Sleep apnea is a common sleep disorder that interferes with the breathing of a person. During sleep, people can stop breathing for a moment that causes the body lack of oxygen that lasts for several seconds to minutes even until the range of hours. If it happens for a long period, it can result in more serious diseases, e.g. high blood pressure, heart failure, stroke, diabetes, etc. Sleep apnea can be prevented by identifying the indication of sleep apnea itself from ECG, EEG, or other signals to perform early prevention. The purpose of this study is to build a classification model to identify sleep disorders from the Heart Rate Variability (HRV) features that can be obtained with Electrocardiogram (ECG) signals. In this study, HRV features were processed using several classification methods, i.e. ANN, KNN, N-Bayes and SVM linear Methods. The classification is performed using subject-specific scheme and subject-independent scheme. The simulation results show that the SVM method achieves higher accuracy other than three other methods in identifying sleep apnea. While, time domain features shows the most dominant performance among the HRV features
    corecore