298 research outputs found

    CompareML: A Novel Approach to Supporting Preliminary Data Analysis Decision Making

    Get PDF
    There are a large number of machine learning algorithms as well as a wide range of libraries and services that allow one to create predictive models. With machine learning and artificial intelligence playing a major role in dealing with engineering problems, practising engineers often come to the machine learning field so overwhelmed with the multitude of possibilities that they find themselves needing to address difficulties before actually starting on carrying out any work. Datasets have intrinsic properties that make it hard to select the algorithm that is best suited to some specific objective, and the ever-increasing number of providers together make this selection even harder. These were the reasons underlying the design of CompareML, an approach to supporting the evaluation and comparison of machine learning libraries and services without deep machine learning knowledge. CompareML makes it easy to compare the performance of different models by using well-known classification and regression algorithms already made available by some of the most widely used providers. It facilitates the practical application of methods and techniques of artificial intelligence that let a practising engineer decide whether they might be used to resolve hitherto intractable problems. Thus, researchers and engineering practitioners can uncover the potential of their datasets for the inference of new knowledge by selecting the most appropriate machine learning algorithm and determining the provider best suited to their data

    A Survey of Attention Deficit Hyperactivity Disorder Identification Using Psychophysiological Data

    Get PDF
    Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common neurological disorders among children, that affects different areas in the brain that allows executing certain functionalities. This may lead to a variety of impairments such as difficulties in paying attention or focusing, controlling impulsive behaviours and overreacting. The continuous symptoms may have a severe impact in the long-term. This paper explores the ADHD identification studies using eye movement data and functional Magnetic Resonance Imaging (fMRI). This study discusses different machine learning techniques, existing models and analyses the existing literature. We have identified the current challenges and possible future directions to provide computational support for early identification of ADHD patients that enable early treatments

    Rigid Transformations for Stabilized Lower Dimensional Space to Support Subsurface Uncertainty Quantification and Interpretation

    Full text link
    Subsurface datasets inherently possess big data characteristics such as vast volume, diverse features, and high sampling speeds, further compounded by the curse of dimensionality from various physical, engineering, and geological inputs. Among the existing dimensionality reduction (DR) methods, nonlinear dimensionality reduction (NDR) methods, especially Metric-multidimensional scaling (MDS), are preferred for subsurface datasets due to their inherent complexity. While MDS retains intrinsic data structure and quantifies uncertainty, its limitations include unstabilized unique solutions invariant to Euclidean transformations and an absence of out-of-sample points (OOSP) extension. To enhance subsurface inferential and machine learning workflows, datasets must be transformed into stable, reduced-dimension representations that accommodate OOSP. Our solution employs rigid transformations for a stabilized Euclidean invariant representation for LDS. By computing an MDS input dissimilarity matrix, and applying rigid transformations on multiple realizations, we ensure transformation invariance and integrate OOSP. This process leverages a convex hull algorithm and incorporates loss function and normalized stress for distortion quantification. We validate our approach with synthetic data, varying distance metrics, and real-world wells from the Duvernay Formation. Results confirm our method's efficacy in achieving consistent LDS representations. Furthermore, our proposed "stress ratio" (SR) metric provides insight into uncertainty, beneficial for model adjustments and inferential analysis. Consequently, our workflow promises enhanced repeatability and comparability in NDR for subsurface energy resource engineering and associated big data workflows.Comment: 30 pages, 17 figures, Submitted to Computational Geosciences Journa

    An Industrial Data Analysis and Supervision Framework for Predictive Manufacturing Systems

    Get PDF
    Due to the advancements in the Information and Communication Technologies field in the modern interconnected world, the manufacturing industry is becoming a more and more data rich environment, with large volumes of data being generated on a daily basis, thus presenting a new set of opportunities to be explored towards improving the efficiency and quality of production processes. This can be done through the development of the so called Predictive Manufacturing Systems. These systems aim to improve manufacturing processes through a combination of concepts such as Cyber-Physical Production Systems, Machine Learning and real-time Data Analytics in order to predict future states and events in production. This can be used in a wide array of applications, including predictive maintenance policies, improving quality control through the early detection of faults and defects or optimize energy consumption, to name a few. Therefore, the research efforts presented in this document focus on the design and development of a generic framework to guide the implementation of predictive manufacturing systems through a set of common requirements and components. This approach aims to enable manufacturers to extract, analyse, interpret and transform their data into actionable knowledge that can be leveraged into a business advantage. To this end a list of goals, functional and non-functional requirements is defined for these systems based on a thorough literature review and empirical knowledge. Subsequently the Intelligent Data Analysis and Real-Time Supervision (IDARTS) framework is proposed, along with a detailed description of each of its main components. Finally, a pilot implementation is presented for each of this components, followed by the demonstration of the proposed framework in three different scenarios including several use cases in varied real-world industrial areas. In this way the proposed work aims to provide a common foundation for the full realization of Predictive Manufacturing Systems

    Algorithms for Hierarchical Clustering: An Overview, II

    Get PDF
    We survey agglomerative hierarchical clustering algorithms and discuss efficient implementations that are available in R and other software environments. We look at hierarchical self-organizing maps, and mixture models. We review grid-based clustering, focusing on hierarchical density-based approaches. Finally we describe a recently developed very efficient (linear time) hierarchical clustering algorithm, which can also be viewed as a hierarchical grid-based algorithm. This review adds to the earlier version, Murtagh and Contreras (2012)

    Real Time Fusion of Radioisotope Direction Estimation and Visual Object Tracking

    Get PDF
    Research into discovering prohibited nuclear material plays an integral role in providing security from terrorism. Although many diverse methods contribute to defense, there exists a capability gap in localizing moving sources. This thesis introduces a real time radioisotope tracking algorithm assisted by visual object tracking methods to fill the capability gap. The proposed algorithm can estimate carrier likelihood for objects in its field of view, and is designed to assist a pedestrian agent wearing a backpack detector. The complex, crowd-filled, urban environments where this algorithm must function combined with the size and weight limitations of a pedestrian system makes designing a functioning algorithm challenging.The contribution of this thesis is threefold. First, a generalized directional estimator is proposed. Second, two state-of-the-art visual object detection and visual object tracking methods are combined into a single tracking algorithm. Third, those outputs are fused to produce a real time radioisotope tracking algorithm. This algorithm is designed for use with the backpack detector built by the IDEAS for WIND research group. This setup takes advantage of recent advances in detector, camera, and computer technologies to meet the challenging physical limitations.The directional estimator operates via gradient boosting regression to predict radioisotope direction with a variance of 50 degrees when trained on a simple laboratory dataset. Under conditions similar to other state-of-the-art methods, the accuracy is comparable. YOLOv3 and SiamFC are chosen by evaluating advanced visual tracking methods in terms of speed and efficiency across multiple architectures, and in terms of accuracy on datasets like the Visual Object Tracking (VOT) Challenge and Common Objects in Context (COCO). The resultant tracking algorithm operates in real time. The outputs of direction estimation and visual tracking are fused using sequential Bayesian inference to predict carrier likelihood. Using lab trials evaluated by hand on visual and nuclear data, and a synthesized challenge dataset using visual data from the Boston Marathon attack, it can be observed that this prototype system advances the state-of-the-art towards localization of a moving source

    Edge AI on a Deep-Learning based Real-Time Face Identification and Attributes Recognition System

    Get PDF
    There is another way of understanding how a customer service office works, and Everis is developing it in its new generation of spaces designed to offer easy and personalized attention to its customers. Some of the technologies implemented in this space to offer a better experience range from voice recognition or facial identification to the detection of hand gestures. The purpose of the project is to incorporate into the Everis customer e-Motion HUB a new computer vision-based system to extend its abilities and to improve the user experience.Face recognition systems are nowadays being used in a variety of settings, including surveillance systems and human-computer interactions. Different approaches have been used for face recognition throughout the years, but recent research has shown that Deep Learning models along with Convolutional Neural Networks, or \gls{CNN}s, provide better results than any other methods. However, these more complex \gls{CNN} models have several limitations, including the need for extensive training data or high computational requirements in some cases. Fields such as robotics and embedded systems that deploy face recognition systems have significantly less power on board and limited heat dissipation capacity. Therefore, it can be difficult to deploy deep learning models on them. Additionally, and to counter these issues, the classical approach in some industries has been to rely on cloud computing or other third companies paid services. Edge computing devices, such as the NVIDIA Jetson Nano proposed in this approach, can bridge this gap by providing certain advantages in many different areas. In this thesis, we explore the Edge Artificial Intelligence or Edge AI capabilities by developing and implementing a real-time face recognition system along with multiple feature extraction namely age, gender, emotions, and paid attention. Additionally, we provide a data storing approach into a relational database so that all the gathered information can be further exploited. Although this work has certain areas that can be improved, mainly with regards to its efficiency, it has served as a proof of concept for the ideas behind it. Consequently, research in this direction will surely be continued

    Detecção de vivacidade de impressões digitais baseada em software

    Get PDF
    Orientador: Roberto de Alencar LotufoDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Com o uso crescente de sistemas de autenticação por biometria nos últimos anos, a detecção de impressões digitais falsas tem se tornado cada vez mais importante. Neste trabalho, nós implementamos e comparamos várias técnicas baseadas em software para detecção de vivacidade de impressões digitais. Utilizamos como extratores de características as redes convolucionais, que foram usadas pela primeira vez nesta área, e Local Binary Patterns (LBP). As técnicas foram usadas em conjunto com redução de dimensionalidade através da Análise de Componentes Principais (PCA) e um classificador Support Vector Machine (SVM). O aumento artificial de dados foi usado de forma bem sucedida para melhorar o desempenho do classificador. Testamos uma variedade de operações de pré-processamento, tais como filtragem em frequência, equalização de contraste e filtragem da região de interesse. Graças aos computadores de alto desempenho disponíveis como serviços em nuvem, foi possível realizar uma busca extensa e automática para encontrar a melhor combinação de operações de pré-processamento, arquiteturas e hiper-parâmetros. Os experimentos foram realizados nos conjuntos de dados usados nas competições Liveness Detection nos anos de 2009, 2011 e 2013, que juntos somam quase 50.000 imagens de impressões digitais falsas e verdadeiras. Nosso melhor método atinge uma taxa média de amostras classificadas corretamente de 95,2%, o que representa uma melhora de 59% na taxa de erro quando comparado com os melhores resultados publicados anteriormenteAbstract: With the growing use of biometric authentication systems in the past years, spoof fingerprint detection has become increasingly important. In this work, we implemented and compared various techniques for software-based fingerprint liveness detection. We use as feature extractors Convolutional Networks with random weights, which are applied for the first time for this task, and Local Binary Patterns. The techniques were used in conjunction with dimensionality reduction through Principal Component Analysis (PCA) and a Support Vector Machine (SVM) classifier. Dataset Augmentation was successfully used to increase classifier¿s performance. We tested a variety of preprocessing operations such as frequency filtering, contrast equalization, and region of interest filtering. An automatic and extensive search for the best combination of preprocessing operations, architectures and hyper-parameters was made, thanks to the fast computers available as cloud services. The experiments were made on the datasets used in The Liveness Detection Competition of years 2009, 2011 and 2013 that comprise almost 50,000 real and fake fingerprints¿ images. Our best method achieves an overall rate of 95.2% of correctly classified samples - an improvement of 59% in test error when compared with the best previously published resultsMestradoEnergia EletricaMestre em Engenharia Elétric

    Efficient Learning Machines

    Get PDF
    Computer scienc
    corecore