
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

12-2018

Real Time Fusion of Radioisotope Direction Estimation and Visual Real Time Fusion of Radioisotope Direction Estimation and Visual

Object Tracking Object Tracking

Elliot Davis Greenlee
University of Tennessee, egreenle@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation Recommended Citation
Greenlee, Elliot Davis, "Real Time Fusion of Radioisotope Direction Estimation and Visual Object Tracking.
" Master's Thesis, University of Tennessee, 2018.
https://trace.tennessee.edu/utk_gradthes/5370

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F5370&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Elliot Davis Greenlee entitled "Real Time Fusion of

Radioisotope Direction Estimation and Visual Object Tracking." I have examined the final

electronic copy of this thesis for form and content and recommend that it be accepted in partial

fulfillment of the requirements for the degree of Master of Science, with a major in Computer

Science.

Hairong Qi, Major Professor

We have read this thesis and recommend its acceptance:

Mark Dean, Jason Hayward

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Real Time Fusion of Radioisotope

Direction Estimation and Visual

Object Tracking

A Thesis Presented for the

Master of Science

Degree

The University of Tennessee, Knoxville

Elliot Davis Greenlee

December 2018

c© by Elliot Davis Greenlee, 2018

All Rights Reserved.

ii

I dedicate my research to my family, Angela McCabe, and Jennifer McComas, without

whom I would not have made it.

iii

Acknowledgments

First, I would like to thank my advisor, Dr. Hairong Qi, for providing me with the opportunity

to do research in these fields for the last two years. Without her I would have been lost from

start to finish. The custom blend of patience, freedom, and guidance she has afforded me

has facilitated my growth and discovery throughout my graduate academic career.

Next, I would also like to thank my committee members Dr. Mark Dean and Dr.

Jason Hayward for providing leadership, advice, and guidance in the form of constructive

suggestions both in the scope of my research and about my future plans.

My absolute gratitude goes to The University of Tennessee and the Electrical Engineering

and Computer Science Department. By preparing me for graduate school, and consistently

supporting me financially through scholarships and graduate assistantships, they laid the

groundwork upon which all my effort has been possible.

My colleagues across my research groups were always a source of inspiration, advice,

and competition to do better. I am especially thankful to my office mates, who patiently

tried to answer all of my questions, and to my companions who worked with me in various

competitions.

Lastly, I owe back to my parents, friends, and girlfriend Angela the sum total of all the

support and encouragement they have given me over the last two years. Thanks to Tammy

for asking me every day why I hadn’t started working yet. Without their duties as a talking

sounding board, my work would still be in my head. Finally, thank you for keeping me sane

by reminding me about the important things throughout this process.

iv

Abstract

Research into discovering prohibited nuclear material plays an integral role in providing

security from terrorism. Although many diverse methods contribute to defense, there exists

a capability gap in localizing moving sources. This thesis introduces a real time radioisotope

tracking algorithm assisted by visual object tracking methods to fill the capability gap.

The proposed algorithm can estimate carrier likelihood for objects in its field of view, and is

designed to assist a pedestrian agent wearing a backpack detector. The complex, crowd-filled,

urban environments where this algorithm must function combined with the size and weight

limitations of a pedestrian system makes designing a functioning algorithm challenging.

The contribution of this thesis is threefold. First, a generalized directional estimator is

proposed. Second, two state-of-the-art visual object detection and visual object tracking

methods are combined into a single tracking algorithm. Third, those outputs are fused to

produce a real time radioisotope tracking algorithm. This algorithm is designed for use

with the backpack detector built by the IDEAS for WIND research group. This setup takes

advantage of recent advances in detector, camera, and computer technologies to meet the

challenging physical limitations.

The directional estimator operates via gradient boosting regression to predict radioisotope

direction with a variance of 50 degrees when trained on a simple laboratory dataset. Under

conditions similar to other state-of-the-art methods, the accuracy is comparable. YOLOv3

and SiamFC are chosen by evaluating advanced visual tracking methods in terms of speed

and efficiency across multiple architectures, and in terms of accuracy on datasets like the

Visual Object Tracking (VOT) Challenge and Common Objects in Context (COCO). The

resultant tracking algorithm operates in real time. The outputs of direction estimation and

visual tracking are fused using sequential Bayesian inference to predict carrier likelihood.

v

Using lab trials evaluated by hand on visual and nuclear data, and a synthesized challenge

dataset using visual data from the Boston Marathon attack, it can be observed that this

prototype system advances the state-of-the-art towards localization of a moving source.

vi

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 2

1.2.1 Nuclear Detection . 2

1.2.2 Machine Learning . 6

1.2.3 Visual Algorithms . 17

1.3 Related Works . 21

1.3.1 Nuclear Localization . 21

1.3.2 Object Detection . 23

1.3.3 Object Tracking . 25

1.4 Contributions . 29

1.5 Thesis Outline . 30

2 Nuclear Directionality 31

2.1 Algorithm Design . 31

2.2 Results . 33

2.2.1 Simulated and Real Detector Setups 33

2.2.2 Simulation Data . 36

2.2.3 Lab Data . 36

2.2.4 Algorithm Design . 36

3 Visual Object Tracking 41

3.1 Object Detection . 41

vii

3.1.1 Datasets . 42

3.1.2 Metrics . 42

3.1.3 Choosing YOLOv3 . 43

3.2 Object Tracking . 48

3.2.1 Datasets . 48

3.2.2 Metrics . 49

3.2.3 Choosing SiamFC . 50

3.3 Results . 54

3.3.1 Data . 54

3.3.2 Object Detection . 55

3.3.3 Object Tracking Results . 59

3.3.4 Multi-Object Tracking . 59

4 Active Tracking System 63

4.1 System Overview . 63

4.1.1 Nuclear Directionality . 65

4.1.2 Visual Object Tracking . 65

4.2 Sequential Bayesian Inference . 66

4.3 Results . 67

5 Conclusions and Future Work 71

Bibliography 73

Vita 86

viii

List of Tables

2.1 The synthetic and laboratory settings explore different experimental variables. 33

2.2 This table shows the resulting error for each standard regression algorithm

using the simulated data. 38

2.3 Training on an 8.15 µCi Cs-137 source and testing on an 18.06 µCi Cs-137

source at 0.91 meters using three different ratio preprocessing techniques

shows that ratios are necessary for the algorithm to generalize to different

relative source strengths. Counts are recorded for four seconds, and random

forest regression is used for the predictions. 39

2.4 As the counting time increases, the error decreases. These are the results at

0.91 meters using an 18.06 µCi Cs-137 source. Random forest regression is

used for prediction given individual ratio features. 39

2.5 Five experimental data setups are used to evaluate various regression methods

(A: Cs-137/8.15 µCi/0.53m, B: Cs-137/8.15 µCi/0.91m, C: Cs-137/9.91 µCi/0.91m,

D: Cs-137/18.06 µCi/0.91m, and E: Co-60/0.31 µCi/0.91m). The lowest three

rmse values for each setup are highlighted in red. 39

2.6 The error increases when changing the source material between training and

testing. Each setup is recorded at 0.91 meters. The error for Cobalt 60 is

much higher because the source strength of the Cobalt source is 0.31 µCi,

while for Cesium it is 8.15 µCi. It appears that using ratios also reduces the

error when switching source materials, but this is likely due to compensating

for the large difference in source strengths of these two experimental setups. 40

ix

2.7 Although the error increases when changing the distance between training and

testing, using ratios reduces the difference in error. Each setup is recorded at

0.815 µCi. 40

2.8 Although the error increases when changing the source strength between

training and testing, using ratios reduces the difference in error. Each setup

is recorded at 0.91 meters. 40

3.1 Older YOLO methods achieve state-of-the-art accuracy on the VOC 2007+2012

datasets while maintaining efficiency. The fastest speed and highest mAP

for an IoU of 50 are highlighted in red. For networks with implementations

operating at different resolutions, multiple results are provided with the input

resolution given. 43

3.2 YOLOv3 achieves state-of-the-art accuracy on the COCO dataset while

maintaining efficiency. The fastest speed and highest mAP for an IoU of

50 are highlighted in red. For networks with implementations operating at

different resolutions, multiple results are provided with the input resolution

given. 44

3.3 SiamFC is the winner of the VOT real time 2017 challenge. The results

shown are the top five entries to the real time portion only. The highest EAO

is highlighted in red. 52

3.4 SiamFC achieves state-of-the-art performance on the standard VOT 2017

challenge. Various methods from the top five 2017 methods, the real time

competition, and dual 2016-2017 competition entries are shown. The highest

EAO is highlighted in red. 52

3.5 SiamFC achieves state-of-the-art performance as a balance between EAO and

speed. These entries all competed in some form in both the 2016 and 2017

VOT challenges. All results below are obtained on the 2016 dataset. 52

3.6 The difference in fps between GPU and CPU architectures for YOLOv3 is

large. The fps values from running on each Boston bombing sequence are

shown. 55

x

3.7 SiamFC tracks at 10 times the frames per second on a GPU compared to a

CPU. 59

4.1 This table shows two iterations of Bayesian updating for three objects.

Starting with equal priors, the angle relative to the source is given for each

object at each step, and the corresponding posteriors are calculated as above

using Bayes’ theorem. 67

4.2 The fusion algorithm takes multiple iterations to reach 80% confidence when

five possible carriers are present at a given angular split from each other. . . 67

xi

List of Figures

1.1 Different types of radiation are halted by different shields [1]. 3

1.2 Interactions in the detector are recorded as pulses. (Knoll fig 4.1, 4.2) 5

1.3 A simplified photomultiplier (Knoll fig 9.1) 7

1.4 An example dataset showing various components. 8

1.5 A simple unsupervised clustering example from Analytics Vidhya [2]. 9

1.6 A simple 2D separating hyperplane [3]. 12

1.7 A simple decision tree to predict car prices. 13

1.8 An example artificial neuron [4]. 15

1.9 An example fully-connected artificial neural network with a single hidden layer

[5]. 16

1.10 Two handwritten letters and their Fourier transformations from Michelle

Dunn at Swinburne University of Technology [6]. 19

1.11 The LeNet5 architecture [7]. 20

1.12 Trackers attempt to place an estimated bounding box AT with as large an

overlap (yellow) as possible with the ground truth AG. (Background image

from [8]) . 26

1.13 Papers submitted indicates fraction of total papers. Over the past five years,

CNN and correlation filter methods have become dominant [8]. 27

2.1 This is an example of simulated data when recorded in the three detector

arrangement. This image was produced by Carl Britt. 34

2.2 The detector setup and experimental apparatus used to record the training

and evaluation dataset. 35

xii

2.3 Counts over one second intervals for the 8.15 µCi cesium-137 source at 0.53

meters. 36

2.4 The red line is the Gaussian calculated using the mean and variance of all

prediction data from gradient boosting. 38

3.1 In terms of speed, YOLOv3 is a class ahead. The ‘Other’ methods listed

are taken from Table 3.2. The trends in speed and runtime for YOLO and

RetinaNet are caused by varying network input size. 45

3.2 The backbone network for YOLOv3 is darknet-53, a classification network

(from Redmon, 2018 [9]). 47

3.3 YOLOv3 predicts x and y offset from the location of filter application and w

and h scaling from priors of set size. 48

3.4 In order to calculate equivalent filter operations, a baseline for the hardware

is calculated by applying a max operation on each 30x30 window of a 600x600

image (from [8]). 50

3.5 SiamFC strikes a balance between accuracy and speed. These are the VOT

2016 Challenge results from Table 3.5. 51

3.6 The backbone architecture of the of the convolutional function is similar to

AlexNet (from Bertinetto, 2016 [10]). 53

3.7 A score map is output for all translated sub-windows in the search image

(from Bertinetto, 2016 [10]). 54

3.8 Running the YOLOv3 tiny and normal networks on Boston sequence 1 results

in a difference in detection capabilities. (tiny a-d, normal e-h) 56

3.9 In crowds, the tiny network misses many partially occluded or rotated

individuals. (tiny a-d, normal e-h) . 56

3.10 One artifact of the network at a low confidence threshold is the tendency to

mislabel the entire crowd as one person. (tiny a-d, normal e-h) 57

3.11 The normal network can capture many individuals in a crowd, but is

overwhelmed by crowds appearing farther back in frame. (tiny a-d, normal e-h) 57

xiii

3.12 Sequences like this, with a single individual, give the normal network no

challenge. (tiny a-d, normal e-h) . 58

3.13 On sequence six, the tiny network has trouble detecting the target, and misses

the majority of the parked cars (tiny a-d, normal e-h) 58

3.14 Both subjects are successfully tracked. 60

3.15 One of the subjects is lost due to occlusion. 60

3.16 Here, the backpack rotation and crowd occlusion cause a loss of one subject. 60

3.17 Provided with a clear, unoccluded face, the network can achieve high accuracy

with little information. 61

3.18 Even though the subject rotates, tracking continues. 61

3.19 Despite the low resolution and partial occlusion, SiamFC tracks the subject

into the car. 61

3.20 Both targets are detected and then tracked for the duration of the sequence. 61

3.21 Both targets are detected, but only one is tracked for the duration of the

sequence. 62

3.22 As the targets walks through the crowd, he comes into view, is detected, and

then is tracked until his body is occluded again. 62

3.23 Even when initialized by the detector, the tracker can still remain robust to

the target’s rotation. 62

3.24 Although the target is lost to the detector over the course of the sequence

as seen above, the tracker is able to continue to localize given the detector’s

initial bounding box. 62

4.1 An overview of the system flow path. 64

4.2 A Gaussian distribution is used to calculate likelihood for the planets, OK

Go, and Beyonce sequences. 69

4.3 Four frames from a MATLAB simulation of orbiting bodies around a detector.

The red body has the source, and over time the system predictions increase

in accuracy. Video created by Steven Patrick. 69

xiv

4.4 Four frames from Ok Go’s music video ”White Knuckles” [11] are shown.

Dale, outlined in blue, is holding a fabricated source at his center of mass.

The tracking information is input manually. Video created by Steven Patrick. 69

4.5 Four frames from Beyonce’s music video ”All the Single Ladies” [12] are shown.

Beyonce is holding a fabricated source at her center of mass. The tracking

information is input manually. Video created by Steven Patrick. 70

4.6 Four frames from the Boston marathon bombing video dataset are shown.

The suspect outlined in a white circle is holding a fabricated source at his

center of mass. The tracking information is calculated using YOLOv3 and

SiamFC. 70

xv

Chapter 1

Introduction

1.1 Motivation

Since 1970, with the signing of the Treaty on the Non-Proliferation of Nuclear Weapons,

the world has committed to controlling usage of nuclear resources, and has aspired to

disarmament. In the United States of America, the Department of Homeland Security (DHS)

acts to protect citizens from threats posed by special nuclear material. The consequences

of terrorism ensure that efforts must always be made towards improving the competence of

defensive and surveillance systems.

Fortunately, new technological advances have paved the way for various improvements.

Nuclear detectors can be made smaller, lighter, and more sensitive, computers shrink

while their computational power increases, and new algorithms achieve superior accuracies

with accelerated runtimes. These developments allow smaller deployments using drone or

pedestrian agents. Current commercial pedestrian systems do not incorporate recent state-

of-the-art improvements, leaving a capability gap open.

In order for a proposed system to succeed, it must meet a suite of challenges in

functionality. The extreme size and weight limitations of pedestrian systems propagate into

constraints to the detector capability, computational power, and number of sensors. Such a

system would also need to function in typically urban regions with complex topography and

dynamic crowds, possibly remaining inconspicuous in such a cluttered environment. Finally,

1

real time feedback is required; as the sources and agents move, immediate assistance towards

the goals of detection, identification, and localization should be provided.

Research to address these challenges is being performed as part of the five year

Investigation of DEtectors, Algorithms, and Systems for Wearable Intelligent Nuclear

Detection (IDEAS for WIND) project for the Department of Homeland Security (DHS).

Researchers for this project come from the University of Tennessee’s Department of Electrical

Engineering and Computer Science and Department of Nuclear Engineering, Oak Ridge

National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL). The final

goal of the five year project is to create a wearable nuclear detection system with optimized

size, weight, and power that has gamma/neutron detection response, modularity, spatial

tracking, localization, networking and reachback capability, and smart device integration.

Along the way, research and projects related to these and a myriad of other subjects are

being completed by the team.

The rest of Chapter 1 provides readers of various backgrounds with the information

necessary to both understand and contextualize this thesis.

1.2 Background

Since this thesis spans both nuclear and computer vision fields, different readers may need

a brief introduction to the basics of those fields. The following sections introduce nuclear

detection, machine learning, and visual algorithms in a way that relates to the research

explained in this thesis. Familiar readers should start with section 1.3.

1.2.1 Nuclear Detection

This section provides a brief overview to those who are unfamiliar with radioisotopes,

radiation, and detectors. First, types of radiation are discussed, and then detector mechanics

are explained.

Energy is emitted from matter as both rays and particles. This radiation can be non-

ionizing, such as heat or visible light, or ionizing, such has x-rays or particles. Non-ionizing

radiation travels through materials and delivers energy, while higher energy ionizing radiation

2

breaks molecular bonds. Atoms with a varying amount of neutrons, yet the same number of

protons, are referred to as isotopes of an element. Typical sources are unstable radioisotopes

with a high degree of nuclear energy which is emitted as ionizing radiation [13].

There are various classifications of observable sources. Nuisance sources include naturally

occurring radioactive materials (NORM) which can be terrestrial, cosmic, or even the

detector itself, and legitimate sources such as for medical uses like gamma imaging. Target

materials include fissile isotopes and special nuclear material (SNM) as defined by the Nuclear

Regulatory Commission (NRC). SNMs like uranium-235 and plutonium-239 are both fissile

isotopes and could be used in nuclear explosives [13].

Different kinds of radiation have different properties. Alpha particles are charged particles

which are barely penetrating. While internally hazardous if consumed or breathed in, they

are halted by skin or just centimeters of air. Uranium and plutonium are common emitters.

Beta particles are electrons from the radioactive nucleus, which are emitted across a wide

energy range. Their travel distance through air of a few meters means eyes and skin are

at risk, depending on the energy. Carbon-14 and phosphorous-32 are common emitters;

plexiglass is an appropriate shield in order to prevent Bremsstrahlung x-ray radiation as

the alpha particles pass near the nucleus. Gamma rays are electromagnetic photons from

the nucleus of a decaying atom. Traveling tens to hundreds of meters in air, they are

highly penetrating and dangerous, requiring lead or dense concrete shielding. Cobalt-60

and cesium-137 are common emitters. X-rays are similar to gamma rays, but are emitted

when electrons around the nucleus change valance shells. Neutron emissions are neutrons

discharged from the nucleus. Their large mass and size causes them to travel long distances,

requiring concrete or water shielding. Plutonium-239 is a common emitter [13]. A simplified

diagram of radiation types and shields is given in Figure 1.1 from [1].

Figure 1.1: Different types of radiation are halted by different shields [1].

3

In order to provide safety from or obscure radiation, shielding is used; material properties

are carefully selected to produce certain probabilities of interaction. This probability of

interaction, the nuclear cross section σ, is a function of the material density η and reactivity

ρ of the shield as σ = ηρ. For liquid and solid shields, a higher nuclear cross section is

generally desired [14]. Distance can also lower observed radiation; as the inverse square law

states, the observed intensity I of radiation emitted by a radioactive point source decreases

by a factor of four if the distance d from the source is doubled as I = I0
d2

, where I0 is the

source intensity. Radiation exposure can be drastically modified near a source due to small

changes in distance. If an assumption is made that a single material separates the observation

point from a source, both the nuclear cross section and distance properties combine. The

approximate observed intensity given a source intensity of I0 is

I =
I0
d2
e−σd

In order for any detector response to occur, radiation must interact with the detector

material. There are multiple mechanisms by which this interaction can occur. Fast electrons

and heavy charged particles affect the detector electrons through the coulomb force as they

pass, while neutrons, x-rays, and gamma rays catastrophically interact with the detector

atoms, producing resultant charged particles. The probability of interaction, called the

nuclear cross section, is a function of the density and reactivity of the detector material [14].

These interactions have stopping time timescales in the nanoseconds for liquids and gases,

and in the picoseconds for solids, both of which can be thought of as instantaneous. Through

the imposition of the electric field as current I in the detector over time tc, a small amount

of electric charge Q is recorded as in Figure 1.2a.

∫ tc

0

I(t)dt

For this discussion a single particle, or quantum, is assumed, but in reality many quanta

interact. Over time, more quanta arrive at randomly distributed time intervals according

to Poisson statistics, which is shown in Figure 1.2b. Detectors operate in various modes,

but pulse counting is common where intensity is more important than the incident energy

4

(a) A single radiation pulse (b) Multiple radiation pulses ap-
pearing at randomly distributed
time intervals

Figure 1.2: Interactions in the detector are recorded as pulses. (Knoll fig 4.1, 4.2)

distribution. If the incidence of events is too high, then current mode, which calculates the

time average of current bursts using an ammeter, is used [13].

There are standard types of detectors such as ionization chambers, proportional counters,

and Geiger-Müller counters, but this discussion is limited to scintillation detectors coupled

with photomultiplier tubes (PMTs), which work on an extensive range of radiation types

and have widespread use. These detectors form charge indirectly by recording light intensity

over time in the form of discrete pulses.

When scintillation materials are struck by a charged particle from radiation, light is

emitted. These materials should have a high efficiency, perform the transfer of kinetic energy

to light with linear proportionality, have a short decay time to allow fast pulses, and emit

light in visible wavelengths. Finding such a material that prompts fluorescence (visible

radiation) but minimizes phosphorescence and delayed fluorescence (lower wavelengths at

slower timescales) while preserving these other properties is an exercise in compromise. One

example material is the inorganic alkali halide crystal sodium iodide. In semiconductors and

insulators, electrons sit in discrete energy bands, staying still in the lower valance band, and

moving around in the conduction band. Charged particles energize valance electrons, creating

electron holes and elevating the electrons to the conduction band, where they traverse back

to an empty hole and release light. However, in a pure crystal this process is not efficient,

so impurities are added as activation sites. The electron holes move to the activation sites,

which then have a smaller energy gap and release a properly energized photon when an

electron drops back from the conduction band to the valance band.

5

Photomultiplier tubes, seen in Figure 1.3 are required because the scintillation emitted

is weak, typically consisting of hundreds of photons, which is not enough to sustain an

electrical pulse. Performing this conversion without adding excessive noise is challenging.

In the first stage, the photocathode material absorbs photons, adding enough energy to

migrate the electron to the surface of the photoemissive material and cause its escape into

the photomultiplier internal vacuum. In the second stage, a current is supplied to accelerate

the photocathode electrons to the surface of a dynode electrode being supplied with a bias

of electrons. With specific materials, the energy of the incident higher energy electron can

cause the reemission of two or more electrons from the surface [13].

1.2.2 Machine Learning

This section provides a brief overview to those who are unfamiliar with machine learning,

pattern recognition, or artificial intelligence topics, in order to help classify and explain

some of the common techniques and algorithms applied in this thesis. First, broad strokes

classifications and generalized theory are discussed, and then explanations of specific methods

are given.

General Method Types

Humans frequently make immediate estimates about and discriminations between input

data. These predictions are often simple to a human, but are difficult to implement on a

computer. However, computational power can also allow for a more nuanced interpretation

of the data, sometimes at a much higher speed. Machine learning algorithms model data

to predict outcomes. The general flow for any machine learning problem is to: obtain data,

preprocess it by cleaning or modifying, train a model using a portion of the data, and finally

evaluate the model accuracy with the remaining test data [15].

A dataset, as in Figure 1.4, is made up of various components. Each row in the dataset

is a sample, with some columns as features, the values used to make the prediction, and one

column as the prediction. The samples are divided into two partial sets, one for training,

and one for testing. Using the training set, machine learning algorithms attempt to create

6

Figure 1.3: A simplified photomultiplier (Knoll fig 9.1)

7

Figure 1.4: An example dataset showing various components.

a statistical model of the data distribution by iteratively and incrementally updating an

initial guess. Accuracy is then measured by comparing the true prediction value with the

algorithm’s guess.

There are a variety of approaches when applying machine learning to a dataset, but

generally they can be categorized into a few basic binary groups. In classification problems

the goal is to separate data into different categories, while in regression a continuous value

prediction is made. In supervised methods, the class of the training data is known, while in

unsupervised methods the appropriate classes must be determined. In parametric methods,

the probability distribution of the features is assumed, while in nonparametric methods no

assumption is made. These categories are discussed further below.

In classification algorithms, a discrete category is assigned to each sample of the data,

while in regression algorithms, a continuous prediction is made using the features. For

example, given features such as miles per gallon, body style, and engine type, a classification

problem might attempt to predict the model of the car, while a regression problem might

attempt to predict the price [16].

The method of training using input data can take two forms: either supervised or

unsupervised. In supervised training, the classes of training samples are known. This

classification of the training data must be performed by a human, a requirement that at the

very least takes time, and in the extreme can be challenging. When this human involvement

is not tenable, unsupervised classification is appropriate. In unsupervised classification, the

8

classes of samples are not known, and the number of appropriate classes must be determined.

In order to solve these problems, clustering is used based on distance metrics. Between the

features of samples is a calculated measure of similarity, such as Euclidean distance. This

metric can be used to compare samples, and to find clusters of similar samples. In Figure

1.5 from Analytics Vidhya [2], samples are comprised of income and debt features. If the

features are plotted, it is possible to see three separate clusters of individuals. In this case, the

discrimination is easy. With more data, more dimensions, and closer clusters, the problem

becomes more challenging, and more appropriate for a computer to solve [16].

There are two options for estimating the probability distribution of features: parametric

methods and nonparametric methods. In parametric methods, the distribution is assumed

to be known; for example a normal (Gaussian) distribution would be appropriate for human

heights. In nonparametric methods, there is no assumption of the form of the distribution

[16].

Common Algorithms

Maximum A Posteriori (MAP) in a Bayesian setting is a parametric supervised classification

method. In Bayesian theory, one calculates the posterior (post-event) probability of an input

belonging to a particular class by taking the product of the prior (pre-event) probability and

Figure 1.5: A simple unsupervised clustering example from Analytics Vidhya [2].

9

the likelihood of that event occurring and dividing it by the evidence.

P (wj|x) =
p(x|wj)P (wj)

p(x)

Methods based on this expression are a popular solution in pattern recognition. Classes

are chosen based on the highest a posteriori probability P (wj|x), calculated using the a

priori probability of a given class P (wj), the evidence p(x), and the probability distribution

function for the feature with respect to the given class p(x|wj). When the prior probabilities

for all classes are equal, the method simplifies to Maximum Likelihood Estimation (MLE),

another common algorithm [16].

K-Nearest Neighbors (k-NN) is a nonparametric supervised classification method. The

motivation for k-NN is to estimate the probability distribution function without the

assumption that this probability density has a particular form. Given a point x, we can

grow a hypersphere of volume V that encloses k points. Counting the number of samples

belonging to class m in that region as km, the estimated density is calculated as follows:

p(x|wm) = km
nmV

is the probability distribution function, P (wm) = nm

n
is the prior probability,

and p(x) = k
nV

is the evidence. The posterior probability is calculated as

P (wj|x) =
p(x|wj)P (wj)

p(x)

For the sample x, the class with the highest posterior probability is chosen as the decision.

To calculate the enclosing volume, multiple metrics can be used for distance. Variations on

the Minkowski distance

Lk(a, b) = (Σd
i=1|ai − bi|k)1/k

such as the Euclidean distance at k = 2 are most commonly used. As the k value is increased,

more and more samples are included in the calculation as the hypersphere volume increases.

K-Means Clustering is a parametric unsupervised classification method. K-Means is a

centroid-based clustering technique, where clusters centers are represented by a structure

identical to the individual samples. Because k-means is a parametric method, the number

of clusters must be given at the start of calculation, a significant drawback. However, the

10

simplicity of implementation and relatability to the k-nearest-neighbor algorithm makes this

a commonly chosen method. The algorithm looks for the optimal cluster placement such that

the squared distances to each sample in the cluster is minimized. The algorithm begins by

creating arbitrary cluster centroids, and then assigning samples to the nearest centroid. The

centroid is then recalculated as the mean of the assigned samples. Samples are reassigned,

and if any sample classification has changed, then centroid is recalculated and the process

begins again until convergence, when the centroids no longer move [17].

Support Vector Machines (SVMs) are a parametric supervised classification method. For

classification using SVMs, the goal is to find the optimal separating hyperplanes between

classes by maximizing accuracy and the margin between the discriminating hyperplane and

the classes on each side. Consider the two class case, using labels -1 and +1 for the two

classes Ct as in Figure 1.6 from [3]. The hyperplane can be defined for class +1 as

wTxt + b ≥ +1

and for class -1 as

wTxt + b ≤ −1

This +-1 boundary creates the margin that assists with generalization. The discriminant to

the margin should be at least some value ρ and is calculated as

Ct(w
Txt + b)

||w||
≥ ρ

for all classes t. ρ||w|| = 1 is fixed to prevent infinite solutions, and to maximize the margin,

we minimize ||w||. For linearly separable problems, this becomes a standard quadratic

optimization problem as min 1/2||w||2 subject to Ct(w
Txt + b) ≥ +1 for all classes t. This

method’s complexity depends on the number of features [17].

Decision Trees are a nonparametric supervised classification method. In decision tree

methods, a hierarchical model is used to identify recursive splits in attributes of the data, as

in Figure 1.7. Each decision node of a decision tree functions as a split point on a threshold

value. A given input is applied to the tree root node, and at each node is tested by a

11

Figure 1.6: A simple 2D separating hyperplane [3].

thresholding function, following a branch based on the result. Leaf nodes indicated regions

in space where all instances fall into the same class. Each thresholding function works on a

single attribute, sending values less than the threshold to the left node, and sending values

greater than or equal to the threshold to the right. For a classification tree, training splits are

decided based on an impurity measure. Splits are considered for all attributes and possible

thresholds, and impurity is calculated for each, with the lowest impurity being selected.

Misclassification error, a common impurity measure, is calculated as φ = 1−max(p, 1− p).

If a node is not pure, it should be split to decrease impurity. Splitting stops when a maximum

tree depth is reached, a minimum impurity is reached, or when an impurity of zero is reached

for a node [17]. In some cases, a single decision tree alone cannot successfully model the

data. Ensemble methods boosting and bagging combine multiple trees to produce a more

robust model. Bagging trains multiple models on portions of the data, and then averages

the result for prediction. Boosting trains multiple models in sequence; the first uses the

training data, and subsequent models train on the residuals between the ground truth and

the predictions of the previous model.

Multivariate Regression methods are parametric supervised regression methods. In

regression, given an input xi, the output ri is a numerical value, and a numeric function

12

Figure 1.7: A simple decision tree to predict car prices.

f(xi) should be learned. In machine learning, this function is learned from a set of i training

examples with assumed noise ε as ri = f(xi) + ε, and estimated by g(xi) = w0 + w1xi.

The error on the samples is calculated as E(g(X)) = 1
N

∑N
i=1 [ri − g(xi)]

2 where N is the

number of samples. By taking the partial derivatives with respect to the weighting variables,

and setting them equal to zero, the minimum can be solved for. In multivariate linear

regression, the numeric output g(~x) is produced by a weighted sum of several input variables

x1, x2, ..., xd = ~x and noise as

g(~x) = w0 + w1x1 + w2x2 + ...+ wdxd + ε

Now the empirical error on the sample set is

E(g(X)) =
1

N

N∑
i=1

[ri − g(~xi)]
2

but the same method of taking the partial derivatives with respect to the weights and setting

them equal to zero is possible. This results in a set of normal equations which can be written

as XTX ~w = XT~r, where X is a matrix of all samples ~xi, ~w is a vector of the weights, and ~r

13

is a vector of the real outputs. Solving for the weights becomes as simple as

~w = (XTX)−1XT~r

Now the approximation can be calculated by g(~xi) = ~xi ~w. This method can also be extended

simply for univariate and multivariate polynomial regression. For the univariate case, given

an order k for the function, set the variables as x1 = x, x2 = x2, ..., xk = xk and solve

the same way as before. For the multivariate case, the cross products of variables are also

considered as in the function f(x1, x2) = w0 +w1x1 +w2x2 +w3x1x2 +w4x
2
1 +w5x

2
2, causing

the transformation of variables as x1 = x1, x2 = x2, x3 = x1x2, x4 = x21, x5 = x22. Again, the

final solution for the weights and approximation is the same as in the linear case [17].

Neural Networks and Deep Learning

Artificial Neural Networks (ANNs) are a nonparametric supervised classification method.

The motivation for neural networks is to learn higher level functions using combinations of

linear perceptrons. Given a set of inputs to a perceptron (x1, x2, ..., xd) along with a bias

node of value b = 1 and a set of weights (w1, w2, ..., wd) the final value is calculated as

(Σd
i=1xi ∗ wi)− wb ∗ b

where d is the number of features input. Unfortunately, these perceptrons are limited to linear

combinations of the inputs, which prevents approximation of functions like XOR, which is not

linearly separable. To solve this problem, multiple perceptrons can be connected together,

with the output of one perceptron being fed into an activation function before leading to

the input of another. These activations functions mimic the behavior of activation in real

neurons, and are represented by functions like sigmoid. A perceptron and activation function

unit is called a neuron, shown in Figure 1.8. Artificial neural networks vary widely in

structure and function.

14

Figure 1.8: An example artificial neuron [4].

With neural networks, shown in Figure 1.9, the challenge is to find weights that minimize

the error between the expected value T and true output S in the form

E =
1

2
Σj(Tj − S(yj))

2

The desired response of every output neuron is known, but there is no way to known the

desired responses of the hidden layers. To accomplish this, backpropagation is used, based

on gradient descent. The four steps to backpropagation are inputting the patterns, making

a forward pass to determine the error, making a backpropagation pass, and updating the

weights [16]. In backpropagation, the objective is to calculate the contribution in error change

caused by the weights of each layer. Since each weight value in each layer is calculated in the

same way, we can consider values as vectors and matrices, and program the same way. The

chain rule is used to go back along the chain of equations, which at this point are unknown.

First the special case of the output layer is considered.

δE

δW [L− 1]
=
δE

δy

δy

δZ[L− 1]

δZ[L− 1]

δW [L− 1]

The change in error is also considered with respect to the previous layer inputs.

δE

δX[L− 1]
=
δE

δy

δy

δZ[L− 1]

δZ[L− 1]

δX[L− 1]

15

Figure 1.9: An example fully-connected artificial neural network with a single hidden layer
[5].

Next, the rest of the layers are considered iteratively from the end of the network to the

beginning.
δE

δW [l]
=

δE

δX[l + 1]

δX[l + 1]

δZ[l]

δZ[l]

δW [l]

δE

δX[l]
=

δE

δX[l + 1]

δX[l + 1]

δZ[l]

δZ[l]

δX[l]

These equations can be applied to any error function, activation function, or output function.

Cross entropy error is typically used with various activation functions. Luckily, cross entropy

has the nice property of returning the same value for all three output functions in the

backpropagation.
δE

δZ[L− 1]
= y − y

Here are the rest of the specific derivative results that can be multiplied as above [17].

δX[l + 1]

δZ[l]
= logistic sigmoid′ = f ′(Z[l]) = f(Z[l]) ∗ (1.0− f(Z[l]))

δZ[l]

δX[l]
= W [l]

16

δZ[l]

δW [l]
= X[l]

For complex problems, hand designed features by human experts often fall short of

capturing the input. In these situations, deep networks can automatically perform feature

extraction. Typically artificial neural networks of two or more layers are referred to as deep.

As the network iterates from the input to the output, higher level features are extracted by

successive layers. Convolutional neural networks (CNNs), a type of neural network optimized

for image processing, are discussed in section 1.2.3.

1.2.3 Visual Algorithms

This section provides a brief overview to those who have not learned about digital image

processing, object detection, or object tracking. First, image organization and manipulation

are discussed, and then common feature extraction methods for detection and tracking are

explained.

Images are composed of discretized wave information from the electromagnetic spectrum,

ranging from radio waves at a wavelength of 103 meters, to gamma waves at a wavelength

10−12 meters, with the visible spectrum around 10−6 meters. Applications for digital image

processing extend across every science and industry, but a few of the most common are

gamma ray imaging for nuclear medicine, x-ray imaging for bones, visible light imaging at

every scale from satellite photos to microscopic photos, microwave imaging for radar, and

radio wave imaging for astronomy [18].

Raw wave information is collected by antennae, but cameras discretize this information

into pixels by digitizing the spatial coordinates (sample) and digitizing the intensity

amplitude (quantize). This results in a black and white 2D matrix of intensities, with

black represented as 0 and white as the highest value. An M x N image with L digital

intensities requires b bits as b = MN log2(L). Increasing the spatial or intensity resolution

requires more storage. In order to work with color images or images with bands like infrared

or ultraviolet, additional matrices are added. In this case, a single 3D spatial coordinate

is called a voxel. For color images, one popular option is to have each matrix represent

the intensity of an additive primary color: red, green, or blue, which allows any color to

17

be formed by modulating intensities. Surrounding pixels and voxels can be considered by

adding or subtracting one from the spatial coordinates, to yield eight or twenty-six neighbors,

respectively [18].

One commonly used feature of images is the histogram. Histograms are computed over

an image by binning and counting intensity values, which can thought of as a probability

distribution over the image. The histogram shape is related to image appearance in a

variety of complicated ways, but the feature itself is simple and quick to compute, and is

excellent for real time applications. For color images, typically hue saturation intensity (HSI)

representation is used for histograms [18].

There are a variety of simple arithmetic, logical, spatial, matrix, and probabilistic

operations that can be applied to images, but all are applied using a certain kernel, or

small matrix. This kernel can be the entire image, or it could just be the surrounding pixels

as discussed above. In order to apply a kernel to an image, the convolution operation is

used. Convolution is the process of adding each element of the image to its local neighbors,

weighted by the kernel, defined as

(w ? f)(x, y) =
a∑

s=−a

b∑
t=−b

w(s, t)f(x− s, y − t)

where w is the kernel of size M x N such that a = (M − 1)/2 and b = (N − 1)/2, f(x, y)

is the image, and ? is the convolution operator. Using these filters and other methods, it

is possible to perform astounding feature detection operations such as point, line, and edge

detection and image segmentation [18].

Using the Fourier transform it is possible to convert inputs into the frequency domain.

In the case of the continuous 1D Fourier transform

F (g(t)) =

∫ ∞
−∞

g(t)e−i2πft

18

where f is frequency continuous variable and t is time, time is converted to the frequency

domain. For images, the discrete 2D Fourier transform

F (g(x, y)) =
M−1∑
x=0

N−1∑
y=0

g(x, y)ei2π(fxx/M+fyy/N)

where g(x, y) is an image of size M ∗N and fx fy are the two frequency continuous variables,

converts space to the frequency domain. In this domain, new obvious features appear as in

Figure 1.10. Additionally, it is possible to perform filtering not on the image itself, but on

its Fourier transform. After the filter is applied, the inverse Fourier transform is then used

to recreate the original. Noise can be removed by with a low pass filter, and edges can be

extracted with a high pass filter. Implementing these equations using brute force methods is

of order O(MN2), which becomes an issue for even medium sized images. Fortunately, the

fast Fourier transform (FFT) reduces this to O(MN log2(MN)) [18].

Although automatically extracting features from images is desirable, neural networks

face issues with image inputs because pictures are large, and fully-connected layers of

neural networks have too many weights. This increases training capacity and requires

many training examples. Computationally, the memory and calculation requirement for

(a) A handwritten A (b) A handwritten B

Figure 1.10: Two handwritten letters and their Fourier transformations from Michelle
Dunn at Swinburne University of Technology [6].

19

brute force methods is too high. For image tasks, convolutional neural networks (CNNs)

are more appropriate. The inherent structure of the convolution operation has more prior

knowledge about the domain than standard feedforward neural networks, and the more

sparsely connected nature of CNNs means training is less resource intensive. Using CNNs

largely reduces the number of weights needing to be trained. CNNs automatically obtain

translation-equivariance without replication of weight configurations across the space, and

without needing to perfectly center, size normalize, and rotate the data. If the image is

shifted, the feature map will be shifted by the same amount, but will otherwise remain

constant, providing robustness. By considering the topology of the input, each successive

layer can find higher level features, from local to global [19].

A basic CNN from Yann Lecun’s 1998 paper is shown in Figure 1.11. In order to execute

the convolutional layer, a region of pixels (receptive field) is moved over the input in a certain

increment (stride). The convolution is performed for each receptive field and a matching set

of weights (kernel) to generate a single value in the next layer (feature map). There is one

kernel for each feature map, so that the same feature is detected everywhere in the image.

These kernels are the automatically learned feature extractors. Next the feature maps are

reduced in spatial resolution by pooling, which increases translational invariance. Pooling

is performed by dividing the features maps into small neighborhoods, and replacing every

element by a single value such as the average or maximum. Finally, a fully connected layer

turns the vectorized final feature maps into standard output predictions [18].

Figure 1.11: The LeNet5 architecture [7].

20

1.3 Related Works

1.3.1 Nuclear Localization

When assessing an illicit nuclear source, three methods encompass the necessary reconnais-

sance tasks: detection [20], identification [21], and localization [22] [23] [24]. Detection

is sensing the presence of nuclear material, identification is determining the specific

radioisotope, and localization is estimating the position. However, a myriad of approaches

exist due to the complex interactions of different contexts such as the environment, mounting

platform, sources, and detector. In this thesis, a step is taken towards localizing a moving

source by estimating the relative source direction in real time. First, these variables are

discussed, and then various radioisotope localization and direction estimation method trends

are explained.

Although nuclear detection tasks must be carried out in a variety of diverse environments,

one system does not need to combat all threats. Assumptions are made for each detector

to target specific contexts. The main discriminator between settings is urban [24] [25]

versus rural or undeveloped [20]. In urban environments, topography is dense and complex,

resulting in diverse absorption and reflectance properties. Crowds and traffic change

constantly. NORM sources such as potassium-40 in concrete are more common. In this

context, localization perspectives must vary between two-dimensional and three-dimensional

localization depending on the the platform. In rural environments, topographies are more

open, with shielding provided by plant life. Less NORM sources are present, but the lack

of shielding resulting from the open setting allows radiation to travel farther. Here, the

topography is more stable, and two-dimensional localization is most appropriate. In this

thesis, the system is built to operate in various environments, but can handle the stresses of

crowded urban contexts.

As the size, weight, and power requirements for detectors have reduced, the range of

mounting platforms has expanded. Stationary [20] detectors such as portal detectors used

at shipping yards and border crossing are excellent as monitors. By assuming location

in containerized arrivals and departures, more accuracy can be achieved in detection and

identification. Aerial [25] [26] detectors such as helicopter mounted systems are optimal for

21

detection over a large area, but provide unique high speed challenges. Additionally, large

areas introduce more confounding sources, and often require exhaustive search or a ground

based follow up to achieve acceptable accuracy. Automotive detectors are driven in an area

depending upon the capabilities of the vehicle used, focusing on a small area to minimize

confounding sources. Unmanned Aerial Vehicle (UAV) [23] [27] and pedestrian detectors have

the strictest limits on size and weight, but are optimal for precise follow up in a small area

with few confounding sources. This thesis focuses on optimizing for a pedestrian platform.

Various tracking scenarios exist for source-detector pairings. Input is received from

a single detector, a number of detectors in a single unit [25], or a network of multiple

detectors [24]. These systems can track one or more radioisotopes [21] at the same time, in

addition to ignoring background radiation sources. Across different environments the source

or detector can be stationary or traveling erratically. For this thesis, the relevant detector

components are sodium iodide (NaI) scintillators [20], Cs2LiYC16:Ce (CLYC) scintillators

[28], photomultiplier tubes (PMTs), silicon photomultipliers (SiPMs) [29], and digitizers.

Input reconstruction is inherently difficult for nuclear detection tasks. Source emissions

are dependent upon random statistics rather than set frequencies, and small variations in

environment result in large variations in the myriad occlusion and scattering events possible.

When source models are posed with more properties than can be uniquely determined by

the observations, sources are rendered unidentifiable, or may be misidentified. In the case

of stationary detectors, where the environment is assumed to be known, modeling strategies

can be used to recover source properties. With Monte Carlo methods [30], individual particle

interactions can be simulated for a set area, and with the Boltzmann transport equation [22],

statistical behavior is used to approximate the radiation transport model. Simplifications like

assuming only uncollided particles reach the detector [24] are used to simplify the calculation,

but many computer resources are required in order to evaluate the various combinations

of models. For moving detectors, the challenge increases, as a known environment can

no longer be assumed. Instead, field mapping is used to produce a map of the radiation

intensity [23] or the likelihood for a given position [22]. In either case, common methods

to perform parameter estimation include direct Bayesian applications [25] and maximum

likelihood estimators [31]. In this thesis, where both the detector and source can move,

22

there are many source possibilities given a set of observations. Rather than posing the

localization as estimating absolute position and intensity, a simplified model is used with a

single input parameter, the angle of the source relative to the detector. Regression techniques

are applied towards discovering the most probable angle, and Bayesian updating is performed

using the final angle and visual position data to track sources in real time. This directionality

representation is well posed and applicable to the self shielding, directionally aware detector

setup used.

By arranging detectors to produce self-occlusions, the angular resolution of a detector

array is improved. This requires deliberate orientation and positioning of each detector.

This allows a variety of approaches which rely on the relative difference in observed counts

between detectors. In [32], a fuzzy logic algorithm based on gross count response converts

low, medium, and high intensities into a 360 degree directional bearing. This segments the

bearing into 16, 22.5 degree portions for estimation, which allows predictions to be made

on a moving source over 0.5 seconds at a certain, unspecified distance. In [33], angular

resolutions of one degree are possible using a 100 microcurie source within three meters

over a certain, unspecified period of time. This method finds a linear relationship between

detector asymmetry and source angle.

For this thesis, radioisotope direction estimation is performed for a single moving

radioactive source. This estimator predicts a single direction after each real time interval;

during each interval the motion of the source and detector is assumed to be minimal. The

directionally aware detector consists of two CLYC detectors with photomultiplier tubes and

two sodium iodide detectors with silicon photomultipliers, where the exact physical detector

setup is known, including the pedestrian body. This design [34] comes from work by our

research group.

1.3.2 Object Detection

Visual detection is the problem of determining whether an object belonging to a specified

class is present, and localizing it in the image. Typically this location is represented by

a bounding box around the object. Historically, detectors were trained for face detection

23

[35]. Currently, because applications include robotic interaction, autonomous driving, and

assistive devices, algorithms attempt low latency predictions for real time use.

Detection is a field with a high amount of research depth, and a long history. This is

a result of the significant challenges that detection presents. Individual objects in images

are subject to occlusions, illuminations, pose variations, variable resolutions, and object

similarity. Since detection tasks are highly dependent on contextual information, it is

important that detection datasets properly represent objects in their natural environments.

This becomes a difficulty for detection as labeling localization information is more challenging

than a simple class definition, as in the case of classification datasets. Finally, different tasks

require a variety of objects to be learned by a single model; whether these objects are highly

similar or widely variable is unknown, and challenges the model capacity. Even intraclass

variability can be high due to object rotations and deformations.

In the early days of object detection, complicated pipelines using handcrafted features

were state-of-the-art. Typically methods relied on a dense sliding window [36] or sparse

region proposal method like selective search [37] to produce candidate regions, with an

image pyramid to extract features and make predictions; then post processing was required

to eliminate duplicates and clean bounding box borders. This led to a stagnation in accuracy

improvement.

Newer methods like R-CNN [38] continue to use region proposal methods such as selective

search, but remove the complicated pipeline in favor of a CNN for feature extraction.

However, one CNN pass is required for each object proposal, without shared computation.

R-CNN additionally solves the scarce training data issue by pretraining the CNN weights

using an image classification dataset. Instead of classification, OverFeat [39] instead performs

detection using localization by a fully-connected layer on candidate regions which assume a

single object. DeepMultiBox [40] improves candidate recommendation using a deep neural

network to predict multiple class-agnostic boxes.

Rather than adopting these two stage methods for region proposal followed by detection,

SSD [41] dispenses with region proposal, instead assuming default boxes of set size spaced

around CNN features. YOLO [42] similarly achieves impressive real time performance by

running one CNN on the full image context in one pass. This approach also provides

24

greater generalization than methods which only observe local information. DSSD [43] adds

deconvolution operations to solve this problem with context, while ION [44] propagates

contextual information and spatial information from outside the region of interest using

recurrent neural networks and skip connections, respectively.

In the most modern methods there is conflict between single stage [45] and two stage [46]

[47] detectors, with both increasing efficiency by sharing computation between operations.

Fast R-CNN [48] improves the training stage to jointly learn to classify object proposals

and refine their spatial locations, but still applies a costly subnetwork on every region.

Faster R-CNN [49] integrates a region proposal network into the detection CNN to share

computation. YOLOv2 adopts another version of the default boxes called anchor boxes;

specifically sized boxes are assumed and then adjusted by the network, rather than predicting

all box coordinates directly. Additionally, in order to trade off speed and accuracy without

retraining, YOLOv2 trains on images scaled to varying resolutions. YOLOv3 [9] also adopts

the new trend of predicting at various scales through the use of a pyramid network [47].

Recently, concerns over the realism of bounding box IoU accuracy measures [9] have led

some researchers to attempt image segmentation tasks. Mask R-CNN [50] follows this trend,

adding a third branch to Faster R-CNN for predicting an image mask. Perhaps in the future

the bounding box will be abandoned in favor of more realistic metrics.

1.3.3 Object Tracking

Visual tracking is a decades old, fundamental computer vision problem, with many

applications such as robotics, augmented reality, and surveillance. In the first frame of

a sequence video, a previously unknown target is specified by a bounding box. The tracking

algorithm must then identify the target in subsequent frames by specifying new bounding

boxes 1.12. In order to solve this problem, trackers must model the object in the first video

frame, and then continue to recognize the object or differentiate it from the background in

order to localize it. Ideally, this process would occur at or above real time while remaining

robust to changes in the target’s appearance.

Over the past decades, this problem has been investigated from a variety of research

angles, has multiple benchmark datasets, and makes up a significant portion of submissions

25

Figure 1.12: Trackers attempt to place an estimated bounding box AT with as large an
overlap (yellow) as possible with the ground truth AG. (Background image from [8])

to top-tier computer vision and machine learning conferences. This research depth is

possible because challenges arise due to object deformation, variations in lighting, and

occlusion. Learning an object representation for the tracking challenge is difficult. Individual

video sequences have arbitrary characteristics and contain a variety of objects, each with a

different shape, appearance, and movement style. Objects that appear in the background

of one sequence could be the target in the next. Additionally, confusing changes such as

deformation, motion blur, camera movement, and illuminations can occur across frames in

a single sequence. Objects can be transparent, look similar to clutter in the background,

and move erratically. This variability ensures that simply learning a model from the initial

frame will not work.

Visual tracking has many approaches which are too broad to cover here, but can generally

be divided into a few categories. Although these boundaries can be crossed, methods include

generative, discriminative, part-based, combination, and deep convolutional neural network

based methods. Across all of these methods an implicit motion model is assumed as trackers

search a candidate space surrounding the previous frame, but state-of-the-art results can be

obtained by searching the entire frame [51]. Over the past few years, various methods have

diminished or increased in popularity; this is observable in the submitted trackers to the

Visual Object Tracking (VOT) Challenge in Figure 1.13.

Generative and discriminative models are the traditional ways of separating method

types. Generative methods [52] [53] [54] [55] [56] model the target appearance and compare

26

Figure 1.13: Papers submitted indicates fraction of total papers. Over the past five years,
CNN and correlation filter methods have become dominant [8].

this representation to search regions to find the best match, while discriminative methods [57]

[58] [51] [59] seek to differentiate the target from the background in a binary classification.

Each algorithm has intrinsic focuses and weaknesses, leading some trackers to fuse

approaches into a unified system. This fusion can occur at the feature level [60] [61], or

the results of multiple trackers can be fused [62].

Part based trackers that infer the shape and position of individual target parts assist

in solving issues with shape deformation and partial occlusions occur when modeling the

entire target. As in whole target modeling, the maximum likelihood among search locations

represents the target, but here a larger number of parameters must be estimated. Various

methods exist in this framework, including keypoint based [63] [64], flock of trackers [65] [66]

[67], and mean shift [68].

In recent years, correlation filters have become increasingly popular in tracker models

due to their speed, allowing for object tracking in real time. The speed of correlation filters

comes from its use of Fourier domain formulation. The Fourier domain formulation uses the

Fast Fourier Transform (FFT) and quick matrix operations to solve the large ridge regression

problem quickly [69]. For example, in VOT2016, twenty-six trackers used correlation filters,

correlation filters with color output, or combinations of a correlation filter and a CNN [70].

27

Trackers that are simply variations of a correlation filter include SRDCF [71], SWCF [72],

DSST [73], STC [74], DFST [75], and sKCF [76]. Trackers that use correlation filters with

color output include Staple [77] and ACT [78]. Trackers that apply CNN feature detection

to correlation filters include C-COT [79], MKCF [80], and HCF [81]. VOT 2017 introduced

a real time competition, which CSR-DCF [82] won.

Over the past few years, convolutional neural networks have produced tremendous results

in computer vision tasks through advancements in deep architectures [19] [83] [84] [85] [86].

Rather than hand-crafting features, CNNs find them automatically. Features from lower

layers contain more spatial information, while higher layer features extract more contextual

information. Despite success across research areas like object classification [83] [85] [86],

object detection [42] [38], and image restoration [87], where CNNs strongly outperform

traditional methods, state-of-the-art methods in visual tracking have not been dominated

by the same trend. These algorithms train on enormous datasets like ImageNet [88] to

produce models accurate enough to outperform humans, but in the object tracking domain

data scarcity and variability pose a large challenge. R-CNN [38] proposes a solution to this

for object recognition by pretraining on a related dataset and then fine-tuning on the real

dataset; this method has been replicated for visual tracking [89] [90], with large improvements

gained from pretraining on ImageNet. State-of-the-art CNN based methods increase in

number every year, either as core modeling systems or as feature representation learning

algorithms.

The most dominant trend for CNN based methods is pretraining a backbone network

offline using a detection dataset. MDNET [91] and SO-DLT [89] use ImageNet, and all but

one of the top 10 methods from VOT 2017 applies CNN features pretrained on a detection

dataset. SIAMFC [10] performs more advanced offline training, focusing on recognizing

objects given in one image in a second, larger image. Often methods will use more than one

CNN. During online training, TCNN [92] keeps multiple copies of an incrementally trained

network in a tree form, while MLDF (based on [93]) and DNT [94] use portions of the same

network to capture low level spatial features and high level contextual features. LSART [95],

the VOT 2017 winner is a part based approach to CNN, forcing spatial regulation in order

to learn separate filters for the decomposed target.

28

As the current trends continue, methods using hand-crafted features represent less of a

majority portion of the state-of-the-art. Each target model must be generated online using

a variety of features. Hand-crafted features like HSV color histogram, LBP texture features,

HOG edge features, and color name are used in traditional description methods, each with

its own shortcomings due to sequence variation. One recent method [96] explicitly switches

from edge to color features to minimize these shortcomings on a sequence to sequence basis.

In our own research group, a multimodal fusion method by Andrew August and Zhifei Zhang

formulates the relation between modalities in physical space to the embedded space of sparse

codes as a tree-based hierarchy. This leads to a hierarchical appearance modeling that is

able to capture multiple levels of cross-modality correlations while prohibiting misleading

co-adaptations between data representations.

1.4 Contributions

The contribution of this thesis is threefold. First, a generalized directional estimator is

proposed. Second, two state-of-the-art visual object detection and visual object tracking

methods are combined into a single tracking algorithm. Third, those outputs are fused to

produce a real time radioisotope tracking algorithm.

Typically localization methods assume a stationary or moving detector setup with the

goal of accurately identifying the coordinates of a stationary source. This thesis takes a large

intermediary step towards localizing a moving source, assisted by advanced object tracking

techniques. The proposed algorithm can estimate carrier likelihood for objects in its field of

view, and is designed to assist a pedestrian agent wearing a backpack detector.

Some smaller contributions of this thesis also benefit the IDEAS for WIND project. Lab

data using the detector setup [34] designed by the group was recorded, with help from Sean

Alcorn and Callie Goetz. As a result of the visual tracking investigation process, resources

for finding and evaluating future state-of-the-art methods were recorded. A basic library

was created as a basepoint for further iteration on this prototype.

29

1.5 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 describes an algorithm for

estimating source directionality and provides accuracy and other results across simulated

and lab recorded data. Chapter 3 presents a generalized multi-target tracking algorithm

using state-of-the-art methods in object detection and tracking. Results of the individual

and combined methods are shown, along with details of the datasets and metrics used to

evaluate the chosen algorithms. Chapter 4 specifies the details of a prototype algorithm for

real time radioisotope tracking. Chapter 5 summarizes the achievements of the work, and

reviews the next steps in terms of future planned and suggested tasks.

30

Chapter 2

Nuclear Directionality

In this chapter, information and results related to nuclear directionality estimation are

presented. A flow path from detector output to angular prediction is proposed, and then

specifics are detailed along with evaluation results. This starting algorithm is evaluated on a

new dataset recorded under lab settings, and experiments to capture basic dataset features

are recorded. This flow path is used in the final system in order to track the source angle

relative to the detector.

2.1 Algorithm Design

Standard tasks using a nuclear detector include detection, identification, and localization, in

order to determine if a source exists, identify the isotope, and estimate a location. Across all

these methods confusing naturally occurring radioactive materials (NORM), medical sources,

and other nuisance sources obscure the radiological isotopes of interest. In the case of this

thesis, design focuses on a single, possibly moving source and a single, moving detector on

a pedestrian platform, both in environments with complex local topography. Rather than

trying to accurately localize a nonmoving source, this thesis is focused on assisting an agent

by estimating direction in real time.

In order to extract the angular position of a single moving source, several operations are

required. First, a detector setup records every gamma interaction as an energy pulse. Next,

these pulses are converted to ratios of count rates for each separate detector. Then, regression

31

methods estimate the original angle to produce a likelihood distribution; this distribution is

fused with visual object tracking results using Bayesian inference.

Before obtaining a standard dataset on which to perform simple regression techniques,

many recording and preprocessing procedures are necessary. First, a source must emit

multiple gamma ray pulses. Some of these interact with the scintillation crystals present

in the self shielding, directionally aware detector setup. In the case of this detector setup,

interactions occur in two CLYC detectors and two sodium iodide detectors. Photomultipliers

then pick up the photons emitted by the scintillators and convert the pulses into electricity.

For this thesis, photomultiplier tubes and silicon photomultipliers are connected to the CLYC

and sodium iodide detectors, respectively. These electrical pulses are cleaned and the area

under the pulse is integrated automatically by a digitizer to acquire the total energy of an

event. This event is cutoff at some maximum value. Over time, these readings provide a

list of matching timestamps and energy readings for each individual detector. Counting the

number of pulses over four seconds, experimentally determined as in section 2.2.4 to be the

optimal period of time, produces the count rate. In order to standardize the data for various

relative source strengths due to distance and absolute source strength, the count rates are

normalized across the detectors using individual ratios, determined to be the best method

in section 2.2.4. This results in six floating point features corresponding to a single angular

input. The number of features is modified based on the detector setup, but otherwise these

preprocessing steps produce detector-ambiguous data for regression. The detector design

[34] comes from work by our research group. These preprocessing steps are based on work

by Carl Britt.

In order to optimize for the minimal energy requirements and varying environment of

the pedestrian setup, the simplest possible model with the fewest parameters is assumed

in the form of a well posed directionality estimate. The source is represented as a single

parameter, the angle, which is interpreted as a point source along a line due to the operative

scales in the tens of meters. This model assumes most detections are uncollided gammas

emitted by the source. However, as the environment changes, unpredictable error is sure to

occur due to scattering and occlusion of gamma rays before they reach the detector. Rather

than struggling to recognize these aberrations, a single model of the error is determined as

32

a Gaussian angle likelihood distribution around the regression-estimated angle. This error

is then minimized by coupling relative agent and tracked object movement over time as the

measurements progress. Instead of being constrained by a single environment, this model

allows the focus to shift to hunting of specific detected and identified isotopes isolated from

background radiation. The approximate likelihood distribution is determined in section

2.2.4. Gradient boosting regression is chosen to minimize the size of this distribution as

described in 2.2.4.

2.2 Results

2.2.1 Simulated and Real Detector Setups

In order to validate the directionality approach, a dataset of simulated and lab data with

which to evaluate prospective methods was collected using the settings given in Table 2.1.

The simulated data is from Carl Britt, produced in MCNP6, employing the specifications

given in ANSI 42.53-2013 for a backpack-based radiation-detection system. The setup

consists of three right perpendicular parallelepiped (RPP) CsI(Na) detectors (CsI =4.5

g/cm3) arranged behind a humanoid phantom as in Figure 2.1a. Each detector has crystal

mass of 1 kg, a threshold energy of 60 keV, and dimensions of 5.08x5.08x8.59 cm, where the

final dimension is the height. A single 200 µCi Cs-137 source which emits gamma photons

at 662 keV was used. Thirty-seven simulations were performed - one for each source-angle

from 0 to 180 in increments of 5, all at a distance of one meter. The ratios of total counts

Table 2.1: The synthetic and laboratory settings explore different experimental variables.

Synthetic Data Lab Data
Source Strength 200 µCi 0.3, 8.15, 9.91, 18.06 µCi

Count Time 1 second 0.25, 0.5, ..., 4, 8 seconds
Distance 1 meter 0.53, 0.91 meters
Isotope Cesium-137 Cesium-137/Cobalt-60

Background Radiation No Yes

33

for these simulations were calculated. Counts at internal angles were simulated using linear

interpolation and Poisson noise, shown in Figure 2.1b.

Lab data was collected using a detector setup [34] consisting of two 32 keV sodium

iodides (NaI(Tl)) with silicon photomultipliers (SiPMs) and two 100 keV CLYCs with

photomultiplier tubes (PMTs) connected to a CAEN DT5720 digitizer. The combined

CLYCs and PMTs measure 54x54x152 mm and were connected end to end, separated by an

aluminum plate. Each combined sodium iodide and SiPM measured 54x54x152 mm and were

individually placed in the detector setup on each side of the CLYC detectors. The detectors

were powered by a lithium ion battery and are connected to a Dell Workstation 5520 laptop.

All pieces were held together by a plastic polymer frame, as in Figure 2.2a, inside an internal

frame backpack. This backpack was carried by a humanoid phantom that approximates

the human body, comprised of varying densities of plastic that simulate bones, organs, and

tissues as in Figure 2.2b. For this dataset, the suite of variables investigated include the

isotopes, distances, and strengths in an attempt to measure expected performance variation

across different algorithms. For each combination of variables, data was recorded for five

minutes. Figure 2.3 shows an example of the counts resulting from a single experimental

setup.

(a) Detector arrangement (b) Example data

Figure 2.1: This is an example of simulated data when recorded in the three detector
arrangement. This image was produced by Carl Britt.

34

(a) The detector setup (b) The experimental apparatus

Figure 2.2: The detector setup and experimental apparatus used to record the training
and evaluation dataset.

35

Figure 2.3: Counts over one second intervals for the 8.15 µCi cesium-137 source at 0.53
meters.

2.2.2 Simulation Data

Using the simulated data, various standard scikit-learn regression techniques are evaluated.

Each algorithm is run using the default settings with ten-fold cross validation using 100000

data points. In order to measure success, root mean square error is calculated and presented

in Table 2.2. Random Forest regression achieved the lowest average error at seven degrees,

but this average is not expected on real data, as the noise will increase with the addition of

background radiation.

2.2.3 Lab Data

2.2.4 Algorithm Design

Although absolute pulse counts for each detector vary as a function of source strength and

distance, the ratios of pulse counts between detectors remain consistent. This can be observed

in Table 2.3, which shows the results of three preprocessing methods: total counts (d1, d2,

etc.), individual detector ratio combinations (d1/d2, d2/d4, etc.), and ratio to the sum of

counts of the other detectors (d1/(d2+d3+d4)). Random forest regression is used to generate

36

the predictions, with a four second count recording time used. The table is representative of

the trends observed in the rest of the data: the lowest errors are produced by the individual

detector ratios.

Due to the the probabilistic nature of radiation events, over a longer period of time the

detector will observe count statistics more representative of the given source. This leads to

greater directional accuracy as observed in Table 2.4. However, since the desired end result

is fusion in real time, the recording time is limited.

The rmse errors shown in Table 2.5 come from multiple experimental setups. Across all

of these setups, gradient boosting regression consisently appears in the lowest three error

values. As a result of this, gradient boosting is used for variable investigation and in the

final prototype. These accuracies are lower than the synthetic data, both because of the

addition of background radiation, and because of the lower relative source strengths. In the

lab setting, this background radiation can easily be removed, but in a real world application

it is more challenging.

The distribution of predictions using gradient boosting across all four second counts is

shown in Figure 2.4. A Gaussian distribution is fit to this data with a mean of 0.2 and

a variance of 51.3. This matches the overall root mean square error calculated of 51.3.

However, with greater relative source strengths this error decreases, as seen in Figure 2.5.

Experimental Variables

Regression using ratios can account for the possible experimental variables of source strength

and distance, but not source material. This means that one and only one model needs to be

trained per source material. This can be observed in Tables 2.6, 2.7, and 2.8, which show

the results of training on one experimental setup, and testing on another. For each table,

60 percent training and 40 percent testing data is used for the single experimental setups,

while 100 percent training and 100 percent testing data is used when changing experimental

setups. Gradient boosting with four second count times is used to generate the predictions

for all tables.

37

Figure 2.4: The red line is the Gaussian calculated using the mean and variance of all
prediction data from gradient boosting.

Table 2.2: This table shows the resulting error for each standard regression algorithm using
the simulated data.

Regression Method RMSE
Random Forest Regression 7◦

K Nearest Neighbors Regression 8◦

Gradient Boosting Regression 10◦

Decision Tree Regression 11◦

Logistic Regression 19◦

Support Vector Regression 20◦

AdaBoost Regression 22◦

Multi-Layer Perceptron Regression 38◦

Stochastic Gradient Descent Regression 42◦

Linear Regression 43◦

Bayesian Ridge Regression 45◦

38

Table 2.3: Training on an 8.15 µCi Cs-137 source and testing on an 18.06 µCi Cs-137
source at 0.91 meters using three different ratio preprocessing techniques shows that ratios
are necessary for the algorithm to generalize to different relative source strengths. Counts
are recorded for four seconds, and random forest regression is used for the predictions.

Ratio Method RMSE
Total Counts 92.5◦

Individual Ratios 48.1◦

Sum Ratios 48.8◦

Table 2.4: As the counting time increases, the error decreases. These are the results at 0.91
meters using an 18.06 µCi Cs-137 source. Random forest regression is used for prediction
given individual ratio features.

Counting Period (seconds) RMSE
0.25 61.8◦

0.5 56.1◦

1.0 49.1◦

2.0 38.8◦

4.0 27.7◦

8.0 26.6◦

Table 2.5: Five experimental data setups are used to evaluate various regression methods
(A: Cs-137/8.15 µCi/0.53m, B: Cs-137/8.15 µCi/0.91m, C: Cs-137/9.91 µCi/0.91m, D: Cs-
137/18.06 µCi/0.91m, and E: Co-60/0.31 µCi/0.91m). The lowest three rmse values for each
setup are highlighted in red.

Regression Method A B C D E
Linear 60.7◦ 58.5◦ 60.0◦ 51.4◦ 90.2◦

Support Vector 54.6◦ 59.2◦ 58.4◦ 55.2◦ 95.7◦

Decision Tree 17.8◦ 59.4◦ 57.4◦ 34.5◦ 128.3◦

Gradient Boosting 16.2◦ 46.9◦ 40.7◦ 29.7◦ 90.8◦

K Nearest Neighbors 11.2◦ 51.8◦ 41.9◦ 29.7◦ 97.6◦

Logistic 34.8◦ 66.2◦ 55.5◦ 48.8◦ 107.5◦

Gradient Descent 74.7◦ 180.0◦ 76.6◦ 53.7◦ 180.0◦

Bayesian Ridge 60.7◦ 58.7◦ 59.4◦ 51.4◦ 90.1◦

Random Forest 12.5◦ 49.5◦ 40.9◦ 28.1◦ 97.8◦

Multi-Layer Perceptron 66.5◦ 84.6◦ 78.3◦ 59.5◦ 101.8◦

AdaBoost 17.8◦ 48.9◦ 45.4◦ 42.7◦ 91.5◦

39

Table 2.6: The error increases when changing the source material between training and
testing. Each setup is recorded at 0.91 meters. The error for Cobalt 60 is much higher
because the source strength of the Cobalt source is 0.31 µCi, while for Cesium it is 8.15 µCi.
It appears that using ratios also reduces the error when switching source materials, but
this is likely due to compensating for the large difference in source strengths of these two
experimental setups.

Experimental Setup Individual Ratio Testing Error Total Count Testing Error
Cesium 137 46.9◦ 42.8◦

Cobalt 60 90.7◦ 91.1◦

Cesium 137 to Cobalt 60 93.77◦ 128.9◦

Cobalt 60 to Cesium 137 77.6◦ 181.0◦

Table 2.7: Although the error increases when changing the distance between training and
testing, using ratios reduces the difference in error. Each setup is recorded at 0.815 µCi.

Experimental Setup Individual Ratio Testing Error Total Count Testing Error
0.53 m 16.2◦ 10.5◦

0.91 m 46.9◦ 42.8◦

0.53 m to 0.91 m 64.9◦ 129.5◦

0.91 m to 0.53 m 39.2◦ 89.1◦

Table 2.8: Although the error increases when changing the source strength between training
and testing, using ratios reduces the difference in error. Each setup is recorded at 0.91 meters.

Experimental Setup Individual Ratio Testing Error Total Count Testing Error
8.15 µCi 46.9◦ 42.9◦

18.06 µCi 29.7◦ 28.1◦

8.15 µCi to 18.06 µCi 48.1◦ 91.1◦

18.06 µCi to 8.15 µCi 77.9◦ 93.0◦

40

Chapter 3

Visual Object Tracking

In this chapter, information and results related to visual object detection and tracking

algorithms are presented. Relevant datasets and metrics are explained before reasoning is

given for the choice of algorithm. Additionally, performances on separate datasets relevant

to the system use case are demonstrated, including combined performance. These algorithms

are used in the final system in order to visually track the position of objects that could be

carrying a nuclear source.

3.1 Object Detection

This section provides both a general guide to selecting an appropriate object detection

algorithm for this thesis, and also explains the current choice, YOLOv3 [9]. There have

been and will continue to be rapid advances in detection efforts over the course of the

WIND project; additionally, while the current goals and challenges are known, future design

decisions may alter the best choice of algorithm. First, relevant object detection datasets are

described, and metrics for comparison are discussed. Next, the case for YOLOv3 is detailed,

and an explanation of the algorithm is provided. The results of running this method on a

separate challenge dataset are displayed in section 3.3.2

41

3.1.1 Datasets

The Common Objects in COntext (COCO) [97]; Pattern Analysis, Statistical Modeling,

and Computational Learning (PASCAL) Visual Object Classes (VOC) Challenge [98]; and

ImageNet [88] datasets are well-cited databases for object detection. COCO consists of

330,000 images labeled for captioning and image segmentation. There are 80 ‘object

categories’ with clear boundaries, 91 ‘stuff’ categories with no clear boundaries, and 1.5

million object instances. These images were selected for their natural context, to facilitate

detection and segmentation. PASCAL VOC consists of 11,000 images obtained from

the Flickr website. These were labeled for classification and image segmentation, with

27,000 object instances. The challenge operated from 2005 to 2012, focusing on object

detection in natural images. ImageNet consists of 1.5 million images annotated via a large-

scale crowdsourced system. There are 1000 object categories, including many fine-grained

differences. Across the spectrum of images are various scales, clutters, and textures, all of

which add difficulty to the corresponding challenge run since 2010. These datasets are an

appropriate starting place for future algorithm search.

3.1.2 Metrics

Detection algorithms are evaluated by multiple metrics representing accuracy. For a given

image, the area of overlap between the ground truth bounding box AG and a detector’s

estimated bounding box AD measures detection accuracy, called intersection over union

(IoU). In each image, the accuracy φ is calculated as

φ =
AG ∩ AD
AG ∪ AD

Average precision (AP) is significantly more involved. To start, precision is calculated as

TP/(TP + FP) and recall is calculated as TP/(TP + FN) where TP is the number of

true positives, FP is the number of false positives, and FN is the number of false negatives.

Consider an image with six objects. After sorting the top five detection results by confidence,

predictions two and five are missed such that the IoU is less than 0.5. This means that the

top five predictions have a precision of 3/5 and a recall of 3/6. For the other top four, top

42

six, etc predictions, the recall value will vary from 0 to 1.0. In order to calculate AP, the

average value of all of the maximum precisions stepping by 0.1 from 0 to 1.0 recall is taken.

The maximum precision for a given recall value is the maximum of the precision values where

the recall is higher than the given value. For the COCO dataset, mean average precision

(mAP) is used. In the case of mAP, AP is averaged over a number of IoU values. AP using

IoUs from 0.5 to 0.95 in steps of 0.05 is averaged for the COCO dataset.

3.1.3 Choosing YOLOv3

In terms of accuracy and speed, YOLOv3 is an excellent detection algorithm. This is best

shown by direct mAP comparison on the COCO dataset. Tables 3.2 and 3.1 and Figure 3.1

display this.

YOLOv3 has a stellar performance in terms of mAP accuracy versus speed on the COCO

dataset, which of course reflects the efficiency requirement emphasized by the demands of a

low power system. This effect is due to specific structural and algorithmic design decisions for

the method. Rather than operating a complex pipeline for detection, or applying CNN passes

Table 3.1: Older YOLO methods achieve state-of-the-art accuracy on the VOC 2007+2012
datasets while maintaining efficiency. The fastest speed and highest mAP for an IoU of 50
are highlighted in red. For networks with implementations operating at different resolutions,
multiple results are provided with the input resolution given.

Method (input resolution) VOC mAP-50 fps
YOLO [42] 63.4 45
Fast YOLO 52.7 155

YOLOv2 (288) [99] 69.0 91
YOLOv2 (352) 73.7 81
YOLOv2 (416) 76.8 67
YOLOv2 (480) 77.8 59
YOLOv2 (544) 78.6 40

Fast R-CNN [48] 70.0 0.5
Faster R-CNN [49] 76.4 5

SSD300 [41] 74.3 46
SSD500 76.8 19

43

Table 3.2: YOLOv3 achieves state-of-the-art accuracy on the COCO dataset while
maintaining efficiency. The fastest speed and highest mAP for an IoU of 50 are highlighted
in red. For networks with implementations operating at different resolutions, multiple results
are provided with the input resolution given.

Method (input resolution) COCO mAP-50 Time (ms)
YOLOv3 (320) [9] 51.5 22

YOLOv3 (416) 55.3 29
YOLOv3 (608) 57.9 51
YOLOv2 [99] 44.0 N/A

RetinaNet-50 (400) [45] 47.8 64
RetinaNet-50 (500) 50.9 72
RetinaNet-50 (600) 53.2 98
RetinaNet-50 (700) 54.2 121
RetinaNet-50 (800) 55.0 153
RetinaNet-101 (400) 49.5 81
RetinaNet-101 (500) 53.1 90
RetinaNet-101 (600) 55.2 122
RetinaNet-101 (700) 56.6 154
RetinaNet-101 (800) 57.5 198

Fast R-CNN [48] 39.9 N/A
Faster R-CNN [49] 45.3 N/A
Mask R-CNN [50] 60.0 N/A

SSD321 [41] 45.4 61
SSD513 50.4 125

DSSD321 [43] 46.1 85
DSSD513 53.3 156
ION [44] 43.2 N/A

FPN FRCN [47] 59.1 172
R-FCN [46] 51.9 85

44

Figure 3.1: In terms of speed, YOLOv3 is a class ahead. The ‘Other’ methods listed are
taken from Table 3.2. The trends in speed and runtime for YOLO and RetinaNet are caused
by varying network input size.

for every possible bounding box region, YOLO operates by a single pass of a convolutional

network from entire image to predictions.

Additionally, there are other important reasons YOLOv3 is chosen ahead of other

detection algorithms. First, as of YOLOv2 the algorithm follows a training method

which varies the input image resolution across different batches. This means that without

retraining, the same network is able to operate at a higher fps with less accuracy, or slower

speeds at state-of-the-art accuracy. The YOLO backbone network views the entire image

during training, allowing it to encode contextual and appearance information about objects.

This is different from region proposal methods, which limit the classifier view to a specified

region. Because of this advantage, YOLO is less likely to predict false positives in background

areas. This feature is important for the WIND project, as any false positives will consume

resources in the object tracking phase. Additionally, looking at the full context provides

generality to the algorithm, allowing higher accuracy on unexpected inputs. YOLO and many

other methods have a confidence prediction, multiclass prediction, and a base convolutional

neural network trained on ImageNet, all of which are helpful in real use cases. Finally, a

45

Python implementation that integrates well with the project while maintaining full speed is

readily available.

The backbone of YOLOv3 is the darknet-53 CNN, a blend of the VGG inspired YOLOv2

darknet-19 network with residual networks and added shortcut connections. This network

is described in Figure 3.2.

YOLO operates by dividing the image into an S x S grid of cells and estimating B

bounding boxes [42]. Rather than a fully connected final layer which predicts the bounding

boxes, a convolutional layer which predicts offsets from cluster centers of boxes of specific

sizes is used. These boxes are determined by applying k-means clustering to the ground truth

bounding boxes of detection datasets. Figure 3.3 shows a generalized example prediction.

The CNN predicts tx, ty, tw, and th, which relate to the center coordinates and shape of

the final bounding box b as bx = σ(tx) + cx, by = σ(ty) + cy, bw = pwe
tw , and bh = phe

th .

pw and ph are the priors for the bounding box, and cx and cy denote the cell offset. The x

and y equations predict the center coordinates of the box relative to the location of filter

application using a sigmoid function. Confidence, a multiclass classification, and objectness

is also predicted for each box.

YOLO is first pretrained on ImageNet for classification by minimizing binary cross

entropy

−(y log(p) + (1− y) log(1− p))

, where y is the ground truth and p is the prediction. Then, the final softmax layer is

discarded and the network is trained for detection by minimizing the sum of squared error

1

N

N∑
i=1

(t̂∗ − t∗)2

where t̂∗ is the ground truth vector and t∗ is the predicted vector for N samples. In YOLOv2,

multiscale training every 10 batches is introduced in training to resize the input, implicitly

encoding various resolutions. By changing this resolution during testing, the same network

can operate at various speeds without retraining [99].

46

Figure 3.2: The backbone network for YOLOv3 is darknet-53, a classification network
(from Redmon, 2018 [9]).

47

Figure 3.3: YOLOv3 predicts x and y offset from the location of filter application and w
and h scaling from priors of set size.

For this nuclear source tracking framework, YOLOv3 integrates into the visual object

tracking algorithm. Rather than running continuously on every new frame, YOLOv3

operates when triggered by human input. On startup, and if it is determined that enough

variation has occurred in the object field to require re-initialization, the agent should trigger

detection. For each object in the frame, a bounding box, class label, and confidence is

returned. Given that the confidence is above a set threshold, a tracker thread is initialized

corresponding to each object.

3.2 Object Tracking

This section provides the same content as section 3.1, but for object tracking rather than

object detection. Appropriate datasets and metrics for evaluation of future methods are

given. A case is made for SiamFC, and the details of the algorithm are described. The

results of applying SiamFC to a challenge dataset are displayed in section 3.3.3.

3.2.1 Datasets

Despite the difficulties with obtaining and notating a video dataset, there are three standard

public benchmarks for object tracking: the Object Tracking Benchmark (OTB) [100], Visual

Object Tracking (VOT) [8], and the Amsterdam Library of Ordinary Videos for Tracking

(ALOV++) [101]. OTB consists of 100 single camera, single object sequences. Of these

48

100 objects, 36 are human body and 26 are face videos. Each sequence is fully annotated

with bounding boxes and 11 challenge attributes such as illumination, occlusion, and motion

blur. This helps to distinguish the strengths and weaknesses of various trackers. VOT

consists of the most updated challenge dataset from the VOT challenge, which has run

annually since 2013. This dataset addresses short term, single camera, single target, model

free trackers. The most recent 2017 dataset has 60 sequences, but 390 sequences have been

used over the course of all challenges. Each year, the easiest sequences are replaced with

more difficult videos. Every frame of these sequences is annotated with occlusion, motion

blur, size change, camera motion, and illumination change information. ALOV++ consists

of 89364 total frames of video, mostly sourced from real-life YouTube videos. These are

chosen to cover diverse circumstances, and so contain 64 different categories of targets. The

average sequence length is 9.2 seconds, with a rectangular bounding box every 5th frame,

except in a few rare case of rapid movement; linear interpolation is used in between.

3.2.2 Metrics

Tracking algorithms are evaluated by metrics representing accuracy, speed, and robustness.

The area of overlap between the ground truth bounding box AG and a tracker’s estimated

bounding box AT measures tracking accuracy. For a given frame, the accuracy φ is calculated

as

φ =
AG ∩ AT
AG ∪ AT

VOT uses another metric to balance datasets of varying lengths: expected average overlap

(EAO). This metric represents the expected accuracy on another dataset with similar

properties. Given a large dataset of sequences with s frames, the average overlap curve

φ̂s across all frames of all sequences can be calculated by

φ̂s =
1

s

∑
i=1:s

φi

However, the majority distribution of applicable sequences may be within a certain range lo

to hi, rather than of length s. To calculate the expected average overlap value φ̂lo:hi on this

49

new range of sequences, a new averaging equation is leveraged against the expected overlap

curves as

φ̂lo:hi =
1

hi− lo
∑
s=lo:hi

φ̂s

In order to determine the practicality of object trackers, speed is used. For the VOT

challenge, equivalent filter operations (EFOs) are used to equalize tracker speed across

different hardwares. Additionally, any bias from optimizations to specific hardwares is

removed. EFOs are the ratio of speed on the evaluation dataset to the speed of a predefined

filter operation, as shown in Figure 3.4. Tracker failures occur when the estimated bounding

box drifts far enough from the target or suddenly fails repeatedly to include the target. In

real use cases, re-initialization while maintaining consistency is difficult, so avoiding failures is

highly important. Robustness is measured by counting the total number of failures, averaged

over the size of the dataset. In the case of the VOT dataset, the tracker is re-initialized five

frames after a failure.

3.2.3 Choosing SiamFC

SiamFC is the winner of the VOT 2017 Real Time Challenge, as shown in Table 3.3. Trackers

for this competition must predict the bounding box for each sequence frame at a higher

frequency than the video frame rate. CSRDCF++ achieves a slightly higher performance,

but because it was designed in part by the challenge organizers, is not eligible for competition.

Additionally, SiamFC performs well across the EAO, accuracy, and robustness metrics used

Figure 3.4: In order to calculate equivalent filter operations, a baseline for the hardware
is calculated by applying a max operation on each 30x30 window of a 600x600 image (from
[8]).

50

for the 2017 competition, as shown in Table 3.4. In order to reduce performance variation,

each tracker runs a sequence 15 times. Since EFO is replaced by the real time portion in

the 2017 competition, EFO results for comparable algorithms in the 2016 competition are

shown in Table 3.5 and Figure 3.5.

In addition to the impressive real time performance, SiamFC also realizes other

advantages over existing algorithms. Rather than using online learning to create an object

model, SiamFC trains on extensive detection datasets prior to evaluation, increasing speed.

This pretraining is performed currently using the new ImageNet tracking dataset, which

means the learned models will share a relationship with the models learned by YOLOv3.

Evaluation results also show that the model capacity has not been reached, and further

training on new datasets will increase the accuracy. This method is CNN based, and so

fits with current method trends in the visual object tracking research sphere; as hardware

and software improvements are adapted to this trend, so the speed of SiamFC will increase.

Finally, SiamFC works across multiple hardwares and systems, with an open sourced python

version that works on its own, compared to many other VOT-submitted trackers which only

work with the challenge dataset.

Rather than pretraining a CNN on another dataset in order to learn feature maps, and

then online training the network to identify the object, SiamFC proposes to compare an

exemplar image z to a candidate image x via a function f(z, x) which scores higher when the

Figure 3.5: SiamFC strikes a balance between accuracy and speed. These are the VOT
2016 Challenge results from Table 3.5.

51

Table 3.3: SiamFC is the winner of the VOT real time 2017 challenge. The results shown
are the top five entries to the real time portion only. The highest EAO is highlighted in red.

Method EAO A R
SiamFC [10] 0.182 0.502 0.604

CSRDCF++ [82] 0.212 0.459 0.398
ECOhc [102] 0.177 0.494 0.571
Staple [96] 0.170 0.530 0.688

KFebT [103] 0.169 0.451 0.684

Table 3.4: SiamFC achieves state-of-the-art performance on the standard VOT 2017
challenge. Various methods from the top five 2017 methods, the real time competition,
and dual 2016-2017 competition entries are shown. The highest EAO is highlighted in red.

Method EAO A R
SiamFC [10] 0.188 0.502 0.585

CSRDCF++ [82] 0.229 0.453 0.370
ECOhc [102] 0.238 0.494 0.435
LSART [95] 0.323 0.493 0.218
CFWCR [8] 0.303 0.484 0.267
CFCF [104] 0.286 0.509 0.281
CCOT [79] 0.267 0.494 0.318

STAPLE [96] 0.169 0.530 0.688
GMDNetN [91] 0.157 0.513 0.696
Struck2011 [58] 0.097 0.418 1.297

Table 3.5: SiamFC achieves state-of-the-art performance as a balance between EAO and
speed. These entries all competed in some form in both the 2016 and 2017 VOT challenges.
All results below are obtained on the 2016 dataset.

Method EAO EFO
SiamFC-A [10] 0.235 9.213

C-COT [79] 0.331 0.507
STAPLE [96] 0.295 11.114
MDNet-N [91] 0.257 0.534
Struck2011 [58] 0.142 14.584

52

images containing the same object. Applying a CNN as the function f via siamese networks,

which are common for similarity learning, allows the initial appearance of the object to be

searched for against the remaining frames of the video. Siamese networks implement the

function f by applying an identical transformation ϕ to both inputs, and then combining

the representations by a similarity metric g as

f(z, x) = g(ϕ(z), ϕ(x))

This function is further improved by using a fully-convolutional network as the embedding

ϕ and cross correlation ∗ as the similarity metric as

f(z, x) = ϕ(z) ∗ ϕ(x) + b1

where b1 is a region of value b. This causes the candidate image to be applied on a dense

grid of translated sub-windows in a single evaluation. SiamFC uses a search region four

times the previous size, penalizing displacements from the center with a cosine window. The

entire network, with specific details given in Figure 3.6, produces a final score map as shown

in Figure 3.7.

Figure 3.6: The backbone architecture of the of the convolutional function is similar to
AlexNet (from Bertinetto, 2016 [10]).

53

Figure 3.7: A score map is output for all translated sub-windows in the search image (from
Bertinetto, 2016 [10]).

The CNN θ is trained by applying stochastic gradient descent to

arg minθE(z,x,y)L(y, f(z, x : θ))

where L(y, v) is the loss of the score map. It is defined as

L(y, v) =
1

|D|
∑
u∈D

l(y[u], v[u])

where u is a position in the map D, and l(y, v) is the logistic loss for a position. It is defined

as

l(y, v) = log(1 + e−yv)

where y is the ground truth label and v is the real valued score of one image pair.

3.3 Results

3.3.1 Data

Multiple datasets are used for performance evaluation of the detection and tracking methods.

On April 15, 2013 during the Boston Marathon, two bombs were set off resulting in 3 fatalities

and 176 injuries. In the aftermath of the explosions, CCTV footage of the crowded scenes

shows two suspects [105]. The Boston bombing dataset consists of six video sequences

from Mashable during which one or two of the suspects navigates a crowd. Ground truth

54

highlighting is performed directly on the video using a black and white circle, but no official

bounding box information is provided, so comparisons in performance must be done by hand.

In order to capture the differences in performance across computational platforms of

various capability, testing is performed on two systems. The first is a Mid 2015 MacBook

Pro Retina, with four 2.2 GHz Intel Core i7s and no graphics card use. The second is a

Linux desktop with eight 3.4 GHz Intel Core i7s and a GeForce GTX 1070.

3.3.2 Object Detection

YOLOv3 performs at different accuracies with different network inputs. Using a smaller

input resolution is more efficient and is able to run at a higher fps, but provides less accuracy.

Using the Boston sequences, the difference in accuracy measured by mAP can be observed

more clearly. Figures 3.8, 3.9, 3.10, 3.11, 3.12, and 3.13 provide visual comparisons, as well

as examples of the detection capabilities. All objects must be above 25% confidence to be

detected.

YOLOv3 operates at an increased efficiency when run on a GPU. The difference in fps

between using the tiny and normal network is more pronounced on the CPU (10x) compared

to the GPU (2x), but the difference between CPU and GPU performance is 50x. With a

GPU, detection occurs faster than the framerate, allowing real time detection. Table 3.6

shows these results across the two architectures investigated.

Table 3.6: The difference in fps between GPU and CPU architectures for YOLOv3 is large.
The fps values from running on each Boston bombing sequence are shown.

Architecture Network Boston 1 Boston 2 Boston 3 Boston 4 Boston 5 Boston 6

GPU Tiny 52.8 fps 50.8 fps 55.0 fps 53.8 fps 52.4 fps 51.6 fps

GPU Normal 22.0 fps 22.0 fps 22.2 fps 21.3 fps 21.5 fps 21.9 fps

CPU Tiny 1.4 fps 1.4 fps 1.4 fps 1.4 fps 1.4 fps 1.2 fps

CPU Normal 0.13 fps 0.13 fps 0.13 fps 0.13 fps 0.13 fps 0.14 fps

55

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.8: Running the YOLOv3 tiny and normal networks on Boston sequence 1 results
in a difference in detection capabilities. (tiny a-d, normal e-h)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.9: In crowds, the tiny network misses many partially occluded or rotated
individuals. (tiny a-d, normal e-h)

56

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.10: One artifact of the network at a low confidence threshold is the tendency to
mislabel the entire crowd as one person. (tiny a-d, normal e-h)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.11: The normal network can capture many individuals in a crowd, but is
overwhelmed by crowds appearing farther back in frame. (tiny a-d, normal e-h)

57

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.12: Sequences like this, with a single individual, give the normal network no
challenge. (tiny a-d, normal e-h)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.13: On sequence six, the tiny network has trouble detecting the target, and misses
the majority of the parked cars (tiny a-d, normal e-h)

58

3.3.3 Object Tracking Results

.

SiamFC is not the most accurate object tracking method, but performs well on the Boston

bombing dataset. The results of tracking the targets given initializations using ground truth

are shown below for each sequence in Figures 3.14, 3.15, 3.16, 3.17, 3.18, and 3.19.

Although SiamFC can run at one frame per second on a CPU as in Table 3.7, in real

time the movement possible in one second disrupts the tracking capabilities. However, using

a GPU allows the network to track in real time, at a framerate below the input framerate.

Using a more powerful GPU would further increase the framerate.

3.3.4 Multi-Object Tracking

SiamFC and YOLOv3 work well separately, but also operate together to create a functional

multi-object tracker. Figures 3.20, 3.21, 3.22, 3.23, and 3.24 show the results of first detecting

the objects in frame, and then tracking the subjects based on those initial detection bounding

boxes. The Boston bombing sequences are shown except sequence two, on which the tracking

failed across multiple initializations.

Table 3.7: SiamFC tracks at 10 times the frames per second on a GPU compared to a
CPU.

Architecture Boston 1 Boston 2 Boston 3 Boston 4 Boston 5 Boston 6
GPU 10.3 fps 9.9 fps 10.9 fps 11.1 fps 10.4 fps 10.4 fps
CPU 1.4 fps 1.4 fps 1.4 fps 1.3 fps 1.2 fps 1.3 fps

59

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.14: Both subjects are successfully tracked.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.15: One of the subjects is lost due to occlusion.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.16: Here, the backpack rotation and crowd occlusion cause a loss of one subject.

60

(a) (b) (c) (d)

Figure 3.17: Provided with a clear, unoccluded face, the network can achieve high accuracy
with little information.

(a) (b) (c) (d)

Figure 3.18: Even though the subject rotates, tracking continues.

(a) (b) (c) (d)

Figure 3.19: Despite the low resolution and partial occlusion, SiamFC tracks the subject
into the car.

(a) (b) (c) (d)

Figure 3.20: Both targets are detected and then tracked for the duration of the sequence.

61

(a) (b) (c) (d)

Figure 3.21: Both targets are detected, but only one is tracked for the duration of the
sequence.

(a) (b) (c) (d)

Figure 3.22: As the targets walks through the crowd, he comes into view, is detected, and
then is tracked until his body is occluded again.

(a) (b) (c) (d)

Figure 3.23: Even when initialized by the detector, the tracker can still remain robust to
the target’s rotation.

(a) (b) (c) (d)

Figure 3.24: Although the target is lost to the detector over the course of the sequence as
seen above, the tracker is able to continue to localize given the detector’s initial bounding
box.

62

Chapter 4

Active Tracking System

In this chapter, information and results related to the proof-of-concept algorithm and method

fusion are presented. A general overview is given with emphasis on how each algorithm

integrates into the overall method. Finally, details about and results of visual and nuclear

algorithm fusion are presented.

4.1 System Overview

In this thesis, a proof-of-concept algorithm is designed to track a nuclear source by combining

radiosotope direction estimation and visual object tracking algorithms. The algorithm was

designed for use in a wearable backpack, with the goal of continually assisting a human agent.

This goal is achieved in the form of a modular structure that both serves as a starting point

for combining various areas of research, and successfully provides assistance by predicting

which targets in the current field of view are most likely to be carrying a nuclear source. This

framework is also ready for updates as future improvements and additions are contributed.

Figure 4.1 shows the overall flow path of the system.

The current system is implemented from scratch in Python 3.6 and C. The individual

vision algorithms are written in C languages in order to optimize their speeds, while Python

is used to gracefully control inputs, data, and the main program flow. YAML is used for

configuration setup, and OpenCV controls the various camera and video functions. The

database runs in straightforward Python without dependencies. This software works on

63

Figure 4.1: An overview of the system flow path.

MacOS, Windows, and Linux systems. An advanced graphics card is required for the

system to function accurately and at full speed, although various components may be run

individually on a CPU.

In order to prevent rapid obsolescence of this prototype during the course of the WIND

project, adaptability, modularity, and convenience are prioritized. Python provides a strong

base for these three goals. As Python has a library for almost anything, it is likely that

new smart device integrations or networking protocols will already be handled by existing

open-source codes. Although currently the algorithms are implemented in C, Python is also

easily adaptable to other languages if future wrappers are needed. This modularity is also

reflected in the directory structure created and code written, so that additions and deletions

are safe and convenient to execute without extensive repository knowledge. Finally, the

initial algorithms chosen are adaptable to various machine capabilities, and can be adjusted

through the system configuration. This allows the same, slightly less accurate tracking to

occur on less powerful computers.

Although the final system use case involves an active agent, the current control scheme

is more reflective of the laboratory environment. In the field, the system assumes a nearby

source of known isotope. From this starting point, the agent can observe the system output

to determine in which direction to travel based on the nuclear detector prediction. As she

travels, the agent triggers the visual systems to operate, which automatically detect and

track possible targets on screen, making a prediction of the most likely carrier. As the

environment changes due to crowd or traffic movement relative to the agent, she repeats this

64

process while drawing nearer to the source, attempting to keep the most likely carrier and

source direction in front of her. When these data agree, it is up to the agent to address the

found source. In the lab, individual algorithms and system components can be trained and

evaluated separately using terminal or IDE control of the program via an extensive list of

functions and options.

4.1.1 Nuclear Directionality

The wearable detector setup described in Chapter 2 provides a predicted angle of the source

relative to the detector, along with a corresponding estimate of the error, all in the form

of an angular probability distribution. This information is extracted from detector count

rate data using gradient boosting regression regardless of the detector setup. The direction

estimation algorithm must be trained for any given detection setup, but the design remains

the same beyond the number of input features. This part of the framework is modular, so

that as more accurate methods or more complexity such as isotope identification is added,

the changes are confined to a small part of the program.

4.1.2 Visual Object Tracking

The vision tracking system described in Chapter 3 provides estimates in two complementary

stages. First, an advanced object detection tool works in real time to identify important

objects within the trigger frame, such as vehicles, bags, and people. Currently YOLOv3

performs this object detection. Although YOLOv3 does not perform with the highest

accuracy on the standard Common Objects in Context (COCO) dataset, it does trade-

off with speed to be the best performer in real time. Additionally, the single neural network

is adjustable to scale accuracy and efficiency to the needs of the system. At the present time,

as multiple hardware specifications are used, this functionality is desirable. The individual

results of detection are passed as the initialization bounding boxes and labels to a tracking

algorithm. Next, an object tracker continually returns the position of each object found by

detection. Currently SiamFC performs this object tracking. SiamFC operates with stellar

65

accuracy and robustness on the Visual Object Tracking (VOT) challenge dataset. Both of

these methods are modular, and are only connected via their inputs and outputs.

4.2 Sequential Bayesian Inference

In order to provide the final visual and probabilistic output, sequential Bayesian inference

is used to fuse the source directionality estimate and tracked objects’ positions. Bayesian

inference works using the simple Bayesian equation given in section 1.2.2, but is discussed

further here. Given a field of N objects, consider the event Ei that a certain object i is

carrying the source with a certain probability P (Ei). Let D be the data obtained from the

algorithms, such that P (Ei|D) is the posterior probability of each object guess given the

data. If each object guess hypothesis is assumed to be true, the likelihood P (D|Ei) for a

given angle is retrieved. These pieces are put together using Bayes’ theorem

P (Ei|D) =
P (D|Ei)P (Ei)

P (D)

where P (D) is computed using the law of total probability as

P (D) =
N∑
i=1

P (D|Ei)P (Ei)

This entire process is not static, but instead iterates dynamically for each data input step.

In the first case, equal priors P (Ei) = 1/N are assumed. The posterior probabilities are

calculated for each object, and then the new priors are set equal to the old posteriors P (Ei) :=

P (Ei|D) where := is the assignment operator. This process continues until a reset from equal

priors occurs, or until the algorithm is halted.

Here is a detailed description of the process over two iterations which match the

information in Table 4.1. Consider three people moving around the detector, where person 1

is carrying the source. Equal prior probabilities are assumed to start, and the angles of the

pedestrians are given relative to the source angle, such that 0◦ is the source angle. In the

first iteration, objects 2 and 3 are equally spaced on either side of the estimated source angle,

66

Table 4.1: This table shows two iterations of Bayesian updating for three objects. Starting
with equal priors, the angle relative to the source is given for each object at each step, and
the corresponding posteriors are calculated as above using Bayes’ theorem.

i P (Ei) D1 P (D1|Ei) P (D1) P (Ei|D1) D2 P (D2|Ei) P (D2) P (Ei|D2)
1 0.33 0◦ 0.7 0.33 0.7 0◦ 0.7 0.55 0.89
2 0.33 −45◦ 0.15 0.33 0.15 −90◦ 0.05 0.55 0.01
3 0.33 45◦ 0.15 0.33 0.15 20◦ 0.35 0.55 0.1

resulting in equal likelihoods and posterior probabilities P (Ei|Di). These prior probabilities

are then assigned as the priors during the second iteration. At this point, the pedestrians

have traveled rotationally relative to the source, resulting in three different likelihoods. The

final posterior probabilities are now an aggregate of the prior probabilities and both sets of

likelihoods.

4.3 Results

Over time, this fusion method becomes more confident about the source carrier. This occurs

even under challenging conditions, with low accuracy from the directional estimator. Table

4.2 shows the number of iterations the algorithm takes to reach 80% confidence. These

results assume five possible carriers are present: one holding the source, and four standing

all together at various degrees of separation from the source. All carriers are standing still

throughout. With a high accuracy of 10 degrees, the confidence quickly converges. More

important, however, is the result at a low accuracy of 50 degrees. In this case, it is possible

to eliminate possible carriers just 45 degrees from the source after only six iterations.

Table 4.2: The fusion algorithm takes multiple iterations to reach 80% confidence when
five possible carriers are present at a given angular split from each other.

RMSE
10◦ 25◦ 50◦

S
p
li
t 10◦ 6 43 60

30◦ 1 5 14
45◦ 1 1 6

67

A few simulations and challenge experiments are presented to evaluate the effectiveness

of this fusion method. In the first three, a Gaussian distribution as in Figure 4.2 is used to

calculate the likelihood values for each source as the sequence runs, but the results are not

retained across frames. In the final example, the posterior values from the previous frame

are used as the priors for the next frame.

The first is an orbit simulation, shown in Figure 4.3, where all of the angle and position

data are set programatically at startup. The red planet carries the source around the small

black detector. Over the course of the ten second video, the system becomes more confident.

In the next two examples the individuals are tracked manually and a fabricated source is

placed on one individual’s center of mass. Four sequential screenshots are shown from each

clip sequence, taken from music videos by Beyonce and OK Go. Sequence one, “White

Knuckles”, is shown in Figure 4.4, while sequence two, “All the Single Ladies”, is shown in

Figure 4.5. For both of these results the visual display of angle is approximated manually.

The final simulation, shown in Figure 4.6, uses the real tracking results from YOLOv3 and

SiamFC. The confidence values are presented over the head of each possible carrier; the

results are calculated as if suspect with a white outline has the source. The directional

estimation capability is assumed to be a Gaussian distribution of variance 50 degrees.

68

Figure 4.2: A Gaussian distribution is used to calculate likelihood for the planets, OK Go,
and Beyonce sequences.

(a) (b) (c) (d)

Figure 4.3: Four frames from a MATLAB simulation of orbiting bodies around a detector.
The red body has the source, and over time the system predictions increase in accuracy.
Video created by Steven Patrick.

(a) (b) (c) (d)

Figure 4.4: Four frames from Ok Go’s music video ”White Knuckles” [11] are shown.
Dale, outlined in blue, is holding a fabricated source at his center of mass. The tracking
information is input manually. Video created by Steven Patrick.

69

(a) (b) (c) (d)

Figure 4.5: Four frames from Beyonce’s music video ”All the Single Ladies” [12] are shown.
Beyonce is holding a fabricated source at her center of mass. The tracking information is
input manually. Video created by Steven Patrick.

(a) (b) (c) (d)

Figure 4.6: Four frames from the Boston marathon bombing video dataset are shown. The
suspect outlined in a white circle is holding a fabricated source at his center of mass. The
tracking information is calculated using YOLOv3 and SiamFC.

70

Chapter 5

Conclusions and Future Work

Previously, most localization methods assumed a stationary or moving detector setup with

the goal of accurately identifying the coordinates of a stationary source. This thesis takes

a large intermediary step towards localizing a moving source, assisted by advanced object

tracking techniques. The proposed algorithm can estimate carrier likelihood for objects in its

field of view, and is designed to assist a pedestrian agent wearing the backpack detector built

by the IDEAS for WIND research group. This setup takes advantage of recent advances in

detector, camera, and computer technologies to meet the challenging physical limitations.

This thesis made three contributions. First, a generalized directional estimator was

proposed. Second, two state-of-the-art visual object detection and visual object tracking

methods were combined into a single tracking algorithm. Third, those outputs were fused

to produce a real time radioisotope tracking algorithm.

The directional estimator operates via gradient boosting regression to predict radioisotope

direction with a variance of 50 degrees when trained on a simple laboratory dataset. Under

conditions similar to other state-of-the-art methods, the accuracy is comparable, at an

RMSE of 10 degrees. YOLOv3 and SiamFC are chosen by evaluating advanced visual

tracking methods in terms of speed and efficiency across multiple architectures, and in terms

of accuracy on datasets like the Visual Object Tracking (VOT) Challenge and Common

Objects in Context (COCO). YOLOv3 can process images at 20 FPS on a GTX 1070 GPU

while achieving a mAP of 57.9% on the COCO dataset, and SiamFC runs at 10 FPS while

performing with an EAO of 0.235 on the VOT 2016 Challenge. The resultant tracking

71

algorithm from combining their functions operates in real time. The outputs of direction

estimation and visual tracking are fused using sequential Bayesian inference to predict carrier

likelihood. Assuming a group of five possible carriers standing within 10 degrees of each other,

this fusion method identifies the carrier with 80% confidence within one minute, even under

challenging error conditions. Using lab trials evaluated by hand on visual and nuclear data,

and a synthesized challenge dataset using visual data from the Boston Marathon attack, it

can be observed that this prototype system advances the state-of-the-art towards localization

of a moving source.

In order to improve the contributions further, the following improvements are suggested

for further study. More data should be collected under various source isotope and relative

source strength conditions to better train and evaluate the directional estimator. The

regression method used for prediction should be tailored to this dataset. Because there

are constant improvements to the state-of-the-art in visual algorithms and the technical

capabilities of laptop computer systems, the methods chosen in this thesis will need to be

updated to the new state-of-the-art in future years for optimal performance. These methods

should be chosen using the resources presented. Finally, the fusion algorithm requires further

evaluation on challenge data collected using both the camera and detector from the real

backpack system.

72

Bibliography

73

[1] Tungsten, “Alfa beta gamma radiation,” 2005. xii, 3

[2] T. Srivastava, “Getting your clustering right,” 2013. xii, 9

[3] Cyc, “Svm max sep hyperplane with margin,” 2008. xii, 11, 12

[4] G. Saini, “Artificial neural network,” 2017. xii, 15

[5] Glosser.ca, “Colored neural network,” 2013. xii, 16

[6] M. Dunn, “Fourier transforms in image processing,” 2017. xii, 19

[7] F. Orakzai, “Handwritten digits recognition using deep learning,” 2016. xii, 20

[8] M. Kristan, A. Leonardis, J. Matas, M. Felsberg, R. Pflugfelder, L. C. Zajc, T. Vojr,

G. Hger, A. Lukeic, A. Eldesokey, G. Fernndez, . Garca-Martn, A. Muhic, A. Petrosino,

A. Memarmoghadam, A. Vedaldi, A. Manzanera, A. Tran, A. Alatan, B. Mocanu,

B. Chen, C. Huang, C. Xu, C. Sun, D. Du, D. Zhang, D. Du, D. Mishra, E. Gundogdu,

E. Velasco-Salido, F. S. Khan, F. Battistone, G. R. K. S. Subrahmanyam, G. Bhat,

G. Huang, G. Bastos, G. Seetharaman, H. Zhang, H. Li, H. Lu, I. Drummond,

J. Valmadre, J. c. Jeong, J. i. Cho, J. Y. Lee, J. Noskova, J. Zhu, J. Gao, J. Liu,

J. W. Kim, J. F. Henriques, J. M. Martnez, J. Zhuang, J. Xing, J. Gao, K. Chen,

K. Palaniappan, K. Lebeda, K. Gao, K. M. Kitani, L. Zhang, L. Wang, L. Yang,

L. Wen, L. Bertinetto, M. Poostchi, M. Danelljan, M. Mueller, M. Zhang, M. H. Yang,

N. Xie, N. Wang, O. Miksik, P. Moallem, P. V. M, P. Senna, P. H. S. Torr, Q. Wang,

Q. Yu, Q. Huang, R. Martn-Nieto, R. Bowden, R. Liu, R. Tapu, S. Hadfield, S. Lyu,

S. Golodetz, S. Choi, T. Zhang, T. Zaharia, V. Santopietro, W. Zou, W. Hu, W. Tao,

W. Li, W. Zhou, X. Yu, X. Bian, Y. Li, Y. Xing, Y. Fan, Z. Zhu, Z. Zhang, and Z. He,

“The visual object tracking vot2017 challenge results,” in 2017 IEEE International

Conference on Computer Vision Workshops (ICCVW), pp. 1949–1972, Oct 2017. xii,

xiii, 26, 27, 48, 50, 52

[9] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” CoRR,

vol. abs/1804.02767, 2018. xiii, 25, 41, 44, 47

74

[10] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. S. Torr, “Fully-

convolutional siamese networks for object tracking,” CoRR, vol. abs/1606.09549, 2016.

xiii, 28, 52, 53, 54

[11] O. Go, “Ok go - white knuckles - official video.” xv, 69

[12] Beyonc, “Beyonc - single ladies (put a ring on it) (video version).” xv, 70

[13] G. F. Knoll, Radiation detection and measurement / Glenn F. Knoll. Wiley New York,

2nd ed. ed., 1989. 3, 5, 6

[14] J. Shultis and R. Faw, Radiation Shielding. Prentice Hall PTR, 1996. 4

[15] B. D. Ripley, Pattern Recognition and Neural Networks. Cambridge University Press,

1996. 6

[16] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. New York: Wiley,

2 ed., 2001. 8, 9, 10, 15

[17] E. Alpaydin, Introduction to Machine Learning Third Edition. The MIT Press, 2014.

11, 12, 14, 16

[18] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Pearson Education, 4th

ed. ed., 2018. 17, 18, 19, 20

[19] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied

to document recognition,” Proceedings of the IEEE, vol. 86(11):2278-2324, November

1998. 20, 28

[20] R. C. Runkle, M. J. Myjak, S. D. Kiff, D. E. Sidor, S. J. Morris, J. S. Rohrer, K. D.

Jarman, D. M. Pfund, L. C. Todd, R. S. Bowler, and C. A. Mullen, “Lynx: An

unattended sensor system for detection of gamma-ray and neutron emissions from

special nuclear materials,” Nuclear Instruments and Methods in Physics Research

Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 598,

no. 3, pp. 815 – 825, 2009. 21, 22

75

[21] M. Kamuda, J. Stinnett, and C. J. Sullivan, “Automated isotope identification

algorithm using artificial neural networks,” IEEE Transactions on Nuclear Science,

vol. 64, pp. 1858–1864, July 2017. 21, 22

[22] R. Ştefănescu, K. Schmidt, J. Hite, R. C. Smith, and J. Mattingly, “Hybrid

optimization and Bayesian inference techniques for a non-smooth radiation detection

problem,” International Journal for Numerical Methods in Engineering, vol. 111,

pp. 955–982, Sept. 2017. 21, 22

[23] A. A. R. Newaz, S. Jeong, H. Lee, H. Ryu, and N. Y. Chong, “Uav-based multiple

source localization and contour mapping of radiation fields,” Robotics and Autonomous

Systems, vol. 85, pp. 12 – 25, 2016. 21, 22

[24] J. M. Hite, J. K. Mattingly, K. L. Schmidt, R. Stefanescu, and R. Smith, “Bayesian

metropolis methods applied to sensor networks for radiation source localization,” 2016

IEEE International Conference on Multisensor Fusion and Integration for Intelligent

Systems (MFI), pp. 389–393, 2016. 21, 22

[25] E. A. Miller, S. M. Robinson, K. K. Anderson, J. D. McCall, A. M. Prinke, J. B.

Webster, and C. E. Seifert, “Adaptively reevaluated bayesian localization (arbl): A

novel technique for radiological source localization,” Nuclear Instruments and Methods

in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment, vol. 784, pp. 332 – 338, 2015. Symposium on Radiation Measurements and

Applications 2014 (SORMA XV). 21, 22

[26] R. D. Penny, T. M. Crowley, B. M. Gardner, M. J. Mandell, Y. Guo, E. B. Haas,

D. J. Knize, R. A. Kuharski, D. Ranta, R. Shyffer, S. Labov, K. Nelson, B. Seilhan,

and J. D. Valentine, “Improved radiological/nuclear source localization in variable

norm background: An mlem approach with segmentation data,” Nuclear Instruments

and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors

and Associated Equipment, vol. 784, pp. 319 – 325, 2015. Symposium on Radiation

Measurements and Applications 2014 (SORMA XV). 21

76

[27] J. Towler, B. Krawiec, and K. Kochersberger, “Radiation mapping in post-disaster

environments using an autonomous helicopter,” Remote Sensing, vol. 4, no. 7,

pp. 1995–2015, 2012. 22

[28] C. M Combes, P. Dorenbos, C. Eijk, K. W Krak, and H. U Guk, “Optical and

scintillation properties of pure and ce¿-doped cs liycl and li ycl : Ce¿ crystals,” vol. 82,

pp. 299–305, 01 1999. 22

[29] C. Piemonte, R. Battiston, M. Boscardin, G. F. D. Betta, A. D. Guerra, N. Dinu,

A. Pozza, and N. Zorzi, “Characterization of the first prototypes of silicon

photomultiplier fabricated at itc-irst,” IEEE Transactions on Nuclear Science, vol. 54,

pp. 236–244, Feb 2007. 22

[30] R. Forster and T. N. K. Godfrey, “Mcnp- a general monte-carlo code for neutrons and

photon transport,” vol. 240, pp. 33–, 01 1985. 22

[31] M. J. King, B. Harris, M. Toolin, R. M. DuBord, V. J. Skowronski, M. A. LuSoto,

R. J. Estep, S. M. Brennan, B. R. Cosofret, and K. N. Shokhirev, “An urban

environment simulation framework for evaluating novel distributed radiation detection

architectures,” in 2010 IEEE International Conference on Technologies for Homeland

Security (HST), pp. 446–452, Nov 2010. 22

[32] M. J. Willis, S. E. Skutnik, and H. L. Hall, “Detection and positioning of radioactive

sources using a four-detector response algorithm,” Nuclear Instruments and Methods

in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment, vol. 767, pp. 445 – 452, 2014. 23

[33] R. W. S. M. P. G. C. T. Sanjoy Mukhopadhyay, Richard Maurer, “Exploitation of

geometric occlusion and covariance spectroscopy in a gamma sensor array,” 2013. 23

[34] B. Ayaz-Maierhafer, C. G. Britt, A. J. August, H. Qi, C. E. Seifert, and J. P. Hayward,

“Design optimization for a wearable, gamma-ray and neutron sensitive, detector array

with directionality estimation,” Nuclear Instruments and Methods in Physics Research

77

Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 870,

pp. 131 – 139, 2017. 23, 29, 32, 34

[35] H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-based face detection,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 20, pp. 23–38, Jan

1998. 24

[36] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object detection

with discriminatively trained part-based models,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 32, pp. 1627–1645, Sept 2010. 24

[37] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders, “Selective

search for object recognition,” International Journal of Computer Vision, vol. 104,

no. 2, pp. 154–171, 2013. 24

[38] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for

accurate object detection and semantic segmentation,” CoRR, vol. abs/1311.2524,

2013. 24, 28

[39] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Overfeat:

Integrated recognition, localization and detection using convolutional networks,”

CoRR, vol. abs/1312.6229, 2013. 24

[40] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable object detection using

deep neural networks,” CoRR, vol. abs/1312.2249, 2013. 24

[41] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C. Berg, “SSD:

single shot multibox detector,” CoRR, vol. abs/1512.02325, 2015. 24, 43, 44

[42] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once:

Unified, real-time object detection,” CoRR, vol. abs/1506.02640, 2015. 24, 28, 43, 46

[43] C. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, “DSSD : Deconvolutional single

shot detector,” CoRR, vol. abs/1701.06659, 2017. 25, 44

78

[44] S. Bell, C. L. Zitnick, K. Bala, and R. B. Girshick, “Inside-outside net: Detecting

objects in context with skip pooling and recurrent neural networks,” CoRR,

vol. abs/1512.04143, 2015. 25, 44

[45] T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár, “Focal loss for dense object

detection,” CoRR, vol. abs/1708.02002, 2017. 25, 44

[46] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: object detection via region-based fully

convolutional networks,” CoRR, vol. abs/1605.06409, 2016. 25, 44

[47] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie, “Feature

pyramid networks for object detection,” CoRR, vol. abs/1612.03144, 2016. 25, 44

[48] R. B. Girshick, “Fast R-CNN,” CoRR, vol. abs/1504.08083, 2015. 25, 43, 44

[49] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-time object

detection with region proposal networks,” CoRR, vol. abs/1506.01497, 2015. 25, 43,

44

[50] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask R-CNN,” CoRR,

vol. abs/1703.06870, 2017. 25, 44

[51] G. Zhu, F. Porikli, and H. Li, “Beyond local search: Tracking objects everywhere

with instance-specific proposals,” in The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2016. 26, 27

[52] H. Possegger, T. Mauthner, and H. Bischof, “In defense of color-based model-free

tracking,” in The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2015. 26

[53] M. Godec, P. Roth, and H. Bischof, “Hough-based tracking of non-rigid objects,”

Computer Vision and Image Understanding, vol. 117, no. 10, pp. 1245 – 1256, 2013.

26

79

[54] M. Poostchi, H. Aliakbarpour, R. Viguier, F. Bunyak, K. Palaniappan, and

G. Seetharaman, “Semantic depth map fusion for moving vehicle detection in aerial

video,” pp. 32–40, Jul 2016. 26

[55] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental learning for robust visual

tracking,” International Journal of Computer Vision, vol. 77, pp. 125–141, May 2008.

26

[56] D. Chen, Z. Yuan, Y. Wu, G. Zhang, and N. Zheng, “Constructing adaptive complex

cells for robust visual tracking,” pp. 1113–1120, 12 2013. 26

[57] B. Babenko, M.-H. Yang, and S. Belongie, “Robust object tracking with online multiple

instance learning,” vol. 33, pp. 1619–1632, 08 2011. 27

[58] S. Hare, A. Saffari, and P. H. S. Torr, “Struck: Structured output tracking with

kernels.,” in ICCV (D. N. Metaxas, L. Quan, A. Sanfeliu, and L. J. V. Gool, eds.),

pp. 263–270, IEEE Computer Society, 2011. 27, 52

[59] J. Gao, H. Ling, W. Hu, and J. Xing, Transfer Learning Based Visual Tracking with

Gaussian Processes Regression, pp. 188–203. Cham: Springer International Publishing,

2014. 27

[60] A. González, R. Mart́ın-Nieto, J. Bescós, and J. M. Mart́ınez, “Single object long-

term tracker for smart control of a ptz camera,” in Proceedings of the International

Conference on Distributed Smart Cameras, ICDSC ’14, (New York, NY, USA),

pp. 39:1–39:6, ACM, 2014. 27

[61] J. Choi, H. J. Chang, J. Jeong, Y. Demiris, and J. Y. Choi, “Visual tracking using

attention-modulated disintegration and integration,” June 2016. 27

[62] T. Vojir, J. Matas, and J. Noskova, “Online adaptive hidden markov model for multi-

tracker fusion,” CoRR, vol. abs/1504.06103, 2015. 27

[63] M. Maresca and A. Petrosino, “Matrioska: A multi-level approach to fast tracking by

learning,” in Image Analysis and Processing ICIAP 2013, vol. 8157 of Lecture Notes

in Computer Science, pp. 419–428, Springer Berlin Heidelberg, 2013. 27

80

[64] G. Nebehay and R. P. Pflugfelder, “Clustering of static-adaptive correspondences for

deformable object tracking,” in IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pp. 2784–2791, 2015.

27

[65] T. Voj́ı̌r and J. Matas, The Enhanced Flock of Trackers, pp. 113–136. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2014. 27

[66] M. E. Maresca and A. Petrosino, Clustering Local Motion Estimates for Robust and

Efficient Object Tracking, pp. 244–253. Cham: Springer International Publishing, 2015.

27

[67] T. Voj́ı̌r and J. Matas, “Robustifying the flock of trackers,” in CVWW ’11: Proceedings

of the 16th Computer Vision Winter Workshop, (Inffeldgasse 16/II, Graz, Austria),

pp. 91–97, Graz University of Technology, February 2011. 27

[68] T. Vojir, J. Noskova, and J. Matas, Robust Scale-Adaptive Mean-Shift for Tracking,

pp. 652–663. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. 27

[69] J. Valmadre, L. Bertinetto, J. F. Henriques, A. Vedaldi, and P. H. S. Torr, “End-to-end

representation learning for correlation filter based tracking,” 2017. 27

[70] M. Kristan, A. Leonardis, J. Matas, M. Felsberg, R. Pflugfelder, L. ehovin,

T. Vojr, G. Hger, A. Lukei, G. Fernandez Dominguez, A. Gupta, A. Petrosino,

A. Memarmoghadam, A. Garcia-Martin, A. Sols Montero, A. Vedaldi, A. Robinson,

A. Ma, A. Varfolomieiev, and Z. Chi, “The visual object tracking vot2016 challenge

results,” pp. 777–823, 10 2016. 27

[71] M. Danelljan, G. Hger, F. Khan, and Felsberg, “Learning spatially regularized

correlation filters for visual tracking,” International Conference on Computer Vision,

2015. 28

[72] E. Gundogdu and A. Alatan, “Spatial windowing for correlation filter based visual

tracking,” ICIP, 2016. 28

81

[73] M. Danelljan, G. Hger, F. Khan, and M. Felsberg, “Accurate scale estimation for

robust visual tracking,” Proceedings of the British Machine Vision Conference BMVC,

2014. 28

[74] K. Zhang, L. Zhang, Q. Liu, D. Zhang, and M. Yang, “Fast visual tracking via dense

spatio-temporal context learning,” ECCV, 2014. 28

[75] G. Roffo and S. Melzi, “Online feature selection for visual tracking,” BMCV, 2016. 28

[76] A. Montero, J. Lang, and R. Laganiere, “Scalable kernel correlation filter with sparse

feature integration,” : The IEEE International Conference on Computer Vision

(ICCV) Workshops, pp. 24–31, December 2015. 28

[77] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and P. Torr, “Staple:

Complementary learners for real-time tracking,” CVPR, 2016. 28

[78] M. Felsberg, “Enhanced distribution field tracking using channel representations,” Vis.

Obj. Track. Challenge VOT2013, In conjunction with ICCV2013, 2013. 28

[79] M. Danelljan, A. Robinson, F. Shahbaz Khan, and M. Felsberg, “Beyond correlation

filters: Learning continuous convolution operators for visual tracking,” ECCV, 2016.

28, 52

[80] M. Tang and J. Feng, “Multi-kernel correlation filter for visual tracking,” ICCV, 2015.

28

[81] C. Ma, J. Huang, X. Yang, and M. Yang, “Hierarchical convolutional features for visual

tracking,” ICCV, 2015. 28

[82] A. Lukezic, T. Voj́ır, L. Cehovin, J. Matas, and M. Kristan, “Discriminative correlation

filter with channel and spatial reliability,” CoRR, vol. abs/1611.08461, 2016. 28, 52

[83] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in Neural Information Processing Systems

25 (F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds.), pp. 1097–1105,

Curran Associates, Inc., 2012. 28

82

[84] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” CoRR,

vol. abs/1409.4842, 2014. 28

[85] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” CoRR, vol. abs/1409.1556, 2014. 28

[86] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

CoRR, vol. abs/1512.03385, 2015. 28

[87] K. Zhang, W. Zuo, S. Gu, and L. Zhang, “Learning deep CNN denoiser prior for image

restoration,” CoRR, vol. abs/1704.03264, 2017. 28

[88] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual

Recognition Challenge,” International Journal of Computer Vision (IJCV), vol. 115,

no. 3, pp. 211–252, 2015. 28, 42

[89] N. Wang, S. Li, A. Gupta, and D. Yeung, “Transferring rich feature hierarchies for

robust visual tracking,” CoRR, vol. abs/1501.04587, 2015. 28

[90] S. Hong, T. You, S. Kwak, and B. Han, “Online tracking by learning discriminative

saliency map with convolutional neural network,” in Proceedings of the 32nd

International Conference on Machine Learning (F. Bach and D. Blei, eds.), vol. 37

of Proceedings of Machine Learning Research, (Lille, France), pp. 597–606, PMLR,

07–09 Jul 2015. 28

[91] H. Nam and B. Han, “Learning multi-domain convolutional neural networks for visual

tracking,” in The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2016. 28, 52

[92] H. Nam, M. Baek, and B. Han, “Modeling and propagating cnns in a tree structure

for visual tracking,” CoRR, vol. abs/1608.07242, 2016. 28

83

[93] L. Wang, W. Ouyang, X. Wang, and H. Lu, “Visual tracking with fully convolutional

networks,” in Proceedings of the 2015 IEEE International Conference on Computer

Vision (ICCV), ICCV ’15, (Washington, DC, USA), pp. 3119–3127, IEEE Computer

Society, 2015. 28

[94] Z. Chi, H. Li, H. Lu, and M. Yang, “Dual deep network for visual tracking,” CoRR,

vol. abs/1612.06053, 2016. 28

[95] C. Sun, H. Lu, and M. Yang, “Learning spatial-aware regressions for visual tracking,”

CoRR, vol. abs/1706.07457, 2017. 28, 52

[96] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and P. H. S. Torr, “Staple:

Complementary learners for real-time tracking,” CoRR, vol. abs/1512.01355, 2015.

29, 52

[97] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona,

D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO: common objects in

context,” CoRR, vol. abs/1405.0312, 2014. 42

[98] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman, “The pascal visual object classes challenge: A retrospective,”

International Journal of Computer Vision, vol. 111, pp. 98–136, Jan. 2015. 42

[99] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” CoRR,

vol. abs/1612.08242, 2016. 43, 44, 46

[100] Y. Wu, J. Lim, and M.-H. Yang, “Object tracking benchmark,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 37, pp. 1–1, 09 2015. 48

[101] A. W. M. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and

M. Shah, “Visual tracking: An experimental survey,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2014. 48

[102] M. Danelljan, G. Bhat, F. S. Khan, and M. Felsberg, “ECO: efficient convolution

operators for tracking,” CoRR, vol. abs/1611.09224, 2016. 52

84

[103] P. Senna, I. N. Drummond, and G. S. Bastos, “Real-time ensemble-based tracker with

kalman filter,” in 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images

(SIBGRAPI), pp. 338–344, Oct 2017. 52

[104] E. Gundogdu and A. A. Alatan, “Good features to correlate for visual tracking,”

CoRR, vol. abs/1704.06326, 2017. 52

[105] T. McLaughlin and M. Hosenball, “Boston bomb suspect spotted on video, no arrest

made,” Reuters, Apr 2013. 54

85

Vita

Elliot Greenlee was born and raised in Knoxville, Tennessee. He attended Webb High School

before starting college at the University of Tennessee in Fall 2013. During his bachelor’s

degree, Elliot gave tours as an engineering ambassador, studied abroad in London, and

worked multiple internships, including a semester in Dallas, Texas. He also helped to start

VolHacks, a student run hackathon on campus. For his senior design project, Elliot worked

on a drone which could navigate indoors by following a person.

After earning a degree in computer science in 2016, Elliot began work on his master’s

degree as a Bodenheimer Fellow, focusing on machine learning and computer vision. During

this time, he also worked at Oak Ridge National Labs as a researcher on a forensic security

project. Elliot has presented work in New York City, Washington D.C., and Sydney,

Australia. He is moving to Nashville to start work this summer.

86

	Real Time Fusion of Radioisotope Direction Estimation and Visual Object Tracking
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgments
	Abstract

	Table of Contents
	1 Introduction
	1.1 Motivation
	1.2 Background
	1.2.1 Nuclear Detection
	1.2.2 Machine Learning
	1.2.3 Visual Algorithms

	1.3 Related Works
	1.3.1 Nuclear Localization
	1.3.2 Object Detection
	1.3.3 Object Tracking

	1.4 Contributions
	1.5 Thesis Outline

	2 Nuclear Directionality
	2.1 Algorithm Design
	2.2 Results
	2.2.1 Simulated and Real Detector Setups
	2.2.2 Simulation Data
	2.2.3 Lab Data
	2.2.4 Algorithm Design

	3 Visual Object Tracking
	3.1 Object Detection
	3.1.1 Datasets
	3.1.2 Metrics
	3.1.3 Choosing YOLOv3

	3.2 Object Tracking
	3.2.1 Datasets
	3.2.2 Metrics
	3.2.3 Choosing SiamFC

	3.3 Results
	3.3.1 Data
	3.3.2 Object Detection
	3.3.3 Object Tracking Results
	3.3.4 Multi-Object Tracking

	4 Active Tracking System
	4.1 System Overview
	4.1.1 Nuclear Directionality
	4.1.2 Visual Object Tracking

	4.2 Sequential Bayesian Inference
	4.3 Results

	5 Conclusions and Future Work
	Bibliography
	Vita

