285 research outputs found

    Classification and Generation of Disturbance Vectors for Collision Attacks against SHA-1

    Get PDF
    In this paper, we present a deterministic algorithm to produce disturbance vectors for collision attacks against SHA-1. We show that all published disturbance vectors can be classified into two types of vectors, type-I and type-II. We define a cost function, close to those described in \cite{Mendel06}, to evaluate the complexity of a collision attack for a given disturbance vector. Using the classification and the cost function we made an exhaustive search which allowed us to retrieve all known vectors. We also found new vectors which have lower cost. This may lead to the best collision attack against SHA-1, with a theoretical attack complexity of 2512^{51} hash function calls

    New collision attacks on SHA-1 based on optimal joint local-collision analysis

    Get PDF
    The main contributions of this paper are two-fold. Firstly, we present a novel direction in the cryptanalysis of the cryptographic hash function {\SHA}. Our work builds on previous cryptanalytic efforts on {\SHA} based on combinations of local collisions. Due to dependencies, previous approaches used heuristic corrections when combining the success probabilities and message conditions of the individual local collisions. Although this leads to success probabilities that are seemingly sufficient for feasible collision attacks, this approach most often does not lead to the maximum success probability possible as desired. We introduce novel techniques that enable us to determine the theoretical maximum success probability for a given set of (dependent) local collisions, as well as the smallest set of message conditions that attains this probability. We apply our new techniques and present an implemented open-source near-collision attack on {\SHA} with a complexity equivalent to 257.52^{57.5} {\SHA} compressions. Secondly, we present an identical-prefix collision attack and a chosen-prefix collision attack on {\SHA} with complexities equivalent to approximately 2612^{61} and 277.12^{77.1} {\SHA} compressions, respectively

    Practical free-start collision attacks on 76-step SHA-1

    Get PDF
    In this paper we analyze the security of the compression function of SHA-1 against collision attacks, or equivalently free-start collisions on the hash function. While a lot of work has been dedicated to the analysis of SHA-1 in the past decade, this is the first time that free-start collisions have been considered for this function. We exploit the additional freedom provided by this model by using a new start-from-the-middle approach in combination with improvements on the cryptanalysis tools that have been developed for SHA-1 in the recent years. This results in particular in better differential paths than the ones used for hash function collisions so far. Overall, our attack requires about 2502^{50} evaluations of the compression function in order to compute a one-block free-start collision for a 76-step reduced version, which is so far the highest number of steps reached for a collision on the SHA-1 compression function. We have developed an efficient GPU framework for the highly branching code typical of a cryptanalytic collision attack and used it in an optimized implementation of our attack on recent GTX 970 GPUs. We report that a single cheap US\$ 350 GTX 970 is sufficient to find the collision in less than 5 days. This showcases how recent mainstream GPUs seem to be a good platform for expensive and even highly-branching cryptanalysis computations. Finally, our work should be taken as a reminder that cryptanalysis on SHA-1 continues to improve. This is yet another proof that the industry should quickly move away from using this function

    Counter-cryptanalysis

    Get PDF
    We introduce \emph{counter-cryptanalysis} as a new paradigm for strengthening weak cryptographic primitives against cryptanalytic attacks. Redesigning a weak primitive to more strongly resist cryptanalytic techniques will unavoidably break backwards compatibility. Instead, counter-cryptanalysis exploits unavoidable anomalies introduced by cryptanalytic attacks to detect and block cryptanalytic attacks while maintaining full backwards compatibility. Counter-cryptanalysis in principle enables the continued secure use of weak cryptographic primitives. Furthermore, we present the first example of counter-cryptanalysis, namely the efficient detection whether any given single message has been constructed -- together with an \emph{unknown} sibling message -- using a cryptanalytic collision attack on MD5 or SHA-1. An immediate application is in digital signature verification software to ensure that an (older) MD5 or SHA-1 based digital signature is not a forgery using a collision attack. This would certainly be desirable for two reasons. Firstly, it might still be possible to generate malicious forgeries using collision attacks as too many parties still sign using MD5 (or SHA-1) based signature schemes. Secondly, any such forgeries are currently accepted nearly everywhere due to the ubiquitous support of MD5 and SHA-1 based signature schemes. Despite the academic push to use more secure hash functions over the last decade, these two real-world arguments (arguably) will remain valid for many more years. Only due to counter-cryptanalysis were we able to discover that Flame, a highly advanced malware for cyberwarfare uncovered in May 2012, employed an as of yet unknown variant of our chosen-prefix collision attack on MD5 \cite{DBLP:conf/eurocrypt/StevensLW07,DBLP:conf/crypto/StevensSALMOW09}. In this paper we disect the revealed cryptanalytic details and work towards the reconstruction of the algorithms underlying Flame\u27s new variant attack. Finally, we make a preliminary comparision between Flame\u27s attack and our chosen-prefix collision attack

    Systematic Risk Characterisation of Hardware Threats to Automotive System

    Get PDF
    The increasing dependence of modern automotive systems on electronics and software poses cybersecurity risks previously not factored into design and engineering of such systems. Attacks on hardware components, communication modules and embedded software – many of which are purposefully designed for automotive control and communications – are the key focus of this paper. We adopt a novel approach to characterise such attacks using Gajski-Kuhn Y-charts to represent attack manipulation across behavioural, structural and physical domains. Our selection of attacks is evidence-driven demonstrating threats that have been demonstrated to be feasible in the real-world. We then risk assess impact of such threats using the recently adopted ISO/SAE 21434 standard for automotive cybersecurity risk assessment, including mitigations for potential adoption. Our work serves to provide unique insights into the complex dynamic of hardware vulnerabilities and how the industry may address system-level security and protection of modern automotive platforms

    A Robust and Effective Smart-Card-Based Remote User Authentication Mechanism Using Hash Function

    Get PDF
    In a remote user authentication scheme, a remote server verifies whether a login user is genuine and trustworthy, and also for mutual authentication purpose a login user validates whether the remote server is genuine and trustworthy. Several remote user authentication schemes using the password, the biometrics, and the smart card have been proposed in the literature. However, most schemes proposed in the literature are either computationally expensive or insecure against several known attacks. In this paper, we aim to propose a new robust and effective password-based remote user authentication scheme using smart card. Our scheme is efficient, because our scheme uses only efficient one-way hash function and bitwise XOR operations. Through the rigorous informal and formal security analysis, we show that our scheme is secure against possible known attacks. We perform the simulation for the formal security analysis using the widely accepted AVISPA (Automated Validation Internet Security Protocols and Applications) tool to ensure that our scheme is secure against passive and active attacks. Furthermore, our scheme supports efficiently the password change phase always locally without contacting the remote server and correctly. In addition, our scheme performs significantly better than other existing schemes in terms of communication, computational overheads, security, and features provided by our scheme

    A Novel Real-Time, Lightweight Chaotic-Encryption Scheme for Next-Generation Audio-Visual Hearing Aids

    Get PDF
    Next-generation audio-visual (AV) hearing aids stand as a major enabler to realize more intelligible audio. However, high data rate, low latency, low computational complexity, and privacy are some of the major bottlenecks to the successful deployment of such advanced hearing aids. To address these challenges, we propose an integration of 5G Cloud-Radio Access Network (C-RAN), Internet of Things (IoT), and strong privacy algorithms to fully benefit from the possibilities these technologies have to offer. Existing audio-only hearing aids are known to perform poorly in noisy situations where overwhelming noise is present. Current devices make the signal more audible but remain deficient in restoring intelligibility. Thus, there is a need for hearing aids that can selectively amplify the attended talker or filter out acoustic clutter. The proposed 5G IoT-enabled AV hearing-aid framework transmits the encrypted compressed AV information and receives encrypted enhanced reconstructed speech in real time to address cybersecurity attacks such as location privacy and eavesdropping. For security implementation, a real-time lightweight AV encryption is proposed, based on a piece-wise linear chaotic map (PWLSM), Chebyshev map, and a secure hash and S-Box algorithm. For speech enhancement, the received secure AV (including lip-reading) information in the cloud is used to filter noisy audio using both deep learning and analytical acoustic modelling. To offload the computational complexity and real-time optimization issues, the framework runs deep learning and big data optimization processes in the background, on the cloud. The effectiveness and security of the proposed 5G-IoT-enabled AV hearing-aid framework are extensively evaluated using widely known security metrics. Our newly reported, deep learning-driven lip-reading approach for speech enhancement is evaluated under four different dynamic real-world scenarios (cafe, street, public transport, pedestrian area) using benchmark Grid and ChiME3 corpora. Comparative critical analysis in terms of both speech enhancement and AV encryption demonstrates the potential of the envisioned technology to deliver high-quality speech reconstruction and secure mobile AV hearing aid communication. We believe our proposed 5G IoT enabled AV hearing aid framework is an effective and feasible solution and represents a step change in the development of next-generation multimodal digital hearing aids. The ongoing and future work includes more extensive evaluation and comparison with benchmark lightweight encryption algorithms and hardware prototype implementation
    • …
    corecore