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Abstract 

 

As the agriculture industry grows, many attempts have been made to ensure high quality of 

produce. Diseases and defects found in plants and crops, affect the agriculture industry 

greatly. Hence, many techniques and technologies have been developed to help solving or 

reducing the impact of plant diseases. Imagining analysis tools, and gas sensors are becoming 

more frequently integrated into smart systems for plant disease detection. Many disease 

detection systems incorporate imaging analysis tools and Volatile Organic Compound (VOC) 

profiling techniques to detect early symptoms of diseases and defects of plants, fruits and 

vegetative produce. These disease detection techniques can be further categorized into two 

main groups; preharvest disease detection and postharvest disease detection techniques. This 

thesis aims to introduce the available disease detection techniques and to compare it with the 

latest innovative smart systems that feature visible imaging, hyperspectral imaging, and VOC 

profiling.  

 

In addition, this thesis incorporates the use of image analysis tools and k-means segmentation 

to implement a preharvest Offline and Online disease detection system. The Offline system to 

be used by pathologists and agriculturists to measure plant leaf disease severity levels. K-

means segmentation and triangle thresholding techniques are used together to achieve good 

background segmentation of leaf images. Moreover, a Mamdani-Type Fuzzy Logic 

classification technique is used to accurately categorize leaf disease severity level. Leaf 

images taken from a real field with varying resolutions were tested using the implemented 

system to observe its effect on disease grade classification. Background segmentation using 

k-means clustering and triangle thresholding proved to be effective, even in non-uniform 

lighting conditions. Integration of a Fuzzy Logic system for leaf disease severity level 

classification yielded in classification accuracies of 98%. 

 

Furthermore, a robot is designed and implemented as a robotized Online system to provide 

field based analysis of plant health using visible and near infrared spectroscopy. Fusion of 

visible and near infrared images are used to calculate the Normalized Deference Vegetative 

Index (NDVI) to measure and monitor plant health. The robot is designed to have the 

functionality of moving across a specified path within an agriculture field and provide health 

information of leaves as well as position data. The system was tested in a tomato greenhouse 
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under real field conditions. The developed system proved effective in accurately classifying 

plant health into one of 3 classes; underdeveloped, unhealthy, and healthy with an accuracy 

of 83%. A map with plant health and locations is produced for farmers and agriculturists to 

monitor the plant health across different areas. This system has the capability of providing 

early vital health analysis of plants for immediate action and possible selective pesticide 

spraying. 
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Chapter 1  

Introduction 

 

1.1. Study Background 

 

The agriculture industry is one of the most vital sectors for contribution to the national 

income in many countries. Throughout the years, many agriculture components and processes 

have become automated to ensure faster production and to ensure products are of highest 

quality standards. Because of the increased demand in the agricultural industry, it is vital that 

agriculture produce is cultivated using an efficient process [1]. Diseases and defects found in 

plants and crops have a great impact on production in the agriculture industry, and lead to 

significant economic losses [2]. A loss of an estimated 33 billion dollars every year was the 

result of plant pathogens found in crops in the United States. Pathogenic species affect plants 

significantly, introducing diseases such as chestnut blight fungus and huanglongbing citrus 

disease [3]. Insect infestation along with bacterial, fungal, and viral infections are another 

main contribution to diseases found in plants [4]. Changes in climate and temperature are also 

a few factors that may contribute to the increase in diseases found in plants. Once a plant has 

been infected, symptoms develop on various segments of the plant, ultimately degrading the 

growth of the subsequent fruit or vegetable [5].  

 

Apple production is a very large industry especially in China with over 17 million tons of 

produce every year [2]. Apple infections do not only significantly reduce grade and yield, but 

can also affect the return bloom of the following season [6]. These factors have drastic 

impact on countries that rely heavily on its agriculture sector as its main method of income. 

To overcome these losses and issues of plant diseases, farmers tend to look to chemical 

pesticides as a remedy solution. This solution may be effective in eliminating plant diseases 

but has drastic drawbacks. As well as being costly, the increase use of pesticides creates 

dangerous levels of toxic residue levels on agriculture products [7]. This leads to concerns 

about wholesomeness and healthiness of products raised by the public when pesticides are 

commonly used in the produce they purchase [8]. Therefore, the use of pesticides must be 

controlled, and used only when necessary. This controlled or monitored method of pesticide 

use is known as selective pesticide spraying. 
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For the purpose to decrease losses found in defective plants many techniques have been 

introduced. Manual techniques, such as hand inspection and naked eye observation are very 

common methods used by farmers. Plant diseases are detected and characterized by 

observation from experts, which can be very expensive and time consuming [2]. Because 

these methods are very tedious it is prone to sorting errors and judgmental errors from 

different farmers [6]. Therefore, disease detection systems were introduced that tackle many 

of the issues faced with labor-intensive techniques.  

 

1.2. Statement of Purpose 

 

Bacterial and fungal viral infections have a significant impact on plant health and introduce 

diseases that affect growth of produce. In addition, the over reliance on fungicides and 

pesticides to remedy this issue, is not only costly, but has a considerably negative impact on 

the environment. Therefore, there is a need to detect and target plant diseases at an early 

stage to aid farmers to take appropriate precautions to help preserve the defective plant. The 

purpose of this thesis is to discuss and compare the current plant disease detection techniques, 

that feature visible imaging, hyperspectral imaging, and VOC profiling methods. An easy to 

use system to detect plant leaf disease severity is designed for farmers and agriculturists to 

measure disease severity levels of plants. In addition, an automated approach is designed and 

implemented for early leaf based plant health monitoring using a robotized system in real 

field based environments. 

 

1.3. Objectives and Expected Outcomes 

 

The objectives of this thesis are as follows: 

 

1. To study and explore the different tools used for plant disease detection techniques: 

a) Florescence Spectroscopy 

b) Visible and Infrared Spectroscopy 

c) Fluorescence Imaging 

d) Hyperspectral Imaging 

e) Volatile Organic Compound Profiling 
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2. Categorize and compare the included research into Preharvest and Postharvest disease 

detection methods. 

3. Introduce an automated technique for early plant disease detection and monitoring. 

 

The expected outcomes of the thesis include: 

 

1. The implementation of an automatic plant disease severity level system. 

2. The design and implementation of an automated robotized system for plant health 

monitoring in real field conditions.  

 

1.4. Thesis Structure 

 

The remaining part of the thesis includes: 

 

Chapter 2 introduces the literature review of research activities dealing with plant disease 

detection techniques. Indirect and Direct methods are explained and different techniques 

from each method are analyzed and compared, taking into consideration the achievements 

and challenges of each technique. Chapter 3 introduces two plant disease detection methods 

according to the research challenges. It also focuses on the outline of the proposed systems 

and the expected objectives. Chapter 4 discusses the development of the first method and the 

image processing techniques used to measure disease severity of plant leaves. The 

implemented GUI is tested with multiple leaf images to evaluate the systems performance 

and accuracy. Chapter 5 presents the second developed system, in which a robot is used for 

automated health monitoring of plants. The robot design and image processing techniques are 

implemented and tested in a greenhouse environment. Chapter 6 covers the conclusions 

observed from both systems, and the applications in which the systems can be used for. 

Finally, future work is recommended for the proposed systems for higher disease and health 

accuracy and broader applications are considered. 
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Chapter 2  

Literature Review and Research Challenges 

 

A disease detection system has the ability to not only detect early symptoms of defective 

plants, but can also avoid the disease from spreading. Disease detection techniques can be 

categorized into two methods: direct and indirect methods as shown in Figure 2-1. Direct 

detection techniques rely on the use of laboratory-based experiments. The most popular and 

commonly used experiments are enzyme-linked immunosorbent assay (ELISA) and 

polymerase chain reaction (PCR) [4]. Indirect methods, on the other hand, rely on advanced 

techniques with an emphasis on the integration of imaging tools. Indirect methods use the 

integration of sensors and smart systems on site, to provide a more rapid and accurate method 

for disease detection. Early detection of apparent diseases in plants is of utmost importance 

[1], as this will aid farmers to take appropriate precautions to help preserve the defective 

plant. Indirect methods are vast and can be used for disease detection in both preharvest 

plants and postharvest fruits. If early detection is possible, the percent of defective fruits can 

be significantly decreased, while maintaining high quality production standards. 

 

2.1. Direct Methods 

 

When a pathogen attacks a plant, the plant DNA is altered, and a specific type of protein 

molecules are produced and introduced to the plant by the pathogen during infection. Direct 

methods focus on molecular and serological techniques that test the biological structure of the 

plant to check for the pathogen DNA or the presence of pathogen produced protein 

molecules. Commonly known techniques are the Polymerase chain reaction (PCR) and the 

Enzyme-linked immunosorbent assay (ELISA).  

 

PCR-based disease detection involves genetic material (DNA) extraction of the 

microorganism causing the disease. The gel electrophoresis is then performed after the DNA 

has been purified and amplified. If a specific band is present in the gel electrophoresis, then 

the existence of the plant disease organism is verified [4].  

 

ELISA works by injecting the microbial protein of a specific plant disease into an animal, 

which in return produces antibodies against that specific disease. The extracted antibodies are 
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used alongside with fluorescence dye and enzymes for disease detection. If the plants were 

infected, then the sample would fluoresce, verifying the presence of a specific plant disease 

[4]. Table 2-1 illustrates the difference between each technique and how they compare in 

disease detection.  Because of these techniques, diagnostic kits have been designed to 

successfully detect diseases in crops such as rice and can also identify genetically modified 

organisms (GMOs) in shipments of conventional crops. 

 

 

Figure 2-1: Different methods of plant disease detection 

 

 



 

  6 

Table 2-1: ELISA vs. PCR 

 ELISA PCR 

Diagnostic Kit Protein-Based DNA-Based 

Cost Simple laboratory equipment 

No training required 

Expensive 

Costly Equipment 

Disease Detection Root crops 

Fruits 

Grains 

Bananas 

Potatoes 

Cotton 

 

Although these techniques may be robust and very accurate in detecting plant diseases, the 

drawbacks of these methods are significantly vast. These techniques rely heavily on the use 

of expensive laboratory equipment and extensive experiments, which can be time-consuming 

and labor-intensive. Sample preparation consumes a considerable amount of time and effort 

to ensure reliable and accurate results. These techniques are also very expensive because of 

the use of consumable reagents that are specifically designed for each pathogen [4].  

Therefore, new and more rapid disease detection systems are needed as a preliminary 

screening tool for processing large numbers of plant samples. 

 

2.2. Indirect Methods 

 

New automated non-destructive methods have been studied to detect plant disease symptoms 

early and with high sensitivity to specific diseases. These methods should have the ability to 

detect diseases and stresses in real-time under field conditions. The most common techniques 

used are spectroscopic and imaging techniques for the detection of symptomatic and 

asymptomatic plant diseases [4]. The methods that will be studied are fluorescence 

spectroscopy, visible and infrared spectroscopy, fluorescence imaging, hyperspectral 

imaging, and volatile organic compounds (VOC) profiling. Not only have these methods 

been shown to provide successful detection of plant stress and nutrient deficiencies, but also 

have been useful in monitoring the quality of postharvest fruits and vegetables. 
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2.2.1. Fluorescence Spectroscopy 

 

Fluorescence spectroscopy works by exciting an object with a beam of light and measuring 

the fluorescence released. This method has been successfully used to measure stress levels 

and physiological states of vegetative plants. This information can be utilized to detect 

different diseases that may be affecting the plant. Fluorescence spectroscopy systems can be 

used in field-based settings where leaves are still attached, and in laboratory settings where 

sample leaves are detached. Studies have shown that this method is accurate in discriminating 

defective plants from non-defective plants [9]. However, studies also showed that this 

method is inefficient in providing enough information, such as water stress levels [10]. 

Statistical methods such as principal component analysis (PCA), artificial neural networks 

(ANNs), cluster analysis, and partial lest square (PLS) regression can be integrated with 

fluorescence spectroscopy to classify data into multiple classes [4]. 

2.2.2. Visible and Infrared Spectroscopy 

 

Visible and infrared spectroscopy is a rapid, cost-effective, and non-destructive technique 

that can be used as a plant disease detection system. Studies have proven that this method can 

be used to detect stress levels and detect plant diseases accurately, even before symptoms are 

visible [11]. Using near infrared (NIR) technology alone, on the other hand, has displayed 

poor ability in identifying defective plants from healthy ones. Therefore, it is proposed to use 

both visible and infrared spectroscopy for disease detection in plants [12]. A study 

investigated infections found in grapevines by monitoring each leaf using a portable 

spectrometer under field conditions. Including vegetative indices and individual indices in the 

study increased the precision of disease detection, with a maximum accuracy of 75% [13]. 

Various vegetative indices can be found in Table 2-2. Another study was performed to detect 

Verticillium wilt in cotton canopy using a portable spectraradiometer. It was concluded that 

infrared spectra was most effective in predicting the specific disease [14]. 
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Table 2-2: Vegetative indices [4] 

Vegetative Index Estimation Reference 

Disease index (fD) 

(specific for 

individual study) 

𝑓𝐷 =
𝐼550𝑛𝑚

𝐼550𝑛𝑚 + 𝐼690𝑛𝑚
 Moshou et al. (2005) 

Normalized 

difference  

vegetation index 

(NDVI) 

𝑁𝐷𝑉𝐼 =
𝑅𝑁𝐼𝑅 − 𝑅𝑅𝐸𝐷
𝑅𝑁𝐼𝑅 + 𝑅𝑅𝐸𝐷

 

Yang and Cheng (2001), 

Bravo et al. (2004), Yang 

et al. (2007), Naidu et al. 

(2009) 

Green normalized 

difference vegetation 

index (Green NDVI) 

𝐺𝑟𝑒𝑒𝑛 𝑁𝐷𝑉𝐼 =  
𝑅𝐺𝑅𝐸𝐸𝑁 − 𝑅𝑅𝐸𝐷
𝑅𝐺𝑅𝐸𝐸𝑁 + 𝑅𝑅𝐸𝐷

 Yang et al.(2007) 

Water Band Index 

(IWB) 
𝐼𝑊𝐵 =

𝑅950𝑛𝑚
𝑅900𝑛𝑚 +

 Xu et al. (2007) 

Soil-adjusted 

vegetation index 

(SAVI) 

𝑆𝐴𝑉𝐼 =
(𝑅𝑁𝐼𝑅 − 𝑅𝑅𝐸𝐷)(1 + 𝐿)

𝑅𝑁𝐼𝑅 + 𝑅𝑅𝐸𝐷 + 𝐿
, 𝐿 = 0.5 Yang et al.(2007) 

Other indices (𝑅𝑁𝐼𝑅 − 𝑅𝑅𝐸𝐷), 
𝑅𝑅𝐸𝐷

𝑅𝑁𝐼𝑅
, 
𝑅𝐺𝑅𝐸𝐸𝑁

𝑅𝑅𝐸𝐷
, 
𝑅𝑁𝐼𝑅

𝑅𝑅𝐸𝐷
 Yang et al.(2007) 

Photochemical 

reflectance index 

(PRI) 

𝑃𝑅𝐼 =
𝑅531𝑛𝑚 − 𝑅570𝑛𝑚
𝑅531𝑛𝑚 + 𝑅570𝑛𝑚

 
Huang et al.(2007),  Naidu 

et al.(2009) 

Red-edge vegetation 

stress index (RVSI) 
𝑅𝑉𝑆𝐼 =

𝑅714𝑛𝑚 + 𝑅752𝑛𝑚
2 − 𝑅733𝑛𝑚

 Naidu et al.(2009) 

Modified chlorophyll 

(a and b) absorption 

in reflectance index 

(MCARI) 

𝑀𝐶𝐴𝑅𝐼 = [(𝑅700𝑛𝑚 − 𝑅670𝑛𝑚)

− 0.2(𝑅700𝑛𝑚 − 𝑅550𝑛𝑚)]  ×  
𝑅700𝑛𝑚
𝑅670𝑛𝑚

 
Naidu et al.(2009) 

Visible 

atmospherically 

resistance index 

(VARI) 

𝑉𝐴𝑅𝐼 =
𝑅𝐺𝑅𝐸𝐸𝑁 − 𝑅𝑅𝐸𝐷

𝑅𝐺𝑅𝐸𝐸𝑁 + 𝑅𝑅𝐸𝐷 − 𝑅𝐵𝐿𝑈𝐸
 Naidu et al.(2009) 

Water Index (WI) 𝑊𝐼 =
𝑅900𝑛𝑚

𝑅970𝑛𝑚
 Naidu et al.(2009) 

I: Fluorescence intensity; R: Reflectance 

 

2.2.3. Fluorescence Imaging 

 

Unlike fluorescence spectroscopy, where only a single spectra is used, fluorescence imaging 

works by using images obtained from a camera. Wavelengths from an object are recorded on 

a camera after fluorescence excitation from a UV light. A study confirmed that this method 

could be used to detect tobacco mosaic virus (TMV) in tobacco plants. Non-infected tobacco 

plants were successfully differentiated from infected ones in a relatively short period of time 
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[15]. Another study used fluorescence imaging alongside with quadratic discriminant analysis 

(QDA) to detect yellow rust in winter wheat. Results showed that QDA was successful in 

classifying healthy from non-healthy plants with relatively high accuracies. However, QDA 

was inefficient in distinguishing healthy from mildly infected plants [16]. To improve 

accuracies, a new study combined multispectral fluorescence imaging with hyperspectral 

reflectance imaging through sensor fusion, and QDA was used as the classification method. 

The combination of these methods showed an increase in classification accuracies of healthy 

plants from 71% to 97%. Using self-organizing map (SQM)-based neural networks further 

increased classifications accuracies of diseased plants and healthy plants to 98.7% and 99.4% 

[17]. Because imaging techniques provide three-dimensional spectral information, they give 

higher accuracies in detecting plant diseases when compared to spectroscopic techniques [4]. 

 

2.2.4. Hyperspectral Imaging 

 

Hyperspectral imaging is similar to multispectral imaging but uses a wider range of 

wavelengths for each pixel. An image is produced consisting of a set of pixel values at each 

wavelength of the spectra. This method is common in monitoring the quality of food 

products, such as fruits. The selection of the statistical classification method and disease-

specific spectra bands for a particular application is the major challenge faced when using 

hyperspectral or multispectral imaging. This can be seen in a study where apple bruises were 

detected using hyperspectral imaging; results were conflicted on which bands were most 

suitable for identification of bruises in apples [4]. A study developed a system for early 

detection of yellow rust disease in winter wheat using visble-NIR hyperspectral imaging. 

Using quadratic discriminant analysis as the classification method yielded an accuracy of 92-

98% when classifying diseased plants [18]. However, the use of QDA and multilayer 

perceptron (MLP) artificial neural networks yielded a classification accuracy of 97.8% and 

99.4% for classifying the same disease [17].  

 

In an attempt to detect plant diseases on a large scale, an air-borne hyperspectral imaging 

detection system was devised to detect ganoderma basal stem rot disease in oil palm 

plantations. Red edge techniques and multiple vegetative indices were used to classify 

diseased from healthy plantations.  Results indicated accuracies ranging from 73 to 84% 

depending on the classification method used [19]. Conversely, a study investigating greening 

of citrus plantation using aerial hyperspectral imaging was not able to identify diseased 
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canopies. Spectral angle mapping (SAM) and spectral feature fitting (SFF) classifications 

methods were used to classify diseased canopies from healthy ones. This undesirable result 

can be due to the large variability within the data [20]. Another study used hyperspectral 

images to detect defects found in Ruby red grapefruit using a spectral information divergence 

(SID) based classification method. 96% classification accuracy was achieved when using the 

SID based classification method [21]. 

 

2.2.5. Volatile Organic Compounds Profiling 

 

VOCs are released by plants due to factors such as humidity, temperature, light, soil 

condition, and fertilization [22]. Studies have shown that certain compounds are released 

when a plant is under stress or is infected by a particular disease [23]. Therefore, VOC 

profiling can be used under field conditions as a non-destructive disease detection system for 

plants and postharvest fruits/vegetables. The two commonly used methods for VOC profiling 

are electronic nose techniques and gas chromatography (GC) [4]. 

An electronic nose system functions by using multiple gas sensors that can detect a range of 

organic compounds. The integration of these sensors can be beneficial in the discrimination 

of different compounds present in the atmosphere around the plant. A study used an array of 

32 gas sensors to detect fungal disease in postharvest blueberries in a laboratory setting. 

Three different fungal diseases were to be classified from one another, Botrytis cinerea, 

Colletotrichum gloeosporioides, and Alternaria spp. Although berries with C. gloeosporioides 

could be easily differentiated from other infections, there were overlaps in VOC profiles of 

berries with B. cinerea and Alternaria spp. Similar VOC profiles can be due to the fact that B. 

cinerea and Alternaria spp both infect the same region in blueberries [4]. Another study used 

10 gas sensors to measure VOCs released from infected wheat using PCA and LDA 

classification techniques. Results indicated that certain compounds could be identified by the 

electronic nose system to successfully classify the disease only 6 days after infection [24]. 

These studies indicate that the profiling of VOCs using an electronic nose system is feasible 

tool for monitoring plant diseases [4].  

Gas Chromatography is a common technique used to analyze volatile metabolites released by 

plants in different environmental and physiological conditions. Many studies have been 

performed using GC to classify bacterial and fungal infections in food products by evaluating 
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changes in volatiles. A study used a GC instrument to analyze the change in volatiles released 

from onions infected with bacterial and fungal species. Although no statistical analysis was 

used, the study indicated that from the 59 compounds released 25 volatile compounds could 

be used to identify the disease accurately [25]. In another study, VOC profiling using GC was 

used to identify infections present in potato tubers. Results indicated that as the disease 

severity increases, the VOC emissions also increases. An accuracy of 67-75% was achieved 

when a BPNN model was used to classify the VOCs to a specific disease [26]. In a similar 

study, rather than use BPNN models a discriminant analysis method was performed to 

classify the VOCs released from potato tubers. Results indicated an accuracy of 13-100%, 

which implies a BPNN analysis method yields higher classification accuracies than 

discriminant analysis models [27]. The low and fluctuating accuracies achieved when using 

GC for VOC profiling show that further development is needed to make it a more practical 

method for an early disease detection system [4]. 

2.1. Direct and Indirect Methods Evaluation 

 

It is clear that direct methods such as ELISA and PCR are outdated solutions for a disease 

detection system when compared to indirect methods. Indirect methods may be less accurate 

but do provide a more rapid and field-based detection of plant diseases. Also, indirect 

methods have the potential in processing a large number of plants in real time, whereas this is 

not possible in experimental direct methods. However, indirect method solutions such as 

imaging and spectroscopic techniques provide contradicting results in classification 

accuracies of different diseases.  Similarly, VOC profiling also provides diverse results in its 

capability of detecting diseases found in plants and postharvest fruits/vegetables. These 

undesirable results found in VOC profiling can be due to natural variation. These natural 

variations in VOCs can be due to changes in plant metabolism, environmental changes, and 

plant age. Because of this natural variation in VOCs it may obscure the changes due to stress 

and the presence of diseases.  Moreover, variations in environmental conditions, such as light 

greatly affect the accuracy of imaging techniques. The selection of the statistical tool is also 

very important in accurately detecting diseases, and depends heavily on the plant and disease 

type. An overview comparison of molecular, imaging, and VOC profiling techniques are 

shown in Table 2-3. 
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Table 2-3: Comparison of direct and indirect plant disease detection systems [4] 

 Direct Methods Indirect Methods 

Characteristics Molecular techniques Imaging and spectroscopic techniques VOCs profiling-based techniques 

Accuracy of method 

- Molecular techniques are 

presently the most accurate 

method for plant disease 

detection. 

- Efforts are ongoing to make 

molecular methods more 

reliable and simpler as well as 

develop molecular detection 

kits for field applications. 

However, it is difficult to 

develop kits for all diseases. 

They are usually focused 

towards commonly found and 

harmful diseases. 

- The accuracy of imaging and 

spectroscopic techniques is plant and 

disease specific. 

- Higher the visible symptoms, better 

is the accuracy of the technique. 

Nevertheless, the non-visible regions 

of spectra can be utilized for 

improving the accuracy of the method. 

-Accuracy is currently unknown, as 

this method is in the developmental 

stages and has been utilized in 

recent years. 

-Identification of disease-specific 

biomarker volatiles (most 

challenging step) can improve the 

accuracy significantly. 

Cost 

- Moderately expensive. Quite 

often: is labor intensive and 

requires specific 

instrumentation. 

- Trained personnel are also 

required for careful handling 

of samples and results. 

- Expensive, especially if techniques 

as hyperspectral imaging are used. 

Fewer the wave bands used, cheaper 

will be the instrument. 

- Require computers/laptops for data 

analysis. 

- The cost of technique depends on 

the desired accuracy for VOC 

profiling. 

-The cost can range depending on 

the detector required for biomarker 

identification. 

Applicability for 

rapid detection 

- Speed depends on the 

samples required to be 

analyzed, number of 

personnel, and equipment and 

materials. 

- The technique is not fast for 

a huge amount of samples. 

- The focus on the development of this 

technique is due to its ability for rapid 

detection. 

 

- The technique shows the potential 

for rapid plant disease detection. 

Applicability for field 

work/Ruggedness 

- Field kits are being 

developed. However, it is 

difficult to develop kits for all 

diseases. 

- The field kits are rugged, but 

require good accuracy for 

reliable results. 

- Moderately ruggedness. The 

ruggedness of the spectrometer or the 

scanner depends on the base on which 

the sensor is mounted. 

 

-Moderately rugged, depending on 

the detector used for sensing VOCs. 

Speed of detection 

- May require 24 – 48 h for 

reliable results. 

-  Molecular kits are faster. 

- Once this technique is established, 

may require minutes for disease 

detection. 

- The speed depends on the 

computational speed of the computer 

as well as speed of the scanner. 

 

-This method may require 

significantly less time, if proven as 

an effective method for a particular 

disease. 

-Speed would depend on the 

detector speed and computational 

speed. 

 

Indirect methods can be used to detect diseases in both preharvest and postharvest 

fruits/vegetables. To have a better understanding of different disease detection techniques, 

indirect techniques can be further categorized into two main groups; preharvest and 

postharvest detection techniques. It is clear that the most suitable method for disease 

detection in both preharvest and postharvest fruits/vegetables is the use of imaging and 

spectroscopic techniques. The following section will include more in-depth research on the 

use of imaging techniques for disease detection in preharvest and postharvest 
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fruits/vegetables. Sufficient research has been done in both categories, each with its own 

benefits and drawbacks.  

 

2.2. Preharvest Disease Detection Techniques 

 

[28] proposed a method in which leaf disease severity of preharvest sugarcane leaves can be 

measured using imaging techniques. Fungi diseases are very common in sugarcane leaves, 

and inhibit their growth immensely. These diseases leave visual spots on leaves, which in 

turn prevent the vital process of photosynthesis. Photosynthesis is a fundamental process 

essential for growth and prosperity. Rather than using pesticides, which is not only costly, but 

also increases toxic residue levels, an early disease detection system can be implemented. 

Because fungi-caused diseases in sugarcane leaves appear as spots it is applicable to use 

imaging techniques to detect the severity of the disease [28]. Disease severity is expressed the 

ratio between the affected area and the leaf area. If the lesion area ratio to leaf area ratio is 

high, then the leaf is said to have a high disease severity according to Table 2-4. 

 

Table 2-4: Disease Severity Scale Developed by Horsfall and Heuberger [28] 

Category Severity 

0 Apparently infected 

1 0 – 25% leaf Area infected 

2 26 – 50% leaf Area infected 

3 51 – 75% leaf Area infected 

4 > 75% leaf Area infected 

 

For this study 90 infected sugarcane leaves were used as samples taken from a 12 Mega pixel 

digital camera. The images were taken in a controlled environment with a white background 

and light sources to eliminate any reflection for enhanced view and brightness [28]. For 

improved results, the input leaf image in Figure 2-2 is first transformed from RGB color 

space to HIS color space. The image is then converted to gray scale as shown in Figure 2-3 

and then segmented into two regions; the diseased region and the healthy region shown in 

Figure 2-4. In order to segment the image a triangle thresholding method was used. After the 

image has been segmented the leaf area and infected area ratio are calculated by measuring 
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the number of pixels in the white region and in the black region. This experimented showed 

to be very successful with accuracies of 98.60%.  

 

Figure 2-2: Brown spotted diseased sugarcane leaf [28] 

 

Figure 2-3: Gray scale image [28] 

 

Figure 2-4: Infected Region detection after triangle thresholding [28] 
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To further improve the efficiency and accuracy of leaf disease grading systems, [7] proposed 

the use of machine vision and fuzzy logic for disease detection in pomegranate leaves. A 

table-like percent-infection calculation method is used to illustrate the severity of the disease. 

A 10-megapixel Nikon Coolpix L20 digital camera was used to take images of disease 

infected pomegranate leaves at an equal distance of 16 cm. Images were taken from several 

pomegranate farms with no specific test site indication. A few image restoration techniques 

are implemented before the image is segmented into two specific regions; disease region and 

healthy region. This test was conducted under controlled conditions, such as lighting settings 

and using a uniform background. In addition, no automation is considered in this technique. 

 

Firstly, to reduce the computational complexity of the system, images are first resized to a 

fixed resolution. Then by the use of a Guassian filter any noise or outer interference in the 

image is removed or diluted. K-means clustering (K = 10) technique is used here as the 

segmentation method, and the cluster that contains the diseased spots are saved to calculate 

the area of the diseased region. After calculating the disease area (AD) and total leaf area (AT) 

it is now possible to calculate the percent of infection regards to the total area. A fuzzy logic 

system is implemented in order to characterize which disease grade the disease belongs to 

depending on the percent infection. It is difficult to assess which disease grade the disease 

belongs to because of the ambiguity and uncertainty of the table a fuzzy logic system can be 

effective in this case. The segmented regions that are used to calculate the percent-infection 

index are shown in Figure 2-5 and Figure 2-6. The fuzzy logic system proved to be very 

effective in accurately grading diseases into their appropriate categories.  

 

Figure 2-5: Total leaf area (AT) [7] 
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Figure 2-6: Disease area (AD) [7] 

Because it can take up to one week to diagnose plant diseases using traditional chemical 

analysis, [29] proposed an early plant disease detection technique. During the period of 

anthesis plants often appear to be nutrient deficient and it is vital to detect these deficiencies 

early to ensure quality and quantity of plants. Nutrient deficient plants usually leave quite 

visible symptoms on their leaves, which can be used to diagnose the disease. By extracting 

features from leaves such as color and texture, plant nutrient deficiency can be diagnosed at 

an early stage [29]. 

 

Figure 2-7: Sampling box and examples of images used in the diagnostics system [29] 
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Nitrogen and potassium deficient tomato plants were used under a controlled chamber 

environment to extract color and texture features of leaves. A sampling box shown in Figure 

2-7 was used to take images of tomato leaves with a color digital camera. Normal, prophase 

and anaphase of nitrogen and potassium deficient tomato leaves were used in the proposed 

system as shown in Figure 2-7. 

 

After images are taken in the chamber they are processed for color and texture feature 

extraction. Because nitrogen deficient leaves turn yellow with the development of disease, 

the amount of yellow pixels in the leaf image can reflect the feature of nitrogen deficiency. 

Therefore, [29] proposed the use of percent histogram to extract feature of color. 

 

[29] tested multiple texture feature extraction techniques such as percent histogram, Fourier 

transform, and wavelet packet decomposition to ensure the most appropriate method for 

feature extraction. Experiments showed that the wavelet packet decomposition method 

proved to result in a high accuracy of distinguishing normal from nitrogen or potassium 

deficient leaves. To optimize the combination of features, [29] used a Genetic Algorithm to 

select the most important feature items. The optimized feature set was classified using a 

fuzzy K nearest neighbor classifier, and proved to be quite accurate in identifying normal, 

nitrogen deficient, and potassium deficient leaves. 

 

The proposed system was tested using sample collection of tomato leaves, and showed to be 

effective with an accuracy of identifying normal leaves, nitrogen-deficient leaves and 

potassium deficient leaves to be 92.5%, 85%, and 82.5% respectively. The diagnostic system 

can identify potassium deficiency in leaves 10 days earlier than by experts' observation. This 

gives a significant amount of time for measures to be taken to ensure production quality. 

 

To help aid crop producers and farmers in remote areas for identifying early symptoms of 

plant disease, [30] used image processing and pattern classification to implement a machine 

vision system. The system would detect cotton crop damage caused by 3 specific disease; 

green stink bug, Bacteria angular, and the Ascochyta blight virus as shown in Figure 2-8. 
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Figure 2-8: Image of cotton crops showing the visual symptopms of damages casued by: (a) Southern 

green stink but; (b) Cacterial andular; (c) Ascochyta blight. [30] 

 

A set of 117 images were used in the study from different sections of the plant such as the 

leaf, fruit and stem [30]. Multiple features that characterize shape and appearance of the 

image were extracted using both image's RGB and HSV color space. For texture extraction, a 

co-occurrence matrix was used to identity grey levels between a specific position in the 

image and its neighboring pixel. A box-counting algorithm was used to estimate the 

dimensions of the image for fractal dimension feature extraction. Gliding Box Algorithm was 

used to calculate lacunarity feature to measure texture associated with patterns. A Support 

Vector Machine Classifier was used to identify the best classification model for the different 

feature sets. Each feature was used individually and grouped to identify the difference in 

classification accuracy with respect to feature type [30]. 

 

Results showed that grouping features of similar type resulted in higher classification 

accuracies when compared to using individual features. Also, results showed that grouped 

texture features achieved higher classification rates (83%) when compared to grouped shape 

features which achieved a classification rate of 55%. When using the total feature set the 

highest classification rate was achieved of 90%. To further enhance the classification 

accuracy, one feature was withdrawn at a time until the best feature set was discovered. 

Using this method, a deducted feature set resulted in a classification accuracy rate of 93.1%. 

 

In order to decrease the cost of uniform and periodical pesticide spraying [8] suggested a 

selective spraying solution using an agriculture robot. Because primary infections start from a 

localized discrete foci, a system can be implemented to detect these infected foci points and a 
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target treatment can be established. Eliminating the initial infection point does not only 

inhibit the spread rate of the infection to other patches, but also significantly decreases the 

use of pesticides. In this case study, a multispectral camera is used to inspect an entire 

grapevine canopy for automatic detection of powdery mildew and selective spraying is 

achieved using a six-degree robotic arm illustrated in Figure 2-9.  

 

 

Figure 2-9: Robotic vehicle for disease detection and selective pesticide spraying [8] 

 

The red, green, and NIR channels were the primary channels used for disease detection. An 

RGB camera was also added to the camera rig for visual documentation of the scene. The 

cameras were positioned at a constant height of 1.4m while maintaining a 1m distance from 

the canopy wall as shown in Figure 2-10. Halogen light panels were used to provide diffused 

illumination of the imaged area for enhanced and more accurate results for indoor conditions. 
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Figure 2-10: Camera rig setup [8] 

The disease detection algorithm used in this system was to capture very sharp changes in the 

reflectance in green and red channels, as this will give a clear indication of the breakdown in 

chlorophyll content in infected leaves. Specifically, two indices used to measure chlorophyll 

absorption are calculated using Equation 2.1 and 2.2 respectively [8]. 

 

 𝐼1 =
𝑅𝑒𝑑 ∗ 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅2
 (2.1) 

 

 𝐼2 =
𝑅𝑒𝑑

𝑅𝑒𝑑 + 𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
 (2.2) 

 

Since healthy regions have high chlorophyll absorption, it is expected that 𝐼1 and 𝐼2 will 

yield higher values for diseased areas and return lower values for healthier regions. To test 

the proposed system grapevine plants were used to recreate a vineyard canopy wall in a 

greenhouse as shown in Figure 2-11. 
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Figure 2-11: Healthy grapevine plants aligned together with infected plants positioned randomly 

circled in red [8] 

 

Figure 2-12 illustrates the results gathered after the first experimental run. The blue graph 

shows the disease spots detected by the robot (blue dots) and the robot sprayings (blue 

circles) operated by the robot. To analyze the results, they are compared against the actual 

disease spots (red dots) specified by a plant pathologist and computed minimal sprayings (red 

circles). In this run the robot detected all the diseased areas and successfully covered all the 

disease foci with pesticide spraying. The selective pesticide spraying achieved here obtained 

a reduction in pesticide use up to 84% when compared to homogenous spraying of the 

canopy. However, at different instances the robot did detect disease spots in areas where 

plants were healthy, this is apparent around the 100 mark. This can be because of 

illumination changes and shadow effects, which distort the input image and hence the values 

of 𝐼1 and 𝐼2. Also apparent is the increased operated sprayings around detected diseased 

areas by the robot when compared to minimal sprayings. [8] claims that the surroundings of 

detected disease areas can be treated anyway by including a conservative safe-border area. 

This may help to raise the level of acceptance in real world cases, despite the reduction in 

potential pesticide savings. Overall, the proposed system proved to detect disease foci with an 

accuracy of 85%, while achieving a reduction of pesticide use close to 90%. 
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Figure 2-12: Disease spots detected by robot and operated sprayings (blue) against labeled disease 

spots and computed minimal sprayings (red) [8] 

 

[31] used a semi-autonomous mobile e-nose robot to examine the fertility of soil by using 

metal oxide gas sensors to detect organic volatile compounds found in soil. A six-wheel robot 

was designed with an integrated array of gas sensors shown in Table 2-5. This e-nose system 

was used because of its low cost and high sensitivity to certain target gases [31]. 

 

Table 2-5: TGS and MQ gas sensors and their target gases [31] 

Sensor Target gases 

TGS 825 Hydrogen sulfide 

MQ2 Combustible gases 

MQ5 LPG, natural gases 

MQ135 NH3, NOx, Benzene, CO2 gas 

TGS 2600 Air contaminants (ethanol, iso-butane, hydrogen) 

TGS 2602 VOCs and odorous gases 
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Multiple fans were installed on the robot to ensure air flow towards the gas sensor enclosed 

chamber as shown in Figure 2-13. The data collected from the gas sensors were recorded in 

real time and sent to a computer for analyzing and visualizing via Zigbee wireless network. 

Ultrasonic sensors and accelerometers were also implemented in the robot to ensure obstacle 

avoidance and smooth navigation.  The robot was operated under real conditions in four 

different locations; floor room, lawn, dry ground, and vineyard row.  

 

 

Figure 2-13: A six-wheel robot with e-nose and navigation system and an e-nose chamber [31] 

 

From Figure 2-14 it can be observed that the results collected from the dry ground location 

yielded high percentage in sensor response to most of the gas sensors. This can be due to the 

fact that little to none of the volatile gases are absorbed from the surroundings because of the 

lack of weeds and grass [31]. Most gas sensors yielded quite low responses in the vineyard 

location except for TGS2602, because of its high sensitivity to odorous gases such as 

ammonia and hydrogen sulfide. TGS2602 also has a high sensitivity to VOCs such as toluene 

[31]. 
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Figure 2-14: Percent sensor responses of six elements used in the e-nose robot system to soil volatiles 

at different places [31] 

 

The six different sensors show promising results in indicating different volatile gases in dry 

ground. [31] argue that if enough common odor data from various places is collected and put 

into a database, this database can later be used to determine irregular events.  

 

2.1. Postharvest Disease Detection Techniques 

 

The method proposed by [1] uses image techniques and artificial neural networks (ANNs) to 

classify different diseases found in grapes and apples. Image processing was used to extract 

specific features such as fruit color, texture and morphology. An important factor that may 

aid or diminish the effectiveness of image processing is the selection of the color space. [1] 

proposed that the HIS color space is more suitable than RGB as it is less affected by changes 

in light. A neural network was used to characterize these features into a disease category such 

as apple scab or apple rot. The neural network was first trained with a data set of various 

apple diseases. Figure 2-15 illustrates the different steps taken during the training and testing 

of the neural network.  
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Figure 2-15: Flowchart of proposed system [1] 

 

After being trained, the neural network was capable of characterizing an input apple image 

into its corresponding disease category. It was concluded that the selection of features plays a 

vital role in the effectiveness of the neural network. Because diseases are better defined by 

color and morphology, these features, unlike texture, proved to provide improved results [1].  

 

[2] provided a similar technique with the use of a Multi-class SVM classifier and K-Means 

image segmentation to detect three diseases found in apples: apple blotch, apple rot and apple 

scab. Because of the wide variety of skin colors found in different apples, it was proposed 

that using size and color as features could be challenging in the detection of defects in apples. 

Therefore, a K-means based image segmentation approach was used in order to extract 

disease features. In order to ensure shorter processing times for image segmentation, L*a*b* 

color space was used [2]. K-means clustering was used to segment the apple image into 4 

different clusters by categorizing similar pixel densities into their corresponding cluster. [2] 
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proposed that for improved segmentation results, using 3 to 4 clusters was sufficient. Figure 

2-16 demonstrates the results of the K-means clustering for apples with different infections. 

 

 

Figure 2-16: Image results before (a) and after (b) K-means clustering segmentation [2] 

 

It is clear that the K-means clustering technique is an effective tool for image segmentation. 4 

different techniques were used for feature extraction, Global Color Histogram (GCH), Color 

Coherence Vector (CCV), Local Binary Pattern (LBP), and Complete Local Binary Pattern 

(CLBP). These color and texture features were used to validate the accuracy and efficiency of 

the proposed system [2]. GCH represents the probability of a pixel being a certain distinct 

color in the form of a histogram, whereas the CCV distinguishes coherent and incoherent 

pixels into two separate histograms. Coherent pixels are defined as pixels that belong to a 

large region with homogenous color, and any other pixel is defined as an incoherent pixel.  

LBP considers the difference of each pixel with respect to its neighbors. CLBP on the other 

hand, considers signs, magnitude, and original center gray level value of local differences. 

After the extraction of features, a Multi-class Support Vector Machine (MSVM) was used for 

the training and classification as shown in Figure 2-17.  
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Figure 2-17: Flowchart of proposed system [2] 

 

Support Vector Machines have significant advantages over ANNs as they are less prone to 

over fitting and require less computational power. However, since ANNs use a heuristic 

method, it is easier to develop than an SVM, which involves more theory. A data set of 431 

apple images was created with wide variations in apple type and color to insure a more 

realistic test [2]. The data set is to be categorized into Apple Botch, Apple Rot, Apple Scab, 

or Normal Apple categories. 

 

Results proved to coincide with [1] proposal that the use of HSV color space outperforms 

RGB color space [2]. It is clear from Figure 2-18 that using the HSV color space in every 

feature extraction technique yields more accurate results. Also apparent from Figure 2-18 is 

that the most accurate extraction techniques are the CLBP followed by the LBP. Unlike GCH 

and CCV, both CLBP and LBP use information from neighboring pixels. Because they use 

local differences, they are more efficient in pattern matching and are less computationally 

extensive. It can be concluded that it is more effective to use either LBP or CLBP as feature 

extraction techniques to yield more accurate results. Furthermore, results indicated that the 

MSVM classifier detection of normal apples and apple scab was significantly easier than the 

detection of apple blotch and apple rot. Figure 2-19 illustrates this observation, with very 

high accuracy results for the detection of normal apples and apple scab by using the LBP 

technique. However, the accuracy rates for the detection of apple blotch and apple rot are 

significantly lower.  
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Figure 2-18: Accuracy difference of using RGB color space compared to HSV [2] 

 

 

Figure 2-19: Accuracy of detecting different apple disease categories in RGB and HSV color space 

[2] 

 

[6] proposed a more automated technique using on-line experimental system that can 

simultaneously inspect all four sides of an apple, and sort them accordingly. Two main issues 

with previous studies were tackled; the first is to acquire the whole surface of an apple at on-

line speeds and the second to quickly identify the apple stem and calyx. A description of the 

system schematic is represented in Figure 2-20. 



 

  29 

 

Figure 2-20: Schematic representation of apple defects sorting system [6] 

 

The schematic displays how apples are fed into the machine vision system via conveyors and 

belts for image acquisition, and how they are sorted accordingly. The feeding conveyor is 

designed to insure that the stem of the apple is faced upwards for maximum performance. 

The machine vision system consists of two cameras to provide multiple images of the apple, 

and a lighting chamber to control the light distribution [6]. By use of mirrors the top camera 

will cover three side views of the apple; top and two sides. The camera below will take an 

image of the bottom view of the apple. This setup has the distinctive advantage of inspecting 

all sides of the apple in one cycle. The setup is illustrated further in Figure 2-21. 

 

 

Figure 2-21: Setup of vision system [6] 
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After image acquisition, multiple methods were implemented for accurate defect detection. 

To not disrupt the segmentation process, image background removal algorithms were 

implemented to ensure that any backgrounds such as the mirror are removed. Segmentation is 

completed by using a reference fruit image and then subtracting it from the original fruit 

image. Then by the use of a simple thresholding method the defects could be easily extracted 

[6]. Because stem and calyx defects are very similar to each other the authors proposed the 

use of neural networks to distinguish the stem and calyx defects.  

 

Forty samples of Fuji apples were used to test and validate the system. Figure 2-22 illustrates 

how the input apple image is segmented and the defected regions as well as the stem and 

calyx defects are detected. The neural network classifier proved to be very effective in 

detecting stem-calyx recognition with accuracies over 93% [6]. Overall this system proved to 

be successful in detecting defects on multiple sides of an apple simultaneously, while on a 

sorting line. 

 

Figure 2-22: Defects segmentation results. (a), (c), (e), (g) original image; (b), (d), (f), (h) segmented 

defects [6] 
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[32] also implemented a non-destructive automated technique to detect bruises on apples 

using a multiple waveband technique. Hyperspectal imaging can provide enough information 

in several wavebands, but it is inappropriate in an on-line system due to its long acquisition 

and analysis time. Instead,  [32] resided on using multi-spectral imaging where only a 

specific range of wavebands were used to detect apple bruises. A total of 128 ’Golden 

Delicious’ apples were purchased from two different locations and separated into non-bruised 

and bruised groups by visual inspection. Bruises are usually caused from human handling and 

vibration from transportation. Apples without visible bruises were impacted with a pendulum 

in the laboratory to achieve an average bruise size of 17mm in diameter [32]. The 

hyperspectral imaging system consisted of a conveyor belt, light source and camera for on-

line bruise detection of apples as shown in Figure 2-23. The camera has high sensitivity from 

400 to 1000 nm and used alongside a spectrograph to detect the separate wavebands of light. 

The system also consisted of light sources and operated under a controlled environment. 

 

 

Figure 2-23: Schematic of hyperspectral imaging system [32] 

 

A simple thresholding method was used to segment the image background and low intensity 

regions and further analyzed by principal component analysis (PCA). PCA is an effective 

tool in reducing data dimensionality and to enhance bruise features. Results showed that the 

wavebands centered at 558, 678, 728, and 892 nm were optimal in detecting bruises on 

’Golden Delecious’ apples. A simple classification technique was introduced to determine 
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whether apples are bruised or intact. This classification technique resulted in an accuracy of 

93.5% for detecting intact apples and about 86% for detecting bruised apples. 

 

To increase the speed of the sorting process, [33] suggested a computer vision based system 

to automatically grade apples. A monochrome digital camera with multiple band-pass filters 

was used to capture one-view images of ’Jonagold’ apples taken in a controlled illuminated 

environment. The data set consisted of 280 healthy apples and 246 apples included several 

skin defects such as bruises and rot. The 4 band pass filters used for image acquisition are 

centered at 450nm (Blue), 500nm (Green), 750nm (Red), 800nm (Infrared) as shown in 

Figure 2-24. 

 

Figure 2-24: Filter images of apple. Left to right: Blue, Green, Red, Infrared filters [33] 

Images of apples were taken in a uniform and low intensity background to ensure a controlled 

environment. Therefore, background segmentation can be easily achieved using a 

thresholding technique. Multiple global thresholding techniques such as Otsu, Entropy, and 

Iosdata were tested for defect segmentation. However, because of the similar appearance of 

the stem-end/calyx area and the apple defect a segmentation technique is required to 

distinguish them from one another. Stem-end and calyx are natural parts of the apple and 

usually appear as dark blobs which can be often mistaken as defects. Statistical, textural, and 

shape features are extracted and introduced to a support vector machine to distinguish the 

calyx from the defect. The result of this segmentation can be seen in Figure 2-25. 

 

 

Figure 2-25: Example of stem-end/calyx removal. Before the removal on the left, and stem-end/calyx 

removal on the right. Defected area displayed in white in both images [33] 
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After calyx removal, a total of 13 features were extracted and introduced to multiple fruit 

classification techniques to test the accuracy of different classifiers. The 5 classifiers used 

were Linear Discriminant Classifier (LDC), Nearest Neighbor (k-NN), Fuzzy Nearest 

Neighbor (fuzzy k-NN), Adaptive Boosting (AdaBoost), and Support Vector Machine 

(SVM).  

 

Figure 2-26 illustrates the different thresholding techniques with all 4 filters. It is quite 

apparent that unlike the blue and green filters, the red and infrared filter images provide a 

more accurate representation of defect segmentation. Blue and green filter images result in 

false segmentation because of the low contrast between healthy and defect skin in the 

wavelength range of 410 - 510nm. Figure 2-26 also shows that isodata thresholding 

accurately segments the defective area when compared to otsu and entropy thresholding. 

 

 

Figure 2-26: Band pass filters segmentation results [33] 
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To further validate the results more apple images were segmented using iosdata technique on 

Red and Infrared filters. Figure 2-27 shows that results of Red filter images give better 

segmentation results when compared to Infrared filter images. After calyx removal, defect 

segmentation, and feature extraction, apples are graded by different classifiers as mentioned 

before. SVM proved to be to most accurate classifier (89.2%) in this case when using the 

iosdata method with the Red filter images. The LDC and k-NN classifiers performed lower 

with accuracies of 79% and 83% respectively. 

 

 

Figure 2-27: Band pass filters segmentation results 2 [33]
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Table 2-6: Review of preharvest techniques 

Paper 
Acquisition 

Method 

Test 

Plant 

Target 

Disease 
Environment 

Automation/ 

Manual 

Coverage 

Area 

Segmentation 

Method 
Classifier 

Classification 

Accuracy 

[30] (2009) 
24-bit JPEG 

Image samples 
Cotton Crop 

Green stink 

bug, 

Bacteria 

angular, 

Ascochyta 

blight virus 

Off Site 

Images 

Taken 

Manually 

Single leaf NA 

Support Vector 

Machine 

Classifier 

90% 

[28] (2011) 
12 Mega pixel 

Digital Camera 

Sugarcane 

Leaves 

Fungi 

diseases 

Off Site 

Controlled 

Background 

Images 

Taken 

Manually 

Single 

leaf 

Triangle 

Thresholding 
NA 98% 

[7] (2011) 
10 Mega pixel 

Digital Camera 

Pomegranate 

leaves 

General 

disease 

spots 

Off Site 

Controlled 

Background 

Images 

Taken 

Manually 

Single leaf 
K-means 

clustering 

Fuzzy Logic 

Classification 
NA 

[29] (2011) 

Digital Camera 

with 0.4 million 

CCD pixels 

Tomato plants 
Nutrient 

deficiency 

Closed 

Chamber 

Images 

Taken 

Manually 

Single leaf 
Percent 

Histogram 

Fuzzy k-nearest 

neighbor 

classifier 

82.5% 

[31] (2014) 
Multiple Gas 

Sensors (e-nose) 
Soil fertility VOCs On Site 

Semi-

autonomous 

six-wheel 

robot 

Lawn NA NA NA 

[8]  (2016) 

Three-CCD 

Multispectral 

Camera 

1912x1076 

Grapevines 
Powdery 

mildew 

On Site 

Controlled 

Lighting 

Robot Rig 

Limited 

automation 

Grapevine 

canopy 
NA NA 85% 
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Table 2-7: Review of postharvest techniques 

Paper 
Acquisition 

method 

Test 

Fruit 

Target 

Disease 
Environment Automation Coverage Area 

Segmentation 

Method 
Classifier 

Classification 

Accuracy 

[6] (2002) 

2 Monochrome 

cameras with 

band pass filter 

Apples 
Surface 

defects 

Off Site 

Closed Chamber 
Full automation Multiple fruits 

Simple 

subtraction 

thresholding 

Neural Network 93% 

[32] (2005) 

Multispectral 

Camera (400 – 

1000 nm) 

Golden 

Delicious 

Apples 

Apple bruises 
Off Site 

Closed Chamber 
Full automation Multiple fruits 

Simple 

thresholding 
NA 86% 

[33] (2005) 

Monochrome 

Digital Camera 

with multiple 

band pass filters 

Jonagold 

apples 

Skin defects, 

bruises, and 

rot 

Off Site 

Controlled 

Background and 

Lighting 

Images Taken 

Manually 
Single fruit 

Isodata 

Thresholding 

Support Vector 

Machine 
89.2% 

[2] (2012) 
Apple Image 

dataset 
Apples 

Apple blotch, 

rot, and scab 

Off Site 

Controlled 

Background and 

Lighting 

Images Taken 

Manually 
Single fruit 

K-means 

Segmentation 

Support Vector 

Machine 
NA 

[1] (2013) 
Apple Image 

dataset 
Apples 

Apple scab 

and Apple rot 

Off Site 

Controlled 

Background and 

Lighting 

Images Taken 

Manually 
Single fruit 

Color and 

Texture 

Extraction 

Neural Network NA 
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2.3. Research Challenges 

 

Both preharvest and postharvest disease detection techniques provide agriculturists and 

farmers with vital information on leaf and produce healthiness that can be used to monitor 

and revitalize plant and fruit health. However, both techniques face challenges that are 

discussed in this section.  

 

2.3.1. Challenges with Preharvest Techniques 

 

Preharvest imaging techniques is an early disease detection method, in which immediate 

action can be taken to revive plants and crops. This aspect is a major advantage, and cannot 

be achieved with postharvest techniques. However, there are limitations in the research when 

using preharvest techniques as listed below: 

 

• Leaf images are taken off field and in controlled environments. 

• Automation techniques are not fully developed.  

• Limited applications for processing large numbers of plants in real time under field 

conditions. 

 

2.3.2. Challenges with Postharvest Techniques 

 

The use of imaging techniques for disease detection in postharvest fruits/vegetables proves to 

be very successful. Classification accuracies are relatively high when compared to preharvest 

techniques, and different diseases can be easily distinguished from one another. Many 

automation techniques such as fruit sorting have been developed with high efficiency and 

accuracy. However, there are some limitations listed below: 

 

• Tests are not field based and conducted under controlled environments. 

• Postharvest techniques are classified as late disease detection methods. It is difficult 

to cure the disease after the fruit has been fully developed. 
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Chapter 3  

Research Methodology 

 

Both preharvest and postharvest imaging as well as VOC profiling techniques have proven to 

be very effective in accurately classifying diverse types of plant diseases. Not only do these 

techniques give a good indication on overall plant health but also can accurately distinguish 

healthy produce from unhealthy produce. Preharvest techniques such as [29] and [30] 

achieved classification accuracy of plant diseases of 82.5% and 90% respectively. 

Postharvest techniques showed to be more promising as seen in [33] and [6] with 

classification accuracy of fruit defects of 89.2% and 93% respectively. Preharvest disease 

detection techniques are classified as an early disease detection method as seen in [29] and 

[8], in which immediate action can be taken to revive plants and crops. This aspect is a major 

advantage, and cannot be achieved with postharvest techniques. Postharvest techniques such 

as [6] and [32] have introduced automated systems in which defected postharvest produce 

can be distinguished and sorted automatically with an accuracy of 93% and 86% respectively. 

However, the integration of automation under real time and field based environments is still 

very limited. As seen in [8], in which a robot rig is used under field based conditions to detect 

diseases in grapevine canopy, but it is controlled manually, and full automation was not 

realized. Also, [31] implemented a semi-autonomous robot to test soil fertility under field 

based environments using multiple gas sensors, but results were ineffective in disease 

detection.  

 

The methods presented in the literature differ greatly, from the use of simple digital cameras 

to the use of more advanced and sophisticated hyperspectral and multispectral imaging 

methods. Techniques such as [33], [6], and [32] used multispectral cameras and band pass 

filters, show higher classification accuracy as seen in Table 2-7 when compared to other 

techniques that use simple digital cameras for image acquisition. The use of multispectral 

cameras provides information of the image that can help to extract defected or diseased areas 

which may not be clear when using simple digital cameras with low sensitivity in the higher 

wavebands. [32] indicated that higher wavebands were helpful in detecting bruises in apples, 

and this cannot be achieved when using a simple digital camera. Preharvest disease 

techniques mostly use simple digital cameras for image capture of leaves and crops as seen 
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with [28] and [29]. High accuracies of 98% and 82.5% are achieved respectively, because of 

the use of controlled backgrounds for precise segmentation of the diseased area. 

 

It is clear, multispectral and hyperspectral imaging techniques proved to be the most reliable 

indirect method. However, hyperspectral imaging is a very costly technique, and there is still 

a limitation in the capability of designing systems for the detection of diseases in real time 

under field conditions. Most preharvest and postharvest techniques are completed under 

controlled environments and automation techniques are still not fully implemented. Because 

the use of preharvest techniques provide an early analysis of disease severity, it is more 

suitable to use over postharvest techniques. 

 

3.1. Operational Scenario of the Proposed Preharvest Disease Detection 

Techniques 

 

Because preharvest disease detection techniques provide an early analysis of plant health, two 

approaches are implemented to be used by agriculturists and scientists to monitor the overall 

health of plants. The first method is considered an Offline system in which plant leaf samples 

can be gathered and tested in a laboratory under controlled conditions, or leaf images 

captured on site. The second system is considered an Online system in which a robot will be 

designed to move along agriculture fields to test overall plant health. The two systems are 

developed and implemented to follow the scenario shown in Figure 3-1 in order to ensure 

both systems (offline and online systems) are functional and operational.  
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Figure 3-1: Research methodology flowchart 
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3.2. Scope 

 

The scope of this thesis is to develop a pre-harvesting system with the capability to detect 

possible plant disease severity by understanding information about the overall plant health 

index information. The system under investigation will include a vision system that 

constitutes image acquisition, image processing and image analysis techniques to provide 

viable feedback on plant disease severity and overall plant health using an automated robotic 

solution by developing a mobile robot carrying the vision system to work within a 

greenhouse environment that has the suitable path segments and uniform terrain enabling the 

robot to move through it. 

 

3.3. Research Methodology Outline  

 

The outline for both systems are: 

 

1. Offline Disease Severity Detection System 

a. Develop an offline leaf disease grading system using plant leaf images 

b. Use of Fuzzy Logic Classification to classify disease severity 

c. Implement a Graphical User Interface for ease of use 

2. Online Plant Health Monitoring System 

a. Development and implementation of a robot integrated with RGB and NIR 

imaging cameras  

b. Implementation of two control schemes, where one is responsible for robot 

navigation and the other for image processing and analysis. 

c. Communication and synchronization of functions between control structures 

d. Calculation of NDVI for early information on overall plant health 

e. Provides real time and field based plant health monitoring 

f. Map of inspected locations indicating plant health 
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Chapter 4  

Offline Plant Leaf Disease Severity System 

 

A preharvest offline technique inspired by [28] and [7] is designed and implemented in which 

users can automatically calculate the disease severity of any leaf. Leaf samples are extracted 

from plants or taken on site in uncontrolled lighting, to be tested for infection. Fungi diseases 

are very common in leaves, and inhibit their growth immensely [28]. Because fungi-caused 

diseases in leaves appear as spots, it is applicable to use simple imaging techniques to detect 

the severity of the disease. Disease severity is expressed as the ratio between the affected area 

(AD) and the total leaf area (AT) [7]. If the lesion area ratio to leaf area ratio is high, then the 

leaf is said to have a high disease severity according to Table 2-4. Infection percentage (PI) is 

calculated as the area ratio between affected area and total leaf area as seen in Table 2-4. The 

classification of the disease severity is achieved by using a Fuzzy Logic technique. A 

graphical user interface is also implemented to enable agriculturists to monitor disease 

severity of leaves to have a clear indication on the overall health of the plant. The overall 

proposed methodology of the offline disease detection systems is represented in the flowchart 

shown in Figure 4-1. A few assumptions have been considered and listed below: 

 

1. Leaf samples are picked and collected manually by a pathologist, 

2. Images of leaf samples are taken with a digital color camera with a uniform black 

background, 

3. Disease detection is non-specific (must have visible appearance on plant leaf), and 

4. Only visible diseases can be detected and graded accordingly. 
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Figure 4-1: Flowchart for Offline Plant Leaf Disease Severity System 
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4.1. Image Acquisition 

 

Image acquisition is the start of any image processing technique, in which images are 

digitalized and stored. For this system, leaf sample images with visible disease spots can be 

either captured with a digital color camera with a uniform background on site, or can be 

retrieved from any online database. It is recommended that images retrieved from the internet 

have a uniform background. This will allow for more accurate segmentation results as the 

background area can be easily distinguished from the leaf area. The resolution of images 

retrieved from an external database does not need to be set to a specific value, but this will be 

amended in the pre-processing stage.  As for images taken on site, any digital RGB camera 

can be used. For this test, an iPhone camera was used to capture leaf images in the field and 

the specifications are shown in Table 4-1.  

 

This camera provides high image capture detail with a resolution of 12 Megapixels. Another 

important feature of this camera is the low focal length of 4mm, which allows for a wider 

field of view. This aspect is vital for this system, as leaf images are taken at close range and it 

is important that the leaf area is completely represented in the image. A relatively low 

aperture of 1.8 allows for more light to enter the sensor, which can be beneficial in low light 

areas.     

 

Table 4-1: iPhone 7 camera specifications 

Resolution 3024 x 4032 

Megapixel 12MP 

Sensor 
Sony Exmor RS 

(1.22 µm, 1/3") 

Focal Length 4mm 

Aperture F/1.8 

 

 

 

 

 

 



 

  45 

4.2. Image Pre-processing 

 

In this stage images are resized to a fixed resolution to reduce the computational burden, and 

any other image adjustments can be achieved in this stage such as cropping, contrast 

enhancement, and angle correction.  

 

4.2.1. Resolution Resize  

 

To reduce computational complexity and time, it is recommended to decrease image 

resolution. However, this may diminish the accuracy of the disease severity calculation and 

the overall performance of the system. A good balance of computational time and accuracy 

should be achieved to ensure high accuracy of disease severity calculation in a reasonable 

amount of time. Therefore, to test the different resolution scales each image will be tested in 

multiple resolutions and the computational time and accuracy are compared to find an 

appropriate resolution scale to use shown in Sec. 4.8. Table 4-2 illustrates the resolutions that 

will be used for images retrieved from the online database and from iPhone camera. In order 

to preserve the original aspect ratio, the original width and height are both halved. This will 

result in an image with the same aspect ratio but with a quarter resolution of the original. The 

original images can be seen in Figure 4-2 and Figure 4-3. 

 

Table 4-2: Image resolution scales 

 
Original Resolution 

(width x height) 

Quarter Resolution 

(width x height) 

Internet 

Database 
590 x 443 295 x 222 

iPhone camera 4032 x 3024 2016 x 1512 
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3 different interpolation techniques are considered and compared in terms of speed and its 

effect on edges or borders. Table 4-3 illustrates the different techniques, to find the most 

appropriate image resizing technique for this system. 

 

Table 4-3: Interpolation methods 

 
Nearest-neighbor 

interpolation 
Linear interpolation Bilinear interpolation 

Output pixel 

Assigned the value of 

the pixel that the point 

falls within 

Weighted average of 

pixels in the nearest 2-

by-2 neighborhood 

Weighted average of 

pixels in the nearest 4-

by-4 neighborhood 

Speed Fast Slower than Nearest-neighbor 

Edges Sharp Edges Smooth edges 

 

Nearest-neighbor is selected because the interpolation method provides edges that are sharp 

and can help in segmenting the leaf area from the background. The resized images using 

nearest-neighbor interpolation can be seen in Figure 4-4 and Figure 4-5. 

 

 

Figure 4-2: Input leaf image retrieved from internet in RGB color space (590 x 443 pixels) 
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Figure 4-3: Input leaf image captured from iPhone in RGB color space (4032 x 3024 pixels) 

 

 

Figure 4-4: Internet leaf image quarter resolution (295 x 222 pixels) 
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Figure 4-5: iPhone leaf image quarter resolution (2016 x 1512 pixels) 

 

4.2.2. Color Space Conversion 

 

Also, the selection and conversion of the color space can be completed in this stage. In this 

case the Lab color space is selected over RGB color model due to multiple reasons. The RGB 

color model can be seen in Figure 4-6. Not only does the Lab color space exceed the RGB 

color gamut, but it is also device independent [34]. This aspect is important because the 

colors are defined independent of their nature of creation, and is therefore less prone to 

changes due to light [1]. This is useful in cases where images are captured in areas with non-

uniform lighting conditions. The space itself is a three-dimensional space, that contains an 

infinite number of possible representations of colors as shown in Figure 4-7. However, in 

practice, the space is usually mapped onto a three-dimensional integer space for digital 

representation. The L*a*b* space consists of a luminosity 'L*' or brightness layer, 

chromaticity layer 'a*' indicating where color falls along the red-green axis, and chromaticity 

layer 'b*' indicating where the color falls along the blue-yellow axis [35]. 
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Figure 4-6: RGB color space [36] 

 

 

Figure 4-7: L*a*b* color space [37] 

 

There are no simple formulas for conversion between sRGB  and L*a*b*, because the sRGB 

color model is device-dependent. The sRGB values first must be transformed to the CIE 1931 

color space and then transformed into L*a*b* [37]. The two leaf images shown previously in 

Figure 4-2 and Figure 4-3 converted to the L*a*b color space and can be seen in Figure 4-8 

and Figure 4-9. 

 

https://en.wikipedia.org/wiki/RGB_color_model
https://en.wikipedia.org/wiki/CIE_1931_color_space
https://en.wikipedia.org/wiki/CIE_1931_color_space
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Figure 4-8: Internet leaf image in L*a*b color space 

 

 

Figure 4-9: iPhone leaf image in L*a*b color space 

 

4.3. Background Image Segmentation 

 

Image segmentation is the process in which the digital image is partitioned into constituent 

regions, so that the different regions can be easily distinguished and analyzed. Segmentation 

can be achieved by various techniques such as clustering methods, compression-based 

methods, and histogram-based methods. The first step is to accurately segment the region of 
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interest from the background. In this case the leaf area should be recognized and 

distinguished from the uniform background. Different thresholding techniques will be tested 

and compared to select the most appropriate for this system.  

 

Before implementing thresholding techniques, the original RGB image is converted into a 

greyscale image using a simple conversion method. The luminosity method or weighted 

method considers for human perception by calculating the weighted average as illustrated in 

Equation 4.1. The red, green, and blue channels represent a 2D array of pixel values ranging 

from 0 to 255. The greyscale conversion of the Internet leaf image and iPhone leaf image are 

shown in Figure 4-10 and Figure 4-11. 

 

 
𝐺𝑟𝑒𝑦𝑠𝑐𝑎𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑖,𝑗 = (0.2989 × 𝑅𝑖,𝑗) + (0.5870 × 𝐺𝑖,𝑗) + (0.1140 × 𝐵𝑖,𝑗) 

Where 𝑖 and 𝑗 represent the pixel location in the matrices 
(4.1) 

 

 
Figure 4-10: Internet leaf image after greyscale conversion 
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Figure 4-11: iPhone leaf image after greyscale conversion 

4.3.1. Otsu Thresholding 

 

Threshold segmentation is achieved by setting a proper threshold value to distinguish the 

foreground from the background. The greyscale image is then converted into a binary image 

according to the threshold set value. The output binary image replaces all pixels in the input 

image with luminance greater than the threshold value with the value 1 (white) and replaces 

all other pixels with the value 0 (black). The threshold is set as a value between 0 and 255 

where values closer to 0 signify a threshold value closer to lower grayscale values (black) and 

vice versa. Otsu's thresholding method uses histogram information to iterate through all 

possible range of threshold values and selects the threshold that: 

 

• Minimizes the within-class variance 

• Maximizes the between-class variance 

 

The Otsu method is demonstrated using a simple 6x6 image with a greyscale range from 0 to 

5. The image and its histogram shown in Figure 4-12. 

 

Figure 4-12: 6x6 Image (right), Histogram (left) [38] 

 



 

  53 

Otsu method searches all possible threshold values from 0 to 5 to find the minimum within-

class variance and maximum between class variance as illustrated in Equation 4.2 and 4.3 

respectively [38].  

 

 𝜎𝑊
2 (𝑡) =  𝑤𝑏(𝑡)𝜎𝑏

2(𝑡) + 𝑤𝑓(𝑡)𝜎𝑓
2(𝑡) (4.2) 

 

 𝜎𝐵
2(𝑡) =  𝑤𝑏(𝑡)𝑤𝑓(𝑡)[𝜇𝑏(𝑡) − 𝜇𝑓(𝑡)]

2
 (4.3) 

 

Where the, weights 𝑤𝑏 and 𝑤𝑓 are the probabilities of the background and foreground classes 

separated by a threshold  𝑡, and 𝜎𝑏
2 and 𝜎𝑓

2 are variances of these two classes respectively. 

The class probability 𝑤𝑏(𝑡) and 𝑤𝑓(𝑡) illustrated in Equation 4.4  is computed from number 

of threshold values (L), which is 6 in this example. The mean 𝜇 illustrated in Equation 4.5 

and variance 𝜎  illustrated in Equation 4.6 are also calculated for the background and 

foreground [38] . 

 

 

𝑤𝑏(𝑡) =  ∑ 𝑝(𝑖)𝑡−1
𝑖=0                                                       𝑤𝑓(𝑡) =  ∑ 𝑝(𝑖)𝐿−1

𝑖=𝑡  

Probability equation for background (left) and foreground (right)  
(4.4) 

 

 

𝜇𝑏(𝑡) =  ∑ 𝑖
𝑝(𝑖)

𝑤𝑏

𝑡−1
𝑖=0                                                        𝜇𝑓(𝑡) =  ∑ 𝑖

𝑝(𝑖)

𝑤𝑓

𝐿−1
𝑖=𝑡  

Mean equation for background (left) and foreground (right) 

(4.5) 

 

 

𝜎𝑏
2(𝑡) =  ∑ (𝑖 − 𝜇𝑏)

2 𝑝(𝑖)𝑡−1
𝑖=0                           𝜎𝑓

2(𝑡) =  ∑ (𝑖 − 𝜇𝑓)
2
 𝑝(𝑖)𝐿−1

𝑖=𝑡  

Variance equation for background (left) and foreground (right) 

(4.6) 

 

These equations are used to calculate within class variance 𝜎𝑊
2 (𝑡) for all threshold values (0 – 

5) as seen in Table 4-4.  
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Table 4-4: Otsu Thresholding at different Threshold values [38] 

Threshold T=1 T=2 T=3 T=4 T=5 

 

     

Weight 

Background 
𝑤𝑏 = 0.222 𝑤𝑏 = 0.4167 𝑤𝑏 = 0.4722 𝑤𝑏 = 0.6389 𝑤𝑏 = 0.8889 

Mean 

Background 
𝜇𝑏 = 0 𝜇𝑏 = 0.4667 𝜇𝑏 = 0.6471 𝜇𝑏 = 1.2609 𝜇𝑏 = 2.0313 

Variance 

Background 
𝜎𝑏
2 = 0 𝜎𝑏

2 = 0.2489 𝜎𝑏
2 = 0.4637 𝜎𝑏

2 = 1.4102 𝜎𝑏
2 = 2.5303 

Weight 

Foreground 

𝑤𝑓 = 0.7778 𝑤𝑓  = 0.5833 𝑤𝑓  = 0.5278 𝑤𝑓  = 0.3611 𝑤𝑓 = 0.1111 

Mean 

Foreground 
𝜇𝑓 = 3.0357 𝜇𝑓 = 3.7143 𝜇𝑓 = 3.8947 𝜇𝑓 = 4.3077 𝜇𝑓= 5.000 

Variance 

Foreground 
𝜎𝑓
2  = 1.9639 𝜎𝑓

2 = 0.7755 𝜎𝑓
2= 0.5152 𝜎𝑓

2 = 0.2130 𝜎𝑓
2 = 0 

Within Class 

Variance 
𝜎𝑊
2  = 1.5268 𝜎𝑊

2   = 0.5561 𝝈𝑾
𝟐  = 0.4909 𝜎𝑊

2  = 0.9779 𝜎𝑊
2  = 2.2491 

Between Class 

Variance 
𝜎𝐵
2  = 1.5928 𝜎𝐵

2   = 2.5635 𝝈𝑩
𝟐   = 2.6287 𝜎𝐵

2  = 2.1417 𝜎𝐵
2  = 0.8705 
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The lowest within class variance and highest between class variance can be seen for threshold 

value 3. Therefore, this is the final selected threshold. All pixels with a level less than 3 are 

background, all those with a level equal to or greater than 3 are foreground as shown in 

Figure 4-13. 

 

Figure 4-13: Result of Otsu Thresholding at threshold value 3 [38] 

Figure 4-14 and Figure 4-15 represent the threshold background segmentation results for the 

internet leaf image and the image captured from the iPhone camera using the Otsu 

thresholding technique. Table 4-5 illustrates the optimal threshold value found using the Otsu 

thresholding technique.  

 

Table 4-5: Otsu threshold values for leaf images 

Image 
Otsu threshold greyscale (0-

255) 

Leaf image retrieved from 

internet 
58.0125 

Leaf image captured from 

iPhone 
102.9945 

 

Internet Leaf Image 

If pixel greyscale > 58.0125 then pixel set to 1 (white) 

If pixel greyscale < 58.0125 then pixel set to 0 (black) 

 

iPhone Leaf Image 

If pixel greyscale > 102.9945 then pixel set to 1 (white) 

If pixel greyscale < 102.9945 then pixel set to 0 (black) 
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The background segmentation result for the leaf image retrieved from the internet shown 

previously in Figure 4-10 seems to show good promise on accurately highlighting the leaf 

area from the background as seen in Figure 4-14. However, for the iPhone leaf image shown 

previously in Figure 4-11, this method proves ineffective in segmenting images with non-

uniform lighting as seen in Figure 4-15. Because the intensity of black background is not 

uniform, different areas will incorrectly be defined as foreground. Therefore, this 

segmentation method will not be efficient to use, as leaf images will have different 

background intensities. The segmentation method should be able accommodate for various 

background intensities and partition the foreground from the background accordingly.  

 

 

Figure 4-14: Internet leaf Otsu threshold background segmentation  

 

 

Figure 4-15: iPhone leaf Otsu threshold background segmentation 
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4.3.2. Triangle Thresholding 

 

The triangle thresholding method is a technique in which the threshold value is set according 

to the image histogram information. A line is constructed between the maximum peak of the 

histogram at brightness 𝑏𝑚𝑎𝑥  and the lowest value 𝑏𝑚𝑖𝑛  as shown in Figure 4-16. The 

distance  𝑑  between the line and the histogram is computed for all brightness 

values from  𝑏𝑚𝑎𝑥 to 𝑏𝑚𝑖𝑛 . The objective of this technique is to find the maximum 

perpendicular distance (𝑑𝑏𝑖) between the bin values and the line. Accordingly, the bin value 

with the maximum distance is concluded as the threshold value 𝑏𝑖. The threshold is used as 

the cut-off value in which pixels below are set as one group and pixels above as the other. 

[28]. bi 

 

 

Figure 4-16: Intensity Histogram and Triangle Thresholding Technique [28] 
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Figure 4-17 and Figure 4-18 show the histogram results of the leaf image retrieved from the 

internet and the leaf captured from the iPhone camera from Figure 4-10 and Figure 4-11. The 

base line is also shown between the histogram peak and the farthest end of the histogram. It is 

clear the histogram for the leaf image retrieved from the internet that the grey levels of the 

pixels are set into two groups. The lower grey level range clearly indicate the background 

where the number of pixels is quite high, and the grey levels around the middle indicate the 

leaf area. On the other hand, the leaf image captured from the iPhone contains a wider range 

of grey level values because of the non-uniformity of the background intensity.  

 

 

Figure 4-17: Internet leaf histogram 
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Figure 4-18: iPhone leaf histogram 

After the histogram is constructed the threshold (𝑏𝑖) is then found as the point of maximum 

distance between the line and the histogram (𝑑) shown in Table 4-6. 

 

Table 4-6: Triangle threshold values for images 

Image 
Triangle threshold greyscale 

𝑏𝑖 (0-255) 

Leaf image retrieved from 

internet 
1.989 

Leaf image captured from 

iPhone 
72.726 

 

Figure 4-19 and Figure 4-20 show the result of the threshold value set on the binary 

conversion of both images. Figure 4-19 shows mixed results when compared to Figure 4-14 

where Otsu thresholding was used. The internal area of the leaf is more properly represented, 

but the threshold selected is inaccurate in correctly segmenting the edges of the leaf with the 

background. Figure 4-20 shows a slightly improved result when compared to Figure 4-15, 
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where the leaf area is characterized more accurately, but still proves to be ineffective in 

segmenting the total background from the leaf area because of the complexity of the 

histogram. There is no clear indication from the histogram of the foreground pixels and the 

background pixels, this is clearly due to the non-uniformity of the lighting. 

 

 

Figure 4-19: Internet leaf triangle threshold background segmentation 

 

Figure 4-20: iPhone leaf triangle threshold background segmentation 
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4.3.3. K-means Segmentation with Triangle Thresholding 

 

The goal of k-means clustering is to group similar objects together. Given a data matrix 𝑋 =

[𝑥1, … , 𝑥𝑛] and k initial clustering centroids, k-means clustering targets to partition each 𝑥𝑖 

into k clusters, in which 𝑥𝑖 belongs to its nearest cluster according to the squared Euclidian 

distance. K-means clustering has been adopted into many applications including market 

segmentation, astronomy and agriculture. K-means clustering example is shown in Figure 

4-21. For dataset 𝑋 = [𝑥1, … , 𝑥𝑛] the main steps are as follows: 

 

1. Initialize k cluster centroids 𝑐1, 𝑐2, … , 𝑐𝑘 randomly.  

2. For all 𝑖, assign 𝑥𝑖 to cluster 𝑔𝑖 where 

𝑔𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗=1,2,..,𝑘‖𝑥𝑖 − 𝑐𝑗‖
2
  

3. Recalculate the position of the centroids as the mean of its data points. 

 𝑐𝑗 = 𝑚𝑒𝑎𝑛({𝑥𝑖: 𝑥𝑖} ϵ 𝑔𝑗) 

4. Repeat Steps 2 and 3 until the centroids no longer move.  

‖𝑥𝑖 − 𝑐𝑗‖
2

 is the squared Euclidian distance measurement between data point 𝑥𝑖  and its 

corresponding cluster center 𝑐𝑗  [39]. 

 

 

Figure 4-21: K- means clustering example [39] 

 

https://en.wikipedia.org/wiki/Market_segmentation
https://en.wikipedia.org/wiki/Market_segmentation
https://en.wikipedia.org/wiki/Astronomy
https://en.wikipedia.org/wiki/Data_Mining_in_Agriculture
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The value k represents the number of clusters, in which each cluster has a defined centroid. 

The centroids are initially chosen at various locations and then each point in the data set is 

associated to the nearest centroid according to the squared Euclidian distance [39]. The 

centroids are re-positioned as the mean of its data points. This process is repeated until the 

centroids no longer change their position and the optimum position for the centroids has been 

found. K-means clustering can be used as a segmentation technique as seen in [2] and [7], in 

which the image is segmented into k number of clusters. Similar regions are clustered 

together and segmented from other regions of the image. 

The major advantage of using k-means clustering is that the objective function is simple and 

is easy to implement. However, there are limitations that need to be considered:  

 

1. The user must initially specify k (number of clusters) 

2. The result of k-means heavily relies on the initialization of the cluster centroids  

3. Computation time is dependent on k and number of data points 

 

The selection of the value k is essential in accurately clustering multiple regions into their 

appropriate cluster without losing data. Higher values of k can result in some clusters that 

may need to be grouped with other clusters, and lower values of k may result in smaller 

number of clusters that may not accurately represent its data fully. The optimal choice of k 

should achieve a balance between maximum compression of data in a single cluster with 

maximum accuracy by assigning each data point to its own cluster. According to [2] and [7] 

values of k under 10 resulted in more accurate results for leaf images. Hence, after multiple 

trial runs the value of k was chosen as 10 in this case. To properly distinguish the background 

from the leaf area, the cluster that contains the background will be subtracted from the leaf 

image so that binary conversion using triangle thresholding can be completed accurately. 

This technique can be used to find the cluster that contains the background and properly 

segment it from the leaf area.  
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The 3-dimensional RGB image is converted into L*a*b color space as seen in Figure 4-22. 

This conversion is explained in Sec. 4.2.2. The color information is now stored in the 'a*b*' 

channel. Therefore, the 'a*' and 'b*' values are constructed into matrix form and plotted as 

points in a 2D space as shown in Figure 4-23. 

 

Figure 4-22: Internet leaf image in L*a*b color space 

 

Figure 4-23: Image data for Internet leaf image 
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These points are then segmented into clusters using k-means clustering, and the 10 different 

clusters with centroids can be seen in Figure 4-24 for the internet leaf and Figure 4-25 for the 

iPhone captured leaf. The points are segmented into different clusters with each cluster 

representing a certain region of the leaf image. Each cluster is then extracted and the 'a*' and 

'b*' values are used to draw the segmented image as shown through Figure 4-26 to Figure 

4-29 . 

 

 

Figure 4-24: Internet leaf image cluster assignments and centroids 

 

Figure 4-25: iPhone leaf image cluster assignments and centroids 
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Figure 4-26: Internet leaf image Cluster 1-4 

 

 

Figure 4-27: Internet leaf image Cluster 5-10 
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Figure 4-28: iPhone leaf image Cluster 1-4 

 

 

Figure 4-29: iPhone leaf image Cluster 5-10 
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In order to segment the leaf image from the background the cluster that contains the 

background must be subtracted from the original image to preserve the leaf area and remove 

the background. It is clear from Figure 4-26 and Figure 4-28 that cluster 1 includes the 

background region while the other clusters represent different areas of the leaf. Therefore, the 

image retrieved from cluster 1 will be deducted from the original leaf image so that the 

background is completely removed as shown in Figure 4-30 and Figure 4-31. Now that the 

background is completely removed and uniform, triangle thresholding is used to convert the 

image to binary as shown in Figure 4-32. The conversion shows much improvement over the 

previous techniques in which the leaf area was incorrectly represented from the background.  

 

 

Figure 4-30: Internet leaf image after background removal 
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Figure 4-31: iPhone leaf image after background removal 

 

 

Figure 4-32: Internet leaf triangle threshold background segmentation with K-means clustering 
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Figure 4-33: iPhone leaf triangle threshold background segmentation with K-means clustering 

 

4.4. Disease Area Selection 

 

In order to extract the diseased area, the cluster information from the k-means segmentation 

process is used. The cluster that visually best represents the diseased region will be selected 

as the diseased region. Internet leaf Cluster 5 shown in Figure 4-34 represents the diseased 

area most accurately in comparison to the other cluster segmentation results. As for the 

iPhone leaf image, cluster 8 represents the diseased as shown in Figure 4-35. As seen from 

Figure 4-35, the diseased region is clustered with other areas that do not represent the disease. 

The borders of the leaf image are segmented with the diseased area because of the similarity 

in color. Therefore, there is a need to remove unwanted lines and small miscellanies areas 

using morphological image processing methods.  
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Figure 4-34: Internet leaf Cluster 5 containing disease 

 

 

Figure 4-35: iPhone leaf Cluster 8 containing disease 
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4.4.1. Morphological Image Processing Techniques 

 

To improve the accuracy of the binary conversion of the selected diseased cluster a few 

morphological image processing operations are applied on the diseased area binary image. 

Binary images may contain numerous imperfections, especially for regions produced by 

simple thresholding which can distorted by noise and texture. Morphological image 

processing pursues the goals of removing these imperfections by accounting for the form and 

structure of the image. Figure 4-36 and Figure 4-37 represent the binary conversion of cluster 

5 from the Internet leaf image and cluster 8 from the iPhone leaf image using triangle 

thresholding without any morphological image processing methods applied. It is clear 

especially in Figure 4-37, that the diseased area region is clustered with the border of the leaf 

image which leads to an inaccurate representation of the total diseased area. 

 

 

Figure 4-36: Binary conversion of internet leaf Cluster 5 using triangle thresholding 

 

Figure 4-37: Binary conversion of iPhone leaf Cluster 8 using triangle thresholding 
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The first morphological method removes all connected components (objects) that have fewer 

than P pixels from the binary image. The value of P is chosen as the minimum area for an 

unwanted object in the image, anything below this area will be disregarded from the image. A 

structuring element of size P is passed over the image and objects smaller than the size of the 

structuring element is removed from the binary image. Figure 4-38 and Figure 4-39 show the 

output of the diseased area after removing smaller areas. Figure 4-39 represents an improved 

representation of the diseased area when compared to Figure 4-37. 

 

Figure 4-38: Binary conversion of internet leaf Cluster 5 after removing small areas 

 

 

Figure 4-39: Binary conversion of iPhone leaf Cluster 8 after removing small areas 

 

 



 

  73 

A circular flat morphological structuring element is then used to fill any gaps between small 

intersections. Figure 4-40 and Figure 4-41 illustrate how the diseased area is represented after 

removing small unwanted objects and after filling gaps to have a better representation of the 

overall leaf disease area. 

 

Figure 4-40: Binary conversion of internet leaf Cluster 5 after filling gaps 

 

 

Figure 4-41: Binary conversion of iPhone leaf Cluster 8 after filling gaps 
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4.5. Percent Infection Calculation 

 

To calculate the percent infection, the total leaf area (AT) and diseased area (AD) should be 

calculated appropriately to ensure high accuracy of disease severity calculation. The leaf area 

is clearly highlighted shown in Figure 4-32 and Figure 4-33 with white pixels, the area can be 

easily found as the summation of white pixels as the total leaf area AT. The diseased region is 

shown in Figure 4-40 and Figure 4-41 and its area is area is also calculated as the summation 

of white pixels of the diseased area AD. 

 

After the image has been segmented into a healthy and diseased region the area of each can 

be easily calculated by counting the number of pixels in each region. The percent infection is 

calculated by applying Equation 4.7 in which AD represents the diseased region and AT 

represents the total leaf region [7]. 

 

 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 = (
𝐴𝐷
𝐴𝑇
) ∗ 100 (4.7) 

 

4.6. Fuzzy Logic Classification 

 

A Fuzzy Logic system is implemented to characterize which disease grade the disease 

belongs to depending on the percent infection. It is difficult to assess which disease grade the 

disease belongs to because of the ambiguity and uncertainty of the table. Because the disease 

severity table represents a wide range of percent infection for every disease grade it may be 

problematic in accurately selecting the appropriate disease grade. Therefore, a Fuzzy Logic 

system can be effective in this case and a triangular membership function was implemented 

in this system to accurately depict the disease grade. For the disease grading Fuzzy Logic 

System the input variable is percent infection and the output variable is disease grade. The 

Triangular membership functions are used to define the variables and six fuzzy rules are set 

to grade the disease.  The input variable was segmented into 6 triangular membership 

functions ranging from 0% to 100%, likewise the output variable was also segmented 

similarly from 0 to 5. Depending on the percentage of infection the disease grade will 

increase accordingly. The input and output triangular membership functions are shown in 

Figure 4-42 and Figure 4-43. 
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Figure 4-42: Input variable (Percent infection) triangular membership function 

 

 

Figure 4-43: Output variable (Disease grade) triangular membership function 

 

The percent infection input variable is defined as 0, Very Low (VL), Low (L), Moderate (M), 

High (H), and Very High (H), depending on the result of Equation 4.7. The logic if-then 

fuzzy rules that are set to select the appropriate disease grade are as Table 4-7. 

 

Table 4-7: If-then Fuzzy rules 

Percent infection Disease Grade 

0 0 

VL 1 

L 2 

M 3 

H 4 

VH 5 
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4.7. Graphical User Interface (GUI) 

 

A Graphical User Interface (GUI) is designed and implemented to help users monitor leaf 

disease severity and overall plant health. The core functions of the GUI displayed in Figure 

4-44 are featured by: 

 

a) Two large axes to clearly display the leaf image before (left) and after (right) 

processing. 

b) Clear button placements to indicate the process flow, beginning with importing a leaf 

image to calculating the disease grade and saving all intermediate image outputs. 

c) Drop down menus to help users choose between different presets for resolution and 

selecting among different clusters. 

 

 It has a simple layout with clear areas for images and large button placements. It can be used 

by users such as laboratory technicians to calculate the disease severity of any leaf sample. 

Each step of the process will be described in this section. 

 

 

Figure 4-44: Graphical user interface 
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1. Selecting Leaf Image 

 

The user has the option to insert a sample of a leaf image by pressing on the Leaf Image 

button. Once selected a new window appears as shown in Figure 4-45, in which the user can 

browse local folders to choose a leaf image. The folder can be updated by the user with new 

leaf images at any given time. After selecting the leaf image, it is displayed on the left axes as 

shown in Figure 4-46. 

 

 

Figure 4-45: Selecting a leaf image 

 

Figure 4-46: Leaf image selected 
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2. Resolution Adjustment 

 

The resolution of the image can be changed by the drop-down menu available under the Leaf 

Image button as seen in Figure 4-47 and Figure 4-48. The two options are Native Resolution 

in which the resolution of the input image is kept as is, and the other is Quarter Resolution 

where the input image is resized to achieve a quarter of the original resolution. 

 

 

Figure 4-47: Leaf Image at Native Resolution 

 

Figure 4-48: Leaf Image at Quarter Resolution 
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3. Background Removal 

 

By pressing on the Background Segmentation button, the background of the leaf image is 

removed. Background removal is achieved by using K-means technique with Triangle 

thresholding. The output of this process is shown on the right axes as seen in Figure 4-49. 

 

 

Figure 4-49: Leaf image after background removal 
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4. Selecting Disease Cluster 

 

By pressing on the K means Segmentation button the 1st cluster is shown on the right axes as 

see in Figure 4-50. The disease cluster can be selected by toggling through the Cluster drop 

down menu as shown in and Figure 4-51. 

 

 

Figure 4-50: Cluster 1 

 

Figure 4-51: Selecting the cluster containing the disease 
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5. Leaf Area and Diseased Area  

 

After the cluster with the disease is selected the binary of the total leaf area (AT) and the 

diseased clustered area (AD) is calculated by pressing on the Binary of Total Leaf Area and 

the Binary of Diseased Clustered Area button as shown in Figure 4-52 and Figure 4-53. 

 

 

Figure 4-52: Binary of Total Leaf Area (AT) 

 

Figure 4-53: Binary of Diseased Area (AD) 
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6. Save Results 

 

By pressing on the Save Images button, a figure is displayed showing the original leaf image 

and the intermediate results such as the background removal and the disease cluster selection. 

Also, further information is shown under the images such as the disease grade and processing 

time.  

 

 

Figure 4-54: Results of Leaf Image 

 

4.8. Testing and Results using GUI 

 

In order to test the system, multiple images of leaf samples were taken from a real field using 

an iPhone 7 camera and some were retrieved from the Internet as shown in Table 4-8. Each 

image was put through the system and processed to calculate the disease severity taking into 

consideration its different resolution sizes and its effect on the disease grade calculation as 

well as the processing time. This test is completed on a laptop with the specifications 

illustrated in Table 4-9. The processing times achieved for this system heavily rely on the 

computers processor speed and performance. 
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Table 4-8: Leaf Test Images 

Leaf Image 

(JPEG) 

Captured/Retrieved 

(Source) 

Full Resolution 

(Pixels) 

Reduced Resolution 

(Pixels) 

1 iPhone 4032 x 3024 2016 x 1512 

2 iPhone 4032 x 3024 2016 x 1512 

3 iPhone 4032 x 3024 2016 x 1512 

4 iPhone 4032 x 3024 2016 x 1512 

5 iPhone 4032 x 3024 2016 x 1512 

6 iPhone 4032 x 3024 2016 x 1512 

7 iPhone 4032 x 3024 2016 x 1512 

8 iPhone 4032 x 3024 2016 x 1512 

9 iPhone 4032 x 3024 2016 x 1512 

10 iPhone 4032 x 3024 2016 x 1512 

11 iPhone 4032 x 3024 2016 x 1512 

12 iPhone 4032 x 3024 2016 x 1512 

13 iPhone 4032 x 3024 2016 x 1512 

14 iPhone 4032 x 3024 2016 x 1512 

15 iPhone 4032 x 3024 2016 x 1512 

16 iPhone 4032 x 3024 2016 x 1512 

17 iPhone 4032 x 3024 2016 x 1512 

18 iPhone 4032 x 3024 2016 x 1512 

19 Internet 590 x 443 295 x 222 

20 Internet 850 x 565 425 x 283 

21 Internet 1548 x 1031 774 x 516 

 

Table 4-9: Laptop specifications 

Processor 
Intel Core i5 4200U Processor 

(2.6 GHz) 

Operating System Windows10 

RAM 4 GB 
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4.8.1. iPhone Leaf Image Results (Images 1 – 18) 

 

Each iPhone image was tested at its native full resolution and then again at quarter resolution 

as shown in Figure 4-55 and Figure 4-56. The overall processing time and disease grade of all 

tested images were recorded and compared as shown in Figure 4-57 to Figure 4-60. 

 

 

Figure 4-55: Leaf image 4 results at full resolution 

 

Figure 4-56: Leaf image 4 results at quarter resolution 
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Figure 4-57: Processing Time of Leaf Images at Full Resolution (4032 x 3024) 

 

 

Figure 4-58: Processing Time of Leaf Images at Quarter Resolution (2016 x 1512) 

 

It is clear from Figure 4-57 and Figure 4-58, that the average processing time is quite higher 

for images taken at full resolution when compared to images processed at quarter resolution. 

There is about a 4 time increase in processing time when using full resolution images when 

compared to quarter resolution images. This increase in processing time is expected as there 

are 4 more-time pixels to process, showing a direct relation to resolution and processing time. 
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Figure 4-59: Percentage Infected at Full Resolution vs. Quarter Resolution 

 

 

Figure 4-60: Disease Grade at Full Resolution vs. Quarter Resolution 

 

Figure 4-60 illustrates how the disease grade classification is affected by the change in 

resolution. Clearly the affect the resolution has on disease grade is very minor if not 

negligible. The average difference in disease grade is 0.014 from images processed at full 
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resolution and images at quarter resolution. This average difference is insignificant in 

affecting the overall accuracy of the disease grade classification. Because images at quarter 

resolution still have a high pixel count it does not affect the disease grade classification. 

 

4.8.2. Internet Leaf Image Results (Images 19 – 21) 

 

Each image retrieved from the Internet was tested at its native full resolution and then again 

at quarter resolution. Figure 4-61 illustrates the difference in processing time between images 

processed at full resolution and quarter resolution. Figure 4-63 illustrates the difference in 

disease grade classification between images processed at full resolution and quarter 

resolution.  

 

 

Figure 4-61: Internet Leaf Images Processing Time at Full Resolution vs. Quarter Resolution 

 

The processing times as shown in Figure 4-61 are significantly lower than iPhone leaf images 

as the resolution is much lower for internet leaf images. In this case there is about a 70% 

decrease in processing time when using reduced resolution images when compared to full 

resolution images. Because leaf image 21 has a very high resolution compared to images 19 

and 20, the processing time is significantly larger. 
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Figure 4-62: Internet Leaf Images Infected Percentage at Full Resolution vs. Quarter Resolution 

 

 

Figure 4-63: Internet Leaf Images Percentage Infected vs. Disease Grade 
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Figure 4-63 illustrates how the disease grade classification is affected by the change in 

resolution. In this case, the change in resolution has a more significant impact on disease 

grade classification when compared to iPhone leaf images as shown in Table 4-10. For 

instance, leaf 19 receives a disease grade of 1.2491 at full resolution and 0.98565 at quarter 

resolution resulting in a relatively high disease grade difference. Because the pixel count is 

already low at full resolution the decrease in resolution results in a high variance in disease 

grade classification. However, for leaf images that have high resolution such as image 21 the 

difference in disease grade is insignificant. 

 

Table 4-10: Internet Leaf Images Disease Grade at Full Resolution vs. Quarter Resolution 

Leaf Image 
Full 

Resolution 

Disease 

Grade 

Reduced 

Resolution 

Disease 

Grade 

Disease 

Grade 

Difference 

19 590 x 443 1.2491 295 x 222 0.98565 0.26345 

20 850 x 565 0.71826 425 x 283 0.59761 0.12065 

21 1548 x 1031 0.91237 774 x 516 0.89455 0.01782 

 

From the results of both iPhone captured images and internet leaf images, the payoff between 

resolution and processing time can be concluded. Decreasing the resolution for cases where 

the resolution is high such as with iPhone leaf images, results in significant decrease in 

processing time. The ratio between processing time and resolution decrease is approximately 

1:1, where a quarter decrease in resolution will result in a fourth of the processing time in 

almost all cases. Because the pixel count is already high even at quarter resolution the 

accuracy of disease grade classification is not impacted significantly. However, when the 

native resolution is already low in the case of internet leaf images, the decrease in resolution 

will have a slight impact on the disease grade classification.  
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4.8.3. Disease Grade Classification Accuracy 

 

An important aspect that has a significant effect on the classification of the disease grade is 

the selected disease cluster. After the image is segmented into multiple regions it is vital for 

the user to select the region that most accurately depicts the defected area. This technique 

relies on the user’s knowledge of leaf diseases to correctly identify the area which represents 

the disease most. Because the diseased region is most likely coherent it should be in one clear 

cluster. This system is not disease specific, so any disease or defected area can be identified 

from the rest of the leaf area.  In some cases, the leaf may be infected with different diseases 

that are similar in color and could be clustered into the same cluster. However, if multiple 

diseases are visible and have a significant difference in color it can be distinguished from one 

another accurately.  

 

To measure the accuracy of the disease area classification, the diseased area is highlighted 

manually as shown in Figure 4-64 and Figure 4-65. It is then compared with the diseased area 

that is selected using the Offline system as seen in Figure 4-66 and Figure 4-67.  

 

 

Figure 4-64: iPhone leaf image 1 diseased area highlighted manually 
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Figure 4-65: iPhone leaf image 1 diseased area highlighted manually in B/W 

 

 
Figure 4-66: iPhone leaf image 1 diseased area from cluster 8 
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Figure 4-67: iPhone leaf image 1 diseased area after B/W conversion and morphological methods 

applied 

 

Table 4-11 illustrates the difference in diseased area when selecting the infected area 

manually and when using the Offline system. This process is completed for the rest of the 

dataset to measure the accuracy of the Offline system. Figure 4-68 and Figure 4-69 illustrate 

the percentage infected and disease grade difference between the Offline system and 

selecting the disease area manually for iPhone leaf images. 

 

For the iPhone leaf images, an average disease grade classification accuracy of 98% is 

achieved. Minor differences in percentage infection as seen in leaf images 6, 9, and 12 in 

Figure 4-68 have negligible impact on the disease grade calculation. When compared to other 

preharvest techniques such as [29] and [30], background segmentation in uncontrolled 

lighting conditions is achieved at a high accuracy, and the classification accuracy achieved 

for this Offline system is very promising.  
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Table 4-11: Disease Grade Classification Accuracy 

Leaf 

Image 
Manual Selection Using Offline System 

 

 
Percentage 

Infected (%) 

Disease 

Grade 

Percentage 

Infected (%) 

Disease 

Grade 

Disease 

Grade 

Accuracy 

1 11.21245 0.8975 12.5545 0.92514 97 

2 4.082 0.6402 4.4062 0.65767 97 

3 3.32925 0.5958 3.3972 0.59998 99 

4 2.89926 0.5682 2.7612 0.55885 98 

5 3.44536 0.6029 3.6574 0.61571 97 

6 6.95532 0.7722 7.3948 0.78819 97 

7 6.27881 0.7453 6.473 0.75319 98 

8 1.25511 0.442 1.2257 0.43946 99 

9 3.8985 0.6299 4.2375 0.64866 97 

10 3.80337 0.6243 3.6926 0.6178 98 

11 2.45575 0.5375 2.5669 0.54534 98 

12 4.173 0.6452 3.7575 0.62164 96 

13 2.6691 0.5525 2.7081 0.55514 99 

14 3.43221 0.6021 3.5329 0.60824 98 

15 5.30473 0.7025 5.5321 0.71297 98 

16 3.37869 0.5988 3.0591 0.57879 96 

17 1.55267 0.4676 1.6576 0.47629 98 

18 5.05104 0.6906 5.2615 0.70049 98 
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Figure 4-68: Manual Percentage Infection vs. Percentage Infected using Offline System for iPhone 

leaf images 

 
Figure 4-69: Manual Disease Grade vs. Disease Grade using Offline System for iPhone Leaf Images 
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Chapter 5  

Robotized Plant Health Monitoring System 

 

A major disadvantage of the Offline system is that it is required to be conducted off site and 

the system is not automated. Therefore, there is a need to design an Online automated system 

that has the capabilities of monitoring plant health and stresses under field conditions in real 

time. To fulfil such requirements, a robot is designed to move in a real agriculture field to 

measure plant health while providing position information about nutrient deficient plants. 

RGB and NIR imaging methods are integrated into a robot and used in synchronization to 

measure overall plant health using the Normalized Differential Vegetative Index (NDVI). 

Because of its low cost, NIR imaging techniques can be very effective when integrated with a 

robot. For this system, a few assumptions are considered and listed as follow, 

 

1. Mobile robot moves along a specified path with a minimum width of 45cm 

2. Images are taken under field conditions to distinguish healthy from unhealthy leaves 

3. Monitoring plant health in a greenhouse environment with uniform terrain for 

movement 

 

This section introduces how NDVI is calculated and how it is automated using a robotized 

system. This section also focuses on the design and the implementation of the robot with 

technical and functional requirements. The operational flow of the automated system is 

shown in Figure 5-1.  
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Figure 5-1: Automated Robotic System Flowchart  
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5.1. Robot System Design 

 

A robot was designed and implemented to fulfil the required functionality of moving along a 

specified path in a real field while capturing RGB and NIR images of leaves to measure 

NDVI of leaves which corresponds to an assessment of overall plant health. The overall 

design layout of the robot is shown in Figure 5-2. The robot after construction is shown in 

and Figure 5-3. The robot’s functions are listed below: 

 

1. Controlled movement from one location to the next, 

2. Stop between locations to capture images, 

3. Detect objects in its path (Obstacle Detection) while moving, 

4. Provide map information associated with the NDVI calculation, 

5. Calculate NDVI using two cameras fixed on a camera rig 

 

 

Figure 5-2: Robot mechanical design 
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Figure 5-3: Implemented robot with all peripherals attached 

 

5.1.1. Robot Frame 

 

The body frame of the robot consists of multiple parts that can be easily assembled while 

maintaining structural strength and integrity. There are three main components that make up 

the robotic body; bottom base, top base, and side supports. The top and bottom base were 

coupled in a modular fashion using the side supports via the hole inserts. The initial structure 

is shown in Figure 5-4. To store the electrical components and protect them from outside 

interference such as sand and wind a control box is required to safety store all the 

components. The control box is of plastic material and stored inside the robot base between 

the upper and lower base as shown in Figure 5-5. 
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Figure 5-4: Body frame 

 

Figure 5-5: Control box 

 

5.1.2. Motion Control of the Robot 

 

For controlled movement, dual stepper motors were used as the main driving force for the 

robot. The motors are mounted on the robot using a motor bracket as shown in Figure 5-6. 

Two motor drivers were used and integrated with the robot controller to control the stepper 

motor. A dual full-bridge driver L298 chip is used for each motor to satisfy the motor 

requirements. The specifications of the stepper motor and driver are listed in Table 5-1 
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Figure 5-6: Stepper motor and Bearings 

 

Table 5-1: Stepper motor and motor driver specifications 

Step Angle (degrees) 1.8 

Movement Bi – Directional 

Voltage supply 12V 

Rated Current 2A/phase 

Holding Torque 9 Kg.cm 

Motor Weight 0.45 Kg 

Maximum speed 12 rev/s 

Motor driver supply voltage 24 V 

Motor driver supply current 4A 
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5.1.3. Camera Rig 

 

An adjustable camera monopod was used to create an upper level for the camera layout. As 

shown in  Figure 5-7, a lower disk houses the servo motor that controls the of the two 

cameras, and the upper disk holds the camera layout.  

 

 

Figure 5-7: Servo motor and camera layout 

 

 
Figure 5-8: Camera rig 

To control the position of the camera layout a servo motor is suitable because of its capability 

in rotating to specific angles or degrees. A metal gear high torque servo motor is selected 

because it allows increased servo reliability at high loads. The weight of the upper disk is 

about 160g, so the specifications of the servo motor listed in Table 5-2 is suitable for this 

case. 
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Table 5-2: Servo motor specifications 

Voltage supply 7.2V 

Speed 0.14 sec /60 degree 

Torque 15 kg.cm 

Dimension 40.8 x20.1x38 mm 

Motor Weight 56g 

 

5.2. System Controller 

 

This section includes two control units integrated with the robotic system. These control units 

are: 

 

1. Arduino Control Unit 

2. Laptop Control Unit 

 

5.2.1. Arduino Mega Control Unit 

 

Arduino MEGA controller is selected because of the multiple serial ports available, for 

communication between the laptop and other peripherals that require serial communication, 

such as the GPS module. Arduino controller is responsible for the overall control and 

movement of the robot as well as send information over to the laptop. The Arduino controller 

is integrated with a range of hardware to facilitate multiple functions: 

 

a. Stepper motor control 

b. Servo motor control 

c. Obstacle detection using Ultrasonic sensor 

To detect for obstacles during the robots motion an ultrasonic sensor is used to measure 

distance between obstacles and the robot. The time of flight technique is used to measure 

distance between the robot and the object. Figure 5-9 illustrates how the ultrasonic sensor 

sends and receives the wave reflected from the object. Using Equation 5.1 the distance 

between the robot and the object can be found [47].  
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Figure 5-9: Ultrasonic sensor operation [47] 

 

 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  
𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑠𝑜𝑢𝑛𝑑 × 𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝑒𝑐ℎ𝑜

2
 (5.1) 

 

d. Position Sensor for location mapping 

To provide position information of the stressful areas in a large agriculture field, a GPS 

module can be used. The module is the Skylab UART GPS Module. It is a small size and low 

weight GPS module as shown in Figure 5-10. It can be easily embedded into mobile robots 

because of its small size and low weight. The GPS module would be more suitable to use in 

larger agriculture areas where localization is more difficult. However, in a greenhouse 

environment the use of a GPS module is not as effective because of the smaller area. 

 

 

Figure 5-10: GPS module 

e. Serial communication with laptop  

Because tasks are distributed by two control units, a communication protocol is required to 

ensure tasks are completed in a timely manner. Figure 5-11 illustrates how the laptop and the 

Arduino controller are connected for communication along with other peripherals. 
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Figure 5-11: Arduino Controller and Laptop serial communication 

5.2.2. Laptop Control Unit 

 

The laptop is mainly responsible for image acquisition for the RGB and NIR cameras, image 

processing, and analysis. The tasks completed by the laptop are as follows: 

 

a. Capture RGB Image 

 

To capture images of the field and calculate the NDVI, two cameras are used. An RGB 

camera, to capture visible light and a NIR camera to capture near infrared light. These two 

cameras are attached to the top of the robot and controlled by a servo motor to take images of 

the same scene as the robot moves across the field line. The RGB camera used is BFLY-U3-

13S2C-CS and its specifications are listed in Table 5-3. 

 

Table 5-3: RGB camera BFLY-U3-13S2C-CS specifications [44] 

Resolution 1288 x 964 

Frame Rate 30 FPS 

Megapixels 1.3 MP 

Chroma Color 

Sensor Name Sony ICX445 

Sensor Format 1/3” 

Quantum Efficiency (% 

at 525 nm) 
61 
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b. Capture NIR Image 

 

NIR camera used is BFLY-U3-13S2M-CS and the specifications are listed in Table 5-4. 

. 

Table 5-4: NIR camera BFLY-U3-13S2M-CS specifications [44] 

Resolution 1288 x 964 

Frame Rate 30 FPS 

Megapixels 1.3 MP 

Chroma Mono 

Sensor Name Sony ICX445 

Sensor Format 1/3” 

Quantum Efficiency (% 

at 525 nm) 
61 

 

c. Image processing 

d. NDVI calculation 

e. Plant health map  

 

To ensure fast image processing it is vital the PC have a powerful graphics processing unit 

with enough VRAM. Therefore, the laptop selected has an NVIDIA GeForce GT 740M 

graphics chip with 2GB DDR3 VRAM. The laptop is also small in size and relatively light, 

so it can be placed on top of the robot without adding too much weight. The laptop is 

physically connected to the Arduino via a serial cable and linked with the cameras using a 

USB cable as seen in Figure 5-11. The specifications of the laptop are listed in Table 5-5. 

 

Table 5-5: Laptop PC specifications 

Graphics 
NVIDIA GeForce GT 740M with 2GB 

DDR3 VRAM 

Dimensions 348 x 241.8 x 24.8 mm 

Weight 2.20 kg (with 4 cell battery) 
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To explain the overall function of the robotic system a flowchart is shown in Figure 5-12.  

 

Figure 5-12: Automated Robotic System Process Flowchart 

 

 

 

 

 



 

  107 

5.3. Normalized Difference Vegetation Index (NDVI) 

 

NDVI is an indication used by many agriculturists and scientists to measure the overall health 

of plants and vegetative crops. This concept comes from the fact that healthy leaves with high 

amounts of chlorophyll will strongly absorb visible light and strongly reflect near-infrared 

light. While unhealthy or stressed plants with low chlorophyll content will strongly absorb 

near-infrared light and reflect most of the visible light [35]. Because chlorophyll is the most 

critical component in photosynthesis and plant growth it can be used as a good indicator of 

overall plant health and crop condition. As shown in Figure 5-13 healthy plants with high 

chlorophyll content will yield a higher NDVI when compared with unhealthy plants. 

 

 

Figure 5-13: NDVI for healthy (left, NDVI = 0.72) and unhealthy (right, NDVI = 0.14) plants [45] 

This concept has been extensively used by NASA and Earth observatory satellites to 

distinguish land areas from green areas such as forests and jungles [45]. Figure 5-14 shows 

an image taken with NASA satellites to map green areas of the entire Earth. 

 



 

  108 

 

Figure 5-14: NDVI used to map green areas of earth [45] 

The calculation of NDVI is illustrated in Equation 5.2, where NIR corresponds to the 

reflectance in the near infrared band and RED corresponds to the reflectance in the RED band 

[4].  

 

 𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 (5.2) 

 

The RED band covers the wavelength range between 700nm and 760nm while NIR band 

covers the wavelength range from 760nm to about 1400nm as illustrated in Figure 5-15. The 

NDVI value is in the range of -1 to 1, where values greater than 0.4 will correspond to high 

foliar activity and values less than 0.2 correspond to low foliar activity. NDVI values 

between 0.2 and 0.4 indicate to sparse vegetation. This relation gives a direct indication of 

quality and development of vegetation [46].  
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Figure 5-15: Ultraviolet, Visible and Infrared Spectrum [42] 

 

5.3.1. Applications 

 

NDVI can be used in many aspects of precision agriculture indicated below: 

 

a. NDVI can be used to help agronomists and farmers to easily identify stressful areas, 

and to make timely decisions. NDVI maps can be produced at key dates to monitor 

plant growth and show variations in the field. This information can be used by 

farmers to determine the necessary actions for recovery [46]. 

b. Costly resources such as insecticides and mid-season fertilizers can be effectively 

used for better crop management while minimizing input costs [46]. 

 

5.3.2. NDVI Calculation 

 

In order to extract the NDVI of a plant field, visible and NIR information is required. 

Therefore, two cameras are used in synchronization to capture both visible and NIR light 

reflected from vegetative plants. To test and validate the concept of using NDVI as a valid 

plant health indicator multiple test images were used and processed to create an NDVI map. 

Figure 5-16 and Figure 5-17 show the RGB and NIR images of tomato leaf plant 1. 
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Figure 5-16: RGB image 1 of Tomato leaf 

 

 

Figure 5-17: NIR image 1 of Tomato leaf 

 

The RGB image is first segmented into R, G, and B channels. The RED channel shown in  

Figure 5-18, green channel shown in Figure 5-19, and blue channel Figure 5-20. Each channel 

represents vales of a 2D array of pixel values ranging from 0 – 255.  
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Figure 5-18: Red channel 

 

 

Figure 5-19: Green channel 
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Figure 5-20: Blue channel 

 

In order to calculate the NDVI, the RED channel from the RGB image and the NIR image 

pixel values must be normalized from [0 255] scale to a [0 1] scale. Equation 5.3 is computed 

for each pixel value in both the RED channel and NIR channel.  

 

 𝑃𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒[0 1] = 
𝑃𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒[0 255]

255
 (5.3) 

 

This is illustrated in the example matrices below. 

 

[
1 54 107
12 65 117
22 75 128

]  

Pixel matrix before conversion 

 

[
0.0039 0.2118 0.4196
0.0471 0.2549 0.4588
0.0863 0.2941 0.5020

]  

Pixel matrix after conversion 
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Once normalizing pixel values, each pixel from the RED band and its corresponding value 

from the NIR band are used to calculate the NDVI value using Equation 5.4. The NDVI 

values range from [-1 1] and are mapped onto a colormap of the same image size as shown in 

Figure 5-21. 

 

 
𝑁𝐷𝑉𝐼𝑖,𝑗 = 

𝑁𝐼𝑅𝑖,𝑗 − 𝑅𝐸𝐷𝑖,𝑗

𝑁𝐼𝑅𝑖,𝑗 + 𝑅𝐸𝐷𝑖,𝑗
 

Where 𝑖 and 𝑗 represent the pixel location in the matrices 

(5.4) 

   

 

Figure 5-21: NDVI map 1 of Tomato leaf 

 

Figure 5-21 presents the NDVI map, and it is clear that greener areas of the leaf give higher 

NDVI values when compared to other regions of the leaf. Healthy regions with high 

chlorophyll content will result in high NDVI values (>0.4) while undeveloped regions will 

display lower NDVI values (<0.2). Because diseases inhibit the overall content of chlorophyll 

this index can be used to detect plants under stress due nutrient deficiency problems. 

However, in order to give a clearer indication of plant health the background must be 

removed to avoid shadows and other objects that may affect the NDVI value.  
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5.3.3. Limitations  

The calculation of the NDVI can be sensitive to a few factors: 

a. NDVI calculations are sensitive to shadows from trees or nearby buildings, and can 

lead to misinterpreting NDVI values. These factors must be taken into consideration 

when taking images and calculating the NDVI [46]. This can be overcome by 

removing background from the images for more accurate representation of the scene. 

b. Because soils tend to darken when wet, their reflectance may change accordingly, and 

this may lead to inaccurate NDVI values. The NDVI of an area can appear to change 

because of soil moisture changes from precipitation or evaporation and not because of 

vegetation changes [46]. 

c. The calculation and accuracy of NDVI values rely heavily on the sensor of the 

camera, and therefore may give different values depending on the sensor used. The 

quantum efficiency, characteristics, and performances of cameras in both the RGB 

and NIR range vary greatly. Therefore, a single formula like NDVI yields different 

results when applied to the measurements acquired by different instruments [46]. 

Quantum efficiency of the sensor in the NIR range is a crucial factor to be considered 

when selecting the cameras for NDVI calculation. Higher quantum efficiency in the 

NIR range, increases the sensitivity of the camera sensor in capturing NIR light.  
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5.4. Software Implementation 

 

In this section the image analysis process for the RGB and NIR images is discussed starting 

from the image acquisition to the NDVI calculation and health analysis as seen in Figure 

5-22.  

 

 

Figure 5-22: Online System Image Analysis flowchart for one cycle 
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5.4.1. Image Acquisition 

 

It is vital to use cameras with high sensitivity in the NIR bands to ensure the effectiveness of 

the NDVI calculation. To ensure images captured by both cameras are identical, they both 

have the same specifications except for the chroma properties. The NIR camera should only 

allow NIR light to pass and to eliminate the RGB spectrum a monochrome camera was used 

instead of a color camera. Also, to eliminate visible light, a NIR optical pass filter was 

applied to the NIR monochrome camera. The plastic filter used is ideal for blocking visible 

light, while passing near infrared wavelengths only.  

 

Another important property to consider is the quantum efficiency of the cameras in NIR 

wavelengths. As seen in Figure 5-23 the NIR camera chosen has relatively high quantum 

efficiency at NIR wavelengths (800 – 1000 nm). This gives the camera higher sensitivity in 

accurately detecting light in NIR wavelengths. Figure 5-24 and Figure 5-25 illustrate the 

RGB and NIR images of a pot tomato plant respectively. 

 

 

Figure 5-23: Quantum efficiency of cameras at different wavelengths [44] 
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Figure 5-24: Leaf Image 1 RGB 

 

 

Figure 5-25: Leaf Image 1 NIR 
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5.4.1. Image Pre-processing 

 

In this stage images are resized to a fixed resolution to reduce the computational burden, and 

any other image adjustments can be achieved in this stage such as cropping, contrast 

enhancement, and angle correction. Because the resolution of the images acquired is 

sufficient it is not necessary to resize the images to a lower resolution. However, image 

alignment is required as the RGB and NIR images are prone to offset during the servo motor 

rotation. Color correction is required for background segmentation using K-means clustering 

as illustrated in Sec. 4.2.2. 

 

5.4.1.1. Image Alignment 

 

To calculate the NDVI, the RGB and NIR leaf images must be aligned correctly. The RGB 

image is taken first and then via the servo motor the camera rig rotates and the NIR image is 

taken for the same scene. Because of the uncertainty of the servo motor rotation the NIR 

image may be misaligned from the RGB image. This angle must be taken into consideration 

and accounted for to ensure both images contain the same scene for NDVI calculation. This 

process is completed by matching features in both images and calculating the difference in 

position and angle of features. Speeded up robust features (SURF) detection is used to find 

prominent matching features in both images and use that information to rotate images so they 

would match. The SURF technique is similar to Scale-Invariant Feature Transform (SIFT) 

approach to feature detection. The key features of SIFT are listed below: 

 

• Scale Invariant 

• Rotation Invariant 

• Invariant to changes in illumination 

• Robust against noise 

 

The SURF algorithm is based on the same principles and steps of SIFT, but it utilizes a 

different scheme and it provides better results at a reasonably faster time. SIFT is very 

accurate at matching local features, but is very computationally expensive [43]. Hence, it is 

more appropriate to use SURF as the system designed is an Online system where 

computation time should be kept at a minimum. 
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 The SURF algorithm flowchart is illustrated in Figure 5-26, and the three main steps to 

SURF are listed below: 

 

• Interest Point Detection: Identify prominent features, and should be detected 

regardless of viewpoint.  

• Description: Each feature point has a unique description that is scale and rotation 

independent.  

• Matching: Given two images, determine the transformation of the image, based on 

predetermined interest points. 

 

 

Figure 5-26: SURF algorithm flowchart 

 

SURF function was implemented to detect matching features in both the RGB and NIR 

images. Figure 5-27 and Figure 5-28 illustrate all the key points detected in the RGB and NIR 

image after they are converted into greyscale. After removing key points with bad contrast 

and rejecting edges, the optimum features for both images are showed in Figure 5-29 and 

Figure 5-30. The matching features are shown in Figure 5-31. The transformation matrix is 

found between the matched features, and is used to transform the NIR image to match the 

RGB image as shown in Figure 5-32. 
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Figure 5-27: Feature points in RGB image detected using SURF 

 

Figure 5-28: Feature points in NIR image detected using SURF 

 



 

  121 

 

Figure 5-29: Inlier Feature points in RGB after removing outliers 

 

Figure 5-30: Inlier Feature points in NIR after removing outliers 
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Figure 5-31: Matching Features in RGB and NIR images 

 

 

Figure 5-32: NIR image after translation 
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5.4.2. Background Removal 

 

Background removal used here is completed using k-means segmentation as shown in Sec. 

4.3.3. Because of the complicated background, traditional thresholding techniques is not 

suitable to be used in this system. Background removal is completed for both the RGB image 

and NIR image. After multiple trials, lower values of k showed to be more effective in this 

case as the scenery is more complex. Therefore, the value of k was chosen as 3. As seen 

cluster 1 illustrated in Figure 5-33 represents the foreground where the leaves are represented 

accurately because of the uniformity of the color. However, some of the information is lost 

due to the high variance in color and the complexity of the background. Cluster 2 shown in 

Figure 5-34 and cluster 3 shown in Figure 5-35 represent the background. These two clusters 

are used to remove the background from the NIR image. 

 

 

Figure 5-33: Cluster 1 
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Figure 5-34: Cluster 2 

 

 

Figure 5-35: Cluster 3 
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Figure 5-36: NIR image after background removal 

Now that the background of both images has been removed the NDVI can be calculated 

accurately. The mean value of the NDVI values is found as 0.2977 which corresponds to a 

relatively high NDVI value and indicates to lower foliar activity. 

 

 

Figure 5-37: NDVI map  
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5.5. Testing and Results 

 

The robot is tested in a greenhouse environment on tomato plants that are grown in pots.  The 

test pots range from active and healthy plants to unhealthy plants and underdeveloped 

growth. Figure 5-38 and Figure 5-39 illustrates how the robotic system is used in the 

greenhouse measuring tomato plant health. The angle of the camera rig can be adjusted via 

the monopod to position the cameras at an angle the user desires. For testing, the camera rig 

was positioned at an angle as seen in Figure 5-40 and Figure 5-41. The robot moves across 

the field taking images of plant pots using both the RGB and NIR cameras for NDVI 

calculation and health mapping. 

 

 

Figure 5-38: Robotic System in tomato plant greenhouse 
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Figure 5-39: Robotic System in tomato plant greenhouse 

 

Figure 5-40: Camera rig positioned at an angle 
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Figure 5-41: Capturing plant pot images 

5.5.1. Underdeveloped plants 

 

Multiple images are taken using the robot’s cameras for cases with pots that have no sign of 

growth and the NDVI is used to validate this observation. Figure 5-42 and Figure 5-43 show 

the RGB image and NIR image after alignment of a pot with no plant growth. The NDVI 

map of this pot can be seen in Figure 5-44. It is clear from the map that the NDVI is very low 

with a mean value of 0.1826. 

 

 

Figure 5-42: RGB Image of underdeveloped plants 
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Figure 5-43: NIR Image of underdeveloped plants 

 

 

Figure 5-44: NDVI map of underdeveloped plants 
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5.5.2. Plants with Low Foliar Activity 

 

Images are taken for cases with pots that have sign of unhealthy growth or low foliar activity. 

Figure 5-45 and Figure 5-46 show the RGB image and NIR image after alignment of a pot 

with unhealthy plant growth. The NDVI map of this pot can be seen in Figure 5-47. It is clear 

from the map that the NDVI is quite low with a mean value of 0.2072. 

 

 

Figure 5-45: RGB image of unhealthy plants 

 

 

Figure 5-46: NIR image of unhealthy plants 
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Figure 5-47: NDVI map of unhealthy plants 

 

5.5.3. Plants with High Foliar Activity 

 

Images are taken for cases with pots that have signs of healthy growth or high foliar activity. 

Figure 5-48 and Figure 5-49 show the RGB image and NIR image after alignment of a pot 

with high foliar activity. The NDVI map of this pot can be seen in Figure 5-50. It is clear 

from the map that the NDVI is relatively high when compared to underdeveloped plants or 

unhealthy plants with a mean value of 0.3679. 

 

 

Figure 5-48: RGB image of healthy plants 
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Figure 5-49: NIR image of healthy plants 

 

 

Figure 5-50: NDVI map of healthy plants 

It can be concluded that plant regions or pots that have NDVI values lower than 0.2 are 

considered underdeveloped with very little sign of plant growth. While NDVI values between 

0.2 to 0.3 show low foliar activity and values above 0.3 signify plants with high foliar 

activity. 
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5.5.4. Location and Mapping 

 

The robot is tested across a tomato plant line that consists of 18 pots, in which each pot is 

considered a segment for location mapping. The results of each segment NDVI calculation is 

illustrated in Table 5-6. The NDVI values are measured and plotted so the locations of each 

pot and its health can be observed. A map is created indicating the status of different pot 

locations, whether the plants are underdeveloped, unhealthy or healthy. Figure 5-51 

illustrates how each segment is categorized in one of 3 categories depending on its NDVI 

value. Plants with NDVI values lower than 0.2 are considered underdeveloped, while values 

between 0.2 and 0.3 are considered unhealthy. Healthy plants have NDVI values above 0.3. 

 

Table 5-6: NDVI results for tomato plant line 

Location segment Mean NDVI Health Classification 

1 0.1911 Underdeveloped 

2 0.1826 Underdeveloped 

3 0.1737 Underdeveloped 

4 0.1955 Underdeveloped 

5 0.2133 Unhealthy 

6 0.2756 Unhealthy 

7 0.2072 Unhealthy 

8 0.1747 Underdeveloped 

9 0.2919 Unhealthy 

10 0.2848 Unhealthy 

11 0.3316 Healthy 

12 0.2548 Unhealthy 

13 0.2977 Unhealthy 

14 0.3927 Healthy 

15 0.2641 Unhealthy 

16 0.3679 Healthy 

17 0.2533 Unhealthy 

18 0.2649 Unhealthy 
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Figure 5-51: Plant health and segment location 

 

5.5.5. Results Discussion 

 

The robotized system results are compared to human observation to validate the results. 

Overall, the health map gives a good indication on the plant health of different pots, but in 

some cases the NDVI can give contradicting results. Figure 5-52 shows plant pot 5 with very 

high foliar activity, however the NDVI map shown in Figure 5-53 indicates to lower foliar 

activity with a mean NDVI of 0.2133.  
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Figure 5-52: Plant pot 5 

 

 

Figure 5-53: NDVI map of plant pot 5 
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Also using k-means clustering to segment the background showed diverse results. In some 

cases, segments of the background are clustered with the foreground. Figure 5-54 shows plant 

pot 9 and Figure 5-55 displays the output of the background segmentation. Improper 

segmentation is achieved here as areas of the soil are segmented with the leaf area. This leads 

to inaccurate calculation of the NDVI value as seen in Figure 5-56. Therefore, the health 

grade is prone to misclassification.  

 

 

Figure 5-54: Plant pot 9 

 

 

Figure 5-55: Plant pot 9 after background removal 
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Figure 5-56: NDVI map of plant pot 9 

 

Overall this system achieved a health classification accuracy of 83%. From the 18 plant pots, 

3 were misclassified because of incorrect background segmentation and NDVI calculation. 

These results are comparable with [8] and [19], which include automated approaches for field 

based disease and health classification in preharvest applications. However, this system has 

the advantage of being fully automated and operating under uncontrolled environments which 

is not achieved in [8] and [19].  
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Chapter 6  

Conclusions and Future Work 

 

6.1. Conclusions 

 

The developed preharvest disease detection systems with Offline and Online techniques 

showed to be successful in achieving the stated objectives to a high extent. The Offline plant 

leaf disease severity system proved to be very effective in segmenting and locating infected 

areas of leaf samples. Using a fuzzy logic classification technique to categorize disease 

severity proved to be very efficient and more reliable than relying on Table 2-1. The system 

was tested using plant leaf images of varying resolutions taken from a real site and achieved 

high background segmentation accuracies and disease classification. Because of the use of k-

means clustering and triangle thresholding, background segmentation results were very 

robust against light variances. Therefore, this system can be used to test plant samples in 

uncontrolled lighting conditions and not only in laboratories. Leaf disease severity 

classification using Fuzzy Logic was very promising with a disease grade classification 

accuracy of 98%. Early identification of leaf disease severity can aid farmers into taking 

prompt actions to avoid disease spreading. Also, the system can be used to help monitor the 

changes in leaf severity over time, to ensure healthy growth. Overall the system devised is 

very user friendly and can successfully detect and measure disease severity of leaf plants, 

while saving time and effort. The system was integrated into a friendly GUI to help users 

such as pathologists to measure disease severity level in leaves easily. 

 

The testing and results of the implemented robotized online system showed to be effective in 

providing vital health information for plants in real time under field conditions with an 

accuracy of 83%. Plants of varying health can be located and distinguished from one another 

according to health grade. Plants that have slow to underdeveloped growth have significantly 

lower NDVI values compared to unhealthy and healthy plants. The overall system has the 

capabilities of moving across a plant field and effective in categorizing plant health according 

to NDVI values. A map of plant locations and health is successfully implemented to help 

farmers distinguish healthy regions from unhealthy regions for early and immediate action to 

help revive plants. Nutrient deficient plants can be detected and categorized at preliminary 

stages of plant growth for controlled nutrient application. Plant stress and nutrient 

deficiencies can be measured according to NDVI map, and can be used for appropriate 
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actions accordingly. The robotized system is a cost-effective solution to automated plant 

health monitoring. Selective pesticide spraying can also be achieved in this system as 

mapping of unhealthy plants can indicate to insect or viral infestations. Areas are 

distinguished from one another according to plant health so that farmers can focus on 

worrying areas, saving time and effort. 

 

6.2. Future Work 

 

As for future work, the following points can be considered: 

 

• The Offline system can be used to train machine learning algorithms, such as Neural 

Networks and Support Vector Machines. Which can be implemented to automatically 

identify the diseased area. 

• For the Online system, a more robust robot could be implemented to have the 

capabilities of maneuvering in uneven agriculture terrain such as sand and rock. 

• Multispectral and hyperspectral cameras could be integrated into the robot for higher 

sensitivity in the infrared range for higher accuracy in vegetative index calculations. 

• Use of a single hyperspectral camera to avoid alignment issues that may occur when 

using multiple cameras. 

• More robust background segmentation technique to enhance accuracy of foreground 

representation of plant to increase NDVI accuracy. 

• Integration of greenhouse nutrient management system for automatic water and 

nutrient irrigation. 

• The robot can include a robotic arm for automatic and selective pesticide spraying. 

• Robot integration with VOC profiling sensors for early indication on plant stress and 

possible diseases. 
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Appendices 

 

A. L*a*b Color Space Conversion 

 

Equations A.1 to A.4 are used to convert from sRGB color space to CIE 1931 and then to 

L*a*b [37]. To compute the formula, the sRGB component values are first set in the range of 

0 to 1. Which can be completed by dividing the R, G, and B values by 255.  

 

 
 𝐶𝑙𝑖𝑛𝑒𝑎𝑟 =

{
 

 
𝐶𝑠𝑟𝑔𝑏

12.92
          ,         𝐶𝑠𝑟𝑔𝑏  ≤ 0.04045

(
𝐶𝑠𝑟𝑔𝑏 + 𝑎

1 + 𝑎
)
2.4

, 𝐶𝑠𝑟𝑔𝑏  > 0.04045

 

Where a = 0.055 and where C is R, G, B 

(A.1) 

 

 [
𝑋
𝑌 
𝑍
] = [

0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

] [

𝑅𝑙𝑖𝑛𝑒𝑎𝑟
𝐺𝑙𝑖𝑛𝑒𝑎𝑟
𝐵𝑙𝑖𝑛𝑒𝑎𝑟

] (A.2) 

 

 𝑎 = 500 (𝑓 (
𝑋

𝑋𝑛
) − 𝑓 (

𝑌

𝑌𝑛
)) (A.3) 

 

 𝑏 = 200 (𝑓 (
𝑌

𝑌𝑛
) − 𝑓 (

𝑍

𝑍𝑛
)) (A.4) 

 

Where,  

Xn, Yn and Zn are the CIE XYZ values of the reference white point 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/CIE_XYZ
https://en.wikipedia.org/wiki/White_point


 

   

B. Image Morphology 

 

Morphology is a broad set of image processing operations that process images based on 

shapes. Morphological operations rely on the relative ordering of pixel values, not on their 

numerical values, and therefore are especially suited to the processing of binary images. 

Morphological techniques probe an image with a small shape or template called a structuring 

element shown in Figure B.1. The structuring element is considered a small binary image, 

that is positioned at all possible locations in the image and it is compared with the 

corresponding neighborhood of pixels. The value of each pixel in the output image is based 

on a comparison of the corresponding pixel in the input image with its neighbors. By 

choosing the size and shape of the neighborhood, you can construct a morphological 

operation that is sensitive to specific shapes in the input image [40]. 

 

 

Figure B.1: Examples of simple structuring elements [40] 

When a structuring element is placed in a binary image it is said to fit the image if for each 

pixel set to 1, the corresponding image pixel is also set to 1. Similarly, a structuring element 

is said to hit an image if, at least for one of its pixels set to 1 the corresponding image pixel is 

also 1. This can be seen in Figure B.2 where for structuring element s1 it does not fit section 

B in the image, but it does hit. 

 



 

   

 

Figure B.2: Fitting and hitting of a binary image with structuring elements s1 and s2. [40] 

Figure B.3 illustrates a structuring element of 2x2 pixels. In Figure B.4, this structuring 

element is passed over a binary image and anything smaller than the structuring element is 

considered undesirable such as section B and C. 

 

 

Figure B.3: Structuring element of size 2x2 [40] 

 

 
Figure B.4: Passing structuring element over a binary image [40] 

 

The disk-shaped structuring element with a specified radius shown in Figure B.5 is passed 

over the image and elements that lie within the element will be filled. Figure B.6 illustrates 

how the binary image is affected by applying the circular structuring element. 

 



 

   

Figure B.5: Circular structuring element [41] 

 

 

Figure B.6: Binary image before (left) and after (right) applying circular structuring element [40] 
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