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ABSTRACT 

 

Recognizing specific errors in human physical exercise  

performance with Microsoft Kinect 

Ryan Staab 

 

The automatic assessment of human physical activity performance is useful for a 

number of beneficial systems including in-home rehabilitation monitoring systems and 

Reactive Virtual Trainers (RVTs). RVTs have the potential to replace expensive personal 

trainers to promote healthy activity and help teach correct form to prevent injury. 

Additionally, unobtrusive sensor technologies for human tracking, especially those that 

incorporate depth sensing such as Microsoft Kinect, have become effective, affordable, 

and commonplace. 

The work of this thesis contributes towards the development of RVT systems by 

using RGB-D and tracked skeletal data collected with Microsoft Kinect to assess human 

performance of physical exercises. I collected data from eight volunteers performing 

three exercises: jumping jacks, arm circles, and arm curls. I labeled each exercise 

repetition as either correct or one or more of a select number of predefined erroneous 

forms. I trained a statistical model using the labeled samples and developed a system 

that recognizes specific structural and temporal errors in a test set of unlabeled samples. 

I obtained classification accuracies for multiple implementations and assess the 

effectiveness of the use of various features of the skeletal data as well as various 

prediction models. 
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I. INTRODUCTION 

 

Tracking and recognizing the activity of human agents through video is an 

important and challenging task in the field of computer vision. Human activity analysis 

can be defined as the following: given a data stream of a person performing physical 

activity, (i) detect the human agent in the video, (ii) track the motion of the human agent, 

(iii) classify what kind of activity the person is performing, and (iv) evaluate and assess 

the activity. The data stream is typically video captured from a camera device. 

Much work has been done in vision-based human activity analysis. In the last 5-

10 years, researchers have used many sensor technologies to detect and track humans 

and the activities they perform. Of particular interest are depth-enabled cameras such as 

the Microsoft Kinect. The additional depth dimension gathered from Kinect greatly 

improves the capabilities of machine learning and computer vision algorithms for human 

activity tracking, including the ability to generate real-time skeleton models of humans in 

various body poses [Wei, 2012], as well as achieving successful tracking of fingers and 

hand articulations [Raheja, 2011] [Oikonomidis, 2011]. 

Human activity analysis is an important component of many applications. 

Reactive Virtual Trainers for instance, need to analyze the performance of a trainee so 

the system can provide adequate feedback. Immersive virtual reality systems also need 

to be able to track the person who is engaged with the system, in order to recognize 

their actions for interaction within the virtual world. Security and surveillance systems 

can utilize human activity tracking to detect malicious or fraudulent behavior. There are 

many more examples of applications ranging from logistics support to home-based 

rehabilitation monitoring for traumatic brain injuries [Pollack, 2003]. Intelligent, reactive, 

and natural systems of interaction such as these are becoming increasingly viable and 

prevalent as the technology improves. 
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The motivation for this work comes from the context of a virtual reality health-

promotion project directed by Zhang [Zhang, 2013]. Zhang’s proposed system 

incorporates many functional aspects: an immersive virtual environment using VR 

technology such as Oculus Rift, instructional guidance for the performance of exercises, 

conveyance of knowledge of general exercise and nutrition guidelines, social 

networking, aid for program adherence, and more. This thesis focuses on a related 

subset of that project. In particular, the focus of this work is on human activity analysis 

for exercises for a Reactive Virtual Trainer system. 

A Reactive Virtual Trainer (RVT) is an intelligent virtual agent that supports 

guided exercise or physical therapy. RVTs are typically used by a single person at a 

time, in a one-on-one environment, with the user having some degree of freedom over 

the course of interaction. The RVT might show the user the proper form for exercises 

and stretches via a graphical avatar character, motivate, monitor, and critique the user’s 

performance of exercises, or make sure the user adheres to his or her planned exercise 

routine [Ruttkay, 2006].  

There are many varieties of RVTs. A common goal among RVT implementations 

is achieving seamless human-computer interaction. To accomplish this, RVTs may 

employ natural language recognition, a graphical representation of the virtual trainer, 

gesture-navigated menus, and audio, visual, and textual feedback. The intended users 

of RVTs vary from healthy to handicapped or rehabilitating individuals. 

RVT technology has the potential to replace the need for physical therapists or 

personal trainers by providing more cost-effective, more comprehensive, and more 

accessible feedback to users. Through the aforementioned benefits, RVTs can help 

promote exercise for its users. RVTs also offer flexibility for users as they can use the 

system on their own time rather than schedule an appointment with a trainer, as well as 

repeat exercises or instructions as many times as needed. Ruttkay et. al. explored the 



3 

functional requirements of a framework that can be used to author RVTs, emphasizing 

the need for adjusting tempo, pointing out mistakes, rescheduling exercises, as well as 

the ability to compose exercises from basic motions [Ruttkay, 2006]. This thesis is 

significant because it works towards health promotion through higher accuracy and more 

capable RVT systems.  

Reports show that in the United States alone there are over 78 million adults and 

12.5 million children and adolescents who are obese, which is more than double the rate 

(from 15% to 35.7%) among adults and triple the rate (from 5% to 17%) among children 

and adolescents from 1980 to 2010 [Ogden, 2012]. This trend is occurring globally as 

well. According to the World Health Statistics 2012 report, obesity has doubled between 

1980 and 2008 in nearly every region of the world [WHS, 2012]. However, it is well 

established that leading a healthy lifestyle involving a balanced diet and exercise can 

greatly lower the risk of becoming obese [OSG, 2010] [Sallis, 1992]. 

Exercise in particular has been shown to bring a wide range of health benefits. 

Exercise can help prevent weight gain [Hunter, 2010], boost mood and fight depression 

[Cooney, 2013], reduce the likelihood of certain cancers, e.g. colon cancer and breast 

cancer [McCullough, 2012], reduce the likelihood of dementia [Ahlskog, 2011], boost 

memory [Leavitt, 2013], improve heart function [Ferreira, 2014], reduce the risk for type-

2 diabetes [Solomon, 2013], increase longevity [Koch, 2011], and promote other long-

term health benefits [Wallace, 2014]. 

The higher capability depth sensing and skeleton tracking of the Kinect is a 

critical contribution that enables the development of RVTs, performing greater than 

previous technologies such as Sony EyeToy, which lacked a depth sensor. In addition, 

the Kinect has been shown to be a competitive motion tracking device [Chang, 2012] 

[Bonnechère, 2014]. The Kinect for Windows features synchronized 640 x 480 pixels 

RGB and 3-D infrared depth sensors, along with a four-microphone array and motorized 
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tilt. The image sensors capture video at 30 frames per second. Figure 1 displays the 

specifications for the interaction space of the Kinect. 

 

 

 

Figure 1. Kinect interaction space 

 

The Kinect package also includes built-in skeleton tracking. The PrimeSense 

depth sensor hardware infers depth by emitting and analyzing a speckle pattern of 

infrared laser light through a technique known as structured light. Two approaches, 
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depth from focus and depth from stereo, determine the depth image of a scene. Depth 

from focus relies on the property that farther objects appear more blurry. The Kinect 

uses an astigmatic lens with varying focal lengths in x and y dimensions to improve the 

accuracy of this method. Depth from stereo relies on parallax, the property that when a 

scene is observed from two different angles, objects that are closer to the camera 

appear shifted laterally compared with objects that are farther away. The software is 

proprietary, however it is speculated that body parts are inferred using a randomized 

decision forest, learned from over 1 million training examples [Maccormick, 2014]. Other 

researchers have applied their own skeletal tracking algorithms, such as Kar’s use of an 

extended distance transform skeletonisation algorithm using HAAR-Cascade detectors 

[Kar, 2010], however, the Kinect built-in skeleton tracking is used in this research. 

Since the release of the original Kinect for Xbox in 2010, many researchers and 

independent parties hacked it to take advantage of the new Primesense RGB-D sensor 

hardware to achieve higher performance, higher accuracy gesture recognition. In 2012, 

Microsoft released the official Kinect for Windows along with its Software Development 

Kit, making development and research with Kinect manageable and accessible. The 

Kinect does, however, have the following limitations. A user must be in front of Kinect, 

facing towards the Kinect sensor. This makes it difficult to do error recognition on a 

variety of exercises such as sitting or lying exercises in which the user may be out of the 

viewing range of the Kinect. Additionally, there is a synchronization period in which the 

Kinect initializes the skeleton tracking.  

The goal of this research was to achieve a high rate of classification accuracy in 

identifying specific human activity performance errors using Microsoft’s Kinect for 

Windows v1.8. This work aims to establish a proof-of-concept for recognizing specific 

errors in form and tempo for predefined exercises and stretches. This work does not 

attempt to distinguish one exercise from another, rather, error classes are recognized 
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within a set of known exercises. Three specific exercises have been chosen for this 

work: arm curls, jumping jacks, and arm circles. These exercises exhibit a variety of 

motion characteristics, are well known, and are not arduous or associated with high risk 

of injury. The intended users targeted in this research were healthy individuals in the age 

range of 18 to 30. 

My implementation uses the Kinect to detect and track the human performer, but 

does not need to determine which exercise or stretch is being performed. The user will 

select the exercise to be performed from a menu prior to execution. The core of my work 

lies in evaluation of the activity. I use a statistical machine learning methods to identify 

specific form and tempo errors. The work of this thesis contributes towards the field of 

computer vision and to the development of RVTs and thereby to the promotion of 

physical activity and promotion of health. 

The rest of this paper is broken down into the following sections. Section II: 

Related Work discusses the current state of the art in human activity analysis and 

performance error recognition. Section III: Approach discusses the algorithms and 

machine learning models I have chosen to solve the problem of performance error 

recognition, and their considerations. Section IV: Methodology discusses in detail the 

development environment, the collection, preprocessing, and structure of the data, and 

details of implementation. Section V: Evaluation and Results discusses how I evaluated 

the performance and accuracy of my implementation and the results obtained. Section 

VI: Conclusion summarizes the work and results. Section VII: Future Work discusses 

further potential improvements. 
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II. RELATED WORK 

 

A number of RVT systems have been developed. In the academic realm, much 

research has focused on using the Microsoft Kinect for rehabilitation and improving 

physical and mental function of the elderly. Kayama developed a Kinect-based exercise 

game for assessing dual-task function of the elderly [Kayama, 2014]. Bierla assessed 

the impact of Kinect based training on balance measures in older adults [Bierla, 2012]. 

Shin developed a game-based virtual system for rehabilitation of patients with stroke 

[Shin, 2014]. Rantz developed a continuous, unobtrusive, and environmentally mounted 

in-home fall risk assessment and detection system using the Kinect [Rantz, 2013]. There 

are also a number of Kinect-based virtual trainer games for the XBox platforms. 

Examples include UFC Personal Trainer, Nike+ Kinect Training, and XBox Fitness which 

features virtual avatars of athletes to guide the user. The work of Ruttkay and van 

Welbergen is similar to this thesis, except their focus is on the entire RVT system, 

including a strategy to provide feedback to the user, rather than on reaching high 

accuracy recognition of errors [Ruttkay, 2006]. As an alternative approach to the Kinect, 

Reyes proposes a tool for body posture analysis and skeleton joint estimation from a 

variety of sensor inputs, and uses this to perform gesture recognition on the correctness 

of physical exercises [Reyes, 2013]. 

Many human activity recognition tasks are similar to recognition of exercise 

performance errors. However, many of these tasks focus on recognition of more 

complex, more contextual human behavior that happens on longer timescales than does 

exercise error recognition. Cooking, entering a building, or walking a dog are examples 

of human activities that such systems seek to recognize. A common approach to that 

task uses Hidden Markov Models (HMM) and has been shown to perform well [van 

Kasteren, 2011]. HMM is a temporal probabilistic model that models correlations 
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between activities and observed sensor data. HMM can enable many interesting 

systems. Early on, HMMs have been used to track and recognize activities in which 

there is a grammatical context such as recognizing American Sign Language [Starner 

1995]. While tracking arm and hand motions is important for my work, the motions that I 

analyze are repetitive and isolated rather than having meaningful context for each 

motion. Ikizler and Forsyth created a way to do text-queries of specific limb motions in 

long data streams such as surveillance and security videos [Ikizler, 2008]. Their system 

used a HMM to model short time scale limb behaviour built using a labelled motion 

capture set. Another example of HMM used for activity recognition is in the work of 

Trabelsi [Trabelsi, 2013]. However, Trabelsi’s approach used unlabeled data and 

focused on wearable accelerometers rather than RGB-D or skeleton data. Nergui et. al. 

demonstrated that Kinect and HMM can be used as part of an autonomous mobile 

healthcare robot [Nergui, 2013]. Their system recognized patient’s gait behaviors from 

calculated joint angles. Tang demonstrated that Kinect can also be used for recognizing 

hand gestures using a combination of features such as major/minor axis length rotation, 

eccentricity, orientation, radial histogram, dominant gradient direction, and SURF 

descriptors along with a HMM [Tang, 2014]. Many of these features, however, are not 

useful for recognizing body-scale structure and motion.  

One-shot learning gesture recognition is another task closely related to exercise 

performance recognition. Models of gesture classes are learned from single examples of 

each class. Konečný approaches this problem with parallel temporal segmentation using 

histogram of gradients and histogram of optical flow with Quadratic-chi distance used to 

measure the discrepancy between histograms [Konečný, 2013]. Wan approaches the 

problem by clustering the gestures with K-means clustering to find codewords using a 

bag-of-features method with novel spatio-temporal feature representation [Wan, 2013]. 
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A number of other research papers have focused on unsupervised learning 

techniques as well. In those cases, models are learned from unlabeled data, using 

clustering techniques such as the K-means algorithm in order to uncover the classes of 

interest from the data. Charles utilizes K-means algorithms to cluster 3D poses using a 

pictorial structure model and a mixture model of probabilistic masks [Charles, 2011]. His 

work, however, does not address dynamic motion. Weber developed a method for 

automatic generation of motion segmentation models to find recurring patterns in 

unlabeled motion data, and applies it to a virtual rehabilitation trainer [Weber, 2012].  
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III. APPROACH 

 

 

Due to ethical constraints, it is difficult to acquire many samples of volunteers 

performing incorrect forms of exercises. Specifically, it is considered unethical to ask 

volunteers to perform exercises incorrectly when it may lead to increased risk of injury. 

To address that difficulty, in this research I collected my own personal data in which I 

exhibited both correct and incorrect forms. In addition, I collected samples from other 

volunteers who were asked to perform correct form, but who may have exhibited 

incorrect form unintentionally. My data was used to train the statistical model while the 

data from other volunteers was used to test the model. 

I acted as an expert for the task of assigning class labels to exercise repetitions. 

The work of this thesis is a proof-of-concept for automatically recognizing performance 

errors, and thus the meaningfulness of the results does not depend on the particular 

errors chosen. In addition, access to resources such as personal trainers is expensive 

and I would like to develop a framework that does not rely on using a personal trainer. 

The most important aspect of the error classes is that they should exhibit distinct 

characteristics that differentiate each class from one another. Distinct classes lend 

themselves more easily to machine recognition. The error classes chosen do not 

necessarily represent universally accepted improper form. Instead, the error classes 

represent deviant performance techniques that do not necessarily increase risk of injury. 

Furthermore, the framework I establish strives to be as general as possible, and thus 

may be applied similarly by physical trainers or other parties with their own definitions of 

error classes. Thus the discussion remains useful regardless of the specific definition of 

performance errors. 

I chose one error class for arm circles, one error class for arm curls, and 2 error 

classes for jumping jacks. Specifically, arm circles are classified as either correct or too 



11 

large. Arm curls are classified as either correct or the elbow is too far from the torso. 

Jumping jacks are classified as either correct, incorrect synchronization of arms and 

legs, or the hands are raised too low. Each exercise repetition receives a single error 

class label. 

 

 

Figure 2. Jumping jacks: correct form 

 

Figure 3. Jumping jacks: incorrect synchronization 

 

Figure 4. Jumping jacks: low hands 
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Figure 5. Arm circles: correct form 

 

Figure 6. Arm circles: large radius 

 

Figure 7. Arm curls: correct form 
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Figure 8. Arm curls: elbow in front of torso 

 

The Kinect provides access to 20 tracked joints. Figure 9, below, shows the joints 

overlayed onto a human body, and Figure 10 shows the hierarchical structure of the joint 

orientations. The images are taken from Microsoft’s Developer Network documentation 

for natural user interfaces [MSDN 2014]. The joint orientations are structured such that 

each joint, except for the hip center joint, represents the rotation necessary to orient the 

bone from the parent to the child joint. The hip center represents the person’s orientation 

relative to the Kinect sensor. Orientation rotations are represented as quaternions. 

Quaternions are a number system that extends the complex numbers. With the 

quaternion representation, there are 4 numerical components to each joint orientation, 

with each numerical component being a floating-point number between -1 and 1. 

Quaternions are an efficient way to store rotations, however they are hard to visualize 

because the familiar x, y, and z axes are coupled into the 4 quaternion components. The 

quaternion representation can be mapped into an 3 dimensional rotation matrix, however 

the extra computation yields little additional benefit. 
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Figure 9. Overlay of tracked joints 

 

 
Figure 10. Hierarchical structure of joints 

 

 

For features, I test with multiple subsets of the joint orientations. Joint 

orientations are appealing as features because they are invariant to lighting conditions 

(within the reasonable range in which the Kinect can track skeletons), invariant to 

projective distortion, and invariant to camera angle because they are hierarchical in 

relation to the skeleton. Furthermore, the quaternion representation is appealing 

because it is normalized within the range of -1 to 1, so no further data preprocessing is 

necessary. I incorporated another set of features that captures temporal information by 
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calculating the difference (delta) of joint orientations between adjacent frames. Ideally, 

the delta of orientations between frames would be divided by the time elapsed between 

those frames in order to get an orientation ‘velocity’ feature that is invariant to the data 

stream’s frame-rate. However, the frame-rate of the Kinect is nearly constant, so this 

extra computation is not necessary. 

I selected joints for the reduced set of features by choosing joints that yield the 

most discriminative information between classes. Intuitively, the orientations of bones 

that yield the most information are the bones from shoulders to elbows, elbows to wrists, 

hips to knees, and knees to ankles as they display the widest range of motion in each of 

the exercises. The wrist, elbow, ankle, and knee joints contain the information for the 

aforementioned bones, due to the hierarchical storage of orientation information. A 

bone’s orientation is stored in the child joint according to the skeleton hierarchy. 

Furthermore, the error classes chosen are largely defined by the delta of these bone 

orientations between frames. 

I provide here the rationale behind excluding certain features for the reduced set. 

I excluded hip center orientation because it is the root joint in the skeleton hierarchy. 

Thus, the hip center joint orientation is the only orientation that is absolute (its orientation 

is relative to the Kinect sensor rather than hierarchical relative to the other joints). For 

this reason, the hip center orientation is not invariant to the camera angle. I also 

excluded the left and right hip, lower spine, and right and left shoulder joints. These 

orientations are more person-dependent than exercise-dependent due to the fact that a 

person cannot noticeably extend their hips or shoulders, and thus these orientations are 

largely fixed for a given person. Finally, I excluded the neck, spine, hand, and feet 

orientations. While there is variation in the spine between exercises, and there may be 

error classes associated with the angle of the person’s back, they are not relevant to any 

of the error classes that I examined. 



16 

There are some advantages and disadvantages to excluding features. One 

reason for exclusion is to increase speed of model training and of classification. 

Speeding up model training is not especially advantageous for this research, as this 

process occurs offline, and saving seconds or even minutes is not critical. On the other 

hand, speedup of classification is important, as this step is typically done in real-time for 

RVTs. However, even with inclusion of all orientations and all orientation deltas, the total 

feature count is 160 features (20 joints, 4 quaternions per joint, and their deltas), which 

is not inhibitively large. Therefore it may not be necessary to reduce the number of 

features for the sake of increasing speed. Another consideration is that reducing the 

number of features does not always result in higher classification accuracy, depending 

on the significance of the features chosen. The best features are those that lead to 

higher classification accuracy, even if the contribution is marginal, and as long as 

classification is within desirable computational bounds. It is good to eliminate noisy 

features and features that exhibit no discriminative quality between the error classes. An 

example is the left arm and leg for the arm curl exercise. The joints on the left arm and 

leg are irrelevant to the error classes for arm curls because the right arm is the only part 

of the body involved in the exercise. Inclusion of those features leads to degraded 

classification accuracy due to increased overlap in feature space between the classes. 

For the model, I sought out model training and classification frameworks that can 

classify incorrect form based on only a few correct samples. One approach is to use 

single-class SVM (SC-SVM), which builds the model and estimates the surrounding 

feature space. SC-SVM is able to detect errors by their deviation from the correct model 

within the established feature space. However, SC-SVM may not be appropriate for 

identifying specific classes of errors. First, SC-SVM can only detect if a test sample is 

deviant from the correct form, that is, if the test sample is incorrect. SC-SVM cannot 

distinguish multiple error classes from one another. Second, SC-SVM cannot identify 
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specific joints or bones that may contribute to the cause of error. To achieve that level of 

diagnostic capability, the skeleton joints that are most deviant from the correct model 

must be identified. Another problem with SC-SVM is that the feature space is very large, 

while the range of human motion, which is limited by the musculoskeletal structure of the 

human body, is relatively small within the feature space. Thus, both correct and incorrect 

exercise forms will be relatively similar within the large feature space, and will be difficult 

to distinguish. To map out the effective feature space, data would need to be recorded of 

people bending and stretching in various ways in order to establish the range of human 

motion and incorporate that information into the model. 

Another appealing model is Hidden Markov Model because of its success in 

human activity detection and recognition. HMM does well when the data is temporal and 

repetitive, as exercises are. However, HMM may not be warranted in the case of 

exercise performance error recognition. One significant challenge with applying HMM is 

the choice of discrete states to be used. Joint orientations are continuous so they don’t 

lend themselves readily to HMM. Discretizing the continuous space is not straightforward 

because the choice of the optimal number of states is complex and has a significant 

impact on performance. Another option for states in HMM is to use paths generated from 

tracking certain joints, typically hands, through time. Hand paths work well for gesture 

recognition in general, but are not ideal in my case as there is much more information 

associated with each exercise beyond the path the hands take. I could have tracked 

paths of all joints, but I may have run into computational complexity as well as the 

problem of optimal discretization. 

In the classification problem of this thesis, there is evidence that dynamic 

information across an entire exercise repetition is not necessary for accurate 

classification. Non-dynamic features of single frames combined with dynamic features 

between adjacent frames (deltas) may be sufficient for recognizing error classes. The 
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reason for this is that each class has a set of frames with unique skeletal structure that 

can be used to distinguish between classes. For example, jumping jacks in which the 

participant does not raise his or her hands high enough usually exhibit bent elbows, a 

structural signature unique to that error class. These sorts of unique skeletal structures 

can be used to determine which error classes are present given observed frames. Thus 

it is suitable to use statistical learning models such as K-nearest neighbor (KNN) and 

Support Vector Machine (SVM) that can be trained and classify per frame of stream 

data. 

For models, I’ve elected to use multi-class SVM with a variety of kernels, as well 

as KNN. SVM is a supervised learning model that creates a linear barrier (a hyperplane) 

between classes such that there is the widest margin possible between class samples. 

When the classes are not separable, kernels can be applied to transform the feature 

space to make classes more separable for the SVM barrier. Alternatively, imperfect 

separation can be permitted if a penalty is applied for crossover data. Although SVM is a 

binary classifier, meaning it creates a barrier between 2 classes, it can be extended to 

handle 3 or more classes by creating discriminant barriers between each class and the 

others.  

KNN on the other hand, uses a voting system to classify new observations. New 

observations are compared to samples from the training phase, and the new observation 

is assigned to the most popular class among the nearest samples in the feature space. 

These models are well supported in OpenCV, are computationally fast when the feature 

space is relatively small, and are popular and well known machine learning algorithms. 

One tradeoff is that both the SVM and KNN models do not readily capture the temporal 

nature of the data beyond the delta feature being extracted.  

The kernels I tested with for SVM are linear (no kernel), sigmoid, and radial basis 

function. These kernels are well supported in OpenCV and are useful in most common 
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data distributions for discriminating between classes. KNN on the other hand is 

interesting for this classification problem because it can address the issue of multiple 

errors per sample. The voting scheme of KNN allows us to keep track of neighbors in a 

given class above a certain threshold. Thus if a sample has many neighbors of a certain 

class, the sample is likely to be in that class as well, even if that class doesn’t receive 

the highest vote. Another reason KNN is interesting is because it performs reasonably 

fast when the number of training samples is low, as is the case for my data which has 

less than 1000 sample frames of data per class. 
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IV. METHODOLOGY 

 

The development environment chosen was Visual Studio 2013, along with the 

Kinect for Windows Software Development Kit (SDK), and C++ as the programming 

language for all applications. Visual Studio and C++ were suitable candidates due to 

their compatibility with the Kinect SDK as well as OpenCV. The OpenCV open computer 

vision library was used extensively for its convenience with working with images, general 

matrix operations, and machine learning library tools. OpenCV was also appealing for its 

compatibility with C++ and Visual Studio 2013, and because it is open source so it is 

freely available for use. 

Exercises were selected for this research to meet the following criteria: (i) the 

exercise is stationary and can be performed in front of a static Kinect, (ii) the exercise 

has a variety of ranges of motion with which to test the robustness of the classification 

system, (iii) the exercise has clearly defined errors or improper forms, and (iv) the 

exercise is not dangerous or associated with moderate or high risk of injury. Volunteers 

for performing the exercises were selected according the following criteria: (i) the 

volunteer is healthy according to the ACSM guidelines for exercise testing and 

prescription, (ii) the volunteer is willing to perform the exercises, (iii) volunteers have a 

basic knowledge of the exercises, (iv) enough volunteers were selected to exhibit 

random variation in athleticism and body type, and (v) volunteers are in the age range 

18-30. 

The data was collected in the following fashion. The Kinect was set up 

approximately 2 feet off the ground, facing toward the location where the participants 

stood, approximately 6 feet away. The room had moderate overhead lighting, with white 

walls as background. Clothing color varied between participants. Volunteers performed 

five repetitions of jumping jacks, arm circles, and arm curls. Volunteers were asked to 
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perform the exercises correctly. In addition, I collected data of myself performing each 

exercise. I performed 9 repetitions for each error class, consisting of 3 repetitions for 

each of 3 different angles: facing the camera, facing slightly right, and facing slightly left. 

For saving the streamed data from the Kinect, I borrowed and modified source 

code from Dolatabadi [Dolatabadi, 2013]. The source code is free to download at 

http://kinectstreamsaver.codeplex.com/. The stream saver application is multithreaded 

so as to be concurrent with the incoming data from the sensor. The application allows 

RGB and depth data to be saved as either .jpg files or binary files, and skeleton data to 

be saved as binary files. The skeleton data saved includes joint position, frame time and 

count data, and hierarchical joint orientation data. Another program reads the binary 

data and stores the data in XML format. One disadvantage of this code is that it operates 

at a framerate of 15 frames per second rather than at the Kinect operating limit of 30 

frames per second, meaning about half the frames from the Kinect stream were lost 

during the recording process. 

I iterated through each frame of the raw data and spliced the data stream into 

distinct repetitions for each exercise. The end result is many collections of frames of 

data, with each collection consisting of frames that make up a single repetition. Each 

repetition belongs to an exercise, a participant, and an error class (see below). Some 

repetitions from the collected data were discarded and not used in training or testing, 

either because part of the sequence was cut-off at the start or end of the stream, or 

because the performance was anomalous. The final set of repetition data consisted of 

30 jumping jacks, 37 arm circles, and 27 arm curls from other volunteers, and 27 

jumping jacks, 27 arm circles, and 27 arm curls from my own recorded performance.  

Each exercise repetition consists of a collection of ordered frames of data (in the 

order they were collected by the Kinect stream). Each exercise repetition received a 

single class label, which was assigned manually by myself. This means that each frame 

http://kinectstreamsaver.codeplex.com/
http://kinectstreamsaver.codeplex.com/
http://kinectstreamsaver.codeplex.com/
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of data, or sample, within the exercise repetition is given the same error class label. The 

class labels were stored in a CSV file with one class label per exercise repetition in 

collection order. To assign these per-repetition labels to each sample frame within 

repetitions, this was done dynamically by reading in each sample, and counting the 

number of samples per exercise repetition. The labels per-sample were stored in an 

OpenCV matrix, which was ultimately written to an XML file for later retrieval.  

I analyzed the features by taking means and covariances of the joint orientations 

and joint orientation deltas across all samples, as well as means and covariances across 

samples within each class label. The class-specific means and variances were 

compared to one another to identify the features most discriminant between the classes. 

Programmatically, this was done using calcCovar() in OpenCV which produces a 

covariance matrix as well as an array of feature means. I chose to include feature joints 

that displayed significant discrimination between the classes. Features that had high 

variance among all samples, but did not have distinguishable means between the 

classes were considered noise or irrelevant features. 

Support Vector Machine and K-Nearest Neighbor models were trained using 

OpenCV’s ‘ml’ module classes. The OpenCV SVM implementation is based on LibSVM, 

an open-source SVM library created by C.-C. Chang and C.-J. Lin [Chang 2011]. I used 

the following parameters for SVM. For svm_type, CvSVM::C_SVC was used, indicating 

n-class classification with imperfect separation of classes allowed with penalty multiplier 

c for outliers (the default value of 1 was used for c). For kernel_type, I experimented with 

CvSVM::LINEAR, indicating no kernel transformation of feature space, as well as 

CvSVM::SIGMOID and CvSVM::RBF, which correspond to sigmoid kernel and radial 

basis function kernel, respectively. Additionally, the termination criteria for SVM training 

was set to a maximum of 100 iterations with required termination accuracy of 10-7.  
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For KNN, the non-regression implementation supported in OpenCV was used. 

The implementation caches all training samples and performs classification by a voting 

system of the K most similar sample responses. I experimented with the value of k = 10. 

For each input vector, neighbors are sorted by their distances to the vector. This means 

that in the case of a tie, The closer vectors will win the vote. 
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V. EVALUATION 

 

 

A performance error recognition system is successful if it is able to achieve high 

rates of classification accuracy for a significant set of exercise data. In this work I 

collected new exercise performance data with the Kinect from volunteers and from 

myself. The models are evaluated by their classification accuracies per frame of data (as 

opposed to per exercise repetition, where each repetition contains a sequence of data 

frames). Evaluation of the models and features was done in the following fashion. One 

separate model was trained for each exercise type. Each model was trained using only 

data collected from a single volunteer (myself), while the model was tested on the data 

from the remaining volunteers. This is a realistic scenario for an RVT system in which 

the system is likely to be developed by a small team but used by many. This method 

reduced biases that could occur if frame samples are trained and tested from the same 

volunteers, as is the case with a random sampling approach. For each frame of data in 

the test set, its output response from the model was compared to the expert labels to 

determine classification accuracy. Each model was trained and tested to obtain per-

class and overall recognition rates in confusion matrices. The recognition rates obtained 

for each model were used to evaluate the effectiveness of each model. 

I provide here the distribution of correct and incorrect classifications for each 

exercise. The samples which form the training set, contain exercise repetitions from a 

single volunteer, and there is equal representation for each error class. That is, for 

jumping jacks, 33.3% of the samples are correct form, 33.3% are the wrong rhythm, and 

33.3% have the hands raised too low. For arm circle, 50% are correct form and 50% are 

too large. For arm curl, 50% are correct form and 50% have the elbow too far forward. 

For the test set, the same data was used as for the first test approach. That is, for 
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jumping jack, 59.4% of the samples are correct form. For arm circles, 46.0% are correct 

form. For arm curls 64.2% are correct form. 

 
Figure 11. Total accuracies using all orientations 

 

 

Figure 12. Total accuracies using reduced set of orientations 
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Figure 13. Total accuracies using all orientations and deltas 

 

There are a number of things to note from these results. First, SVM with radial 

basis function as the kernel tended to have the best overall performance, getting near 

75% total accuracy for jumping jacks and arm circles, while doing much worse for arm 

curls at around 35%. The confusion matrix obtained for this model and feature set is 

shown in Figure 14, illustrating typical per-class accuracies. The true class labels are 

given by the row index, while the response labels are given by the column index. For 

jumping jacks, class 0 represents correct form, class 1 represents incorrect rhythm, and 

class 2 represents arms raised too low. For arm circle, class 0 represents correct form 

while class 1 represents too large. For arm curl, class 0 represents correct form while 

class 1 represents elbows too far from the body. 
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 0 1 2 

0 225 32 61 

1 19 43 0 

2 30 2 123 

Jumping J. 73.1% 

 

 0 1 

0 360 23 

1 199 250 

Arm circle 73.3% 

 

 0 1 

0 278 187 

1 380 89 

Arm curl 39.3% 

Figure 14. SVM with radial basis function kernel, all orientations 

 

Second, SVM with the Auto training method did particularly well for jumping 

jacks, reaching 80%, although doing much worse for the other two exercises. Third, 

nearly all the models and feature sets performed poorly for classifying arm curls, with 

most being between 30% and 40%, with one exception. SVM with a sigmoid kernel 

achieved up to 63.7% for arm curls using the reduced set of features, doing equally well 

for arm circles and drastically worse for jumping jacks at less than 15%. Fourth, KNN did 

not perform especially well, getting around 50% for all three exercises across the 3 

different feature sets. KNN’s numbers are deceptively high, as the confusion matrices 

reveal a strategy of guessing that every frame belongs to the same class as is shown in 

figure 15. Even with this poor strategy, KNN will guess correctly on about half of the test 

samples.  

 

 0 1 2 

0 318 0 0 

1 62 0 0 

2 155 0 0 

Jumping J. 59.4% 

 

 0 1 

0 383 0 

1 449 0 

Arm circle 46.0% 

 

 0 1 

0 465 0 

1 469 0 

Arm curl 49.8% 

Figure 15. KNN, reduced set orientations 
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Fifth, the reduced set of features which used 10 joints instead of 20, performed 

worse when used in conjunction with some kernels and better for others when compared 

with using all joint orientations and using all joint orientations and their deltas. 

Specifically, the reduced set did worse for linear kernel and better for sigmoid kernel. 

The incentive behind the reduced set of features was to eliminate the noisy, insignificant 

joints in order to build a stronger classifier. However, it appears that the eliminated joints 

contained enough information in most cases to marginally improve classification. Finally, 

using all orientations and all deltas as features performed slightly worse for every kernel 

as well as KNN when compared with only using orientations without the deltas. This 

indicates that the delta information is either irrelevant or inaccurate. A likely explanation 

is that the quaternion representation for joint orientations does not lend itself to 

meaningful deltas. 

The results of this evaluation show much variability in performance across the 

different models and features used, as well as across each of the exercises.  This may 

indicate that the error classes are clustered differently for the different exercises, such 

that a single model may not be able to discriminate the data in the same fashion for two 

different exercises. Another explanation is that there may be significant overlap between 

error classes in feature space. As evidence for this, consider the jumping jacks classes 

in which the low-hands error class has a shorter range of motion for the shoulder joint, 

but both the correct class and the low-arms class have similar joint orientations for the 

middle portion of the repetition, when the arms have not reached their minimum point or 

their peak. This overlap makes it difficult to separate the classes by entire repetitions. 

The error classes also may not be very distinct inherently. Since the error classes were 

chosen after the data was collected in order to keep the data collection process natural 

and not force volunteers to perform predefined errors, the chosen errors had to 

distinguish the exercise repetitions as they were. Since most of the data collected was of 
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fairly good form, especially for arm curl which showed only very slight differences in 

performance, the chosen error classes were not especially distinguishable to begin with. 

For arm curls in particular, performance is expected to be the worst of the three 

exercises for a number of reasons. First, the tracking of the left arm and left leg joints is 

highly degraded. Because the left arm and leg is occluded by the rest of the body when 

the volunteer is turned sideways, those joints are inferred by the Kinect and there is little 

surrounding-joint context so those inferences are poor. As a result, those joint’s positions 

and orientations are highly noisy, often appearing to jump around rapidly and randomly 

when visualized. Second, arm curls exhibit the least variation between correct and 

incorrect classes, making it more difficult to discriminate. Third, arm curls are the slowest 

of the three exercises resulting in the most frames of data per repetition and thus more 

overlap between classes and possibly overfitting of the model. I expected arm curls to be 

significantly independent of temporal features (the delta of joint orientation between 

frames), as the elbow error class was primarily based on elbow position relative to the 

body (specifically, the orientation of the shoulder), rather than on its dynamic motion. An 

additional test was done for arm curl in which only features from the right arm were 

used. Using only right arm features for arm curl with SVM and radial basis function for 

the kernel yielded total accuracy of 45.3%. This, intuitively, is an improvement because 

most of the information for arm curl is in those joints.  However, 45.3% is still a poor 

result overall. 
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VI. CONCLUSION 

 

 

In this research I systematically collected skeleton tracking data from Microsoft 

Kinect of volunteers performing jumping jacks, arm circles, and arm curls. I labeled the 

exercise repetitions by hand, and used those labels to test the effectiveness of various 

statistical models and features in the task of recognizing performance error classes. 

In conclusion, the methods used in this research have proven to be effective in 

recognizing specific performance errors for jumping jacks and arm circles, while being 

less effective for arm curls. I have achieved satisfactory classification for jumping jacks 

and arm circles using a single model, however arm curls required a different model and 

achieved slightly worse results overall. These results show that recognition of specific, 

predefined error classes is possible, and these results work towards enhancing the 

capabilities of Reactive Virtual Trainers. The work of this thesis can be extended to be 

included in an RVT system with minor modifications, such as making the classification 

real-time. 

One goal of this research was to develop a generalizable framework that would 

perform well for any kind of exercises and error classes respecting the limitations of the 

interaction space available to the Kinect, or at least a framework in which researchers 

can efficiently and straightforwardly choose a proper model to use for each case. 

However, because  I was not able to find a single model and set of features that 

performed well for all exercises selected in this research, the framework may not be an 

effective generalizable solution to all exercises and error classes. Machine learning in 

general is highly data dependent, so it is a difficult problem to solve.  

One possible explanation is that each exercise has a unique distribution in 

feature space, with the distributions of each exercise, and each error class being 

different. Thus, a model that performs well for one exercise may not be appropriate for 
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another. In more specific terms, a model using one kernel may not be able to separate 

classes equally well. For example, SVM with radial basis function as the kernel 

performed fairly well for jumping jacks and arm circles, but did poorly for arm curls, while 

SVM with sigmoid kernel did much better for arm curl and much worse for the other two.  

The errors I’ve defined and chosen to classify in this work can be thought of as 

variations of correct form due to the subjectivity of labeling samples as correct or 

incorrect. The result is that the classes I’m discriminating are quite similar to one 

another. Therefore, it is reasonable to think that the classification rates I’ve achieved 

given the state of the data is promising. Additional data in which error classes are more 

distinct (quite possible in a real RVT system) is likely to result in even higher 

classification accuracy. 

Furthermore, due to the limited data collected, in which the data came from very 

few participants and from the same collection environment, there is a difficult balance 

between using enough of the data to build a successful model and having enough 

unique samples to do unbiased testing of the model. There is a representation bias 

between correct and incorrect samples. An improved data set would involve more 

participants, as well as a varied collection environment including different recording 

angles and distances. 
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VII. FUTURE WORK 

 

 

One avenue of future research is to explore additional exercises and error 

classes. There are many varieties of errors that can occur in any given exercise. For 

example, investigation of hand grip for arm curls may reveal another possible error 

class. Of course, expanding the features used to include hand joints would be 

necessary.  

Another consideration worth exploring is the possible presence of multiple error 

classes simultaneously in a single sample. For classification under these circumstances, 

researchers may decide to label the sample with all error classes that exceed a certain 

probability threshold. One possible addition to my framework could be to include a 

similarity metric along with a threshold, thus transforming the problem to a regression 

problem rather than a classification problem. This alternate framework would also allow 

easier application of a cost function that could, for example, punish classifiers for 

misclassification of erroneous form as correct form  more heavily than the other way 

around. Alternatively, researchers could duplicate the samples that have both error 

classes in the training set, and label those samples as one of each of the two error 

classes. The problem with this approach is that, if using the statistical models used in 

this research, only one error class may be dominant even while there may be overlap 

between the error classes. 

Another avenue of future research is to take the results obtained thus far and 

assess how they may contribute to the development of a whole RVT system. Included in 

this assessment could be how the RVT can further motivate users to exercise more and 

continue exercising, as well as comparing the effectiveness of the RVT versus a physical 

trainer. 
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Another area to explore is the use of different models and classification methods. 

One possible way to achieve better results would be to classify errors per frame of data. 

However that is very tedious and time expensive and prone to human error. Similarly, I 

could break each exercise repetition into fractions, such as thirds, and divide the class 

labels further into new categories such as Correct 1st third, Correct second 3rd, Correct 

final third, Incorrect 1st third, and so on. This approach would integrate more temporal 

information into the model. Of course, this approach brings new considerations such as 

the optimal fraction to divide each repetition by, and whether or not the optimal fraction 

varies for different exercises or for different error classes. 

This thesis demonstrated the effectiveness of classifying per frame of exercise 

stream data. However, improved performance may be achieved by applying a meta-

classifier. Such a classifier would store and review the per-frame classifications from the 

previous X number of frames, and deduce an enveloping classification for those frames. 

This approach is promising because there is overlap in structure between error classes, 

meaning classification per frame is not the most direct route to classifying entire 

repetitions. It is possible, with this approach, to classify entire repetitions with 100% 

accuracy even while classifying individual frames with only 75% accuracy. For example, 

if a regular occurrence of error frames are observed, the system can be reasonably 

confident in the true presence of consistent incorrect form. Additional considerations 

arise such as choosing the optimal number of frames to review with the meta-classifier 

This thesis showed that moderate to satisfactory classification  accuracy can be 

achieved using my methods. One possible next step is to integrate these classification 

methods into a real-time system, enabling real-time feedback to users performing 

exercises. That step is reasonable, as offline classification was shown to be fast. Given 

that a real-time system must also process the incoming data stream and extract skeleton 

information, the total computation will be more expensive. The additional real-time 
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processing would not be expected to significantly degrade the classification frame rate. 

Furthermore, as hardware becomes more efficient, the problem will become increasingly 

tractable. 

There are other challenges to successfully implementing real-time classification. 

Unlike with my organized sample data, in a real-time data stream,  it is not readily known 

in which frame the human performer begins the exercise repetition. Extra recognition 

capabilities would need to be developed in order to identify the beginning and end of 

exercises. 

Kinect for Windows v2 will be released in Summer 2014. Version 2 features 

significantly improved specifications, including 1080p HD video, expanded field of view, 

improved skeletal tracking with up to 6 full skeletons of 25 joints tracked per skeleton, 

improved joint orientation and active infrared detection providing better tracking even in 

low-light environments. I anticipate that much of the work done in this thesis could 

benefit from the improvements of Kinect Version 2 as well. Using Version 2 would likely 

result in higher classification rates due to the improved skeleton tracking, and could also 

benefit from the increased physical interaction space. 
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