616 research outputs found

    Multispectral Method for Apple Defect Detection using Hyperspectral Imaging System

    Get PDF
    Hyperspectral imaging is a non-destructive detection technology and a powerful analytical tool that integrates conventional imaging and spectroscopy to get both spatial and spectral information from the objects for food safety and quality analysis. A recently developed hyperspectral imaging system was used to investigate the wavelength between 530nm and 835nm to detect defects on Red Delicious apples. The combination of band ratio method and relative intensity method were developed in this paper, which using the multispectral wavebands selected from hyperspectral images. The results showed that the hyperspectral imaging system with the properly developed multispectral method could generally identify 95% of the defects on apple surface accurately. The developed algorithms could help enhance food safety and protect public health while reducing human error and labor cost for food industr

    Automated early plant disease detection and grading system: Development and implementation

    Get PDF
    As the agriculture industry grows, many attempts have been made to ensure high quality of produce. Diseases and defects found in plants and crops, affect the agriculture industry greatly. Hence, many techniques and technologies have been developed to help solving or reducing the impact of plant diseases. Imagining analysis tools, and gas sensors are becoming more frequently integrated into smart systems for plant disease detection. Many disease detection systems incorporate imaging analysis tools and Volatile Organic Compound (VOC) profiling techniques to detect early symptoms of diseases and defects of plants, fruits and vegetative produce. These disease detection techniques can be further categorized into two main groups; preharvest disease detection and postharvest disease detection techniques. This thesis aims to introduce the available disease detection techniques and to compare it with the latest innovative smart systems that feature visible imaging, hyperspectral imaging, and VOC profiling. In addition, this thesis incorporates the use of image analysis tools and k-means segmentation to implement a preharvest Offline and Online disease detection system. The Offline system to be used by pathologists and agriculturists to measure plant leaf disease severity levels. K-means segmentation and triangle thresholding techniques are used together to achieve good background segmentation of leaf images. Moreover, a Mamdani-Type Fuzzy Logic classification technique is used to accurately categorize leaf disease severity level. Leaf images taken from a real field with varying resolutions were tested using the implemented system to observe its effect on disease grade classification. Background segmentation using k-means clustering and triangle thresholding proved to be effective, even in non-uniform lighting conditions. Integration of a Fuzzy Logic system for leaf disease severity level classification yielded in classification accuracies of 98%. Furthermore, a robot is designed and implemented as a robotized Online system to provide field based analysis of plant health using visible and near infrared spectroscopy. Fusion of visible and near infrared images are used to calculate the Normalized Deference Vegetative Index (NDVI) to measure and monitor plant health. The robot is designed to have the functionality of moving across a specified path within an agriculture field and provide health information of leaves as well as position data. The system was tested in a tomato greenhouse under real field conditions. The developed system proved effective in accurately classifying plant health into one of 3 classes; underdeveloped, unhealthy, and healthy with an accuracy of 83%. A map with plant health and locations is produced for farmers and agriculturists to monitor the plant health across different areas. This system has the capability of providing early vital health analysis of plants for immediate action and possible selective pesticide spraying

    Chlorophyll fluorescence imaging for process optimisation in horticulture and fresh food production

    Get PDF
    Chlorophyll a fluorescence analysis (CFA) has been accepted to study postharvest activity and stability of photosynthesis of vegetables and salad greens, and some fruits. Commercial chlorophyll fluorescence imaging (CFI) systems may provide additional insight into spatial and temporal dynamics of photosynthesis. This yields valuable information on the effects of postharvest handling and processing (sorting, cutting, packaging, etc.) on physiological activity and 'internal quality' of green produce, and its changes. Here, meaning and physiological basics of relevant fluorescence parameters is briefly summarised, while major focus is on recent applications of CFI to evaluate quality and quality maintenance during postharvest handling and minimal processing of fresh fruits and vegetables. CFI is given surprisingly little attention in the monitoring of postharvest quality, although it is suitable for adjusting and/or optimising innovative postharvest techniques. Knowledge of the physiological base and the limit of interpretation is indispensable for meaningful interpretations of results to draw correct consequences

    Integration of Spatial and Spectral Information for Hyperspectral Image Classification

    Get PDF
    Hyperspectral imaging has become a powerful tool in biomedical and agriculture fields in the recent years and the interest amongst researchers has increased immensely. Hyperspectral imaging combines conventional imaging and spectroscopy to acquire both spatial and spectral information from an object. Consequently, a hyperspectral image data contains not only spectral information of objects, but also the spatial arrangement of objects. Information captured in neighboring locations may provide useful supplementary knowledge for analysis. Therefore, this dissertation investigates the integration of information from both the spectral and spatial domains to enhance hyperspectral image classification performance. The major impediment to the combined spatial and spectral approach is that most spatial methods were only developed for single image band. Based on the traditional singleimage based local Geary measure, this dissertation successfully proposes a Multidimensional Local Spatial Autocorrelation (MLSA) for hyperspectral image data. Based on the proposed spatial measure, this research work develops a collaborative band selection strategy that combines both the spectral separability measure (divergence) and spatial homogeneity measure (MLSA) for hyperspectral band selection task. In order to calculate the divergence more efficiently, a set of recursive equations for the calculation of divergence with an additional band is derived to overcome the computational restrictions. Moreover, this dissertation proposes a collaborative classification method which integrates the spectral distance and spatial autocorrelation during the decision-making process. Therefore, this method fully utilizes the spatial-spectral relationships inherent in the data, and thus improves the classification performance. In addition, the usefulness of the proposed band selection and classification method is evaluated with four case studies. The case studies include detection and identification of tumor on poultry carcasses, fecal on apple surface, cancer on mouse skin and crop in agricultural filed using hyperspectral imagery. Through the case studies, the performances of the proposed methods are assessed. It clearly shows the necessity and efficiency of integrating spatial information for hyperspectral image processing

    Fruit ripeness classification: A survey

    Get PDF
    Fruit is a key crop in worldwide agriculture feeding millions of people. The standard supply chain of fruit products involves quality checks to guarantee freshness, taste, and, most of all, safety. An important factor that determines fruit quality is its stage of ripening. This is usually manually classified by field experts, making it a labor-intensive and error-prone process. Thus, there is an arising need for automation in fruit ripeness classification. Many automatic methods have been proposed that employ a variety of feature descriptors for the food item to be graded. Machine learning and deep learning techniques dominate the top-performing methods. Furthermore, deep learning can operate on raw data and thus relieve the users from having to compute complex engineered features, which are often crop-specific. In this survey, we review the latest methods proposed in the literature to automatize fruit ripeness classification, highlighting the most common feature descriptors they operate on

    Recent Advances and Applications of Hyperspectral Imaging for Fruit and Vegetable Quality Assessment

    Get PDF
    Hyperspectral imaging systems are starting to be used as a scientific tool for food quality assessment. A typical hyperspectral image is composed of a set of a relatively wide range of monochromatic images corresponding to continuous wavelengths that normally contain redundant information or may exhibit a high degree of correlation. In addition, computation of the classifiers used to deal with the data obtained from the images can become excessively complex and time-consuming for such high-dimensional datasets, and this makes it difficult to incorporate such systems into an industry that demands standard protocols or high-speed processes. Therefore, recent works have focused on the development of new systems based on this technology that are capable of analysing quality features that cannot be inspected using visible imaging. Many of those studies have also centred on finding new statistical techniques to reduce the hyperspectral images to multispectral ones, which are easier to implement in automatic, non-destructive systems. This article reviews recent works that use hyperspectral imaging for the inspection of fruit and vegetables. It explains the different technologies available to acquire the images and their use for the non-destructive inspection of the internal and external features of these products. Particular attention is paid to the works aimed at reducing the dimensionality of the images, with details of the statistical techniques most commonly used for this task

    Mealiness Detection in Agricultural Crops: Destructive and Nondestructive Tests: A Review

    Get PDF
    Mealiness is known as an important internal quality attribute of fruits/vegetables, which has significant influence on consumer purchasing decisions. Mealiness has been a topic of research interest over the past several decades. A number of destructive and nondestructive techniques are introduced for mealiness detection. Nondestructive methods are more interesting because they are rapid, noninvasive, and suitable for real-time purposes. In this review, the concept of mealiness is presented for potato, apple, and peach, followed by an in-depth discussion about applications of destructive and nondestructive techniques developed for mealiness detection. The results suggest the potential of electromagnetic-based techniques for nondestructive mealiness evaluation. Further investigations are in progress to find more appropriate nondestructive techniques as well as cost and performance

    Sensors for product characterization and quality of specialty crops—A review

    Get PDF
    This review covers developments in non-invasive techniques for quality analysis and inspection of specialty crops, mainly fresh fruits and vegetables, over the past decade up to the year 2010. Presented and discussed in this review are advanced sensing technologies including computer vision, spectroscopy, X-rays, magnetic resonance, mechanical contact, chemical sensing, wireless sensor networks and radiofrequency identification sensors. The current status of different sensing systems is described in the context of commercial application. The review also discusses future research needs and potentials of these sensing technologies. Emphases are placed on those technologies that have been proven effective or have shown great potential for agro-food applications. Despite significant progress in the development of non-invasive techniques for quality assessment of fruits and vegetables, the pace for adoption of these technologies by the specialty crop industry has been slow
    • …
    corecore