2,643 research outputs found

    Recognizing specific errors in human physical exercise performance with Microsoft Kinect

    Get PDF
    The automatic assessment of human physical activity performance is useful for a number of beneficial systems including in-home rehabilitation monitoring systems and Reactive Virtual Trainers (RVTs). RVTs have the potential to replace expensive personal trainers to promote healthy activity and help teach correct form to prevent injury. Additionally, unobtrusive sensor technologies for human tracking, especially those that incorporate depth sensing such as Microsoft Kinect, have become effective, affordable, and commonplace. The work of this thesis contributes towards the development of RVT systems by using RGB-D and tracked skeletal data collected with Microsoft Kinect to assess human performance of physical exercises. I collected data from eight volunteers performing three exercises: jumping jacks, arm circles, and arm curls. I labeled each exercise repetition as either correct or one or more of a select number of predefined erroneous forms. I trained a statistical model using the labeled samples and developed a system that recognizes specific structural and temporal errors in a test set of unlabeled samples. I obtained classification accuracies for multiple implementations and assess the effectiveness of the use of various features of the skeletal data as well as various prediction models

    A virtual hand assessment system for efficient outcome measures of hand rehabilitation

    Get PDF
    Previously held under moratorium from 1st December 2016 until 1st December 2021.Hand rehabilitation is an extremely complex and critical process in the medical rehabilitation field. This is mainly due to the high articulation of the hand functionality. Recent research has focused on employing new technologies, such as robotics and system control, in order to improve the precision and efficiency of the standard clinical methods used in hand rehabilitation. However, the designs of these devices were either oriented toward a particular hand injury or heavily dependent on subjective assessment techniques to evaluate the progress. These limitations reduce the efficiency of the hand rehabilitation devices by providing less effective results for restoring the lost functionalities of the dysfunctional hands. In this project, a novel technological solution and efficient hand assessment system is produced that can objectively measure the restoration outcome and, dynamically, evaluate its performance. The proposed system uses a data glove sensorial device to measure the multiple ranges of motion for the hand joints, and a Virtual Reality system to return an illustrative and safe visual assistance environment that can self-adjust with the subject’s performance. The system application implements an original finger performance measurement method for analysing the various hand functionalities. This is achieved by extracting the multiple features of the hand digits’ motions; such as speed, consistency of finger movements and stability during the hold positions. Furthermore, an advanced data glove calibration method was developed and implemented in order to accurately manipulate the virtual hand model and calculate the hand kinematic movements in compliance with the biomechanical structure of the hand. The experimental studies were performed on a controlled group of 10 healthy subjects (25 to 42 years age). The results showed intra-subject reliability between the trials (average of crosscorrelation ρ = 0.7), inter-subject repeatability across the subject’s performance (p > 0.01 for the session with real objects and with few departures in some of the virtual reality sessions). In addition, the finger performance values were found to be very efficient in detecting the multiple elements of the fingers’ performance including the load effect on the forearm. Moreover, the electromyography measurements, in the virtual reality sessions, showed high sensitivity in detecting the tremor effect (the mean power frequency difference on the right Vextensor digitorum muscle is 176 Hz). Also, the finger performance values for the virtual reality sessions have the same average distance as the real life sessions (RSQ =0.07). The system, besides offering an efficient and quantitative evaluation of hand performance, it was proven compatible with different hand rehabilitation techniques where it can outline the primarily affected parts in the hand dysfunction. It also can be easily adjusted to comply with the subject’s specifications and clinical hand assessment procedures to autonomously detect the classification task events and analyse them with high reliability. The developed system is also adaptable with different disciplines’ involvements, other than the hand rehabilitation, such as ergonomic studies, hand robot control, brain-computer interface and various fields involving hand control.Hand rehabilitation is an extremely complex and critical process in the medical rehabilitation field. This is mainly due to the high articulation of the hand functionality. Recent research has focused on employing new technologies, such as robotics and system control, in order to improve the precision and efficiency of the standard clinical methods used in hand rehabilitation. However, the designs of these devices were either oriented toward a particular hand injury or heavily dependent on subjective assessment techniques to evaluate the progress. These limitations reduce the efficiency of the hand rehabilitation devices by providing less effective results for restoring the lost functionalities of the dysfunctional hands. In this project, a novel technological solution and efficient hand assessment system is produced that can objectively measure the restoration outcome and, dynamically, evaluate its performance. The proposed system uses a data glove sensorial device to measure the multiple ranges of motion for the hand joints, and a Virtual Reality system to return an illustrative and safe visual assistance environment that can self-adjust with the subject’s performance. The system application implements an original finger performance measurement method for analysing the various hand functionalities. This is achieved by extracting the multiple features of the hand digits’ motions; such as speed, consistency of finger movements and stability during the hold positions. Furthermore, an advanced data glove calibration method was developed and implemented in order to accurately manipulate the virtual hand model and calculate the hand kinematic movements in compliance with the biomechanical structure of the hand. The experimental studies were performed on a controlled group of 10 healthy subjects (25 to 42 years age). The results showed intra-subject reliability between the trials (average of crosscorrelation ρ = 0.7), inter-subject repeatability across the subject’s performance (p > 0.01 for the session with real objects and with few departures in some of the virtual reality sessions). In addition, the finger performance values were found to be very efficient in detecting the multiple elements of the fingers’ performance including the load effect on the forearm. Moreover, the electromyography measurements, in the virtual reality sessions, showed high sensitivity in detecting the tremor effect (the mean power frequency difference on the right Vextensor digitorum muscle is 176 Hz). Also, the finger performance values for the virtual reality sessions have the same average distance as the real life sessions (RSQ =0.07). The system, besides offering an efficient and quantitative evaluation of hand performance, it was proven compatible with different hand rehabilitation techniques where it can outline the primarily affected parts in the hand dysfunction. It also can be easily adjusted to comply with the subject’s specifications and clinical hand assessment procedures to autonomously detect the classification task events and analyse them with high reliability. The developed system is also adaptable with different disciplines’ involvements, other than the hand rehabilitation, such as ergonomic studies, hand robot control, brain-computer interface and various fields involving hand control

    Thought-controlled games with brain-computer interfaces

    Get PDF
    Nowadays, EEG based BCI systems are starting to gain ground in games for health research. With reduced costs and promising an innovative and exciting new interaction paradigm, attracted developers and researchers to use them on video games for serious applications. However, with researchers focusing mostly on the signal processing part, the interaction aspect of the BCIs has been neglected. A gap between classification performance and online control quality for BCI based systems has been created by this research disparity, resulting in suboptimal interactions that lead to user fatigue and loss of motivation over time. Motor-Imagery (MI) based BCIs interaction paradigms can provide an alternative way to overcome motor-related disabilities, and is being deployed in the health environment to promote the functional and structural plasticity of the brain. A BCI system in a neurorehabilitation environment, should not only have a high classification performance, but should also provoke a high level of engagement and sense of control to the user, for it to be advantageous. It should also maximize the level of control on user’s actions, while not requiring them to be subject to long training periods on each specific BCI system. This thesis has two main contributions, the Adaptive Performance Engine, a system we developed that can provide up to 20% improvement to user specific performance, and NeuRow, an immersive Virtual Reality environment for motor neurorehabilitation that consists of a closed neurofeedback interaction loop based on MI and multimodal feedback while using a state-of-the-art Head Mounted Display.Hoje em dia, os sistemas BCI baseados em EEG estão a começar a ganhar terreno em jogos relacionados com a saúde. Com custos reduzidos e prometendo um novo e inovador paradigma de interação, atraiu programadores e investigadores para usá-los em vídeo jogos para aplicações sérias. No entanto, com os investigadores focados principalmente na parte do processamento de sinal, o aspeto de interação dos BCI foi negligenciado. Um fosso entre o desempenho da classificação e a qualidade do controle on-line para sistemas baseados em BCI foi criado por esta disparidade de pesquisa, resultando em interações subótimas que levam à fadiga do usuário e à perda de motivação ao longo do tempo. Os paradigmas de interação BCI baseados em imagética motora (IM) podem fornecer uma maneira alternativa de superar incapacidades motoras, e estão sendo implementados no sector da saúde para promover plasticidade cerebral funcional e estrutural. Um sistema BCI usado num ambiente de neuro-reabilitação, para que seja vantajoso, não só deve ter um alto desempenho de classificação, mas também deve promover um elevado nível de envolvimento e sensação de controlo ao utilizador. Também deve maximizar o nível de controlo nas ações do utilizador, sem exigir que sejam submetidos a longos períodos de treino em cada sistema BCI específico. Esta tese tem duas contribuições principais, o Adaptive Performance Engine, um sistema que desenvolvemos e que pode fornecer até 20% de melhoria para o desempenho específico do usuário, e NeuRow, um ambiente imersivo de Realidade Virtual para neuro-reabilitação motora, que consiste num circuito fechado de interação de neuro-feedback baseado em IM e feedback multimodal e usando um Head Mounted Display de última geração

    A bibliography experiment on research within the scope of industry 4.0 application areas in sports: Sporda endüstri 4.0 uygulama alanları kapsamında yapılan araştırmalar üzerine bir bibliyografya denemesi

    Get PDF
    Developed countries develop their production sites within the scope of industry 4.0 technology components and experience constant change and transformation to establish economic superiority. This situation allows them to produce more in various fields and thus to rise to a more advantageous position economically. Industry 4.0 technology affects areas within the scope of the sports industry such as sports tourism, athlete performance, athlete health, sports publishing, sports textile products, sports education and training, sports management and human resources, and creates an international competition environment in terms of production and performance. In this study, it is aimed to examine the researches about the usage areas of industry 4.0 in sports. From this point on, researches in the context of the subject have been presented with bibliographic method. In the conclusion section, the weaknesses and possibilities of youth sociology were discussed, and efforts were made to present a projection on what to do about the field. In this respect, a youth sociology evaluation has been tried to be made on the prominent topics, forgotten aspects and themes left incomplete in youth sociology studies. ​Extended English summary is in the end of Full Text PDF (TURKISH) file.   Özet Gelişmiş ülkeler endüstri 4.0 teknolojisi bileşenleri kapsamında üretim sahalarını geliştirmekte ve ekonomik üstünlük kurmak amacıyla sürekli değişim ve dönüşüm yaşamaktadır. Bu durum onların çeşitli alanlarda daha fazla üretmelerine dolayısıyla ekonomik yönden daha avantajlı konuma yükselmelerine olanak sağlamaktadır. Endüstri 4.0 teknolojisi spor turizmi, sporcu performansı, sporcu sağlığı, spor yayıncılığı, spor tekstil ürünleri, spor eğitimi ve öğretimi, spor yönetimi ve insan kaynakları gibi spor endüstrisi kapsamındaki alanları etkilemekte üretim ve performans yönünden ülkeler arası bir rekabet ortamı oluşturmaktadır. Bu çalışmada endüstri 4.0’ın sporda kullanım alanları ile ilgili araştırmaların incelenmesi hedeflenmektedir. Bu noktadan hareketle konu bağlamındaki araştırmalar bibliyografik metodla ortaya konmuştur. Sonuç bölümünde ise sporda endüstri 4.0 kullanım alanları tartışılmış, alana olan katkıları ve olumuz etkilerinin değerlendirilmesi yapılmıştır. &nbsp

    Mobile Wound Assessment and 3D Modeling from a Single Image

    Get PDF
    The prevalence of camera-enabled mobile phones have made mobile wound assessment a viable treatment option for millions of previously difficult to reach patients. We have designed a complete mobile wound assessment platform to ameliorate the many challenges related to chronic wound care. Chronic wounds and infections are the most severe, costly and fatal types of wounds, placing them at the center of mobile wound assessment. Wound physicians assess thousands of single-view wound images from all over the world, and it may be difficult to determine the location of the wound on the body, for example, if the wound is taken at close range. In our solution, end-users capture an image of the wound by taking a picture with their mobile camera. The wound image is segmented and classified using modern convolution neural networks, and is stored securely in the cloud for remote tracking. We use an interactive semi-automated approach to allow users to specify the location of the wound on the body. To accomplish this we have created, to the best our knowledge, the first 3D human surface anatomy labeling system, based off the current NYU and Anatomy Mapper labeling systems. To interactively view wounds in 3D, we have presented an efficient projective texture mapping algorithm for texturing wounds onto a 3D human anatomy model. In so doing, we have demonstrated an approach to 3D wound reconstruction that works even for a single wound image

    A Survey of Applications and Human Motion Recognition with Microsoft Kinect

    Get PDF
    Microsoft Kinect, a low-cost motion sensing device, enables users to interact with computers or game consoles naturally through gestures and spoken commands without any other peripheral equipment. As such, it has commanded intense interests in research and development on the Kinect technology. In this paper, we present, a comprehensive survey on Kinect applications, and the latest research and development on motion recognition using data captured by the Kinect sensor. On the applications front, we review the applications of the Kinect technology in a variety of areas, including healthcare, education and performing arts, robotics, sign language recognition, retail services, workplace safety training, as well as 3D reconstructions. On the technology front, we provide an overview of the main features of both versions of the Kinect sensor together with the depth sensing technologies used, and review literatures on human motion recognition techniques used in Kinect applications. We provide a classification of motion recognition techniques to highlight the different approaches used in human motion recognition. Furthermore, we compile a list of publicly available Kinect datasets. These datasets are valuable resources for researchers to investigate better methods for human motion recognition and lower-level computer vision tasks such as segmentation, object detection and human pose estimation
    corecore