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Abstract 

Hand rehabilitation is an extremely complex and critical process in the medical rehabilitation 

field. This is mainly due to the high articulation of the hand functionality. Recent research has 

focused on employing new technologies, such as robotics and system control, in order to 

improve the precision and efficiency of the standard clinical methods used in hand 

rehabilitation. However, the designs of these devices were either oriented toward a particular 

hand injury or heavily dependent on subjective assessment techniques to evaluate the 

progress. These limitations reduce the efficiency of the hand rehabilitation devices by providing 

less effective results for restoring the lost functionalities of the dysfunctional hands. 

 

 In this project, a novel technological solution and efficient hand assessment system is 

produced that can objectively measure the restoration outcome and, dynamically, evaluate its 

performance. The proposed system uses a data glove sensorial device to measure the multiple 

ranges of motion for the hand joints, and a Virtual Reality system to return an illustrative and 

safe visual assistance environment that can self-adjust with the subject’s performance. The 

system application implements an original finger performance measurement method for 

analysing the various hand functionalities. This is achieved by extracting the multiple features 

of the hand digits’ motions; such as speed, consistency of finger movements and stability 

during the hold positions. 

Furthermore, an advanced data glove calibration method was developed and implemented in 

order to accurately manipulate the virtual hand model and calculate the hand kinematic 

movements in compliance with the biomechanical structure of the hand. 

The experimental studies were performed on a controlled group of 10 healthy subjects (25 to 

42 years age). The results showed intra-subject reliability between the trials (average of cross-

correlation ρ = 0.7), inter-subject repeatability across the subject’s performance (p > 0.01 for 

the session with real objects and with few departures in some of the virtual reality sessions). 

In addition, the finger performance values were found to be very efficient in detecting the 

multiple elements of the fingers’ performance including the load effect on the forearm. 

Moreover, the electromyography measurements, in the virtual reality sessions, showed high 

sensitivity in detecting the tremor effect (the mean power frequency difference on the right 
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extensor digitorum muscle is 176 Hz). Also, the finger performance values for the virtual reality 

sessions have the same average distance as the real life sessions (RSQ =0.07). 

The system, besides offering an efficient and quantitative evaluation of hand performance, it 

was proven compatible with different hand rehabilitation techniques where it can outline the 

primarily affected parts in the hand dysfunction. It also can be easily adjusted to comply with 

the subject’s specifications and clinical hand assessment procedures to autonomously detect 

the classification task events and analyse them with high reliability. The developed system is 

also adaptable with different disciplines’ involvements, other than the hand rehabilitation, such 

as ergonomic studies, hand robot control, brain-computer interface and various fields involving 

hand control.  
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Glossary and Abbreviations 

Abduction Lateral movement of finger away from the axial line (middle finger). 

Activities of Daily 

Living (ADL) 

Daily activities that people perform without requiring assistance. It 

includes eating, opening the door, typing etc. 

Adduction Medial movement toward the axial line. 

Arm Robot Robot device that mimic the structure and kinematic of the arm. 

Artificial Neural 

Network (ANN) 

A machine learning technique to analyse large dataset and extract 

specific patterns and features. 

CAM Continuous Active Motion technique for hand rehabilitation. 

CIMT Constraint-Induced Movement Therapy for hand rehabilitation. 

Collision Detection In graphics, collision detection is a computational model to detect the 

intersection of graphical objects when they come in contact.  

CPM Continuous Passive Motion technique for hand rehabilitation. 

cross-coupled sensors Sensors which are dependent of each other. The variation of one 

sensor will affect the other. 

Data glove A glove device that compromises sensorial utensils to measure the 

motion and other characteristics of the hand.  

Degree of Freedom 

(DoF) 

A number of independent parameters that describes the system 

motion and constraints. 

Dexterity Hand skills in performing tasks.  

Denavit-Hartenberg 

(D-H) 

A set of properties that define the four convention parameters which 

attach the links and joints together in a kinematic chain. 

DIM Dorsal Interosseous Muscle 

Distal Interphalangeal 

(DIP) 

Joint between intermediate and distal phalanges. 

Electromyography 

(EMG) 

A tool that measures the muscle responses by reading the electrical 

activities. 

End-Effector A point or object at the end of the system to interact with the 
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environment. (i.e. Fingertip) 

Extension Straightening the finger joints resulting increase of angle.  

Finger Performance 

Value (FPV) 

A metric value to calculate the performance value of the finger using 

the methods described in this thesis. 

Flexion Bending the finger joints resulting decrease of angle. 

Forward Kinematic A mathematical model that determines the end-effector position with 

pre-defined joint parameters. 

Functional Electrical 

Stimulation (FES) 

A technique that electrically stimulate a nerve to improve mobility. 

Genetic algorithm A recursive method to find the best solution by optimising the 

parameters. It is based on natural selection process found in 

biological evolution. 

Graphical Display A device or system to present visual presentation of data or images. 

Graphical User 

Interface (GUI) 

An interface to allow user to interact with the application. 

Grasp event A defined event in the experiment to move the fingers to grasp a 

virtual or real object. (Shown in the fingertip displacement between 

the Grasp start and Hold start) 

Grasp Task A defined task in the experiment to grasp a spherical shape (i.e. ball), 

virtual or real object. 

Hand Robot Robot device that mimic the structure and kinematic of the hand. 

Hold event A defined event in the experiment to maintain the fingers at a certain 

position without moving. (Shown in the fingertip displacement 

between the Hold start and Relax start) 

Home Position In this thesis Home Position is referred to the finger position at the 

start of each Grasp event. The fingers are usually fully extended in this 

position but depend on the subject configurations. 

HVDC High Voltage Direct Current, electrical technique for hand 

rehabilitation. 
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Inverse Kinematic A mathematical model that calculates the joint parameters that move 

the system end-effector to a desired position. 

Kinematic A mechanical definition that describes the motion of objects, points 

and systems of bodies. 

Kinematic chain An assembly of rigid bodies connected by joints. 

Lateral task A defined task in the experiment to move the fingers to a certain 

posture in order to hold a virtual or real plate object. 

Learning Pattern A sequence of functions or motor skills learned by repeating a task for 

a number of times. 

Metacarpophalangeal 

(MCP) 

Joint between the metacarpal bone of the finger and the phalange. 

NES Neuromuscular Electrical Stimulation, electrical technique for hand 

rehabilitation. 

non cross-coupled 

sensors 

Independent sensors.  

PNF Proprioceptive Neuromuscular Facilitation, electrical technique for 

hand rehabilitation. 

Point task A defined task in the experiment to move the fingers to a certain 

posture in order to point on a specific spot. 

Principal Component 

Analysis (PCA)  

A statistical method that converts a set of correlated variables into set 

of linearly uncorrelated variables. It is used to reduce the complexity 

dimensions of a set of data. 

Proximal 

Interphalangeal (PIP) 

Joint between the proximal and intermediate phalanges. 

Range of Motion 

(ROM) 

The full range of flexion and extension for a joint. 

RAP  Right Abductor Pollicis Muscle 

RED Right Extensor Digitorum Muscle 

Relax event A defined event in the experiment to return the fingers and hand to 

the start position. (Shown in the fingertip displacement between the 
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Relax start and Finish) 

RFD Right Flexor Digitorum Muscle 

RL session Real Life session. It involves interacting with real objects. 

RL+Load session Real Life with Load session. It involves interacting with real objects, 

and with a weight added on the forearm. 

RL+Tremor session Real Life with Tremor session. It involves interacting with real objects, 

and with tremor movement. 

rloess Regression of locally weighted scatterplot smoothing filter. 

Scene Graph Graphical architecture to organise the different models and objects in 

a scene in a structural and interactive method. 

See-Through A graphical display technique that allows to reduce visibility of specific 

graphical objects in order to see different layers or components in the 

presentation. 

Self-Organising Map 

(SOM) 

An artificial neural network type to organise the data in low-

dimensional representation by using unsupervised learning method.  

Simulator A computer generated program that provides an imitation of specific 

conditions or properties of the real world in an advanced graphical 

display. 

Start Position It is the position to place the hand on the table with extended finger 

at the start of each task. 

Finger Smoothness It is the consistency of the finger displacement (or trajectory), and 

measured by applying smoothing or signal noise ratio techniques. It is 

used in this thesis method calculation.  

Southampton Hand 

Assessment 

Procedure (SHAP) 

A clinical assessment procedure to measure hand performance, using 

a toolbox. 

Finger Speed It is the finger displacement over time used in this thesis method 

calculation. Also, known as slope or gradient in mathematics and 
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graphical definitions.  

Finger Stability It is the stability (or also steadiness) level of the finger movement 

during and only during the Hold event. It is measured by using data 

signal smoothing technique and used in this thesis method 

calculation. 

TENS Transcutaneous Electrical Nerve Stimulation, electrical technique for 

hand rehabilitation. 

Thumb 

Interphalangeal (IP) 

The end joint of the thumb. 

Tripod task A defined task in the experiment to hold a virtual or real prismatic 

object. 

Virtual Environment A program that manages and controls multiple graphical objects in 

separate places. It defines the items properties in order to simulate a 

virtual world similar to realistic. 

Virtual Model A graphical model that defines the interactivity with the virtual 

environment and the motion properties of different virtual objects. 

Virtual Object A graphical object that includes specific characteristics and properties 

in the virtual world. 

Virtual Reality A machine system that involves a simulator and technological devices 

to interact and visualise the imitated world. 

Visualisation A graphical representation of numerical data, in graphs/charts or 

different formats such as Virtual Reality. 

VR session Virtual Reality session. It involves interacting with virtual objects in 

the graphical display. 

VR+Load session Virtual Reality with Load session. It involves interacting with virtual 

objects and with a weight added on the forearm. 

VR+Tremor session Virtual Reality with Tremor session. It involves interacting with virtual 

objects and with a tremor hand movement. 
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Chapter 1 Introduction 

“The hand is an extension of the human brain.” Immanuel Kant 

The main scope of the project is to develop an objective measurement system for assessing 

hand performance during rehabilitation. In this chapter it is essential to begin by explaining the 

physiology and characteristics of the human hand. The existing medical challenges faced by 

clinicians and researchers must also be considered before the project’s main aims and 

objectives are described. The purpose of this is to introduce the reader to the main aspects of 

the project and explain the motivating factors for the author and the associated researchers. 

The following sections start by introducing the hand’s role and significance in human life. It 

then discusses the diseases and injuries that can cause loss of hand functionality and severely 

affect life. Following this, the proposed approach is illustrated, along with the project’s 

objectives and aims. The research hypotheses are then defined. The chapter ends by listing the 

author’s contributions to this field. This includes a virtual reality, human hand outcome 

measurement, and transferring signal processing and robotics technologies into medical 

rehabilitation.  

1.1. Research Context 

1.1.1. Human Hand: Role and Significance 

The human hand has a complex anatomical structure and highly articulated mechanisms, giving 

it the flexibility to perform complex postures with smooth and decisive movements. The hand 

plays a major role in human life. It has delicate capabilities in sensing, orienting and immersing 

humans in the external world. Without the hand, there would be no Beethoven, Mozart, or 

Picasso.  

The hand provides the precision and reliability to perform skillful arts, and manipulate 

sophisticated equipment and tools to construct, write, undertake surgical operation, and 

perform complex manual tasks. It allows a person to interact with surrounding objects and 

estimate their distances and positions from the body. It also facilitates communication with 
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others (i.e. sign languages or gestures), and helps us to identify each individual person from 

their unique biometric information. 

The non-dominant hand is commonly used in emotional and social interactions, such as 

reaching out to others and making expressions. For a right-hand dominant person, the right 

hemisphere of the brain, which controls the left side of the body, manages the emotions when 

reacting to unpredictable incidents and hazards. The left hemisphere manages the structure 

details and functional control (Forrester et al., 2013).  

 

The fingertips’ high touch sensitivity is considered the pinnacle of hand function. They have the 

highest concentration of touch receptors for sensing vibrations, pressure and textures. This 

could be tested by trying to identify an object on the forearm or the fingertip without using 

visual perceptions. Fingertips also have proprioception sensors within the muscles and tendon 

layers to perceive the location of surrounding objects, in addition to many other external 

sensations, such as temperature. This could be tested by closing the eyes and placing the 

fingertip close to a noise, without using any visual feedback. 

1.1.2. Hand dysfunction 

The hand’s significant involvement in a human’s daily activities, and contribution to almost 90% 

of the upper limb function (Magee, 2007), makes it the most mobile joint in the human body. 

This means it is continuously exposed to high risks of joint dislocations and wear. 

Hand dysfunction may be caused by multiple conditions, including carpal tunnel syndrome 

(nerve compression), injuries (resulting in fractures and ruptured ligaments), or diseases 

leading to tendinitis (tendon irritations) and osteoarthritis (wear-and-tear arthritis causing 

deformity).  

Hand injuries, such as burns, high-pressure injuries, infections, lacerations, fractures, and 

dislocation, can also contribute to causing dysfunctions or disability of the hand. The most 

common cause of hand injuries is blunt trauma (50%), followed by injury from a sharp object 

(25%) (OSHA, 2015). 

Strokes can also play a major role in hand dysfunction. As Stroke (NHS, 2014) is a brain attack 

which occurs when the blood supply to part of the brain is cut off. Stroke victims often 
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experience hand impairment, with approximately 38% (Duncan et al., 2003) of stroke survivors 

reported to have difficulty in hand function.  

A stroke patient may suffer a number of weaknesses affecting hand motor functions and 

dexterity, such as decreased tactile sensation, and diminished proprioception caused by the 

inability of muscles to produce forces for fine control movements. Patients may experience the 

need for extra cognitive and motor effort to control limb movement and can suffer from poor 

task coordination due to the lack of sensory feedback (Lum et al., 2012). 

 

Stroke and injuries survivors generally show a certain ability to recover their lost hand functions 

(eMedicineHealth, 2013), while application of immediate care significantly reduces the effects 

of long-term disorders. Therefore, efficient and quick administration of hand rehabilitation is 

essential in recovering the lost functions.  

1.1.1. Hand Rehabilitation  

 

Figure 1-1 Taxonomy of the hand assessment process , combining the subjective and 

objective evaluations (This diagram is produced by the author. The information is taken from 

Chapter: Implications for Practice (Florence and Jane, 1988) ).  

In the case of hand dysfunction, the therapist/surgeon examines the patient’s hand, using a set 

of assessment procedures, and determines whether the hand requires surgery, prosthetic 

employment or a rehabilitation programme.  

The hand assessment process, shown in Figure 1-1, is divided into subjective and objective 

evaluation. The subjective method identifies the location and nature of the symptoms (pain, 

swelling, redness and stiffness). It also identifies the patient’s physical and psychological 

reactions to the affected hand in daily activities. The objective method examines the hand 
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using four techniques: observing the posture and using the hand in simple activities; examining 

hand abnormalities or locating the pain using palpation; performing measurements on hand 

dexterity and range of motion using instruments or manual tests; and carrying out functional 

testing by simulating tasks from daily activities. 

 

 

 

Figure 1-2 Flow diagram of the hand rehabilitation process illustrates the procedures 

performed in the rehabilitation process for a dysfunctional hand. (This diagram is produced 

by the author© 2015. The information is taken from Chapter Implications for Practice (Florence 

and Jane, 1988) ).  

Rehabilitation programs involve multiple steps and were defined based on the hand’s 

capabilities and the level of dysfunction.  
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The different techniques involved in the rehabilitation process were psychological support 

(Florence and Jane, 1988) to patients; education on the anatomy/physiology of the hand, and 

awareness of the treatment goal with the expected outcome; positioning and immobilising 

certain hand functions by using items to prevent deformity; manual techniques by occupational 

therapists, including stretch, massage and vibration, to restore the range of motion of the 

joints; electrical techniques such as Neuromuscular Electrical Stimulation (NES), High Voltage 

Direct Current (HVDC), Ultrasound, and Transcutaneous Electrical Nerve Stimulation (TENS); 

Proprioceptive Neuromuscular Facilitation (PNF) techniques with light to heavy resistance on 

the fingers applied from different active items (i.e. sponges, putty exercises etc.); and 

functional activities which allow the integration of treatment modalities with daily living (ADL).  

The above stages were usually executed consecutively and in repetitive cycles (see Figure 1-2). 

This serves to provide an efficient restoration of hand functions and accurate transfer of the 

learned/restored functions from training exercises to real world daily activities (Florence and 

Jane, 1988). 

 

1.2. Research Motivation 

1.2.1. Problem Definition 

There are various drawbacks in the hand rehabilitation methods currently used to restore hand 

functionality. This is mainly due to the inefficiency of the hand model tools in addressing lost 

function; deformation limits (stiffness, inconsistent durability and elasticity, strength, fatigue, 

life, and ductility etc.) and inability of materials to adapt with hand performance; and complex 

mechanics, including sophisticated technologies, which make the device cumbersome and 

difficult to adjust to while performing gross and fine hand motor movements (Tai, 2007). 

 

An efficient assessment method is required to objectively measure the hand’s performance 

before, during and after the rehabilitation sessions. This would improve rehabilitation results 

and reduce the limitation level. This method also needs to include quantitative evaluation in 

order to relevantly adjust the system/programme and make the process self-adaptable.  

At present, the clinical assessment methods used are still subjective (see section 3.1.1) and 
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depend only on the therapists’ observations. In addition, the objective measurement data 

provided by the research and hand societies – American Society for Surgery of the Hand 

(ASSH)(ASSH, 2015), British Society for Surgery of the Hand (BSSH) (BSSH, 2015), and National 

Institute of Arthritis and Musculoskeletal and Skin Diseases (NIH)(NIH, 2015) – are not sufficient 

to make decisive conclusions to improve hand performance. 

1.3. Research Objectives  

Further to the challenges described previously, this thesis aims to provide an advanced hand 

assessment system that is compatible with the numerous different hand rehabilitation 

techniques and seeks to reduce many of the existing drawbacks. 

The proposed system combines clinical techniques and virtual reality (VR) technologies to 

return objective and dynamic measurements of the hand’s performance. Researchers and 

therapists can then use these to improve rehabilitation systems. They will also allow the 

programme to be adjusted depending on patient performance.  

There are a number of advantages provided by the VR technology, such as being able to track 

individual hand digit’s range of motion (RoM) and constantly measure the fingers’ movements. 

The system can dynamically measure and evaluate hand performance, compare the subject’s 

performances with the normative dataset, self-adapt with the subject’s improvement during 

the rehabilitation, and provide consistent exercises with high precision and motivation to the 

patient.  

In order to produce this system with high accuracy and efficient results, the following 

objectives are defined:  

1- Specify a compatible and clinically validated hand classification method. 

2- Develop a robotic simulator that will comprise the virtual environment for the experiment. 

3- Design a biomechanical virtual hand model that can accommodate the different hand 

kinematics and functions. 

4- Develop a robust and reliable interface between the real hand movement and virtual hand 

display that accounts for the existing discrepancies between different dysfunctions/paralysed 

hands and the physiological structure of the hand. 
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1.4. Research Hypotheses 

This study hypothesises that the proposed approach of the virtual hand assessment system, 

quantitatively measures the performance of the hand during rehabilitation. 

1.5. Contributions 

The author’s contributions are: 

 A novel method is developed that efficiently measures the finger performance value using 

multiple ROM features (i.e. stability, speed, smoothness). The method is dynamic, 

objective, automated, modular, and mobile. 

 This is the first time, to the best of the author’s knowledge, a VR system is developed with 

a clinically validated hand assessment procedure (kinematic, calibration, model, interface). 

 A unique and robust calibration algorithm is developed to map the sensorial data inputs 

into the VR model, adapt with the physiological variations and validate the data glove 

outputs.  

This method, unlike others, does not require large data sets or long duration (>5 mins), 

plus it is inclusive to the different joints DoFs. 

 An advanced cross-compatible application is developed which can be easily integrated and 

used in the motor control, sign language and gestures recognition, ergonomics, and 

system/robotics control studies. 

 An extensive literature review is produced on clinical, robotics, virtual reality, data 

glove/exoskeleton and synthetics applications in the hand rehabilitation and assessment. 

1.6. Organisation of the Thesis 

This thesis is divided into eight chapters with references and appendices. The structure of the 

chapters is as follows: 

Chapter 2: Begins by defining the background of hand anatomy, structure, and pertinent details 

of the muscle activities essential to hand function. The hand kinematic model and structure are 

outlined with a review of the multiple implementations and constraints used to define the 

joints’ range of motion.  

Virtual simulation is discussed in this chapter, as it is one of the two main elements involved in 
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the project. A review of various existing robotic simulators is highlighted, with a discussion of 

their advantages and relevance to the project aims. The selected simulator, GraspIt!, is 

described separately and in full detail, with an attention drawn to the relevant existing features 

affiliated with project requirements.  

The chapter then pinpoints the list of developments to the robotic simulator that are needed to 

integrate it into the bioengineering field.  

Lastly, hand motor control is described, which highlights the contributions of the project to 

neurophysiological rehabilitation.  

 

Chapter 3: Starts with a literature review of the existing systems for hand rehabilitation and 

assessment. This chapter presents some of the devices primarily applied in rehabilitation, 

including clinics and therapy, robotic assistance, virtual reality, electrical simulation and 

synthesis applications. The chapter concludes with a discussion on the reviewed methods and 

proposes the new approach of this project, which tackles the existing limitations in the field.  

Chapter 4: Discusses the experimental protocol in depth, as well as the inclusion criteria of the 

specified subjects and the various procedures undertaken in each task and session.  

Chapter 5: Provides a review of the existing computational modelling calibration methods. The 

calibration approach of the project is provided, including the multiple equations and 

procedures. At the end of the chapter, the conducted experiment is explained with a discussion 

of the outcome reliability. 

Chapter 6: Illustrates the results of the experiment and the observations made during the data 

analysis and measurement. The results are analysed using different statistical methods.  

Chapter 7: Provides a discussion of the observations validating the repeatability and efficiency 

of the outcome measurements. The results are compared with other work, and the final 

outcome is examined in relation to the hypotheses claims. The chapter concludes with the 

project’s contributions. 
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Chapter 8: Summarises the work and achievements of the project. This chapter also highlights 

the advantages of the features developed in the system and illustrates a number of potential 

improvements for implementation in different research fields.  

1.7. Summary of the Introduction Chapter 

In this chapter the role of the human hand was introduced with its significance, and main 

medical challenges. This is along with a list of procedures consulted in case of hand 

dysfunction, associated with the existing techniques for hand performance assessment and 

hand rehabilitation. This chapter also highlighted that, although there are many techniques in 

rehabilitation, they have multiple drawbacks. 

The project’s approach for solving the existing limitations was defined through the hypothesis 

of developing a virtual reality objective measurement system to assess hand performance.  

The chapter concluded by listing the project’s contributions to the research community and 

rehabilitation programmes, along with descriptions of the thesis organisation and content of 

the chapters.   
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Chapter 2 Background 

This chapter provides extensive details of the project background. It starts by describing the 

human hand’s physiology and anatomy, as well as its role and structure. It then briefly 

describes muscle activity in the hand and the biological mechanism of the nervous system in 

terms of its involvement in the hand’s functions. 

The hand kinematic model and its functions are later described to outline the hand’s high 

articulation and fast adaptability while performing complex tasks and handling different 

composite tools. This section also includes the algorithms, mathematical models and functional 

constraints of the hand model. 

Following this, an explanation of the virtual model used to perform the hand simulation is 

provided. An extensive review of its architecture, features, and limitations is provided. This 

section finishes by listing the developments required on the virtual platform in order to employ 

this simulator in the project.  

The chapter then concludes by exploring the motor control barriers in hand functionality. It 

gives a background insight of hand dysfunctions and their main effects. This section aims to 

describe the key elements that should be considered to design an inclusive and cross-

compatible system for hand and motor control rehabilitation.   

2.1. Hand Anatomy 

2.1.1. Structure 

Hand structure can be subdivided into five layers: skin, muscles (tendons), nerves, blood 

vessels, and bones (joints). The layers are intertwined together and any damage to one layer 

can affect the others and cause impairment to hand function.  

2.1.1.1. Muscles 

Muscles are the engines that transform energy to produce force and motion. In the hand and 

forearm, there are 48 extrinsic muscles (Florence and Jane, 1988): 28 in the forearm, 14 in 

extensor/supinator, and 14 in flexor/pronator, and 20 intrinsic muscles between the wrist and 

CMC joints, to provide a balancing force between extrinsic extensors and flexors. Forearm 
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muscles are mainly used for gross hand movements and give strength to the grip. The smaller 

muscles in the hand control the fingers, support the tendons and refine the movement 

independently with coordinated timing in order to perform precise and accurate functions. To 

obtain fine movements, the forearm muscles must be stabilised; this is observed with surgeons 

when they immobilise their forearms during surgeries, or artists when they use “arm rest” 

stands during very detailed drawings.  

2.1.1.2. Nerves 

The hand has median, ulnar and radial nerves to supply the motor control, sensory feedback 

and autonomic of the hand. Sensory neurons send information signals to analyse and process 

the command for control. Each muscle is controlled by multiple neurons that transmit the 

appropriate information to achieve fast, precise and solid results in different activities (Gray, 

2015). 

2.1.1.3. Arteries 

The hand consists of different types of arteries – radial, ulnar and interosseous – that travel 

alongside nerves to supply the other parts of the hand with blood. There are dorsal and palmar 

arteries to support the different sides of the hand and fingers (Gray, 2015). 

2.1.1.4. Skin 

The skin forms a glove over the hand to protect the other components. It is composed of 

multiple layers including the sensory receptors. It is proficiently structured to ensure 

suppleness, mobility and elasticity in the different hand movements (Gray, 2015).  

2.1.1.5. Nail 

The nail apparatus supports and protects the fingertip and provides a mechanism to pick up 

objects (Gray, 2015). 

2.1.1.6. Bones 

The hand consists of 27 bones (ElKoura and Singh, 2003); eight carpals – scaphoid, lunate, 

triquetral, pisiform, trapezium, trapezoid, capitate, and hamate; five metacarpals – proximal 

base, medial body, and distal head; and 14 phalanges – proximal, medial, and distal on each 

finger, apart from the thumb which has only proximal and distal. The joints between carpals 
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and metacarpals are called carpometacarpal (CMC), and, respectively, the others are called 

proximal interphalangeal (PIP), metacarpophalangeal (MCP), and distal interphalangeal (DIP) 

 

Figure 2-1 Hand skeleton Sketch, dividing the fingers bones into 5 sets: Distal Phalanges, 

Intermediate Phalanges, Proximal Phalanges, Metacarpals, and Carpals (Gray, 2015).  

Elkoura noted that the hand kinematic consists of 27 Degree of Freedom (DoF) (ElKoura and 

Singh, 2003). There are four in each finger, three for extension and flexion, and one for 

abduction and adduction. The thumb is more complicated and has five DoF, leaving six DoF for 

the rotation and translation of the wrist.  

 

Figure 2-2 displays the various hand motions, including degrees of freedom and movements: 
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Figure 2-2 Fingers Articulation Diagram, shows the hand motion: wrist/forearm movement: 

roll (supination, pronation), pitch (flexion, extension) and yaw (ulnar deviation, radial 

deviation). Finger movement: each finger orient in 2D flexion/extension and 

abduction/adduction © 2009 American Society for Surgery of the Hand; with permission.  

Also, Reiner have measured the normal range of motion of the fingers(Reiner, 2005), presented 

in Table 2-1: 

Table 2-1 Range of movements for the finger joints. The unit used is degree. The DIP 

minimum is by hyperextension (Reiner, 2005). 

Finger DIP(E/F) PIP(E/F) MCP(Ab/Ad) MCP(E/F) CMC(E/F) CMC (Ab/Ad) 

Thumb 15H/80 - 0/60 10H/55 25/35 0/60 

Index 10H/90 0/100 13/42 0/80 - - 

Middle 10H/90 0/100 8/35 0/80 - - 

Ring 20H/90 0/100 14/20 0/80 - - 

Small 30H/90 0/100 19/33 0/80 - - 
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In contrast to other primates (apes, gorillas, baboons, etc.), the thumb of the human hand is 

longer, stronger and able to move more freely across the hand, giving it unique capabilities 

with high accuracy and precise grips for manipulating tools and objects (Kivell et al., 2013). The 

human hand has ulnar opposition capability, where the small and ring fingers can rotate across 

the palm to meet the thumb and provide a better grip, grasp and torque performance. Also, 

the opposing thumb can abduct-adduct, flex-extend, and antepose-retropose to touch the 

other fingers. Almost 90% of the thumb movements happen at the base and it is the most 

mobile of all the fingers (Fogg, 2015).  

 

 

Figure 2-3 Illustration diagram of the thumb motion; the thumb has 

anteposition/retroposition via radial formation, in addition to the flexion/extension and 

abduction/adduction; © 2009 American Society for Surgery of the Hand; with permission.  

2.1.1.7. Muscle Activities  

As previously mentioned the muscles make a large contribution to hand functionality. They act 

as an engine, transforming energy in to hand motions and dexterous movements. 

The hand muscle type is skeletal, which is composed of bundles of muscle fibres. Each fibre is 
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comprised of many myofibrils, containing repeating subunits of sarcomere, which act as 

contractile units. 

When the muscle receives an electrical signal from the brain via the nervous system, the 

synaptic terminal of the end nerve cell releases acetylcholine to the neuromuscular junction 

(motor end plate), binding the nerve with the muscle fibre. This causes depolarization in the 

synaptic cleft and releases Ca++ (Calcium) elements. The Ca++ travel inside the muscle cells to 

the actin thin filament, allowing the myosin thick filament to attach to the binding sites and 

establish cross bridges. The myosin then grabs the actin and pulls it. This phenomenon is 

known as sliding filament mechanism of muscle contraction (Gray, 2015). 

Subsequently, the sarcomere contractions cause muscle shortening and provide the force and 

motion to perform the desired skeletal movements in the hand. 

Hand muscles are subdivided into three groups: the thumb muscles on the radial side, the little 

finger muscles on the ulnar side, and the middle of the hand and between the metacarpals. 

To measure the muscles’ contractions during hand activities, specific measurement electrodes 

can be placed on the muscle that read the summation of the electrical potential from the 

muscle fibres. This is known as electromyography (EMG).  

EMG can be performed using surface electrodes to read high potentials from large muscle 

activities, or with needle electrodes (intramuscular EMG) to read exclusive potentials from 

smaller muscles. 

Figure 2-4 shows a schematic for EMG recording: the bipolar electrodes are placed on the 

targeted muscles with the reference electrode on the wrist bone. The signal output is passed to 

an amplifier to return the raw EMG signals, subtract the baseline from the reference, and 

remove electrical noises that cause arbitrary voltage variations. The EMG signal is then 

processed through high pass/low pass filters and signal processing techniques. 
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Figure 2-4 EMG recording system diagram; Four electrodes are placed on the forearm of the 

subject. The system reads the muscle activity by combining two EMG electrodes that are 

placed on the same muscle. The signal is processed through an amplifier, which multiplexes 

both electrodes signals and uses the third input as a reference (The reference electrode is 

placed on the wrist bone). The signal is then processed with applied filter techniques. This 

diagram is produced by the author.   

 EMG signal processing focuses on extracting the significant features from the reading which 

relate to each study purpose (Popović and Sinkjær, 2000). For example, the fast Fourier 

transform (FFT) is applied on EMG signals to analyse the stability level (hand shaking) during a 

task, the time domain series is used to measure the duration and force exertion to differentiate 

the performance of each task or movement, while peak detection and sub-spacing (lowering 

the dimension level of the multiple properties) methods are employed to analyse the level of 

muscle involvement. 

EMG measurements are used in many tasks (Al-Jumaily and Olivares, 2009): to control 

prosthetic hands, robotic arms and devices; to monitor and diagnose motor control disorders 
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or hand dysfunctions; to read isometric muscle activities associated with force and strength 

applied; to determine the level of fatigue in muscle by measuring the variation of the mean 

absolute value of the signal; and to identify the level of tremor or involuntary muscle 

contractions for an impaired hand.  

However, EMG measurements, particularly the surface interface electrodes, have multiple 

limitations, including the produced variation of the EMG signal amplitude from different skin 

impedance, which reduces the electrical potential level acquired from the muscle (Al-Jumaily 

and Olivares, 2009). The overlapping muscles cause interferences in the signal activities’ 

reading, plus it is very difficult to identify a specific muscle’s involvement. The sub-layered 

muscles are obstructed resulting in less reliability in readings. In addition, movement in the skin 

layer is not consistent with muscle movement, which causes deviation from the signal readings 

of different allocated muscles under the electrode surface (Platz, 2003).  

2.2. Hand Kinematic Model    

The hand kinematic model is used in different disciplines (Butterfass and Hirzinger, 2001), 

(ASSH, 2015), (BSSH, 2015) and applications due to its high performance and precision. It is 

used in manufacturing and construction processes, providing the ability to make the precise 

movements and critical grips performance required to create high definition objects, buildings, 

or crafts with complex shapes and designs. It is also used in robotics applications for surgeries 

and prosthetic limbs, which combine high precision tasks and adaptive coordination between 

force, stability, and speed, with other control elements. Recently, it has been employed in 

computer vision for hand tracking and gestures recognition. In addition, the hand kinematic is 

continuously being investigated as part of rehabilitation objectives, to define the appropriate 

training techniques to restore the lost functionality and performance for patients’ hands. 

2.2.1. Hand kinematic development 

Hand control and precise finger formation are developed at a very young age (Kivell et al., 

2013). This process is achieved and improved upon by exposure to multiple objects and toys in 

the surrounding environment. During these multi-level interactions, the hand is trained to 

manipulate objects with complex shapes and perform very articulated tasks, such as hand 

writing and drawing (Kivell et al., 2013).  
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These training exercises comprise: fine motor strength, involved in activities that strengthen 

the small muscles by interacting with materials and tools that create resistance for the fingers 

(clay, putty, interlocking construction toys); pincer grasp whereby only the thumb and index 

fingers are used to pick up items; hand arches which involve utilising the palmar to control the 

power of grasping objects of different sizes and shapes; complex fine motor skills, such as 

thumb opposition to grasp objects and operate tools, and finger isolation to move each finger 

separately and manipulate objects with one hand only; bilateral coordination, or multitasking 

by using multiple parts of the body simultaneously with hand operation; and visual motor 

integration, allowing the manipulation of objects by hand with visual guidance (Florence and 

Jane, 1988). 

2.2.2. Hand Kinematic Model: Functional Development 

Despite the latest achievements and advanced technologies, and further examination of hand 

structure and kinematic discipline, the exact replication of the hand, with all its complex 

functionalities, is still not accurately presented. Usually, researchers subdivide the multi-

dimension layers in hand functions and motor control in order to address specific parts of the 

hand characteristic in reproduction (Edgar SS, 2014). 

Hence, the computer vision and graphics researchers use the 27 degrees of freedom (DoF) 

model – five DoFs for the thumb, four for each finger and six for the wrist position and 

orientation (Kanade, 2009) – as necessary parts for gesture recognition and visual interactions. 

(Yasumuro et al., 1997) added one DoF for each CMC joint of the fingers to allow additional 

abilities in the fingers’ manipulation. 

Biomechanical researchers use optical and magnetic motion capture devices for finger 

measurements and so their alternative adapted model is 31 DoFs. This is obtained by adding 

four DoFs for the carpometacarpal (CMC) flexion and adduction of the ring and pinkie finger, to 

the above model. The difference, by including the four fingers’ CMC motion during object 

manipulation and grasping, is represented in the palm involvement. 

In this study, the model used has 22 DoF: three flexions/extensions (distal interphalangeal 

(DIP), proximal interphalangeal (PIP), metacarpophalangeal (MCP)) and one 

abduction/adduction for each finger. The thumb has two flexions/extensions (MP and IP) and 
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one abduction/adduction. The remaining three DoFs are the wrist rotations. This is mainly to 

reduce the complexity of the graphical model in the simulation and address the involvement of 

dexterity. 

The finger joint angles are characterised by flexion-extension (pitch), abduction-adduction 

(yaw) and axial rotation (roll). The proximal transfer movement from the end joint to the root 

coordinate system at the wrist can be described by homogenous matrix multiplication 

(Buchholz and Armstrong, 1992). (An et al., 1979) used classical Eulerian angles to define the 

relationship between the joints. The transformation matrix from the coordinate (global) system 

to the proximal (local) is shown in Equation (2-1). 

𝐴 = [

𝑐𝑜𝑠∅𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 −cos𝜑𝑖𝑗𝑠𝑖𝑛∅𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝑠𝑖𝑛𝜑𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗 𝑠𝑖𝑛𝜑𝑖𝑗𝑖𝑛∅𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝑐𝑜𝑠𝜑𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗
𝑠𝑖𝑛∅𝑖𝑗 𝑐𝑜𝑠𝜑𝑖𝑗𝑐𝑜𝑠∅𝑖𝑗 −𝑠𝑖𝑛𝜑𝑖𝑗𝑐𝑜𝑠∅𝑖𝑗

−𝑐𝑜𝑠∅𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗 𝑐𝑜𝑠𝜑𝑖𝑗𝑠𝑖𝑛∅𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗 + 𝑠𝑖𝑛𝜑𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 −𝑠𝑖𝑛𝜑𝑖𝑗𝑠𝑖𝑛∅𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗 + 𝑐𝑜𝑠𝜑𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗

] 

(2-1) 

Where 𝜃 is the abduction-adduction angle; ∅ is the flexion-extension; and 𝜑 is the axial 

rotation (Buchholz and Armstrong, 1992).  

The fingertips curve through a spiral shape not circle, and the finger bones’ lengths can be 

related in a Fibonacci mathematical series, where the approximate ratio is 2, 3, 5 and 8. 

(Buchholz and Armstrong, 1992) have provided parametric functions (see Table 2-2) to 

calculate the length of the bones for each finger in relation to hand length and hand breadth 

(Reiner, 2005). 

Table 2-2 Bones length parametric functions (HL is hand length) (Buchholz and Armstrong, 

1992). 

 

 

 

 

 Proximal Middle Distal 

Thumb 0.196*HL - 0.158*HL 

Index 0.265*HL 0.143*HL 0.097*HL 

Middle 0. 277*HL 0.170*HL 0.108*HL 

Ring 0.259*HL 0.165*HL 0.107*HL 

Pinkie 0.206*HL 0.117*HL 0.093*HL 
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The hand movements can be classified as prehensile movements, when manipulating objects 

that include grip and pinch actions, and non-prehensile movements, such as pushing, lifting, 

tapping and punching with the fingers, (Reiner, 2005). Prehensile movements include precision 

and power patterns, which are both defined based on the activity rather than the shape or size 

of the gripped object. The first pattern is when the thumb is opposing one or more fingers, and 

the second is when the thumb is against the palm. The opposability index of the thumb with 

the other fingers is measured by (2-2): 

Where 𝐿𝑒𝑛𝑔𝑡ℎ_𝑜𝑓_𝑡ℎ𝑢𝑚𝑏 is the length of the thumb is finger from the MCP to the tip, and 

𝐿𝑒𝑛𝑔𝑡ℎ_𝑜𝑓_𝑓𝑖𝑛𝑔𝑒𝑟 is the length of the opposed finger from the MCP to the tip. 

2.2.3. Hand kinematics: Constraints and Synergies 

The hand and fingers have multiple constraints that express the range of motion (RoM) 

workspace and hand prehensile. These constraints are defined in the physiological structures of 

the hand, including skin deformation and the mechanical connectivity between joints. Some 

examples of these restrictions are the thumb’s particularity in opposing the other fingers 

(Kanade, 2009); the joints’ extension and flexion limits; the dependency and cross-coupling 

where, for instance, bending the middle finger MCP joint will cause partial bend to the adjacent 

fingers’ MCP joints; and finger motion being restricted in the positive Sagittal plane only.  

Lin has divided the above constraints into three types: Type I static constraints, which are the 

limitations derived from the hand anatomy; Type II dynamic constraints are limitations to the 

joints during motions; and Type III natural motion constraints (Lin et al., 2000).  

Type I constraints are usually represented by minimum-maximum joint variations in free 

movements (without applying external forces). The ranges suggested for the flexion-extension 

joints of the middle finger are shown in equations (2-3), (2-4), (2-5). 

 0𝑜 ≤ 𝜃𝑀𝐶𝑃 ≤ 90
𝑜  (2-3) 

 
𝐹𝑖𝑛𝑔𝑒𝑟_𝑂𝑝𝑝𝑜𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =

100 ∗ 𝐿𝑒𝑛𝑔𝑡ℎ_𝑜𝑓_𝑡ℎ𝑢𝑚𝑏

𝐿𝑒𝑛𝑔𝑡ℎ_𝑜𝑓_𝑓𝑖𝑛𝑔𝑒𝑟
 

(2-2) 
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 0𝑜 ≤ 𝜃𝑃𝐼𝑃 ≤ 110
𝑜 (2-4) 

 0𝑜 ≤ 𝜃𝐷𝐼𝑃 ≤ 90
𝑜 (2-5) 

Those for the abduction-adduction joints are illustrated in equation (2-6) 

 −15𝑜 ≤ 𝜃𝑀𝐶𝑃 ≤ 15
𝑜 (2-6) 

Where𝜃𝑀𝐶𝑃 is the abduction-adduction; 𝜃𝑀𝐶𝑃, 𝜃𝑃𝐼𝑃, 𝜃𝐷𝐼𝑃 are the flexion_extension angle for 

the MCP, PIP and DIP joints consecutively. 

Type II constraints are subdivided into intra-finger and inter-finger.  

Intra-finger is when a joint in the finger bends, causing another joint of the same finger to bend 

as well. An example of this is between the DIP and PIP where the relations can be described 

using (2-7):  

 
𝜃𝐷𝐼𝑃 =

2

3
𝜃𝑃𝐼𝑃 

(2-7) 

Inter-finger describes the correlation between joints of different fingers, for example, the 

effect on the adjacent MCPs joints of bending an MCP. This is represented in terms of a similar 

relation to the equation above (Lin et al., 2000). 

Furthermore, Shuai has acquired the joints movement data measurement using the following 

equations of constraints in (2-8), (2-9), (2-10), and (2-11) (Shuai et al., 2010). 

 

{
 
 
 

 
 
 𝑓𝑙𝑒𝑥(𝜃𝐷𝐼𝑃) =

2

3
𝑓𝑙𝑒𝑥(𝜃𝑃𝐼𝑃)

𝑓𝑙𝑒𝑥(𝜃𝐶𝑀𝐶) = 2𝑓𝑙𝑒𝑥 (𝜃𝑀𝐶𝑃(𝑇) − 
𝜋

6
)

𝑎𝑏𝑑(𝜃𝐶𝑀𝐶) =
5

7
𝑎𝑏𝑑(𝜃𝑀𝐶𝑃(𝑇))

𝑓𝑙𝑒𝑥(𝜃𝐼𝑃(𝑇)) = 𝛼. 𝑎𝑏𝑑(𝜃𝑀𝐶𝑃(𝑇)), 𝛼 ≤ 0

 

(2-8) 

(2-9) 

(2-10) 

(2-11) 

Where 𝛼 is the relation value between the flexion-extension bending angles of IP and MCP 

joints (𝛼 ≤ 0), 𝑇 indicates Thumb. 

In addition, CMCs joints have a related connection with the MCPs. This is exemplified when the 
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fingers flex, the palm curves to make a finer grasp posture and all the fingertips aim to the 

thumb base point without obstruction. 

This can be represented by equation (2-12). 

 𝜃𝑓𝑖𝑛𝑔𝑒𝑟_𝐶𝑀𝐶 = 𝑘. 𝜃𝑓𝑖𝑛𝑔𝑒𝑟_𝑀𝐶𝑃 (2-12) 

Where k is the relation value between the flexion-extension angle of the CMC and MCP joints.  

(Wang  and Dai 2009) have determined the k values by performing the least square regression 

method on multiple natural positional tendencies of the hand (such as having the thumb and 

ring/pinkie fingertip make contact in front of the palm and measuring the variations of CMC-

MCP with other positions). The calculated relative values are listed in the equations group in 

(2-13). 

 

{
 

 
𝜃𝐼𝑑𝑥_𝐶𝑀𝐶 = 0.046 ∗ 𝜃𝐼𝑑𝑥_𝑀𝐶𝑃
𝜃𝑀𝑖𝑑_𝐶𝑀𝐶 = 0.0055 ∗ 𝜃𝑀𝑖𝑑_𝑀𝐶𝑃
𝜃𝑅𝑖𝑛_𝐶𝑀𝐶 = 0.14 ∗ 𝜃𝑅𝑖𝑛_𝑀𝐶𝑃
𝜃𝑃𝑖𝑛_𝐶𝑀𝐶 = 0.21 ∗ 𝜃𝑃𝑖𝑛_𝑀𝐶𝑃

 

 

(2-13) 

Where 𝜃𝐼𝑑𝑥_𝐶𝑀𝐶 is the flexion-extension angle of CMC joint for index finger, 𝜃𝐼𝑑𝑥_𝑀𝐶𝑃 is the 

flexion-extension angle of MCP joint for index finger, 𝜃𝑀𝑖𝑑_𝐶𝑀𝐶  is the flexion-extension angle of 

CMC joint for Middle finger,𝜃𝑀𝑖𝑑_𝑀𝐶𝑃 is the flexion-extension angle of MCP joint for Middle 

finger, 𝜃𝑅𝑖𝑛_𝐶𝑀𝐶 is the flexion-extension angle of CMC joint for Ringer finger, 𝜃𝑅𝑖𝑛_𝑀𝐶𝑃 is the 

flexion-extension angle of MCP joint for Ringer finger, 𝜃𝑅𝑖𝑛_𝑀𝐶𝑃 is the is the flexion-extension 

angle of MCP joint for Ringer finger,𝜃𝑃𝑖𝑛_𝐶𝑀𝐶 is the flexion-extension angle of CMC joint for the 

Pinkie finger, 𝜃𝑃𝑖𝑛_𝑀𝐶𝑃 is the flexion-extension angle of MCP joint for the Pinkie finger. 

On the other hand, Type III constraints are caused by those common and natural movements 

that unify every person. For example, hand writing postures and motions, sequence 

movements for opening-closing fingers and performing different tasks, and the involved 

patterns in the motions of grasping or performing daily activities which combine multiple joint 

movements between different digits (Mouri and Kawasaki, 2008).  

 

Furthermore, there are varying levels of dependencies between the different fingers. The 

middle and ring fingers have closer relative movements compared to the others. This is 



 
 

23 
 

determined in cross-couple joints motion observed while performing free movements (without 

object interaction or external forces on the hand).  

This correlation is due to multiple factors involving functional control of the hand, such as the 

passive mechanical connections between the joints, the structure of finger muscle tendons, 

and the neural control distribution in the upper limb and hand. Subsequently, this is divided 

into different constraint types and unique patterns of motion. The relationship parameters are 

dependent on each joint angle. 

Ideally, these constraints include significant details about the hand movements, but they are 

very difficult to define in a model equation. Hence, different techniques are required in order 

to capture these factors. 

Different researchers have used the finger dependencies rule with principal component 

analysis (PCA) to lower the number of DoF involved in representing hand motion or pose (Shuai 

et al., 2011, Housman et al., 2009).  

The strength of the hand in gripping and grasping objects is produced by different factors 

within its structure, such as the strength of the muscle, bone structure and density (mineral 

content), and the thickness of the tendons attached to the fingers’ bones (Callender, 2015). 

These constraints give harmonic contribution to the hand and reliability in its ability to perform 

precise and smooth movements in daily life activities. 

(The static constraints values used in this project are available in the CodeSnippet III-1. The 

dynamic or natural constraints are implemented in the calibration methods which are further 

discussed in the calibration Chapter 5) 

2.2.4. Finger Contribution 

Multiple studies were performed to assess fingers’ contributions. Methot has performed a 

study on a controlled group to determine the ulnar digits contribution to overall grip strength, 

using a calibrated dynamometer (Methot et al., 2010). The study indicated that the ulnar index 

and middle digits’ contribute significantly to the overall grip strength of the entire hand.  

On the other hand, other research has found that the normal digital contributions in grip 

strength were 25%, 35%, 26% and 15% for the index, long, ring, and small fingers respectively 

(Talsania and Kozin, 1998). 
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In another study, it was concluded that the total grip forces for the index, middle, ring, and 

little fingers were 42.0%, 27.4%, 17.6% and 12.9%, respectively in a static grip force (Kinoshita 

et al., 1995).This distribution showed that the fewer the number of fingers involved in the grip 

mode, the greater the grip forces were. However, the middle and ring fingers were influenced 

by the mode of the grip; but not the index finger. 

2.2.5. Contact 

The force exerted and the motor control determines the velocity of the fingers.  

Robotics researchers (González-Quijano et al., 2015) include the contact model in the hand 

kinematic when interacting with objects. The contact is defined as an interface between two 

bodies where the forces, 𝑓, and moments, 𝑀, are transmitted. The two variables are usually 

denoted in a single vector, called wrench, as represented in equation (2-14). 

 𝑤 = [
𝑓
𝑀
] (2-14) 

In the case of contact frame c, the wrench basis of the transmission is equation (2-15). 

 𝑤𝑐 = 𝐵𝑐𝑓𝑐 (2-15) 

where: 𝑓𝑐 is the contact force intensity; 𝐵𝑐 is the wrench basis matrix; 𝐵𝑐 ∈  ℝ
𝑝∗𝑚𝑖, 𝑝 is the 

space dimension (𝑝 = 6 for 3D) and 𝑚𝑖 is the number of independent forces on a contact area.  

In frictionless contact (Figure 2-5), the 𝐵𝑐 matrix is defined by equation. 

 

 

Figure 2-5 Contact force applied on the contour of the object. O is the centre mass. P is the 

world original 
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𝐵𝑐  =

[
 
 
 
 
0
0
1
0
0
0]
 
 
 
 

 

 

(2-16) 

Friction contact is represented by equation (2-17).  

 

𝐵𝑐  =

[
 
 
 
 
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0]

 
 
 
 

 

 

(2-17) 

Aside from this, the force applied in a contact is dependent on the finger kinematics and 

configuration of the contact. This is described using Jacobian 𝐽ℎ relation between the joints’ 

angular velocities �̇� with the fingertip’s (Cartesian endpoint of the joints chain) velocities by the 

equation (2-18) . 

 𝑣 = 𝐽ℎ(𝜃)�̇� (2-18) 

Torque of the joints is calculated by using the Jacobian transpose with 𝑓𝑐 fingertip forces on the 

contact points, equation (2-19). 

 𝜏 = 𝐽ℎ
𝑇(𝜃)𝑓𝑐 (2-19) 

The hand Jacobian is determined in the matrix of the equation (2-20) 

 

 

𝐽ℎ(𝜃) =  [

𝐽1(𝜃𝑓1)  0
 ⋱  
0  𝐽𝑛(𝜃𝑓𝑘)

] 

 

 

(2-20) 

 

Where: 𝐽𝑝𝑓1
8  is the Jacobian for the 𝑖𝑡ℎ finger in spatial coordinates, in reference to the palm. 

This is calculated in equation (2-21). 
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 𝐽𝑖(𝜃𝑓𝑘) =  𝐵𝑐
𝑇𝐽𝑝𝑓1
8  (2-21) 

2.3. Virtual Simulation 

The robotic simulator offers low-cost development time for new robotic simulations as well as 

more reliable components (Andrew and Matei, 2015). In order to address the complexity of the 

hand and implement both the mechanical and graphical kinematic models to the virtual 

simulation, it is efficient to develop the approach basing on a base robotic simulation platform 

that is already validated and upgraded with various physics and graphics elements for analysis, 

rather than starting from scratch and focusing on supplemental components for the 

application. However, most simulators are designed to concentrate on specific elements of 

robotic analysis, such as grasping mechanism, automation control for industrial applications, or 

for pathfinding and trajectory planning. 

Numerous different categories of 3D robotic simulators are available: open source and 

research simulators, such as OpenSim (OpenSim, 2015), Simbad (cross platform for scientific 

and educational, support Java) (Tim, 2015), Robotics Toolbox for MATLAB (Matlab), V-REP (very 

advanced 3D simulator for industrial robots, also supports many languages) (v-rep, 2015), 

Gazebo (cross-platform and compatible with ROS, with a large database of robots) (Gazebo, 

2015), UWA Robot Simulators and GraspIt! (developed by Columbia University for measuring 

the grasp quality); and commercial simulators, such as Worspace5 (Worspace5, 2015), 

Microsoft Robotics Developer (a free simulator that is compatible with visual studio) 

(StudioRoboticsDeveloper, 2015), Easy-Rob (EASY-ROB, 2015), AnyKode (cross platform and 

offers a high level of reality) (anyKode, 2015), and Virtools (Virtools, 2015). 

The robotic simulator’s structure is based on scene graph elements that contain graphical 

geometries and transformation definitions. The scene graph is a scene management interface 

whose role is to organise the scene data in a hierarchical order. The data is presented in a tree 

structure, composed of multiple nodes, where one of them represents the parent and one or 

all of the others are children to this parent node. The latest applications of these elements 

serve to combine the graph nodes with the transformation matrix and the grouping properties, 

making it simpler and more practicable to modify the orientation and geometry of the scene 
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objects.  

Each object is presented as a node, comprising multiple geometric properties and 

transformation details from the global (world) to the local (object) coordinates. This facilitates 

the manipulation of each object separately, and connects the multiple groups (collection of 

nodes characteristics) together by those that share similar values. 

 

Figure 2-6 shows the structure involved in managing the geometrical information, rendering it 

and displaying it on the visual device. 

The scene graph focuses mostly on haptic and dynamic operations, with little consideration of 

the graphic rendering, which is used in design and animation.  

Various scene graphs APIs are available, including Open Inventor (Group-Visualization-Sciences, 

2015), Performer (OpenGL-Performer, 2015), OpenGL Optimizer (OpenGL, 2015), DirectX 

(GeForce, 2015), Gizmo (Gizmo3D, 2015), Coin3D (Coin3D, 2015), OGRE (Ogre3D, 2015), 

QtQuick(Quick-Qt, 2015) and VRML97 (Vrml, 2015). These APIs are commonly used in graphics 

and provide multiple features and built-in components to create interacting visual applications 

(either in C++,.Net, Java, or C# language) with advanced rendering techniques and high 

performance. Some of the essential components included in these APIs are graphical objects 

(cubes, polygons, spheres, etc.), text, materials, cameras, lights and 3D viewers (Group-

Visualization-Sciences, 2015). The Open Inventor and Coin3D are open sources with cross 

compatible platforms.  

 

Figure 2-6 Architecture diagram of the scene graph; This figure illustrates the process 

executed to produce 3D graphical displays. The process starts by acquiring the high-level 
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details of the 3D graph, it then transfers the information into instructions for the graphical 

engines and subsystem rendering.  

The API libraries also include physics engines for simulating the virtual interaction properties of 

objects of different sizes, weights, dynamics, and mechanisms. Two of the available physics 

engines are the ODE (ODE, 2015) and PhysX (PhysX-Nvidia, 2015), used mainly for producing 

realistic movements in the scene.  

The imported world elements within the robotics simulators are designed with external 

modelling tools such as AutoCAD (AutoCad, 2015), Autodesk 3dsMax (3dsMax, 2015), Autodesk 

Maya (Maya, 2015) and Blender (open source tool with features of robotic simulation and 

animation) (Blender, 2015). However, some simulators like Virtual Robot Experimentation 

Platform (v-rep, 2015), Webots (commonly used in research and education) (Webots, 2015), 

and R-Station (H., 2015) support built-in creation tools. 

CyberGlove® has developed its own Virtual Hand Simulator (VHT) (CyberGlove, 2013) that 

includes a virtual human hand model, object manipulation and interaction, and graphical 

rendering. In addition to the scene graph, the application has an event model and physical 

simulation component, but they are very complex to develop or update with newly designed 

models. The endorsed physics engine is basic and lacks multiple robotic features, such as 

databases references with different kinematic mechanisms, and the possibility to include 

different 3D models with differing formats and structures.  

2.3.1. GraspIt! Robotic Simulator 

GraspIt! (Andrew and Matei, 2015) is a robotic simulation platform offering multiple features in 

research and development that support the project’s aims. It is an open source application, 

initially designed for measuring the robotic’s grasp quality. The application was developed by a 

group of researchers at the University of Columbia and implements multiple robotic models 

such as DLR, Barrett, Robonaut, and other designs commonly used in automation and industrial 

control.  

GraspIt! offers a generic and easy platform to import robots of various structures. It supports a 

robust 3D manipulation interface to connect multiple robots, links and objects, specifically 
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designed for an experimental virtual environment; a basic hardware and software 

communication interface to interact with sensors and analytical applications (MATLAB); a large 

database with robotic hand models and simple analysis functions to test lower dimension 

spaces; and a set of pre-developed algorithms for grasp optimisation, trajectory generation and 

planning, joints control, and dynamic simulation with a physics engine. 

2.3.1.1.  GraspIt!: Review 

The application, GraspIt!, is not fully developed and requires improvement on the dynamic 

engine processing, virtual hand manipulation with hardware devices, and kinematic 

modifications. However, this application is selected for this project because of the multiple 

features implemented in the API, which correspond closely with the project objectives.  

The application provides a rich and varied platform of robotic structures, accommodating 

arbitrary hand and robot design employment; it allows easy configuration of the simulated 

world, so is suitable for the needs of the experiment and the requirement for different aspects 

in robotic analysis. GraspIt! has multiple advanced units which implement machine learning, 

Principal Component Analysis (PCA) sub-spacing, soft finger contact, and a large grasping 

database for testing and training newly implemented algorithms; GraspIt! is an open source 

scientific research platform that has multiple implementations for robotic hands and provides a 

more straightforward system to implement newly designed models and kinematic 

configurations; and it also offers the ability to manipulate robotics joints through the sensory 

device.  

In addition, it is different from the other available robotic simulators as it is designed for 

qualitative analysis of robotic grasping with robust rendering and user interface systems. 

In order to implement GraspIt! in the experimental studies of the project, there are multiple 

elements requiring new development or improvement: 

- Hand Model: GraspIt! supports multiple robot hands with different designs and kinematic 

chains, but for bioengineering application models, it needs to be addressed in a different 

perspective to the robotic and industrial fields. 

 



 
 

30 
 

- Collision detection: This requires improvement to create more matching boundary volumes 

of the newly designed hand model. The performance process requires development, as the 

engine slows the real time update of the robotic joints’ movements, which in turn causes 

delays between the actual hand movement (wearing the data glove) and the visualisation 

system. This must also be addressed as it significantly affects hand performance analysis 

and results in inaccuracy in the speed, stability and smoothness of the hand movement. 

 

- Multiple contacts: GraspIt! allows only one collision contact at a time, so in a static mode 

when multiple contacts are produced, the application stops all the joints until the first 

contact is resolved. This makes the process unreliable, as it causes an asynchronous 

reaction with the finger movements and external manipulation. A handling list of contacts 

needs to be implemented in order to address the multiple contacts case and allow it to 

grasp and move objects in the static mode, without interruptions. 

 

- Dynamic view: Following multiple investigations and consultation with the application 

developers, the implemented dynamic engine was found to be fragile in applying 

appropriate forces on the robot links and detecting collision with multiple objects. The DoF 

motor controllers used are very difficult to calibrate in order to obtain the desired motion, 

which causes instability in the bodies’ motions. In addition, the robot link connections 

produce many errors if they are set incorrectly and without the precise time-step for the 

integration.  

Furthermore, the robotic hands cannot be externally manipulated by a data glove or user 

interaction, during the dynamic mode, which is a key criterion for the purpose of this study. 

Hence, further developments are required on the engine performance; suggestions have 

been made to replace the LCP solver due to its instability and the long computation time. 

An additional layer also needs to be included in order to give control to the robot joints 

without modifying the implemented motor controllers and joint connections process. 

 

- Hardware connection: Although GraspIt! has a hardware connection feature, this is, 

unfortunately, basic and only implemented in older versions, which lack the dynamic state 
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features and multiple kinematic chains in the new version. Thus, a hardware interface 

needs to be re-implemented to manipulate the hand model with the data glove and the 

DoF angle values have to be configured appropriately with sensor inputs. This leads to the 

next development procedure in this list. 

 

- Calibration: Calibrating the hand model with data glove sensory inputs is a vital element in 

obtaining accurate results and precise visual simulation with the hand movement. GraspIt! 

does not support a calibration method. In light of this, a robust method needs to be 

implemented to control the model DoF by the data glove with a precise and consistent 

movements display. 

 

- Experimental Setup: The role of the application in this project is to run hand performance 

experiments. This requires a set of interactive procedures with the virtual world, 

instructions to follow concurrently with the trials, and a new classification algorithm with 

appropriate object simulations to match the defined clinical hand classification method in 

this project.  

 

2.4. Motor Control 

The hand is controlled by the brain through signals sent via the nervous system to the muscles, 

which lead to contraction or expansion reactions (Kanade, 2009). 

The motor cortex, located in the frontal lobe of the brain, is responsible for generating order 

signals to the limb, with all the relevant information (force, position, speed, etc.) for executing 

a motor function. The transformation process from sensory signals, provided by exteroceptors 

and/or proprioceptors, to motor commands is determined within the central nervous system 

(CNS).  

Recent research has focused on understanding the steps involved in the transformation 

process (Kanade, 2009). This is because a number of complexities and sub-layers are involved in 

the reception, planning and control. For example, the spherical task – which involves moving 

the hand to grasp the ball, grasping it, moving it to a new position and relaxing it back to start 

position – has a very complex multi-dimensional coordination between sensory and motor 
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movements. This entails specifying the position between local and world coordinates; the 

orientation and adjustments of the many DoF between the arm and hand; the indeterminate 

assignments of specific DoF from large range in the control system; the cross-coupled DoF 

which require selective patterns; the involvement of muscles and the forces gathered by more 

than 30 muscles and thousands of fibres’ coordination; the infinite trajectories or paths which 

could be selected to perform the task; and the analysis of the defined velocity and force.  

 

The above motor control process can be divided into four stages: Plan, Control, Estimation and 

Learning, Execution. A brief overview of these stages is presented in the sections below. 

2.4.1. Plan 

Pas literature suggests that the method used to plan the movement in the CNS is attained by 

creating optimal control processes, based on self-supervised models (fed with the sensory 

inputs and previously learned functions), in maximising the smoothness of the hand trajectory 

and torque commands (Flash and Hogan, 1985, Uno et al., 1989). However, this method 

doesn’t consider the multiple motor systems involved and only addresses the optimised factors 

of smoothness and trajectory levels, which still need further investigation in this approach. 

2.4.2. Control 

Some of the methods in the motor command process suggest that the CNS specifies spatial 

parameters using the concept of the spring-like properties of muscles and reflex loops 

(Feldman, 1966, Hogan, 1984). This is where the muscles that are used and the spinal cord 

properties act as a feedback controller to adjust the hand to the desired trajectory and perform 

the movement with multiple successive equilibrium positions.  

Another method suggests the inverse model construction in mapping each point’s state of the 

trajectory into motor commands (Kawato et al., 1987). A more recent method proposes the 

combination of the inverse model to achieve the desired position, with the implementation of 

muscle activation patterns to simplify the command (Giszter et al., 1993). 

The above highlights the different explanations of the brain neurons’ mechanism to encode the 

trajectory properties such as the direction, velocity, acceleration, posture and torques. 
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However, other explanations propose that the trajectory properties are rather resolved in the 

cortical activity, muscle filtering properties and movement kinematics' overall relations.  

2.4.3. Estimation and Learning 

The CNS has great capacity in estimating the next movement state of the hand by mentally 

simulating the movement of the hand and objects (Miall and Wolpert, 1996), with less sensory 

feedback delays and higher accuracy of the next estimated state. Sensory prediction is involved 

in cancelling the noises or sensory effects of movements and enhancing the more relevant 

sensory information. This is mainly applied in self-motion to determine whether a movement is 

externally or internally produced, which may increase the accuracy of the prediction 

(Blakemore et al., 1999).  

The neural mechanism is continuously learning and improving movement accuracy. The 

properties of the sensory feedback system are captured in the forward and inverse model, and 

an error signal is derived from the variation between the predicted and actual sensory 

feedback of the movement (Bell et al., 1997), to improve the control model and make 

adjustments in response to the dynamic changes.  

2.4.4. Execution 

The neural system delivers the command signals to the muscle fibres, which in turn contract 

and expand with specific velocity and force to control the skeleton bones of the hand and arm 

for reaching, grasping the ball, moving it to a new position and relaxing back to the starting 

position. 

The relationship between the developed application in this project and the above-mentioned is 

very significant, as the motor control of hand function is very comprehensive and is the origin 

of the initial causes for hand performance or dysfunction. Further to this, the application is 

developed with the intention of being used in future projects involving the neurophysiology of 

the hand movement. 

Hand movement classification of brain activities is a very complex process and requires specific 

analysis algorithms to divide the multi-dimensional details of the neural control signal.  

This section aims to simplify or breakdown the aspects of using the developed application, in 
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the project, with the possible classification methods for the hand gestures. This can be used in 

Brain-Computer Interface (BCI) analysis or brain activity pre-processing.  

An example of hand classification is to define a set of known postures, such as spherical, tripod, 

point and lateral, which can be used in the feature selection of the algorithm. This will train the 

algorithm to identify specified posture properties encapsulated in the brain signal variations 

and recognise new hand functions as they are added to the system. 

The existing challenges in this process are the high dimensionality of the involved parameters 

in each task. This includes the wide range of motions for the joints, the large number of hand 

and arm DoF instructions involved, and the dependencies and constraints defined in the 

natural movements. 

Therefore, the regression analysis method is not applicable in this specification and more 

advanced techniques are required in order to subspace the level of details in the hand function 

and continuously adapt, with new inputs that cover the different variations of the joints’ 

workspace. 

 

Santello has suggested that most grasping hand postures derive from a relatively small group of 

discrete pre-grasp shapes (Santello et al., 2002). They have selected 57 objects (umbrella, 

wrench, apple, door key, etc.), encountered in day-to-day life, to impose multiple defined hand 

postures. To determine the extent of each posture, a discriminant analysis (Johnson  and 

Wichern, 1992) method is applied and the generated outcome is used to construct a confusion 

matrix (instructed postures X objects), representing the hand posture prediction for each 

grasped object. The optimal association of the hand postures with appropriately shaped 

objects are positioned on the diagonal of the matrix.  

Regression analysis is then used to assess the level of angular covariance between the multiple 

DoF. To investigate the covariations of the hand patterns and undefined constraints, the 

principal component analysis (PCA) was computed using the eigenvectors and eigenvalues of 

the coefficient covariance matrix from the postures (waveforms).  

The results showed that the first two PCA’s principal of components account for 80% of the 

variation range for all 57 postures. Therefore, the high dimensionality of the hand postures in 

daily activities can be reduced to obtain the relevant DoF space. The rest of the principal 
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components (which form 20%) are still very critical to count as 1- they are not noises and 2- it 

could be suggested that they are included in the initial grasp planning stages, as this specific 

study was performed in the absence of the real objects and by reproducing it from memory. 

This method was also implemented using the GraspIt! application on robotic hand postures 

(Ciocarlie and Allen, 2009). Each posture p is described as in (2-22): 

 𝑝 = [𝜃1 𝜃2…𝜃𝑑] ∈  ℝ
𝑑 (2-22) 

Where 𝑑 is the number of DoF; and 𝜃𝑖 is the angular value of the i-th DoF.  

Also p is calculated using equation (2-23): 

 
𝑝 =  ∑𝑎𝑖𝑒𝑖

𝑏

𝑖=1

 
(2-23) 

Where 𝑏 is the number of principal components (eigengrasp) in the defined subspace of the 

hand posture; 𝑎𝑖  is the i-th amplitude vector, as represented in equation (2-24): 

 𝑎 = [𝑎1 𝑎2…𝑎𝑏] ∈  ℝ
𝑏 (2-24) 

and 𝑒𝑖 is the principal component for i-th posture, represented by equation (2-25). 

 𝑒𝑖 = [𝑒𝑖,1 𝑒𝑖,2…𝑒𝑖,𝑑] (2-25) 

Alternatively, to optimise the parameters of the grasp postures in edge grasp (principal of 

components) space, by decomposing the hand posture (intrinsic) and position (extrinsic) 

details, the energy function is of the form shown in equation (2-26): 

 𝐸 =  𝑓(𝑎, 𝑤) (2-26) 

Where 𝑎 ∈  ℝ2 is the vector of eignengrasp amplitudes (2 as only two eigengrasps counted);  

and 𝑤 ∈  ℝ6 contains the position and orientation of the wrist. 

This function attempts to define selected contact points on the robotic hand in contact with 

the object.  
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Table 2-3 Eigengrasps defined for the robotic hand models, which is used in GraspIt! (Matei 

et al., 2007). 

 

Although this method identifies a large range of hand postures, it still needs improvement in 

different aspects. Firstly, it covers only a limited range of daily life common postures; this could 

return inaccurate definitions for the myriad different postures that are less frequently used. 

Secondly, the rest of eigengrasp (~20%) postures are not defined (Santello et al., 2002) and 

these could be part of the grasp planning or the object shape restrictions that force the hand to 

change from natural movements.  

 

An interesting concept, which could be used to complement to the above method, is the self-

organising map (SOM), which allows the extension of the hand posture variations to include all 

the varied motions without eliminating any of the patterns or natural movements that are 

unique to every individual. 

The SOM is a neural network method used for data analysis, dimension reduction, 

classification, and predictions, among others. The method concept acts similarly to the PCA 

through non-linear projection of the data into lower dimensions, but the reduction is 

performed in the first stage by clustering the data with similar properties or features. It is an 

unsupervised training system that uses competitive learning, where the network neurons 

organise themselves by activating only one output neuron, based on the connections’ weights 

and negative feedbacks, at the time. 
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Figure 2-7 Self-organizing map schematic; x is the input in high dimensional space, I is the 

output that is organised in low dimensional space, and w is the connectivity weight. (The 

output dimension can extend from 1 to N dimensions, but always less than the input’s).  

The process of the SOM could be described in the below steps (Kohonen, 1997): 

1- Initialisation: collecting all the input nodes with random weights vector. 

2- Competition: selecting the neuron with weight vector being the closest to the input 

vector to be activated, known as a best matching unit (BMU). This is obtained by 

finding the smallest value of the discriminant function, using the Euclidean distance in 

equation (2-27). 

 
𝑑𝑗(𝑥) =∑(𝑥𝑖 −𝑤𝑗𝑖)

2

𝐷

𝑖=1

 
(2-27) 

Where 𝑥 is the input vector; D is the input dimensional space; and 𝑤𝑗𝑖 is the connection 

weights between the input units 𝑖 (1 to D) and the neurons 𝑗 in the low dimensional 

space (1 to N). 

3- Adapting: Adjust the network by pulling the neighbour nodes of the BMU closer to the 

input vector. This is done by updating the weights using the equation (2-28). 

 ∆𝑤𝑗𝑖 = 𝜂(𝑡)𝑇𝑗,𝐼(𝑥)(𝑡)(𝑥𝑖 −𝑤𝑗𝑖) (2-28) 

Where 𝜂(𝑡) is a learning restraint due to iteration progress; and 𝑇𝑗,𝐼(𝑥) is the 

topological neighbourhood function for the neurons in the SOM, which is commonly a 

Gaussian function that depends on the lateral distance between input data and BMU.  



 
 

38 
 

4- Continuation: keep repeating until the feature map stops changing. 

Therefore, by utilising the above process to identify the hand gesture, the network is first 

trained by multiple hand postures to find the optimally organised map, which is then applied 

on new hand motions to recognise the gesture.  

The SOM method has multiple advantages, as it is adaptable with new inputs and patterns, 

which are usually difficult to derive from the hand movements. The method counts these 

components in the network map organisation in response to the negative feedback updates.  

Shuai and colleagues have used SOM to recognise the hand gestures from dataglove readings, 

but only two gestures are defined for classification, as it is used for simple tasks in the virtual 

interaction (Shuai et al., 2010). 

However, the SOM method requires extensive investigation, specifically in the pre-processing 

phase, to choose the relevant input data to determine the adequate features that are suitable 

for the classification interests. Santello and colleagues suggested using a sensorimotor index 

(SME), a ratio between the actual information transmitted by the hand posture and the 

maximum possible amount of information that could be transmitted, in order to differentiate 

the hand postures(Santello et al., 2002). This can also be used as an additional parameter for 

more efficient map rearrangement in order to obtain the desired outputs.  

2.5. Summary of the Background Chapter 

In this chapter, multiple elements of the hand anatomy, structure and complex kinematical 

model have been reviewed. Also, as the project aim is to develop a virtual reality system for 

hand assessment, the author explained in extensive detail the selected robotic simulator 

architecture and compliance with the project requirements. The hand motor is later described 

to provide a further background of injury causes and hand functionality.  

In the following chapter, multiple systems used in hand rehabilitation and the affiliation of the 

proposed approach with the various systems of architecture and end outcomes will be 

reviewed.     
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Chapter 3 Literature Review 

Research into hand rehabilitation is continuously increasing due to the high demands in clinics 

for advanced applications to address the multiple aspects of hand physiology and anatomy 

(Florence and Jane, 1988). The regularly updated devices implemented in surgical procedures 

require different and more consistent strategies to restore lost function in the affected area, in 

addition to the technological improvements which provide the driving factor for continued 

research to develop more advanced hand rehabilitation systems. 

First, it is important to note that this project has a very diverse scope. The initial idea of the 

project was to develop a system for hand rehabilitation by using a data glove device. 

Therefore, in this chapter the existing hand rehabilitation techniques used in research and 

clinics are reviewed, beginning with the basic and traditional clinical tools/exercises to the very 

advanced technological systems that use robotic assistance, virtual reality, Neuroprosthesis 

and other technologies (this is covered in sections 3.1.1 to 3.1.8). In addition, I illustrated some 

of the robotics devices and exoskeleton technologies, and the latest technologies in tracking 

the hand motion (visual based, optical, mechanical and data glove devices) to give a deeper 

understanding of the new system mechanisms. 

But remarkably, during the review of these systems, it is noticed that nearly all of them depend 

on subjective assessment of hand improvement during rehabilitation, or on assessment 

techniques that are limited toward specific tasks only or account for the general hand posture 

which varies between each case. 

Thus, it is later reviewed, in section 3.2, the existing hand assessment techniques covering the 

basic clinical methods to the most advanced technological devices.  

Also, descriptions and review of each individual system are provided. The chapter concludes by 

specifying the selected methods and devices for the project, and illustrates the uniqueness of 

the project’s approach and advantage in supporting the hand rehabilitation research. At the 

end, the Experimental Chapter 4 is introduced, where the materials and the key advantages of 

choosing these equipment and devices are provided. 

The literature review search was conducted by focusing on controlled randomized studies, 

reviews and meta-analysis, published in English between 2005 and 2016. The research was 
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conducted in MEDLINE, IEEE, ACM, ProQuest and Compendex, JREF with the following 

keywords: ‘‘human hand rehabilitation”, ‘‘human hand assessment’’, ‘‘human hand outcome 

measures’, ‘human hand assessment tests’, ‘virtual reality hand rehabilitation’, ‘robotics hand 

rehabilitation’, ‘robotic arm’, ‘virtual robotic hand’, ‘Neuroprosthesis upper limbs’, ‘data glove’, 

‘motion tracking’, ‘tracking sensors’, ‘hand exoskeleton’, ‘virtual reality hand assessment’, 

‘clinical therapy’, ‘clinical hand assessment methods’, and ’EMG hand movement’. 

3.1. Hand Rehabilitation 

This section lists the hand rehabilitation techniques applied for hand motor function damage. It 

includes the Clinical Therapy, Robotic Assistance, Virtual Reality, Neuroprosthesis, and 

Synthesis. 

3.1.1. Clinical Therapy 

Studies have proven that arm therapy has positive effects on the rehabilitation progress, and it 

is essential to implement hand therapy in the early stages of hand diagnosis to obtain efficient 

outcomes. Improving motor coordination and inhibiting consequent complications, i.e. 

spasticity or joint degeneration, would serve to enhance the hand motor skills and give patients 

confidence and independence in their lives (Florence and Jane, 1988). 

In general, the patients with paralyzed arms receive arm therapy to rehabilitate the hand 

motor function through learning new skills which facilitate the transfer from training activities 

to daily life activities (ADL) (Florence and Jane, 1988).  

3.1.1.1.  Physiotherapy 

Figure 3-1 highlights the rehabilitation methods used in clinics, with reviews of the advantages 

and disadvantages.  
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Figure 3-1 Taxonomy of the physiotherapy techniques applied in human hand rehabilitation sessions. (This 
taxonomy is produced by the author© 2015. The information is taken from Chapter Implications for Practice in 
(Florence and Jane, 1988) 

Physiotherapy is a type of therapy used in clinics; it involves training exercises, manual therapy 

techniques such as stretching, digit flex hand and grip strengthening to relieve muscle pain and 

stiffness, and hand massage on targeted area to encourage blood flow (Wu et al., 2006). 

Figure 3-1 shows the most common techniques used in physiotherapy. Positioning and 

immobilisation are applied to prevent deformation of the hand’s natural movement, by using 
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pillows, rolled towels or splints (Brosseau et al., 2003); manual techniques such as massage or 

vibration are performed on the patient’s hand to soften or restore the range of movement; 

electrical techniques stimulate selective areas of the hand to restore neurons or muscles 

functions, and this may include neuromuscular electrical stimulation (NES) (Lake 1992), high 

voltage direct current (HVDC) (Maria  et al., 2010), ultrasound, transcutaneous electrical nerve 

stimulation (TENS) (Brosseau et al., 2003), functional electrical stimulation (FES) (Kawashima et 

al., 2013) and interferential pads (Fuentes et al., 2010); range of motion (ROM) helps to 

remodel the affected part of the hand and provides proprioceptive feedback on the hand 

movement to the patient. Techniques included in ROM are proprioceptive neuromuscular 

facilitation (PNF) techniques, for relaxation and mobility, and light to heavy resistance levels of 

therapeutic techniques by using objects with different shapes, textures and weight (i.e. temper 

foam sponges); functional activities to promote active range of motion by multi-modal 

activities: exercises involving activities of daily living (ADL), such as pouring water, opening a 

door handle, grasping a mug or ball etc.; active exercises such as stretching the joints full range 

in isolation or as mass movement; and strengthening the muscles by using different tools 

(static bike, rowing machines, putty exercises, ball games, etc.), or light activity therapy, fine 

pinch (pick-up sticks, quilling, etc.) and gross pinch (solitaire, dominoes, Scrabble, etc.). 

 

3.1.1.2. Occupational therapy 

Unlike physical therapy, occupational therapy focuses on evaluating and diagnosing movement 

dysfunctions, the occupational therapy focuses on improving life skills and incorporating 

adaptive tools. It includes different treatment practices such as wound and scar management, 

splinting, fracture healing, dynamic activities (require repetitive grasp and release and include 

putty exercises, open a door handle, pick up coins, play checkers, put puzzle together, pick up 

can, fill bowl with rice, large beadwork) and static activities (focus on endurance building and 

sustained tool use and may include painting, drawing and writing skills) (Florence and Jane, 

1988). 
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3.1.1.3. Mirror therapy 

It consists of a mirror projecting the functional arm in order to create the illusion of normal 

movement for the patient while training the dysfunctional arm. This technique was initially 

used to treat phantom limb pains for patients with amputated arms, but recently it was 

employed in post-stroke rehabilitation as it has an optimistic and psychological impact 

(Altschuler et al., 1999, Sathian et al., 2000, Yavuzer et al., 2008). Mirror therapy provides finer 

motor capacity and autonomy scores for tasks involving upper limb functions. 

3.1.1.4. Pharmacological technology 

It uses drug and chemical properties to restore perceptual, cognitive and motor functions. 

Drugs have a broad effect on the biological system and facilitate the rehabilitation progress. 

Additionally, studies have found that combining specific chemical treatments (amphetamine) 

with rehabilitative training may enhance neural signals and return beneficial effects in 

restoration of hand function (Barbay and Nudo, 2009a). 

3.1.1.5. Constraint-induced movement therapy (CIMT) 

It uses the concept of learned non-use, by applying intensive exercises on the affected limb 

whilst the healthy limb is restrained from moving by a splint, light cast or sling, (Taub and 

Morris, 2001). It is used as a treatment for post-stroke patients in cases where the motor and 

sensory deficits of the affected limb are not too severe.  

3.1.1.6. Continuous Passive Motion (CPM) and Continuous Active Motion (CAM) 

The CPM, (Birch et al., 2008), is a device that provides early post-operative passive motion to 

maintain a gentle range of movement in the hand. CAM is a device used in rehabilitation after 

CPM to provide active resistance on hand motion. Recently, CPM and CAP have been employed 

in robot assistance device structures, which are discussed in detail in the next section. 

3.1.1.7. Mental imagery 

It is a form of rehabilitation based on subliminal activation of the motor neuron system by 

inducing imagining actions, recognising the surrounding environment, observing, and learning 

by comprehending other people’s actions. It is referred to as a conscious representation of an 

action (Jeannerod and Frak, 1999). 
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3.1.1.8. Review of the Clinical Therapy Methods 

The above mentioned methods have multiple drawbacks in practical application as they require 

intensive work from both therapist and patient, they entail long and weary training sessions 

which prevent patients from gaining optimal therapeutic outcomes, they lack repeatability and 

they rely largely on observations and verbal feedback for assessment (Huang and Low, 2008). 

The level of efficiency of verbal encouragement and feedback, provided by the therapist, is 

dependent on the patient’s interactivity, with regards to their cognitive ability and motivation. 

The majority of patients find training sessions tedious and boring and this demotivates them 

and prevents them from continuing the sessions (Damush et al., 2007, Johnson et al., 2006) .  

 

In contrast, robotic-aided systems reduce many of the above drawbacks by providing effective 

training with repeatability and purposeful exercises. This eventually increases the likelihood of 

gaining optimal motor function and compliment the therapist’s intensive work by providing 

autonomous exercises, which have higher consistency and efficiency (Reiner, 2005). 
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3.1.2. Robotic Assistance 

Robotic assistance devices have multiple advantages in rehabilitation. They apply regulated 

forces on the hand, replace the therapist’s assistance, produce repetitive training movements 

throughout the hand range of motion (ROM) and prevent inappropriate movements which 

could cause abnormality to the original form of motor function (Huang and Low, 2008, Prange 

et al., 2006). Brain injury is also found to be influenced by the sensorimotor experience, where 

repetitive robotic assistance therapy exercises after injury have a positive impact in speeding 

up the recovery of hand functions (Sale et al., 2014).  

 

Various robotic devices were developed to address the different challenges in hand 

movements and multiple DoF, with different designs which adjust to the patient’s hand 

performance during training, cover a wider range of the patient’s ability, suit the hand size and 

consistently target the appropriate ROM. 

Chalon and colleagues presented a list of functional specifications to consider while developing 

a high performing arm rehabilitation system, that would return positive effects on hand 

restoration as well as adaptability with the patient’s hand size and affected part (Chalon et al., 

2010). The following parameters are considered in the functional specification priority: human 

size, tendon-driven system, good object enveloping, fingertip manipulation, human range of 

motion, flat hand configuration, correct magnitude of the thumb forces, large power grasp, 

large opening angle, maximum contact surface and proper orientation, and minimal control 

complexity. 

 

Several clinical test studies (Zariffa et al., 2011), performed on patients after using robotic-

aided systems during rehabilitation training, have displayed efficient improvements on the 

motor function movements with higher impact. Clinical studies (Zariffa et al., 2011) showed 

that the piloted robot-aided devices are safe, feasibly adaptable by patients, and can enhance 

restoration in motor control of proximal arm function. 

 

In the section, the robotic devices are divided into three subsets: robots which are used mainly 

as therapy aids, exoskeleton devices, and assistive robots. 



 
 

46 
 

3.1.3. Therapy aid robot  

Therapy aid robot devices are used in combination with therapeutic exercises and work on 

improving hand performance and reducing the dysfunction level. They provide individual 

control for each hand digit by applying active and passive forces on the distal segments of the 

digits. The robot is designed on the self-adapting system, whereby the level of assistance to the 

patient’s hand is reduced in correspondence with hand improvement, with the aim of training 

the hand towards independent functions. 

Table 3-1 lists some of the commonly used robotic aid devices in hand therapies.  

3.1.4. Exoskeleton  

Exoskeleton devices take the form of external skeletons on the hand and the finger joints. They 

are comprised of components which expand and contract and have direct control of the digits’ 

movements. The device’s DoF are aligned with the hand joints. The challenges encountered 

with these devices, as shown in the examples given in Table 3-5, lie in their being not very 

comfortable on the hand, their difficulties to apply on a large ROM, and that they involve a 

complex process for joint control (Nef et al., 2007). 

3.1.5. Assistive robot  

Assistive robot devices support patients in their daily activities but do not promote 

rehabilitation. These devices are used to assist aging people or for generic purposes, but there 

is scope for them to be employed in rehabilitation i.e. exploring the environment, manipulating 

objects from a distance, lifting heavy objects, etc. It is important to highlight that there are 

common bases between these devices and industrial robots. However, employment of the 

latter in rehabilitation requires them to be adjustable and oriented to the newly instructed 

activities as there is difference in the system and structure of these robots (Munih and Bajd, 

2011).
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Table 3-1 List of robotic devices used in assisting with therapy exercises (this table is produced by the thesis author © 2015) 

Device Developer Description Review 

RUPERT 

Kinetic Muscles Inc. 
(Krebs et al., 
2007),(Volpe et al., 
2000) 

A robotic device that uses pneumatic muscles to perform repetitive 
therapeutic exercises to the upper extremity. It undergoes a self-regulation in 
the amount of force needed for normal feeding and reaching movements, 
which allows the muscles to function independently through exercises. 

 

Haptic MASTER  
Moog FCS 
Corporation 

A force-controlled robotic device that provides force feedback to the hand. It 
has three degrees of freedom (yaw, pitch and roll). The device measures the 
velocity, endpoint position and forces exerted to the admittance by the hand.  

The device helps to interact 
with various rehabilitation 
applications. 

Reha-Digit  (Hesse et al., 2003) 

A controlled electromechanical trainer for sensorimotor rehabilitation of 
paralysed fingers. It has four mutual independent rolls with powered cam 
shaft to move the four fingers (apart from the thumb) in a repetitive range of 
movements. 

 

GENTLE/s 
(Loureiro et al., 
2003b) 

A robotic rehabilitation system for neural and physical therapy rehabilitation. 
It has haptic components: frame, shoulder support, wrist connection, elbow 
orthosis, keypad and HapticMaster (a three-dimensional haptic interface 
device with three DoF), and Virtual Reality system.  
 

The system includes motivation 
factors by incorporating 
training exercises, contributing 
to physical movement with 
visual perceptions. 

Hand Rehab. 
Machine 

 (Yamaura et al., 
2009) 

A hand rehabilitation system that uses a wire-driven mechanism. It has a hand 
rehabilitation device, placed on the dysfunctional hand, which moves finger 
joints with the motor. A data glove is worn on the healthy hand, to control the 
movement of the finger joints on the other hand. 

 

    

Bristol Robotics Hand 
System 

(Tzemanaki et al., 
2011) 

A finger rehabilitation device. It has one linear actuator for each finger with a 
force sensor at each fingertip. The device gives repetitive training exercises by 
passively extending and flexing the fingers in order to regain flexibilities. 

 

InMotion HAND™ 
robot 

Interactive Motion 
Technologies 
(InMotion, 2015) 

It is used with the InMotion ARM™ Robot and forms a neurorehabilitation 
platform that delivers strength, sensorimotor, sensory and continuous passive 
motion training in the grasp and release of the hand. 
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Table 3-2 List of assisting robot systems in hand rehabilitation (this table is produced by the author © 2015) 

Device Developer Description Review 

TWENDY-ONE 
(Iwata and 
Sugano, 2009) 

A human symbiotic robot. The robot has dual arms with a compact 
passive mechanism and mechanical softness in joints and skins. 
The arms are supported with tactile sensors to adequately 
manipulate objects through contact with the fingers and palm.  

This robot was initially developed for 
enhancing the quality of life for the elderly by 
providing them physical support in their daily 
life activities. 

KH Hand type S 
(Mouri and 
Kawasaki, 2008) 

An advanced robot hand. It has a low force robotic manipulator to 
guide the human user’s movement to place a tool at specified 
positions. The robot returns faster responses than human fingers, 
provides dexterity in manipulating objects, and enables compliant 
pinching with distributed tactile sensors. 

This application is used for industrial purposes 
but entails many advanced robotic 
technologies in designing anthropomorphic 
hand device (Kikuuwe et al., 2007). 

ActivMedia Pioneer 
2-DX mobile 

(Gockley and 
MatariĆ, 2006) 

A self-guided mobile robot system used for exploration of unknown 
environment and indoor applications. It has wheels with sensing and 
navigation components.  

Used by Rachel Gockley et al. in the study to 
assist and encourage the patient. The device 
demonstrated the extent to which patients 
comply with their physical therapy. 

 

 

Table 3-3 List of hand exoskeleton used in hand rehabilitation (produced by author © 2015) 

Device Developer Description Review 

SKK Hand Master (Sung, 2000) An exoskeletal haptic device that is semi-directly driven by linkage 
with ultrasonic motors. It has two finger-like modules attached on 
the index and thumb. The device can produce high torque without 
the need for gear transmission. 

This method avoids the problems in 
integration of the weight and actuation to 
generate sufficient forces for rehabilitation 
requirement. 

Rutgers Master II (Bouzit et al., 
2002) 

A tendon driven exoskeleton, providing control for four fingers with 
one degree of freedom each. The device is used to assist in 
performing rehabilitation exercises supported by Virtual Reality.  

It was employed in a study of the 
rehabilitation of stroke patients. 
The performed exercises, supported by 
virtual reality, showed measurable success 
(Jeannerod and Frak, 1999). 
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Device Developer Description Review 

CyberGrasp® (CyberGrasp, 
2015) 

A force feedback exoskeleton system on the fingers and hand. It 
has a network of tendons to the fingertips with five actuators for 
each finger. The device is designed for virtual interactions and lets 
the patients perceive the hand size and 3D object’s shape. 

It restricts motion by pull cables with brakes 
on their distant end. (Further review on this 
device is explained in the haptic devices 
below). 

Hand Exoskeleton 
Rehabilitation Robot 
(HEXORR) 

(Godfrey et al., 
2010),(Schabowsky 
et al., 2010) 

A hand exoskeleton device that has two modular components to 
control the fingers and thumb movements separately. The device 
serves to restrict movement in correspondence with the 
specification, produces static force and allows free movement. It 
provides hand motor therapy. 

 

Hand rehabilitation 
exoskeleton 

(Wege et al., 
2013a) 

An exoskeleton hand robotic device that has four units: actuator 
and controller, orthopedic attachment, and mechanical leverage. 
The device supports bidirectional movement, has four degrees of 
freedom for each finger, and no tools on the palm to permit 
interaction with objects.  

The device is designed for hand 
rehabilitation. It can be used to diagnose 
hand injuries with fitted sensors on the 
leverage. And it can be easily attached and 
adjusted to damaged hands.  

iHandRehab  (Li et al., 2011) A hand rehabilitation system that is composed of hand 
exoskeleton, controller and virtual environment. The exoskeleton 
has wires attached to the joints and is connected by actuation 
modules to drive hand movements and receive feedback of the 
joints’ movements, forces and variation angles via integrated 
sensors. It provides both active and passive rehabilitation motions 
on the thumb and index fingers. 

The device is lightweight, has low inertia, 
independent control of the finger joints, 
mechanical safety design and can 
accommodate different hand sizes with 
variable ROM. 

Index finger 
rehabilitation 
exoskeleton 

(Wang et al., 2009) An exoskeleton with four DoF. It has four modules on the joints of 
the index fingers and uses a double slider mechanism to achieve 
the flexion/extension of the joints. The device provides angles and 
force measurements of the joint during finger rehabilitation. 

The design of the device can be extended to 
adopt the other fingers, but it does not 
provide sufficient ROM because of the 
constraints of the modules (Li et al., 2011). 

HANDEXOS (Azzurra et al., 
2009) 

A wearable exoskeleton device that allows independent actuation 
of all fingers. It has active rotational joints for flexion/extension, 
passive rotational joint for abduction/adduction, and passive 
translational joint for the kinematic coupling for each finger. The 
device trains the impaired hand to perform safe extension motions. 

The device still needs clinical studies on the 
biomechanical assessment of stroke hand.  

T-WREX (Sanchez et al., 
2006) 

Is a passive orthosis training system. It has a robotic arm 
exoskeleton with elastic bands and no robotic actuators. It gives 
five DoF and interacts with computer simulations.  
The device provides gradable anti-gravity support for the arm and 
measurement for arm and hand grasps during functional activities. 
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Device Developer Description Review 

Fin motion assist 
equipment 

(Satoshi et al., 
2011) 

Self-motion control rehabilitation equipment. It has motion 
assistance devices for the fingers, wrist and mobile base. The 
device contains active and passive joints to allow bilateral 
rehabilitation assistance. It provides symmetrical motions control 
between the affected and unaffected hands. The unaffected hand 
commands the device using a data glove device, which feeds back 
joints posture to the equipment actuators. The device also returns 
hand motion visual feedback through computer graphic displays 
and has forced measurements. 

 

AMADEO Tyromotion 
(Amadeo, 2015) 

Fingers mechatronic rehabilitation device. The device consists of 
finger slides that transpose the flexion-extension movement. It has 
three different modules that could be set depending on the 
progress: passive, active and active variants. 

It allows measurement of fingers’ movement 
and interacts with virtual objects, but the 
wrist is stable and addresses fingertip 
positions only. 

DLR Hand II (Huang and Low, 
2008) 

An advanced robotic system that is attached to the patient’s hand 
and regulates the inputs/outputs to transmit full support in 
movement and rehabilitation exercises of the hand. 

 

ARMin (Nef et al., 2007), 
(Staubli et al., 
2009) 

A haptic display and arm therapy robot with semi-exoskeleton 
kinematics. It provides patient-cooperative assistance by 
considering his/her activity and the level of support needed. The 
robot is combined with an audiovisual to display the tasks and 
movements.  

The system increases the motivation and 
activity of the patient during rehabilitation 
sessions. 

Hand exoskeleton Andreas Wege and 
Günter Hommel 
(Wege et al., 
2013b)  

A hand exoskeleton device designed for hand therapy, which 
supports bidirectional movements. It has four degrees of freedom 
for each finger, and no tools attached to the palm, to allow free 
interaction with objects. 

The device can be easily set up and adjusted 
to the deformed and damaged hand. 

Biomimetic orthosis 
Neurorehabilitation 
for Elbow and 
Shoulder (BONES)  

(Klein et al., 
2008b) 

A shoulder and arm rehabilitation exoskeleton that offers support 
on three degrees of freedom, for shoulder movement and shoulder 
internal/external rotation. 
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Despite the positive outcomes of robotic device applications in hand rehabilitation research, 

their use is still not spread across clinics. This is mainly because very few clinical tests have 

been performed on hand robots (<25% of devices are tested), and also many of the devices are 

not compatible with the clinical environment (Lum et al., 2012).  

 

However, clinical test studies are not conclusive on the advantages of using robotic devices in 

rehabilitation and the analyses show variances and inconsistency. Some researchers have 

demonstrated that robotics are very effective in hand training Reha-Digit (Hesse et al., 2013) 

and the Hand Wrist Assistive Rehabilitation Device (Takahashi et al., 2008), but others have not 

supported these advantages (Fischer et al., 2007, Connelly et al., 2010, Lo et al., 2010, Kutner 

et al., 2010). In addition, review papers suggest multiple reasons for these discrepancies 

between studies:  

a. Inefficiency in the device design, where the dysfunctional hand’s motor control is not 

addressed accurately. Most of these devices can provide simple grasping and releasing 

(Wege et al., 2013b). Their initial design addresses only one or two fingers and considers 

the rest (fingers and wrist) as one part, resulting in a contrast with normal hand movement. 

b. Uncomfortable and difficult to set up on the hand, which might demotivate the patient 

from using it. Most of these devices place the motors or the mechanical structure on the 

forearm, and this makes it undesirable and adds unwanted weight to the hand during 

rehabilitation training. 

c. Incompatible with the clinical environment, as the study shows that less than 25% of hand 

robots have been tested specifically in clinics. Most robotic devices are not able to support 

daily living activities (ADL) due to their design and physical/hardware limitations (Huang 

and Low, 2008). 

d. Technological limitations in the hardware and materials, including inertia, strength, force-

control ability, and range of motion (RoM). This decreases the viability of the device in 

rehabilitation (van der Smagt et al., 2009). 

e. The muscle lag issue, as patients start to adjust their hand functions by relying more on 

robotic assistance in performing the training movements. This happens after using the 
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robot aided device for a period of time. This issue results in failure to transfer the skills into 

the hand from robot exercises to the ADL tasks (Klein et al., 2008a). 

f. The complex mechanism used in the advanced robot devices. This allows the device to self-

adapt the level of assistance it provides based on the patient’s cognitive and hand 

performance. However, this has the effect of increasing the level of complexity (van der 

Smagt et al., 2009). 

3.1.6. Virtual Reality 

Virtual reality technology has been used extensively in multiple disciplines, such as psychology 

(provide cognitive tasks and simulation), architecture (test and interact with 3D structures), 

industrial engineering (robot and machine simulation), bioengineering (rehabilitation and 

assessment), plus many others. It provides a platform to develop an immersive virtual world 

and offers the ability to interact with 3D objects in a safe, cheap and creative environment 

without limitations (Holden et al., 2005).  

VR has recently been deployed in different rehabilitation research due to its capability in 

offering multiple advantages in comparison with traditional methods. The system development 

is cheap, safe, entertaining (encouraging), efficient, progressively adjustable, has controllable 

real-time feedback, and returns impulse stimuli similar to real life reactions, that is very 

significant for learning new skills and transferring these into ADL task performance (Shen et al., 

2008). 

Holden has listed four advantages for using VR in motor rehabilitation while being conducted in 

clinical studies. The patients are able to learn motor skills in VR (Holden, 2005). The skills are 

transferrable from VR to the real world and can simplify untrained tasks. There are no cyber 

sickness effects generated by using the VR in motor training. 

Other studies also found that the VR is capable of offering a task oriented environment where 

the patient concentrates on key elements of the training with fewer distractions interfering 

with the rehabilitation progress (Brooks, 2010). The VR environment can be easily customised 

and adjusted in order to adaptively assist the patient with their progress. 

A notable study was conducted on the activities of the brain with VR usage and this illustrated 

that VR has an influence on mirror neuron inputs by initiating visual inputs during imitation 
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display (Holden, 2005). Learning by imitation is very efficient in rehabilitation, as it provides 

visual feedback and accurate repetition of tasks to facilitate the correct pattern formation of 

cellular activity in CNS. 

Hand rehabilitation programs require precise hand digit movement detection to study 

performance variation and to describe the appropriate task movements needed in each case, 

which would assess the self-adjustment of the executed activities in each session. As such, the 

glove offers a better solution for diagnosis and hand analysis from the motion tracking system 

and markers, as it doesn’t require long and tedious calibration or complex considerations on 

sensitivity issues and light reflections in the surrounding region. The hand motion 

measurements obtained by the glove while interacting with real (Kikuuwe et al., 2007, Luo et 

al., 2005, Holden et al., 2005, Reinkensmeyer et al., 2002), imaginary (Holden et al., 2005), or 

virtual objects would make it feasible to quantify the variations and performance between 

different subjects. 

This review focuses on VR research employed for hand and upper extremity rehabilitation. 

Therefore, since the project involves the use of the data glove system, in the following, the 

existing VR methods are divided into two parts: data glove systems, and other VR systems with 

different approaches. 

Starting with the data glove, this system is very commonly used to monitor hand movements 

and motions. Its exclusivity is in returning precise detection of the digits’ movements and 

joints’ variations, and many data glove applications have been produced or are still under 

development.  

Researchers and engineers have used the data glove in multiple disciplines, as it offers the 

ability to interact with computer-generated environments and machines. In manufacturing 

engineering, data glove is used for testing tools and environments before construction; for 

virtual training and 3D objects modelling; and for testing artefacts in simulated equipment. 

Aside from this, the data glove is used in robotics for different objectives: to control and tele-

operate (Oujamaa et al., 2009, Lam et al., 2004, Mascaro and Asada, 2001) robot devices, to 

manipulate multiple DoF simultaneously; and to teach robots natural skills by demonstrating 

the movements (Hernandez-Rebollar et al., 2002, Su et al., 2003) and self-learning with semi-
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supervision (Szelitzky et al., 2013, Sakurai et al., 2013). 

In data visualisation, it is used to interact with large scale data presentations for spatial 

(Godfrey et al., 2010), geospatial (Shen et al., 2008), statistical, and medical display (Brooks, 

2010). 

The device is also used in entertainment fields, such as musical performance (Didjiglove, 

2013)(Saggio et al., 2009, CyberGlove, 2013, Jack et al., 2001), to control acoustic parameters 

or play games (Lam et al., 2004), in order to identify natural body movements without using 

complex hardware attachments. 

Additionally, it is found in sign languages (Huenerfauth and Lu, 2010, Lu and Huenerfauth, 

2009) and haptic emoticons (Krishna et al., 2010), to translate sign languages into text or vocals 

and to communicate with deaf users by automatically understanding gestural languages 

(Oujamaa et al., 2009).  

Wearable technologies use the data glove to execute commands and to interact with other 

devices and applications. The aim of this application is to replace the traditional interaction 

devices which use computers, such as mouse and keyboard, and provide hand movement 

interactions that are more natural and may facilitate the control of computer software and 

hardware (i.e. Virtual keyboard KITTY (Rovetta et al., 2009), Scurry (Bovend'Eerdt et al., 2004), 

(Earhart et al., 2011), Fingering (Wolf et al., 2001)).  

 

In terms of relating this work to medical application, the data glove device is combined with 

hand exercises and therapies to restore lost motor control, and with virtual reality (Volpe et al., 

2000)(Al-Jumaily and Olivares, 2009)(Merians et al., 2011) as it allows interaction with virtual 

objects while training the hand to perform visual exercises (Housman et al., 2009, Sanchez et 

al., 2006, Yoshiyuki et al., 2013, Adamovich et al., 2009a, Zariffa et al., 2011, Endo et al., 2009) . 

Another instance of using the glove with virtual reality is medical education and training, 

through manipulation of 3D anatomical data (obtained by MRI or CT (Volpe et al., 2000, 

Desrosiers et al., 1994)) and performing virtual surgery (Kikuuwe et al., 2007, Linde et al., 

2002). 

The glove is also used in ergonomics to monitor patients’, athletes’ and subjects’ performances 

in order to test and design better equipment or devices for the group (Gregson et al., 1999, 
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Kowalczewski et al., 2011b). 

 

To develop or select a glove system that is appropriate for hand rehabilitation, various 

characteristics of the device should be considered: the sensor information (if it is continuous or 

discrete); the number of sensors; the sensor location, whether on the joints, fingertip, or a 

variable range surrounding the joint; the type of sensor mounting (cloth support or attached to 

the fingers by mechanical structure); the technology used (fibre optic, hall-effect, 

piezoresistive); the interface and connection with other machines (serial, parallel, USB, 

wireless, Bluetooth etc.); the materials of the glove (differs in surgery, sport, fMRI and others); 

and the performance precision, repeatability and sampling (number of records/sec).  
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3.1.6.1. Data Glove devices 

Table 3-4 Data gloves used for general purposes including hand rehabilitation, virtual reality interaction, robot control and others 

(this table is produced by the author © 2015). 

Device, Developer Description Review  

ATLAS glove, 
developed by (Sivak 
et al., 2012) 

It is a bimanual rehabilitation glove that applies 
Angle Tracking system. It consists of five 
potentiometer bend sensors at the back of the 
four fingers and thumb, inertial measurement 
units, and magnetic base to track the position. 

It has a close concept to the CyberGlove© 
device (discussed in section 4.1.1) for 
measuring the joints angles; however it is 
designed to reduce the complexity and it 
allows the base to be wire-free, but this also 
reduces the information of the dexterity 
details with less number of tracked joints. 

 

Figure 3-2 (Sivak et al., 2012) © 2012 ICDVRAT  

MusicGlove, 
developed by Flint 
Rehabilitation 
Devices (MusicGlove, 
2016) 

Is a visual interactive music-based therapy device. 
It consists of conductive touch sensors placed on 
the tip of each finger and interact with a visual 
display to play music key notes by contacting the 
right fingers. The device also provides score 
system of the number of correct fingers 
performed. 

The device is lightweight, motivating, very 
easy to wear, adjustable with the size of the 
hand and does not require calibration. But it 
does not measure the joints angles and 
limited feedbacks on finger performance. 

 

Figure 3-3 (MusicGlove, 2016) © 2016 Flint 
Rehabilitation Devices with permission 

Human Glove, 
developed by (Chalon 
et al., 2010)  

Consists of 20 hall-effect sensors that measure 
flexion-extension and abduction-adduction of the 
fingers. Available in 3 sizes. It uses the serial port 
connection. 

Custom design available. However, difficult 
recording from thumb and DIP joints (Dipietro 
et al., 2008).  

 

Figure 3-4 (Chalon et al., 2010) © 2010 IEEE. 
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Device, Developer Description Review  

5DT Data Glove, 
developed by (Fifth-
Dimension-
Technologies, 2013) 

Uses proprietary fibre flexor sensors. Each fibre 
loop is connected with an LED at one end, and the 
light sent is sensed by a phototransistor at the 
other end. It uses serial, USB, and adapter port 
connection. 

It has multiple versions, and is wireless and 
MRI compatible. However, has only 1 size and 
requires calibration.  

 

Figure 3-5 (Fifth-Dimension-Technologies, 
2013) Image courtesy: www.5DT.com. 

Pinch Glove, 
developed by 
(Fakespacelabs, 2015) 

Pinch Glove consists of flexible cloth gloves 
augmented with conductive cloth into the tips of 
the fingers. Upon contact of two fingers, signals 
are generated from the conductive pieces and sent 
to the host machine. It uses the serial port 
connection. 

The glove can detect over 1000 postures and 
doesn’t require calibration. However, it 
doesn’t record joint angles. 

 

Figure 3-6 (Fakespacelabs, 2015) with 
permission. 

Didjiglove, developed 
by (Didjiglove, 2013) 

Consists of 10 bend sensors around the hand to 
record the fingers’ flexion. It is used to operate 
cameras, lights, rigged animation characters, and 
driver controls. It uses the serial port connection. 

The device is mainly used for animation and 
has a basic calibration method. There is no 
abduction-adduction measurement. 

 

StrinGlove, 
developed by (Hesse 
et al., 2003), (Loureiro 
et al., 2003a) 

Consists of 24 induct coders to record flexion-
extension of the fingers and abduction-adduction 
angles, plus wrist motion. It has also nine magnetic 
sensors. It uses the serial port connection. 

Sensors can be easily removed to wash the 
device; it has three sizes, embed DSP based 
encoding system for hand posture 
recognition. However, the sensors are fragile 
and require accurate calibration. 

 

Figure 3-7 (Hesse et al., 2003) With 
permission. 
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Device, Developer Description Review  

Finger Nail Glove 
developed by 
(Mascaro and Asada, 
2001) 

Uses electro-optics to track the coloration of 
fingernail changes due to touching, 
bending/extension and shear.  

It can predict finger postures or forces from 
the measured data, but it requires complex 
calibration algorithms. 

 

Figure 3-8 (Mascaro and Asada, 2001) © 2001 
IEEE. 

Colour tracking Glove 
developed by (Wang 
and Popovic, 2009) 

Uses colour patterns to track hand movement. The 
research study applies Hamming-Distance and 
other classification methods on the camera 
images. It uses the camera to capture the glove’s 
motion and feed it back to the host machine.  

It is accurate and affordable but cumbersome. 
Its main use is in animation. 

 

Figure 3-9 (Wang and Popovic, 2009) © ACM 
transaction with permission. 

AcceleGlove, 
developed by 
(Hernandez-Rebollar 
et al., 2002) 

The device attaches accelerometers to a leather 
glove for each finger and tracks the fingers’ 
motion. It is used in physical therapy and hand 
signal recognition. It uses the serial port to connect 
to the host machine. 

There is no calibration required and it has low 
cost, but it does not detect horizontal 
postures. 

 

Figure 3-10 (AcceleGlove, 2015) © ACM 
SIGGRAPH with permission. 
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Device, Developer Description Review  

3D motion data glove 
developed by (Su et 
al., 2003) 

Uses 3D electromagnetic sensors attached to the 
glove to detect the position of the fingers. It is 
used to present a 3D motion system for 
Parkinson’s disease.  

This glove returns high precision in position 
and orientation, but it is complex and has a 
low sampling rate 10Hz, which returns 
disrupted synchronisation between the glove 
and application. 

 

Data glove developed 
by (Szelitzky et al., 
2013)  
 

Uses low cost resistive flex sensors. The system 
offers 3D hand visualisation that captures the hand 
movement and simulates the sensation of grasping 
rigid and elastic objects. It uses USB 
communication.  

The device has low cost and independent GUI 
with synchronous visualisation. However, it 
only fits on limited hand sizes and has low 
precision.  

 

Figure 3-11 (Szelitzky et al., 2013) © 2013 IEEE. 

StretchSense 
developed by 
(StretchSense, 2015) 

It has stretch sensors on each finger. Each sensor is 
wireless and uses Bluetooth protocol. The 
development kit supported by the device includes 
sensors, circuitry and software to interact with 
different devices (smartphones, tablets). 
It can also be used to measure hand motion for 
animation, augmented reality, healthcare and the 
prosthetics industries.  

The device provides precise measurements 
and stable readings that don’t require 
constant calibration, but it tracks the 
fingertips only. Further work needs to be 
implemented in designing a full glove from 
these sensors. 

 

Figure 3-12 (StretchSense, 2015) Image 
courtesy of StretchSense Ltd 
www.stretchsense.com. 

Force feedback data 
glove developed by 
(Sun et al., 2011) 

It has a bidirectional force feedback data glove 
actuated by pneumatic artificial muscles. The 
device offers a simple exoskeleton structure and 
the bidirectional force is exerted on fingertips. It 
also applies resistance on the finger’s movement 
to exercise the muscle and strengthen its power. 

The device is large, cumbersome and 
designed only for one finger. 
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Device, Developer Description Review  

Tactile sensing glove, 
developed by 
(Sagisaka et al., 2013) 

Composed of the thin elastic base glove. The glove 
enables pressure measurement on a human hand. 
 

It is durable, low cost and accommodates 
deformation; however, it is limited to tactile 
sensing only.  

 

Figure 3-13 (Sagisaka et al., 2013) © 2013 IEEE. 

PneuGlove, 
developed by 
(Connelly et al., 2009) 
 

It is a servo-controlled glove that assists the 
extension of individual finger digits in 
grasping/releasing activities. The glove permits 
free movement in the arm workspace and has a 
specially designed VR environment for training 
simulations. 

The device returns beneficial effects on the 
hand during training with adaptive 
adjustment to the level of resistance, but has 
only one size and requires accurate 
calibration. 

 

Haptic device 
developed by (Daud 
et al., 2010)  
 

A five-bar linkage haptic device with two active 
and three passive DoF. The device is combined 
with a graphic simulation interface to produce a 
VR rehabilitation environment. It can generate 
forces of up to 20 N in the fingers and hand, and 
supports both high manipulability and low inertia. 

  

ProGlove developed 
by (Impressum, 2015) 

A device that scans, senses and tests the 
equipment used in the manufacturing and 
mechanical industries. The glove interacts with 
objects and returns result of temperature, size and 
pressure, on the display attached at the back of 
the hand. 

The glove is a prototype and used for 
manufacturing. 

 

Figure 3-15 (Impressum, 2015) Image courtesy 
of Proglove www.proglove.de 

Figure 3-14 (Connelly et al., 2009) 
© 2009 IEEE. 
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Device, Developer Description Review  

Conversational 
Glove, developed by 
(Rachel, 2015) 

Has two Arduino Megas to track the finger 
positions and hand rotation and a Kinect to track 
each hand movement through space. It also works 
on digitizing gestural communication using 
emerging technology. 

It is used in animation and entertainment.   

3D Printed motion 
sensing glove, 
developed by (Leigh 
et al., 2012) 

Comprised of embedded sensing strips in each 
finger with carbomorph that is both piezoresistive 
and conductive to measure finger movements. 

The glove materials are created using a 3D 
printer, and it is open source.  

 

Figure 3-16 (Leigh et al., 2012) (Open access). 

Fiber Optic Finger-
Flexion Data Glove, 
developed by 
(MimuGloves, 2015))  

Uses optical fibres and photosensors to track the 
finger flexion-extension movement. It 
communicates with a host machine by the 
standard RS232 serial port. 
 

The device application is cross-platform 
compatible and presents fast and robust 
tracking of the hand movement. However, it 
is expensive and requires complex calibration.  

 

Figure 3-17 (MimuGloves, 2015) with 
permission. 

TUB-Sensor glove, 
developed by (Platz, 
2003). 

Uses inductive length encoders. It is comprised of 
12 or 22 sensors for finger flexion-extension and 
pressure sensors(Langhammer and Stanghelle, 
2000). It uses the serial port to communicate with 
the host machine. The glove is used for health 
science and robot control.  

The device has robust measurement and is 
available in multiple sizes.  

 

Figure 3-18 (Platz, 2003) With permission. 
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Device, Developer Description Review  

SIGMA glove, 
developed by 
(Kowalczewski et al., 
2011b) 

Consists of 30 carbon ink bend sensors for flexion-
extension and abduction-adduction movements. It 
uses parallel port communication. 

The device is low cost and is available in 
multiple sizes. It is also used for motor 
performance analysis. 

 

Robo-glove, 
developed by NASA 
and General Motor. 
(Wright, 2013) 

Composed of multiple actuators for each finger 
and pressure sensors. The glove assists users in 
repetitive tasks such as grasping and holding heavy 
tools or objects. It also helps users to reduce the 
force that they need to apply in the action. 

The device is portable and includes an 
embedded microcontroller, but it adds weight 
to the arm. It is designed mainly for 
manufacturing and operations that require a 
large force. 

 

Figure 3-19 (Wright, 2013) © NASA 2013 With 
permission. 

3.1.6.2. Hand therapy data gloves with haptic feedback 

Table 3-5 Data glove systems with Haptic feedback support (this table is produced by the author) 

Device, Developer Description Review  

X-Glove developed 
by (Triandafilou et 
al., 2011) 

It consists of flexion/extension motors on each finger. The 
motors are actively actuated using microprocessor. This is 
controlled with either voice recognition software or muscle 
activation, measured by electromyography sensors.  

The device is portable. It allows 
controlling each of the fingers’ digits 
independently.  

 

Figure 3-20 X-Glove (Triandafilou et al., 
2011) with permission 
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Device, Developer Description Review  

J-Glove developed by 
(Ochoa et al., 2011) 

It consists of multiple actuators on the fingers joints. The motor 
are actively actuated using the microprocessor. It offers three 
control modes: voice recognition activation, muscle activation 
(electromyography) and manual. 
It assists in finger and thumb extension. 

This device is portable and allows 
the user to use the three control 
model synchronously or separately. 
It provides force and position 
feedbacks to the fingers. 

 

Figure 3-21 J-Glove (Ochoa et al., 2011) 
© 2011 IEEE. 

SCRIPT developed by 
(Amirabdollahian et 
al., 2014) 

The device has passive actuation mechanism and it cannot 
actively generate or control movements. It consists of a wrist-
torque transfer mechanism to allow wrist flexion-extension but 
block the rotations; a torque-generation for the motor, a micro-
controller, and integrated measurements units (IMUs) to 
measure the hand posture. 

It is portable and can passively 
offset the undesired torques on the 
fingers.  

 

 

Figure 3-22 SCRIPT (Amirabdollahian et 
al., 2014) with permission 
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Device, Developer Description Review  

YouGrabber 
developed by 
(YouGrabber, 2015) 

Consists of three flex sensors on the thumb, index and middle 
fingers. It supports patients with sensory-motor and cognitive 
impairments during rehabilitation. The device provides 
interactive therapy exercises. It uses wireless communication.  

The glove can be adjusted to 
various sizes and individual patient’s 
needs. It is portable and can be 
used in computer interactive 
training. 

 

Figure 3-23 (YouGrabber, 2015) With 
permission. 

Gloreha glove, 
developed by 
(Idrogenet, 2015) 

Consists of 5 electric actuators on each finger, and an electronic 
control system to adjust the length of the cables and the 
effective range of motion. It offers force feedback on the fingers 
while interacting with objects. It uses a serial port to connect 
with the host machine to interact with the visual display. It is 
used in hand therapy. 

The device is light, has no intrusive 
exoskeleton and keeps the palm 
free. It is easy to operate, with a 
user-friendly interface to adjust the 
level of forces. However, it only 
provides active assistance in 
extensions. It has a Lite and 
Professional version, with different 
costs. 

 

Figure 3-24 (Idrogenet, 2015) With 
permission. 
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Device, Developer Description Review  

HandTutor, 
developed by 
(MediTouch, 2015) 

Consists of electro-optical sensors for finger flexion-extension 
movements and speed wrist. It uses USB communication with 
the host machine.  
The glove allows biomechanical evaluation of the hand’s speed, 
the passive-active range of motion and motion analysis for the 
wrist and fingers. 

The device is validated under 
medical standard approval. It has 
robust measurements and 
accommodates multiple sizes. 
However, it does not measure 
joints’ angles and does not support 
the abduction-adduction finger 
movements.  

 

Figure 3-25 (MediTouch, 2015) With 
permission. 

SaeboFlex, 
developed by (Saebo, 
2016) 

It consists of a wrist splint and hand mount. The fingers are 
attached with a lead mount that is connected back to a finger 
spring to exert force on the flexion of the finger end. The thumb 
has a separate spring and a line guide to constraint the range of 
motion.   

Saebo offers other devices 
SaeboGlove (attach fingers joints 
with tensioners), SaeboReach for 
the forearm therapy. The device is 
mechanical only and has simple 
structure in comparison to the 
other devices, but does not provide 
force regulators or joints motion 
measurement. 

 

Figure 3-26 SaeboReach and SaeboFlex, 
(Saebo, 2016) with permission 

ExoGlove, developed 
by (Hong et al., 2015) 

It is based on a novel concept of using soft robotic actuators. The 
glove consists of soft pneumatic actuator attached to the back of 
the fingers. The pneumatic actuator, controlled by the air feed, is 
contracted by the reduction of the air pressure. This causes the 
soft actuator to close, in a circular loop shape, and extend the 
finger. In contrast, increase of air pressure causes the finger to 
flex. 

The device offers variable stiffness 
at different locations of the finger. 
However, the actuator has a 
singular shape trajectory when it 
bends that does not comply with all 
the grasping forms, has open loop 
control with no feedback sensors 
and low accuracy.  

 

Figure 3-27 (Hong et al., 2015) © 2015 
IEEE 
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Device, Developer Description Review  

CyberGrasp, 
developed by 
(CyberGlove, 2013) 

A force feedback system for the fingers. It consists of an 
exoskeleton that mounts five actuators on each finger, and 
exerts forces to the fingertips throughout the ROM. It can be 
separately specified for individual fingers.  
It connects to an instrumentation unit, consisting of an actuator 
module and force control. The connectivity with the host 
machine is through the Ethernet.  

The device allows full ROM 
movement without obstruction. It is 
fully adjustable to different hand 
sizes and allows sensory feedback of 
the virtual objects. However, it is 
cumbersome, has complex coding 
control, and causes traffic loads 
during Ethernet communication. 

 

Figure 3-28 (CyberGlove, 2013) With 
permission. 
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3.1.6.3. Data Glove Devices Review  

The selection of the appropriate device from this list should be based on the project 

objectives and possible implementations. The starting point of this process is to define the 

glove application class: whether it is a monitoring application or a communication system. 

The latter is applied in robotics control, sign language detection and games interactions, 

while the former is applied mainly in health care and medical approaches requiring more 

specific detail on the hand movements.  

To assist the selection of the glove, other factors are considered, such as cost, accuracy, 

ability to monitor large and small ROM of the fingers/joints’ movement, comfort, accurate 

repeatability, safety approval by medical standards and regulations, portability, and the 

length of time required to fit on the hand.  

 

Although, the methods in Table 3-4 have multiple advantages, such as simplicity, 

adjustability, comfort of the user's hand, and accurate recording in motion tracking, they 

are not all appropriate for hand rehabilitation due to many complications. 

In the instance of gloves (MimuGloves, 2015) with fibre optic sensors, the fibre optic cables 

measure the intensity, phase, frequency and polarisation of the light passing through the 

cable from one end to the other, by internal reflection. If the cable is bent then the light 

rays are refracted, and return the bending angle. Fibre optic gloves have numerous 

disadvantages, including high costs, interference of their light region, occlusion caused by 

the cross-fingers, and the lack of fine detection of excessively bent/flexed fingers (very 

often occurring in the case of paralysis). Many are designed for games and virtual reality 

interaction purposes that require less accuracy in the DoF measurements (Burdea et al., 

2011, Lightglove, 2013). 

Alternative gloves use capacity sensors (Didjiglove, 2013), electromagnetic (Su et al., 2003), 

magnetic (StrinGlove, 2015), printed circuit wires (Touch-Typing, 2015), piezoresistive 

(Leigh et al., 2012), electrical contacts (Zariffa and Steeves, 2011) among other methods.  

 

A more efficient approach in data glove application is to use carbon ink bend sensors to 

track the joints’ movements. These bend sensors are made of plastic film, wafered with 

coating substrate, which makes them electrically conductive. The ink increases resistance 

with the application of more bend. 
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Figure 3-29 Bend sensor to measure the flexion/extension of the finger joint.  

(Hobbytronics, 2015) with permission.  

This method offers a high level of robustness, accuracy, less complexity and lower cost. 

However, it is more likely to be damaged if it is bent more than 90 degrees, and has fixed 

lengths with less repeatability and accuracy in comparison to the fibre optic method 

(Dunne et al., 2007). 

Saggio and colleagues developed a bending sensor data glove, which is mainly used for 

recording digits’ movement data and assessing hand performance (Saggio et al., 2009). 

However, a more advanced and well-designed device, used in multi-disciplinary areas, can 

be found with CyberGlove® (CyberGlove-Systems-Spec, 2013). It has 90Hz data rate, 

presents good reliability in finger and haptic applications, and supports the CyberGrasp® 

hand exoskeleton for haptic feedback.  

A number of rehabilitation research studies that have made use of CyberGlove® are listed in 

the section below: 

 

Jack and colleagues produced a VR system which interacts with two input devices, 

CyberGlove® and Master II-ND force feedback glove (Jack et al., 2001). The system is 

designed for recovering hand function in stroke patients. 

Ueki et alalso produced a VR system that use CyberGlove® to track the motions of the 

healthy hand of the patient and reproduce these, via an assistant device, in the impaired 

hand. Cooperative and skilled movements are created with self-motion control in the VR 

environment. 

The PianoVR (Aguiar, 2007), as its name indicates, is a different and entertaining approach 

that uses a VR piano in interaction with CyberGlove® (or other data gloves). It allows 

interactive music to play on screen, aiming to create an entertaining environment to 

motivate patients. It only supports visual feedback (Ueki et al., 2008). 
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Adamovich and his group have developed a virtual simulations system that uses 

CyberGlove® and CyberGrasp for hand tracking and haptic feedback, by applying flexion 

resistance to the adjacent fingers (Adamovich et al., 2009b). This system also has an arm 

tracking device, Flock of Birds (Ascension Technologies), and an admittance controlled 

robot, Haptic Master (more details are provided in the robot-aided section), for arm 

feedback to produce haptic objects such as walls, blocks, cylinders, spheres, springs, 

dampers and global forces. 

The system employs four different virtual simulations used for varying approaches in 

rehabilitation schemes. 

o Plasma Pong: Trains the upper arm and hand by integrating appropriate shoulder 

flexion and finger extension in the game. 

o Hummingbird Hunt: Employs audio-visual feedback in the environmental elements. The 

game provides practice in reach, hand shape and grasp. Different progressions in the 

range of motion are allowed. 

o Hammer Task: Trains 3D reaching together with repetitive finger flexion/extension. The 

game provides audio-visual and haptic feedback, and force feedback is produced by the 

robot through object collision and gravity forces. 

o Virtual Piano (Adamovich et al., 2009a): Provides training for detailed finger 

flexion/extension movements, accompanied by audio-visual feedback and tactical 

feedback from the CyberGrasp®.  

 

Data glove systems are widely used in hand rehabilitation as they allow continuous and 

discrete hand joints recording and simpler VR interaction methods. However, the gloves 

have different limitations as they create a barrier between the hand and the object, limiting 

the sensory element and natural flow of the movement. The cloth’s support of the glove is 

also found to affect the pattern creations in gesture formations and measurement 

performance (Ottobock, 2013, Bionics, 2013, Viau et al., 2004). In addition, the majority of 

gloves require complex calibrations, and the strength of the recording is very much related 

to the materials’ price. 

 

Nevertheless, different approaches have been suggested to monitor hand movements 

using various methods to resolve some of the previously mentioned limitations: 
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McLaughlin has developed a VR assisted motor training system for post-stroke patients 

(McLaughlin, 2007). The system can be regulated by the therapist to drive the patient’s 

kinetic behaviour, in relation to predefined training, and accurately captures the human 

kinetic performance. The system tracks the hand position and transfers the details to the 

VR.  

In another study, Liu has presented a motor rehabilitation system that uses a Falcon force 

feedback joystick and a 3D virtual reality environment ,which interact with a flight 

simulation (Liu et al., 2013). The tasks exercise the pronation and supination of the arms.  

Morrow have developed a rehabilitation VR system based on a game console and VR glove 

(Morrow et al., 2006). This is cheaper than other systems but not as feasible or immersive 

as 3D applications. Wang has addressed the cost of VR rehabilitation by controlling the 

game using a simple artefact input device (Wang et al., 2010). The system reads user action 

when squeezing the rubber ball via the attached sensors. The Handcopter Game, developed 

by (Souza and Santos, 2012), is designed for treating patients suffering from post-stroke 

paralysis. The system tracks the hand’s movement through a low-cost vision-tracking 

device.  

Finally, Xu have presented a haptic handwriting and Ten Pin Bowling game which interacts 

with a Novint Falcon, a parallel robot with three servo arms connected to a detachable grip 

(Xu et al., 2010). The system aims to improve the rehabilitation process by motivating 

patients and creating more effective tasks.  

The device generates low force and low resolution. Both the Novint Falcon and Phantom 

Omni devices are designed to measure the endpoint motion (position or velocity), exerted 

by the hand, and to output the force feedback. 

Digits device, developed by  Kim and his group in contribution with Microsoft Research, is a 

gloveless wrist-worn sensor that captures the full 3D pose of the user's hand (Kim et al., 

2012). The electronics are self-contained on the user's wrist and they emit a light from the 

device (visual, infrared or camera imaging) to scan the full palm and sense the wrist, hand 

and fingers. 
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Figure 3-30 Digits device for finger tracking, produced by Microsoft Research. The infrared 

camera and projectors measure the laser reflection on the hand finger and analyse the 

motion (Kim et al., 2012) © 2012 ACM 

 The system uses a new signal-processing pipeline to sample key parts of the hand, such as 

the tips and lower regions of each finger, and retrieves the full finger motion. It uses a 

wireless connection with the host machine, enabling a variety of freehand interactions on 

the move. 

The glove is highly precise, but it is complex, has low sampling rates and requires 

compound algorithms. It is mainly used for interaction with virtual reality objects, but in the 

case of real objects it causes interference with the IR projection. 

 

In summary, there are many VR systems that have been developed for rehabilitation. Most 

of the systems introduced are still in the field of research and have not been clinically 

adapted for rehabilitation sessions (Holden et al., 2005). Additionally, studies have not 

validated the efficiency of VR in treating motor disabilities. However, it is recommended as 

an assistance tool for therapies and an efficient tool for data monitoring (Popescu et al., 

2000).  

Therefore, to design an effective VR system in rehabilitation, it must be very precisely 

adjusted in relation to the involved exercises for each specific patient’s case (Holden et al., 

2005); have an ability to provide perceptive coordination between the clinicians-patients 

and virtual environment (Nathaniel and Anne, 1994); and provide a significant link to 

transfer motor skills into real world activities by addressing existing motor disorders (Kozak 

et al., 1993).  

 

Recently augmented reality has been introduced to visualisation technology by combining 

both real and virtual worlds. This method has numerous features that seek to resolve the 

existing VR limitations. It provides more stimuli and realistic feeling to the subject, gives 
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versatility to transfer improvements into real world situations, and offers fatigue reduction 

during intensive practices (Shen et al., 2008). 

 

Another method in hand rehabilitation is incorporating regulated electrical stimulation 

during physical training and this is explored further in the following section. 

3.1.7.  Neuroprosthesis 

Neuroprosthesis (NP) treatment involves devices that substitute the damaged motor, 

sensory or cognitive modality. NP systems are distributed by different techniques and 

functions. 

 

Electrical stimulation (ES), a very common NP application used in biomedical engineering, is 

a type of system that employs the peripheral nervous system (PNS) and reads muscle 

activation, aiming to replace the central nervous system (CNS) in some hand function 

instructions. 

ES is frequently used with physical motor training, particularly for wrist and finger 

extensors, and this is known as functional electrical stimulation (FES). FES delivers trains of 

electrical charge pulses, similar to those excitation signals generated by CNS in healthy 

structures (Popovic et al., 2002), and its operations use multi-channel electrical stimulation 

that can be regulated appropriately. 

An alternative use of ES is in combination with therapy, known as therapeutic electrical 

stimulation (TES). Both TES and FES are used to strengthen the muscles and assist in 

functional tasks (Gritsenko and Prochazka, 2004, Stein and Prochazka, 2013). 

An example of these systems is the Stimulus Router System (SRS) (Gan et al., 2007), a 

Neuroprosthesis (NP) consisting of a conductive pick-up terminal, subcutaneously 

implanted under one of the surface electrodes, and a delivery terminal implanted near or 

on the target nerve (Gan and Prochazka, 2010).  

Another type is the daily neuroprosthetic, NESS Handmaster, a functional electrical 

stimulation used in sub-acute stroke, consisting of a wrist-hand orthosis (WHO) with a non-

invasive microprocessor controlled simulation system. The system is set up on the limb of 

the patient and supported with a 5 electrode array (Ring and Rosenthal, 2005). 
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A further type of NP system is brain magnetic resonance (MR). Its function is to target 

motor and cognitive modulations. An example of this approach is the MR_CHIROD v.2 

(Khanicheh et al., 2008), a hand rehabilitation device with one degree of freedom. It uses 

electrorheological fluids (ERFs) to provide computer-controlled resistive force generation. It 

consists of three subsystems: ERF based resistive element, handles, and two sensors for 

hand motion and force measurement. 

Another example is high-frequency transcranial magnetic stimulation (TMS) (Berlim et al., 

2013). The system stimulates the ipsilesional motor cortex for inhibiting excitation, 

associated with motor re-learning training (Barbay and Nudo, 2009b).  

 

The last of these NP systems is EMG Imagery, a mental process imagery where the patient 

simulates a given task to control the hand prosthesis. Many applications use this process, 

such as Ottobock’s SensorHand, 2008 (Ottobock, 2013) and Touch Bionic’s i-Limb, 2007 

(Bionics, 2013). 

 

The abovementioned NP systems make a significant contribution to rehabilitation, although 

further studies are required to improve their efficiency. Moreover, the NP devices are 

expensive and cause discomfort to patients. ES systems, in particular, can cause pain and 

edema in some sessions. The current systems also offer inadequate selections for the 

varying sizes and locations of muscles. Additionally, the simulation-forces are very difficult 

to regulate because of their complexity (Popović and Sinkjær, 2000). 

 

Considering the various approaches in hand rehabilitation – from basic clinical techniques 

to robotic assistance, virtual reality and neuroprosthesis – and pointing to the currently 

existing drawbacks, it is clear that extensive further research and thorough analysis are 

required in order to produce proficient devices for rehabilitation. 

A new investigative area has been highlighted, combining the different approaches and 

using the various advantages of each in order to resolve the encountered limitations. 

3.1.8. Synthesis 

The synthesis approach combines multi-disciplinary approaches in order to create a 

synthetic device that has higher efficiency with fewer drawbacks. The purpose of this 
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system is to use the benefits encountered in each method to counteract the drawbacks, 

and to carefully join different methods to maintain the proficiency of rehabilitation. 

Below are some of the available systems that have used this approach:  

Conventional ET and ReJoyce ET combine electrical stimulation with training efforts. The 

former comprises strength training, trackball computer games and therapeutic electrical 

stimulation (TES) (Kowalczewski et al., 2011b); and the latter consists of computer games 

associated with ADL activities that are controlled by a joystick (Kowalczewski et al., 2011b). 

An alternative is the combination of robot-aided systems with EEG, by which S. B. Fok et al. 

have developed an EEG-based brain-computer interface for hand control rehabilitation 

post-stroke, using ipsilateral cortical physiology (Fok et al., 2011). 

A different approach in this field is to combine the robot-aided systems with electrical 

stimulation, also known as hybrid systems. The idea is to associate the FES with the 

mechanical structure using the human muscles as actuators. It aims to replace the heavy 

actuators in the exoskeletons and invoke functional solutions in wearable robotics. 

An example of a hybrid system is the smartFES (sFES), which is a non-invasive FES assistive 

rehabilitation system. The electrical stimulation is controlled by a neural inverse dynamics 

model and is provided to the patient in order to assist in the execution of specific arm 

movements (Goffredo et al., 2008).  

 

Robot-aided systems are also tested in combination with EMG. The EMG-driven 

exoskeleton hand robotic training device consists of a robotic hand module and embedded 

controller. The robotic hand module is attached to the hand using finger rings and Velcro 

straps. The device detects the patient’s intention by measuring EMG signals of the hand 

muscles, and assists in the opening and closing of the hand (Ho et al., 2011). 

A further example of an EMG-driven system based on VR has been developed by Al-

Jumaily.The VR provides exercises in the virtual environment accompanying the patient’s 

movement intentions (Al-Jumaily and Olivares, 2009). 

 

Combining robotics systems with virtual reality has garnered the interest of many 

researchers, and there are many examples that could be listed in this section. 

The Virtual Curling System (Yoshiyuki et al., 2013), is a robotic rehabilitation system for 

upper limbs that uses the handle of an impedance-controlled robot to move a virtual object 
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while predicting its transient behaviours upon release. The system generates human hand 

trajectory models in the virtual curling and transfers these into the robotic device to assist 

in teaching smooth movements relevant to the performed task. 

Various applications of this method have been provided by SV Adamoich et al. and these 

were discussed in the Virtual Reality Section, 3.1.6. Their proposed systems depend on 

combining interactive gaming simulation with adaptive robots in order to provide a multi-

faceted environment (Merians et al., 2011, Adamovich et al., 2009b), and are being 

investigated further. 

Armeo Spring®, Hocoma AG (Zariffa et al., 2011) is a passive upper limb rehabilitation 

device. The device provides adjustable anti-gravity force feedback to the patient’s upper 

arm and forearm, supported with a VR display that controls a virtual arm. The device 

provides adjustable anti-gravity arm support, adjustable ROM, and optional grip module to 

control the strength and adaptability to various forms of limb impairment. 

The HIRO system (Endo et al., 2009) consists of a five-fingered robot hand and a robot arm. 

It provides force and tactile feedback to the five fingertips of the human hand. HIRO 

consists of a 6 DoF arm and a 15 DoF hand and can reproduce 3-directional haptic forces at 

the hand. 

Ueki has developed a hand rehabilitation system that provides symmetric master-slave 

motion assistance, allowing the impaired hand to be driven by the healthy hand, while 

displaying effective VR exercises (Ueki et al., 2008). 

Kikuuwe has provided a virtual fixture device that is based on simulated plasticity (Kikuuwe 

et al., 2007). The VR fixture guides the hand in path-tracing tasks and obstructs movement 

inside specified boundaries. The fixture is always passive and acts as a hard fixture when 

the hand’s force is smaller than the yield force. 

 

As mentioned in the Virtual Reality section, a more advanced technology in computer 

graphics is augmented reality (AR), which is the combination of VR with therapeutic 

movement. AR technology augments the user’s view of the real world by displaying virtual 

objects in the physical world and provides visual and haptic feedback, allowing the user to 

interact with virtual objects in a real environment.  

Unlike VR, the AR provides tasks that resemble real life activities and allows for a more 

efficient transfer of the learned motor skills from AR to ADL. Arms Guide and PUMA robot 
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are two existing systems that employ this technology (Luo et al., 2005). 

 

Lastly, Telerehabilitation is a combination of VR with therapeutic training, with a long range 

of distance between the VR and the objects. It is a newly developed technology that allows 

for easier access to rehabilitation training services, as it is less expensive and more portable 

for patients. The system uses the internet to connect therapists with patients, provide 

assistance during training exercises and supervise progress and performance from the 

clinics. 

Holden et al. developed a VR system augmented with Telerehabilitation capability. It 

provides real-time interactive treatment sessions between the patient at home and the 

therapist in the clinic (Holden, 2005). Several other groups have also developed similar 

systems in teletherapy and web-based therapy from home-to-clinic (Holden et al., 2005), 

(Reinkensmeyer et al., 2002, Holden et al., 2005, Bowman and Speier, 2006, Kowalczewski 

et al., 2007) and clinic-to-clinic (Burdea et al., 2000, Popescu et al., 2000). 
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3.2. Hand Assessment 

Rehabilitation methods require careful assessment and validation as they can cause a 

severe impact on the hand if they are not applied appropriately. Inaccurate employment of 

these techniques can distort the motor functions of the hand (Klein et al., 2008a), and mal-

transfer the learned skills from the training exercises to daily activities (Huang and Low, 

2008). These side effects can be caused due to the system design, which is difficult to 

customise to the patient’s performance, is inefficient in addressing specific individual cases 

and has low precision in training each finger separately (Li et al., 2011). It is also important 

to note that the patient’s satisfaction with the application (Wang and Popovic, 2009) plays 

a major role in evaluating the system success. 

In this section, multiple hand assessment applications that are currently used in clinics and 

research have been reviewed. This is divided into four hand assessment categories: clinical, 

hand motion, robotics, and virtual reality. The section then concludes with a brief 

introduction to the proposed approach.  

3.2.1. Clinical Hand Assessment Methods:  

These methods are usually basic and have limited outcomes, but they are still frequently 

used to assess the patient’s performance in clinics due to the cost and lack of technological 

applications that are appropriate for clinical settings. There are many existing techniques, 

for this purpose, which consist of either a set of instructions and questionnaires to verbally 

assess the rehabilitation, or a variety of traditional equipment, such as dynamometers and 

stop watcher, to record details and analyse hand movement by using velocity and time 

parameters.  

These methods mainly include hand tasks that can be categorised as a small movement, 

mass grasp (balls and spherical objects), key pretension (jug pouring), palmar pretension 

(food cutting, opening door handle), and individual finger movement (using keys, trays, or a 

finite movement). 

Different methods are presented below:  

Modified Ashworth scale (Gregson et al., 1999) is a set of instructions defined with specific 

movements to assess the shoulder, elbow, wrist, fingers and thumb. 

Box and Blocks Test is a set of instructions where the patient is asked to move a set of 

blocks across partitions to test the functional use of the hand (BBT) (Desrosiers et al., 1994), 
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(Miltner et al., 1999). 

Jebsen-Taylor hand tests (Jebsen et al., 1969) are a set of tasks where the patient is asked 

to complete a subset; results are obtained by measuring the time of completion. The test 

includes simulated eating, providing a quantifiable activity of daily living, lifting large light 

objects and lifting large heavy objects.  

Hand grip strength (Davis et al., 2000) uses a handgrip dynamometer to measure the 

maximum isometric hand strength. 

Action Research Arm Test (ARAT) (Carroll, 1965) is a set of tasks such as grasping, lifting, 

placing objects, and pouring water from one glass to another. Results are measured by the 

therapist, based on task completion and the naturalness of the motion. 

Graded and Redefined Assessment of Strength, Sensibility and Prehension (GRASSP) tests 

three aspects on the upper limb – strength (manual motor testing), sensibility (sensory 

testing using monofilaments), and prehension – qualitatively by examining the different 

hand postures that the subject is able to assume, or quantitatively with functional tasks 

such as pouring water, turning a key, and moving pegs on a pegboard. 

FuglMeyer Assessment (Gladstone et al., 2002) is a quantitative test to measure 

sensorimotor changes during recovery after stroke. 

Wolf Motor Function Test (Wolf et al., 2001) is a set of instructions that measure motor 

ability through timed, functional tasks and strength. 

Jebsen Test of Hand Function (JTHF) (Bovend'Eerdt et al., 2004) measures the hand motor 

skills by using seven items that measure fine motor skills, weighted functional tasks, and 

non-weighted functional tasks. 

Nine Hole Peg Test (9HPT) (Earhart et al., 2011) evaluates manual and finger dexterity by 

measuring speed, accuracy, quality, and finger use following set of instructions. 

Five-rung grip strength test (Shechtman et al., 2005) is a therapeutic test used to 

determine the sincerity of the effort exerted by the injured hand. The test is employed to 

measure the quality of the injured hand in applying a force and to regulate the differences 

in the shape of the curve during hand gripping. 

Southampton Hand Assessment Procedure (SHAP) (Light et al., 1999) is a set of tasks that 

involve finite and gross movements: Tip, Lateral, Tripod, Spherical, Power and Extension 

(Light et al., 1999). These tasks are performed using eight abstract objects and 14 activities 

of daily living (ADL).  

(More details on this method can be found in Experimental Chapter 4) 
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The above methods provide only subjective observation or measurement to the time or 

duration to complete tasks, which are not sufficient to efficiently evaluate hand 

improvement.  

3.2.2. Measuring Activities of Daily Living (ADL): 

There are different clinical methods used to measure the ability to perform the ADL 

activities and ensure the transfer from rehabilitation exercises to daily life functions. These 

methods merely rely on the subjective assessments from the health care professionals. The 

therapist observes the patient while performing different ADL tasks such as dressing, 

easting, bathing, toileting, transferring (standing, walking)  

The therapist evaluation is based on a score that marks each task. There are different 

scoring methods implemented to reduce the subjective variations between the physicians’ 

observations. Katz Index of Independence, (Katz et al., 1970), defines each task and the 

bases on which the patient is awarded a point. The score of the patient’s independency, 

(Katz, 1983), is calculated by summing the total points of the tasks. 

Likewise, the Barthel Index of Activities of Daily Living, (Wade and CoNin, 1988), scores the 

tasks to reveal the patient’s ability to self-care or perform the ADL tasks.  

Although, both methods have similarities , (Hartigan, 2007), they lack test reports to 

validate their reliability and precision. In addition, very often, the scoring evaluation 

introduces variability between assessments, this is mainly due to the different experiences 

between the therapists observing the patient, (Shelkey and Wallace, 2000).  

3.2.3. Hand Motion Assessment Systems:  

Motion assessment is a newly adopted technique for acquiring explicit information from 

hand movement.  

The kapandji test (Chalon et al., 2010) is the standard test system that is used to assess the 

range of motion for fingers. It measures the fingers’ motion during movement within 

predefined gestures. All fingers’ motion directions are included in this test in order to make 

it applicable for testing the hand’s sufficiency during the grasp function. 

Some studies (Hester et al., 2006) use accelerometers to measure motion trajectories. The 

raw data is used in data mining techniques to predict clinical scores for standard tests. This 

usually requires a therapist’s evaluation. 
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Another method captures the range of motion by using optical markers that are placed on 

defined locations in the body to track and monitor the motion (Shurtleff et al., 2009). The 

patient who is wearing these markers is asked to perform specific movements, such as 

reaching, moving arms around the field and interacting with the object. After recording the 

motion capture, data is compared between sessions to determine the level of changes and 

motion quality (Viau et al., 2004). 

3.2.4. Robotics Devices Hand Assessment:  

On the whole, the robotic devices have displayed more accurate measurements than the 

clinical observation techniques. This is mainly due to the precise and repetitive 

measurements that the robotic devices provide for data performance analysis. Some of the 

existing approaches are listed below: 

Daphne system (Rovetta, 2009) is a neuromotor assessment system that measures the 

time response in the motion of one finger from the hand, the velocity of phalanxes, and the 

force exerted by the finger against a button. 

Jamar device (Chalon et al., 2010) allows pinch grasp and power grasp forces. It provides 

relevant information for defining the force requirements at the fingertip in a half flexed 

hand.  

Omni®, Sensible with VR application developed by Haptic library (SIRS-Lab, Siena) (Meary 

and Baud-Bovy, 2009) is used for developing a robot-assisted assessment system for hand 

motor control. 

The system uses the tasks, including the handedness questionnaire, to describe the 

patient’s hand performance in rehabilitation procedures in less than half an hour. The 

assessment evaluates effects in accordance with the use of feed-forward/feedback control, 

learning and hand dominance.  

The wrist-RoboHab (Baniasad et al., 2011) can be used for evaluating: forearm 

supination/pronation, wrist flexion/extension, and ulnar/radial deviation. The device, aside 

from measuring the spasticity of elbow and wrist flexors at a constant velocity, measures 

the hand’s active range of motion by moving the handle with low impedance and end 

points, considered as ROM. 

Passive ranges of motion are evaluated by allowing the handle to be free to move, and the 

therapist drives the patient’s hand while he/she grips the handle. 
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Although robotic systems return more accurate and precise assessments, they are 

expensive and are exclusively designed for the specific device. 

3.2.5. Virtual Reality in assessment 

Alternatively, several researchers focused on using VR in assessment, as it returns very 

efficient measurements with lower cost and higher robustness. 

VR Kitchen, developed by the group in Texas (Viau et al., 2004), is one of the specified 

methods which works on evaluating patient performance by emulating ADL tasks. The test 

involves meal preparation tasks, such as making soup, sandwiches, etc.. These tasks are 

consequently divided into subtasks for acquiring more profound and detailed evaluation. 

This test was compared with real kitchen tasks and indicated efficient reliability. 

Davies has developed multiple VR systems for the purpose of kitchen-based training 

(making coffee, setting the table), vending machine interaction (i.e ATM), and path finding 

using VR representations of the local hospital and university buildings (Davies et al., 2002). 

Albani has developed an application which assesses the patient’s performance while 

navigating through a flat surface using a joystick (Albani et al., 2002). The three factors 

monitored are speed, object identification, and object recall. This test measures the 

performance of patients with Parkinson’s disease. 

 

The VR systems mentioned above are developed for general purposes of rehabilitation. 

However, there are some dedicated projects that primarily target hand rehabilitation: 

The ReJoyce automated hand function test (RAHFT) (Kowalczewski et al., 2011a) consists 

of three parts: function range of motion (fROM), grasp, key-grip, pronation-supination tasks 

and placement tasks. The system is connected with a workstation to interact with 

generated computer games. 

It efficiently measures a set of specified tasks, but this makes it limited and incompatible 

with other hand rehabilitation systems.  

The restriction of RAHFT is that it targets tasks that are not common with other techniques 

or devices, and this makes it very general. Also, the tasks covered do not usually transfer to 

ADL activities. 

A remote rehabilitation system developed by (Burdea et al., 2011) comprises of multiple 

interactive virtual hand games with a modified PlayStation 3 and a 5DT data glove. The 

system measures the patient’s performance at the start and end of the system usage; 



 
 

82 
 

during this time the grasping strength, hand function and bone health are monitored.  

A similar approach can be found with (Huber et al., 2008). This system shows positive 

outcomes but with some limitations, as the glove size is not customisable; it uses one fibre 

optic sensor per finger, which restricts it to only “global flexing” measurements; and each 

of the sensors requires a separate calibration curve, which tends to dislodge when wearing 

the glove. These drawbacks make the data measured inaccurate and more difficult to 

communicate. 

In addition, there are various limitations found in the above VR systems. The virtual games 

use game consoles that are old and not cross-platform compatible. The remote 

rehabilitation is also not as beneficial as expected; this is because it depends on internet 

speed, the compliance of the surrounding environment, and the continuous need of 

therapist observation to ensure that the data measured is deducted from the appropriate 

tasks and procedures. 

3.2.6.  Hand Assessment Approach 

After reviewing the above methods, the key elements that need to be addressed in order to 

ensure reliable and efficient development of the hand assessment method can be  

summarised: 1- The developed system should be compatible with other rehabilitation 

systems and not be specified to only one particular technique or application. 2- The data 

measurements should not be dependent on eye observation only, as this is inconsistent 

and does not return accurate data. 3- The designed applications or devices should not 

restrict the active ROM space of the patient’s hand as this could limit the task workspace. 

 

By having these elements in considerations, this project aims to implement a clinical hand 

assessment classification method inside a virtual reality system, where the hand motion can 

be tracked using a data glove sensorial device and visualised on the 3D display.  

The virtual reality system offers a safe interactive environment, significant visual feedback 

for the hand movement containing high details of the environment with some analysis 

(Grealy and Nasser, 2013), and remarkably increase the motivation of the patient while 

performing exercises (Eletha, 2008). 

  

In addition, the data glove device can return efficient measurements of fine and gross 

finger joint movements, with high accuracy and robustness; dynamic measurements of 
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hand motion without having overlap issues between the fingers or mixtures of reference 

points (Yamaura et al., 2009); and constant reading of the hand velocity, smoothness of the 

hand digits trajectory while performing a task, and stability of the fingers. 

The data glove also does not cause any inconvenience as it is easy to wear, comfortable on 

the hand, and it does not prevent the subject’s hand from interacting with real objects. 

 

In conclusion, employing the data glove device and virtual reality for hand assessment, will 

provide a safe and robust system that can objectively measure the different properties of 

the fingers motion and functionality. 

3.3. Summary of the Literature Review Chapter 

As the initial scope of this project is wide and covers multiple disciplines in hand 

rehabilitation, which involve standard clinical methods, robotics and advanced 

technologies, it has been decided to divide the review subjects into five categories in hand 

rehabilitation: clinical therapy, robotic assistance, virtual reality, neuroprosthetics, and 

synthesis.  

Each method/device is given with a description of the system properties and the existing 

challenges/drawbacks that affect the patient’s hand or the general setup effort, mobility, 

and costs. In general, most of the clinical methods require extensive effort from the patient 

and the therapists. In contrast, advanced systems such as robotic, virtual reality and 

synthesis provide mobility and repeatability; it also reduces the intensity of the exercises. 

Although the advanced technological systems have more advantages than the conventional 

techniques, they are expensive and not adaptable with the patient performance, and still 

require further adjustments and research. 

In conclusion, this chapter points to the necessity of developing an advanced and efficient 

hand assessment system that supports the conventional and advanced rehabilitation 

methods, with objective and dynamic measurements of hand performance. 

Multiple methods were reviewed in the hand assessment and conventional methods were 

found to be non-automated, not adaptive and highly reliant on subjective assessments.  

In the following Experimental Chapter 4, more details of the materials and methods used to 

conduct the analysis were provided. The CyberGlove® data glove device, which was 

reviewed in this chapter, was selected for the study because of the many advantages it has 
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over the other reviewed systems; including the portability, robustness, and feasibility, 

where different recording sensors cover most of the hand DoFs and do not produce high 

noises or disruption with surrounding devices.  

Also, the clinical assessment method SHAP has been reviewed with supportive information 

to illustrate the advantage of this system and highlight the reasons behind using it in this 

study. 
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Chapter 4 Experimental 

This chapter describes the setup and methods used in building the outcome measurement 

system to assess hand functions. It starts with an explanation of the system architecture 

and the various components involved in the hardware, graphics and data processing layer. 

The chapter then describes the experimental protocol, with the subjects’ inclusion criteria 

and the experiment structure and regulations. It then concludes by outlining the 

procedures for calibrating the systems, recording the data and processing it for analysis.  

4.1. Experimental Setup 

The project system architecture, shown in Figure 4-1, consists of three grouping layers: 

- The hardware layer: consists of the hardware connectivity between the devices 

(CyberGlove®, EMG reading devices, Dome® and computer screen) and the software 

display. 

- The data processing layer: consists of the data collection component for storing the 

data, and the data analysis. The data is analysed using the developed algorithms to 

calculate the outcome measurements and perform the statistical analysis. 

It also includes the experimental software setup and the classification procedures 

application. 

The data processing layer contains part of the graphic display. This includes the virtual 

model’s data structure and kinematic, collision detection, object interaction, and data 

calibration.  

- The graphics layer: consists of the 3D virtual graphics engine that is responsible for 3D 

rendering, texturing and rasterization. 
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Figure 4-1 Schematic of the full system architecture presents the structure with the 

different involved components. The top layer is the graphical and display process unit; 

the second top layer is the data processing for calculating the hand model kinematic and 

experimental data collection/analysis; the bottom layer is the hardware part which 

involves data glove sensor components, graphical devices and EMG data recording; the 

bottom layer acts as an intermediate between the subject and the system graphics.  

The hardware components of the system and the visual display are shown in Figure 

4-10.The visual display is placed in front of the subject with an immersive screen. The 

subjects interact with the visual world using the data glove device with the objects located 

on the table and virtual reality.   
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Figure 4-2 Hardware/software components used by the subject during the experiment; the system includes 
Graphical Display Dome® to show the VR environment along with both the camera views (front and subject 

virtual cameras), the table that holds all the experiment 

Before illustrating the components of the system, it is important to note that alternative 

devices or methods could be used to perform the experiment. The only condition for using 

any different equipment is that it must be compatible with the system architecture 

displayed in Figure 4-1. In this project, the devices and methods were selected based on 

their efficiency in measuring the required data, compatibility with other devices, and 

availability in the neurophysiology research lab, at the Biomedical Engineering Unit of the 

University of Strathclyde. 
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4.1.1. Data Glove 

The data glove device used in this experiment is the CyberGlove® (CyberGlove, 2013). This 

device was created by Immersion Corporation and later acquired by CyberGlove® systems. 

The glove is designed for measuring the movements of the joints of the hand. It consists of 

18 or 22 sensors (the latter is for the latest version) mounted over or near the joints of the 

hand and wrist. 

In this project the device is combined with the hand assessment classifications method to 

measure the multiple digits’ movements during the experiment. The signals recorded from 

the glove incorporate many properties for the fingers while performing tasks of gross and 

fine movements, such as stability, speed, and smoothness of the motion. 

 

   

Figure 4-3 Full kit display of CyberGlove® device with its components, including the 

interface module, serial connector to the machine (CyberGlove, 2013). 

The CyberGlove® (CyberGlove, 2013), Figure 4-3, model used in this project is CyberGlove I. 

It consists of glove fitted with flexible sensors, wired to the interface unit that contains the 

digital signal processing and amplifier, and a serial port to communication with a computer 

machine. The glove specifications are listed below: 



 
 

89 
 

 The glove has 22 flex sensors (three flexion sensors per finger, four abduction sensors, 

and three palm-arch sensors to measure the wrist flexion and abduction (Figure 

4-4).The sensors are thin and flexible to make the glove lightweight and elastic.  

 

 

Figure 4-4 Display of the 22 sensors’ positions on the CyberGlove® device; (1) Thumb 
Rotate, (2) Thumb MCP, (3) Thumb IP, (4) Thumb Abd, (5) Index MCP, (6) Index PIP, (7) 
Index DIP, (8) Middle MCP, (9) Middle PIP, (10) Middle DIP, (11) Middle-Index Abd, (12) 

Ring MCP, (13) Ring PIP, (14) Ring DIP, (15) Ring-Middle Abd, (16) Pinkie MCP, (17) Pinkie 
PIP, (18) Pinkie DIP, (19) Pinkie-Ring Abd, (20) Palm arch, (21) Wrist Flexion, (22) Wrist 
Abd. The different sensors positions allow for measurement of the multiple range of 

motion of the human hand(CyberGlove, 2013).  

The sensors used in CyberGlove® are flex sensors, designed to withstand typical ranges 

of bending and radii of curvature of natural finger motion. It provides a proportional 

angle output relative to the joint and joint radius, independent of the sensors’ 

locations. In order to obtain an accurate reading, it is essential that the sensor covers 
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the arc of the joint between the adjacent bone segments. 

The output voltage (0-5V) for each sensor varies linearly with the bend angle. It is 

processed through an ADC converter to return digital output (0-255). Each sensor has 

hardware offset and gains value, set in the CGIU unit, for modifying the digitisation 

output and producing a sub-range of 40-220. This sub-range is set to exclude high or 

low saturation for the sensors in extreme cases.  

The glove sensors have resolution <1 degree, repeatability 3 degrees (average standard 

deviation between glove wearing), linearity of 0.6% maximum nonlinearity over the full 

joint range and a typical sample data rate 90 records/sec. 

 

Further information on the flex sensors’ definition and properties can be found in the 

Literature Review, Chapter 3. 

 

 The glove size is regular male hand size. 

 Operating temperature: 10-45°C 

 Medical approvals: CE, FCC, Japan Technical Regulations Conformity Certification of 

Specified Radio Equipment 

The data acquisition is performed using an interface unit (CGIU). It reads the flex sensors’ 

output, digitises it, and feeds it back to the machine via a DE-9 male connector with RS232C 

serial communication. 

CyberGlove® offers a basic virtual application to display glove interaction with the hand 

model. 

Hence, as the CyberGlove® is a medically approved device, has high frequency, provides 

high resolution and repeatability, and mounts multiple bending sensors on the significant 

DoFs (Flexion/Extension, Abduction/Adduction) of the hand, the device is found very 

compatible for measuring the fingers’ motion and analysing the sensorial data in this 

project.  

Moreover, in comparison with the other devices, covered in the Literature Review Chapter 

3 section 3.1.6.1, the CyberGlove ® is more robust and its bending sensors do not require 

complex calibrations nor suffers from interference with surrounding devices, in contrast to 

the fibre optics sensors’ sensitivity and complex calibration. Furthermore, the bending 
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sensors, unlike the vision based sensors, do not get obstructed by grasped objects and 

crossing fingers. 

4.1.2. Hand Assessment Classification 

The classification method selected in this project is SHAP (Light et al., 1999). It is a clinically 

validated device that consists of a set of procedures covering a wide range of prehensile 

tasks for evaluating hand functions.  

 

 

Figure 4-5 SHAP toolbox includes the multiple classification objects for hand assessment 

and timer button to measure the performance speed (SHAP, 2013). 

The device is a portable toolbox, shown in Figure 4-5, containing 26 assessment items of 

abstract and daily activities. The items are listed in Table 4-1. 

The toolbox also includes a two-sided board and a timer (Figure 4-6) controlled by a push 

button. The system requires access to an online web-based interface to obtain the hand 

function evaluation scores from the session data. 

 

 

 

SHAP Tool 

Box Daily Life 

Objects 

Timer 

Abstract 

Objects 
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Table 4-1 List of SHAP Items available in the tool box 

 

 

 

 

 

 

 

 

 

 

 

 

Quantity Item 

1 Test case containing all SHAP equipment  

1 Backboard mounted in case with lock & 

key, door handle and zip  

1 SHAP form-board  

1 Foam insert containing all objects  

1 Timer unit  

6 Lightweight abstract objects 

6 Heavyweight abstract objects 

1 Lock and key mounted on backboard  

1 Zip mounted on backboard  

4 Coins (2 x 1p and 2 x 2p)  

1 Button board with 4 buttons attached  

1 Plasticine block  

1 Knife  

1 Note card  

1 Glass jar with lid  

1 Glass jug  

1 Cardboard juice carton  

1 Empty tin with plastic lid  

1 Door handle mounted on backboard  

1 Metal arrow unit  

1 Screwdriver  
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Figure 4-6 SHAP foam plate which is used to place the classification objects (the top figures shows the two 
sides of the plate). 

The two types of object in the toolbox are abstract and activities of daily living (ADL) tasks.  

a. SHAP Abstract Objects  

This consists of a set of 12 different objects not found in daily life activities (Figure 4-7). The 

inclusion of the abstract objects aims at removing the prejudicial psychological effects that 

exist in daily tasks. These lead to intermediate grip patterns or adverse evaluation effects 

by the subject.  

In this part of the test, subjects with impaired hand function are forced to make 

compensations in their fingers’ movements in order to carry the abstract objects with 

abnormal shapes. This will vary the movement from the natural patterns found in ADL 

tasks. The abstract objects are comprised of non-compliant dense materials and marginally 

compliant low-density materials for creating variation in the weight and yield in hand 

movement.  

These tasks are designed to assess grip patterns, as well as the strength and compliance of 

the grip involved in performing the task. 

Foam side to 

place Abstract 

objects 

Home 

Position for 

Prismatic 

End 

Position for 

Prismatic 

Timer 

Holding 

Place 

Foam 

back side 

to place 

Daily Life 

objects 
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Abstract 

Objects in 
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Figure 4-7 List of SHAP Abstract Objects: Sphere, Tripod, Cylinder, Cup (Lateral), Plates 

(Tip, Extension). Top row labels describe some of the objects, bottom row labels describe 

some of the task related to the object © SHAP Business Enterprise – the University of 

Southampton, with permission.  

b.  SHAP ADL Objects  

This consists of 12 daily living tasks (Figure 4-8), selected from the most commonly 

occurring daily activities (Sollerman and Ejeskar, 1995). They don’t require subjective 

assessment or large variability of timing and are all unilateral.  

 

Figure 4-8 List of SHAP grip classifications postures: Tip, Lateral, Tripod, Spherical, Power and Extension. © 

SHAP Business Enterprise-University of Southampton, with permission.  
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 The percentages of the required grips in the ADL tasks are: 10% spherical, 10% tripod, 25% 

power, 20% lateral, 20% tip and 10% extension (Light et al., 2002). Table 4-2 lists the 

selected ADL tasks associated with the grip classification. 

Table 4-2 SHAP daily living tasks (ADL) addressing the human hand natural grip classifications 

No. Task Natural Grip 
Classification 

1 Pick up coins Tip 

2 Undo buttons Tip/tripod 

3 Simulate food cutting Tripod/power 

4 Simulate page turning Extension 

5 Remove jar lid Spherical 

6 Pour water from jug Lateral 

7 Pour water from 
carton 

Spherical 

8 Move empty tin Power 

9 Move full jar Power 

  

4.1.2.1. SHAP Outcome Measure 

The outcome measure, score or Index of Functionality (Light et al., 2002), is calculated and 

correlated with the normal hand function outcome. This is important for comparing hand 

performance throughout the treatment and rehabilitation and between different groups.  

C. M. Light et al. have created a normative dataset on a controlled group of 24 subjects with 

healthy hand functions. The selection criteria used applied to this are: the subjects’ ages 

range from 18 to 50 years old and they do not have any adverse hand trauma, neurologic 

conditions, or disability of the upper limb.  

The SHAP (Light et al., 1999) classification method is selected for this project based on the 

following:  

- SHAP test can be used in conjunction with other tools such as CyberGlove®.  

- Reliability in measuring the hand function where an ANOVA test on the controlled 

group has revealed an F-value of 0.39 and P value of 0.68 (Light et al., 2002). 

- The tasks in SHAP are designed to address the prehensile ability in fine movement, with 

a limited concentration on the gross movement, due to the minimal arm transport 

requirement. This corresponds with the data glove measurement, as it is specifically 

limited to the dexterous range of motion. 
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- The scoring method not only assesses the level of performance throughout 

rehabilitation, but it also returns the level of function in respect to the benchmark 

(from a pre-established normative dataset). This satisfies the project objectives in 

providing dynamic and static assessment during the rehabilitation process.  

- Index of Functionality (IoF) indices can be calculated for the overall hand functions or 

specific prehensile pattern to illustrate in closer detail the level of function for each 

task. 

- SHAP outcome measurement is a standardised and clinically validated method and has 

been used in various research studies focusing on upper limb rehabilitation. 

4.1.2.2. SHAP in the Project Approach 

4.1.2.2.1. Specifying the Three Fingers for analysis 

To reduce the complexity of hand classification, this study focuses on three fingers: index, 

middle, and thumb.  

The thumb is the most versatile and important finger in the hand. Its opposable direction 

with the other fingers and its wide range of motion, equip the hand with the ability for 

precision and appropriate force in manipulating objects and using tools effectively for tasks 

(kitchen tools, construction, mechanical, etc.). 

At first glance, it may appear that the other four fingers of the hand are all equal in function 

and that the second most important finger for hand involvement, after the thumb, is the 

index finger. However, this is not accurate as the little finger (also known as the pinkie) is 

more significant for several reasons: 1- it is essential to the grip as it can approach the 

thumb to a higher degree than any other finger, 2- it has an identical group of slimmer and 

finer muscles that perform similar functions to those dedicated to the thumb, 3- the little 

finger approaches the thumb effectively to give the thumb more precision and strengthen 

the grip action, and 4- it is the most mobile finger after the thumb. 

 

The above concept is based on the consideration of which fingers would be the most 

significant to exclude from overall hand functions.  

However, this project considers the fingers that are used most in daily life activities, where 

the patients rely heavily on them to perform any day-to-day task. As mentioned in the 

SHAP definition, the patients have natural prehensile pattern skills. They possess pre-

learned skills for performing ADL tasks and their recovery makes hand rehabilitation easier, 
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faster and more efficient for restoring the lost functions. 

 

It is essential to note that the right-hand side is selected for studies in this project due to 

the materials design, and its prevalence among the subjects. 

 

4.1.2.3. Classifications 

To reduce the dimensionality of the fingers’ involvement in different tasks and to 

specifically address the three selected fingers, four classification methods were selected 

from the SHAP procedures: Spherical, Lateral, Point and Tripod (Figure 4-9) 

 

 

 

  

Before defining the fingers’ involvement in each task, it is important to differentiate 

between the two terms used in task performance – “depending on the finger” and 

“involving the finger”. The former implies that the task requires the movement or 

formation of the finger in the performance. The latter indicates that the task doesn’t 

require a specific finger movement but, because of the finger joints’ dependencies and 

mechanism in some movements, it involves the adjacent finger in performing the task. In 

other words, performing the task doesn’t depend on the finger’s movement, but rather, it 

involves it in the full hand function. To further illustrate this, for performing the lateral task, 

the hand depends on the index and thumb fingers. Correspondingly, it involves the 

extension of the middle finger as the middle-MCP extension is closely related to the index-

MCP extension.  

Tripod and spherical tasks rely on the three fingers, index, middle, and thumb, while, in 

point tasks, the hand depends on the index and middle fingers. 

Point 

Figure 4-9 List of classification postures selected for assessing the index, middle, and 
thumb performance (Lateral, Tripod, Spherical and Point); This figure is based on © 
SHAP Business Enterprise – University of Southampton, with permission. (The point 
figure is included by the author).  
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4.1.3. Virtual Hand Simulator 

As discussed in the Virtual Simulation section 2.3, Background Chapter 2, different robotic 

simulations can be employed. However, the GraspIt! (Andrew and Matei, 2015) simulator 

most closely matches the project aims, as it incorporates the following features:  

 GraspIt! provides a basic communication interface library to interact with CyberGlove®. 

 It includes a robot library with several hand robot models, including a Puma arm 

(Billingsley, 2006). 

 It has the ability to import new obstacle models. This is specifically required for adding 

the newly developed classification models to interact with the virtual hand during the 

hand assessment process. 

 It supports a dynamic engine with basic collision detection methods. 

 It is endorsed under the GNU General Public License (Gnu, 2015).  

 It has a detailed online manual of the system structure for developers. 

However, the GraspIt! application still requires a number of developments in order to 

utilise it in the project for assessing hand performance: 1- data communication and 

calibration improvement, 2- collision detection improvement, 3- human hand and objects 

modelling, 4- classification procedures and experimental setup implementation. 

 

4.1.3.1. Data communication 

The virtual simulation application is required for communication with the CyberGlove®, via 

a serial port data connection, in order to manipulate the virtual hand with the subject’s 

hand wearing the data glove. It needs to synchronise with the CED Micro 1401 EMG 

recording device, using the parallel port, in order to instantaneously coordinate the event 

occurrences with the instructions and EMG data recording.  

For the requirements above, the development is implemented in the hardware connection 

layer of the application. This is where the appropriate serial, parallel communication 

protocols and handshaking phases are included. The CyberGlove® data communication 

procedures and CED Micro 1401 data handshaking protocol can be found in the EMG 

section 4.1.4. 
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4.1.3.2. Calibration 

The calibration between the virtual model and data glove is an essential phase to ensure 

accuracy in data acquisition. This will result in reliability and robustness for any analysis 

performed and conclusions drawn. 

The GraspIt! application has a basic calibration method of calculating the linear relations 

between the raw glove sensors and the virtual hand DoF. This method does not include 

independent/dependent sensor variations and joint relations. The calibration configuration 

is impractical as it requires manual generation and configuration to the intercepts and 

offsets parameters of the linear equation. The saved configuration file also needs to be 

loaded at the beginning of each launch. 

The CyberGlove® virtual application calibration method is cumbersome and depends on 

manual adjustment for the variables in the linear equation and the DoF correspondence 

value. The defined poses for mapping the calibration are also limited and do not cover the 

full extent for the joints’ variability. Hence, a more advanced method of calibration is 

applied in GraspIt! to overcome the unreliability and complexity of the existing process.  

This chapter focuses on the implementation of the calibration method and procedure with 

the GraspIt! application. The algorithm is covered in detail in the Calibration Chapter 5. 

 

At the beginning of the experiment, the calibration procedures are performed by the 

subject by using a group of predefined gestures (Calibration Chapter 5, section 5.3). These 

are saved into .xml format and used in the experiment for the same subject and as a 

reference for the data analysis.  

4.1.3.3. Collision Detection 

The collision detection mechanism implemented in GraspIt! (Andrew and Matei, 2015) uses 

a basic approach. It creates bounding boxes around each object and continuously measures 

the distances between both bodies. There is a notable difference in the application 

between collision and contact. Collision refers to when interpenetrations occur between 

two objects, and contact refers to the closest point having the shortest distance between 

both bodies, that is bigger than or equal to the threshold limit. 

In the case of a collision, the application works to solve it by interpolating the DoF angle 

values between the initial joint position and the final joint position until the bodies’ 
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distance reaches a level less than the contact threshold. If the initial position is not collision 

free it will return to 0. 

 

Although the GraspIt! application has a multi-threading feature for collision detection to 

speed up the collision detection process, it still requires various developments as it is very 

fragile, especially in dynamic simulation.  

The method also returns multiple contact points but does not support multiple collision 

detection i.e. if the system detects a first collision with the body then it stops all the joints’ 

movement until this particular collision is resolved. In the real world, it is assumed that 

other joints are free to move and are independent from the collision effects of unrelated 

joints. 

Therefore, the necessity to implement a faster collision detection algorithm arises, to avoid 

delay between the real world task performance and visual display. This would also include 

multiple collision detections to avoid jams in the virtual hand joints when interacting with 

other objects.  

In the Background chapter, various collision detection approaches are explored and 

correlated with the project requirements. 

 

The developments also included readjusting the initial method of handling multiple 

collisions to process each one separately in the interpolation function. This was achieved by 

creating a list of all occurring collisions with the corresponding joints. This created a parallel 

resolutions process for all occurring collisions.  

4.1.3.4. Virtual Hand Model and Kinematic 

In contrast to robotic arms, the human hand requires acute designs and joint connections in 

order to represent realism when interacting with the virtual simulation. In response to this, 

a new hand model is designed and implemented by applying the existing robotic hand 

kinematic chains to other robotic models in GraspIt! 

The kinematic interactions and modelling are also adjusted accordingly with the project 

aims. Further discussion on the depth of the human hand kinematic is found in the 

Background Chapter 2.  

 

The hand model that has been designed, Figure 4-10, is based on the DLR robotic hand. Its 
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total size is approximately that of a medium-sized male hand, and the fingers have relative 

sizes corresponding to real hand variations. Each finger consists of three joints: one 

between the proximal and medial links, one between the medial and distal links, and one at 

the base. It has 20 degrees of freedom, five universal joints (ten DoF) on the metacarpal 

joints (linking the fingers to the palm), and ten revolute joints (ten DoF) for the proximal 

and distal. For further information on the virtual hand model and configurations structure 

code please see Appendix III and Appendix IV. 

 

 

Figure 4-10 Human hand model 20 DoF. Red Lines represent the Normals for each finger 

section. Joints are designed to adapt with the fingers orientation without deformation. 

 

Normal to the Joint Section 

Palm Centre 
Position 
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Figure 4-11 D-H parameters representation of the hand finger kinematic; where 𝜽𝟏, 𝜽𝟐, 𝜽𝟑 

are the angles of the finger joints; 𝒓𝟏, 𝒓𝟐, . 𝒓𝟑 are the length of the common normal; and 

𝒅𝟏is the offset along the previous joint.  

 In kinematics, the Denavit-Hartenberg (D-H) parameters are a commonly used convention 

for selecting reference frames to the links in the kinematic chain, Abdullah et al., (2013 ), 

Figure 4-11. The D-H transformation Ť used for locating the end link of the chain is 

presented in the cross-product equation (4-1) 

 [Ť] = [Ž1][Ř1]…Ž𝑛−1Ř𝑛−1Ž𝑛   (4-1) 

 

Where 𝑖the joint is number from 1 to n; Ž𝑖 is the first part transformation matrix, combining 

rotation angle 𝜃 and translation 𝑑 along z axis, presented in equation (4-2). 

 

[Ž𝑖] =  [

𝑐𝑜𝑠𝜃𝑖 −𝑠𝑖𝑛𝜃𝑖 0 0
𝑠𝑖𝑛𝜃𝑖 𝑐𝑜𝑠𝜃𝑖 0 0
0 0 1 𝑑𝑖
0 0 0 1

] 

  

(4-2) 

 

Ř𝑖 is the second part transformation matrix, combining rotation angle ά and translation 𝑟 

along x axis, presented in (4-3). 

MCP joint CMC base joint 

PIP joint 

DIP joint 

Tip of the finger 
(End effector) 
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[Ř𝑖] =  [

1 0 0 𝑟𝑖,𝑖+1
0 𝑐𝑜𝑠 ά𝑖,𝑖+1 −𝑠𝑖𝑛 ά𝑖,𝑖+1 0

0 𝑠𝑖𝑛 ά𝑖,𝑖+1 𝑐𝑜𝑠 ά𝑖,𝑖+1 0

0 0 0 1

] 

 

(4-3) 

The four parameters of D-H in the transformation matrix Ť, are derived from the common 

normal between both joints’ z axes (z axis is the rotational axis for the joint): 

𝑑 : is the offset distance along the previous joint z axis to the common normal with the new 

joint z axis 

𝜃 : is the angle about the previous joint z axis to align its x axis with the new origin. 

𝑟 : is the length of the common normal. 

ά : is the angle about common normal, from previous z axis to new z axis. 

In the case of finger flexion-extension joints, 𝑑 is the variable between 0 and the maximum 

flexion angle; 𝜃 is 0 as the x axes are parallel; 𝑟 is fixed with the finger length between 

joints; and 𝛼 is 0 as the z axes are parallel. These parameters are entered to the virtual 

simulation with the hand robot configuration file. More details are available in the 

Background Chapter, Kinematic Hand Model section 2.2. 

In order to manipulate the virtual hand position in the virtual world, the hand model is 

mounted on the end link of the Puma560 robotic arm. The Puma560 arm has three 

“universal” joints, with six DoF. 

Linking the hand to the arm is similar to joints kinematics procedures. It involves parent-

child chain link settings, in addition to a set of inverse kinematics routines used in the 

transformation matrix between the last joint of the arm (the wrist) and the base joint of the 

hand (palm).  

The transformation matrix for the palm of the hand, corresponding to the Puma560 world, 

is 𝑇ℎ1. This is calculated using equation (4-4). 

 

 𝑇ℎ1 = 𝑇ℎ0. 𝑇𝑗1 (4-4) 

𝑇𝑗1 is the transformation matrix for the last joint of the Puma560 arm, in the final position.  

𝑇ℎ0 is the initial transformation matrix of the hand palm in reference to Puma560. This is 

defined in the below equation (4-5) . 
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 𝑇ℎ0 = 𝑇𝑤0. 𝑇𝑗0
−1  (4-5) 

 𝑻𝒋𝟎
−𝟏 is the inverse of the initial transformation matrix for the last joint of Puma560. The 𝑻𝒋𝟎

−𝟏 

gives the transformation matrix required to transform the hand model from the scene 

world to the Puma560 world. 

𝑻𝒘𝟎 is the transformation matrix of the palm in reference to the scene world, at the initial 

position. 

 

The role of 𝑻𝒉𝟎 is to convert all the palm ‘transformation matrix’ parameters to the new 

world, where the Puma560 is the reference point. This then makes it possible to transform 

to any desirable location using the 𝑻𝐡𝟏. 

The mounting of both models (Human Hand and Puma560) to each other uses the world 

configuration file, see Appendix III .The Puma560, parent robot in the chain, configuration is 

added in the first <robot> node robot and the Human Hand, child robot of the chain, 

configuration is then added in the following <robot> node.  

Ultimately, the <connection> node, responsible for connecting both robots, includes three 

elements: 1- the index of the parent robot in the world, 2- the kinematic chain number on 

the Puma560 robot to attach the Human Hand, and 3- the initial transformation offset 

between the last link of Puma560 and the palm (base link) of the Human Hand. Figure 4-12 

shows the Human Hand model connected with the arm base, resembling the human arm’s 

manipulation of the hand with six DoF. 
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Figure 4-12 Graphical display of the developed Virtual Human Hand mounted at the distal 

of the Puma560 based arm robot. Hand transformation is calculated using inverse 

kinematic from the Arm base. 

4.1.3.5. Virtual Environment Configurations  

To replicate the real world experiment, the virtual scene needs to be configured in order to 

include tables, background and appropriate graspable objects, similar to SHAP’s. GraspIt! 

(Andrew and Matei, 2015) includes three types of bodies: “Robots”, as previously 

discussed; “Obstacle”, a static object such as the floor, table, etc.; and “GraspableBody”, a 

mobile that can be manipulated by the robot, such as balls, cups, etc. 

Three specific virtual graspable objects (see Figure 4-13) are designed for the experiments, 

with similar shapes to those of the real graspable objects. The graspable virtual objects’ size 

relativity to the virtual hand’s finger sizes is equal to that of the real objects and real hand’s 

finger sizes. This helps to maintain the grasping formation between both virtual and real 

worlds. 

Hand (End 

Effector of the 

Arm) 

Palm (Base 
of the fingers) 

  
Connection Joint (Wrist) 
  

Arm Base  
  

Shoulder Joint 
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Figure 4-13 Virtual objects used in the hand assessment experiment – (a) ball: used for 

the spherical task, (b) triangular prism: used for the tripod task, (c) plate: used for the 

lateral task, and (d) plate: used for the point task.  

  

Figure 4-14 SHAP real objects used in the experiments– (a) ball for the spherical task, (b) 

triangular prism for the tripod task, (c) plate for the lateral task, and (d) plate for the 

point task (the asterisk shows the place to point to with the index finger).  

a b 

c d 

The holding part 
of the plate 

  

Point Index  

finger location 

a b 
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The virtual reality setups, performed in association with every event during the experiment, 

are displayed in Table 4-3. This implementation ensures time consistency between the real 

and virtual tasks and the data analysis focuses on the prehensile pattern formation. 

Table 4-3 Virtual reality setup procedures for each event during the experiment. 

 

The following Figure 4-15 shows the virtual hand position in accordance with each task in 

the VR. 

Event Virtual Reality World Setup 

Relax 
The hand moves to the relax position. (Hand movement is 
performed by configuring the arm joints’ (shoulder, elbow, wrist) 
DoF angle values to the specified positions) 

Move Hand 

The object that corresponds to the task performed (ball – 
spherical grasp, plate - lateral, plate - point, triangular prism – 
tripod, see Figure 1.1.2-5) moves to the position X on the table, 
close to the arm.  
The hand moves close enough to the object. 

Get Ready None 

Grasp Object 
(Formation) 

None 

Hold Hand None 

Move Object  
and Release.  

 

Object and virtual hand move to position Y.  
The object then moves to the initial position.  
Hand returns to the relax position. 
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Figure 4-15 Display of the virtual hand positions for each task in the experiment – (a) spherical task, (b) tripod 
task, (c) lateral task, (d) point task. Objects are moved towards the virtual hand to perform the task. In the (b) 
and (d) figures, the front camera is added to include front perspective view of the graphical model and assist 

in the subject’s interaction with the VR.  

 In the VR experiments, the subject is presented with two cameras. The first camera 

projects the back view of the scene, which is the same angle as that when viewing the hand 

while performing real tasks. The second camera projects the opposite view to show the 

fingers and objects from the front side (see Figure 4-16). 
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Figure 4-16 Display of the virtual world view during an experiment. The left camera view 

is the opposite/front view of the hand, and the right camera view is the back/subject 

view of the hand and VR objects. Introducing both views help the subject to visually 

assess the interaction level with the VR environment.  

 The main camera, displaying the subject view, facilitates immersive control of the virtual 

hand and associates this control as if it were the subject’s own hand. The front camera is 

added to provide a closer view of the fingers’ movements to provide more accuracy while 

grasping the corresponding object. 

(Demo method of the VR hand simulator with the experiment setup is available online on 

https://1drv.ms/f/s!Ag1FSC4ql9qBgViYbJ3kMKJzMbiS ) 

4.1.4. Electromyography Measurement Device 

Electromyography, (EMG, 2015), is the measurement of the muscles’ activities, described as 

muscle response to nervous stimulation. The measurement is performed by detecting the 

electrical potential generated by muscle cells during contraction.  

The surface electrodes are commonly used for reading EMG. These are different from the 

needle electrodes as they are non-invasive and target readings for the larger muscle 

contractions. Needle electrodes are used specifically for localised potentials in the muscle.  

The surface electrode consists of metal and is injected with conductive/adhesive gel. Any 

dead, dry skin should be removed and the skin should be shaved to provide high 

conductivity and increase the impedance of the muscles’ electrical signals.  

https://1drv.ms/f/s!Ag1FSC4ql9qBgViYbJ3kMKJzMbiS
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Figure 4-17 EMG Ambu r blue sensor surface electrodes, N-10 A-25; The sensor is placed 

on the subject’s arm and connected back to the amplifier of the EMG. 

 

The EMG (EMG, 2015) surface electrodes use a differential signal mechanism, with three 

electrodes placed on the hand: two binomial electrodes at both sides of the muscle and a 

ground electrode on a non-muscled area. In this project, the pisiform wrist bone of the 

right hand is selected as the location of the ground electrode. 

The EMG electrodes are connected with an NL824 amplifier (see Figure 4-18) that provides 

high impedance differential inputs. The amplifier is used in conjunction with a Neurolog 

NL820 isolator, connected in turn with four NL125 filters for each channel (see Figure 4-19). 

This setting allows for individual configuration of each channel: low-cut, high-cut and notch 

(in/out). The filters are set to frequency range 50Hz-500Hz to match the EMG signal’s 

bandwidth. (See Data Processing section 4.3 for further information) 
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connector 
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Figure 4-18 Schema of the Neurolog connecting the isolator to the four filters for each 

channel (the four lines’ outputs go to the amplifier). 

 

 

Figure 4-19 Digitimer Neurolog system connecting the CED Micro 1401 (on top) data 

acquisition unit. This part involves isolators and filters for the transferred signal from 

each channel. 

Data is then transferred to a data acquisition unit, CED Micro 1401 ((CED, 2015)), before 

being exported to a computer, via USB 2.0 connector. The data is recorded in the machine 

with Spike 2 software. 

Spike 2 (see (CED, 2015)) is a data acquisition software application. It has various features, 

including data analysis and preprocessing. It provides a user-friendly interface to interact 

with the data readings, and multiple options to organise the data, navigate through 

Isolator 

Filters 

CED data acquisition 

Four channels  
Inputs from the filters 

Four channels Isolator 
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channels numerous times, detect specific features inside the signal, apply filtering and 

other signal processing methods, and export the data with channel markers in multiple 

formats for use in a more powerful analysis application, such as Matlab®.  

To ensure that the EMG reading is synchronized with the event instructions in the 

experiment, a script code is implemented in the virtual application to label the data 

channels in Spike2 (see Digital marker connections in (Spike2) for information about the 

parallel port handshaking). The communication is established via a 25-pin parallel port, 

connected from the printer port of the PC to the CED Micro 1401’s digital input (shown in 

Figure 4-20). The code uses handshake protocol to establish the connection then passes 

commands to the CED following each event. The data output is labelled before being sent 

as full package to the PC, via USB. 

 

Figure 4-20 Rear view of CED Micro 1401, showing all the peripherals and digital I/O 

ports.  

USB connectivity to the display machine 
  

Digital Inputs to trigger events and 

synchronise with other devices DC Power In  
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4.1.5. Graphical Interface System 

 

The Dome® (Figure 4-21) is a 3D immersive visual display. It has a 180° horizontal x 135° 

vertical field of view. The visual environment is displayed on the dome shaped screen, via a 

projector connected to a PC. Due to its design, it has advanced immersion levels in 

comparison to a normal screen, as it surrounds the viewer and delivers high-resolution 

virtual reality without a headset. 

   

Figure 4-21 Dome® projector for graphical display; it has the curvature form to increase 

the immersion level when interacting with virtual environment. The projector height and 

dome distance can be adjusted as necessary with the display.  
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4.2. Experimental Protocol  

The project aim is to produce an efficient outcome measurement for hand performance. 

The development of a hand outcome measurement method consists of two phases. The 

first is to validate the reliability and efficiency of the system on healthy subjects, by 

generating a normative data set to differentiate between the dynamic variation of disabled 

and healthy hand functions. Secondly, studies must be conducted on patients in order to 

further validate the method’s reliability and efficiency. 

Furthermore, the calculated hand progress evaluation results are highly dependent on the 

baseline analysis. This requires conducting experiments on healthy subjects in order to 

generate the normative data set and register the level of constraints on healthy hands. 

Then, the assessment of the hand movement performance for the subjects with 

dysfunctional hand will be performed by measuring the variation between hand 

performance (trajectory smoothness, velocity and time) and the normative data set. 

The measurements data for each subject are stored in individual profiles. This is used later 

to generate the analytical reports for the hand progress, and outline the improvement and 

efficiency of the rehabilitation sessions. 

 

Therefore, in the below section, the experiments procedures for validating the proposed 

methods and generating the normative dataset are described.  

4.2.1. Subject Inclusion Criteria 

Experiments were conducted on a controlled group of ten subjects who met with the 

following criteria – male; aged between 23 and 46 years old; both hand and leg are right 

side dominant; healthy with no neurological disorders; no medical issues; no history of 

epilepsy; have not received any operations on the upper limb on the right side; have no skin 

injuries on the right hand and forearm; are not allergic to EMG electrodes; have healthy 

visual perception with no motion sickness in using VR; right hand is close to medium male 

hand size and fits appropriately with the CyberGlove® data glove; and are not suffering 

from any hearing issues that would prevent them from listening to and following the 

instructions.  

The experiment generates a large dataset as it includes multiple trials and sessions for 3 to 

4 hours continuously recording data on the three fingers; hence, recording data for 10 

subjects was found evident to generate the necessary normative dataset. An advertisement 
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email was sent in the Biomedical department to recruit the subjects in addition to the 

neuroscience lab students. The email described the experiment involved and the study 

criteria. The ethics approval for this study was obtained from the University of Strathclyde’s 

Biomedical Engineering department. Informed consent was obtained prior to the 

experiment, Appendix VII.  

4.2.2. Experiment Process 

The subject sits in front of the Dome® station in order to interact with the virtual objects 

projected on the screen and real objects placed on the table.  

The SHAP’s foam-board (Figure 4-6) is placed approximately 8cm from the front edge (Light 

et al., 1999). The subject starts with resting arms and elbows at a 90° angle. The subject is 

instructed with audio cues to follow each event in the task (see Figure 4-22). The data is 

recorded continuously throughout, by both the EMG electrodes using Spike and the data 

glove sensors using the developed application.  

The real objects are placed on the SHAP board, with the specified locations labelled as 

positions X (start position) and Y (end position). In the VR, the virtual hand is automatically 

moved to the start position, close to the task object. As such, the fingers’ grasp movements 

are only involved in the VR tasks. 

There are six sessions involved in the experiment and these include the defined hand 

classifications, spherical, lateral, point and tripod (previously described in section 4.1.2.2 for 

SHAP method). The first three sessions involve interaction with the real abstract objects 

selected from SHAP. The “Real Life” session acts as the benchmark session to relate the 

new approach with SHAP measurement. The “Real Life + Load” session serves to measure 

the effect of fatigue on the hand and simulates impairment on the hand movement by 

adding extra weight (0.5 kg) to the forearm. The “Real Life + Tremor” session is for 

simulating paresis and studying the sensitivities of the system to detect the level of 

variability in hand/fingers’ movement. Subjects in this session are asked to feign hand 

tremor movements. The final three sessions are similar to the ‘RL’ sessions, but use virtual 

reality instead of real objects. Table 4-4 details the structure for each of the above 

mentioned sessions. 
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Table 4-4 Structured details of the experiment sessions. 

Session Evaluation Description 

“Real Life” 20x trials Interacting with real objects 

“Real Life + Load” 20x trials Interacting with real objects. 0.5kg load is placed on the 
forearm next to the elbow joint in order to prevent major 
deviation on the force exertion in movement. 

“Real Life + Tremor” 20x trials Interacting with real objects. Subjects are instructed to 
simulate a tremor movement, with the following 
sentence.  
“Please perform the following procedures while 
pretending you have what you consider a tremor in the 
right hand. With your arm in position, please mimic this 
tremor”. 

“Virtual Reality” 20x trials Interacting with virtual objects on the projected screen.  

“Virtual Reality + Load” 20x trials Interacting with virtual objects. 0.5kg load is placed on 
the forearm next to the elbow joint. 

“Virtual Reality + Tremor” 20x trials Interacting with virtual objects. Subjects simulate tremor 
movement while performing the tasks. 

 

 

 

Figure 4-22 Four different audio-visual instructions presented during the experiment. 

Each task is demonstrated at the beginning of each experiment, with the prehensile 

formation and hand movement that are relevant to the particular task’s requirements. This 

ensures repeatability and consistency between the different trials and subjects.  

For example, during the demonstration the subject is notified that the lateral task is 
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accepted only if the thumb’s MCP, PIP, DIP are extended and the index’s PIP is flexed.  

The index finger’s tip must not be opposite to the thumb’s tip, in order to have the object 

contact on the index’s PIP-DIP left side finger sagittal and the thumb tip finger frontal only. 

Likewise, the tripod task is accepted only if the object is grasped where the three fingers’ 

contact points, with the object, are the frontal side of each fingertip. 

And the spherical task is accepted if the contact points, with the object, are the three 

fingers’ full frontal side.  

The point task is accepted if the index finger is fully extended and middle finger is fully 

flexed. 

The tasks are randomly selected in each session to avoid any pattern developments in the 

fingers’ formation. Such pattern development can distort the fingers’ performance analysis 

and interpretation while performing repetitive tasks in the sessions. 

Each trial takes 56 sec (4*14sec) to 72 sec (4*18sec), which is dependent on the time when 

the subject places the right hand back on the table in the same shape as it was at the start 

of the trial.  

The hand’s relax position is detected using the data glove reading. This is done by 

comparing the sensor values with the original sensor readings from the start of the trial. A 

+10 degree difference is permitted.  

The addition of self-adaptability to the system addresses the difference between impaired 

and natural hand functions for completing a task.  

 

It is important to note that the above protocol was reviewed and adjusted after performing 

preliminary studies on four subjects. The four subjects of the preliminary study were 

selected based on the same criteria as the ones used in experimental study. The four 

subjects conducted the full experiment, and the collected data were analysed including the 

subject’s feedbacks. Hence, this preliminary study suggested a necessity to reduce the total 

time of the experiment (four hours) as it is very long and tiring for the subject. The 

literature review (Light et al., 2002) advised that a maximum number of 18 trials is required 

for assessment studies, therefore the number of trials is reduced from 30 to 20. 

The preliminary studies also indicated that it is important to randomly change the order of 

the sessions in order to avoid development patterns affected by the preceding sessions, 

such as load and tremor. In addition, the subjects suggested altering the instructions display 
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from visual to audio to offer fewer distractions while performing the tasks (see Discussion 

Chapter 7).  

 

In light of these suggestions, the final estimated total experiment time, including both the 

initial experiment time plus the setup time is: 

Initial Experiment Time = Time of Single Trial * Number of Trials * Number of Tasks * 

Number of Sessions = (2+1+1+4+4+ (~6)) (sec)*20 *4* 6= ~8640 seconds = ~2.4 hours. 

 

The setup time for the experiment – placing the materials and demonstrating each trial for 

the subject – takes approximately half an hour. This increases the total estimated 

experiment time to approximately three hours. 

For further explanation of the hardware and software setup for the system and the 

experiment process used in the multiple sessions see Appendix I. 
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Table 4-5 Instructions cue for each task of the experiment. The objects used for the tasks are ball for spherical, cup for lateral, triangular prism 

for tripod, and plate for point. 

Task ID Task Message Text on Screen Time Recording Description 

i Relax “Relax hand in start position on the table” (1+1)s 
EMG + data 

glove 

Start position. 
Record data glove data to detect the stop 

position. Time of 1 second added if previous 
trial starts before. 

ii Move Hand 
"Move the hand close to the object 
without moving the fingers" 

1s 
EMG + data 

glove 
Used for timing the start of the formation  

and ensuring consistency with the VR. 

iii Get Ready "Get ready" 1s 
EMG + data 

glove 
Relax and get ready. 

iv Grasp Object 
(Formation) 

“Grasp the ball” 
“Grasp the triangular prism” 

“Grasp the plate with the index and thumb 
fingers only” 

“Point at the plate” 

4s EMG + data 
glove 

This event is used to compare joints’ 
positions between the VR and real life 

formation. 

v Hold Hand “Hold hand and fingers " 4s 
EMG + data 

glove 

Measure the stability of the hand while 
holding an object, without moving the 

hand. 

vi 
Move Object  
and Release.  

 

“Move object to position Y. 
After finishing relax hand in start position” 

Detect 
the 

time 
using 
data 
glove 

EMG + data 
glove 

Relax (if it is not the first run). 
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4.3. Data Processing 

The data analysis process used in this project is illustrated in Figure 4-23:  

 

Figure 4-23 Data analysis procedures; The first step includes segmenting the data from 

the files and marking the multiple events, the second step extracts the features from the 

signal, which are used in the final step of data classification and statistical analysis to 

measure the performance. 

 The data segmentation phase includes, importing the recorded data, dividing it with each 

event task that is obtained from the marker’s details, and normalising the data across the 

session. The data must be normalised as some trials finish earlier than the rest, due to the 

variation in returning the hand back to the start position or the noises from the sensors of 

data glove, and this introduces extra data. 

The feature extractions phase obtains the relevant parameters that define the level of 

performance for each finger in the performed task. The Algorithms section, in the previous 

chapter, explains the procedures considered to calculate the equation parameters.  

In the data classification phase, the derived parameters are applied into the assessment 

equations. This allows the study of the variability between sessions, users, and tasks, and 

deduction of the statistical analysis in order to prove the efficiency of the applied method. 

4.3.1.1. Data Segmentation 

As previously mentioned in the Experiment Process, the recorded data is assigned with 

markers to synchronise the recording devices and identify the events’ occurrences. These 

markers are triggered by the audio instructions displayed in the experiment. The markers 

help in analysing the data and determining the event duration and time, as well as 
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performing intra and inter comparisons between the trials and subjects.  

The device synchronisation is performed using a parallel port adapter cable, where the 

markers are sent in coordination with each event occurrence. 

In addition, the data glove recording is transmitted separately through a parallel process, 

with a data-sampling rate of 50 samples per second. This configuration reduces the delays 

between each reading and interruption with the graphical and execution processes. 

 

The experiment directory consists of six subdirectories in each session. In the subdirectory, 

the data is stored in two formats: “comma separated values” for the full DoF session data 

and markers, and “text” file for the Spike recorded data from the EMG signals, including the 

digital markers. The stored data is segmented with the markers’ timing and task names. 

Before starting the feature extraction process, the data is normalised across all the session 

trials of each subject. This is performed by the following:  

1- The start and end of the task is extracted from DoF and sensor values by using 

mathematical equations to determine the level of threshold window that identifies the 

beginning and end of movements in the finger’s displacement signal. 

2- The finger’s displacement signal is then interpolated from its time range to the 

experimental defined range (see Table 4-5 for all the defined timings for each task). 

4.3.1.2. Feature Extraction 

This section covers the mechanisms applied to extract the features from the data recorded 

with the data glove and EMG measurement devices.  

4.3.1.2.1. Data Glove Feature Extraction Method 

The calculation of hand performance outcome measurement focuses on analysing the 

variation of the three fingers – thumb, index and middle – involved in the four selected 

tasks – spherical, lateral, point, and tripod. 

Calculation of the outcome measurement requires multiple pre-processing steps prior to 

applying the evaluation equation that has been designed. First, the displacement of the tip 

of each of the three fingers is calculated to reduce the complexity and return a general 

overview of the fingers’ displacements.  
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The end effector, or tip of the finger’s displacement Figure 4-11, is calculated with the 

forward kinematic method where:  

 𝑋𝑓𝑖𝑛𝑔𝑒𝑟 = 𝑙1 cosθ1 + 𝑙2 cos(θ1 + θ2) + 𝑙3 cos(θ1 + θ2 + θ3)  (4-6) 

 

 𝑌𝑓𝑖𝑛𝑔𝑒𝑟 = 𝑙1 sinθ1 + 𝑙2 sin(θ1 + θ2) + 𝑙3 sin(θ1 + θ2 + θ3) (4-7) 

 ∅𝑓𝑖𝑛𝑔𝑒𝑟 = θ1 + θ2 + θ3  (4-8) 

Where in (4-6), (4-7), and (4-8) 𝑙1, 𝑙2, 𝑙3 are the length between the joints of the finger (unit 

cm); and θ1, θ2, θ3 are the angles of the three DoFs (unit radiant). Thumb DoFs (CMC 

(Thumb Abd sensor), MCP (Thumb MCP), IP (Thumb IP)), other fingers DoFs (MCP, PIP, DIP). 

The joints’ angles are the DoF angle values of each joint, acquired from the recordings of 

the CyberGlove® sensors after calibration. 

Equation (4-6) returns the horizontal displacement of the fingertip. Equation (4-7) returns 

the vertical displacement of the fingertip. Equation (4-8) returns the angle for the fingertip. 

Figure 4-24 displays the grand average 𝑌𝑓𝑖𝑛𝑔𝑒𝑟  for the fingers of each task in the “Real Life” 

sessions. 
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The fingertip vertical displacement provides significant information for assessing finger 

performance. By examining the variations of the finger displacement during the tasks 

(Figure 4-24),  the essential components can be derived for assessing the fingers’ 

movement: speed, stability and smoothness. 

  

Different signal processing techniques are used in this phase, to calculate the above 

components, from the data displacement signals in Figure 4-24.  

 

The data segmentation variables, which are used in the calculation methods, are defined on 

the finger’s displacement signal data window, shown in Figure 4-25, as following: start of 

the grasp task (gStart); end of the grasp task (gEnd); start of the Hold task (hStart); end of 

the Hold task (hEnd); start of the relax task (rStart); end of the relax task (rEnd). 

Figure 4-24 Data graph for the tip of three fingers’ displacement during the four different 
tasks: grasp, tripod, point and lateral. The unit of displacement is cm. (a) graph is the index 
finger displacement, (b) graph is the middle finger and (c) graph is thumb. The x axis of each 
graph represents the time in seconds of the task starting and completion times, which are 

distributed into four sections (grasp, hold, relax and finish). 

 

a b 

c 
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The slide-window technique (O'Haver, 2015) is a feasible tool that is used to determine 

these variables from the data signal.  

The technique first extracts a small data vector (window) from the finger’s displacement 

signal that has a defined duration time “ws”. Then it calculates the slope of the data in this 

vector and compares it with the threshold. 

If the slope value is bigger than the threshold of finger’s displacement signal-start, it 

indicates that the start of ‘grasp’ event is detected. If the slope value is smaller than the 

threshold, then the window is slide across the finger’s displacement signal by same time 

duration “ws”, and then the process is repeated until the start of the event is detected. 

On the other side, to detect the end of the ‘grasp’ event similar steps are processed until 

the method finds the data window with slope value less than the end-threshold.  

 

The start of the ‘hold’ event is detected by finding the first decrease in the slope of the 

sliding window vector, instead of using the pre-discussed threshold comparison. However, 

the end of the ‘hold’ event is detected using the threshold comparison. 
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Figure 4-25 Graph display of the defined variables (gStart, gEnd, hStart, hEnd, rStart, 
rEnd) on the finger’s displacement signal curve. The Speed and Smoothness windows are 
displayed in Red and Stability window is displayed in Green. 
 

The slide-window technique’s accuracy is dependent on two elements: the level of noises in 

the finger’s displacement signal and the size of the window duration “ws” to correlate with 

the finger’s displacement signal peak width.  

 

In this project, a low pass filter is used to smooth the finger’s displacement signal and avoid 

the local minima issue.  

Plus, the window duration “ws” is defined based on the time markers. The markers are 

assigned by the virtual simulator by synchronising the data recording with the task 

instructions (events).  

4.3.1.2.1.1. The Speed Component 

The average speed of the finger movement is calculated using equation (4-9). 
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝑆𝑝𝑒𝑒𝑑 =

𝐺𝑟𝑎𝑠𝑝_𝑆𝑝𝑒𝑒𝑑 +𝑅𝑒𝑙𝑎𝑥_𝑆𝑝𝑒𝑒𝑑

2
  

(4-9) 

Where 𝐺𝑟𝑎𝑠𝑝_𝑆𝑝𝑒𝑒𝑑 is the speed of grasping the object or forming the posture, in the time 

range [gStart gEnd]; and 𝑅𝑒𝑙𝑎𝑥_𝑆𝑝𝑒𝑒𝑑 is the speed of relaxing the finger back to the initial 

position after the ‘hold’ event, in the time range [rStart rEnd].  

The 𝑠𝑝𝑒𝑒𝑑 of both ‘grasp’ and ‘relax’ events is calculated by finding the slope of the finger’s 

displacement signal data within the time range. This is described in equation (4-10). 

 

𝑠𝑝𝑒𝑒𝑑 = 𝑠𝑙𝑜𝑝𝑒 =
𝑑𝑡𝑒
𝑡𝑒

 

(4-10) 

Where 𝑡𝑒 is the time duration of the event; and 𝑑𝑡𝑒  is the displacement distance of the tip 

of the finger for the defined section of the finger displacement signal within the time range 

of 𝑡𝑒. The unit of the speed is cm/s. 

Calculating the slope using equation (4-10) is correct in condition that the finger’s 

displacement signal is linear. However, because the finger’s displacement signal is assumed 

to be of Gaussian shape, the 𝑠𝑝𝑒𝑒𝑑 is calculated by first finding the polynomial equation of 

finger’s displacement event finger’s displacement signal and then calculating the slope.  

In order to determine the polynomial equation of the data in the selected time range, the 

Least Square fitting method (LSR) is used. The LSR returns the polynomial parameters of the 

equation based on the regression of the data.  

4.3.1.2.1.2. The Smoothness Component 

The smoothness component of the finger’s displacement signal measures the consistency 

level of the finger while performing a posture. The calculation of the smoothness is 

performed by first smoothing the finger’s displacement signal using ‘rloess’, regression 

locally weighted scatterplot smoothing, filter (10% span of total data points) and then 

subtracted from the original using equation (4-11). 

 

𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠(𝑡𝑔) = √
∑ (𝑉𝐷1(𝑡𝑔)−𝑉𝐷2(𝑡𝑔))

2
𝑡𝑔𝑘
𝑡𝑔0

𝑡𝑔𝑘
− 𝑡𝑔0

   

(4-11) 
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Where 𝑡𝑔 is the time range of the ‘grasp’ or ‘relax’ event. It varies from 𝑡𝑔0  (start time of 

the event, also noted as gStart or rStart) to 𝑡𝑔𝑘
 (end time of the event, also noted as gEnd 

or rEnd); 𝑉𝐷1(𝑡𝑔) is the original vertical fingertip displacement signal during 𝑡𝑔; 𝑉𝐷2(𝑡𝑔) is 

the vertical fingertip displacement during 𝑡𝑔 after applying ‘rloess’ regression loess 

smoothing filter, 

The ‘rloess’ is similar to lowpass filtering. It is a moving average filter which smooths the 

finger’s displacement signal by replacing the data point with the average of the neighbour 

points within the span. (Matlab-SMOOTH, 2015); it is calculated using the equation. 

 

 
�̈�𝑠(𝑖) =

1

2�́�+1
√�̈�(𝑖 + �́�) + �̈�(𝑖 + �́� − 1) +⋯+ �̈�(𝑖 − �́�)   

(4-12) 

Where �̈�𝑠(𝑖) is the smoothed value of the data point; 𝑖 is the data point number in the 

finger’s displacement signal; 

2�́� + 1 is the span; and �́� is the number of neighbouring data points. 

The equation (4-11) calculates the Root Mean Square Error (RMSE) (Holmes, 2000) between 

the smooth and original finger’s displacement signal, to calculate the level of variation in 

the finger displacement. 

Moreover, similar to the speed, the smoothness is calculated on the Grasp and Relax events 

time duration. The smoothness values are calculated separately by using (4-11) and then 

averaged. This is described in equation (4-13). 

 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 =

𝐺𝑟𝑎𝑠𝑝_𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 +𝑅𝑒𝑙𝑎𝑥_𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠
2

  
(4-13) 

 

Where 𝐺𝑟𝑎𝑠𝑝_𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 is the smoothness calculation of the finger’s displacement 

signal for the ‘grasp’ event, in the duration range [gStart gEnd]; and 𝑅𝑒𝑙𝑎𝑥_𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠is 

the smoothness of the finger’s displacement signal for the ‘relax’ event, in the duration 

range [rStart rEnd]. The unit of smoothness is cm. 
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4.3.1.2.1.3. The Stability Component 

The stability component is the level of stability of the finger’s displacement signal during 

only the ‘hold’ event. To calculate the stability of the fingers, both the low level noises and 

high level noises are measured and included in the equation (4-14). This is to cover both 

small and large variations in the finger movements.  

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑡ℎ) = √
∑ (𝑉𝐻1(𝑡ℎ)−𝑉𝐻2(𝑡ℎ))

2
𝑡ℎ𝑘

 

𝑡ℎ0 

𝑡ℎ𝑘− 𝑡ℎ𝑜
+ 0.5 ∗ √

∑ (𝑉𝐻1(𝑡ℎ)−𝑉𝐻3(𝑡ℎ))
2

𝑡ℎ𝑘
 

𝑡ℎ0 

𝑡ℎ𝑘− 𝑡ℎ𝑜
  (4-14) 

Where 𝑡ℎ is the time for ‘hold’ event (between the ‘grasp’ and ‘relax’). It varies from 𝑡ℎ0  

(start time of the event, also noted as hStart) to 𝑡ℎ𝑘 (end time of the event, also noted as 

hEnd) ; 𝑉𝐻1(𝑡ℎ) is the original vertical fingertip displacement during 𝑡ℎ; 𝑉𝐻2(𝑡ℎ) is the 

vertical fingertip displacement signal during 𝑡ℎ and smoothed using ‘rloess’ filter (10% span 

of total data points); 𝑉𝐻3(𝑡ℎ) is the vertical finger’s displacement signal during 𝑡ℎ, 

smoothed using ‘rloess’ regression smoothing filter (80% span of total data points). 

The equation (4-14) consists of two parts: first it calculates the RMSE of the finger 

movement’s small variations, and the second calculates the large variations during the 

‘hold’ event within time range [hStart hEnd]. The unit of stability is cm. 

4.3.1.2.1.4. The Finger Performance Value Equation 

The above calculations of the Smoothness, Speed and Stability are combined in equation 

(4-15) to calculate the Finger Performance Value (FPV). 

𝐹𝑃𝑉 =

𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝑆𝑝𝑒𝑒𝑑 
max (𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝑆𝑝𝑒𝑒𝑑)

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠
max (𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠)

+
𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦

max (𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦)
 
∗ 𝐶𝑜𝑟𝑟_𝐹𝑎𝑐𝑡 

 

(4-15) 

Where 𝐶𝑜𝑟𝑟_𝐹𝑎𝑐𝑡 is the calibration coefficient index for each subject; max(.) is the 

maximum value of the total data set for all the subjects (used for normalisation).  

The 𝐶𝑜𝑟𝑟_𝐹𝑎𝑐𝑡 is calculated by using the Pearson’s r correlation coefficient to compare the 

expected and actual DoF angle values. The DoF angle values are calculated in the calibration 

process (Chapter 5). The actual DoF angle values are the specified six hand gestures stored 

data.  
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The Finger Performance Value (FPV) is a dimensionless value; It is normalised by the 

maximum value max(.). The maximum value is obtained using the data results of all the 

subjects. 

(Muir et al., 1995) suggests that the maximum speed, for healthy hands, with no external 

forces or weight, is 5.7 cm/s. To verify the results on CyberGlove®, the small experiment 

was conducted after calibration, which consisted of flexing and extending all the fingers as 

fast as the possible. The experiment was repeated five times with 20 second rest in 

between. The results show that the total average of the speed was 6cm/s.  

4.3.1.2.2. EMG Feature Extraction Method 

The four muscles selected in monitoring the three fingers’ movements (Kanade, 2009) 

during the experiment are:  

1. Dorsal Interosseous Muscle (DIM) – For the thumb opposition-apposition. 

2. Right Abductor Pollicis (RAP) – For the thumb opposition-apposition. 

3. Right Flexor Digitorum Superficialis (RFD) – For the index and middle fingers’ flexion. 

4. Right Extensor Digitorum (RED) – For the index and middle fingers’ extension. 

The EMG electrode signals of the subject’s four muscles are filtered using a low pass (500 

Hz) filter and high pass (5 Hz) filter. They are then amplified to enlarge the features 

contained within the signal (De Luca, 2001).  

Following this, the data is passed through a digital rectification filter in order to perform the 

necessary analysis. These procedures are described in Figure 4-26.  
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Figure 4-26 A schematic procedure of the EMG data signal processing; In the first, top step 

the signal is acquired from the digital filters and amplifier; in the second step the signal is 

rectified using specified equation; in the third step the signal is passed through a linear 

low pass filter envelope to eliminate the noise; and in the final, fourth step the signal is 

smoothed using a median filter for data analysis.  

 The following equation (4-16) is used to rectify the signal.  

  (4-16) 

 

Where ARV is the average rectified value (Stutz, 2012), and  is the absolute of the 

EMG signal in time (t). 

To build a linear envelope on the EMG, the full-wave rectification is combined with a 

second order Butterworth low pass filter with a cut off of 400 Hz (Mello  et al., 2007). The 

below equation describes the N order of a low pass analogical Butterworth filter in the 

frequency domain (Terri et al., 2003 ).  

)(tEMG
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 |𝐻𝑀(𝑤𝑓)|2 =
1

1+(
𝑤𝑓

𝑤𝑓𝑐
)2𝑁

   
(4-17) 

Where |𝐻𝑀(𝑤𝑓)|2 is the square magnitude of the frequency response of the filter; 𝑤𝑓 is 

the angular frequency; 𝑤𝑓𝑐 is the filter's cutoff frequency; and T is the total time. 

Smoothing techniques, using the digital median filter, are applied to process the signal 

further. The filter looks at the neighbouring area (usually defined as a window) of each 

signal data point to determine whether or not it is representative of the surrounding signal. 

The filter eliminates small noise spikes while keeping the remainder of the signal intact 

(Florence and Jane, 1988). 

The EMG signals are analysed using spectral analysis, by studying the frequency domain of 

the signal. The approach uses fast Fourier transform (FFT) to deconstruct the signal into 

multiple sine waves of different frequencies. This shows how the signal frequency varies 

with time. At this point, the power spectral density (PSD) is used to measure the power 

contribution of each frequency in the EMG signal. This is calculated by squaring the FFT 

from each section of the signal and averaging the total. The PSD is then compared between 

the defined epochs.  

The mean power frequency is also calculated from the PSD for all the epochs in order to 

assess the EMG data quantitatively.  

Spectral analysis is used to study muscle fatigue during the sessions that use an added 

weight. Florence used mean frequency to analyse muscle activity, which is proven to 

decrease with time during the tasks that induce fatigue (Florence and Jane, 2015) and (NIH, 

2015). EMG is also used to measure the level of physiological tremor on the fingers, as it 

decreases in line with the tremor effect on the hand movement (Conolly, 2015).  

4.3.1.2.3. Physiological Features for the Subject Hand  

The physiological characteristics of each subject’s hand are also included in this project. The 

physiological features add variability in the results between subjects, and change the 

kinematic calculations for identifying the fingertip positions from the DoF angle values and 

fingers length.  

The features considered include the subject’s hand size, finger lengths, the arm’s shoulder 

to tip length, and the level of usage of the right hand (see Appendix II).  
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4.3.1.2.4. Subjective Assessment  

The aim of the subjective assessment is to supplement the objective’s, by outlining the 

physiological differences between subjects, previous experience with virtual reality and the 

level of concentration while running the experiments (this endorses the boredom level, 

incorrect following of instructions and attempting to learn task patterns) . 

The subjective assessment is performed during the experiment by observing the subject 

performance and interaction level with the system. The author was monitoring the subject 

and taking notes of any noticed actions as well as video recording their performance. The 

observation included assessing the motivation rate by reviewing the concentration level 

when following the instructions, questions asked by the subject related to the system 

functionality and studies, and interaction skills in the real and VR system (besides 

manipulating the virtual hand, interacting with the 3D objects and synchronous wrist 

movement with the VR) Appendix VI. The observations and subjective assessment are all 

performed by the author of this thesis. 

4.3.1.3. Data Classification 

The data classification process involves analysing the features taken from the previous 

process (Feature Extraction 4.3.1.2) by studying the variability between the subjects, 

sessions, trials, and tasks. It also involves statistically evaluating the data in order to prove 

the efficiency of the proposed hand assessment method. 

A Pearson’s r cross-correlation test is performed, on a trial basis, for each subject to test 

the intra-subject repeatability of the studies.  

To test the inter-subject repeatability for all the subjects in the control group, the ANOVA 

test is used. The null hypothesis is that there are no significant differences in the 

assessment values between subjects of the controlled group. The hypothesis is tested at an 

α level of .05. The confidence interval (CI) for rejecting a true hypothesis (having type I 

error) is 95%. 

This helps in validating the reliability and effectiveness of the developed method.  

 

In this approach, it is very difficult to compare the studies performed on SHAP with the 

results obtained, as there are variances in the parameters included (range of motion, 

smoothness, and stability). The experimental protocols also vary as in here the time 

measurement is performed automatically, while in SHAP this is performed using a timer 
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button that is pressed by the subject at the start and end of the task to track the time.  

In addition, trying to exclude the reading of the hold event from the data results does not 

only confuse the main factor of the SHAP scoring method – the time taken to execute a 

complete task without obstruction – it also eliminates the subtle factors of the hand 

function during grasp and release, such as grip strength, stability duration, and 

proprioception. 

Another approach to validate the assessment method is to present the outcome 

measurements for a group of hand therapists. This allows the subjective assessment of the 

outcomes in combination with the SHAP scoring values for the same group.  

The combination of SHAP scores incorporates the majority of significant factors addressed 

in the project assessment method.  

 

The efficiency of virtual reality sessions, in comparison to real life sessions, for providing 

accurate outcome measurements is dependent on multiple factors. Firstly, VR does not 

include haptic feedbacks (senses of textures, size, temperature, weight), where 

muscle/nervous contributions differ, as no forces are required to lift objects. Secondly, 

there are differences in the perception (i.e. visual perception) of the virtual objects that 

lead to inconsistencies in estimating the size, shape, and distance of the objects. Finally, the 

VR has numerous limitations in simulating the high articulations and details of the human 

hand, as well as the complex interactions with real world objects. This reduces the precision 

and feasibility of the fingers’ movement and motor control. 

4.4. Experimental Chapter Summary 

In this chapter, the experimental setup was described with the various materials used. This 

included the data glove device, the hand assessment method, the virtual reality system 

with the developed virtual hand simulator and display devices, and the electromyography 

measurement application.  

The experimental protocol is detailed with information of the inclusion criteria used for the 

subjects and the different procedures designed to perform the experiments. This included 

task definitions, session sequences and incorporation, and the time domains. 

Following this, the data processing procedures are illustrated involving data segmentation, 

feature extraction, and data classification for the outcome measurements. The feature 
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extraction section highlighted the unique approach of this project, as well as the other 

features and calibration factors that have been considered to remove discrepancies and 

provide accurate hand assessment analysis.   

In the following chapter, the calibration method used for the data glove device with the 

virtual hand model is explained. Very importantly, during the research the importance of 

accurately calibrating the device with the subject’s performance in order to obtain accurate 

results was noted. In light of this, a separate chapter has been included which is mainly 

dedicated to the calibration and development process. The latter covers an extensive 

review of the available methods, the approach developed and the specific experiments 

performed on the subjects in order to validate the procedure.   
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Chapter 5 Calibration 

The hand model calibration is considered a key factor in obtaining efficient outcome 

measurements for the project as it produces consistency and a reliable visual display for 

hand interactions and manipulations. 

The high complexity of the hand kinematics makes it essential to address the calibration 

and dedicate a separate part of the project process to reviewing and developing different 

methods. This will serve to provide a reliable approach that closely resembles the actual 

hand movements and reduces discrepancies.  

It is not possible to draw any reliable conclusions on the designed model efficiency, or to 

conduct any study performing the classification methods, without having an accurate and 

feasible calibration method. 

The calibration method considered in this project is off-line programming, as the aim is to 

avoid making the process cumbersome and to ensure it is kept independent from any 

external third party devices.  

This chapter begins with a description of the procedures involved in performing calibration, 

followed by a review of the existing methods. It concludes with the suggested approach and 

the results obtained.  

The main aim of calibration is to address the various discrepancies between the human 

hand kinematics (fitting with hand), the tracking device method (sensor properties) and the 

hand model kinematics and manipulations. A reliable and robust calibration is dependent 

on both its adaptability in addressing the numerical problems of data reading and the 

deficiencies of the system tracking devices, and its simplicity or independence from 

additional external tools. Calibration is a cumulative process that involves defining hand 

model constraints, taking measurements, performing numerical identification for human 

hand characteristics, and implementing processing algorithms.  

The hand modelling procedures, as previously described in the Background chapter, 

provide an approximate resemblance to the human hand size, shape and constraints. 

However, users have different hand sizes and finger joint lengths, which require 

anthropomorphic measurement for each subject and agreed parameters for the adaptive 

algorithms. The calibration algorithm is then applied to map or translate the sensor reading 

values from the tracking device to the human hand model DoF.  
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5.1. Review of different Data Glove Calibration Methods 

Several methods have been provided to address the calibration of the data glove reading 

with virtual models. The large volume of research in this area highlights how challenging 

the process is and that there is no one solution that can cover the various aspects of 

adjustments.  

The CyberGlove® VirtualHand application offers a basic method to calibrate the virtual 

hand. This involves manually adjusting the gain and offset parameters of the raw values for 

each sensor to produce a visually convincing hand pose. This is described in the following 

equation (5-1). 

 𝐷𝑂𝐹𝑉𝑎𝑙 = 𝑔𝑎𝑖𝑛 ∗ 𝑟𝑎𝑤𝑉𝑎𝑙 + 𝑜𝑓𝑓𝑠𝑒𝑡 (5-1) 

Where 𝑟𝑎𝑤𝑉𝑎𝑙 is the sensor value; 𝑔𝑎𝑖𝑛 is the gain value; and 𝑜𝑓𝑓𝑠𝑒𝑡 is the offset value; 

and 𝐷𝑂𝐹𝑉𝑎𝑙is the calculated DOF angle value by using the gain and offset constant values. 

This approach has many limitations as it is not accurate and produces spatial differences 

between users and repetitions. As such, it is not valid for tasks that involve fine finger 

movements. The process is also cumbersome and lengthy, and does not take the 

joints’/fingers’ dependencies into consideration. 

The alternative posture method supported in the application is limited to only two gestures 

and this does not cover the maximal constraints of the hand movement. 

5.1.1. Neural Network Data Glove Calibration Method 

The neural network (MachineLearning, 2015) is a commonly used model for calibration. Its 

main use is to resolve various self-learning mathematical problems used in different 

applications. Its applications extend to numerous fields, such as pattern recognition and 

classifications (facial recognition, task identifications, brain activity features in motor 

control), times series prediction (statistical, finance), signal processing (filter, noise 

cancellation), control (automation control, robotics), and soft sensor analysis (evaluation of 

multiple sensory inputs) (NeuralNetwork).  

The neural network architecture consists of multiple neurons, which are connected linearly 

and nonlinearly. A weight is assigned to the link between the neurons to alter the 

throughput signal appropriately. The model adjusts itself to obtain the desired output by 
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performing continuous evaluations and error parameters calculations. There are three 

techniques used in the network:  

1- A supervised learning network, where the network compares its output with defined 

(known) values and makes adjustment to its connections.  

2- Unsupervised learning, which is where there are no defined values to be used for 

evaluation. Instead the network separates between different datasets by using learning 

mechanisms to identify characteristics or remarks for each group. A common application is 

clustering.  

3- Reinforcement learning is a semi-supervised network that is configured with a reward 

based element, which increases when it gets the correct outputs. An example of 

reinforcement learning is a robotic hand searching for the optimal posture to grasp an 

object – the network reward is increased if the object is grasped appropriately and with the 

relevant force and stability. 

 

Figure 5-1 Neural network diagram; This figure displays a basic structure of neural 

network that consists of 3 layers: input, hidden, and output. 

The neural network model also has multiple types:  

Feed forward neural network (shown in Figure 5-1 Neural network diagram; This figure 

displays a basic structure of neural network that consists of 3 layers: input, hidden, and 

output.): this is a very common network. It is composed of multiple layers – input, hidden 

and output. The input layer is processed with different computational weights to produce 

the desired output. This network is usually trained with different algorithms, such as 

genetic algorithms and back-propagation techniques.  

Self-Organising Map (SOM) (Kohonen, 1997): consists of two layers. Rather than taking the 

outputs from all or individual neurons, this model selects only the neuron with highest 

output to be considered in the process. It is usually used for clustering and is classified as a 
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reinforcement learning technique.  

Hopfield Neural Network: a single layer recurrent network that echoes back its updated 

state to the network. It is a supervised learning technique and is commonly used to 

recognize patterns. 

Simple Recurrent Network (SRN): this has a context later mechanism that holds the 

previous output from the hidden layer and echoes it back to the hidden layer’s input. This 

network is used for prediction. 

 

The detailed process of a fully connected feed-forward network can be defined as follows: 

N is the total number of neurons and 𝑛𝑒 is the neuron’s number [1,2…N]. 

1. Initialize input layer as in equation (5-2). 

 𝐼𝑛𝑝𝑢𝑡_𝑙𝑎𝑦𝑒𝑟 = 𝑥𝑁𝑢𝑚𝑏 (5-2) 

Where xNumb is the number of the layer. 

2. Propagate activity forward using equation (5-3). 

 Ŏ𝑛𝑒 = 𝑓𝑛𝑒(𝑊𝑒𝑖𝑔ℎ𝑡𝑛𝑒 ∗ Ŏ𝑛𝑒−1 + 𝐵𝑖𝑎𝑠𝑊𝑛𝑒)  (5-3) 

Where Ŏ𝑛𝑒 is the output; Weight is the weight assigned for each neuron; 𝐵𝑖𝑎𝑠𝑊 is 

the bias weight;  

 

3. Then calculate the error in the output layer using equation (5-4). 

 𝛿𝑁 = 𝑡𝑉𝑎𝑙 − Ŏ𝑁 (5-4) 

Where 𝑡𝑉𝑎𝑙 is the target value. 

 

4. Back propagate the error using equation (5-5). 

 𝛿𝑛𝑒 = (1 − 𝑦ℎ𝑈𝑛𝑖𝑡
2 ) ∗ (𝑊𝑒𝑖𝑔𝑡ℎ𝑛𝑒+1

𝑇 ∗ 𝛿𝑛𝑒+1) (5-5) 

Where 𝛿 is the back propagate error; hUnit is the hidden unit; T is the matrix 

transposition operator; and 𝑦 is the output of the unit. 
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5. Update the weights and biases, using equation (5-6) and (5-7). 

 ∆𝑊𝑒𝑖𝑔ℎ𝑡𝑛𝑒 = 𝛿𝑛𝑒 ∗ Ŏ𝑛𝑒−1
𝑇    (5-6) 

 ∆𝐵𝑖𝑎𝑠𝑊𝑛𝑒 = 𝛿𝑛𝑒 (5-7) 

(Fischer et al., 2007) have used neural networks for data glove calibration in coordination 

with a measurement device to evaluate the output. The network model type used is 

augmented feed-forward (Figure 5-2). This has 23 inputs for each sensor, 12 outputs, and 

28 hidden units in a single layer. 

 

Figure 5-2 A linear augmented feed-forward network diagram; The model augments the 

feeding process by including the extra hidden node connections between the input and 

output layers. The dotted connections between the inputs and outputs have an 

unchanging weight equal 1. 

The network outcome was tested on 1,500 samples and compared to the ordinary feed-

forward network, where there are no direct connections between the inputs and outputs 

(shown in the dotted line in Figure 5-2). The results found that the residual error is three 

times lower than the ordinary network. 

(Shuai et al., 2010, Shuai et al., 2011) have used the Self Organising Map (SOM) for hand 

gesture recognition. This takes raw sensor data from the data glove and maps the hand 

motion gestures detected to defined data gestures (open/close fist). The network learns 

the gestures’ properties and adapts to identify new gestures that have been inserted. The 

training step is performed on six subjects, with each gesture repeated ten times. The test is 

then performed with seven subjects interacting with virtual reality by opening and closing 

their hand (fist). The SOM method has demonstrated high efficiency in interacting with the 
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scene. (Further details of this research and the SOM is described in the previous Chapter, 

Motor Control Section) 

5.1.2. Genetic algorithm Data Glove Calibration Method 

Another process employed in data glove calibration is genetic algorithm (GA). This method 

is generally used to optimise parameters by finding the most fitting solution for a defined 

model. Several processing steps are considered:  

1- Define the parameters required to optimise and generate a population of controlled 

(experiments) or random values.  

2- Perform the evaluation of each set of parameters (defined chromosome). The 

parameters in the equation are replaced and the correlation between the actual 

(calculated) values and the desired values (usually obtained from a difference 

measurement device reading, or database of corresponding values) is calculated.  

3- The selection step follows this. Probabilities for all the chromosomes in the population 

are computed. This is usually obtained by first calculating each fitness value = 1 / the 

pre-calculated evaluation value in the previous step, and then dividing it by the total of 

all the chromosomes’ fitness values – P = Fitness/ Total_Chromosome_Fitness. To avoid 

dividing by zero, 1 is added to the evaluation value. The selection process method is 

then applied, to select the fittest chromosomes. For example, the roulette-wheel 

technique will calculate the cumulative probability and select corresponding 

chromosomes with the randomly generated x numbers between the range of 0-1. (x is 

the number of chromosomes in the population) 

4- The crossover step is the mating phase between the different parents in the algorithm 

to provide the fittest chromosome distribution. The parent chromosome selection is 

performed by choosing the randomly generated values for chromosomes that are 

below the crossover rate set by the user. A random crossover point is then determined 

to cut the parent chromosomes and interchange the generations (parameters). 

5- Following this, the mutation step is performed to ensure the spread of chromosome 

selection is distributed fairly across the population and increase the diversity. A number 

(defined by the mutation rate and total generations’ length of time in the population) 

of randomly defined generations replaces existing generations of the population at 

random positions. 
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6- The new generations are then evaluated against the desired values, following the same 

process as in the evaluation step. If sufficient solution quality is reached, it then stops. 

If not, it will repeat the same process until it reaches either a sufficient quality of 

solution or the end of a predetermined number of iterations.  

 

Figure 5-3 Genetic algorithm structure flowchart; This illustrates the iterative process 

performed by evaluating and optimising the data process to produce the most fit 

population output (most accurate result).  

A larger iteration number will result in a longer process and higher accuracy of output. 

(Sun et al., 2011, Sun et al., 2006) have used the GA method to calibrate the data glove by 

measuring the DoF flexion angles, via a specially designed test device. The measured 

outcome is then used in the evaluation step of the GA to return the grade value for each 

process. The population generated consists of 4 generations (parameters) and 40 

chromosomes (data conducted on 40 different individuals).  

The stochastic (NeuralNetwork) uniform method is applied in the selection step and uses 

equal sized steps during 400 iterations to obtain the optimal solution. 

The GA method returns high accuracy in comparison to the least squared method. 

5.1.3. Regression Data Glove Calibration Method 

Regression and analytical methods are used to perform glove-hand calibration in numerous 

pieces of research. Although the calibration of flexion-extension sensors can be performed 

using linear regression, the coupled sensors require calculations that are more accurate to 
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the level of constraints.  

(Ferenc et al., 2015) have implemented new equations to calibrate the cross-coupling 

abduction sensors of the glove. The relationship between the independent adjacent fingers’ 

flexion and the abduction sensor is described in equation (5-8).  

 𝜃𝐴𝑏𝑑 = 𝑔𝑎𝑖𝑛𝑓 ∗ (𝑆𝑢𝑟𝑓𝑜(𝑠𝑢𝑟𝑓𝐹𝑙𝑒𝑥
𝑙𝑒𝑓𝑡

, 𝑠𝑢𝑟𝑓𝐹𝑙𝑒𝑥
𝑟𝑖𝑔ℎ𝑡

) − 𝑠𝑢𝑟𝑓𝐴𝑏𝑑) (5-8) 

Where 𝑆𝑢𝑟𝑓𝑜 (.) is the isosurface function of the abduction sensor; 𝑔𝑎𝑖𝑛𝑓 is the gain value; 

and 𝑠𝑢𝑟𝑓 is the sensor readings for 𝐹𝑙𝑒𝑥 (flexion) or 𝐴𝑏𝑑 (Abduction), also indicates (𝑙𝑒𝑓𝑡, 

𝑙𝑒𝑓𝑡) to refer on the adjacent sensor. 

The data points collected from the experiments are projected into three trajectories. A fit 

cubic function is then applied on each trajectory, with equidistant sampling, to get the 

three point sets in the density space. The parabolas are fitted to the triple point sets and 

the isosurface of the points is triangulated to get a local linear interpolation of 𝑠𝑢𝑟𝑓.  

The method is compared to the linear independent method, on two trajectories’ 0 and 25o 

abduction movement. It demonstrates higher capability to compensate for the faulty 

abduction sensor readings for 0 trajectory and similar outcomes with the 25o. A 

comparison was also performed with the linear regression and showed similar results. 

 

(Shuai et al., 2010) suggested different equations to calibrate the independent and cross-

coupled sensors. This takes in to consideration the predefined dynamic constraints in the 

hand kinematic model (see Type II constraints and synergies in the Hand Kinematic Model 

Section 2.2 in Chapter 2) 

The calibration method used for the independent sensors is presented in equation (5-9). 

 
𝜃𝑜𝑢𝑡 = 𝜃𝑚𝑖𝑛 +

𝑣𝑎𝑙 − 𝑟𝑎𝑤𝑚𝑖𝑛
𝑟𝑎𝑤𝑚𝑎𝑥 − 𝑟𝑎𝑤𝑚𝑖𝑛

(𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛) 
(5-9) 

Where 𝜃 is the DoF angle; 𝑣𝑎𝑙 is the current sensor value; and 𝑟𝑎𝑤𝑚𝑎𝑥,  𝑟𝑎𝑤𝑚𝑖𝑛 are the 

ranges of the sensors’ values. 

The method applied for crossover sensors uses Laplace natural interpolation. The 

advantage of this method is that it has more efficient approximation to the underlying 

“true” function than the nearest neighbour function. Firstly, the process locates the natural 

neighbours and then computes the coordinates. Finally, it computes the interpolated values 

for the point.  
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The results demonstrate an effective method in eliminating crossover effects at the MCPs 

of the index, ring and little fingers. The index finger results are more accurate than the 

other two fingers, due to the anatomic constraints. 

 

However, (Weston et al., 2000) and (Wang  and Dai 2009) have proposed a similar linear 

equation for independent sensors, equation (5-10). 

 ∅ = 𝑔 ∗ 𝜎 + Ӫ (5-10) 

Where ∅ is the DoF angle value; 𝑔 is the gain; 𝜎 is the sensor value; and Ӫ is the offset 

value. 

However, for the cross-coupled sensors (excluding the thumb) B. Wang et al. used the 

equation(5-11). 

 ∅𝐴𝑏𝑑 = (𝑔𝐴𝑏𝑑 ∗ 𝜎𝐴𝑏𝑑 − Ӫ𝐴𝑏𝑑) + (𝑘𝐿 ∗ 𝜎𝐿 + 𝑘𝑅 ∗ 𝜎𝑅 + ᶀ) (5-11) 

Where 𝑔𝐴𝑏𝑑 is the gain for the abduction sensor; Ӫ𝐴𝑏𝑑 is the offset for the abduction 

sensor; 𝜎𝐴𝑏𝑑 is the sensor value for the abduction sensor; 𝑘𝐿 is the cross parameter for the 

left adjacent sensor to the abduction; 𝜎𝐿 is the left adjacent sensor value for the abduction 

sensor; 𝑘𝑅 is the cross parameter for the right adjacent sensor to the abduction; 𝜎𝑅 is the 

right adjacent sensor value for the abduction sensor; ᶀ is the offset for cross-coupled 

sensors. 

The equation (5-11) is composed of a non cross-coupled part and a cross-coupled part. The 

parameters of the non cross-coupled part are calculated by using the independent sensor 

calibration approach. Those of the cross-coupled part are calculated by stabilising the 

abduction sensor in a fixed angle while flexing the MCP joints. The error output of non 

cross-coupled part, after deriving the cross-coupled part, is defined by the equation (5-12). 

 ∆∅𝐴𝑏𝑑 = ∅𝐴𝑏𝑑 − (𝑔𝐴𝑏𝑑 ∗ 𝜎𝐴𝑏𝑑 +Ӫ𝐴𝑏𝑑) (5-12) 

Where 𝑔𝐴𝑏𝑑 is the gain value for abduction sensor; and Ӫ𝐴𝑏𝑑 is the offset value for the 

abduction sensor. 

The method for the thumb calibration is a little more complex, as both groups have used 

the least square regression iteration for trajectories where the thumb and index fingertips 
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are connected. This eliminates the need to use an external validation device (i.e. camera or 

others) to evaluate the outputs. The error difference between the fingertip positions is 

±4mm. B. Wang et al. have applied the turning off/on bottle cap method, which differs 

from the thumb-index fingers’ holding, as it connects both fingertips and allows more 

circumduction motion for the thumb. 

The forward kinematics equation of the hand model is applied on the N recorded poses 

during these trajectories. This generates the error vectors ∆𝑑 from each calculated index 

position to the corresponding thumb position. The thumb position is calculated by using 

both the cross-coupled and non cross-coupled (5-10) methods between the thumb joints.  

 

This method uses the hand model Jacobian (J) to relate the infinitesimal joint angles and 

operational space motion. J is represented by a function of joint angle ∅.  

The equation used for non cross-coupled, which combines the offsets and gains, is 

represented in (5-13). 

 
∆𝑑 = 𝐽 [

∆∅1
…
∆∅𝑛

] = [𝐽 𝐷𝑖𝑎𝑔(𝜎𝑖)𝐽] [
∆Ӫ𝑖
…
∆Ӫ𝑖

] 
(5-13) 

Where ∆∅1, … ∆∅𝑛′ is the set of joint angle errors; and ∆𝑔𝑖, … ∆Ӫ𝑖′ are the parameter offset 

vectors; and 𝐽 is the Jacobian matrix;  

 

The Jacobian matrix is extended to include the cross-coupling gains and offsets, by 

replacing the ∆∅𝑖 with the corresponding relations in (5-14). 

 

[

∅𝑇ℎ𝑢_𝑅𝑜𝑙𝑙
∅𝑇ℎ𝑢_𝐴𝑏𝑑
∅𝑇ℎ𝑢_𝑇𝑤𝑖𝑠𝑡

] = [

𝑔𝑅𝑜𝑙𝑙 𝑔𝑅𝑜𝑙𝑙
𝐴𝑏𝑑

𝑔𝐴𝑏𝑑 𝑔𝐴𝑏𝑑
𝑅𝑜𝑙𝑙

𝑔𝑇𝑤𝑖𝑠𝑡
𝐴𝑏𝑑 𝑔𝑇𝑤𝑖𝑠𝑡

𝑅𝑜𝑙𝑙

] [

𝜎𝑅𝑜𝑙𝑙
𝜎𝐴𝑏𝑑
𝜎𝑅𝑜𝑙𝑙

] + [

Ӫ𝑐𝑜𝑚_𝑅𝑜𝑙𝑙
Ӫ𝑐𝑜𝑚_𝐴𝑏𝑑
Ӫ𝑐𝑜𝑚_𝑇𝑤𝑖𝑠𝑡

] 

(5-14) 

Where 𝜎𝑅𝑜𝑙𝑙 , 𝜎𝐴𝑏𝑑 are thumb abduction and flexion sensor readings; 𝑔𝑅𝑜𝑙𝑙, 𝑔𝐴𝑏𝑑 are the 

non cross-coupled gains; 𝑔𝑇𝑤𝑖𝑠𝑡
𝐴𝑏𝑑 , 𝑔𝑅𝑜𝑙𝑙

𝐴𝑏𝑑, 𝑔𝐴𝑏𝑑
𝑅𝑜𝑙𝑙 and 𝑔𝑇𝑤𝑖𝑠𝑡

𝑅𝑜𝑙𝑙  are cross-coupled sensor gains; 

Ӫ𝑐𝑜𝑚_𝑅𝑜𝑙𝑙, Ӫ𝑐𝑜𝑚_𝐴𝑏𝑑; and Ӫ𝑐𝑜𝑚_𝑇𝑤𝑖𝑠𝑡 is the angular offset of non cross-coupled and cross-

coupled combined together. (𝜎𝑇𝑤𝑖𝑠𝑡 is not available due to the glove primitives). 

 

Weston has extended the Jacobian function to include the relationship between bone 

lengths and fingertip positions (Weston et al., 2000). To prevent insignificant closed-loop 
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solutions, both equations are multiplied by the non-singular matrix V, which consists of 

vectors to control the parameter deviation.  

Further to this, Wang and Dai have performed coarse and fine calibration to insure the 

numerical stability of the least squares regression (Wang  and Dai 2009). This also remove 

noise by relating the 𝐽 and 𝐷𝑖𝑎𝑔(𝜎𝑖)𝐽 and dividing the 𝜎𝑖 by the maximum sensor value, 

255.  

A visual inspection was performed to investigate the performance of the derived methods. 

The results showed vast similarities between the constructed hand gestures and the real 

ones, considerable elimination of the cross-coupling error between MCP flexion and 

abduction sensors, and high accuracy in fine manipulation of the virtual objects. (See 

(Michael, 2015) for the above method). 

Gesture database 

In this review it is worth noting that there are many existing gestures databases and 

published biomechanics data available for use in testing the calibration or training the 

network model. Some examples of these are (An et al., 1979) dataset for biomechanical 

models; and the Columbia Grasp Database (CGDB) (Database), OpenRAVE database 

package (OpenRAVE, 2015), HandCorpus (HandCorpus, 2014), and the Human Grasping 

Database(Warnick, 2015) for grasp and 3D robotic hand models (Andrew and Matei, 2015). 

5.2. Data Glove Calibration Approach 

The suggested neural network method is very efficient in terms of the project’s objectives 

and restraints. However, it requires external input hardware to evaluate the output and 

adjust the network throughout. It also requires a large dataset (> 1,500 samples) to train 

the model for high accuracy results, and a lot of time is needed to generate this.  

The GA method has similar disadvantages, as it needs to use an external input device to 

evaluate the output. In addition, it requires a long time to process all the iterations.  

Conversely, the SOM model has a great advantage over the other methods(Shuai et al., 

2011). This is because it performs gesture recognition with little or no supervision during 

the classification process. However, as with the previous methods, it requires a large 

dataset to generate. In addition, Shuai and colleagues have included only two gestures 

(open and close fist) in their approach to train the network (Shuai et al., 2011). In order to 
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obtain high accuracy, the SOM needs a wider range of gestures to cover all the hand 

variations and RoM. 

In this project, the goal is to find a reliable calibration method that provides accurate 

outputs that map the sensor readings to the multiple DoFs of the virtual hand model. It 

should also only require a short time for performance and have no reliance on external 

devices. 

In light of this, the regression method is found to be the most suitable approach as it 

doesn’t require a large dataset to generate and no additional hardware is needed for the 

system. It does, however, require the development of complex equations in order to 

consider all the different constraints involved.  

 

The linear interpolation method (Mathematics, 2015) and Laplace natural interpolation 

method are commonly used for virtual interaction applications that require less accuracy in 

detailed joint movements. However, when studying hand performance, a high absolute 

accuracy is required to encompass all of the fine finger movements. 

Therefore, the suggested approach is more closely related to the last two regression 

methods of Weston and Wang, (Weston et al., 2000, Wang  and Dai 2009). The equations 

derived from these are implemented in this application, with further adjustments to cover 

the existing variations in the virtual model and glove outputs, and thus improve the results. 

The natural and dynamic constraints that exist between joints, such as the connection 

between the DIP and PIP angles (see hand kinematic model Section 2.2 in Chapter 2 for 

further details), are not included in this project. This is to ensure adaptability between 

different users’ hand sizes and kinematics by avoiding the hardcoded coefficients that 

define the cross-couple motion of the fingers (such as PIP angle = 2/3 DIP or Right MCP 

flexion = 1/3 left MCP flexion). The application targets patients with hand dysfunction who 

wish to restore the lost kinematic functions. 

The flexion-extension independent sensors are calibrated using the equations described in 

(5-10) and (5-11) 

Before listing the proposed method for abduction (independent) sensors, there are several 

important factors that need to be identified and included in the calibration. The factors 
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listed below are created by the limitations of the hardware and hand kinematic constraints, 

and measured by complex algorithms: 

- The four fingers’ MCP flexion-extension is naturally (without an external force being 

involved) cross-coupled (Shuai et al., 2010). As an extensive flexion of the index MCP 

causes a proportional degree of flexion in the middle MCP, a flexion of the middle MCP 

causes a degree of flexion on the ring MCP. Similarly, a flexion on the middle MCP 

causes a flexion on the pinkie MCP.  

This rule is considered in unidirectional terms, from left to right only, as a flexion on the 

middle MCP does not cause a flexion on the index MCP. This case could have internal 

variation in the palm, but it only appears on a small scale and can be omitted to reduce 

the complexity of the algorithm.  

- The glove sensors are attached to the soft skin of the hand and can be dislocated during 

the movements, which may cause inefficiency in the data reading.  

- The first abduction sensor from the left side of the hand can be used to derive the 

thumb abduction as it is not coupled with the adjacent one (Lin et al., 2000).. However, 

there are still other factors that need to be considered separately for thumb abduction, 

as it includes dependent sensors such as roll, abduction and twist.  

- The other four abduction-adduction sensors of the glove (apart from the thumbs’) are 

coupled together and there is a 3->4 mapping in the calculation. The intermediate 

fingers (middle and ring), between two abduction sensors, are dependent on both the 

adjacent abduction sensors’ variations to determine whether they are abducted (DoF 

moves left), adducted (DoF moves right) or stable (DoF is neutral or 0).  

- Incorporating the cross-couple equation suggested by (Wang  and Dai 2009) (5-9) into 

the model, by using the least square fit regression analysis to determine 𝑘𝐿 and 𝑘𝑅 

parameters, showed that the equation misses a ratio parameter between abduction 

and flexion variations. Additionally, there are constraints for each finger that need to be 

considered individually.  

In order to address the above factors, the calibration is designed with flexibility and 

adaptation features. There are multiple hand postures selected for the procedures to 

encompass the constraints of the hand kinematics (see section 2.2.3). Therefore, to 

determine the relationship between the middle flexion DoF and the ring flexion DoF 

specifically, four hand postures are selected: “Fully Opened Hand”, “Holding Object”, 
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“Middle Pinch”, and “Fist”. The average value of the four postures for the middle and ring 

flexion DoF determines the coefficient relationship of the specific subject’s results. The 

same concept is applied to calculate the intra (between DoF of same fingers i.e. DIP-PIP) 

and inter (between DoF of different fingers i.e. MCPs) cross-couple relationships. 

 

The existing deficiency in the abduction sensors’ DoF mapping for the intermediate fingers, 

is caused by the difficulty in identifying both the direction of movement and which finger 

needs to be abducted or adducted. This is due to the low dimensions of the glove readings.  

For example, an increase/decrease in the abduction sensor 2 is not enough to predict 

whether the index finger has moved left or if, instead, the middle finger has moved right. 

The abduction sensor 2 is the sensor between the index and middle fingers. To avoid 

confusion when referencing the abduction sensors, they are numbered “1 to 4” from the 

left to right on the right hand side. 

The DoF-sensor mapping of the abduction sensors is critical when grasping objects of 

different shapes, where some external forces are applied on the fingers to change the 

movement from the natural RoM. It is possible to identify these directions and parameters 

by using the variations between the “Full Opened Hand” and “Straight: All Fingers Fully 

Abducted” posture readings of the adjacent abduction sensors, and by including certain 

conditions of the hand kinematic,. 

Flexion of the MCP joint of the finger causes the adjacent abduction sensor to expand and, 

therefore, return a bigger value. The noise levels generated by the movement of the glove 

sensors, which are due to its attachment to the soft skin of the hand, need to be subtracted 

to avoid inconsistency.  

 

In this approach, the flexion sensors (flexion and extension) are defined as ”independent“ 

and linear least square (LSR) regression analysis is applied on different posture readings to 

determine the gain and offset of the calculated equation.  

The abduction sensors (abduction and adduction) are defined as “dependent” and the 

newly derived equations are used for calibration. The abduction sensors also have two 

parts – “cross-coupled” (flexion and adjacent abduction sensors) and “non cross-coupled” 

(abduction sensors). These will be explained in more detail later. 

 

The methods above are explained in detail in the following, using the quoted algorithm 
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(data processing) codes. While reading the algorithms, it is important to note that the 

abduction sensors’ values increase when they are flexed. This is captured by the maximum 

values and absolutes.  

The algorithm is also working the sensor (in voltage) and the DoF (in radiant angle) on two 

dimensions, and so extra functions are included to perform the conversion with the 

appropriate gain-intercept parameters. 
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5.2.1. Dependent Sensors Data Processing Equations 

5.2.1.1. Cross-Coupled Parameters 

The 𝑘𝐿 and 𝑘𝑅 cross-coupled gains for each finger are calculated by stabilising the finger 

with a fixed abduction angle and moving the MCP to three different positions (Wang  and 

Dai 2009). An alternative method is to move the MCP of the adjacent finger. The three 

variables (𝑘𝐿,𝑘𝑅 and common offset𝜃) are found using the elimination method in three 

linear equations. 

 

The non cross-coupled gains, 𝑔𝐴𝑏𝑑 and offset Ӫ𝐴𝑏𝑑 (or gain, offset), are calculated using the 

linear least square fit (LSR) (LeastSquareFitting) method for all the values obtained from the 

postures (5-15). 

{
 
 

 
  𝑔𝐴𝑏𝑑 = 

𝑛𝑝 ∑ 𝜎𝑖𝑦𝑖
𝑛𝑝 
𝑖=1 − ∑ 𝜎𝑖𝛺𝑖

𝑛𝑝 
𝑖=1

𝑛∑ 𝜎𝑖
2𝑛

𝑖=1 − (∑ 𝜎𝑖
𝑛𝑝 
𝑖=1 )2

 

Ӫ𝐴𝑏𝑑 =
∑ 𝛺𝑖 − 𝑔𝐴𝑏𝑑 ∑ 𝜎𝑖

𝑛𝑝 
𝑖=1

𝑛𝑝
𝑖=1

𝑛𝑝 
 

 

(5-15) 

Where 𝑛𝑝 is the number of postures; 𝜎𝑖 is the sensor value; and 𝛺𝑖 is the desired DoF angle 

value. 

5.2.1.2. The Index Abduction DoF angle 

The index abduction DoF variable is dependent on the values of abduction sensor 2, within 

a specified range. The abduction DoF is in neutral position if the MCP flexion is over 1/3 of 

the maximum flexion. 

As the glove abduction sensor 2 value increases with Index MCP flexion, hence the adjacent 

right abduction sensor (number 3) is included in the equation as it is cross-coupled with the 

middle finger, and can define the degree of adjustment for both abductions’ DoF using 

equation (5-16).  

 𝐼𝑛𝑑𝑒𝑥_𝐴𝑏𝑑_𝐷𝑂𝐹 = (𝑔𝐴𝑏𝑑 ∗ 𝜎𝐴𝑏𝑑 + Ӫ𝐴𝑏𝑑) + |𝑘𝑙𝑖 ∗ 𝜎𝑙𝑖 ∗ 𝜛𝑙𝑖| − 𝜍 ∗ (𝑔𝑟𝑖 ∗ 𝜎𝑟𝑖 + Ӫ𝑟𝑖) (5-16) 

Where 𝜎𝐴𝑏𝑑 is the abduction sensor 2 with 𝑔𝐴𝑏𝑑gain and Ӫ𝐴𝑏𝑑 offset; 𝑘𝑙𝑖is the cross 

parameter for the index flexion sensor; 𝜎𝑙𝑖 is the index flexion sensor; 𝜛𝑙𝑖 is the ratio to 

convert from flexion variation to abduction variation; 𝑔𝑟𝑖 , 𝜎𝑟𝑖 𝑎𝑛𝑑 Ӫ𝑟𝑖  are gain, value and 

offset for right neighbour abduction sensor 3. The last parameters are derived using 
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regression analysis for the specific sensor. 

𝜍 is constant equal to 
1

4
 , to limit the amount of variation by the right abduction sensor. 

Algorithm 5-1 Algorithm code for calibrating the index abduction DoF 

// ∅ = 𝒈 ∗ 𝝈 + Ӫ. 𝐢𝐧𝐝𝐕𝐚𝐥𝐮𝐞 is used for the index, middle, ring, and pinkie fingers 

// 𝑨𝒃𝒅_𝑺𝒆𝒏𝒔𝒐𝒓𝒔[𝑫𝑶𝑭_𝒏𝒃] − 𝒎𝒂𝒙𝑨𝒃𝒅_𝑺𝒆𝒏𝒔𝒐𝒓𝒔[𝑫𝑶𝑭_𝒏𝒃] gives the variation value, 

within the specified range 

   𝐷𝑂𝐹𝑆𝑒𝑛𝑠𝑜𝑟[2] = 𝑠𝑙𝑜𝑝𝑒𝑉𝑎𝑙𝑢𝑒2 ∗ (𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[2] − 𝑚𝑎𝑥𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[2]) +

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑉𝑎𝑙𝑢𝑒2 

 

1: if 𝐷𝑂𝐹_𝑛𝑏 == 𝐼𝑛𝑑𝑒𝑥𝐴𝑏𝑑𝑢𝑐𝑡𝑖𝑜𝑛  

2:   if (𝐼𝑛𝑑𝑒𝑥_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛 ≤
1

3
∗ 𝑚𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛 ) 

3: // ratio is for relating the flexion variation with the abduction’s 

4:     𝑟𝑎𝑡𝑖𝑜 =  
𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[2](𝑚𝑎𝑥𝑀𝑖𝑑𝑑𝑙𝑒_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛)−𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[2](𝑚𝑖𝑛𝑀𝑖𝑑𝑑𝑙𝑒_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛)

𝑚𝑎𝑥𝑀𝑖𝑑𝑑𝑙𝑒_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛− 𝑚𝑖𝑛𝑀𝑖𝑑𝑑𝑙𝑒_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛
 

5:      // 𝒌𝒍 is the slope of index MCP, 

6:      // 𝑨𝒃𝒅_𝑺𝒆𝒏𝒔𝒐𝒓𝒔(𝑴𝑪𝑷𝟎)[𝟐] abduction sensor value at current MCP  

7:      // 𝑨𝒃𝒅_𝑺𝒆𝒏𝒔𝒐𝒓𝒔(𝑴𝑪𝑷𝒎𝒂𝒙)[𝟐] abduction sensor value at maximum MCP 

8:     

𝐹𝑙𝑒𝑥_𝑆𝑒𝑛𝑠𝑜𝑟_𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =

𝑘𝑙 ∗ (𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠(𝑀𝐶𝑃0)[2] −  𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠(𝑀𝐶𝑃,𝑚𝑎𝑥)[2]) ∗ 𝑟𝑎𝑡𝑖𝑜 

9:     𝐴𝑑𝑗_𝐴𝑏𝑑_𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑠𝑙𝑜𝑝𝑒𝑉𝑎𝑙𝑢𝑒3 ∗ (𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[3] − 𝑚𝑎𝑥𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[3]) +

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑉𝑎𝑙𝑢𝑒3 

10:      if ( 𝑚𝑖𝑛𝐷𝑂𝐹𝑆𝑒𝑛𝑠𝑜𝑟[2] ≤ 𝐷𝑂𝐹𝑆𝑒𝑛𝑠𝑜𝑟[2] ≤ 𝑚𝑎𝑥𝐷𝑂𝐹𝑆𝑒𝑛𝑠𝑜𝑟[2]  )      

11:        // minus 𝑨𝒅𝒋_𝑨𝒃𝒅_𝑽𝒂𝒓𝒊𝒂𝒕𝒊𝒐𝒏 because it moves left and ¼ proportional effect 

on index 

12:        𝐷𝑂𝐹[𝐷𝑂𝐹𝑛𝑏] = 𝐷𝑂𝐹𝑆𝑒𝑛𝑠𝑜𝑟[2] + 𝑎𝑏𝑠(𝐹𝑙𝑒𝑥_𝑆𝑒𝑛𝑠𝑜𝑟_𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛) −
1

4
∗

𝑎𝑏𝑠(𝐴𝑑𝑗_𝐴𝑏𝑑_𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛) 

13:      end  

14:   Else 

15:      𝐷𝑂𝐹[𝐷𝑂𝐹_𝑛𝑏] ≅ 0 // Neutral position: 0 or DoF angle value in the “Full Opened 

Hand” posture 

16:   end   

17: end 
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5.2.1.3. The Middle Abduction DoF 

The middle finger is dependent on both abduction sensor variations 2 and 3. Most hand 

postures have the middle abduction DoF in neutral position. However, the shapes of some 

objects force the DoF to change (large tripod shaped objects, etc.). To determine this 

variation, a threshold is set for each of the abduction sensors’ values. This is 2/3 of the 

maximum value. 

If abduction sensor 2’s value is bigger than the threshold, equation (5-17) is used: 

 𝑀𝑖𝑑𝑑𝑙𝑒_𝐴𝑏𝑑_𝐷𝑂𝐹 = |𝑘𝑙𝑚 ∗ 𝜎𝑙𝑚 ∗ 𝜛𝑙𝑚| + (𝑔𝐴𝑏𝑑𝑙𝑚 ∗ 𝜎𝐴𝑏𝑑𝑙𝑚 + Ӫ𝐴𝑏𝑑𝑙𝑚) − 𝑇ℎ𝑙𝑚 (5-17) 

If abduction sensor 3’s value is bigger than the threshold, equation (5-18) is used: 

 𝑀𝑖𝑑𝑑𝑙𝑒_𝐴𝑏𝑑_𝐷𝑂𝐹 = −(|𝑘𝑟𝑚 ∗ 𝜎𝑟𝑚 ∗ 𝜛𝑟𝑚| + (𝑔𝐴𝑏𝑑𝑟𝑚 ∗ 𝜎𝐴𝑏𝑑𝑟𝑚 + Ӫ𝐴𝑏𝑑𝑟𝑚) − 𝑇ℎ𝑟𝑚) (5-18) 

where 𝑔𝐴𝑏𝑑𝑙𝑚 , 𝜎𝐴𝑏𝑑𝑙𝑚, Ӫ𝐴𝑏𝑑𝑙𝑚  are gain, value and offset parameters for the left sensor from 

abduction sensor 2.  

𝑔𝐴𝑏𝑑𝑟𝑚 , 𝜎𝐴𝑏𝑑𝑟𝑚, Ӫ𝐴𝑏𝑑𝑟𝑚  are gain, value and offset parameters for the right sensor from the 

abduction sensor 2. 

 𝑘𝑙𝑚, 𝜎𝑙𝑚, 𝜛𝑙𝑚 are the cross parameters, value and ratios for left flexion sensor ‘index MCP’.  

𝑘𝑟𝑚, 𝜎𝑟𝑚, 𝜛𝑟𝑚 are the cross parameters, value and ratios for right flexion sensor ‘ring MCP’.  

𝑇ℎ𝑙𝑚 is the threshold for left abduction sensor 2, and 𝑇ℎ𝑟𝑚 is the threshold for right 

abduction sensor 3. 

 

If index and ring MCPs flex together, the middle finger MCP flexes. This causes the adjacent 

abduction sensors, 2 and 3, to vary. Furthermore, the middle abduction DoF moves left or 

right only if the middle MCP is less than 1/3 of the maximum flexion. 
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Algorithm 5-2 Algorithm code for calibrating the middle abduction DoF 

1: if 𝐷𝑂𝐹_𝑛𝑏 == 𝑀𝑖𝑑𝑑𝑙𝑒𝐴𝑏𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

2:   if (𝑀𝑖𝑑𝑑𝑙𝑒_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛 ≤
1

3
∗ 𝑚𝑎𝑥𝑀𝑖𝑑𝑑𝑙𝑒_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛 ) 

3:     𝑟𝑎𝑡𝑖𝑜𝑙 = 
𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[2](𝑚𝑎𝑥𝑀𝑖𝑑𝑑𝑙𝑒_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛)−𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[2](𝑚𝑖𝑛𝑀𝑖𝑑𝑑𝑙𝑒_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛)

𝑚𝑎𝑥𝑀𝑖𝑑𝑑𝑙𝑒_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛− 𝑚𝑖𝑛𝑀𝑖𝑑𝑑𝑙𝑒_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛
 

4:      𝑟𝑎𝑡𝑖𝑜𝑟 = 
𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[3](𝑚𝑎𝑥𝑅𝑖𝑛𝑔_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛)−𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[3](𝑚𝑖𝑛𝑅𝑖𝑛𝑔_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛)

𝑚𝑎𝑥𝑅𝑖𝑛𝑔_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛− 𝑚𝑖𝑛𝑅𝑖𝑛𝑔_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛
 

5:    // convert abduction sensor values to DoF 

6:    𝐷𝑂𝐹𝑆𝑒𝑛𝑠𝑜𝑟[2] = 𝑠𝑙𝑜𝑝𝑒𝑉𝑎𝑙𝑢𝑒2 ∗ (𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[2] − 𝑚𝑎𝑥𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[2]) +

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑉𝑎𝑙𝑢𝑒2 

7:    𝐷𝑂𝐹𝑆𝑒𝑛𝑠𝑜𝑟[3] = 𝑠𝑙𝑜𝑝𝑒𝑉𝑎𝑙𝑢𝑒3 ∗ (𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[3] − 𝑚𝑎𝑥𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[3]) +

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑉𝑎𝑙𝑢𝑒3  

8:     // move right  

9:     if ( 𝐷𝑂𝐹𝑆𝑒𝑛𝑠𝑜𝑟[2] ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐷𝑂𝐹𝑆𝑒𝑛𝑠𝑜𝑟[2] ) 

10:        

𝐹𝑙𝑒𝑥_𝑆𝑒𝑛𝑠𝑜𝑟_𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =

𝑘𝑙 ∗ (𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠(𝑀𝐶𝑃0)[2] −  𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠(𝑀𝐶𝑃,𝑚𝑎𝑥)[2]) ∗ 𝑟𝑎𝑡𝑖𝑜𝑙  

11:        

𝐷𝑂𝐹[𝐷𝑂𝐹_𝑛𝑏] =

𝑎𝑏𝑠(𝐹𝑙𝑒𝑥_𝑆𝑒𝑛𝑠𝑜𝑟_𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛) + (𝐷𝑂𝐹𝑆𝑒𝑛𝑠𝑜𝑟[2] − 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[2]) 

12:     // move left 

13:      else if ( 𝐷𝑂𝐹𝑆𝑒𝑛𝑠𝑜𝑟[3] ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐷𝑂𝐹𝑆𝑒𝑛𝑠𝑜𝑟[3] ) 

14:        

𝐹𝑙𝑒𝑥_𝑆𝑒𝑛𝑠𝑜𝑟_𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =

𝑘𝑟 ∗ (𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠(𝑀𝐶𝑃0)[3] −  𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠(𝑀𝐶𝑃,𝑚𝑎𝑥)[3]) ∗ 𝑟𝑎𝑡𝑖𝑜𝑟 

15:        𝐷𝑂𝐹[𝐷𝑂𝐹_𝑛𝑏] = −(𝑎𝑏𝑠(𝐹𝑙𝑒𝑥_𝑆𝑒𝑛𝑠𝑜𝑟_𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛)+(𝐷𝑂𝐹𝑆𝑒𝑛𝑠𝑜𝑟[3] −

 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[3])) 

16:      end   

17:   else 

18:      𝐷𝑂𝐹[𝐷𝑂𝐹_𝑛𝑏] ≅ 0 

19:   end   

20: end 
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5.2.1.4. The Ring Abduction DoF 

The ring finger is also dependent on two adjacent abduction sensors, 3 and 4. The ring 

abduction DoF is adjusted using the abduction sensor 3 value, within a specified range. If 

the abduction sensor 4 is smaller than the threshold, the ring abduction DoF moves to the 

left side. 

The effect on the middle finger of moving the right hand fingers (ring, pinkie) to the right 

when fully abducted is very small, therefore it is not considered in this equation. 

If abduction sensor 3 is within the specified range, equation (5-19) is used:  

 𝑅𝑖𝑛𝑔_𝐴𝑏𝑑_𝐷𝑂𝐹 = (𝑔𝐴𝑏𝑑𝑟 ∗ 𝜎𝐴𝑏𝑑𝑟 + Ӫ𝐴𝑏𝑑𝑟) + |𝑘𝑙𝑟 ∗ 𝜎𝑙𝑟 ∗ 𝜛𝑙𝑟| (5-19) 

Where 𝜎𝐴𝑏𝑑𝑟  is the abduction sensor 3 with 𝑔𝐴𝑏𝑑𝑟  gain and Ӫ𝐴𝑏𝑑𝑟  offset; 𝑘𝑙𝑟 is the cross 

parameter for the ring flexion sensor; 𝜎𝑙𝑟 is the ring flexion sensor; and 𝑟𝑙𝑟 is the ratio to 

convert from flexion variation to abduction variation.  

If the abduction sensor 4 is bigger than the threshold, equation (5-20) is used: 

 𝑅𝑖𝑛𝑔_𝐴𝑏𝑑_𝐷𝑂𝐹 = −(|𝑘𝑟𝑟 ∗ 𝜎𝑟𝑟 ∗ 𝜛𝑟𝑟| + (𝑔𝐴𝑏𝑑𝑟𝑟 ∗ 𝜎𝐴𝑏𝑑𝑟𝑟 + Ӫ𝐴𝑏𝑑𝑟𝑟) − 𝑇ℎ𝑟𝑟) (5-20) 

Where 𝑔𝐴𝑏𝑑𝑟𝑟 , 𝜎𝐴𝑏𝑑𝑟𝑟, Ӫ𝐴𝑏𝑑𝑟𝑟  are gain, value and offset parameters for right abduction 

sensor 4. 

𝑘𝑟𝑟, 𝜎𝑟𝑟, 𝜛𝑟𝑟 are the cross parameter, value and ratio for right flexion sensor ‘pinkie MCP’.  

𝑇ℎ𝑟𝑟 is the threshold for right abduction sensor 4. 
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Algorithm 5-3 Algorithm code for calibrating the ring abduction DoF 

1: if 𝐷𝑂𝐹_𝑛𝑏 == 𝑅𝑖𝑛𝑔𝐴𝑏𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

2:   if (𝑅𝑖𝑛𝑔_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛 ≤
1

3
∗ 𝑚𝑎𝑥𝑅𝑖𝑛𝑔_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛 ) 

3:     𝑟𝑎𝑡𝑖𝑜𝑙 = 
𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[3](𝑚𝑎𝑥𝑅𝑖𝑛𝑔_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛)−𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[3](𝑚𝑖𝑛𝑅𝑖𝑛𝑔_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛)

𝑚𝑎𝑥𝑅𝑖𝑛𝑔_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛− 𝑚𝑖𝑛𝑅𝑖𝑛𝑔_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛
 

4:      𝑟𝑎𝑡𝑖𝑜𝑟 = 
𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[4](𝑚𝑎𝑥𝑃𝑖𝑛𝑘𝑖𝑒_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛)−𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[4](𝑚𝑖𝑛𝑃𝑖𝑛𝑘𝑖𝑒_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛)

𝑚𝑎𝑥𝑃𝑖𝑛𝑘𝑖𝑒_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛− 𝑚𝑖𝑛𝑃𝑖𝑛𝑘𝑖𝑒_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛
 

5:    // convert abduction sensor values to DoF 

6:    𝐷𝑂𝐹𝑆𝑒𝑛𝑠𝑜𝑟[4] = 𝑠𝑙𝑜𝑝𝑒𝑉𝑎𝑙𝑢𝑒4 ∗ (𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[4] − 𝑚𝑎𝑥𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[4]) +

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑉𝑎𝑙𝑢𝑒4 

7:    𝐷𝑂𝐹𝑆𝑒𝑛𝑠𝑜𝑟[3] = 𝑠𝑙𝑜𝑝𝑒𝑉𝑎𝑙𝑢𝑒3 ∗ (𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[3] − 𝑚𝑎𝑥𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[3]) +

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑉𝑎𝑙𝑢𝑒3    

8:   // move according to the abduction sensor 3 value (after converting to angle). 

9:     if ( 𝑚𝑎𝑥𝐷𝑂𝐹𝑆𝑒𝑛𝑠𝑜𝑟[3] ≤ 𝐷𝑂𝐹𝑆𝑒𝑛𝑠𝑜𝑟[3] ≤ 𝑚𝑎𝑥𝐷𝑂𝐹𝑆𝑒𝑛𝑠𝑜𝑟[3] ) 

10:        

𝐹𝑙𝑒𝑥_𝑆𝑒𝑛𝑠𝑜𝑟_𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =

𝑘𝑙 ∗ (𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠(𝑀𝐶𝑃0)[3] −  𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠(𝑀𝐶𝑃𝑚𝑎𝑥)[3]) ∗ 𝑟𝑎𝑡𝑖𝑜𝑙  

11:        𝐷𝑂𝐹[𝐷𝑂𝐹_𝑛𝑏] = 𝐷𝑂𝐹𝑆𝑒𝑛𝑠𝑜𝑟[3] + 𝑎𝑏𝑠(𝐹𝑙𝑒𝑥_𝑆𝑒𝑛𝑠𝑜𝑟_𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛) 

12:     // move right 

13:      else if ( 𝐷𝑂𝐹𝑆𝑒𝑛𝑠𝑜𝑟[4] ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐷𝑂𝐹𝑆𝑒𝑛𝑠𝑜𝑟[4] ) 

14:        

𝐹𝑙𝑒𝑥_𝑆𝑒𝑛𝑠𝑜𝑟_𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =

𝑘𝑟 ∗ (𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠(𝑀𝐶𝑃0)[4] −  𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠(𝑀𝐶𝑃𝑚𝑎𝑥)[4]) ∗ 𝑟𝑎𝑡𝑖𝑜𝑟 

15:        𝐷𝑂𝐹[𝐷𝑂𝐹_𝑛𝑏] = −(𝑎𝑏𝑠(𝐹𝑙𝑒𝑥_𝑆𝑒𝑛𝑠𝑜𝑟_𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛) + (𝐷𝑂𝐹𝑆𝑒𝑛𝑠𝑜𝑟[4] −

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[4])) 

16:      end 

17:   else 

18:      𝐷𝑂𝐹[𝐷𝑂𝐹_𝑛𝑏] ≅ 0 

19:   end   

20: end 
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5.2.1.5. The Pinkie Abduction DoF 

The pinkie abduction DoF (5-21) is similar to the index finger, as it has only one adjacent 

abduction sensor, 4. The DoF is set by the value reading from the sensor, within a range. 

When the ring finger is fully adducted to the pinkie finger, the abduction sensor 3 is 

checked and added to the DoF’s final value. Adding the value instead of using the ‘if’ 

condition statement helps to verify the sensor reading when the ring finger is in the neutral 

position. 

 𝑃𝑖𝑛𝑘𝑖𝑒_𝐴𝑏𝑑_𝐷𝑂𝐹 = (𝑔𝐴𝑏𝑑𝑝 ∗ 𝜎𝐴𝑏𝑑𝑝 + Ӫ𝐴𝑏𝑑𝑝) + |𝑘𝑙𝑝 ∗ 𝜎𝑙𝑝 ∗𝜛𝑙𝑝| + 𝜍𝑝 ∗ (𝑔𝑟𝑝 ∗ 𝜎𝑟𝑝 + Ӫ𝑟𝑝) (5-21) 

Where 𝜎𝐴𝑏𝑑 is the abduction sensor 4 with 𝑔𝐴𝑏𝑑𝑝 gain and Ӫ𝐴𝑏𝑑𝑝  offset; 𝑘𝑙𝑝 is the cross 

parameter for the pinkie flexion sensor; 𝜎𝑙𝑝 is the pinkie flexion sensor; 𝜛𝑙𝑝 is the ratio to 

convert from flexion variation to abduction variation; 𝑔𝑟𝑝, 𝜎𝑟𝑝 𝑎𝑛𝑑 Ӫ𝑟𝑝 are gain, value and 

offset for right neighbour abduction sensor 3. The last parameters are derived using 

regression analysis for the specific sensor. 

𝜍𝑝 is constant equal to 
1

4
 , to limit the amount of variation by the right abduction sensor. 
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Algorithm 5-4 Algorithm code for calibrating the pinkie abduction DoF 

1: if 𝐷𝑂𝐹_𝑛𝑏 == 𝑃𝑖𝑛𝑘𝑖𝑒𝐴𝑏𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

2:   if (𝑃𝑖𝑛𝑘𝑖𝑒_𝑀𝑃𝐽_𝐹𝑙𝑒𝑥𝑖𝑜𝑛 ≤
1

3
∗ 𝑚𝑎𝑥𝑃𝑖𝑛𝑘𝑖𝑒_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛 ) 

3:     𝑟𝑎𝑡𝑖𝑜 =  
𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[4](𝑚𝑎𝑥𝑃𝑖𝑛𝑘𝑖𝑒_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛)−𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[4](𝑚𝑖𝑛𝑃𝑖𝑛𝑘𝑖𝑒_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛)

𝑚𝑎𝑥𝑃𝑖𝑛𝑘𝑖𝑒_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛− 𝑚𝑖𝑛𝑃𝑖𝑛𝑘𝑖𝑒_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛
 

4:      // convert abduction sensors values to DoF 

5:      𝐷𝑂𝐹𝑆𝑒𝑛𝑠𝑜𝑟[4] = 𝑠𝑙𝑜𝑝𝑒𝑉𝑎𝑙𝑢𝑒4 ∗ (𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[4] − 𝑚𝑎𝑥𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[4]) +

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑉𝑎𝑙𝑢𝑒4 

6:      

𝐹𝑙𝑒𝑥_𝑆𝑒𝑛𝑠𝑜𝑟_𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =

𝑘𝑙 ∗ (𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠(𝑀𝐶𝑃0)[4] −  𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠(𝑀𝐶𝑃,𝑚𝑎𝑥)[4]) ∗ 𝑟𝑎𝑡𝑖𝑜 

7:      if ( 𝑚𝑖𝑛𝐷𝑂𝐹𝑆𝑒𝑛𝑠𝑜𝑟[4] ≤ 𝐷𝑂𝐹𝑆𝑒𝑛𝑠𝑜𝑟[4] ≤ 𝑚𝑎𝑥𝐷𝑂𝐹𝑆𝑒𝑛𝑠𝑜𝑟[4]  ) 

8:        // Note, this could be also implemented in a collision by moving adjacent fingers 

when 

9:        // in contact, but it saves computation  

10:        𝐴𝑑𝑗_𝐴𝑏𝑑_𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑠𝑙𝑜𝑝𝑒𝑉𝑎𝑙𝑢𝑒3 ∗ (𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[3] − 𝑚𝑎𝑥𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[3]) +

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑉𝑎𝑙𝑢𝑒3 

11:       𝐷𝑂𝐹[𝐷𝑂𝐹_𝑛𝑏] = 𝐷𝑂𝐹𝑆𝑒𝑛𝑠𝑜𝑟[4] + 𝑎𝑏𝑠(𝐹𝑙𝑒𝑥_𝑆𝑒𝑛𝑠𝑜𝑟_𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛) +
1

4
∗

𝑎𝑏𝑠(𝐴𝑑𝑗_𝐴𝑏𝑑_𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛) 

12:      end 

13:   else 

14:      𝐷𝑂𝐹[𝐷𝑂𝐹_𝑛𝑏] ≅ 0  

15:   end   

16: end 

 

Alternatively, the influence of the middle finger’s movement on the adjacent fingers (index 

moves to the left, ring and pinkie move to the right) could be resolved in the collision 

detection algorithm by adding force to move the adjacent fingers appropriately. However, 

this needs to be implemented in the dynamic mode with the correct mass and force 

settings. 
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5.2.1.6. Thumb Abduction and Roll DoFs 

The thumb virtual model is limited to four DoF – IP, MCP, abduction and roll – so the 

mechanisms to calibrate the thumb are more condensed. The abduction, MCP and roll are 

cross-coupled together, while the others are independent. In addition, the thumb 

abduction is independent from the adjacent finger’s movement and can be calculated 

simply by using the abduction sensor 1, as in equation (5-22):  

{
𝑇ℎ𝑢𝑚𝑏 _𝐴𝑏𝑑_𝐷𝑂𝐹 = (𝑔𝑎𝑏𝑑𝑡 ∗ 𝜎𝑎𝑏𝑑𝑡 + 𝑔𝑎𝑏𝑑𝑟𝑜𝑙𝑙𝑡 ∗ 𝜎𝑟𝑜𝑙𝑙𝑡 + Ӫ𝑎𝑏𝑑𝑟𝑜𝑙𝑙𝑡) +

|𝑘𝑙𝑡 ∗ 𝜎𝑙𝑡 ∗ 𝜛𝑙𝑡|

𝑇ℎ𝑢𝑚𝑏 _𝑅𝑜𝑙𝑙_𝐷𝑂𝐹 = (𝑔𝑟𝑜𝑙𝑙𝑡 ∗ 𝜎𝑟𝑜𝑙𝑙𝑡 + 𝑔𝑎𝑏𝑑𝑟𝑜𝑙𝑙𝑡 ∗ 𝜎𝑎𝑏𝑑𝑡 + Ӫ𝑎𝑏𝑑𝑟𝑜𝑙𝑙𝑡) +
|𝑘𝑙𝑡 ∗ 𝜎𝑙𝑡 ∗ 𝜛𝑙𝑡|

 (5-22) 

Where 𝑔𝑎𝑏𝑑𝑡 , 𝑔𝑟𝑜𝑙𝑙𝑡 are non cross-coupled gains; 𝜎𝑟𝑜𝑙𝑙𝑡 , 𝜎𝑎𝑏𝑑𝑡  are values for the thumb 

abduction sensor 1 and roll sensor; 𝑔𝑎𝑏𝑑𝑟𝑜𝑙𝑙𝑡 is the cross-coupled gain for the thumb 

abduction and roll sensor; 𝑘𝑙𝑡is the cross parameter for the thumb flexion sensor; 𝜎𝑙𝑡 is the 

thumb flexion sensor; 𝜛𝑙𝑡 is the ratio to convert from flexion variation to abduction 

variation; and 𝜃𝑎𝑏𝑑𝑟𝑜𝑙𝑙𝑡 is the combination offset value of the thumb abduction and roll 

sensors. 

Algorithm code for calibrating the thumb abduction DoF 

1: // calibrating the abduction DoF 

2: if 𝐷𝑂𝐹_𝑛𝑏 == 𝑇ℎ𝑢𝑚𝑏𝐴𝑏𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

3:     𝑟𝑎𝑡𝑖𝑜 =  
𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[1](𝑚𝑎𝑥𝑇ℎ𝑢𝑚𝑏_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛)−𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[1](𝑚𝑖𝑛𝑇ℎ𝑢𝑚𝑏_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛)

𝑚𝑎𝑥𝑇ℎ𝑢𝑚𝑏_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛− 𝑚𝑖𝑛𝑇ℎ𝑢𝑚𝑏_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛
 

4:      

𝐹𝑙𝑒𝑥_𝑆𝑒𝑛𝑠𝑜𝑟_𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =

𝑘𝑙 ∗ (𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠(𝑀𝐶𝑃0)[1] −  𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠(𝑀𝐶𝑃,𝑚𝑎𝑥)[1]) ∗ 𝑟𝑎𝑡𝑖𝑜 

5:      𝑎𝑏𝑑𝐼𝑛𝑑𝑉𝑎𝑙𝑢𝑒 = 𝑠𝑙𝑜𝑝𝑒𝑉𝑎𝑙𝑢𝑒𝑎𝑏𝑑 ∗ 𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[𝐷𝑂𝐹_𝑛𝑏] + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑉𝑎𝑙𝑢𝑒𝑎𝑏𝑑 

6:      𝑟𝑜𝑙𝑙𝐼𝑛𝑑𝑉𝑎𝑙𝑢𝑒 = 𝑠𝑙𝑜𝑝𝑒𝑉𝑎𝑙𝑢𝑒𝑟𝑜𝑙𝑙_𝑎𝑏𝑑 ∗ 𝑅𝑜𝑙𝑙𝑆𝑒𝑛𝑠𝑜𝑟 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑉𝑎𝑙𝑢𝑒𝑟𝑜𝑙𝑙 

7:      if ( 𝑚𝑖𝑛𝑎𝑏𝑑𝐼𝑛𝑑𝑉𝑎𝑙𝑢𝑒 ≤ 𝑎𝑏𝑑𝐼𝑛𝑑𝑉𝑎𝑙𝑢𝑒 ≤ 𝑚𝑎𝑥𝑎𝑏𝑑𝐼𝑛𝑑𝑉𝑎𝑙𝑢𝑒 ) 

8:      

𝐷𝑂𝐹[𝐷𝑂𝐹_𝑛𝑏] = 𝑎𝑏𝑑𝐼𝑛𝑑𝑉𝑎𝑙𝑢𝑒 + 𝑟𝑜𝑙𝑙𝐼𝑛𝑑𝑉𝑎𝑙𝑢𝑒 + 𝑎𝑏𝑠(𝐹𝑙𝑒𝑥_𝑆𝑒𝑛𝑠𝑜𝑟_𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛) 

9:      end 

10:   end   

11: end 
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1: // calibrating the roll DoF for thumb 

2: if 𝐷𝑂𝐹_𝑛𝑏 == 𝑇ℎ𝑢𝑚𝑏𝑅𝑜𝑙𝑙 

3:     𝑟𝑎𝑡𝑖𝑜 =  
𝑅𝑜𝑙𝑙_𝑆𝑒𝑛𝑠𝑜𝑟(𝑚𝑎𝑥𝑇ℎ𝑢𝑚𝑏_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛)−𝑅𝑜𝑙𝑙_𝑆𝑒𝑛𝑠𝑜𝑟(𝑚𝑖𝑛𝑇ℎ𝑢𝑚𝑏_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛)

𝑚𝑎𝑥𝑇ℎ𝑢𝑚𝑏_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛− 𝑚𝑖𝑛𝑇ℎ𝑢𝑚𝑏_𝑀𝐶𝑃_𝐹𝑙𝑒𝑥𝑖𝑜𝑛
 

4:      

𝐹𝑙𝑒𝑥_𝑆𝑒𝑛𝑠𝑜𝑟_𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑘𝑙 ∗ (𝑅𝑜𝑙𝑙_𝑆𝑒𝑛𝑠𝑜𝑟(𝑀𝐶𝑃0) − 𝑅𝑜𝑙𝑙_𝑆𝑒𝑛𝑠𝑜𝑟(𝑀𝐶𝑃,𝑚𝑎𝑥)) ∗

𝑟𝑎𝑡𝑖𝑜 

5:      𝑎𝑏𝑑𝐼𝑛𝑑𝑉𝑎𝑙𝑢𝑒 = 𝑠𝑙𝑜𝑝𝑒𝑉𝑎𝑙𝑢𝑒𝑎𝑏𝑑_𝑟𝑜𝑙𝑙 ∗ 𝐴𝑏𝑑_𝑆𝑒𝑛𝑠𝑜𝑟𝑠[1]  + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑉𝑎𝑙𝑢𝑒𝑎𝑏𝑑 

6:      𝑟𝑜𝑙𝑙𝐼𝑛𝑑𝑉𝑎𝑙𝑢𝑒 = 𝑠𝑙𝑜𝑝𝑒𝑉𝑎𝑙𝑢𝑒𝑟𝑜𝑙𝑙 ∗ 𝑅𝑜𝑙𝑙_𝑆𝑒𝑛𝑠𝑜𝑟 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑉𝑎𝑙𝑢𝑒𝑟𝑜𝑙𝑙  

7:      if ( 𝑟𝑜𝑙𝑙𝐼𝑛𝑑𝑉𝑎𝑙𝑢𝑒 ≤ 𝑟𝑜𝑙𝑙𝐼𝑛𝑑𝑉𝑎𝑙𝑢𝑒 ≤ 𝑚𝑎𝑥𝑟𝑜𝑙𝑙𝐼𝑛𝑑𝑉𝑎𝑙𝑢𝑒 ) 

8:      

𝐷𝑂𝐹[𝐷𝑂𝐹_𝑛𝑏] = 𝑟𝑜𝑙𝑙𝐼𝑛𝑑𝑉𝑎𝑙𝑢𝑒 + 𝑎𝑏𝑑𝐼𝑛𝑑𝑉𝑎𝑙𝑢𝑒 + 𝑎𝑏𝑠(𝐹𝑙𝑒𝑥_𝑆𝑒𝑛𝑠𝑜𝑟_𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛) 

9:      end 

10:   end   

11: end 

 

5.3. Calibration Process in the Virtual Simulator 

In order to implement the above calibration method, the following configurations are 

performed on the virtual simulator. 

The calibration process is performed using the CyberGlove® device and the virtual reality 

system. The VR system includes the virtual hand simulator and the graphical display device, 

Dome®. 

Descriptions of the device specifications and methods of application to the system are 

provided in the Experimental Chapter 4 – section 4.1. 

In order to implement the calibration method in the virtual hand simulator, the following 

procedures are developed.  

A new calibration dialog, Figure 5-4,created in the simulator menu that gives the option to 

either load an existing calibration file for the virtual hand model or to create new one.  
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The calibration application gives the option to repeat the posture again without exiting the 

process.  

In order to make the calibration system dynamic and adjustable with the subjects’ hand 

performance, a group of fifteen hand postures (Figure 5-5) are defined and presented in 

the graphical interface in a sequential order. These postures are carefully selected to 

include all the constraints and extensions of the joint movements, as well as the different 

features required to interact with objects. 

In posture 2, the subject uses a round hand bolster to assist in forming the appropriate 

shape and different joint extensions.  

It is important to note that each of the postures defined in Figure 5-5 addresses multiple 

DoFs and sensors. As previously stated, the DoF calculation is dependent on 1 or more 

sensors. The regression analysis is applied by using all the values of each particular DoF and 

Figure 5-4 Configuration settings added to the simulator. (L) Calibration 
menu, showing list of options to select in order to toggle between poses, save 

them and load existing ones. Also gives option to perform a new calibration 
or load an existing one, and to start the experiment. (R) Calibration 

procedures displaying the posture with description.  
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including the postures that involve movements on this DoF, or the associated sensors. 

Figure 4-4 displays the sensors positions on the CyberGlove® data glove device. 

For example, the thumb roll DoF uses the postures 0, 1, 12, 13 and 14 (Figure 5-5) to 

calculate the calibration coefficient. A list of all the associations between the selected 

postures and the multiple DoFs is presented in Table 5-1. 

Table 5-1 List of the DoF with the associated postures that are used to calculate the LSR 

equation for the calibration method; the list shows the DoF of the cross-coupled sensors. 

DoF Posture 

Thumb Roll 0,1,12,13,14 

Thumb-Index Abduction/Adduction 0,1,2,3,4,5,7,10,11,13 

Index-Middle Abduction/Adduction 0, 3, 4, 6, 9, 10,11 

Middle-Ring Abduction/Adduction 0,3,4,7,9,10,11 

Ring-Pinkie Abduction/Adduction 0,3,4,7,8,14 

 

“Fully Opened Hand” (posture 0 in Figure 5-5) is used as a reference position for the sensors 

and DoF angle values. The three postures, “Fully Opened Hand”, “Fist: Thumb under Index” 

and “Straight Fist” (Postures 0, 1 and 3), are used to find the cross-parameters of the 

adjacent sensors. The postures used for the independent sensors are displayed in Table 5-2.  

Table 5-2 List of the DoF with the associated postures that are used to calculate the LSR 

equation for the calibration method; the list shows the DoF of the independent sensors.  

DoF Posture 

Thumb MCP 0,1,2,10,12,13,14 

Thumb IP 0,1,2,10,12,13,14 

Index MCP 0,10,11,12,14 

Index PIP 0,2,9,10,11 

Index DIP 0,1,2,9 

Middle MCP 10,11,13,14 

Middle PIP 0,1,2,9,11 

Middle DIP 0,1,9 

Ring MCP 0,2,10,14 

Ring PIP 0,1,2,9,11 

Ring DIP 0,1,9 

Pinkie MCP 0,2,9,10,14 

Pinkie PIP 0,1,2,9,11 

Pinkie DIP 0,1,9 
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0 1 2 3 

4 5 6 7 

8 9 10 11 

13 14 12 

Figure 5-5 The fifteen postures used in glove calibration. Each posture represents the 
adequate extension/flexion of the sensors and DoF involved in the data glove and the 
virtual hand model. 
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5.4. Calibration Experimental Setup 

To test the efficiency of the calibration performed, another group of six postures are 

implemented. This allows for comparison of the calibration coefficient indices between the 

two datasets.  

Figure 5-6 shows the list of the postures used. These postures are selected from the 

calibration set in order to test the repeatability. 

 

Figure 5-6 List of the six postures used in the experiment for testing the calibration 

The list used to associate the six postures with the DoF is provided in Table 5-3. 

Table 5-3 List of the DoF with the associated postures that are used in calculating the LSR 

equation of the test calibration method 

DoF Posture 

Thumb MCP 0,2,4,5 

Thumb IP 0,2,4,5 

Index MCP 0,2,3,4,5 

Posture 0 

Open Hand 

Posture 1 

Hook  
Posture 2 

Table Top 

Posture 3 

Straight Fist 
Posture 4 

Pinch 
Posture 5 

Fist 
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DoF Posture 

Index PIP 0,1,2,3 

Index DIP 0,1 

Middle MCP 2,3 

Middle PIP 0,1,3 

Middle DIP 0,1 

Ring MCP 0,2,5 

Ring PIP 0,1,3 

Ring DIP 0,1 

Pinkie MCP 0,1,2 

Pinkie PIP 0,1,3 

Pinkie DIP 0,1 

Thumb Roll 0,4,5 

Thumb-Index Abduction/Adduction 0,2,3 

Index-Middle Abduction/Adduction 0,1,2,3 

Middle-Ring Abduction/Adduction 0,1,2,3 

Ring-Pinkie Abduction/Adduction 0,5 

 

5.5. Calibration Experimental Protocol 

The subject inclusion criteria used in the calibration experiment is the same as that defined 

for the hand assessment experiment in Chapter 4 Experimental – Section 4.2. 

At the beginning of the experiment, the following measurements are performed: size of the 

hand, length of the finger joints, length of the arm, length of the forearm, height and 

weight of the subject.  

During the experiment the subject sits in front of the graphical display screen and wears the 

CyberGlove® device on the right hand. A calibration display dialogue is then presented on 

the screen and the subject follows the procedures. Each step in the dialogue shows a 

screen shot of the virtual hand postures, along with a description. The subject is permitted 

to use the left hand, the table or other objects to help in forming the required posture. 

Clarification and assistance are provided by the operator where required. 

Once the subject completes the shape, the operator manually moves the programme to the 

next hand posture. The process is performed only once and the calibration is saved under 

the subject’s profile for use in the virtual hand control. The calibration process takes 

approximately 5 minutes.  

Following the calibration, the subject forms the 6 test postures to validate the calibration. 
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5.6. Calibration Experimental Data Processing 

Two sets of coefficient indices are produced by the calibration method. The first uses the 

postures set of the calibration, explained in section 5.3, and the second uses the newly 

implemented six postures. 

ANOVA is used to test the inter-subject repeatability of the sensor readings between the 

subjects. The independent variable is each sensor and the dependent variables are the 

reading of the postures for the 10 subjects. The null hypothesis, of having no significant 

difference in the sensor values between subjects, is rejected when p < 0.01. 

Also, before using the data glove device outputs it is very crucial to validate the consistency 

of the sensors readings. Hence, an ANOVA test is performed by testing the intra-subject 

repeatability of the data glove sensors readings for each subject. The dependent variables 

of the sensors’ values are obtained from the 15 postures in the calibration tests. This is 

performed by grouping the postures with the same joint positions (see Figure 55 ).The null 

hypothesis, that there are no significant differences in the sensors’ readings, is rejected 

when p<0.05. 

The coefficient indices of both the initial and the test posture results are compared using 

the Pearson r-correlation method (David et al., 2015), described in Equation (5-23).  

 
𝑃_𝑟 =

∑ (𝑈𝑖 − �̅�)(𝑉𝑖 − �̅�)
𝑁
𝑖=1

√∑ (𝑈𝑖 − �̅�)
2𝑁

𝑖=1 √∑ (𝑉𝑖 − �̅�)
2𝑁

𝑖=1

 
(5-23) 

Where 𝑈 is the initial posture DoF results, 𝑉 is the test posture DoF results, �̅� and �̅� is the 

mean of the 𝑈 and 𝑉 results. 

The LSR equation, mentioned previously in this chapter, is used in the calibration method to 

calculate the regression coefficient value between the different postures. However, the 

Pearson r-correlation in here is used to statistically test the efficiency of these calculated 

calibration values. It is then performed by comparing the subject’s results between the 

initial postures set and the test calibration set. 

5.7. Calibration Experiment Results 

 Table 5-4 shows the graphs for the grand average sensor values in each posture of the 15 

included in the calibration. (The data table is shown in Appendix IV). The values range from 
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0 to 255 as they are converted from analogue to digital in the CyberGlove® interface unit.  

The S6 sensor (Index PIP) has a mean average 226.12 (sensor values range [0-255]) across 

all postures (Table 5-5). This large value is seen all the subjects, with a standard deviation 

equal to 3.12.  

In the graphs of posturers 0, 6 and 7, the S11 sensor, for the abduction of the index middle 

fingers, shows an increase in value as expected. However, an unexpected increase is shown 

on the S11 sensor in the graphs for postures 3, 5, and 8.  

There is an increase in the sensors S7 to S14 in the graphs for posture 1 and 14, while in the 

graph for posture 11, an increase is seen on all sensors apart from S7, S14, and S15.  

In the graph for posture 9, an increase in the sensor values is noticed on sensors S7, S9, 

S10, S11, S13 and S14, with smaller values for S1, S2, S3 and minimal increase on S4.  

Table 5-4 Graphs of the grand average of the 22 sensors’ values for all the subjects during 

the calibration process; the value range for sensors is from 0 to 255 (this is a raw value 

after it is converted from analogue to digital); the minor tick in the graph is ‘20’; the axes 

display range on all the graphs is from 0 to 260; the graphs are ordered by posture 0 to 

14; the axis labels S1 to S22 are the sensor IDs, as listed in Table 5-5; the top right figure 

on each graph displays the corresponding posture; the values are displayed in a radar 

chart to simplify the visualisation as each axis is associated with a sensor. 
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The visual test performances of the calibration virtual hand postures are displayed next to 

the real hand postures in Figure 5-7. A number of similarities are observed between the VR 

and real hand postures. The VR DoF shows flexibility in grasping the bolster roller, ball, and 

pen objects. The flexion-extension and abduction-adduction movements also show 

corresponding movements across all the postures. 
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VR Posture Real Posture VR Posture Real Posture VR Posture Real Posture 

      

C1 C2 C3 

      

C4 C5 C6 

     
 

C7 C8 C9 

     
 

C10 C11 C12 

Figure 5-7 The figures display 12 virtual hand postures compared to the real hand 

postures formed using the CyberGlove®. The bolster roller and ball objects are used to 

demonstrate the virtual hand model’s flexibility in enacting the real hand movements. 

Each posture is compared to the real position opposite it.  

Further examination of Figure 5-7 highlights that there are variations between the real and 

virtual hand in a number of postures. In (C1) the fingers in the virtual hand are separated 

horizontally in the abduction, while in the real hand they sit together. This is also seen in 

(C5) and (C7). In (C5) the middle finger of the real hand is rotated toward the thumb, while 

in the virtual hand no opposition can be seen. This is also apparent on the index finger in 

(C10). 

The inter-subject repeatability test results are shown in Table 5-5. The table displays the 

ANOVA test p values for each sensor. Only the Thumb Rotate sensor (p = 3.84E-07), Palm 

arch (p = 2.21E-12), Wrist Flexion (p = 5.09E-08) and Wrist Abd (p = 1.08E-32) have 
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produced a significant difference between subjects. The Middle-Index Abd (p = 0.016055) 

and Ring-Middle Abd (p = 0.021733) showed low p values.  
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Table 5-5 The inter-subject repeatability ANOVA test of the data glove sensors between 

the ten subjects, during the calibration experiment. Highlighted in yellow results with 

significant variations p <0.01. 

ID Sensor p Value 

S1 Thumb Rotate 3.84E-07 

S2 Thumb MCP 0.14784 

S3 Thumb IP 0.534584 

S4 Thumb Abd 0.363451 

S5 Index MCP 0.648977 

S6 Index PIP 0.987216 

S7 Index DIP 0.953822 

S8 Middle MCP 0.873575 

S9 Middle PIP 0.999998 

S10 Middle DIP 0.189112 

S11 Middle-Index Abd 0.016055 

S12 Ring MCP 0.986837 

S13 Ring PIP 0.999688 

S14 Ring DIP 0.971112 

S15 Ring-Middle Abd 0.021733 

S16 Pinkie MCP 0.907058 

S17 Pinkie PIP 0.999976 

S18 Pinkie DIP 0.986128 

S19 Pinkie-Ring Abd 0.443237 

S20 Palm arch 2.21E-12 

S21 Wrist Flexion 5.09E-08 

S22 Wrist Abd 1.08E-32 

 

Furthermore, the intra-subject repeatability of the data glove sensors results for each 

subject is shown in Table 5-6. The p values for the ten subjects are much higher than 0.05.  

Table 5-6 Intra-subject repeatability ANOVA test results of the data glove sensors for each 
subject. 

Subject p Value 

Subject 1 0.958984 

Subject 2 0.998382 

Subject 3 0.990565 

Subject 4 0.96381 

Subject 5 0.895592 

Subject 6 0.991092 
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Subject 7 0.934066 

Subject 8 0.99748 

Subject 9 0.966978 

Subject 10 0.899843 

 

The Pearson-r coefficient values calculated for both the calibration and test postures set is 

presented in Table 5-7, with a chart display of the variations in both values. The results 

show high correlation between the coefficient values, with an average of ρ = 0.795 for the 

calibration postures phase and ρ= 0.8415 for the test postures phase. The mean difference 

between the two sets is 0.0465. 

Table 5-7 Table of the calibration coefficient values for the calibration and test postures 

set for each subject. Also presented with a histogram chart.  

 

5.8. Calibration Experiment Discussion 

Although there are variations in the subjects’ hand sizes, the calibration method is seen to 

be adaptive and efficient in calibrating the sensors’ data and registering it into the virtual 

hand model DoFs. 
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The large values returned on sensor S16, in Table 5-4, is due to the gain values that are pre-

configured in the interface unit of the Cyberglove®. The unexpected increase in the 

abduction sensor, S11, for the index and middle fingers is because it is cross-coupled with 

the adjacent sensors. This is also shown for the ring and middle abduction sensor in the 

graphs of the postures 5, 6, and 8.  

The cross-coupled sensor variations have been previously discussed in the calibration 

method approach, section 5.2. 

These equations are validated in the comparison provided between the virtual hand 

postures and the real hand postures. Many visual-similarities are observed in the virtual 

hand control and flexibility of the DoF to grasp objects of different shapes. These closely 

resemble real hand movements. 

The variation highlighted in Figure 5-7, on the abduction joints between the real and virtual 

hand in (C1), (C5) and (C7), is due to the virtual hand model design rather than the 

calibration. This is because the virtual hand’s fingers are not attached to each other in the 

hand position when abducted. The variation whereby the index and middle fingers do not 

rotate opposite to the thumb, in (C5) and (C10), is due to limitations of the data glove 

sensors in measuring this DoF. The rotation of the finger can be compensated for in the 

virtual hand model by using the normal hand kinematic, but discrepancies can still be seen 

between the virtual displays and the actual hand movement. 

The data glove sensors’ reliability was validated using inter-subject repeatability tests on 

the values recorded. Most of the sensors showed no significant difference, with p <0.05, 

apart from the ring Thumb Rotate, Palm arch, Wrist Flexion and Wrist Abd sensors. These 

variations are mainly introduced by the different palm sizes between the subjects that 

cause the glove to over stretch on the palm, regardless of the lengths of the fingers. The 

last three sensors are not included in the hand assessment classifications for my project 

analysis, as the fingers used are the Index, Middle and Thumb. Also the Thumb Rotate is not 

included in the virtual hand model as the DoF depends on the Thumb Abd only, and finger 

performance calculation uses the Thumb MPC, IP and Abd only (see section 4.3.1.2.1). 

Thence, this variation has no effect on the outcome measurements.  
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On the other hand, the intra-subject repeatability test showed high consistency in the 

sensors' readings for all subjects with p values greater than 0.89. This indicates that 

sensors’ readings are consistent and have high repeatability for performing data analysis. 

The calibration coefficient measurement showed high-correlations between the calibration 

postures group and the test group. The mean difference between the both groups’ 

coefficient indices is 0.045. The high coefficient indices (average >0.8) demonstrate high 

reliability in the data glove measurement for repeating postures or forming new ones. 

The experiment results have demonstrated that the proposed calibration method is 

efficient and adaptive to the subject’s hand variations. Unlike the other methods, this 

approach only takes 5 minutes to process and does not require any pre-generated machine 

learning training datasets. This method is also designed with a virtual reality system that 

makes the process dynamic and automated. 

5.9. Summary of the Calibration Chapter 

This chapter started by reviewing the existing calibration methods for the data glove, 

including neural network, genetic algorithm, and regression analysis. Later, the advantages 

and limitations of these methods in relation to the project aims and system applicability 

was discussed. Following this, an advanced calibration method was provided, based on the 

regression analysis. This included the different finger movement constraints and sensor 

dependencies. The method uses a dynamic procedure that incorporates an adaptive set of 

postures to measure the different constraints of the hand.  

 

The calibration was validated by comparing the results from the initial postures to another 

test set. The result showed high inter-subject repeatability across all the sensor readings, 

and high correlation between both sets’ indices. The mean correlation difference was less 

than 0.05.  
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Chapter 6 Results 

The proposed method for the project is different from other approaches as it includes new 

measurement methodologies and technological devices. The applied validation and 

verification process uses a different procedure (described in Experimental Chapter 4) from 

the analytical methods currently available for hand rehabilitation. This approach rather 

focuses on verifying the efficiency and reliability of the system in hand assessment.  

This chapter presents the results obtained from all the subjects in the experiment. It starts 

by listing the subjective assessment criteria for the subjects’ performance during the 

experiments, including the level of motivation and skills in interacting with the system. It 

then presents the objective measurement for the fingers’ performance, known in the 

project as finger performance value (FPV). The statistical analysis results are given for the 

various methods used to verify the data intra-subject repeatability, inter-subject reliability, 

and variability. This is followed by a description of the outliers and abnormalities in the 

subjects’ 8 performance.  

The chapter concludes with the EMG data results and analysis, and the overall hardware 

and software validation tests. 

 

6.1. Subjective Assessment 

The obtained subjective assessment, explained in section 4.3.1.2.4, showed that none of 

the subjects reported any technical (devices, VR impacts, motion sickness, etc.) or physical 

problems during the experiments. The users quickly adapted to the speed of the audio 

instructions, with fewer repetitions required to learn the tasks’ steps as the experiment 

progressed.  

The subjects gave positive feedback on the VR interface, finding it ‘user friendly’ and 

immersive. It included both assistive interaction methods and perspective projections for 

both subject and front views. The front camera was used during the performance of fine 

finger movements to assist with accurately grasping the virtual objects.  

The remarks from each subject are listed below. The notes describe the level of interaction 

with the system and other subjective factors: 

  



 
 

176 
 

Table 6-1 User subjective assessment notes 

Subjects Motivation Compliance 

with the 

Instructions 

Notes 

1 High High  

2 High High  

3 Average Average Found tremor session unpleasant, but 

completed without noticeable issues.  

4 Low Average  

5 Average Average  

6 Average Low In the VR, the subject was not accurately 

grasping the virtual objects, the fingers 

were flexing in some trials inside the 

shape of the objects. 

7 Average High Found tremor session unpleasant, but 

completed without noticeable issues. 

8 Low Low Middle finger DIP sensor did not 

perfectly fit on the subject’s finger. 

In the VR sessions, the subject did not 

follow the audio instructions, but rather 

waited for the graphical rendering to 

move the virtual arm. The subject then 

complied with the task procedures. 

The subject did not fully extend the hand 

and fingers when coming back to the 

relax position. 
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Subjects Motivation Compliance 

with the 

Instructions 

Notes 

9 High Average Index finger DIP sensor did not perfectly 

fit the subject’s finger. The sensors were 

extending when the subject grasped the 

object due the gap in the tip of the glove 

for the index finger.  

In the VR, the subject was not accurately 

grasping the virtual objects. In some 

trials the fingers were flexing inside the 

shape of the objects. 

10 High High Subject detected the patterns of the 

tasks and the sequence of the objects. 

However, in the VR session the subject 

was focusing more on the hand 

formation in the model.  

 

The ‘motivation’ rank is calculated from the subject’s concentration, their interaction level 

with the system and their compliance with the instructions. During the experiment, the 

motivation generally varies from high to low; low is inattentive and unmotivated, usually 

bored; average is attentive and motivated. The motivation is defined by the level of 

attention and immersion while performing the tasks in the VR environment. 

‘Compliance with the instructions’ is the level of careful consideration taken by the subject 

to perform a task with accurate fine movements. Subjects might not express high 

motivation but still show high attention to the task timing and finger formations. High is 

very compliant with the instructions, average is following the instructions to a standard 

level, and low is not following the instructions at all. The latter could be due to tiredness, 

boredom, or very quickly picking up the patterns in the experiment’s tasks. 

6.2. Objective Assessment 

The objective measurements of the results are provided below. It begins by detailing finger 

performance results, and followed by the EMG measurement and analysis.  
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6.2.1. Finger Performance Results 

In this section, the fingertip displacement is displayed in 2D and 3D, along with the inverse 

kinematic of the grand average subject performance. The grand average finger 

performance value (FPV) is then displayed with reference to all the tasks, sessions and 

fingers’ involvements. Finally, the analytical methods are displayed. It lists the correlation 

values between ‘VR’ and ‘RL’ FPVs, the intra-subject repeatability of the FPVs grand 

average, and the inter-subject reliability across the group.  

It is important to note that in the data analysis, the finger joint displacement assumption is 

Gaussian distribution.  

6.2.1.1. Fingers Tip Vertical Displacement 

The finger joint’s lengths, presented in Table 6-2, are used to obtain the mean average 

lengths of all subjects finger’s joints, which are implemented in the fingertip position 

calculation method. This helps to compare between individual subjective performance and 

the grand average length. 

Table 6-2 Distance between the Joints of three fingers (Index, Middle and Thumb); the 

unit is cm. “tip” is the tip end of the finger. 

Subject Joints Index Middle Thumb 

1 MCP - PIP 6 7 5 

 PIP - DIP 4 5 5 

 DIP - "tip" 3 3.5 4 

2 MCP - PIP 5 5 4 

 PIP - DIP 3 3 4 

 DIP - "tip" 2 3 3 

3 MCP - PIP 4 5 4 

 PIP - DIP 2 3 4 

 DIP - "tip" 2 2 3 

4 MCP - PIP 4.5 4.5 3 

 PIP - DIP 2.8 3 3 

 DIP - "tip" 1.9 2.1 2.9 

5 MCP - PIP 5 6 4 

 PIP - DIP 3 3 4 

 DIP - "tip" 2 2 3 

6 MCP - PIP 4 4.2 3.5 

 PIP - DIP 2 2.5 3.5 

 DIP - "tip" 2.1 2.3 2.8 
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Subject Joints Index Middle Thumb 

7 MCP - PIP 5 5 4 

 PIP - DIP 2 3 4 

 DIP - "tip" 2 3 3 

8 MCP - PIP 5 6 5 

 PIP - DIP 3 4 5 

 DIP - "tip" 2 2 3 

9 MCP - PIP 4 4.3 3.7 

 PIP - DIP 2.6 2.7 3.7 

 DIP - "tip" 2.1 2.1 3.1 

10 MCP - PIP 5 6 5 

 PIP - DIP 3 4 5 

 DIP - "tip" 2 3 3 

 

The graphs in Figure 6-1 and Figure 6-2 show the displacement of the three fingertips. Each 

graph shows the fingertip displacement, in cm, during the performance of the task. The 

graphs show the four different tasks involved in the experiment, each raw represents a 

session conducted from the three fingertips (index, middle and thumb).  
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Figure 6-1Grand average of the three fingerstips’ (index, middle and thumb) vertical 

displacement during the RL sessions of the experiment; each graph represents the finger 

movement in the four different tasks; the three graphs in the first raw represent the data 

during the real life session; second raw represent the real life with tremor session; and 

last raw represent the real life with load session.  

 The displacement is divided into multiple events that demonstrate the variation in the tip 

position over time. The hand starts from the relax position, increasingly flexing to grasp the 

object until it reaches the maximum finger flexion position. The hold phase stabilises the 

movement of the fingertips by holding the object in the last position. The task ends by 

relaxing the hand back to the start position and decreasing the flexion positions to the 

minimum. This variation is displayed consistently across the different sessions and tasks, 

which contributes to validating the efficiency of the recorded data in synchronising the 

fingers’ movements and tasks’ event occurrence. 
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Figure 6-2 Grand average of the three fingertips’ (index, middle and thumb) displacement 

during the VR sessions; each graph represents the finger movement in the four different 

tasks; the three graphs in the first raw represent the data during the virtual reality 

session; second raw represent the virtual reality with tremor session; and last raw 

represent the virtual reality with load session.  

6.2.1.2.  Fingertip’s Displacement in 3D Representation 

 

The presentation of the fingertips’ displacement in 3D is based on the calculation of the 

fingers’ inverse kinematic, using D-H parameters (see section 4.1.3.4).  

In the following, the inverse kinematic method results for the 3 DoF (Figure 6-3) is provided. 

The finger joints’ lengths are taken from the average of all the subjects’ hand sizes, 

measured in Table 6-2. The graphs display the flexion positions during the trials for each 

task, where each finger’s motion can be easily visualised and qualified in relation to the 

other two fingers. The level of contribution (flexion) during the particular task, and 
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association with the adjacent fingers can also be seen. The display shows the three fingers, 

ordered from top to bottom in the Z-axis (thumb, index, and middle), at certain positions of 

the simulation, modelling the average movement (blue points) in all the trials (red points). 

 

Figure 6-3 Simulation of the inverse kinematic for the three fingers (thumb, index and 

middle) during the four tasks: (a) Grasp Task, (b) Tripod, (c) Lateral Task, and (d) Point 

Task in Real Life session. Y-axis represents the horizontal displacement of the fingers in 

cm, X-axis is the vertical displacement of the fingers in cm; and Z-axis represent the finger 

displayed; each finger (middle, index, thumb) is displaced with three lines (joints); the red 

dots represent the grand average of the fingertip displacement; and the blue dots 

represent a single subject’s average fingertip displacement (in this graph it is subject 1).  

 Figure 6-3 is extracted from a simulation during a specific time frame. The finger simulator 

is developed by the author in Matlab®, and can be configured with any dataset. Each graph 

displays the three fingers, which are represented by three lines: distal, middle and 

a b 

c d 
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proximal. The lines’ lengths are configured by the subjects’ average joint lengths, from 

Table 6-2.  

This figure adds an extra perspective to interpret the finger displacement, as it represents 

the virtual replication of the subject’s finger movement. This corresponds accordingly with 

the finger kinematics and displacement. Abnormal movements will reflect on the 

simulation and display a mismatch between the joints’ line lengths and the tip position. The 

simulator distinguishes between the compact and the spread parts of the tip positions. This 

distribution of the tip positions represents the smoothness in the finger movements and 

the time taken to move from the start to the final position. For example, graphs (a) and (c) 

show more concentration of the red and blue dots at the end part of the middle and index 

movement, while this is spread in graphs (b) and (d). It also illustrates the distance travelled 

by each finger to perform the particular task and provides a comparison of the subject’s 

performance with the total average. In all the graphs the subject’s fingers movements 

closely match the average movement. The graph (c) in Figure 6-4 pinpoints that the 

subject’s finger extensions are shorter than the total average.   The 3D representations of 

the fingertips’ displacement, based on the above simulation, are produced below. This 

presentation visualises the covariance of the fingertips’ movements. Figure 6-4 shows the 

index and middle fingertip movements in the “RL + Load” and “VR + Load” sessions. Tasks 

are displayed across the Z axis to highlight the level of finger flexion for each task, as well as 

the expected curve shape of the finger’s motions in compliance with the kinematic (section 

2.2).  
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Figure 6-4 Grand average fingertip displacement in 3D space for the RL+Load and 

VR+Load sessions; Y-axis represents the vertical displacement of the fingertip in cm, and 

X-axis represents the horizontal displacement in cm; the left column shows the index 

finger and the right column shows the middle finger; each graph includes the four 

different tasks, displayed with different colors. (Red – Grasp, Green – Tripod, Magenta – 

Point, and Blue – Lateral)  

 In Figure 6-4, the middle finger shows greater displacement than the index finger, 

especially in the point task (magenta). There appear to be variations in the middle finger 

displacement while moving to the destination position and returning to the start position; 

this is evident in the point task (magenta) in graphs (b) and (d) and tripod task (green) in 

graph (d). The tip position displacements, plotted in the 3D graphs, display a consistent arc 

shape between the different fingers and tasks. 

RL + Load session 

VR + Load session 

a b 

c d 
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6.2.1.3. Intra-subject repeatability of the Fingertip Displacement 

 

To test the reliability of the data collected for DoF across the group, an intra-subject 

repeatability test is performed on the DoF angle values, using Pearson’s r auto-correlation 

method (David et al., 2015).  

Table 6-3 Intra-subject repeatability data test showing the grand average of auto-

correlation values for each subject across the sessions and tasks. Highlighted in green the 

low correlations with values <0.5. 

  

  Sessions 

      
RL 

RL + 

Tremor 

RL + 

Load 
VR 

VR + 

Tremor 

VR + 

Load 

Ta
sk

s 

  

Grasp 0.728 0.639 0.677 0.542 0.561 0.562 

In
d

e
x 

Tripod 0.873 0.880 0.898 0.857 0.864 0.801 

Point 0.624 0.472 0.414 0.528 0.313 0.209 

Lateral 0.882 0.870 0.874 0.808 0.861 0.837 

M
id

d
le

 

Grasp 0.680 0.497 0.572 0.534 0.538 0.562 

Tripod 0.877 0.883 0.907 0.861 0.881 0.830 

Point 0.709 0.743 0.739 0.715 0.684 0.708 

Lateral 0.884 0.864 0.865 0.810 0.834 0.812 

Th
u

m
b

 

Grasp 0.504 0.643 0.768 0.777 0.666 0.504 

Tripod 0.780 0.775 0.762 0.685 0.619 0.374 

Point 0.808 0.418 0.690 0.548 0.744 0.719 

Lateral 0.760 0.759 0.826 0.615 0.652 0.510 

 

The results displayed in Figure 6-5 and Table 6-3 show high confidence in the level of 

repetition between the tasks and sessions. The minimum value of ρ was noted on the Point 

Index task through the ‘‘VR+Tremor’’ and ‘‘VR+Load’’ sessions (ρ = 0.313 and ρ = 0.209 

respectively), and Tripod Thumb task in the ‘‘VR+Load’’ session (ρ =0.374). However, in 

average, the ρ value of the Point Index results is remarkably smaller than the other tasks 

with the same and different finger (Point Index average ρ for all session = 0.426). The RL 

and VR sessions with normal movements show large ρ (0.624 and 0.528 respectively). 
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Furthermore, Table 6-3 shows that the average correlation value for the tasks in the “RL” 

session is 0.76, the average for “RL + Tremor” session is 0.704, ”RL + Load” session average 

is 0.749, “VR” session average is 0.69, “VR + Tremor” session average is 0.685, and “VR + 

Load” session average is 0.619. The total average of correlation, for all the sessions, tasks 

and fingers, is 0.7.  

The lowest average correlation is observed whilethe index finger in the point task, during 

the RL and VR with tremor and load sessions.  

 

The ρ averages for the ‘’RL’’, ‘‘RL+Tremor’’, ‘’RL+Load’’ sessions are larger than the ‘’VR’’, 

‘‘VR+Tremor’’, ‘‘VR+Load’’ sessions ranging from 0.02 to 0.13 differences. Both the ‘’RL’’ 

and ‘’VR’’ average ρ values are bigger than the rest of sessions with Tremor and Load. 

However, in the VR sessions, it is noted that the ‘‘VR+Load’’ is smaller than then 

‘’VR+Tremor’’ (by approximately 0.06), while RL’s are opposite as the ‘‘RL+Tremor’’ is 

smaller than the ‘’RL+Load ‘‘(by approximately 0.045). 

The data is also presented in Figure 6-5. This displays the box plot of the auto-correlation 

average for both the VR and RL sessions. The negative outliers are the effects of 

abnormality from subject 8’s fingers’ performance. 
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Figure 6-5 Box plot of FPV Grand average intra-repeatability of all subjects values for the RL and VR sessions of the three fingers; 
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6.2.1.4. Finger Performance Value 

As previously describe, the FPV values illustrate the acceleration level in the fingers’ 

formation, smoothness in following certain trajectory, stability of the fingers in hold status, 

level of contributions of the three fingers in performing certain tasks, speed of the 

movement and the fatigue effect. 

The total grand average results of finger performance value (FPV) are shown in Figure 6-6. 

These values are also shown metrically in Table 6-4.The FPV value calculates the 

performance of each finger in each task by considering the speed, time, smoothness and 

stability of the finger’s performance.  

The maximum speed value used for normalisation is 6 cm/s (see chapter Experimental 

section 4.3.1.2.1 for clarification). The maximum smoothness value calculated from the 

experiments in this study (including tremor and load) is 4cm, and the maximum stability is 

5.5 cm. The calculation of the maximum values for the smoothness and stability excludes 

the outlier values in the experiments because they were due to incorrect measurements 

taken while the subject was not following the instructions. 

 

Therefore, the maximum FPV value is 23.25 and the minimum value is 0. The minimum 

speed is 0 and minimum smoothness and stability is 0.008. 

The minimum-maximum threshold is displayed in Figure 6-6 as a red dotted line in each 

histogram graph. 

The benchmark data for the RL session varies between the minimum 0 and maximum 23.5, 

consistent with the fingers’ contributions and normal task performance for the group.
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Figure 6-6 Grand average of finger performance values; each graph represents the results for each session of the experiment. The bar colour 

indicates the finger measured. Data are distributed into four sections representing the tasks (Grasp, Tripod, Point, and Lateral). The dotted line 

in each graph represents the maximum value of the FPV. The charts below each graph show the cross-correlation value for each finger, 

representing the level of contribution of the finger in the performance of the task. The red lines display the difference from the benchmark 

value, which is also noted numerically above each bar. Y-axis is the FPV value and the X-axis is the fingers (coloured red for index, green for 

middle and blue for thumb) distributed on the four tasks (Grasp, Tripod, Point and Lateral). The graphs are for each session RL, RL+Tremor, RL+ 

Load, VR, VR+Tremor, VR+Load.
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On average, the FPVs of the grasp task vary from 7.5 to 9.4 for index, 9.6 to 12.4 for middle, 

and 13.3 to 19.5 for thumb. The tripod FPVs vary from 5.6 to 8.8 for index, 6.3 to 11.5 for 

tripod, and 15.8 to 23.2 for thumb. The point FPVs vary from 10 to 13.4 for index, 5 to 6.5 

for middle, 7.3 to 12.1 for thumb. The lateral FPVs vary from 6.1 to 9.6 for index, 6.2 to 8.4 

for middle, and 15.3 to 18.3 for thumb.  

The RL data results are used as the benchmark for all the sessions’ data values.  

The grand average of the FPVs for all the three fingers varies in an ascending sequential 

order across all the sessions. In terms of the total average, the thumb FPVs are higher than 

the middle FPVs, and successively higher than the index FPVs. Moreover, the thumb has 

higher FPVs than the index and middle fingers, while the FPV for the point task is smaller 

than the others.
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Table 6-4 Grand average of the Finger Performance Value Data. Colour coded by the Finger (Red –Index, Green-Middle, Blue-Thumb). 

Last four columns are the subtraction between the different sessions. The last row is the average 

      RL 
RL + 

Tremor 

RL + 

Load 
VR 

VR + 

Tremor 

VR + 

Load 

Finger Task 

Contribution 

RL + Load-

RL 

VR + 

Load-VR 

RL + 

Tremor-RL 

VR + 

Tremor-VR 

Ta
sk

s 

  

Grasp 7.9 9.3 7.5 8.7 9.4 8.5 0.61 -0.24 -0.12 0.85 0.42 

In
d

e
x 

Tripod 8 6.9 8.8 6.8 8.6 5.6 0.24 0.19 -0.29 -0.26 0.43 

Point 12.6 12.1 12.3 10 11 13.4 0.11 -0.03 0.38 -0.06 0.11 

Lateral 8.4 6.8 9.6 6.3 8.3 6.1 0.36 0.43 -0.07 -0.57 0.71 

M
id

d
le

 

Grasp 10.1 10.3 12.4 10.2 11.1 9.6 0.47 1.08 -0.28 0.09 0.42 

Tripod 7.1 7.6 11 9 11.5 6.3 0.31 1.20 -0.83 0.15 0.77 

Point 5.5 5.3 6.5 5.1 5 5.1 0.14 0.14 0.00 -0.03 -0.01 

Lateral 8.4 6.4 8.2 6.2 8 6.7 0.41 -0.08 0.21 -0.82 0.74 

Th
u

m
b

 

Grasp 14.5 18.5 17 13.3 15.9 19.5 0.50 1.25 3.11 2.00 1.30 

Tripod 15.8 18.3 18.5 21.2 23.2 19.56 0.04 0.11 -0.06 0.10 0.08 

Point 10.4 12.1 11.2 8.1 8.3 7.3 0.01 0.01 -0.01 0.02 0.00 

Lateral 16.7 18 18.3 17.3 15.4 15.3 0.10 0.16 -0.20 0.13 -0.19 

  

Average 10.45 10.97 11.78 10.18 11.31 10.25   0.35 0.15 0.13 0.40 
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The three ‘VR’ sessions show very close similarities with the ‘RL’ sessions, where the ‘RL’-

‘VR’ graph (shown in Figure 6-6), of the total FPV average between both sessions, returns 

very low mean difference of ‘1.73’ and Standard Deviation of ‘1.42’. However, this 

difference increases insignificantly in the Tremor sessions, with mean ‘2.08’ and Standard 

Deviation ‘1.51’, and the Load sessions with mean difference 2.47 and Standard Deviation 

1.25. 

The ‘Tripod’ Thumb FPV showed larger difference than the rest, mainly due to the difficulty 

in visualising the VR position of the thumb in accordance with the Tripod shape object.  

While the ‘Tremor’ graph shows small differences of 2.08 averages, the ‘Load’ graphs, on 

the contrary, shows bigger differences with 2.47 averages. Furthermore, the ‘VR + Load’ has 

lower mean FPV (10.25) than the ‘RL + Load’ (11.78). 

In addition, the total average of the FPVs per sessions shows a similar dispersal to the intra-

subject reliability data, as the RL average of the FPVs is smaller than the ‘RL+Tremor’ and, 

consecutively, than the ‘RL+Load’. However, the VR average FPVs is smaller than the ‘VR+ 

Load’, but the ‘VR+Tremor’ is smaller than the ‘VR+Load’ and bigger than the VR. 

The mean difference of the ‘RL’ with the ‘RL+Load’ is 0.35, the ‘RL’ with the ‘RL+Tremor’ is 

0.13, the ‘VR’ with the ’VR+Tremor’ is 0.4, the ‘VR’ with the’ ‘VR+Load’ is 0.15, shown in 

Table 6-4. This is calculated by averaging the difference between the two sessions, then 

multiply it with the contribution index, listed under the Finger Task Contribution column. 

The level of correlation of the FPVs data between sessions is presented in Table 6-5. This is 

mainly to test the relation between VR and RL sessions and verify the system variability. 

This variation is also presented in Figure 6-7, Figure 6-8 and Figure 6-9. 

Table 6-5 Correlation of FPV grand average values between the different sessions  

Correlation RL + Tremor RL + Load VR VR + Tremor VR + Load 

RL 0.7277 0.5754 0.3864 0.4652 0.5658 

RL + Tremor - 0.7375 - 0.4604 - 

RL + Load - - - - 0.5886 

VR - - - 0.6201 0.6461 

VR + Tremor - - - - 0.6821 

Table 6-5 lists the correlation of FPV grand averages between different sessions. The 

sessions are contrasted based on the results from the same group, if they are VR or RL; or 
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the same type, if they are with load, tremor or normal. The sessions of the same group (i.e. 

“RL”-“RL+Tremor” or “VR”-“VR+Load”) have lower correlation, while the sessions with 

same type (i.e. “RL”-“VR”, “RL+Tremor”-“VR-Tremor” and “RL+Load”-“VR-Tremor”) have 

higher correlation. 

Although the “RL+Tremor” FPV results showed high correlation with “RL” and “RL+Tremor” 

(≈0.73), the “RL+Load” showed a lower value than the “RL” (0.5754). The “RL” relationship 

with the “RL+Load” is close to that with “VR+Load” (0.5658). 

In contrast, the “VR” and “VR+Tremor” showed less of a relationship in comparison with 

the “RL” (≈0.4) but this was higher when compared to each other, as the relationship of the 

“VR” with the “VR+Tremor” and “VR+Load” is >0.6. 

Using the RSQ (root square of the Pearson correlation coefficient), the average distance for 

the same groups is 0.07 and for the same type is 0.665. 

 

Figure 6-7 Plot of the grand average FPV values for the RL and VR sessions with the 
standard error; the values are plotted on separate lines, which each correspond to the 

finger; the range is from 0 to 25; Idx is the index finger, Mid is the middle finger and Thb 
is the thumb; there are no connections between the fingers’ values, the connecting lines 

in the graph are for visualisation purposes only, to help in signifying the variation 
between the two sessions.  

 

Figure 6-7 shows very close scattering of the grand average FPV values between “RL” and 

“VR”. The mean difference between both sets of data is 1.73. The FPV value for the thumb 

in the tripod task shows larger differences than the rest.  
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Figure 6-8 Plot of the FPV values’ grand average for the “RL + Tremor” and “VR + Tremor” 
sessions with the standard error; the values are plotted on separate lines, which each 
correspond to the finger; the range is from 0 to 25; Idx is the index finger, Mid is the 
middle finger and Thb is the thumb; there are no connections between the fingers’ 

values, the connecting lines in the graph are for visualisation purposes only, to help in 
signifying the variation between the two sessions.  

Figure 6-8 shows a close scattering of the grand average FPV values between the 

“RL+Tremor” and “VR+Tremor”, with a mean difference 2.08. The FPV value for the thumb 

in the tripod task also shows a greater difference than the rest. 
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Figure 6-9 Plot of the FPV values’ grand average for the “RL + Load” and “VR + Load” 
sessions with the standard error; the values are plotted on separate lines, which each 
correspond to the finger; the range is from 0 to 25; Idx is the index finger, Mid is the 
middle Finger and Thb is the thumb; there are no connections between the fingers’ 

values, the connecting lines in the graph are for visualisation purposes only, to help in 
signifying the variation between the two sessions.  

 

 In Figure 6-9 the FPV values are still closely scattered, but not as much as in the normal and 

tremor sessions. The mean difference reflects this, with a value of 2.47. However, the FPV 

value of the thumb in the tripod task closely matches the other values. Most of the FPV 

values for the “RL + Load” are bigger than the “VR + Load”; this is the reverse of the other 

sessions. 

6.2.1.5. Finger’s Contributions Between Tasks 

Finger contribution in the tasks is measured using the fingers’ correlation ρ. Table 6-6 

shows the correlation ρ of each finger calculated in relation to the task. These values are 

calculated using the Pearson’s r cross-correlation method on the total FPV average values 

of all the subjects. The minimum ρ for the index is 0. 110788 in the point task and the 

maximum is 0.606933 in the grasp task. The middle finger’s minimum ρ is 0.137756 in the 

point task and maximum is 0.470565 in the grasp task. The minimum ρ for the thumb is 

0.010566 and 0.0394 for the tripod and point tasks, and the maximum ρ is 0.501063 for the 

grasp task.  
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Table 6-6 Finger contribution per task 

 

Index Middle Thumb 

Grasp 0.606933 0.470565 0.501063 

Tripod 0.237771 0.306505 0.0394 

Point 0.110788 0.137756 0.010566 

Lateral 0.356773 0.410126 0.097896 

6.2.2. Inter-subject reliability 

A separate procedure is employed to test the reliability of the collected data across the 

group of subjects. The analysis of variance test (ANOVA) (Lane, 2015) studies the variation 

of the FPV values across the group data results. The considered null hypothesis is that there 

are no significant differences in the FPV values between subjects (with 99% confidence). 

The calculated ANOVA test analyses are shown in Table 6-7.  

Table 6-7 ANOVA test for FPV values across subjects. Highlighted in yellow the values of 

significant differences with p < 0.01. 

 

  RL RL + Tremor RL + Load Virtual Reality VR + Tremor VR + Load 

In
d

e
x 

Grasp 0.643 0.203 0.464 1.60E-03 0.363 0.679 

Tripod 0.058 4.16E-04 0.493 0.228 0.458 0.643 

Point 0.643 0.170 0.211 0.023 1.66E-04 0.654 

Lateral 0.354 1.15E-03 0.433 0.023 4.52E-04 0.562 

M
id

d
le

 

Grasp 0.667 0.146 0.412 5.08E-03 1.35E-03 0.654 

Tripod 7.22E-04 0.625 0.211 0.225 1.46E-03 0.643 

Point 0.659 0.293 0.392 0.026 0.466 0.345 

Lateral 0.643 0.276 0.326 8.83E-03 0.798 0.455 

Th
u

m
b

 

Grasp 0.266 0.622 0.211 0.166 1.50E-08 1.93E-18 

Tripod 0.133 0.276 9.34E-06 9.41E-121 2.07E-97 1.94E-23 

Point 0.109 1.01E-10 5.30E-04 1.67E-99 0.466 0.316 

Lateral 0.276 0.276 0.211 3.33E-62 1.53E-37 5.62E-27 
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Real Objects: 

The Finger Performance Value (FPV) of the three fingertips during the real objects sessions 

shows no significant difference, other than in the middle-tripod tasks (p = 7.22E-04). 

Real Objects with Tremor: 

The index fingertip shows significant differences between the tripod and lateral tasks (p = 

4.16E-04, and p=1.15E-03). In contrast, the thumb only shows significant difference in the 

point task (p = 1.01E-10). 

Real Objects with Load: 

No significant difference is observed in this section, apart from in the thumb tripod and 

point tasks (p=9.34E-06, p=5.30E-04). 

 

Virtual Reality (VR), VR with Tremor, VR with Load: 

Unlike the real objects sessions, the VR data shows significant differences in the FPV for the 

three fingers. The p values range between 1.66E-4 and 8.83 E-3 in the different tasks, 

specifically for the index and middle fingers.  

The VR results return significant differences in the grasp task for the index finger, and both 

the grasp and lateral tasks for the middle fingers. The virtual reality with tremor displays 

significant differences in the index-point, index-lateral, middle-grasp, and middle-tripod 

tasks.  

 

The thumb has significant differences for most of the tasks in the VR sessions. The P value 

ranges from p=1.5E-08 to p=9.41E-121. Smaller differences are seen in the thumb results in 

the point and grasp tasks of the VR with tremor. 

6.2.3. Repeatability 

In order to study the repeatability, the mean difference versus the average graph plot on 

repeated measurements on all the subjects is used, (Bland and Altman, 1999) . The other 

commonly used method is the regression line equality plot, (Bland and Altman, 1986). 

However, the main concern about the relation between the different session 

measurements in ‘RL’, and the regression line fitting calculates the correlation coefficient 

(r) to show the strength of a relation between variables and not the agreement. Hence, for 

this analysis the high correlations can produce poor agreements between variables and 

requires a very specific definition of the correlation’s context. 
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On the other hand, the mean difference against the average plot illustrates the agreement 

between the measurements to better illustrate the difference between the methods 

results. 

In this section, the repeatability is studied in Figure 6-10.  

 

Figure 6-10 FPV total average: Difference between RL repeated measurements against the average 
values. 

Further analysis to study repeatability and agreement between the ‘RL’ and ‘VR’ methods is 

performed in Figure 6-11. By plotting the subtraction of both methods data measurement 

against the mean, the graph displays a positive agreement between them. Furthermore, 

the rank correlation of the compared measurement between the absolute differences and 

the average; calculated using Spearman’s rank ((Sedgwick, 2014))  correlation coefficient is 

𝑟𝑠 = 0.6. It illustrates this positive relation, where an increase in the differences between 

the sessions results in an increase in the average FPVs of the measurements.  
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Figure 6-11 FPV total average: Difference between 'RL' and 'VR' sessions versus average of values 

Also, another conclusion can be derived from Figure 611. The outliers observed with the 

large FPV averages illustrate that there are additional factors in one of the methods’ data 

measurements. The following section describes the data outliers noticed across the data 

results in this chapter.  

6.2.4. Outliers 

During the process of generating the data results and investigating the FPV for each subject, 

subject 8’s results returned abnormal distance compared to the average and showed 

outliers across multiple analytical graphs. 

In light of this, further details on subject performance and the outlier are included below. 
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Figure 6-12Fingertip vertical displacement (in cm) of subject 8; the first raw represents 

the fingers’ movements in RL session and the second raw represents the fingers’ 

movements in VR session.  

 The abnormal performance of subject 8 is apparent in the vertical Y displacement (Figure 

6-12), where the fingertips contradict the changes expected during the events. A decrease 

in the fingertips’ vertical Y displacement is noted at the beginning of the ‘grasp’ event 

followed by an increase. This is in contrast to the continuous increase that is expected. 

In the graph of the index (RL), the grasp task (red line) increases further after the ‘relax’ 

event. This inconsistency is displayed across the graphs, where different variations are 

observed. The small extension/flexion in the finger movement also outlines the abnormality 

of this particular subject’s results in the experiment.  

The FPVs of the abnormal results of subject 8 are shown in Figure 6-13. It is evident that 

thumb FPVs exceed the maximum threshold in multiple sessions, with greater differences 

than the benchmark values (displayed in the red lines on the histogram of Figure 6-13). In 

the RL session the thumb FPV exceeds the threshold in the grasp task; in the RL + tremor 

session it exceeds in in both the grasp and tripod tasks; in the RL + load it exceeds in the 

grasp and tripod sessions, with significantly larger differences in the lateral task when 

compared to the index and middle. It also exceeds the threshold limit in the VR + tremor 

and VR + load sessions during the grasp task, with noticeably larger values in the tripod and 

lateral tasks for the latter session than that of the other two fingers.  
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Figure 6-13 6-14 Subject 8 finger performance values; each graph represents the results for each session of the experiment. The bar color indicates the finger 
measured. Data are distributed into four sections representing the tasks (Grasp, Tripod, Point, and Lateral). The dot line in each graph represents the 

maximum value of the FPV. The bottom charts below each graph show the cross-correlation value for each finger, representing the level of contribution of the 
finger in task performance. The red lines display the difference from the benchmark value, which is also numerically noted above each bar. Y-axis is the FPV 

value and the X-axis is the fingers (colored red for index, green for middle and blue for thumb) distributed on the four tasks (Grasp, Tripod, Point and Lateral) 
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The Thumb FPV in ‘RL’ – Grasp task is 37.5, in ‘RL+Tremor’-Grasp is 80.5, in ‘RL+Tremor’-

Tripod is 36.8, in ‘RL+Load’-Grasp is 48.5 and ‘RL+Load’-Tripod is 40.8. And in the 

‘VR+Tremor’ – Grasp task is 27.5 and in ‘VR+Load’-Grasp is 50.5. 

The interaction plot between subject 8’s FPV values and the total average (excluding 

subject 8) of all the other subjects’ FPVs is shown in Figure 6-15. It shows the difference in 

the “RL”, “VR”, “RL+Load” and “VR+Load” sessions. “VR+Tremor” and “RL+Tremor” sessions 

are not included due the session type – this can include intentional abnormal variations 

across all the subjects’ fingers’ vertical displacements. 

 

  

Figure 6-15 Interaction plot for the subject 8 FPV data results in comparison with the 

grand average of all the other subjects’ FPVs. Data comparison is performed on “RL”, 

“VR”, “RL+Load” and “VR+Load” sessions; Y-axis (Data) represents StDev of the FPV 

values in each task 

Figure 6-15 shows the clear variation of subject 8’s results in comparison to the total 

average of all the subjects.  
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In all the graphs, the total average of the tasks’ FPV values are closely scattered, while 

subject 8’s FPV results are spread. The VR session graph shows a larger difference only in 

the tripod task compared to the rest of the tasks, in both the total average and subject 8’s 

FPVs. 

It is worth to note that the data of subject 8 is excluded from the normative dataset, inter-

subject reliability, and total FPV analysis, as it causes large deviation to the normal results. 

However, it is included in the Intra-subject reliability in order to verify that the subject has 

maintained the same movements during the experiment, and in the repeatability studies in 

order to note the outlier and validate the efficiency of the method in detecting it. 

6.2.5. Electromyography Data Results 

Figure 6-16 and Figure 6-17 display the EMG signals of the four selected muscles’ (dorsal 

interosseous muscle (DIM), right abductor pollicis (RAP), right flexor digitorum (RFD) and 

right extensor digitorum (RED)) activities, after they were processed through multiple 

digital signal filters (rectification, smoothing, enveloping and noise elimination).  

The signal electrodes of the last two muscles (right flexor digitorum and right extensor 

digitorum) show higher intensity than the first two. The signal is segmented using digital 

markers to synchronise the saved data with the event occurrence and other recording 

devices. Each graph includes all four tasks to allow comparison of the variations between 

them. They are grouped by sessions in order to clearly see the deviations occurring in 

between each.  

The EMG signals, presented in Figure 6-16 and Figure 6-17, show consistency in the event 

occurrence and signal variations. The electrode DIM and RAP had lower intensity in 

comparison to the RFD and RED. This is mainly due to the skin’s interference and muscle 

size.  

The RFD and RED electrode signals show opposite variation. This is expected because the 

former performs the flexion of the fingers while the latter performs the extensions. This is 

noted through all the different VR and RL sessions. 

The VR RFD electrodes, in contrast to the RL RFD electrode signals, show no immediate 

decrease at the end of the task. This is because subjects were waiting for the VR animation 

to finish before performing the instruction. Removing the animation and adding tracking 

sensors on the wrist could easily eliminate this.  
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Although the RFD shows a slight difference in the tremor sessions of the RL/VR in 

comparison to the other sessions, the RED electrode signals show much higher variation 

that can be noted qualitatively.
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Figure 6-16 Graph display of the four EMG electrodes signals, which are placed on: dorsal interosseous muscles, right abductor pollicis, right 

flexor digitorum and right extensor digitorum. The graphs present the data signals recorded during the RL, RL+Tremor, and RL+Load sessions. 
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Figure 6-17 Graph display of the four EMG electrodes signals, which are placed on: dorsal interosseous muscles, right abductor pollicis, right 

flexor digitorum and right extensor digitorum. The graphs present the data signals recorded during the VR, VR+Tremor, and VR+Load sessions. 
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The spectral analysis of the EMG signals is displayed in Figure 6-18. Each graph compares 

the power density in relation to the frequency for three sessions in both RL and VR. The 

four tasks for each session are combined to represent the session deviation and the effect 

of fatigue and tremor on the muscles. 

 

Figure 6-18 Peridogoram of power spectral density for the EMG signals; the graphs show 

the data signals for the four electrodes: dorsal interosseous muscles, right abductor 

pollicis, right flexor digitorum and right extensor digitorum; graphs in first raw represents 

the three sessions in real life and second raw represents the three sessions in virtual 

reality. 

Figure 6-18 shows that the tremor difference (displayed in red) is more apparent in all the 

electrodes during the VR sessions than in those of the RL. 

 

The calculated mean power frequency (MPF) from the above PSD, used to measure the 

influence of fatigue and tremor on muscle activity, is shown in the interval plot in Figure 

6-19. 
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Figure 6-19 Interval plot of the mean power frequency (MPF) for the signals of each 

electrode; the graph displays the MPF for the six experimental sessions: RL, RL+Tremor, 

RL+Load, VR, VR+Tremor,VR+Load. 

The interval plot of the mean power frequency (MPF), in Figure 6-19, shows quantitative 

measurement for the signals. Each electrode is presented in a panel that includes the 

multiple sessions.  

Notably, the VR and VR+Load sessions in the RED electrodes data signal have returned 

much higher results than the rest (183,193 Hz). This is due to the non-decreasing state of 

the signal back to the normal position at the end of the task, which contributes to 

increasing the level of PSD for these electrodes. 
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6.3. System Validation 

As the application development is based on software and hardware interaction, it is 

important to include stress testing of the application before data recording begins.  

The data glove device was tested using calibration and statistical analysis methods. 

The first method examines the consistency of the subject’s coefficient values and visual 

display performance. In the case of discrepancies in the data glove device readings, the 

calibration will show inconsistencies in the cross-correlation results of the subject’s 

performance.  

The above assumption is proven to be invalid as the cross-correlation data has displayed 

high efficiency and reliability in the data results between the different tasks and sessions. 

The visual display and representation in Figure 5-7 also show matching outcomes between 

the VR display and real hand movement. 

 

The software of the application was validated using the black box approach. This validation 

method was selected due to the following elements:  

1- The software is a simulator application that is highly dependent on graphical simulation 

and user interactions. The user interaction is mainly processed using external applications 

that directly manipulate the visual display. Therefore, validation of this type of application 

is mainly dependent on calibration. 

2- The application for this study is expected to be operated during the experiment by the 

researcher and not the end user. The involvement of the end user is in the manipulation of 

the virtual world rather than the application configurations. 

An approach to the validation of this software is the use of stress tests that ensure the 

functionality of the system as well as consistency in recording and displaying graphical 

updates.  

The following Table 6-8 lists the test cases performed in the application stress test:  



 
 

210 
 

Table 6-8 Stress test on the virtual reality application 

Case Expected Actual Comment 

Loss of user 

calibration files 

(delete/remove) while 

in experiment.  

Run with the 

appropriate 

calibration. 

Application uses 

live calibration 

data, which is not 

affected by 

deleting or 

moving the file.  

The software stores the 

application in live data that 

won’t be replaced until a 

new calibration is 

performed or the 

programme is closed. 

Inappropriate data 

calibration.  

Warn user. Abnormal display 

in the hand 

manipulation. 

Requires new calibration as 

the test calibration has low 

coefficient index. 

Connection problems 

with the data glove. 

Warn user 

and stop 

experiment. 

An error message 

is thrown 

notifying that the 

device is 

disconnected, 

and the 

experiment is 

halted. 

  

Data of the experiment is 

saved in real time, so the 

user data will include the 

last recording position 

before the connection 

problem. 

Crash/closure of 

system in the middle 

of experiment. 

Data is saved 

up to last 

position 

before crash. 

Data is saved up 

to last position 

before crash. 

The user data files are 

updated in real time (in 50 

sampling ratio) and hence a 

crash won’t affect the 

recorded data before the 

crash.  

Memory issues 

(leakage, overwrite, 

pointers). 

Warn user. An error handling 

warning message 

is thrown 

notifying the 

user. 

Data is stored in the user 

file up to the error 

occurrence. 

Pause in the middle of 

the experiment. 

Pause and 

resume 

where it 

stops when 

‘start’ is 

clicked. 

Pause the visual 

display of the 

instructions and 

recording. The 

audio instruction 

might continue 

to play the last 

instruction until 

it finishes.  

A closure to 

After closing the dialogue 

and opening a new one, the 

user will be notified to 

store the data in a different 

file in order to connect 

them with previous 

recording later, if 

applicable. 
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Case Expected Actual Comment 

experiment 

dialogue is 

necessary to 

restart the 

timing.  

Create new 

experiment following 

previous one. 

New 

recording 

files and 

calibration. 

New recording 

files. The user 

has to redo the 

calibration; 

otherwise it will 

continue to 

manipulate the 

virtual hand 

using the 

previous user’s 

calibration. 

Every time a new session is 

created the program opens 

a new dialogue to select 

the path of the file to 

record the user data. 

Application selection 

of tasks during the 

experiment. 

Random 

selection. 

Random 

selection. 

 

Audio instructions and 

data recording. 

Consistent. Consistent. Data 

is recorded and 

tagged by time 

and task name. 

The experiment class in the 

application is developed 

using multi-threading to 

record data and control 

other graphical/audio 

processes in parallel. 

Audio instructions and 

visual displays (tasks, 

objects, timing, and 

virtual hand position). 

Consistent. Consistent. The application is 

programed with multi-

threading to consistently 

control the instruction 

cues, and the visual 

updates and rendering.  

Object and arm 

transformations are tagged 

with ID to consequently 

execute the instruction 

phase and duration. 

VR and RL 

experiments. 

Consistent. Consistent. Both experiments are 

developed with the same 

function structure to 

process the designed 

experimental procedure.  
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6.4. Summary of the Results Chapter 

In this chapter the results of the experiment are presented. The chapter started by 

providing a subjective assessment of the results followed by the objective measurements.  

The objective measurement section detailed the fingers’ vertical displacement signals, 

which were used to calculate the FPV values. The inverse kinematic method was used to 

calculate the fingertip position from the DOF angle values of each finger. Intra-subject 

repeatability tests were then performed on the fingertips’ displacement.  

Following this, the section displayed the finger contributions in each task, with the FPV 

results and extensive statistical analysis. This included cross-correlation analysis between 

the sessions, the inter-subject reliability (performed by using the FPV values), and the 

repeatability of the data distribution along with the outliers. 

 

Then the EMG results were represented using the power density spectrum and mean 

power frequency in order to show the results’ correlation  between task performances and 

finger movements, and the efficiency in detecting the repeatability between sessions.  

The chapter ends with the validation tests of the hardware and software components in 

order to ensure the robustness and reliability of the system.
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Chapter 7 Discussion 

This chapter discusses the data results with regards to the reliability and efficiency of the 

proposed method for measuring finger performance (especially by including the multiple 

features of the signal: speed, smooth, time). Also, it illustrates the data measurements 

consistency using the intra-subject repeatability and inter-subject reliability tests. This is 

associated with description of the results repeatability and the observed outliers.   

The system outcome is then compared with the other available systems and the 

hypotheses, which were established in the Introduction Chapter 1.  

At the end of this chapter, a list of system improvement and future work is produced. 

It is important to note, before discussing the results, there are different motion tracking 

systems available as reviewed in Literature Review Chapter 3.In this project, the 

CyberGlove® device was validated based on the statistical data reliability and consistency of 

the measured data (Calibration Chapter 5). However, there are multiple methods that could 

also be used to validate the data sensors reading of the data glove, such as Vicon motion 

capture device (Vicon, 2015). 

But the motion tracking methods, and in particular Vicon system, have different drawbacks; 

as the passive sensors (markers) must be placed on top of the data glove for tracking and 

validating the data glove sensors readings. This step introduces variations in the sensors 

position from the caused displacement in the soft skin, the glove cloth and the bending 

sensors. Hence, inaccurate data recording may affect the output results as the sensors are 

not fixed to the joint. 

Also, the Vicon system requires two passive sensors placed on each joint to calculate the 

coordinate differences and measure the angle of the joint. The sensors positions may be 

inconsistent between the subjects and joints, which is mainly due to the physiological 

differences. This variation makes the data inconsistent in comparison with the data glove 

device.  

Moreover, the current application monitors the fingers’ movements using the data glove 

only. But in general, task performance highly depends on the wrist orientation and 

displacement. Therefore, an additional system can complement the data glove device 

reading such as the inertial accelerometer sensors (Hamed et al., 2014).  
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Also, motion sensing devices, such as Xbox Kinect (Kinect, 2015) are applicable in reading 

the hand movements. Metcalf et al. have incorporated Xbox Kinect device to model the 

hand movements with hand motion capture, and provide interactive display for 

rehabilitation (Metcalf et al., 2013 ). 

In addition, the stereovision 3D tracking device is an alternative to Vicon system since it 

does not rely on allocated passive sensors, which can be displaced by the soft skin. 

These methods have multiple advantages as, unlike the data glove, they are note fixed with 

hand size, and can be used on hands with significant deformity. 

However, it is worth to note that the camera and reflective sensors can be obstructed by 

objects and surrounding environment, and does restrict the user to work within a limited 

work volume. 

Hence by noting the above devices, it can be noted that additional work can be 

implemented to further validate the accuracy and consistency of the implemented 

algorithm and complement the data glove reading. 

7.1. Finger Performance 

The consistency of the fingertip displacement, displayed in the graphs Figure 6-1 and Figure 

6-2, reflects the expected movements of the finger during task performance. The variance 

of the amplitude is due to the variation in the level of the fingers’ involvement in the task 

and the level of flexion required for grasping the object (or making the posture). The 

displayed line of the Point task, (pink colour, Figure 6-1) for the index finger, shows small 

amplitude that corresponds with the low level of flexion of the index fingertip during the 

Point task.  

Furthermore, replicating the finger displacement in 3D by applying the inverse kinematic 

method provides a demonstrative visualisation that outlines the movement speed and 

other features. In addition, it provides a visual comparison of the subject’s performance in 

comparison to the total average (normative dataset). Furthermore, it outlines efficiently 

the difference between the extension and flexion performance. This is illustrated in Figure 

6-3 and Figure 6-4. 

In the following, a list of the multiple conclusions derived from the results of finger 

performance is provided.  
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7.1.1. Intra-subject repeatability 

In order to verify the repeatability of the tasks for each subject, the calculated cross-

correlation of the FPV values between sessions should return a ρ value higher than 40% 

(Dancey and Reidy, 2004), indicating a moderate or strong positive relationship.  

 

The end results of the tasks ρ averages, displayed in Table 6-3, for the three VR sessions are 

smaller than the cross-correlation (ρ or ‘rho’) averages of the three RL sessions with 0.07 

average differences. This is as the VR interactions involve more variations in the finger 

displacement, and due to the absence of haptic feedback while grasping a virtual object. 

However, the results in Table 6-3 showed that all the sessions have average intra-subject 

repeatability ρ >0.6. 

7.1.2. Fingers’ Contributions between Tasks 

Moreover, the finger contributions shown in Figure 6-6 and Table 6-6 display the expected 

variation in the level of contribution for each finger in the task.  

This is where in the Tripod task, the two fingers (index and middle) are the major 

contributors to the posture formation, with very small flexion in thumb MCP. Hence, 

Thumb ρ is 0.0394 and the Index ρ = 0.237, Middle ρ = 0.3.  

In the Point task, the main contributor was the index finger. However, in this particular 

task, the level of contribution is not based on the movement of the Index finger or any of 

the adjacent fingers, it is rather measured based on the stability of the Index finger after 

full extension. Hence, very small rho values are shown of the three fingers with ρ < 0.14.  

Alternatively, in the Lateral task, all three fingers are involved, but only a small movement is 

noticed in the thumb, which is reflected in the rho value. Thumb ρ = 0.09, Index ρ =0.357 

and Middle ρ = 0.41 (Table 6-6).  

Likewise, in the Grasp Task, all the three fingers had large contributions. The rho values 

reflect this variation with average ρ value = 0.52. 

Hence, it is valid to use the finger contribution correlation values of the FPVs as it meets the 

contributions expected from the fingers’ involvement in the tasks. 

The finger contribution data results showed similar observations to the literature review, 

where the index and middle fingers contributions were 25% and 35% (Talsania and Kozin, 

1998), and the total average difference with the obtained results is 0.07.  However, 

although the data presented close similarities with the literature review, the study still 



 
 

216 
 

requires including the force factor in finger performance. The Force is a very important 

element in the hand synergy to grasp, hold and interact with objects. In the posture tasks, 

such as Point, force can be neglected as it requires only fingers motion, but in contrast 

other tasks, such as Grasp, do largely involve exerting force to grasp and hold the object.  

In addition, some tasks require small movement for particular finger but larger force. This is 

observed in the Tripod task where thumb movement is very small but it adds large force to 

hold the grasped object. 

7.1.3. Finger Performance Value: 

On the other side, a number of conclusions can be drawn from the FPV results:  

- FPV: Rehabilitation tasks to ADL activities 

The FPV illustrates the transfer from the rehabilitation tasks to ADL activities. 

The normalised grand average FPV of all the sessions have varied between the 

minimum 0 and maximum 23.5 thresholds. The ascending variation of FPV, present in 

all the tasks apart from Point task, is maintained across the sessions. The average cross-

correlation between the trials is 0.7. 

 

The FPV also returns objective measurement details of the finger motion. They are 

extracted from the variations of the speed during the task, the smoothness of gesture 

formation, and stability while on hold position. This measurement helps to illustrate the 

restoration phase and the rate of transfer from the rehabilitation tasks to ADL activities.  

This is where the ‘stability’ component in the Middle Point Task- RL session is smaller 

than the Middle Grasp Task-RL session’s (shown in Figure 6-1 with more noises during 

Hold event) and hence the FPV value of Middle Point Task = 5.5 < than the FPV value of 

the Middle Grasp Task =10.1.  

Furthermore, the ‘smoothness’ component in the Middle Point- RL+Tremor was smaller 

than the other tasks (shown in Figure 6-1 with more noises on the Relax event) and this 

caused the FPV value to decrease to 5.3 and be smaller than the other tasks FPVs. 

In addition, the ‘speed’ component of the Index Grasp –RL session in the Relax event is 

smaller (or slower) than the Index Lateral-RL session’s (shown in Figure 6-1 in the Relax 

event part). Hence, the FPV value of the former is 7.9 < than the lateral FPV = 8.4. Also, 

to note that because the Index Grasp finger displacement amplitude (or flexion) is 

smaller than the Index Lateral finger displacement amplitude, therefore the FPV values 
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didn’t show the greater difference and that reflects accurately the type of tasks and 

fingers involvements.  

Furthermore, throughout all the tasks and sessions, apart from the Point task, the FPV 

values (Figure 6-6) of thumb are larger than the other two fingers. This is because the 

thumb does not have a contribution in the Point task, and it reaches the destination 

position faster than the other two fingers. Figure 6-1 and Figure 6-2 demonstrate that 

the thumb has moved shorter distances than the other fingers. It also shows that the 

FPV depicted accurately the speed variation and the distance travelled (level of 

contribution) during the task.  

 

- FPV: VR’s FPV distribution is equal to the RL’s FPV distributions 

The VR method in hand assessment returned similar FPV distribution result to those of 

the RL, and also to the sessions with tremor and load.  

The maintained variations order of the fingers FPV values between the ‘RL’ sessions and 

‘VR’ sessions (shown in Figure 6-6) demonstrates that the VR method had high accuracy 

in replicating the ‘RL’ performance measurement. This is depicted visually in Figure 6-6, 

and numerically the FPV values showed close correlated variation with the finger 

contributions (Table 6-4).  

In the Grasp tasks, the three fingers are expected to have high contributions, and this is 

proved by the results where the Index, Middle and Thumb fingers contributions were 

0.61, 0.47 and 0.5, respectively. Also, the lateral task mainly had Index and Middle 

fingers involvement while the thumb made very small motion from its home position. 

This is also proved in the numeric data results where the Index, Middle and Thumb 

contributions were 0.36, 0.41 and 0.1, respectively. 

 

On the other hand, the sequential variation order of the FPVs is shown in the Grasp RL 

task, where the FPV fingers variation order was Index (7.9), Middle (10.1) and Thumb 

(14.5). The SDV (Standard Deviation) was 3.36. Likewise, the Grasp VR tasks FPV fingers 

variation order was Index (8.7), Middle (10.2) and Thumb (13.3) with a SDV of 2.35.  

 

The above variation orders of the Fingers FPV values is shown also in all the other tasks 

and sessions apart from the Lateral Index FPVs, wherein the “RL+Load” it is bigger than 

the other fingers FPVs while in the “VR+Load” is smaller with 0.6 difference. 
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Furthermore, Table 6-5 shows high correlations in the grand average FPVs for the 

sessions of the same groups (‘RL’-‘RL+ Tremor’ ρ = 0.7277; ‘VR’ -‘VR+Tremor’ ρ = 0. 

6201; ‘RL’-‘RL+Load’ ρ = 0. 5754; and ‘VR’ -‘VR+Load’ ρ = 0. 6461). 

Figure 6-7, Figure 6-8 and Figure 6-9 further illustrate this with similar data scatterings 

for both sessions and an average mean difference of 2.1. 

The RSQ average distance for the sessions compared within the same group was 0.07. 

However, the RSQ average distance of the sessions compared with the same type was 

0.665. This is due to the interaction differences between the real and virtual objects, 

caused by the VR’s absence of tactile feedbacks and difference in visual perception. 

 

- FPV : Load effect 

In addition, the FPV can effectively show the changes in finger performance when a 0.5 

kg weight is added to the forearm. The weight had increased the FPV in the ‘RL+Load’ 

session by 0.35 and by 0.15 in virtual reality. This can also be noticed in Figure 6-9 

where the values are larger and more scattered than in Figure 6-8 and Figure 6-7.  

 

However, the FPV results have highlighted that the 0.5 kg is not effective enough to 

cause a fatigue effect on the subjects hand performance. Therefore, increasing the 

weight on the forearm, or on each finger, with longer session duration, would 

demonstrate the influence of fatigue on finger performance with higher differences. 

On the other side, the EMG data analysis (Figure 6-18 and Figure 6-19) showed large 

values in the mean power frequency during the load sessions. This is due to the 

increase of the force applied by the forearm muscles in the movement. But, the data 

results still displayed close correlations with the finger contributions in the different 

tasks. 

- FPV: Sensitivity in Detecting Abnormal Movements 

Furthermore, the FPV method had detected the abnormal behaviour of the subjects’ 

finger performance with high reliability, illustrated in the subject 8’s case (Figure 6-13). 

The RL sessions of the subject 8 showed an unexpected increase, over the maximum 

threshold, in the FPVs for the thumb, particularly in the grasp and tripod tasks, an 

increased average of 36.325. And an unexpected decrease of the index and middle FPVs 
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was seen in other tasks of the RL sessions, with an average of 3.33, and for the VR 

session, with an average of 1.6.  

This abnormality is further demonstrated in the interaction plots in Figure 6-15. This 

data was generated based on the standard derivation (SDV) of the total average and 

subject 8. It does clearly show the large spread of the scattering for the subject’s SDVs 

in comparison to the total average.  

 

Following this abnormality, a further investigation was performed. The recorded video, 

during subject 8 experiment, showed that the data deviation happens during different 

trials. The subject did not extend the fingers to the home position at the start of the 

task and on the relax state. This caused to have a small range of motion (see Figure 

6-12) in the finger movement during task performance, and also to have an increase 

instead of a decrease in the finger horizontal displacement at the Relax event. Figure 

6-12 shows that the fingertip displacement amplitude difference was less than 3 cm in 

most of the fingertip displacement signals, in comparison to the subjects grand average 

8cm. Also, the start position in all graphs was larger than 0 cm with small increases in 

the grasp and point tasks of RL sessions and decreases in the Point task of index VR and 

laterals VR. This explains that the difference between Subject 8 performance and the 

rest of the group, and demonstrate that the FPV calculation methods were able to 

depict the abnormality in the subject’s performance.  

 

7.1.4. Inter-subject variability 

The ANOVA test, used for the inter-subject reliability, validates that the overall assessment 

adheres to a fundamental level of repeatability. This applies to the RL sessions as well as 

most of the VR sessions and tasks.  

Table 6-6 showed that there was no significant difference in most of the RL sessions’ (RL, 

‘RL + Load’, ‘RL + Tremor’) tasks, with p>0.01. A variation appears in the two VR sessions 

(VR, ‘VR + Tremor’) with p<0.01, but higher confidence of repeatability is apparent in the 

‘VR+Load’ for the index and middle fingers.  

The tactile feedback and constraints on the fingers while interacting with real objects justify 

the higher confidence of repeatability in the RL sessions in comparison to the VR sessions. 

These factors have increased the accuracy of repetition in forming similar postures and 
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joint movements.  

In the VR sessions, these elements do not exist, and the subject must rely on the front and 

back camera visual displays to estimate the level of flexion required to grasp the object 

virtually and manipulate the VR hand. This may have caused the discrepancies that are 

observed between the trials.  

 

Both the low repeatability shown in some of the VR tasks and the high intra-subject 

reliability correlation average (ρ =0.66) of the VR sessions indicated that there are different 

skill levels between the subjects in interacting with the 3D virtual world. This variation was 

associated with the subject’s age and previous experience with VR applications.  

By providing further training on the VR to the subject at the start of the experiment the 

skills of the user will be improved. Using haptic feedback supports on the fingers to 

describe the collisions in the virtual world would enhance the accuracy in grasping/holding 

objects. This would result in higher consistency in the inter-subject reliability results for the 

VR tasks. 

7.1.5. Repeatability 

The data scatter, in Figure 6-10, shows that more than 95% of the differences is less than 

two standard deviations (1.14). Hence, based on the British Standards Institution, this 

outcome shows repeatability in the data measurement performed across subjects (British 

Standards Institution, 1975). Furthermore, Figure 6-11 displays the difference between the 

‘RL’ and ‘VR’ sessions, where the Spearman’s 𝑟𝑠 = 0.6. This describes a positive relationship 

between the measurement, and a 95% confidence interval. The ‘VR’ can be used 

interchangeably with ‘RL’ for test and studies to measure the FPV. 

7.1.6. Electromyography 

The EMG data analyses were efficient in distinguishing the influence of tremor on finger 

performance during the VR session and on the muscles associated with the RFD and RED 

electrodes specifically. 

The power density of the EMG data results showed clear variation in the VR + Tremor 

session (Figure 6-18). The mean power frequency (Figure 6-19) of this session had a smaller 

value than the other VR sessions, with a mean difference of 49.5 Hz. The RED electrode had 

the largest difference between the ‘VR’ and ‘VR+Tremor’, with a difference of 176. 
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The mean tremor MPF between all the electrodes was 4.5, which is inside the expected 

tremor frequency range 4 to 12 Hz (WeMove, 2008). However, this cannot be considered 

highly accurate as it is based only on the movements that resemble the tremor, but it 

serves the requirement of the research.  

The ‘RL+Load’ effect was apparent on the RFD electrode where the MPF value was much 

smaller than the ‘RL’, with a difference of 8Hz. This was not seen in the other electrodes.  

7.2. System Validation 

The data glove calibration performed at the start of each experiment validates the 

functionality of the software in reading and rendering the sensorial data to the virtual 

world. This is in addition to the stress test carried out on the virtual system, in Table 6-8. 

The coefficient index, obtained from the test calibration (Calibration Chapter 5), validates 

both the calibration result and the reliability of the visual display for rendering the hand 

postures in accordance with the real hand movement. 

 

Therefore, the VR system was found to be very reliable in measuring finger performance 

during the experiment and synchronously recording the data from the measurement 

devices at the task-event’s occurrence, without data loss or disruptions. 

7.3. Comparison to others 

The outcome results of this research project showed that the FPV method is highly efficient 

and reliable for measuring the finger performance. This was performed by extending the 

SHAP procedures and including numerous approaches to the hand assessment. The method 

showed high intra-subject repeatability for each subject of the controlled group, and high 

inter-subject repeatability in the ‘RL’ sessions. The calculation method shows efficiency in 

detecting abnormalities and variations between the normal sessions and the sessions 

involving constraints on the hand (load).  

Consideration of the different signal properties (speed, time, smoothness of finger 

formations and stability) in the calculation method provided extensive measurements to 

analyse the multiple dexterities and variations in hand performance. 

  

This method has, for the first time, automated the process by including the sensorial data 

glove device to measure the fingers’ motions and be independent from subjective 
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assessment. It is easy to setup and comfortable on the patient’s hand, modular, safe, 

portable (can be easily moved to different location), and motivating (as it includes VR 

interaction). 

The method, uniquely, provides a scoring system for finger performance, with objective 

assessment of each individual finger. It also compares the new results with the normative 

datasets (generated from the healthy group). 

This method doesn’t rely on subjective assessment, as it uses original and novel methods to 

extract the features in the finger movements which describe accurately. It includes the 

acceleration level of the fingers’ movements while forming a gesture, the smoothness of 

finger displacement on defined trajectories, the stability of the fingers in hold positions, the 

contributions of the three fingers (index, middle and thumb) in performing classification 

tasks, and the speed plus time duration.  

This method has added an extra dimension to the hand assessment process through the 

inclusion of VR and the robotic simulator. In contrast to other methods, the present 

provides higher awareness for the subject by displaying visual information of hand 

kinematics and functionality. It also provides different visual perspectives (front/subject 

cam), see-through, and easy to adjust with the patient’s characteristics. 

7.3.1.  Potential Benefits to Clinical Settings 

This system offers for the therapists: an automated and dynamic hand assessment system 

that is easy to setup, and continuously records patient’s performance throughout the 

experiment. It is modular as it can adapt to different measurement devices (i.e. data glove 

devices, muscle activity measurements, ROM tracking devices, visual display and other 

biotechnological tools). The system does not require intensive training as it incorporates a 

user friendly interface, and very clear instructions and tasks. 

The system calibration is very simple, robust and requires short setup time (<5mins). The 

system is also mobile and can be used from home, clinics and research labs.  

At the end of the session, the software tool generates a compiled report with statistical 

analysis describing the performance of the patient’s hand, objective measurements of each 

finger individually, comparisons with previous sessions and the normative dataset; it also 

scores the rates of the finger’s performance in total. 
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7.3.2. System Setup procedures 

In order to setup and use the system, a therapist must follow the below procedures:  

1. Set up the measurement and data acquisition devices: PC to analyse and visualise the 

VR, EMG electrodes on the patient’s forearm involved muscles, software, visual display 

unit. Let the patient wear the data glove device and place the SHAP tools in front of 

him/her. 

2. Train the subject on the equipment and procedures: VR interaction, data glove device, 

and the tasks/instructions involved in each process of the assessment session.  

These include: demonstrating the correct gesture and posture of the hand movement 

to grasp a real object and interact with the VR and the different events in each task 

(Ready, Grasp, Hold, Release). 

3. Run the calibration procedures and ask the patient to perform the presented postures. 

4. Configure the session hand assessment test procedures or load a predefined set that is 

generated by the program. 

5. Run the hand assessment procedures. 

6. After the program finishes, ask the patient to relax and dismount the system. A report 

is generated with statistical data analysis of the patient’s hand performance. This can 

be stored and used for later session as the program can evaluate the patient’s hand 

performance between sessions and elevate the tasks level in each session to 

accommodate improvement. 

7.4. Comparison to hypotheses 

In light of the discussion above, the following can be derived in relation to the project’s 

initial considered hypotheses:  

a. The newly developed method, FPV, has provided a consistent data measurement 

system that efficiently extrapolates the significant features in finger performance. This 

includes the speed, time, smoothness and stability of the fingers’ movements.  

The method produced an automated process system that doesn’t rely on assessor input 

to control the experiment or to measure the features. 

 

The system presented enough sensitivity to detect the load effect on hand performance 

during the ‘RL+Load’ and ‘VR+Load’ sessions.  

 



 
 

224 
 

b. The VR hand assessment system provides an efficient outcome measurement 

procedure that closely correlates with the ‘Real Life’ measurement (‘RL’-‘VR’ mean 

difference is 1.73).  

The VR sessions showed that they are more adaptable and adjustable to the user’s 

needs than the RL sessions. This is due to the inclusion of a see-through and second 

camera (front view). These features have contributed in improving the system 

feasibility and interaction level.  

 

7.5. What could have been done differently 

The project could be improved in various areas to increase the reliability of the results. A 

number of improvements to the project procedures are listed below: 

a. The results provide elementary analysis for deriving the subject’s hand performance. 

However, the experiment needs to be conducted on a larger group of controlled 

subjects in order to establish a normative data set.  

b. The tremor session requires an additional system to track the variation of the hand 

from the base (wrist/palm). A solution to this is mounting inertial or accelerometer 

sensors and synchronising these with the tasks. Movement can significantly highlight 

the tremor effects and variations and this can be combined with the FPV calculation.  

c. Using a 1kg weight on the forearm during the load session may return better results in 

demonstrating the paresis effect on the subject’s hand from the FPV.  

d. High density EMG signals can be used with advanced data signals classification in order 

to detect hand gestures and assess finger movements. This could be achieved by using 

neural network methods with specified postures. The high density EMG will cover a 

larger surface of the muscle and return more detailed analysis on the area responsible 

for the joints’ control of the flexion/extension muscles. This is an efficient method to 

control the virtual hand and prosthetic arms using the EMG electrodes. It also allows 

for study of the muscle’s memory contributions in the motor control process of the 

hand functionality. 

e. Including extra SHAP classification procedures in the experiment can reduce the 

pattern-learning factor of the hand movement during repetitive trials. It can also 

increase the list of random task selections.  
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f. Providing more illustrative training on the virtual reality system to each subject before 

running the experiment can improve the performance values and improve the inter-

subject repeatability between the subjects. This will be of particular benefit to those 

subjects with no previous experience in this type of applications. 

Chapter 8 Conclusions and Future Work 

8.1. System Objective Review 

This thesis has presented a unique method for objective measurement that can efficiently 

assess hand performance and reliably be used in hand assessment and rehabilitation. The 

project studied the implementation of the latest technologies for dynamically measuring 

the objective performance of the hand. The assessment system can be incorporated during 

the evaluation phases before or after each rehabilitation session. This will give a dynamic 

analysis of the finger improvement throughout the rehabilitation process. The assessment 

system is only compliant for patients who are capable of performing voluntary movements 

with their hands, or advanced stages in the rehabilitation, after the other assessment 

devices, such as ARAT and SHAP, are used. 

As explained in the Discussion Chapter 7, this project provides a unique measuring value 

FPV (Finger Performance value). Unlike other scoring systems, such as IoF (Index of 

Functionality) (Light et al., 2002), the FPV includes new parameters (smoothness of the 

fingers’ motion trajectories, stability of the fingers in the hold positions) and addresses 

each finger individually. This makes the FPV scoring unit different from the other existing 

scoring standards and requires a different approach or new evaluation procedures by the 

therapists. As this project has covered only the first phase to run experiments on healthy 

subjects, further tests are required to be performed on people with hand dysfunction by 

therapists to evaluate the FPV. 

On the other hand, this system offers multiple advantages; it is portable and can be used in 

different places. It is fully automated and doesn’t require the therapists to set any timer or 

data inputs for measuring the performance. It is comfortable on the patients’ hands and 

does not involve intensive tasks. It is motivating as it includes virtual interaction and visual 

illustrations, and it provides dynamic measurement of each finger’s performance. This 

allows the system to be easily adjusted with the patient’s requirement and improvement; 
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In addition, it highlights the level of details for each finger. The system is modular and the 

measuring or display devices can be replaced with different devices to suit the 

requirements (costs, accuracy, etc.). The estimated cost of the system might vary from 

£1,000 to £20,000 (without the EMG system), depending on the quality of the used devices.  

 

In summary, the present research has contributed to the following:  

(the sentences presented with quotations below are extracted from previous chapters: 

Chapter 2, section 2.3 and Chapter 3, section 3.2) 

 Developing and implementing for the first time (to the best of the author’s knowledge) 

a unique and advanced robotic simulator that combines the data glove CyberGlove® for 

biomechanical and hand assessment research. The application meets the below 

specifications which were specified in the Background Chapter 2, section 2.3:  

o “The application must show very reliable and robust calibration between the 

actual hand and the virtual model movement. This is in order to build the 

confidence level in analysing the reliability of the measured data. “ 

An improved design to the hand kinematic was implemented in the VR application 

to operate the multiple control mechanisms. Further to this, a thorough 

investigation for the various calibration methods used in robotic and VR research 

was performed to produce the most adequate and robust algorithm.  

o “The virtual models should show very similar representation of the real world 

hand and classification procedure objects. “ 

Existing limitations in VR, in comparison to the real world, were addressed by using 

different approaches (such as see-through mode to compensate the sensory 

feedbacks in object grasp, and virtual hand/object animation to adjust the world to 

the desired transformation and meet the task requirements). The VR advantages 

were explored in order to produce an efficient application by eliminating the 

constraints that exist on actual hand movement. 

o “The simulator application should be developed with consideration of future 

implementation in hand rehabilitation. “ 

The adaptability of the virtual hand control with different data formats and the 

feasibility of the calibration method allow the use of different third party devices 

(i.e. data gloves, sensors, classified muscle or brain activities data) in combination 

with the virtual hand manipulation application. This offers a more robust and 
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feasible system than the prosthetic test platforms. 

The application has a user-friendly interface and adaptable robotic structure. This 

allows new models to be easily loaded and new kinematics and algorithms to be 

used for different purposes, such as gesture recognition, classifications, grasp 

optimisation, and automatic postures formation. 

o “The application should also include other experimental types of sensory inputs 

and simulation.” 

The collision detection method developed in this project, allows control 

commands to be sent to the haptic feedback systems, targeting the specified digits 

and joints. 

The application includes a dynamic engine that can be developed to simulate real 

world physics and interaction forces. 

The specifications listed above are explored in the Background, Chapter 2. 

 

 “SHAP classification procedure should be appropriately included to validate and study 

the multiple aspects of the proposed method.” 

This project selects four SHAP tasks to address the three main digits during hand 

rehabilitation. In addition to the multiple factors included in data measurement and 

analysis, the system allows for the creation of an autonomous and objective 

measurement procedure. This removes uncontrolled variability and subjective 

influences.  

The VR system presented a similar environment and experimental procedures to real 

world interactions. This validates the feasibility of employing virtual reality applications 

in the rehabilitation spectrum, and in hand assessment specifically. A new application 

was produced to be used as a test platform for further studies and research on the VR, 

by exploring its efficiency in monitoring and contributing to the patient’s progress and 

adaptability. 

 

 “The developed method should be adaptable with new tasks and sessions.” 

The uniquely developed algorithm in this project covers the essential characteristics of 

the finger’s movements that contribute to the performance of daily and abstract 

activities. Further explanation of this method is provided in the Experimental Chapter 4. 

This includes the considerations used to provide robustness in measuring the motion as 
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well as important features in the fingers’ movements.  

 

This method is proven to be reliable and flexible and can therefore be employed in 

different fields outside the field of bioengineering. This includes the psychology field, 

where the classification procedures can be adjusted to involve the measurement of 

emotional gestures. It can also be employed in ergonomics, to address human-to-

machine interactions as preliminary steps towards designing more adequate hand tool 

devices. Also, this application can be used in system controls and gesture recognitions. 

The project provided a configured human hand model for the biomechanical application. In 

the Calibration Chapter 5, a robust calibration method was developed to efficiently 

manipulate the virtual hand model using the data glove device sensorial outputs. The 

calibration method has multiple advantages in comparison to other methods. It doesn’t 

take a long time or require a pre-generated dataset. It is adaptive with each subject’s 

physiological and performance configurations, and the calculations take the dependent 

sensors into consideration. 

 

This project also covers the various disciplines that are used in hand rehabilitation, and 

provides substantial reviews on their drawbacks and advantages. It explores the significant 

motor control factors involved in hand functionality (see Background, Chapter 2). The 

project outlines the appropriate methods, using brain activities and visual feedback sensory 

inputs, that can be used to implement this application for hand posture classifications. 

 

In the Literature Review, Chapter 3, an extensive review of different data glove applications 

is provided. This can be used to justify the need to develop an alternative data glove device 

that is less expensive, has higher feasibility in tracking the multiple DoF of the hand 

kinematic, and can be adapted to different hand sizes. 

8.2. Future Research Directions 

The focus of the project has been to develop an advanced VR application that efficiently 

measures hand performance. During the research and development work, various areas 

have been highlighted to improve and extend the system’s outcome and applicability. A 

number of factors to consider and incorporate in future research are detailed below: 
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 In order to obtain more efficient and clinical results, the application should be tested 

on patients with hand dysfunctions. An anticipated continuation of the current 

project is to conduct experiments on patients during the hand rehabilitation process. 

This would also involve consulting with surgeons and rehabilitation experts to assess 

the calculated values and closely monitor variations during the rehabilitation sessions.  

This method has proven to be efficient on healthy subjects. There were time 

restrictions due to the extensive software development required to produce an 

efficient interactive simulator and new algorithm equations for kinematics and hand 

assessment. However, the experiment did cover some aspects of hand dysfunction by 

simulating paresis during the load and tremor sessions. 

 

 Adding haptic feedback to the hand is essential, since it can increase the accuracy 

level in interacting with the virtual world. It can also extend the capability of the 

system to exert forces on targeted hand digits, which can provide consistent and 

reliable exercises for rehabilitation of specific dexterities in the hand dysfunction.  

However, the addition of the haptic devices can also cause discomfort for the patient, 

and can restrict the system’s portability and flexibility with the complex tasks. It can 

also increase the cost and time taken to setup and calibrate the device. 

 

The developed simulator supports collision detection algorithms. By retrieving the 

collision area of the involved joints in the virtual model, it can be used to program the 

haptic device and activate the fingers’ resistance wires to provide force feedback for 

describing the virtual object bounding shape.  

CyberGrasp® is a haptic system available in the Bioengineering Lab in the University of 

Strathclyde. It provides individual resistive forces on the multiple joints of the fingers 

and can be controlled by sending specific commands through the network, using the 

interface unit. However, this system is not implemented in this project, as it is 

cumbersome and complex to control. It also imposes a large number of restraints on 

the hand. 

 In this thesis, multiple hand exoskeletons were reviewed in the Literature Review 

Chapter 3. These can be used for developing an adequate and compliant haptic 

feedback device. 
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 As discussed in the Background Chapter 2, the dynamic engine in the simulator is 

fragile and requires significant development. A number of robust and advanced 

physics engines have recently been developed, such as PhysX (PhysX-Nvidia, 2015) 

and Bullet (Bullet). These can be employed in the virtual simulator to provide realistic 

graphical behaviour in relation to the numerous forces in the environment. These 

engines are extensively used in industrial simulations and can provide an effective 

imitation that resembles the actual experimental setup. An accurate representation of 

the real life setup is significant for effectively performing biomechanical and 

rehabilitation analysis. 

The dynamic engine can expand the system’s applicability and reduce the level of 

controls needed to interact with the real world experimental setups.  

 

 An interesting area of rehabilitation research, which relates closely to this project, is 

the examination of the motor control EEG signals used to perform certain ADL tasks. 

Ciocarlie and Allen have developed an Eigengrasp algorithm (Ciocarlie and Allen, 

2009), based on  Santello’s study, to reduce the dimensionality of the motor control 

signals by identifying the hand postures from a defined set (Santello et al., 2002). 

(Jonathan  et al., 2015) produced an application of the simulator, in combination with 

the brain computer interface, to plan and select a specific grasp gesture from pre-

planned grasps. Their project aimed to provide a flexible grasp planning system for 

assistive robotic manipulation, with less complexity in comparison to human hand 

kinematics.  

The CyberGlove® can be combined with this to provide a comparison between actual 

hand movements and simulated movements. The simulator application can also 

contribute significantly to reducing the complex kinematic structure of the hand and 

the high level task planning, by visualising a more adaptive and sustainable hand 

model representation.  

Further explanation of the features selection and data classifications were provided in 

the Background Chapter 2.  
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8.3. Conclusion 

In this project, we have developed a unique virtual reality system that provides efficient 

outcome measurements of the hand rehabilitation. The materials (CyberGlover®, SHAP, 

Dome®, and EMG), and system applications (Robotic Simulator) adequate to obtain robust 

and reliable data outputs were specified. Also, an advanced calibration method was 

developed that can return a vigorous system in reading and manipulating the virtual model. 

 

On the other hand, experimental studies were designed and conducted on a controlled 

group to validate this approach. They involved selecting specific classification tasks and 

altering the relevant attributes, such as weight and tremor, to evaluate the effects of 

fatigue and system sensitivities on the hand measurement. Noticeably, the results showed 

high evidence to support the thesis hypotheses. In addition, the virtual reality was found 

reliable in simulating the numerous features of hand performance. The Finger Performance 

Value (FPV) method demonstrated high reliability and efficiency to objectively measure the 

performance of the involved fingers.  

The combination of the SHAP hand classification procedure with the interactive system, 

consisting of a graphical simulator and a data glove manipulation device, produced a 

powerful approach for hand rehabilitation applications. The new algorithm, developed in 

this project, has proved to be reliable and efficient to measure hand performance. And the 

implemented algorithm illustrates the various restoration phases of the hand by analysing 

specific fingers’ elements: speed, motion, and coordination. 

At the end of this thesis, different plausible approaches and techniques that can be used in 

order to either improve the system and data measurement were provided. This included 

integrating a motion capture sensor for the wrist and arm movements, increasing the 

weight for heightening the fatigue effect, adding other classification tasks to reduce the 

effect of learning patterns, and using high density EMG to increase the data reading of the 

multiple involved muscles; or the total research outcome in the medical rehabilitation field, 

by performing clinical tests and taking therapists’ assessments to the FPV scores. 

In comparison to the other available hand assessment systems, this approach offers a 

universal procedure that is cross-compatible with different rehabilitation techniques. In 

addition, the method dynamically measures the fingers’ improvements during hand 
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recovery, and allows therapist to compare with other normative data sets and review 

previous performance. It also measures the competencies of the patient’s hand motions in 

the VR and real world.  

Hand rehabilitation is certainly a very substantial subject in medical rehabilitation. The 

author hopes that the work produced in this project will efficiently assist future researchers 

in developing an effective and adaptable application to rehabilitate the hand.  

The method in this project also seeks to provide significant support in enhancing the 

rehabilitation process and removing the difficulties in hand dysfunction, which can lead to 

physical and emotional distress.  
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Appendix I Experiment System Setup 
The hardware and software setup steps to run the experiment.  

1. Run the Virtual application by launching “graspit.exe” file in the ‘bin’ folder.  
Note to run GraspIt! Application specific libraries need to be set up on the machine 
first.  

2. Load the “startPosition.xml” from ‘worlds’ directory of the GraspIt! project. This 
file refers to all the virtual world models and environment setup used in this 
experiment. 

3. Connect CyberGlove® interface unit with the serial port of the machine and switch 
it on. 

4. Enable CyberGlove® sensors reading from the application, by choosing “sensors” 
from the menu and going to “CyberGlove-> On”. 

5. Connect CED Micro 1401 EMG recording device with both the USB cable (for 
reading data) and parallel port cable (for synchronisation) to the machine running 
the VR application. 

6. Make sure the cables are connected properly between the Filter-Isolators-
Amplifiers. Adjust Notch filter of each Isolator to 50 Hz low-pass filter cut-off and 
500 Hz High-pass filter cut-off to correspond with the EMG signal bandwidth(Al-
Jumaily and Olivares, 2009) . See for setup. 

7. Run Spike2 (version 5 and above) and configure samples to include four data 
reading channels, and one digital marker.  

8. Connect the Dome® to the machine via the projector VGA cable. 
9. Use speaker or headset for audio instructions. 
10. Take measurements of the subject physiology: - size of the hand (using the Chart 

with different standard hand sizes), length of the forearm, - length of the elbow, -
Height, - Weight. 

11. Ask subject to wash both hands. (for Hygienic considerations across different 
users) 

12. Locate the four muscles and place the EMG electrodes in the appropriate 
structure, with reference point electrode on the wrist bone ‘Pisiform’.  

13. Connect the electrodes to the CED1401 wires from the amplifier NL824. 
14. Test electrodes read by running Spike and checking the signals. 
15. Ask subject to wear the CyberGlove® glove on top of the white nylon glove. Hands 

should be clean and dry. (The nylon glove helps to maintain hygiene and facilitates 
the wearing and removing of the glove, as it provides lubricating surface) 

16. Tight the subject elbow to the chest with an elastic band, this is to isolate the arm 
muscles involved in gross movement and be able to produce more accurate results 
in the tasks requiring fine movements. 

 

Experiment Process 
The experiments are performed in the following sequences:  
At the start of each experiment, the subjects are asked to read and sign a Consent form, 
which contains description and details about the experiments, their involvement and the 
risks involved.  
After setting up the system, the data glove reading was calibrated on the subject hand by 
using the system procedure of software calibration.  
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This method was done by clicking on “New Calibration” in the “Glove Calibration” dialogue 
box. Then the subject followed the instructions for calibration by performing specific 
gestures using the right hand with the glove. (The calibration is by default saved in the 
‘\Poses\Calibration.csv’ location) 

To verify the calibration a “Test Calibration” was performed after the calibration. This 
would measure the efficiency of the calibration method and validate the virtual reality 
mapping values of the sensors data by measuring the Coefficient Index for the sensors and 
DoFs.  

In case of Real Life sessions, the subject is presented with the real objects on the table, 
placed on top of the Foam board, and would move the object to the relevant marked 
positions.  
In case of Virtual Reality sessions, the subject is presented with Virtual display on the 
Dome®, where the interactions were all performed virtually. Subject would see two views: 
“Front Camera” displaying the front view of the scene, where better perceptions of the 
object’s size and dimension in relevance with the Virtual Hand size and shape were 
displayed; the “Back Camera” displaying the subject view to give the immersive perception 
for manipulating the virtual hand and objects. 

Due to the expected variations between different subject skills in interacting with the VR 
and instructions comprehension, the subject was given before the experiment a detailed 
training to explain the terminologies used in the instructions and the tasks correct 
performance.  
For instance the following explanation was given to the subject: 
“Move hand – fingers are stable but hand is moving only”, “Grasp – formation of fingers”, 
“Hold –holding the object in the current finger positions without moving”, “Positions X and 
Y on the SHAP board, and unavailability on VR as the virtual hand is automatically 
controlled”, “Relax Hand – gesture as the start position relaxed on the table”, Demo all the 
tasks performance individually with clarification of the fingers involvements to maintain 
consistency between tasks performances and subjects. 
The training ensured, as well, the repetitions and consistency of the data measured 
between subjects while performing the different tasks.  

The EMG data was simultaneously recording with the data glove through the CED 
application Spike2.  

After finishing, the subject was asked for feedback. The data collected through the 
experiment was stored confidentially, and used later in mining and analysis. 
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Appendix II Glove Hand Size Chart 

Glove Size Chart for Men, obtained from CELTEK http://www.celtek.com/size-chart/.  

 

Figure II-1 Glove Hand Size for Men 
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Appendix III Virtual Hand Kinematic  

 

Figure III-1 Virtual Hand Models showing the multiple grasping postures for different 

objects of variant shape and size; It displays the flexibility and extension of virtual hand in 

forming the multiple complex shapes.  

 

// Defining the robot type whether Human Hand or others. 

<robot type="Hand"> 

 

// Starting by definition on the palm base of the robot 

 <palm>palm.xml</palm> 

 <chain> 

// The orientation of the palm and its location in the 

virtual world 

  <transform> 

   <translation>-50.6241 -11.5082 18.9317</translation> 

   <rotationMatrix>-0.1486 -0.9003 0.4089 0.2665 0.3618 

0.8933 -0.9522 0.2418 0.1862</rotationMatrix> 

  </transform> 

 

// After definition of the base the connected joints are 
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deffined  

// hierachically from the parent joint in the finger to the 

end 

// effector 

 

// The D-H parameters are then applied in the following to 

define the  

// kinematics of each joint. This explained in the followed 

parts of  

// this section 

// The below are list of constraints defined on the joints 

movements 

  <joint type="Revolute">//primitive types:Revolute,prism, 

universal 

   <theta>d16</theta> 

   <d>0.0</d> 

   <a>0.0</a> 

   <alpha>90.0</alpha> 

   <minValue>-10</minValue> 

   <maxValue>50</maxValue> 

  </joint> 

  <joint type="Revolute"> 

   <theta>d17+49.5</theta> 

   <d>0.0</d> 

   <a>52.1193</a> 

   <alpha>44.0</alpha> 

   <minValue>0</minValue> 

   <maxValue>25</maxValue> 

  </joint> 

  <joint type="Revolute"> 

   <theta>d18+5.0</theta> 

   <d>0.0</d> 

   <a>40.7638</a> 

   <alpha>0.0</alpha> 

   <minValue>0</minValue> 
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   <maxValue>40</maxValue> 

  </joint> 

  <joint type="Revolute"> 

   <theta>d19+85.0</theta> 

   <d>0.0</d> 

   <a>0.0</a> 

   <alpha>90.0</alpha> 

   <minValue>0</minValue> 

   <maxValue>30</maxValue> 

  </joint> 

 

// defining the links to the 3D model and joints type 

obtained from 

// one or many degree of freedoms to constitues the various 

primitive 

// types. 

// In this case the first 2 Revolute DoFs are used for the 

firt  

// Universal link. The second 2 Revolute DOFs are used for 

each link 

  <link dynamicJointType="Universal">thumb1.xml</link> 

  <link dynamicJointType="Revolute">thumb2.xml</link> 

  <link dynamicJointType="Revolute">thumb3.xml</link> 

 </chain> 

</robot> 

CodeSnippet III-1 Human Hand Model description file 

The CodeSnippet III-1 shows a part of the description file for the human hand model which 

contains set of outlines for the kinematics interactions of each model, the transformation 

rules from the base and the joint properties (i.e. Revolute, Universal, parameters etc.). This 

file is related with other configuration files in GraspIt!.  

The above CodeSnippet, particularly, displays the Thumb configuration. It starts by defining 

the type of the robot as “hand” and the transformation matrix for the finger base from the 

palm in the <translation> and <rotationMatrix> nodes; then it initializes the link between 

the three joints in the <link> nodes, where the type of joints is assigned as parameter for 
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this case the first joint is “Universal” and the other two are “Revolute”; and the rest of 

joints configurations in the <joint> nodes.  

These nodes are placed in a sequential order from base joint to last, and they include the 

type of the joint, the minimum and maximum variation, and the Denavit-Hartenberg 

parameters: joint angle, joint distance from the previous, link length and link twist. 
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Appendix IV Data Glove Sensor Values for the Calibration Postures 

Table IV-1 Grand average sensor Values for the 15 postures of the calibration process 

 Postures 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

S1 Thumb Rotate 82 101 96.8 92.2 73.6 78.8 80 73.2 78.7 68.4 81.5 83.4 129.2 131.6 93.7 

S2 Thumb MCP 94.2 168.6 102.4 111.9 72.2 73.3 102.3 103.6 106 79.1 108.6 119.3 119.4 122.4 127 

S3 Thumb IP 107.8 180.6 169.6 101.6 102.3 96.7 105.7 103.6 104.1 98 91.7 103.2 117 128.2 130.3 

S4 Thumb Abd 124.1 116.5 88.9 144.5 104.4 104.1 135 135.3 135.8 120.5 159.2 140.4 70.9 61.9 128.8 

S5 Index MCP 77.5 141.9 143.9 92.5 73.7 80.9 80.4 83.7 86.7 69.4 160.1 156.5 126.7 109.2 146.7 

S6 Index PIP 211.3 254.2 254.1 201.9 204.5 206.5 197.4 201.4 201.4 254.4 234.3 254.5 254.5 206.8 254.6 

S7 Index DIP 59.4 157 126.2 64.8 63 63.2 64.1 62.1 62.3 175.8 70 98.7 67.8 76.2 155.2 

S8 Middle MCP 89.8 147.4 154.8 99.1 84.3 92.1 88.6 92.4 95 88.3 161.1 158.9 101.1 120.7 149 

S9 Middle PIP 54.9 138.1 121.5 46.8 52.6 49.6 53.6 46.4 46.6 152.7 71.3 147.3 62.8 140.2 150.2 

S10 Middle DIP 68.5 139.2 116.4 82.5 74.5 75.9 74.5 72.2 70.3 166.5 79.1 79.5 81.9 61.8 127.4 

S11 Mid-Index Abd 167.7 129 133.6 185.9 125.5 177.3 103.1 180.6 181.9 141.1 167.9 150.2 133.8 106.7 153 

S12 Ring MCP 83.5 140.2 147.1 91.6 78 87.4 82.2 84 88.8 81.8 151.9 153.5 90.3 104.3 146.1 

S13 Ring PIP 60 150.7 122.9 51.7 57.3 52.3 54.1 56.1 54.3 156.2 68.9 150.1 58.6 57.8 155.4 

S14 Ring DIP 60.9 160.4 119.8 64 62 62 63.8 62 66.4 196.4 75.7 97.8 71.2 64.6 185 

S15 Ring-Mid Abd 114.1 85.3 86 129.1 85.7 126.4 115.1 48.7 130.7 100.3 120.8 94.2 103.5 105.4 89.6 

S16 Pinkie MCP 70.4 126 134.6 79.4 63 75.6 71 67.2 67 65.6 128.2 141.6 69.9 67.2 137.9 

S17 Pinkie PIP 51.9 137.7 105.6 49.8 45 48.4 48.2 47.6 42.4 141 69.9 134.4 50.4 46.3 138.9 

S18 Pinkie DIP 95.9 169.6 140.4 96 94.1 94.1 93.1 93.2 93.6 186.8 95 135.9 98.5 96.1 179.3 

S19 Pink-Ring Abd 145 141.5 138.8 166.7 106.5 167.5 160.8 148.4 95.9 150.1 153.3 143.2 140.1 137.4 143 

S20 Palm arch 133.1 125.3 125 136 136.8 139.4 136.2 140.8 135.1 144.8 135.4 122.6 141.2 143.4 121.6 

S21 Wrist Flexion 144.3 111.6 106 144 149.6 148.4 151 149.8 148.2 146.8 102.3 99.6 105.7 93.9 108 

S22 Wrist Abd 74.6 77.8 82.9 66.9 72.2 67.6 68.4 72 74.3 72.3 71 74.6 78 82.2 78.2 
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Appendix V Code Organisation for configuring the Virtual Environment  

The code used for the Virtual Environment setup. It applies an XML structure to define the 

locations, orientations, links, properties and relations of the virtual objects. 

<?xml version="1.0" ?> 

<world> 

// Include static objects in the virtual environment:Floor,Table 

 <obstacle> 

  <filename>models/obstacles/simpleFloor2.xml</filename> 

  <transform> 

// Position and Orientation relative to the world reference 

   <fullTransform>(+1 +0 +0 +0)[+0 +0 +0]</fullTransform> 

  </transform> 

 </obstacle> 

 <obstacle> 

  <filename>models/obstacles/table.xml</filename> 

  <transform> 

   <fullTransform>(+1 +0 +0 +0)[-10.381 +162.405 -

0.00101096]</fullTransform> 

  </transform> 

 </obstacle> 

// Include static objects in the virtual environment:the Robot 

Stand // (Base) 

 <obstacle> 

  <filename>models/obstacles/puma_stand.xml</filename> 

  <transform> 

   <fullTransform>(+1 +0 +0 +0)[+0 +0 -1]</fullTransform> 

  </transform> 

 </obstacle> 

 

// Include dynamic objects in the virtual environment:Tripod, 

Sphere, Plate 

 <graspableBody> 

  <filename>models/objects/tripod.xml</filename> 

  <transform> 

   <fullTransform>(+1 +0 +0 +0)[-817.445 +710.57 -

459]</fullTransform> 

  </transform> 

 </graspableBody> 

 <graspableBody> 

  <filename>models/objects/sphere.xml</filename> 

  <transform> 
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   <fullTransform>(+1 +0 +0 +0)[+782.758 +726.483 -

459]</fullTransform> 

  </transform> 

 </graspableBody> 

 <graspableBody> 

  <filename>models/objects/plate.xml</filename> 

  <transform> 

   <fullTransform>(+1 +0 +0 +0)[-694.87 +406.234 -

459.996]</fullTransform> 

  </transform> 

 </graspableBody> 

// Include the robot joints models 

 <robot> 

  <filename>models/robots/Puma560/Puma560.xml</filename> 

// Configure each DoF default position when it is loaded 

  <dofValues>+1.70887 -2.04238 +0.546504 +0.00906244 +0.127617 -

0.535178 </dofValues> 

  <transform> 

   <fullTransform>(+1 +0 +0 +0)[+122.779 +0 

+8.49962]</fullTransform> 

  </transform> 

 </robot> 

 <robot> 

// Include the Human Hand model  

  

<filename>models/robots/HumanHand/HumanHand20DoF.xml</filename> 

// Configure each joint default position 

  <dofValues>+0.213955 -0.118538 +1.5708 -0.174533 +0.106554 -

0.174533 -0.174533 +0.036828 -0.0872665 -0.054422 -0.157483 

+0.022301 -0.143688 -0.174533 -0.174533 +0.0330681 +0.872665 +0 

+0.461594 +0.341308 </dofValues> 

  <transform> 

   <fullTransform>(+0.509822 +0.502387 -0.516462 -

0.47006)[+231.683 +265.489 -375.77]</fullTransform> 

  </transform> 

 </robot> 

// Specify the parental connection in order to mount the hand at 

the // end effector of the Puma Robot Model. 

// The sequence of defining which robot first is critical in 

order  // to select the parent robot controling the child 

movement 

 <connection> 

  <parentRobot>+0</parentRobot> 

  <parentChain>+0</parentChain> 

  <childRobot>+1</childRobot> 

  <transform> 
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   <fullTransform>(-0.303316 +0.520209 -0.423588 -0.676723)[-5 

+2.47 +47.9]</fullTransform> 

  </transform> 

 </connection> 

// Include camera with the position, orientation and focal 

distance // configurations in the scene 

 <camera> 

  <position>-331.02 -152.199 -19.7425</position> 

  <orientation>+0.56436 -0.0970323 -0.147562 

+0.806417</orientation> 

  <focalDistance>+792.983</focalDistance> 

 </camera> 

</world> 
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Appendix VI Appendix VI Questionnaires 

 Pre-considerations: (Healthy, no neurological, no medical issues, no skin damage on the hand 

and forearm, no allergy to the used EMG electrodes, healthy visual perception, no motion 

sickness, their dominant hand and let are the right side, no hearing issues, no history of 

epilepsy, no neuromuscular damage, no surgeries to the right side upper limb, and no current 

health problems) 

 How often do you use tactile hand typing devices? 

Seldom/Never  

Occasionally  

Regularly  

 

 How often do you use computer at home? 

Seldom/Never  

Occasionally  

Regularly  

 

 For each of the following activities please indicate whether you participate in each of 

the activities regularly, occasionally or never.  

Team activities Never Occasionally Regularly 

Cricket    

Basketball/ Volleyball    

Martial Art    

Bowling     

Hockey    

Goal Keeper    

Gymnastic/Yoga    

Musical Instrument 

(Please specify) 

   

Biking    

Video Games    

 

If others (mainly with hand activities) please specify: 
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 Do you do any employment work involving heavy hand functions? 

 How many hours per week do you do this work? 

 

 How many hours per week you attend in university? 

 How much do you spend time in the day standing? 

Seldom/Never  

Occasionally  

Regularly  

All the time  

Not applicable  

 

 How much do you spend time in the day sitting? 

Seldom/Never  

Occasionally  

Regularly  

All the time  

Not applicable  

Regarding your back, please rank from 1 to 10 (where 5 is troublesome, uncomfortable 

rate) the intensity of any back pain you may experience along with the location and 

type of pain 

 Where is the location of the identified back pain? 

Considering the dominant side of your body, rank from 1 to 10 (where 5 is 

troublesome, uncomfortable rate) the intensity of pain at the various location 

 

 Please specify the kind of the pain. 

Considering the non-dominant side of your body, rank from 1 to 10 (where 5 is 

troublesome, uncomfortable rate) the intensity of pain at the various location 

 

 Please specify the kind of the pain. 

Please indicate when your pain is the most bothersome (1), second most bothersome 

(2) and least bothersome (3).  

(Team sport, indvidual recreational activities, work/university, relaxing, morning when 

you wake up, others) 



 
 

262 
 

. 

. 

. 

 Please indicate the location of the most bothersome (1), second most bothersome 

(2) and least bothersome (3). 

 (Back, Neck, Shoulder, Elbow, Wrist/forearm, Hand/Thumb) 

. 

. 

. 

 General Questions 

Age  

Tall  

Weight  

Right forearm length  

Right Upper arm length  

Right hand Size medium 

 

 Other Notes: 

 

The information in this survey and the photos, videos will be kept confidential and 

stored with anonymous identifications. 
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Appendix VII Appendix VII Participant Consent Form 

 

Name of department: 

Title of the study:  

Bioengineering 

A Virtual Hand Assessment System for Efficient 

Measures of Hand Rehabilitation 

 

Introduction 

I am Bilal Nasser, PhD student in Bioengineering. And I am deducting this experiment for my 

research. Please feel free to contact me for any query on this address 

bilal.nasser@strath.ac.uk   

 

What is the purpose of this investigation? 

In this experiment we are studying the efficiency of using Virtual Reality system in 

assessing the kinetic performance of the hand in performing abstract tasks. The 

existing clinical techniques used in assessing hand performance have many drawbacks 

as they are subjective to eye observation only, do not offer quantitative analysis and 

does not support dynamic adjustment with patient’s performance.  

The developed approach consists of a data glove to measure the finite hand joints 

movements using 22 flex sensors circumscribed on the hand. The data glove is 

connected with an operable Virtual Hand model in an interactive Virtual Reality 

Environment. 

Furthermore, EMG (Electromyography) electrodes are placed on the forearm and hand 

to read specific muscles activities and behaviour in synchronisation with the data glove 

reading. This is in order to analyse the muscle activities and validate the dataglove 

readings harmonised with the hand movements. 

In addition, paresis simulations are performed in different trials by adding extra weight 

on the forearm or asking to simulate a tremor movement. This is mainly to study the 

fatigue effectiveness during the performed tasks and simulate defined form of paresis 

functions. 

The project aim is to provide a robust and consistent outcome measurement of the 

patient’s hand performance during rehabilitation. And support of a thorough 

investigation for obtaining inclusive details in the hand kinematics and the segmental 

restoration of its functionality. The suggested approach considers the cross-

compatibility with different techniques involved in ADL (Activities of Daily Living) tasks 

and their existing rehabilitation methods. 

 

mailto:bilal.nasser@strath.ac.uk
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Do you have to take part? 

This study will conduct experiments on 10 to 12 subjects, in which participants are asked to do 

sequential movements with their right hand while recording the fingers movements and arm 

muscles; Participation in this study is voluntary and refusing or withdrawing from experiment 

is the participant’s right which is permitted at any time of the experiment without giving 

justifications.  

What will you do in the project? 

In this experiment you will wear a data glove, CyberGlove®, device to measure the movement 

of your finger joints. And you will be asked to follow visual and audio instructions which detail 

the form and steps of the hand movements.  

The experiment is composed of two randomly selected sections of tasks: 1- virtual reality 

where you will be asked to perform tasks with virtual objects on the screen by manipulating a 

Virtual Hand that is connected to the dataglove. 2- Standard system where you will be asked to 

perform tasks with real objects.  

This is repeated with 0.5kg weight placed on the forearm of the right hand to study the fatigue 

impact on the fingers formation and the adaptability of the application with the changes. 

Then the tasks would be repeated with tremor simulation where you will be asked to perform 

the following procedure: “Please perform the following procedures while pretending you have 

what you consider a tremor in the right hand. With your arm in position, please mimic this 

tremor”. The last trial is for studying the feasibility of analysing the fingers motions with 

tremor causalities. 

EMG (Electromyogram) electrodes will be placed on the forearm and the thumb muscle so to 

read the muscle activities during the experiment.  

After finishing you will be asked to fill in an evaluation questionnaire for the developed system. 

The full experiment will take approximately 2.5 hours.  

There will be video recording in the background and photo shooting to your right hand (all 

endorsed in privacy protection and used under your permission). Besides, we will do arm and 

hand measurement to define the size of the subject’s kinematic, height and weight 

measurement cause it relates with the hand/fingers dimensions.  

This is to help in the data analysis process and associate it with the hand variability for every 

individual. 

 
Why have you been invited to take part?  

Required participants for this experiment are healthy male subjects; don’t have any reported 

medical issues on their arm or hand motor functionality.  

Skin on the forearm and palm must have no damage to permit effective EMG data reading of 

the muscle, and don’t have allergy to the electrodes.  
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Subject must have healthy visual perception to interact with the Virtual Graphics display on 

the screen while the tasks are performed, and don’t suffer from motion sickness.  

They have the right hand and leg dominant limbs. They must be plus eighteen years old. Have 

no: hearing issues, history of epilepsy, neuromuscular damage, surgeries in upper limbs, 

neurological disorders or current health problems or illness. 

The contribution in this experiment is a great help to collect the required data in order to 

experimentally prove the hypotheses of the project and validate the efficiency of the provided 

data outcome for hand assessment. 

What are the potential risks to you in taking part? 

The CyberGlove data glove device worn in the right hand during the experiment is approved by 

CE, FCC and Japan Technical Regulations Conformity Certification of Specified Radio 

Equipment.  

The EMG electrodes, placed on the forearm and palm, are passive electrodes. The electrodes 

along with other used materials in the experiment have no known risks involved in this 

procedure. 

But there is chance of skin reaction to the gels or pastes used to fix the hypoallergenic 

electrodes in position. If the electrodes cause any irritation or a burning sensation the test will 

be terminated, electrodes will be removed and the skin will be carefully cleaned. 

What happens to the information in the project?  

The results will be finalized by the end of 2014 and written up as part of my PhD Thesis. We 

will also seek to produce at least one paper from the results of the experiment, and it is hoped 

that it will provide a basis to carry out further research in the future. 

The data we collect will only be accessible by the researcher(s) and supervisor(s) involved in 

this study. Any data obtained during the course of the experiment will be Stored securely on 

computer at the Neurophysiology lab in Bioengineering Unit in an anonymised format. 

 

The University of Strathclyde is registered with the Information Commissioner’s Office who 

implements the Data Protection Act 1998. All personal data on participants will be processed 

in accordance with the provisions of the Data Protection Act 1998. 

 

Thank you for reading this information – please ask any questions if you are unsure about what 

is written here.  

 

What happens next? 
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After reading the above information of the experiment and your part of contribution, if 
you are happy and interested in participating please sign the below consent form.  
After completing the data collection from the experiments and computing the analysis, 
participants will be able to access information regarding the study outcome related with 
their individual contributions. And they will be notified if the data results are published. 
 
This investigation was granted ethical approval by the University of Strathclyde ethics 
committee. 
 

If you have any questions/concerns, during or after the investigation, or wish to contact 

an independent person to whom any questions may be directed or further information 

may be sought from, please contact: 

Secretary to the University Ethics Committee 

University of Strathclyde 

McCance Building 

16 Richmond Street 

Glasgow 

G1 1XQ 

Telephone: 0141 548 2752 

Email: ethics@strath.ac.uk 

 

 

Researcher Contact Details: 

Bilal Nasser, 

PhD student in Bioengineering, University of Strathclyde 

Address: 27 1/1 Summertown road, Glasgow G512QA 

tel: 07817654317 

Email: bilal.nasser@strath.ac.uk 

 

Chief Investigator Details:  

This should include the name of the Chief Investigator and the University of Strathclyde 

contact details (address, phone number and email address).  

 

mailto:ethics@strath.ac.uk
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Consent Form 

 

Title of study:  

A Virtual Hand Assessment System for Efficient Measures of Hand 

Rehabilitation 

 

 I confirm that I have read and understood the information sheet for the above 
project and the researcher has answered any queries to my satisfaction.  

 I understand that my participation is voluntary and that I am free to withdraw 
from the project at any time, without having to give a reason and without any 
consequences.  

 I understand that I can withdraw my data from the study at any time.  

 I understand that any information recorded in the investigation will remain 
confidential and no information that identifies me will be made publicly available.  

 I consent to being a participant in the project 
 

 I consent to being audio and video recorded as part of the project [delete which 
is not being used] Yes/ No 

 

 

I 

(PRINT NAME) 

 

Hereby agree to take part in the above project 

Signature of Participant: 

 Date 

 


