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Abstract

Due to the advancements in the Information and Communication Technologies field in the
modern interconnected world, the manufacturing industry is becoming a more and more
data rich environment, with large volumes of data being generated on a daily basis, thus
presenting a new set of opportunities to be explored towards improving the efficiency and
quality of production processes.

This can be done through the development of the so called Predictive Manufacturing
Systems. These systems aim to improve manufacturing processes through a combination
of concepts such as Cyber-Physical Production Systems, Machine Learning and real-time
Data Analytics in order to predict future states and events in production. This can be used
in a wide array of applications, including predictive maintenance policies, improving quality
control through the early detection of faults and defects or optimize energy consumption,
to name a few.

Therefore, the research efforts presented in this document focus on the design and devel-
opment of a generic framework to guide the implementation of predictive manufacturing
systems through a set of common requirements and components. This approach aims
to enable manufacturers to extract, analyse, interpret and transform their data into ac-
tionable knowledge that can be leveraged into a business advantage. To this end a list
of goals, functional and non-functional requirements is defined for these systems based
on a thorough literature review and empirical knowledge. Subsequently the Intelligent
Data Analysis and Real-Time Supervision (IDARTS) framework is proposed, along with
a detailed description of each of its main components.

Finally, a pilot implementation is presented for each of this components, followed by the
demonstration of the proposed framework in three different scenarios including several use
cases in varied real-world industrial areas. In this way the proposed work aims to provide
a common foundation for the full realization of Predictive Manufacturing Systems.

Keywords: Predictive Manufacturing Systems, Cyber-Physical Systems, Data Analytics
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Resumo

Com os avanços no campo das Tecnologias de Informação e Comunicação no mundo
interligado atual, a indústria de manufatura está a tornar-se cada vez mais um ambiente
rico em dados, com volumes cada vez maiores a serem gerados diariamente, apresentando
assim um enorme potencial para a exploração de novas soluções que visem o aumento da
eficiência e da qualidade dos processos de produção.

Isto pode ser conseguido através do desenvolvimento dos chamados Sistemas Preditivos
de Manufatura. Estes sistemas têm como objetivo melhorar os processos de manufatura
através da combinação de conceitos tais como Sistemas Ciber-Físicos de Produção,machine
learning e análise de dados em tempo real, de forma a prever estados e eventos futuros da
produção. Este conhecimento pode ser usado em diversas aplicações, incluindo políticas
de manutenção preditiva, controlo de qualidade através da deteção antecipada de falhas
ou defeitos ou otimização energética, por exemplo.

O trabalho de investigação proposto neste documento foca o desenho e desenvolvimento
de uma framework generica para guiar a implementação de sistemas preditivos de manu-
fatura através de um conjunto de requisitos e componentes comuns. Esta abordagem visa
capacitar os fabricantes a extrair, analisar, interpretar e transformar os seus dados em
conhecimento sobre o qual consigam atuar transformando-os em valor acrescentado para
o seu negócio. Para este efeito é definida uma lista de objetivos, bem como de requisitos
funcionais e não-funcionais para estes sistemas baseada numa revisão aprofundada da
literatura. Subsequentemente é proposta a framework de Análise de Dados e Supervisão
em Tempo-Real Inteligente (IDARTS), acompanhada de uma descrição detalhada dos seus
componentes.

Para finalizar, uma implementação piloto é apresentada para cada um destes componentes,
seguida da demonstração da framework proposta em três cenários distintos, incluindo
diversos casos de estudo em variadas áreas industriais. Desta forma o trabalho proposta
providencia uma base comum para a realização completa de sistemas preditivos de manu-
fatura modernos.
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Introduction

1.1 Background

Over the past few decades manufacturing has undergone several profound changes, with new
market trends obligating manufacturers to steadily shift from the popular mass production
concept to highly dynamic and flexible production lines.

Due to the increasing market competitiveness and the growing demand for highly cus-
tomized products, with many variants and fluctuating demand for each one, companies
are required to quickly adapt and adjust to new business opportunities in order to survive.
As a direct consequence, manufacturing systems are required to be more and more agile
in order for manufacturers to thrive and prosper in such a competitive environment rid-
dled with unpredictable changes, empowering them to rapidly and effectively react to the
changing markets driven by the increasing demand for customization.

Traditionally, conventional manufacturing architectures rely entirely on a fully centralized
control system, in which a central entity completely governs the decision making process.
While hierarchical approaches can potentially introduce optimizations at the control system
level at the cost of having massive processing entities, the associated processing time greatly
increases as the system’s structure and size grow, sacrificing other relevant performance
indicators, such as the system’s adaptability, responsiveness and agility.

However, more recently the continued increase in the demand for customized products,
often to the extreme (a different product for each customer), which are in turn getting
more and more complex and varied in regards to their application domain, has translated
into shorter changeover times and product life cycles, moving further and further away
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CHAPTER 1. INTRODUCTION

from the idea of standardized mass production, towards one of mass customization in-
stead (Nagorny, Colombo, & Schmidtmann, 2012). Due to this, the emerging market
requirements cannot be met by simply using the conventional manufacturing systems, gen-
erally based on hierarchical architectures with centralized decision-making, accompanied
by hard-connected, non-interchangeable layouts.

These new business forms, reliant on a desire for a strong collaboration between suppliers
and customers, impose further challenges to the shop floor, making older approaches
unsuitable for this new reality (Frei, Barata, & Onori, 2007). All of this has culminated in
the emergence of several different manufacturing paradigms, in an attempt to meet these
new requirements for flexibility, agility and reconfigurability, among which are included
Holonic Manufacturing System (HMS), Reconfigurable Manufacturing Systems (RMS) and
Evolvable Production System (EPS). These emergent paradigms inspired a considerable
amount of work that once associated with the rising of multi-agent technologies bore
fruit to varied research efforts, such as the HMS-based ADACOR architecture (Leitão &
Restivo, 2006), EPS focused FP6 EUPASS and FP7 IDEAS (Onori, Lohse, Barata, &
Hanisch, 2013) and the RMS centric FP7 PRIME (A. D. Rocha, Barata, & Orio, 2015),
which contributed significantly by showcasing actual implementations of the theoretical
principles advocated by these paradigms.

Simultaneously, the increasing complexity of the manufacturing systems and the need
to cope with rapidly changing production environments showcased the importance of
employing a predictive manufacturing approach, where an early detection of potential
failures using data analytics and leveraging the large volumes of manufacturing data being
generated can help preventing unscheduled shutdowns and reducing some production
costs. This is particularly interesting due to the recent advances made in Information and
Communication Technology (ICT) with novel approaches in the fields of Machine Learning
(ML), cloud computing and big data. However, most existing solutions are either still built
on the assumption that the layout and requirements of the underlying system will remain
the same, or are too application specific, being unable to be generalized to other domains,
thus presenting a considerable gap to be further investigated.

1.2 Motivation

The research work described herein is centred on studying the topic of PMS. As such, the
focus of this study is to assess how these systems can be employed to provide manufacturers
with a business advantage, as well as how they should be implemented in order to support
a wide array of applications and manufacturing environments, including legacy systems.

For this purpose, the first step is to establish a baseline regarding current developments and
applications of PMS. Combining the availability of online digital research repositories with
the advancements in the fields of ML and Natural Language Processing (NLP) in particular,
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Figure 1.1: Relation to other research activities

this process can be improved enabling the analysis of a larger volume of publications in a
fraction of the time it would take to do so manually. On top of this, underlying patterns
and trends in the search space can also be identified, which could have gone unnoticed
when relying on more traditional methods.

Based on this, a refined survey of the research on PMS performed over the last eight years
was conducted, with the intent of identifying the main contributions and more importantly
the corresponding implications for future research which should be taken into account in
the present work. This facilitates the identification of the main gaps and existing challenges
that still need to be resolved. In this case, despite the fact that several approaches have
been proposed over the years spanning across a wide domain of application fields, it is
clear that there is no concrete generic framework that can be used as the guideline to
implement flexible PMS to various scenarios while being fully aligned with the current
Industry 4.0 paradigm.

Therefore, this is the main goal of this dissertation, the proposition of the IDARTS
framework for the development of flexible and scalable PMS solutions for smart factory
environments. This framework aims to serve as the guideline for this implementations,
providing researchers, designers and developers with common goals, requirements and
components with which to build their PMS solutions.

1.3 Relation to Other Research Activities

The present work stems from an evolution across several past experiences, first and foremost
from the author’s previous work as part of his dissertation to obtain the degree of Master
of Science in Electrical and Computer Engineering, and other research efforts across the
years mainly in projects funded by the European Commission from both the FP7 and
Horizon 2020 programmes. This evolution is summarized in Figure 1.1.
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The FP7 IDEAS project (Onori et al., 2013), which concluded in 2013, laid the groundwork
for the implementation of agent-based systems capable of abstracting the shop-floor at
varied levels of abstraction, coordinating its execution at different granularities based on
a System of Systems approach. This aspect of diving the shop-floor into smaller blocks to
reduce its complexity, all the while being able to coordinate the system at both the local
and global level is essential to the implementation of IDARTS-based systems.

Still within the same work programme, FP7 PRIME (A. D. Rocha, Barata, Orio, Santos,
& Barata, 2015) built upon the aforementioned System of Systems approach to design
and implement its multi-agent environments. At its core, PRIME focused two main
functionalities, on the fly reconfiguration and the dynamic monitoring and generation
of new knowledge based on raw data, both adopting a Plug & Produce approach. The
former enables the system to reconfigure the control logic during execution, without the
need to directly interfere with the process control. The latter entails the data collection
and pre-processing to generate new knowledge based on the raw data, while dynamically
adapting to changes on the shop-floor (A. D. Rocha, Peres, Flores, & Barata, 2016). This
contributed to the present work by providing the basis for the CPPS data acquisition and
pre-processing mechanisms, as well as for a possible way to perform adaptation through
self-reconfiguration.

Moving onward to the Horizon 2020 programme, the PERFoRM project is aimed at em-
powering legacy systems with intelligent capabilities typically associated with the Industry
4.0 paradigm. While it still builds upon the results of previous projects, including for the
development of MAS-based CPPS (R. S. Peres, Rocha, & Barata, 2017), a much larger
emphasis is put into the integration and deployment challenges of this type of applications
(Angione et al., 2017). This contributes to the development of IDARTS in regards not
only to the integration of the different modules encompassed in the framework, but also in
the integration and deployment of the solution in real production scenarios, particularly
those comprising legacy systems.

Finally, the H2020 GO0D MAN project entails the development of an agent-based CPPS
to perform quality control on multi-stage production systems, based on the Zero Defect
Manufacturing (ZDM) paradigm. The GO0D MAN system will be implemented follow-
ing the IDARTS framework, thus providing an example of a possible implementation
of the framework for quality control, combining smart inspection tools, and agent-based
CPPS, complex data analytics through ML and knowledge management. G0OD MAN
also contributes through its industrial use cases, which can serve as case studies for the
present work. These are focused on a varied array of industrial areas, namely professional
appliances, automotive and turned metal components.

To better illustrate IDARTS’ contributions to and from these related research activities, a
radar chart is provided in Figure 1.2. For this purpose each contribution was given a score
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Figure 1.2: Contributions Related to European Research Projects

between zero and five, from "Low"to "Very High"respectively, representing the degree of
significance of the contribution.

In summary, the IDARTS framework builds upon the results from past and current research
work in an effort to combine the core elements that constitute PMS into a single, unified
and generic framework. The main goal is for this framework to provide the foundation and
guidelines for the implementation of PMS, acting as a catalyst for the appearance of new
and innovative predictive manufacturing solutions and thus contributing to the further
advancement of the field.

1.4 Document Organization

This dissertation is divided into seven chapters, being structured as follows. After this
short introductory section, Chapter 2 poses the research questions and the respective
hypotheses which will guide the work described ahead, providing a brief rationale for each
of them. In addition, it also presents a short discussion about design science, along with
an explanation of the adopted design science research methodology.
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This is followed by Chapter 3, titled “Literature Review”, which aims to first and foremost
establish a baseline in regards to the state of the art in the field of predictive manufacturing.
These baseline results are analysed and used to conduct a refined survey of the current state
of predictive manufacturing applications. The chapter concludes with the introduction
of two supporting concepts which are pivotal for the understanding of the present work,
more specifically the case of Industry 4.0 and that of PMS.

With the basic concepts already established, Chapter 4 entails two of the main contribu-
tions of the present work, starting by introducing the reader to the topic of requirements
engineering, which is followed by the specification of the IDARTS goals and requirements,
closing the chapter with the full description of the framework’s design and its components.

Afterwards, Chapter 5, "Implementing IDARTS" proposes a pilot implementation of the
IDARTS framework, aimed at serving as an example of a possible way to implement
each of the framework’s components, their interfaces and functionalities, as well as all the
communications necessary to ensure their interoperability.

Being the second to last, Chapter 6 "Results and Validation" deals with the demonstration
of variations of IDARTS implementations in different scenarios, showcasing the generic
nature of the framework’s design and mapping each of them to the requirements defined
in Chapter 4.

Lastly, Chapter 7 concludes this dissertation by first summarizing the main contributions
achieved by the work described herein, followed by the verification of the hypotheses for-
mulated in Chapter 2, closing with a listing of peer-reviewed contributions for knowledge
transfer associated with the present research and discussing current limitations, opportu-
nities and the future outlook regarding this topic.
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Research Problem

In current literature there can be found a vast number of cases of research around the topic
of data-driven support for manufacturing environments. A considerable effort is being put
into capitalizing on the growing amount of data being generated in this industrial sector
to provide insights and a business-edge to manufacturers, mostly at the level of the cyber
world and the array of solutions around artificial intelligence that enable this.

Still, there is a clear lack of a commonly adopted view and set of guidelines towards the
development of such predictive systems, particularly when accounting for aspects such as
scalability and ease of migration and replication beyond the laboratory experiments or
relatively enclosed case studies. Moreover, as it will be later discussed in Chapter 3, in
most cases currently available solutions for these data-driven, predictive decision support
systems are very monolithic and rigid, which contrasts heavily with the reality of the
needs of a modern manufacturing systems in the context of a smart factory. These needs
encompass the capability to adapt to changing market requirements in an agile and flexible
fashion, along with the capacity to quickly scale capacity to meet floating demands while
dealing with the inherent growing complexity of such systems through an easily manageable
and robust approach.

Building from this, the current chapter introduces the reader to the research questions that
guide the research work documented herein, along the hypotheses formulated as a potential
answer to achieve explicit and innovative solutions to this problem. Additionally, the
adopted research methodology based on Design Science (DS) is discussed, introducing the
different activities involved in the research process described in this document and guiding
the reader through the creation of the artefacts that constitute the main contributions of
this work to the field of predictive manufacturing.
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2.1 Research Questions and Hypotheses

Based on the motivation outlined in Section 1.2, the present chapter defines the research
questions which were designed with the purpose of assisting and guiding the proposed
research, along with the respective hypotheses formulated for each one. Considering the
background presented in the first chapter, the following research question can be raised:

RQ1: In which way can the core components and principles of a Predictive Manufacturing
System be identified, in the context of enabling it to provide a business advantage to
manufacturers, while coping with the current market requirements of flexibility and agility?

Rationale: The goal of this first research question is to guide the literature review and gap
identification in regards to PMS, ultimately resulting in a set of principles and core features
that should be commonly encompassed in PMS to be incorporated into the framework
resulting from the proposed research.

The first research question will be addressed through the following hypothesis:

H1: If a baseline is established based on the current PMS literature, followed by a refined
survey of current applications of PMS in the context of smart factory environments, suffi-
cient information will be acquired to thoroughly identify common and critical requirements
and components that should be encompassed in modern PMS.

From this, a second research question can be raised pertaining to the design of a generic
framework encompassing such characteristics:

RQ2: How can we define a generic framework to guide the full realization of an intelligent,
proactive and connected PMS solution for smart factory environments?

Rationale: The second research question deals with the formalization of the framework
encompassing the features that will result directly from the verification of H1.

H2: If the common ground between existing narrow approaches is studied, it will be possible
to formalize a generic PMS framework based on the combination of recent advancements
in regards to Cyber-Physical Production Systems, data analytics and data management.
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From this framework implementations of PMS can be generated to be employed in varied
application fields.

These will be the main research questions guiding the work described in the coming
chapters.

2.2 Research Methodology

The research described herein aims to expand the current body of knowledge on the topic
of PMS. The research methodology adopted for the proposed work follows the consensus-
based DSRM proposed in (Peffers, Tuunanen, Rothenberger, & Chatterjee, 2007).

The topic of PMS, as an extension of information systems, is an interdisciplinary, applied
research field that often borrows and applies theories, concepts and practices from other
areas such as computer science and the social sciences to solve problems related to ICT.
Despite this, most commonly adopted research paradigms used to conduct, produce and
publish research in this field continue to follow traditional descriptive research borrowed
from the social and natural sciences. Contrastingly, design is a well accepted research
paradigm in engineering fields, as it pertains to the creation of explicitly applicable solutions
to problems.

In this context, DS creates and evaluates ICT artefacts aimed at solving organizational
problems, involving a rigorous process to design such artefacts, to make research contribu-
tions, evaluate the designs and to disseminate the results adequately (Hevner, March, Park,
& Ram, 2004). These artefacts can include constructs, models, frameworks, methods and
instantiations, or even properties of technical, social or information resources. Essentially,
this definition of artefact includes any object designed which adds value or provides some
utility in solving a given research problem.

2.2.1 Design Science and Predictive Manufacturing Systems

Sound scientific foundations of design are the cornerstone of our comprehension of the
problem and solution domains that enables real-world research impact to be achieved.
Design Science Research (DSR) aims to contribute to the existing knowledge base through
the creation of innovative artefacts that are directed towards the solving of real-world
problems and the improvement of the environment in which they are instantiated. Given
this premise, the main outputs from DSR include not only newly designed artefacts, but
also a more complete understanding of how these artefacts add value to their respective
application contexts (Hevner et al., 2004). Therefore it is extremely important to carry
out a search process for a design solution that complies with the problem constraints
(such as the requirements) while achieving the desired goals (such as business needs and
opportunities).
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Given the inherent complexity of manufacturing environments and the agile pace at which
they need to adapt to cope with new market trends and paradigms, it is natural to steadily
move towards more adaptive solution search approaches based on fast design iterative
cycles of building and refining solution artefacts.

Particularly for data science research, in which one can include data-driven PMS, it is
important to ground the research efforts in interesting questions that explore the inherent
variation in the data to gain competitive insights into the underlying behaviours, trans-
lating these to an improvement in decision making through the design of systems that
automatically and easily support these processes (Mullarkey, Hevner, Gill, & Dutta, 2019).

2.2.2 Design Science Research Methodology

The DSRM proposed in (Peffers et al., 2007) consists in a six-step nominally sequential
iterative process, as represented in Figure 2.1. This methodology builds on prior repre-
sentative research from the field of design science using a consensus-building approach in
order to achieve a commonly accepted framework for carrying research based on design
science.

Figure 2.1: DSRM iterative process. Source: (Peffers, Tuunanen, Rothenberger, & Chat-
terjee, 2007)

According to (Peffers et al., 2007), all of the reference DS research articles presented some
component in the initial stages to define a research problem. Hence, the first activity of
the consensus-based methodology is Problem Identification and Motivation. This activity
defines the specific research problem and attempts to justify the value of a solution. Since
the problem definition will be used to develop an artefact aimed at providing an effective
solution, the authors suggest it may be useful to decompose the problem conceptually to
enable the solution to fully capture its complexity. This should accomplish two things,
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on the one hand it should provide motivation to the researcher and their audience in the
pursuit of the solution and acceptance of the results, while on the other hand it should
help convey the reasoning associated with the researcher’s understanding of the problem.

Typically, to carry out this activity a good knowledge of the state of the problem, as well as
of the importance of its solution are required. In the context of the present work, these are
encompassed in Chapter 3 with the literature review and discussion of current challenges,
gaps and research opportunities concerning PMS.

For the basis of the second activity, some of the reference research incorporated efforts to
transforms the problem into objectives or requirements, while others proposed these were
implicit as part of the data collection and programming tasks. Based on this, the authors
defined the second activity as Definition of the Objectives for a Solution, consisting on
the rational inference of goals from the problem definition and the knowledge of what is
feasible. The goals can be quantitative, referring to conditions in which a given solution
would be better than current ones, or qualitative, which can relate to how an innovative
artefact can support solutions to problems not previously addressed.

This definition of the objectives is presented in Chapter 4, taking shape as the generals
goals and respective non-functional requirements that guide the design of the proposed
PMS framework.

A common point across the reference work in different disciplines is the core of DS, which
is encapsulated in the third activity designated as Design and Development, dealing with
the creation of the innovative artefact. As previously stated, these artefacts can be broadly
defined constructs, models, methods or instantiations, as well as new properties of technical,
social and/or informational resources.

From a conceptual standpoint, a DSR artefact is any designed object in which a research
contribution is embedded in the design itself. Therefore, this third activity deals not only
with the determination of the artefact’s desired functionality and its architecture, but also
its actual creation. Based on this definition, this activity can be mapped to Chapters 4
and 5, regarding the sections focusing on the framework’s functional requirements, design
and pilot implementation.

Regarding the following stages (corresponding to Chapter 6), the solutions analyzed by
the authors varied from single demonstrations to prove a given artifact, to more formal
evaluations of it, therefore both phases are included in the DSRM. Consequently, the fourth
activity deals with the Demonstration of the artifact to solve one or more instances of the
problem through its use in either simulation, a case study or other appropriate activity. For
this effect an effective knowledge of how to use the artifact to solve said problem is required.
Following this same logic, the fifth activity relates to Evaluation, meaning the observation
and measurement of how well the artifact addresses a solution to the problem. This step can
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be carried out in a multitude of ways depending on the problem at hand and on the artifact’s
nature itself. A few examples include the comparison between the artifact’s functionality
and the objectives set out during the second activity, objective quantitative performance
measures such as items produced, assessing the stakeholders’ satisfaction through surveys,
direct feedback or even simulations. It can also comprise quantifiable indicators of system
performance such as response time, availability or throughput, including any appropriate
empirical evidence or proof.

Once this activity is concluded, researchers can decide based on the evaluation whether or
not it is necessary to further improve the effectiveness of the artifact towards the solution
to a given problem, meaning that an iteration back to the third activity is required, or
move on the the last stage and relay such improvement to future research efforts.

To finalize the DSRM, the Communication activity targets the dissemination of both the
problem and the artifact, first concerning the importance of the former, and the innovation,
rigor and effectiveness of the latter to peers and other relevant audiences such as industry
professionals. This step is addressed later in 6 regarding the transfer of knowledge and
academic results.

One aspect that should be highlighted and reinforced about the adopted DSRM is that
while the process is structured in a nominally sequential order, there is no obligation
or expectation that the research should always be conducted sequentially from the first
activity to the last. In fact, several points of entry for research are considered, meaning
that it may virtually start at practically any step and proceed from there. The proposed
sequence can be followed strictly if the research stems from the observation of a problem or
from future research suggestions from appropriate literature, but for instance a design-and-
development-centered approach would start from the third activity. This could originate
from an artifact that has not yet been formally expressed as a solution for an explicit
problem domain in which it will be used or further improvements or extensions to its
functionality in order to do so if it has already been used to solve a different problem. In
such cases it is important to work backward to ensure that rigor is applied to the design
process retroactively.
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Literature Review

As a starting point to find the answers for the research questions formulated in Section 2.1,
a systematic literature review was conducted in order to create a solid foundation to work
towards the realization of a PMS framework. Thus, this section provides a review on
the applications of predictive data analytics to cross-domain and multidisciplinary areas
comprised in the manufacturing sector.

The review was conducted based on the assumption that most current predictive analytics
being researched or applied to manufacturing systems employ some form of ML techniques
in order to predict future states or outcomes of the system.

To increase the industrial adoption of predictive manufacturing solutions and enable them
to have an actual impact in the industry, it is first and foremost necessary to clearly identify
its real-life benefits, as well as the existing gaps that must be filled to achieve this. Hence,
this process will provide crucial insight into towards answering RQ1.

3.1 Establishing the Baseline

With the plethora of currently existing online research repositories and search engines (e.g.
Web of Science, ScienceDirect, Google Scholar) providing access to digital publications,
it is possible to take advantage of automated techniques (Yasin, Mohammad Yasin, &
Mohammad Yasin, 2011) to search a wider range of the existing literature in a much
shorter amount of time and at a much larger depth when compared to more traditional
manual methods.

Furthermore, while these online resources allow users to gather a handful of information
based on simple word matching queries, they do not take into account the underlying
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Table 3.1: Primary search string used for the baseline

Primary Search String

manufactur*
AND
predict*
AND
("data analy*"OR "machine learning"OR "monitor*")

context of the text. More often than not, in most current languages the particular order
in which words or phrases are presented has a major influence in the idea or concept
being conveyed. Therefore, analyzing collocations (a sequence of terms that co-occur often,
becoming established through repeated context-dependent use) is a particularly important
aspect of linguistic analysis.

To this extent, a methodology based on a combination of automated NLP and ML tech-
niques and human screening was employed to analyze a large corpus of digital research
publication abstracts in order to assess the current research interest and emerging trends
around PMS.

3.1.1 Methodology

To enable the establishment of a baseline of the current research in the field of PMS, a
ML/NLP-based methodology consisting in the following steps was used:

• Key Word Search

• Corpus Characterization

• Abstract Grouping

For the first stage, the initial construction of the publication list was performed via a key
word search on the Web of Science repository, contemplating publications ranging between
2012 and 2019. For this purpose, the combination of the terms and Boolean operators
presented in Table 3.1 was used to identify research articles of interest for the base corpus.

In the preliminary search string three main constraints were imposed. The topic of
the publications (as defined by Web of Science), had to encompass some variation of
“Predictive Manufacturing” (accomplished through the use of wildcards, including for
instance “prediction”, “predictive” and “predicting”) and at least one term between some
variation of “data analytics”, “machine learning” and “monitoring”.

This resulted in 1449 publications being identified, which would have been considerably
challenging to analyze manually, particularly when accounting for emerging trends across
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Figure 3.1: Document-Term Matrix (DTM)

the search space and the similarities between documents. To tackle this, an automated
NLP-based approach was used for the search space characterization, identifying latent
structures in the document abstracts. To prepare the corpus for this process, each abstract
was first pre-processed and cleaned following a sequence of steps in Python. Initially, the
words that have no significance in unstructured text, also called stop words (e.g. “a”, “the”
and “in”), were removed in order to optimize the end result. Following this, token N-grams
were constructed consisting of one to three words, stemmed through Porter’s stemming
algorithm (Willett, 2006). Stemming refers to the process of breaking a word down to its
roots, where for instance “challenged”, “challenges” and “challenging” would correspond to
the root “challenge” (Yasin et al., 2011). Afterwards, the abstract list was then converted
to a (Term Frequency-Inverse Document Frequency (TF-IDF)) matrix.

This is achieved by first counting the word occurrences within each abstract, which are then
transformed into a Document-Term Matrix (DTM) (example in 3.1). TF-IDF weighting
is then applied, meaning that words that appear more frequently within an abstract but
not frequently within the corpus receive a higher weighting, considering that these terms
are assumed to have more significance in relation to the characterization of that particular
abstract.

Based on this, the cosine similarity (H.Gomaa & A. Fahmy, 2013) can be measured against
the TF-IDF matrix, generating a measure of similarity between any two abstracts within
the corpus. However, abstract similarity alone is not particularly informative in terms of
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Figure 3.2: Summary report pertaining to the corpus in study from Web of Science

the characterization of the entire search space. It is necessary to identify similar patterns
among the corpus and group them accordingly, so that the emerging trends within the
search space can be identified. To this end, the final step of the methodology is the abstract
grouping, which was performed using a form of K-means clustering. This final step later
enables the informed selection of a wider array of publications to analyze in more depth
for the literature review.

3.1.2 Baseline Analysis Results

The resulting corpus encompassed 1449 publications indexed to the Web of Science, based
on the initial search string shown in Table 3.1. Through the Web of Science repository it
is possible to obtain an overview of the citation report for this corpus, provided in 3.2.

From this summary it is possible to observe that there is a steadily growing interest from
the scientific research community in the topics encompassed within this corpus, evidenced
not only by the increasing number of total publications per year, but also by the similarly
increasing number of citations generated per year, with each individual article currently
generating 5.58 citations on average.

It is also interesting to take a loot at the origin of these publications, both geographically
and in terms of their domain. Regarding the former, Figure 3.3 depicts an overview of the
25 most common origin countries for the publications contemplated in this analysis.
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Figure 3.3: Top 25 origin country distribution of the corpus, extracted from the Web of
Science repository

Figure 3.4: Distribution of publications by domain according to the Web of Science
repository

Concerning the domain (see Figure 3.4), it can be said that a large portion of the pub-
lications stem from the electrical, manufacturing, mechanical and industrial engineering
fields, being also heavily tied to computer science and artificial intelligence, along with
other multidisciplinary areas.

For a more in-depth analysis of the corpus, it is important to go beyond what is readily
made available by the Web of Science repository platform. To get a general idea of the
overall scope of the corpus, as well as to make sure that it matches the term based search
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Figure 3.5: Word Frequency across the Search Space

parameters, the frequency of each term was calculated and can be found in Figure 3.5.

As it can be observed, words such as “data”, “manufacturing”, “monitoring” and “predic-
tion” are among the most frequent, indicating that generally the focus of the publications
is within the goal. Still, by itself this does not provide much insight other than the broad
scope of the corpus. As such, it is also of interest to look at different combinations of
N-grams, particularly bigrams and trigrams (e.g. “big data” and “big data analytics”, to
get a clearer view of particular topics within the abstracts.

Figure 3.6 shows the frequency of bi-grams ranked by a raw frequency score measure,
meaning their occurrence in relation to the document size, so as to not punish bi-grams
occurring in shorter abstracts.

Unsurprisingly, “Machine Learning” appears as the most frequent bigram, which is to be
expected given not only the initial search string, but also the fact that ML models are
known to be widely used to make predictions about data or events which are yet to be
observed. The list appears to suggest that there’s considerable focus in the research of both
existing and new models and algorithms, as implied by the presence of the bigrams “neural
network”, “(support) vector machine”, “deep learning” and “prediction model”. The high
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Figure 3.6: Bigrams Ranked by Raw Frequency Measure

frequency of the term “tool wear” suggests a large emphasis on the fields of maintenance and
monitoring. This assumption is also supported by the presence of several other terms on
list including “condition monitoring”, “monitoring system” and “predictive maintenance”.
Other general research venues appear to include “big data”, “internet (of) things”, “quality
control”, “supply chain” and “energy management”. Similarly, some conclusions can also
be derived from the visualization of the most frequent trigrams found in the corpus. The
list of trigrams scored according to a raw frequency measure is presented in Figure 3.7.

From the trigram list one can conclude that there is a clear reinforcement of the ideas
resulting from the analysis of the bigrams. Once again, there is a large focus on ML
models and algorithms, identified by very frequent variations of “machine learning algo-
rithms/techniques”, as well as of the terms “Artificial Neural Network (ANN)” and “Support
Vector Machine (SVM)”, insinuating a growing popularity of such algorithms in predictive
manufacturing research.

It can also be relevant to perform the same process, but ranking the N-grams using
the Pointwise Mutual Information (PMI) measure instead (Bouma, 2009). Given a pair
of outcomes X and Y, PMI quantifies the discrepancy between the probability of their
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Figure 3.7: Trigrams Ranked by Raw Frequency Measure

coincidence given their joint distribution and their individual distributions. In practical
terms, it provides the means to find collocations in a text corpus, meaning a sequence of
words or terms that co-occur more often than would be expected by chance (e.g. “supply
chain”). The corresponding ranking list of bigrams can be found in Figure 3.8.

Although this list appears to be more scattershot, there is still some additional information
that can be retrieved from it. Particularly, besides the reaffirmation of “supply chain” and
“internet (of) things” as areas of interest, further models are suggested, namely “random
forest” and “(partial) least squares”, as well as an additional application field (“injection
molding”). Following this example, the same process can be done for trigrams, as seen in
Figure 3.9. As it can be observed, the most frequent trigrams are aligned with the previous
findings, with concepts such as “big data analytics”, “prognostics and health management”
and “remaining useful life” being considerably frequent in the corpus. In summary, this
type of N-gram frequency analysis provides some relevant insights for further consideration
during the refinement of the search space. For instance, one can conclude that supply chain
management and Predictive Maintenance (PdM) appear to be two of the major application
areas for this field. Beyond application areas, one can derive for instance relevant fields
such as Big Data Analytics and Prognostics and Health Management (PHM) or even
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Figure 3.8: Bigram Frequency Ranking by PMI score

frequently used algorithms and models such as Random Forest (RF)s, ANN or SVM.

Given this general idea of common terms and apparent research venues present in the
corpus, it is also valuable to look at the relationship between the cited references of each
publication, something that can be done for instance through the creation of a co-citation
map.

Through such a map, key players and publications in the broad field of predictive manu-
facturing can be identified, while also providing assistance in regards to the classification
of the main emerging trends in the field. Hence, a co-citation map illustrating this can be
seen in Figure 3.10, consisting in 100 nodes and 362 edges.

The co-citation map provided in Figure 3.10 was elaborated based on the aforementioned
corpus from the Web of Science repository. The records for the eight year period were
extracted into a CSV file which was used to generate the network edge list in Python.
Afterwards, the data was imported into Gephi (Bastian, Heymann, & Jacomy, 2009) to
generate the visualization and manipulate it to identify the most influential nodes.

Finally, community detection is performed using the Louvain method (Blondel, Guillaume,
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Figure 3.9: Trigram Frequency Ranking by PMI score

Lambiotte, & Lefebvre, 2008), with the resulting communities being attributed a distinct
color in the visualization. From this process, seven main communities can be identified,
each focused on a particular domain.

The community represented in orange (•) focuses mostly on the topic of logistics and
supply chain management in the context of big data and predictive analytics. The main
representative publications include (Gandomi & Haider, 2015) which presents an overview
of concepts and methods related to big data, as well as (Waller & Fawcett, 2013) (Hazen,
Boone, Ezell, & Jones-Farmer, 2014) and (G. Wang, Gunasekaran, Ngai, & Papadopoulos,
2016), focusing on the discussion of research opportunities and applications of predictive
big data analytics in supply chain management, along with relevant challenges such as the
issue of data quality.

The group in dark slate blue (•) is characterized by an emphasis on Cyber-Physical
System (CPS) and cloud computing, particularly considering the application for cloud
manufacturing. From the analysis of the co-citation map it can be said that there are also
clear core publications in this community. Regarding CPS, (Lee, Bagheri, & Kao, 2015),
typically considered a reference article presenting an architecture for CPS in the Industry
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Figure 3.10: Co-citation map for predictive manufacturing corpus being studied

4.0 context, (L. Wang, Törngren, & Onori, 2015) discussing recent advances in CPS for
manufacturing and (Lee, Lapira, Bagheri, & Kao, 2013), summarizing recent advances in
PMS and relating them with big data and CPS. Finally (Xu, 2012) and (D. Wu, Rosen,
Wang, & Schaefer, 2015) focus on the discussion of cloud manufacturing and its role as an
innovative paradigm in digital manufacturing.

Condition monitoring and Remaining Useful Life (RUL) estimation are the main topics of
the community depicted in yellow (•). Some of the more prominent publications include
(Si, Wang, Hu, Chen, & Zhou, 2013), (Saha, Goebel, & Christophersen, 2009) and (P.
Wang & Gao, 2015), dealing with the estimation of RUL in different applications, along
with (Sick, 2002) in which the authors present a literature review of tool wear monitoring
using ANN.

Moving to another large community, the group showcased in magenta (•) is broadly
related with ML in general, its algorithms, techniques and libraries. However, there
is a strong relation to the random forests algorithm, as evidenced by the weight and
connections around (Breiman, 2001). Relevant publications include a comparative study
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on ML algorithms for smart manufacturing (D. Wu, Jennings, Terpenny, Gao, & Kumara,
2017), the paper on the synthetic minority over-sampling technique (Chawla, Bowyer, Hall,
& Kegelmeyer, 2002) and the publications describing the LIBSVM (Chang & Lin, 2011),
WEKA (Hall et al., 2009) and Scikit-Learn (Pedregosa et al., 2012) libraries.

Virtual metrology is another of the topics, pertaining to the community represented in light
violet (•). This refers to methods concerning the prediction of wafer properties based
on machine parameters and sensor data in the semiconductor manufacturing industry.
Through classification and regression techniques, virtual metrology enables manufacturers
to avoid performing the physical measurement of the wafer properties, thus contributing
to the reduction of costs. Reference publications include (Khan, Moyne, & Tilbury, 2007),
(Kang et al., 2009) and (Susto, Pampuri, Schirru, Beghi, & De Nicolao, 2015),dealing with
varied approaches to apply virtual metrology in semiconductor manufacturing.

The small community in dark blue (•) relates to PHM and condition-based maintenance,
thus being closely related to the yellow community dealing with RUL estimation. Some
of the publications highlighted on the co-citation map include (Jardine, Lin, & Banjevic,
2006) and (Y. Peng, Dong, & Zuo, 2010), both providing literature reviews on machine
prognostics towards the implementation of condition-based maintenance.

Lastly, the community represented in dark teal blue (•) is related to the topic of Neural
Networks and Deep Learning in particular for more recent publications, which is natural
given the increase in computational power over the last decade, as well as the advent of
big data technologies and the massive data volumes available nowadays. The community
includes publications by commonly accepted reference authors like Geoffrey Hinton and
Yann LeCun (Hinton & Salakhutdinov, 2006) (LeCun, Bengio, & Hinton, 2015), the first
discussing the aspect of dimensionality reduction of data with neural networks and the
second introducing the concept of deep learning. Additionally, other publications include
an overview on deep learning in neural networks (Schmidhuber, 2015) and the application
of deep neural networks for fault characteristic mining and intelligent diagnosis with big
data (Jia, Lei, Lin, Zhou, & Lu, 2016).

Overall it can be said that this community structure obtained with the Louvain method
is aligned with the findings resulting from the application of NLP techniques to the
aforementioned corpus, with the main research venues being identified in the lists of
bigrams and trigrams presented in Figures 3.6-3.9.

Finally, in accordance with the final step of the methodology, a K-means model was used
for the document clustering, as a way to visualize similarities between different publications
and further detect emerging research trends in the field of predictive manufacturing. K-
Means assumes you know the number of clusters a-priori, so this was determined empirically
as well as with the aid of a hierarchical Ward clustering model to suggest the initial number
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Figure 3.11: Abstract Clustering using a K-Means Model

of clusters to experiment with, until irrelevant or repeated groups started to emerge, having
arrived at a division of eight clusters. The results of this process are illustrated in Figure
3.11. Note that for readability, only a small fraction of the abstract labels was kept in the
illustration as a reference.

Each cluster’s centroid is characterized by its most frequent N-grams, with N ε {1, 2, 3}. In
order to reduce the dimensionality of the data and enable a two-dimensional representation
of the cosine distance between the different abstracts, multidimensional scaling was applied
to the distance matrix, converting it into a two-dimensional array. Therefore, proximity
in this space equates to similarity as determined by the multidimensional scaling of the
cosine distance between abstracts contained within the TF-IDF matrix. To enable a
better understanding of the core concepts upon which each cluster is centered, Table
3.2 summarizes the most relevant N-grams that contribute to characterize each cluster
individually in the feature space along with its coverage, as opposed to the illustrations
provided previously, which portrayed the overall search space.

Based on the information summarized in Table 3.2, it can be inferred that a large portion of
the search space (roughly 50%) is focused on the study of PdM and Condition Monitoring,
two very large topics which dominate the corpus and are considerably related to the
remaining topics.

Following this there’s Quality Control, corresponding to around 12% of the corpus. This
suggests a possible connection between predictive manufacturing techniques and quality
control challenges that are yet to be solved. An example of this could be taking advantage
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Table 3.2: Cluster Characterization and Distribution

Cluster Characterization Search Space %

1 Predictive Maintenance 49.55%
Health Monitoring
Condition Monitoring
Case study
Model predicted

2 Quality Control 12.36%
Process Variability
Process Monitoring
Production Quality
Manufacturing Process

3 Machine Learning 8.87%
Machine Learning Algorithms
Machine Learning Methods
Learning Method
Learning Algorithms

4 Tool Wear 7.98%
Machining Tool
Cutting Tool
Tool Condition
Condition Monitoring

5 Neural Networks 7.87%
Artificial Neural
Artificial Neural Networks
Neural Networks Model
Networks Model

6 Big Data 7.75%
Supply Chain
Big Data Analytics
Data Analytics
Predictive Model

7 Data Analysis 5.62%
Manufacturing Company
Production Process
Case Study
Manufacturing Process
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of the capacity for a PMS to model and understand a system’s behaviour on a multi-stage
level, to assess and reduce the impact of the defects and their propagation downstream on
these production systems.

The following group of four clusters share very similar dimensions ( 8-9% of the corpus),
the first of which being related with the general study and development of ML algorithms
and methods to be applied in production environments, comprising roughly 9% of the
search space.

Cluster number four pertains to the topic of Tool Wear (8%), degradation and condition
monitoring, suggesting a particular connection to the context of cutting and machining
tools.

With almost the same dimension, the next cluster encompasses the publications dealing
with Neural Networks and Deep Learning, followed by the last of this group which concerns
Big Data Analytics (BDA) in the context of logistics and the supply chain. This is aligned
with the current manufacturing setting, where due to the advancements in ICT, Internet
of Things (IoT) and Cloud Computing technologies, larger and larger volumes of data
are being produced every day. Despite this, only a small fraction of these data is taken
advantage of by manufacturers, which presents an opportunity for disruptive technology
to emerge from the research efforts surrounding big data.

Lastly, the smallest of the clusters appears to refer to the topic of data analysis in general
within the context of manufacturing.

It is of interest to verify that despite resulting from the application of a different method,
this document clustering approach corroborates the community analysis discussed in the
previous step, with several of the main topics being shared between the two approaches.
Regardless, there is still room for improvement particularly in two fronts, first regarding
the stemming shown in Figure 3.11, as some of the words have been completed in peculiar
ways during their reconstruction. The second point is that of the optimal number of
clusters which is admittedly fairly difficult to precise in this type of approach, which could
mean that there are for instance smaller clusters that could further divide the large PdM
group.

Based on these results it is possible to further refine the initial search query, thus allowing
for a smaller, more manageable and more focused number of publications to be manually
analyzed for the literature survey.

3.1.3 Refined Survey Results

Combining the results from both of the aforementioned analyses, a group of main topics
was identified in order to narrow the focus of the refined search for the literature review.
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Figure 3.12: Research Trends for Topics around PMS

Once these topics were selected, a script was written in Python to automate the process
of crawling Google Scholar and cyclically verify the number of publications registered over
the last eight years for each of the topics, with the goal of visualizing their respective
current trends. The search string used in this process followed the template “topic AND
manufacturing” to ensure that the focus is constrained to a manufacturing context, resulting
in the trend curves displayed in Figure 3.12.

As it can be observed, overall the main topics present an upward trend in the research
occurrence over the last eight years, which suggests a growing interest in the research of
new solutions around these topics for manufacturing environments. Based on the baseline
established in Section 3.1, a more refined selection of publications was performed from
a pool of relevant journals in the field, positioned on the top 25% of the impact factor
distribution (Q1) according to the Scimago Journal Ranking (SCImago, 2007), resulting
in about 50 hand-picked journal articles on the topics surrounding PMS. The review of
these articles is presented in Table 3, where the publications are assessed regarding their
application field and implications for future research (in the context of the present work).
The application fields are labeled as follows:
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• “GEN” – Generic

• “EN” – Energy

• “M” – Maintenance and PHM

• “LOG” – Logistics and Supply Chain Management

• “CON” – Control

• “SCH” – Scheduling

• “QC” – Quality Control

• “ECO” – Costs/Economics

Table 3.3: Systematic Literature Review on the Applications of Predictive Data Analytics
in Manufacturing

Summary Analysis Implications for Future Research
Publication: (Bumblauskas, Gemmill, Igou, & Anzengruber, 2017) App.Field: M

Architecture and conceptual framework for a
smart maintenance decision system across the sup-
ply chain based on corporate big data, validated
through system simulation using databases from
ABB Inc.

Highlights the importance of big data as an en-
abling factor to move from reactive and preven-
tive maintenance policies towards predictive ap-
proaches; Provides an example of using an Ana-
lytical Hierarchy Process modelling technique for
fleet prioritization.

Publication: (Cupek, Ziebinski, Zonenberg, & Drewniak, 2018) App.Field: EN

Presents a methodology and respective architec-
ture for monitoring energy efficiency in discrete
production stations, tested in a laboratory test
stand using industrial components and perform-
ing the transport of elements in a closed circuit
using a pneumatic system.

K-means clustering is suggested to discover energy
consumption profiles specific for different variants
of production.

Publication: (Deng, Guo, Liu, Zhong, & Xu, 2018) App.Field: EN

Propose data cleansing algorithms for energy sav-
ing to be applied in wireless sensor networks used
by CPPS to achieve low-power, reliable data ac-
quisition.

Reinforces the importance of accurate and reliable
data acquisition to enable proper health monitor-
ing, machine learning and other predictive tech-
niques to be successfully applied.

Publication: (Flath & Stein, 2018) App.Field: GEN, QC

Continued on next page
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Table 3.3 – continued from previous page
Summary Analysis Implications for Future Research

Developed a data science toolbox for manufactur-
ing prediction tasks to bridge the gap between
machine learning research and concrete practical
applications, demonstrated in a real-world manu-
facturing defect prediction case study based on a
dataset provided by Bosch. The authors also sug-
gest some guidelines and best practices for mod-
eling, feature engineering and interpretation.

The authors highlight some reasons why machine
learning algorithms provide a considerable advan-
tage over traditional statistical methods. Addi-
tionally, the article indicates that in order to im-
prove the predictive power of analytics, continu-
ous feature engineering and consolidation, as well
as the constant improvement of models are re-
quired. This emphasizes the need to combine
analytic skills with business knowledge, making
industrial big data analytics a cross-disciplinary
application of ML.

Publication: (G. Wang et al., 2016) App.Field: LOG

Proposes a maturity framework to assess applica-
tions of supply chain analytics within the domain
of logistics and supply chain management.

It outlines the latest techniques and methodolo-
gies used within the field, as well as current limita-
tions and opportunities for future research in the
application of big data analytics for SCA. The
surveyed solutions are divided into descriptive,
prescriptive and predictive (including time series
forecasting and regression analysis), and identify
applications sub-fields such as product design and
development, network design and demand plan-
ning.

Publication: (Gao et al., 2015) App.Field: M

Review of prognosis techniques and envisioned
growth due to cloud technology. Proposes an ar-
chitecture for cloud-enabled prognosis for manu-
facturing.

Analysis of strengths and weaknesses of different
prognostic methods. Architecture highlighting
core components of cloud-based prognosis. Sum-
mary of potential applications for cloud-based
prognosis, with directions for future research.

Publication: (Ge, 2018) App.Field: GEN

A distributed predictive modelling framework is
proposed for prediction and diagnosis of key per-
formance indices in plant-wide industrial pro-
cesses. An example is provided using PCA and
Gaussian Process Regression models in a case
study on the Tennessee Eastman benchmark pro-
cess.

The authors emphasize the importance of divid-
ing a plant-wide process into smaller, distributed
blocks, each with its own associated model, hence
ensuring that data can be efficiently extracted
while effectively reducing its dimensionality and
thus also reducing the computational burden of
the predictive modeling process. The develop-
ment of multi-level predictive and diagnostic mod-
els is also indicated as potentially relevant for fu-
ture research.

Continued on next page
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Table 3.3 – continued from previous page
Summary Analysis Implications for Future Research

Publication: (Golkarnarenji et al., 2018) App.Field: EN

An intelligent predictive model for energy con-
sumption in thermal stabilization process based
on SVR is presented, taking into account pro-
duction quality and controlling stochastic defects.
This was tested in a single tow oxidation pilot
oven designed by Despatch industries.

A comparison between SVR and Levenberg- Mar-
quardt algorithm neural network models is pro-
vided, with SVR providing superior results for
the use case at hand.

Publication: (Guo & Banerjee, 2017) App.Field: GEN

Presents an application of topological data anal-
ysis (Mapper algorithm) in the domain of manu-
facturing using two benchmark data sets.

Results suggest that using only the features show-
ing the most significant causal relationships in
this method provides a comparable prediction ac-
curacy to that of approaches using the complete
set of features, albeit considerably smaller train-
ing times. The authors indicate that there’s room
to integrate this approach with existing machine
learning techniques to increase its robustness and
provide a practical method more suitable to the
context of high-dimensional, heterogeneous man-
ufacturing data in general.

Publication: (He, Gu, Chen, & Han, 2017) App.Field: M, QC

Outlines an integrated PdM strategy that com-
bines product quality control and mission reliabil-
ity constraints for single equipment. The authors
describe a case study focusing integrated PdM
decision-making for a cylinder head manufactur-
ing system. Results suggest that the integrated
PdM strategy delivers a better economic perfor-
mance than periodic preventive maintenance or
traditional condition-based maintenance in gen-
eral.

The evolution of key quality characteristics is
used to identify process variables affecting product
quality based on an axiomatic design approach.
The authors suggest that product quality improve-
ment, production planning and maintenance strat-
egy formulation can be taken into account in fu-
ture research for integrated production scheduling,
along with the inclusion of other costs during op-
timization including for instance personnel costs.

Publication: (J. Wang et al., 2016) App.Field: CON

The article proposes an online meta-level con-
trol framework based on multi-agent technol-
ogy for large-scale online multitask learning and
decision-making. It aims to effectively learn high-
dimensional coordination policies and coordinate
multi-machine action to achieve manufacturing
flexibility. The approach was tested in a testbed
at a smart factory of Weichai Power in China.

Multi-agent based CPS are indicated as a way to
achieve manufacturing flexibility and scalability,
with the proposed approach scaling to at least 200
machines. It is suggested that similar approaches
could be extended and used for other applications
such as multi-sensor network coordination.

Continued on next page
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Table 3.3 – continued from previous page
Summary Analysis Implications for Future Research

Publication: (Jimenez, Bekrar, Trentesaux, & Leitão, 2016) App.Field: SCH, CON

The authors present a switching mechanism frame-
work aiming at the optimal coupling of predictive
scheduling and reactive control in dynamic hybrid
control architectures. It was tested using Netl-
ogo to simulate the AIP PRIMECA flexible job
shop. The results suggest that the inclusion of a
switching mechanism in these types of architec-
tures enhances the agility for the optimality and
reactivity of the system.

Extending the monitoring of the execution and
system dynamics to deploy real analytics is in-
dicated as one of the main venues for future re-
search efforts in this context. This implies that
the monitoring mechanism should not only han-
dle data reporting and trend analysis, but instead
be capable of forecasting to predict possible fu-
ture behavior of the system and thus enable the
switching mechanism to better choose the optimal
operating mode.

Publication: (J. Wang, Zhang, Duan, & Gao, 2017) App.Field: M

A cloud-based predictive maintenance approach
using mobile agents is proposed. The approach
was tested in test bed consisting of six induction
motors with different failure modes, mimicking a
distributed manufacturing system.

SVM classification shows promising results for
multidimensional motor defect diagnosis. The
usage of mobile agents could be used to enable
computational heavy algorithms to be moved to
a remote server by having the agents collect the
required information from cloud nodes.

Publication: (Kant & Sangwan, 2014) App.Field: EN

Multi-objective predictive model for minimization
of power consumption (6.59%) and surface rough-
ness (2.65%) in machining processes. The analysis
of variance test concluded that the feed, depth of
cut and cutting speed were the most significant
parameters.

Example usage of Grey Relational Analysis with
Principal Component Analysis for power consump-
tion optimization.

Publication: (Kolar, Vyroubal, & Smolik, 2016) App.Field: EN

Describes an analytical approach to model energy
consumption of auxiliary units of a CNC machine
with corresponding activity management. An ex-
periment is shown assessing the accuracy of the
model on a three-axis horizontal milling machine.

The article highlights the importance of a thor-
ough identification of all the auxiliary units con-
tributing to energy consumption, which greatly
affects the resulting accuracy of the model.

Continued on next page
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Table 3.3 – continued from previous page
Summary Analysis Implications for Future Research

Publication: (Lao, Ellis, Durand, & Christofides, 2015) App.Field: M, ECO, CON

Combines a robust moving horizon estimation
scheme with an economic model predictive con-
trol system with the aim of enabling real-time pre-
ventive sensor maintenance and optimal process
economic performance with closed loop stability.
The design of the proposed approach is illustrated
through its application to a chemical process net-
work.

Highlights the importance of intelligent predictive
solutions to be capable of coping with changing
conditions in the underlying system, such as the
case described in the article of a changing number
of online sensors.

Publication: (Lee, Wu, et al., 2014) App.Field: M

An extensive review of the PHM field is presented,
along with the introduction of a systematic design
methodology for converting data to prognostics
information. The methodology is illustrated over
four industrial use case scenarios.

The authors emphasize the need for a systematic
method to develop and deploy a PHM systems,
enabling rapid customization and integration of
PHM systems for diverse applications. Some of
the critical aspects to take into account include
the identification of critical components, correct
selection of appropriate algorithms for specific ap-
plications, as well as visualization for accurate
decision-making support. One of the main re-
search venues identified by the authors for future
research includes self-maintenance, which refers
to a machine’s capacity perform regular quality
and safety control on itself, detect anomalies and
correct them on its own (based for instance on
current health assessment of remaining useful life
techniques).

Publication: (Lee et al., 2015) App.Field: GEN

Defines a unified five level architecture for the de-
sign of Cyber-Physical Systems. This architecture
aims to serve as a guideline for the implementa-
tion of Cyber-Physical Systems targeting an im-
provement in product quality as well as in system
reliability.

Provides one possible definition of Cyber-Physical
Systems based on the proposed architecture. It
highlights the role that Cyber-Physical Systems
can play towards achieving for instance plug and
produce, multi-dimensional smart analytics and
self-capabilities such as self-configuration or self-
optimization.

Continued on next page

33



CHAPTER 3. LITERATURE REVIEW

Table 3.3 – continued from previous page
Summary Analysis Implications for Future Research

Publication: (Leitao et al., 2016) App.Field: GEN

Discusses the role of multi-agent systems in re-
gards to the implementation of industrial cyber-
physical systems. A survey of the current state of
the industrial application of agent technology pre-
sented, along with an outlook on the way agents
can contribute to overcoming emerging challenges
in Cyber-Physical Systems.

The authors state that multi-agent technology
play an important role in enabling Cyber-Physical
Systems to achieve flexibility, robustness, adapta-
tion and reconfigurability, despite current TRL
levels of deployed solutions being still relatively
low. Smart production, smart electric grids and
smart logistics are indicated as the main applica-
tion areas.

Publication: (P. Li et al., 2018) App.Field: M

A systematic methodology for ball screw prognosis
is proposed, incorporating fault diagnosis, health
assessment and remaining useful life prediction.
The methodology is verified in a set of experiments
designed for a ball screw test bed.

The practical applications of some machine learn-
ing algorithms are discussed, namely SVM for
fault diagnosis, Linear Regression for health as-
sessment and Gaussian Process for remaining use-
ful life prediction.

Publication: (Liu, Dong, & Chen, 2018) App.Field: M, SCH

Presents an integrated decision model combin-
ing job scheduling, predictive maintenance, prog-
nostic information and resource planning into a
complete scheduling and maintenance plan. The
model was assessed through long-term wear test
experiments conducted in a research laboratory
setting.

Genetic Algorithms are suggested as a mature
method to solve predictive system maintenance
scheduling. It is stated that the proposed model
could be improved and extended by addressing
multiple machine systems, through the considera-
tion of prognostics and diagnostics information.

Publication: (Loyer, Henriques, Fontul, & Wiseall, 2016) App.Field: ECO

Compares the performance of five machine learn-
ing and statistical models on the estimation of
manufacturing cost of jet engine components dur-
ing the early design phase. The research is based
on data from five large civil jet engines of one of
the top five manufacturers worldwide.

Results indicate that common approaches for sta-
tistical cost modelling (such as multiple linear
regression and artificial neural networks) tend
to perform worse than more recent data mining
and machine learning techniques such as gradient
boosted trees and support vector regression.

Continued on next page
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Table 3.3 – continued from previous page
Summary Analysis Implications for Future Research

Publication: (Lu & Zhou, 2017) App.Field: M, SCH

An opportunistic preventive maintenance schedul-
ing methodology for serial-parallel multistage
manufacturing systems is proposed, with the goal
of improving final product quality and system re-
liability. The methodology is demonstrated in a
case study focusing a serial-parallel three-stage
machining system.

The proposed methodology highlights the impor-
tance of considering the multiple streams of de-
terioration when addressing the problem of qual-
ity improvement in multistage manufacturing sys-
tems. One short-coming pointed by the authors is
the necessity to extend these types of approaches
to consider reconfigurable manufacturing systems.
Since the structure of such a system is constantly
changing in response to varying product demand,
it is crucial to employ a dynamic maintenance
policy capable of adapting accordingly.

Publication: (Ma, Kwak, & Kim, 2014) App.Field: LOG

A novel demand modeling technique based on de-
mand trend mining for predictive product life cy-
cle design is proposed. Based on this, a design
framework is also presented. The model is illus-
trated through an example case of smartphone
design.

Three different models are used to capture hidden
and upcoming trends in demand, namely decision
trees for large-scale data, discrete choice analysis
for demand modeling and Hyndman’s automatic
time-series forecasting algorithm for trend analy-
sis.

Publication: (Pandiyan, Caesarendra, Tjahjowidodo, & Tan, 2018) App.Field: M

Describes the development of a predictive classi-
fication model for in-process sensing of abrasive
belt wear based on SVM and a genetic algorithm.
An experiment is conducted using four different
conditions of tool states to assess the accuracy of
the model.

A genetic algorithm based on a k-nearest neigh-
bors classifier was employed to reduce the fea-
ture space considerably. Five models (SVM, kNN,
ANN, Naïve Bayes and Bagged Trees) were com-
pared in regards to their capacity to perform
multi-classification of belt tool conditions, with
quadratic SVM classifiers providing the best re-
sults.

Publication: (H. Peng & Van Houtum, 2016) App.Field: M, ECO

Joint optimization model for the determination of
production lot-sizing and condition-based main-
tenance policy. Through the optimization of two
decision variables, the model minimizes setup cost
per lot, inventory holding, lost sales and predic-
tive/corrective maintenance costs.

The results imply that the determination of pro-
duction lot size is dependent not only on the trade-
off between setup cost and inventory holding cost,
but also the tradeoff between corrective and pre-
dictive maintenance costs. Further research is re-
quired considering dynamic schedules for produc-
tion lot-sizing, as well as considering the health
status of multiple machines.

Continued on next page
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Table 3.3 – continued from previous page
Summary Analysis Implications for Future Research

Publication: (Qi & Tao, 2018) App.Field: GEN

Applications of big data and digital twin con-
cepts in manufacturing are reviewed, focusing ar-
eas such as product design, production planning
and predictive maintenance. The authors sug-
gest that both concepts are complementary, and
discuss ways in which they can be integrated to
promote smart manufacturing.

The digital twin concept is suggested as a way
to handle real-time and two-way mappings be-
tween physical objects and digital representations,
paving the way for cyber-physical integration. As
an example, the combination with big data can
enable manufacturers to simulate, evaluate and
improve production plans or maintenance opera-
tions in the virtual environment based in infor-
mation from big data analysis without negatively
impacting the factory.

Publication: (S. Wang, Wan, Zhang, Li, & Zhang, 2016) App.Field: GEN

Smart factory MAS-CPS framework for dis-
tributed self-decision making in a self-organized
system tested in a simulation environment.

Internet of Things, Big Data and Cloud Comput-
ing are identified as key-enablers of a Smart Fac-
tory environment; MAS-based CPS is suggested
to be used to achieve high flexibility.

Publication: (Sahebjamnia, Tavakkoli-Moghaddam, & Ghorbani, 2016) App.Field: QC

Proposes a fuzzy q-learning multi-agent quality
control system for the control of continuous chem-
ical production lines. The system presents self-
learning capabilities, gradually forming its knowl-
edge based on the results of the learning process.
A real case study is presented focused on a cement
industry factory.

The Java Agent Development Framework was
used to implement the FIPA-compliant multi-
agent system. The combination of the Drools rule
engine with a Q-learning algorithm enables the
agents to keep a current knowledge base for qual-
ity control based on reinforcement learning. The
authors point out that future research should fo-
cus on generalizing or adapting the solution to ex-
pand it beyond the specific application presented
in the article.

Publication: (Santos et al., 2017) App.Field: GEN

Presents an architecture and respective proof-of-
concept implementation of a big data analytics
solution in the context of Industry 4.0. The im-
plementation is tested in a case study based on
Bosch Car Multimedia in Braga, Portugal.

The seven-layer architecture for big data analyt-
ics presented in the article offers some insights
regarding potential key concepts and elements of
these kinds of solutions, including real-time data
stream brokers and NoSQL technologies to handle
real-time data ingestion and storage, as well as
tools like Spark and Tableau for the analysis and
visualization of the results.

Continued on next page
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Table 3.3 – continued from previous page
Summary Analysis Implications for Future Research

Publication: (Susto, Schirru, Pampuri, McLoone, & Beghi, 2015) App.Field: M

Methodology based on Multiple Classifiers (MC)
for predictive maintenance with dynamic decision
rules for maintenance management, focusing on
integral type faults.

MC-PdM appears to consistently outperform
PvM approaches. Furthermore, SVMs seem to
offer superior performance compared to k-NN clas-
sifiers when implementing MC-PdM.

Publication: (Tao & Zhang, 2017) App.Field: GEN

Explores the concept of digital twin shop-floor,
discussing four key components, as well as oper-
ating mechanisms and implementation methods.

Identifies the physical shop-floor, virtual shop-
floor, shop-floor service system, and shop-floor
digital twin data as key components of the digi-
tal twin shop-floor concept. Additionally, some of
the key enabling technologies mentioned include
multi-agent systems, self-capabilities and data fu-
sion.

Publication: (Upasani, Bakshi, Pandhare, & Lad, 2017) App.Field: M, SCH

Describes a multi-agent based distributed ap-
proach for preventive maintenance scheduling,
targeting identical parallel multi-component ma-
chines in a job-shop manufacturing scenario.

Highlights the importance of decentralizing the
decision-making process into two levels, local ma-
chine level and global enterprise level, enabling
the scalability of the solution. The authors also
point out that the distributed approach makes it
so that the solution can be further improved in
future research through real time monitoring of
machine health of various machines to incorporate
prognostics in machine-level decision, leading to
more accurate condition-based maintenance plan-
ning.

Publication: (Wan et al., 2017) App.Field: M

Architecture for big data-based active preventive
maintenance with both real-time and offline pro-
cessing. Apache Kafka and Apache Storm are
used to achieve distributed message communica-
tion and real-time big data processing.

Reinforces the importance of a reliable connection
between the cyber and physical parts of the sys-
tem, with real-time data collection acting as a key
enabler of data-driven maintenance. Implies the
importance of combining both online and offline
processing.

Continued on next page
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Table 3.3 – continued from previous page
Summary Analysis Implications for Future Research

Publication: (D. Wu, Jennings, Terpenny, Gao, & Kumara, 2017) App.Field: M

Introduces a prognostic method based on ran-
dom forests for tool wear prediction, along with a
comparison of its performance with that of feed-
forward back propagation ANNs and SVR, based
on experimental data collected from 315 milling
tests.

The article touches on the subject of data-driven
prognostics as opposed to model-driven, due to
the fact that in complex manufacturing systems
prior knowledge of the system’s behavior is not
always available. In this case, random forests pre-
sented superior accuracy at the expense of longer
training times. The authors indicate that future
research should focus on parallel implementation
of ML algorithms to be applied in large-scale and
real-time prognosis.

Publication: (D. Wu, Jennings, Terpenny, Kumara, & Gao, 2017) App.Field: M

Introduces a cloud-based parallel machine learn-
ing algorithm, capable of training large-scale pre-
dictive models efficiently. A MapReduce-based im-
plementation of parallel random forests on Ama-
zonEC2 cloud is demonstrated using experimental
data from milling tests.

Points out that one of the main challenges in
data-driven prognostics advents from the need
of large volumes of data, which then relates to
computational efficiency when dealing with large
volumes of real-time sensor data. The results sug-
gest that cloud-based approaches can be used to
tackle these challenges, as evidenced by the re-
duction of training times (about 15 times faster)
when compared to previous work.

Publication: (D. Wu, Liu, et al., 2017) App.Field: M

A computational framework for remote real-time
sensing, monitoring, and scalable computing for
data-driven diagnosis and prognosis is proposed.
A prototype has been developed to support real-
time, scalable, and plug-and-play data collection
for both legacy and modern manufacturing ma-
chines, employing “drop-in” sensor nodes for the
former.

The work showcased emphasizes the importance
of developing flexible software solutions capable of
taking advantage of such adaptable and pluggable
data collection approaches to create modern intel-
ligent predictive manufacturing systems. The au-
thors reinforce the importance of further research
to build predictive models using machine learning
and integrate them into these online predictive
systems.

Continued on next page
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Table 3.3 – continued from previous page
Summary Analysis Implications for Future Research

Publication: (X. Wang, Wang, & Qi, 2016) App.Field: M

A distributed multi-agent reinforcement learning
algorithm is proposed to address the problem of
maintenance in a flow line system, focusing on
obtaining control-limit maintenance policies for
each machine associated to an observed state.

Multi-agent system technology is used, enabling
the system to take into account the relation be-
tween the local decisions made by each agent and
the overall optimization goal to produce the main-
tenance policies. Results suggest that cost-sharing
reinforcement learning approaches might offer su-
perior results than more traditional sequential
preventive maintenance or even independent rein-
forcement learning algorithms.

Publication: (Xia, Jin, Xi, Zhang, & Ni, 2015) App.Field: M, SCH

Proposes a real-time rolling grey forecast for ma-
chine health prediction to support dynamic main-
tenance scheduling.

Highlights the importance of accurate machine
health prognosis forecasts for PdM schedules. Sug-
gests through empirical analysis that grey forecast-
ing models can achieve good precision accuracy
even with limited data, making them suitable to
meet real-time requirements.

Publication: (Yan et al., 2018) App.Field: M

The article presents a concept of device electrocar-
diogram, as well as an algorithm based on deep
learning for the prediction of the remaining useful
life of industrial machines.

Deep learning, which has been shown to enable
considerable advancements in fields such as com-
puter vision and natural language processing, is
suggested to have significant potential for indus-
trial applications. One its main advantages is the
capacity to automatically extract features without
requiring extensive feature engineering relying on
specific production scenarios.

Publication: (Zhang, Dubay, & Charest, 2015) App.Field: QC

PCA model-based predictive control methodology
for controlling part quality with the cooling cycle
of injection molding processes. Performance was
demonstrated in a LabWindows environment.

PCA and regression techniques are used to extract
K principal components from measures on cavity
pressure and temperature to predict the quality
index. Authors suggest that due to the advance-
ments of data mining techniques, the combination
of statistical tools with model predictive control
can serve to replace the need for offline quality
measurements with real-time quality control.

Continued on next page
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Figure 3.13: Distribution of the surveyed articles per focus area

Table 3.3 – continued from previous page
Summary Analysis Implications for Future Research

Publication: (Zhong, Xu, Chen, & Huang, 2017) App.Field: LOG

Presents a big data analytics approach for physical
internet based logistics data generated by deploy-
ing RFID readers, tags and wireless communica-
tion networks on production shop floors.

Logistics data presents a considerable challenge
in terms of complexity, not only due to the large
amount of assets involved, but also the intrinsic
dynamic logic of the logistics domain. According
to the authors, some possible applications of big
data analytics in this domain include visualiza-
tion of logistic trajectories, evaluate the efficiency
of operators and operations, as well as logistics
planning and scheduling.

Publication: (Zurita, Delgado, Carino, Ortega, & Clerc, 2016) App.Field: GEN

Introduces a neo-fuzzy neuron method to be ap-
plied in industrial time series modeling. The pro-
posed method is validated through the modelling
of a critical signal regarding copper refrigeration,
based on real data from a Spanish copper rod
industrial plant.

The authors discuss argue data-driven solutions
require considerable data comprehension and vol-
ume, which slows convergence of the solution and
tends to mask relation between the inputs and
the target, which can turn into a limitation when
considering a high amount of inputs such as in
the case of industrial time series. Neo-Fuzzy Neu-
ron modelling is then proposed as a method to be
explored in this context to tackle such a challenge.

The distribution of the articles presented among the different journals is presented in
Figure 3.13, based on the application field classification attributed in Table 3.3.

From Figure 3.13 it is possible to observe that there is a clear focus into the research
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of maintenance and PHM solutions in predictive manufacturing (46.51%), as well as
energy optimization and management (34.88%). In fact, these fields are often related and
even complementary, since energy consumption monitoring is often used as an indicator
of machine health. The remainder of Section 3 provides further insight into two main
concepts which are central to this thesis. The first of which is Industry 4.0, which frames
the context in which the present work is being developed, not only from a technological
point of view but also from a manufacturing market standpoint. Secondly, the concept of
Cyber-Physical Production System is described, as an extension of typical CPS applied
to a manufacturing context. Finally, the concept of PMS is thoroughly discussed, being
the main focus of the work presented herein.

3.2 Industry 4.0

With the advancements in the ICT field and the exponentially increasing volumes of data
being generated every day, a new set of possibilities has been presented to improve the
efficiency and the characteristics of production processes. Adding to this is the trans-
formation from a saturated seller’s market into a customer-driven one, with its growing
demand for highly customized products accompanied by decreasing product lifecycles and
smaller lot sizes, pushing companies towards a paradigm shift in order to leverage their
data to attain a business advantage in such a competitive and dynamic market (Brettel,
Friederichsen, Keller, & Rosenberg, 2014).

As such, the currently ongoing 4th industrial revolution, usually referred to as Industry 4.0
in Europe (Deloitte, 2014) (Gilchrist, 2016) (Kagermann, Helbig, Hellinger, & Wahlster,
2013) and Industrial Internet in the US (Consortium, 2015), aims to introduce and take
advantage of the interconnected world along the entire value chain, allowing the sharing
and processing of the data available in all of the its actors to generate relevant knowledge
and optimize the overall process. The adoption of the Industry 4.0 paradigm encompasses
the following three characteristics (Stock & Seliger, 2016):

• “Horizontal integration across the entire value network”: By integrating the overall
value chain it is possible to optimize it beginning with the suppliers, materials,
logistics, etc. In this sense, all of the value chain’s actors must be connected and
coordinated among each other based on their individual requirements, creating a
very dynamic ecosystem.

• “End-to-end engineering across the entire product life-cycle”: The integration and
digitalization across all phases of the product’s life-cycle is crucial to ensure that
data can be collected, stored and processed to generate new knowledge from the
product’s inception to its end of life. This knowledge can be particularly relevant
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for the product’s improvement, not only regarding its production, but also the for
instance its design or material suppliers.

• “Vertical integration and networked manufacturing systems”: At the shop-floor, the
integration among the different components and actors (such as resources, humans
and Manufacturing Execution Systems) should be done through a Cyber-Physical
System (CPS). This system will allow not only the internal integration and optimiza-
tion but also a harmonized and smooth integration with the two previously presented
functionalities.

With the vertical integration emerges the concept of Smart Factory (SF). According to
(Shrouf, Ordieres, & Miragliotta, 2014) these factories must have some characteristics
including among others the capacity to deal with mass customization (Kagermann et
al., 2013), flexibility (Zuehlke, 2010) and new maintenance strategies (Mobley, 2002), as
well as leveraging big data into a business advantage through the generation of new and
relevant knowledge and insights (Lee et al., 2013). This plethora of research venues and
the growing interest in the fields surrounding Industry 4.0 is evident when looking at the
co-citation map related to this topic. This map allows a quick identification of major
players/publications regarding Industry 4.0, on top of providing some insight into the
different related groups that can be formed throughout the various branches of research
that are related to this field. A possible co-citation map illustrating this can be seen in
Figure 3.14.

The co-citation map provided in Figure 3.14 was elaborated based on data from the Web
of Science repository. Firstly, the full records of all publications between 2010 and 2018
found on the topic of Industry 4.0 were extracted into a CSV file, which was then fed into
a Python script to generate the network edge list. Afterwards, the data was imported into
Gephi (Bastian et al., 2009) in order to generate the visualization and manipulate it to
identify the most influential nodes.

Finally, community detection is performed using the Louvain method (Blondel et al., 2008),
with the resulting communities being attributed a distinct color in the visualization.

From a quick glance at Figure 3.14 two main publications stand out, the final technical
report from the Industry 4.0 workgroup (Kagermann et al., 2013), which provides the main
guidelines for the implementation of Industry 4.0, and a publication from the University
of Cincinnati (Lee et al., 2015) focusing on a possible definition for CPS and guidelines for
their implementation in this context, which was also included in the survey documented
in Section 3.1.3.

Furthermore, five main communities can be identified. Upon closer inspection of each of
these communities, their areas of focus appear to be as follows:
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Figure 3.14: Co-citation map for Industry 4.0

• and• - These communities focus on discussing a mix of design principles and guidelines
for either the implementation of Industry 4.0 systems as a whole, or focusing specifically
in the aspect of CPS.

• - The community represented in yellow presents a clear emphasis on cloud computing,
particularly considering the application for cloud manufacturing.

• - This group appears to focus mostly on a higher abstraction level, dealing mainly
with enterprise management, sustainable manufacturing, and in some cases supply-chain
management and planning.

• - Lastly, this community’s main topic seems to be learning factories, mainly as a way
to develop theoretical and practical knowledge in a real production environment in order
to pave the way for the adoption of Industry 4.0 solutions.
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Figure 3.15: Reference Architecture Model fo Industrie 4.0 (RAMI4.0)

3.2.1 Reference Architectures for Industry 4.0

Reference Architecture Model Industrie 4.0 (RAMI4.0)

Reference Architectural Model for Industry 4.0 (RAMI4.0) consists in a three-dimensional
construct that encompasses the key aspects of Industry 4.0 as envisioned by the European
Plattform Industrie 4.0 network. The core idea behind it is to serve as a reference to
harmonize the interests of the different industries involved in the discussions, from pro-
cess to factory automation, along with each of their different standards, information and
communication technologies into a common understanding. Hence, tasks and workflows
can be broken down into more manageable parts, with the model serving as a way to
identify and assess the fit of existing standards, gaps, possible use cases and relationships
among the different subspaces of the reference architecture. A visual representation of this
three-dimensional model is provided in Figure 3.15.

To better understand this three-dimensional model it is important to look into each of its
axes individually. The layers in the vertical axis mimic the ICT approach of splitting up
complex projects into groups of smaller, more manageable parts. This includes for instance
business goals, functional descriptions, information structure and varied assets. In this way
it is possible to describe how development processes, production lines, manufacturing assets
and even the products are configured, how they function and how their information can
be made available as a virtual representation. In order to maintain a high-level cohesion
between the layers with loose connections between them, events should only be exchanged
either within each layer or between two adjacent layers.
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Starting from the top, the Business layer ensures the integrity of the functions in the value
stream, being responsible for mapping the business models and goals to the resulting overall
process, including modelling the rules which the system has to follow and orchestrating the
services of the Functional layer. Contrary to popular belief, it does not concern concrete
systems, such as an Enterprise Resource Planning (ERP) system, as ERP functions would
typically reside in the Functional layer. This, in turn, deals with the actual description of
the different functions acting as a runtime and modelling environment for the services which
support the business processes, along with the applications and technical functionalities.
While the actual decision-making logic should be generated inside the Functional layer,
part of it can also be executed in the lower layers (e.g. Information or Integration layers)
as deemed necessary by a particular use case. The aspects of horizontal integration and
remote access are also exclusively within the scope of this layer in order to ensure the
integrity of the information and conditions of the technical level. Exceptionally, the Asset
and Integration layers may also be accessed temporarily for maintenance purposes as long
as this access is not relevant to permanent functional or horizontal integration.

Data persistence and structuring is handled by the Information layer. In it data events can
be pre-processed and transformed to generate data as expected by the Functional layer,
which is then provisioned via services. In this context, it is also within the Information
layer that event-related rules are formally described and then executed in order to process
incoming data events. To facilitate this process, the Communication layer provides stan-
dardized means for this interaction to occur using an uniform data format in the direction
of the Information layer.

In this context of virtualization, every event and system actor in the physical world should
have a corresponding representation in the virtual world, which in RAMI4.0’s case is
facilitated by the Integration layer. This cyber-physical dichotomy is handled in such
a way that if something in the real world changes, the corresponding asset’s event is
appropriately reported to the Integration layer, which can then trigger events signalled to
the Information layer through the Communication layer. This integration encompasses
elements connected with Information Technology (IT) including for instance RFID readers,
sensors and Human-Machine Interface (HMI) components, given that the interaction with
humans is also part of this level of abstraction. Lastly, the physical elements of the real
world are represented in the Asset layer, which includes not only manufacturing elements
such as machines, parts and documents, but also humans themselves who are abstracted
in the virtual world via the Integration layer, thus concluding the description of model’s
vertical dimension.

Another critical aspect to take into account within Industry 4.0 is that of the life cycle of
products, machines, factories and other elements, as well as the associated value stream,
represented along the horizontal axis on the left-side of Figure 3.15. IEC 62890 is said to
provide the guidelines for consideration of this aspect, particularly with the fundamental
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Figure 3.16: Relevant life cycles for I4.0 components based on IEC 62890. Source: (Plat-
tform Industrie 4.0, 2015)

distinction between type and instance which is a central part of this dimension in RAMI4.0.

In this context, a type is created as the product comes into being in its design and
development phase. Hence, this entails the placing of design orders, its development
and testing up to the production of the first prototype. Once all tests and validation
are concluded, the type is release for actual production, with manufactured products
representing an uniquely identified (e.g. serial number) instance of that type. Such
instances are sold and delivered to customers, from whose perspective they are once again
types which become instances once they are installed in a particular system. This cycle
of changing from type to instance or from instance to type can be repeated several times,
for instance when improvements or updates are made to certain products. Figure 3.16
provides an example of the assignment of types and instances to the life cycle, illustrating
its various dimensions of relevance for this context.

It is worthwhile to also reinforce the importance of horizontal integration across the entire
value stream. As an example, logistics data can be used in assembly, inventories can be
monitored in real-time, the location of parts from suppliers can be known at any point in
time and the customer can check the completion status of a product they ordered during
production. This presents a huge potential for improvement and innovation, suggesting
that the life cycle should be linked together with the value-adding processes it contains,
from engineering to suppliers and customers, not from the isolated point of view of a single
factory.
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Lastly, the functional hierarchy within the factories is represented in the right-most hori-
zontal axis. It describes the functional classification within the factory following the IEC
62264 (International Electrotechnical Commission, n.d.-b) and IEC 61512 (International
Electrotechnical Commission, n.d.-a) standards. In order to cover varied sectors, ranging
from process industry to factory automation, the terms "Enterprise", "Work Unit", "Sta-
tion"and "Control Device"were adopted. To better reflect the context of Industry 4.0 and
the considerations within a machine or system, the "Field Device"level was added below
Control Device, representing the functional level of an intelligent field device such as a
smart sensor. Additionally, to emphasize the role of the product to be manufactured,
an extra level was added at the bottom to permit the homogeneous consideration of the
product and its production environment along with their respective interdependencies. Fi-
nally, an extension was also made to the upper limit of the hierarchy to accommodate the
interactions above the Enterprise level, the "Connected World", since the aforementioned
IEC standards only represent the levels within a factory. This enables for instance the
description of groups of factories and the collaboration with external engineering partners,
component suppliers and customers.

Industrial Internet Reference Architecture (IIRA)

The Industrial Internet Reference Architecture (IIRA) is a standards-based open architec-
ture for industrial IoT systems. It aims to boast a broad industry applicability through an
high-level of abstraction and generic nature, promoting interoperability, the mapping of ap-
plicable technologies and the guidance of technology and standard development (Industrial
Internet Consortium, 2019).

The IIRA combines and abstracts common characteristics, features and patterns from
several use cases and is continuously refined and revised as a result of its application in
testbeds developed by the Industrial Internet Consortium and the real-world deployment
of industrial IoT solutions.

The reference architecture is represented in Figure 3.17 with its different viewpoints, being
an architectural framework and methodology for system conceptualization, accentuating
important system concerns which may affect the lifecycle process.

The IIRA viewpoints are split into four distinct layers, namely concerning business, usage,
functional and implementation aspects. These viewpoints are the foundation which enables
a layered analysis of individual sets of industrial IoT concerns, relating them to specific
stages of the lifecycle process and within the context of different industrial sectors. These
can then be extended or further fleshed out based on specific system requirements.

The higher level Business Viewpoint encompasses the identification of the stakeholders
and the specification of their business goals regarding the development of an industrial
IoT system in their business context. To this end it further details how the system should
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Figure 3.17: Industrial Internet Reference Architecture (IIRA). Source: (Industrial Inter-
net Consortium, 2019)

achieve the aforementioned goals by mapping it to its base system capabilities. As such,
this layer is, as the name suggests, mostly business-driven and thus involving business
decision-makers, system engineers and managers.

Following this, the Usage Viewpoint refers to the expected system usage, hence describing
sequences of activities involving the system and its components that are responsible for
providing the functionality required to achieve the core system capabilities. Stakehold-
ers at this stage include system engineers and other individuals involved in the system
specification.

In this direction, the Functional Viewpoint is centred on the actual functional components
of the system, their structure and all of the aspects related to interoperability between the
system, its components and other external elements in the environment such as interfaces
and the specific interactions necessary to support the overall system’s activities. Naturally,
the main stakeholders in this case are system and component architects, developers and
integrators.

At bottom lies the Implementation Viewpoint, dealing with the technologies necessary to
implement the components from the previous layer, along with their communications and
lifecycle procedures. These elements are organized by the activity sequences originating
from the Usage Viewpoint and oriented towards supporting the system capabilities defined
in the Business Viewpoint. Thus, the involved stakeholders include not only those of the
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Figure 3.18: Cyber-Physical Production Systems

Functional Viewpoint, but also the system operators themselves.

Summarizing, the reference architecture aims to guide system designers and developers
iteratively through the system’s conception, design and its implementation, taking into
account concerns beyond the design phase of the system and into its full lifecycle.

3.3 Cyber-Physical Production Systems

As previously stated, SFs are implemented and deployed via CPS. The concept of CPPS
(Ribeiro, 2017) merges the functionalities and benefits of CPS applied to the industrial
context. The main objective in a CPPS is to create an abstraction layer where each of the
shop-floor’s actors is represented by a cyber entity, as shown in Figure 3.18.

The communication between the heterogeneous components is now made at the cyber level,
allowing a smooth and effective integration of all the components and actors avoiding the
usual problems related to vendors’ specifications and standards. In (Lee et al., 2015) the
authors present a comparison between today’s factories and the now emerging Industry
4.0 based SFs, implemented through CPPS. With all the resources integrated, sharing
information and their behaviors among each other, the shop-floor can adapt and organize
in runtime to optimize at different levels (production, maintenance, energy consumption,
etc). Moreover, with the advances in the industrial IoT and the increasingly large number
of sensors and other data sources available on the shop-floor, the amount of extracted data
is growing and the traditional algorithms are no longer able to process these volumes of
data. Hence, the big data analysis field is becoming more and more important in several
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areas as a way to tackle this challenge (Babiceanu & Seker, 2016).

This is often coupled with the usage of ML, allowing manufacturers to obtain insights
regarding their factory which would have been otherwise missed. ML can be defined
as a system’s capacity to improve its performance on a given task or set of tasks over
time based on previous results (Patcha & Park, 2007). Therefore, ML algorithms can be
used to predict a system’s behaviour and/or improve its overall performance, enabling
the development of tools capable of analysing data and perceive what are the underlying
trends and correlations. Thus, ML-based approaches can be used to predict abnormal
events (failures, degradation, energy consumption, etc), generate warnings and advise the
system and/or the operator regarding which course of action to take, assisting in diagnosis
and maintenance tasks.

It can be said that generally speaking CPPS remain in a relatively infant stage of research
and development, with considerable challenges still left to tackle in the coming years
including for instance those related with real-time constraints, reliability and security. In
this regard, in (Leitão, Colombo, & Karnouskos, 2016) an assessment of the core current
challenges for future research on this topic is presented, providing a list of each individual
challenge along with its associated difficulty, priority for its resolution and the estimated
time required to reach a stable and mature solution. An adaptation of this assessment can
be found in Table 3.4.

From the analysis of this table and particularly of the authors’ own analysis documented
in (Leitão et al., 2016), some very pertinent opportunities can be derived. Firstly, while
these areas are all relevant and transversal to the design and development of CPPS, it is
important to identify the key areas which directly relate the most with the focus of the
present work on PMS, being those of CPPS Capabilities and CPPS Information Systems.

In terms of the area of capabilities, the authors highlight several issues related to real-
time monitoring and control in CPPS as well as the larger and broader systems of CPPS
and their optimization, which are regarded as highly challenging. From the perspective of
information systems aiming to capitalize on the generated manufacturing data, information
and knowledge, several challenges also need to be addressed, mostly in the long-term
horizon and with considerable hardships as stressed by the authors, in turn resulting in
different priorities for each.

Initially, there is a larger concern with the mid-term goal of transforming CPPS data and
information analytics into actionable knowledge, which obviously ties into the integration
of artificial intelligence and particularly ML in CPPS. As follow-up actions in the long-
term, the cross-domain information integration and knowledge-driven decision making and
management are then considered. This also matches and aligns with the emerging trends
identified in Section 3.1.

50



3.4. INDUSTRIAL ARTIFICIAL INTELLIGENCE

Table 3.4: Key challenges in industrial CPPS. Adapted from: (Leitão, Colombo, &
Karnouskos, 2016)

Area Key Challenges Difficulty Priority Maturity in

CPPS Capabilities Real-time control of CPPS systems High High 4-7 Years
Real-time systems of CPPS High Medium 3–5 years
Optimization in CPPS and their application High Medium 4–7 years
On-CPS advanced analytics Medium High 3–5 years
Modularization and servification of CPPS Low High 3–5 years
Energy efficient CPS Medium Medium 3–5 years

CPPS Management Lifecycle management of CPPS Medium Medium 5–8 years
Management of (very) large scale CPPS High High 5–8 years
and system of CPS
Security and trust management for High High 5–8 years
heterogeneous CPS

CPPS Engineering Safe programming and validation of systems of CPPS High High 5–10+ years
Resilient risk-mitigating CPPS High High 5–10+ years
Methods and tools for CPPS lifecycle support High High 3–7 years
New operating systems and programming Medium Low 3–6 years
languages for CPPS and systems of CPPS
Simulation of CPPS and of systems of CPPS Medium High 3–6 years

CPPS Infrastructures Interoperable CPPS services Medium High 2–5 years
Migration solutions to emerging CPPS Medium High 3–6 years
infrastructures
Integration of heterogeneous/mobile Low Medium 2–4 years
hardware and software technologies in CPPS
Provision of ubiquitous CPPS services Medium Medium 3–5 years
Economic impact of CPPS Infrastructure High High 3–6 years

CPPS Ecosystems Autonomous and self-* CPS High Medium 7–10+ years
Emergent behaviour of CPPS High Medium 7–10+ years
CPPS with humans in the loop High High 2–5 years
Collaborative CPPS Medium Medium 5–8 years

CPPS Information Artificial intelligence in CPPS High High 7–10+ years
Systems Cross-domain large-scale information Medium Low 6–9 years

integration to CPPS infrastructures
Transformation of CPPS data and information High High 4–8 years
analytics to actionable knowledge
Knowledge-driven decision making/management High Medium 6–10+ years

3.4 Industrial Artificial Intelligence

The discipline of Artificial Intelligence (AI) is typically connected to the study of cognitive
phenomena in machines, ultimately implementing aspects akin to human capacity or even
surpassing it in areas such as ML, image processing and NLP.

Industrial AI in particular aims to bridge the gap between academic research efforts in
AI and the industry, mostly focusing on the development, validation and deployment of
varied ML algorithms in industrial applications to improve value creation, productivity
and reduce costs through additional insights into production.

In (Lee, Davari, Singh, & Pandhare, 2018) the authors characterize Industrial AI using five
key elements, namely analytics, big data, cloud or cyber technology, domain knowledge
and evidence. While analytics can be seen as the core of Industrial AI, it needs the support
of the remaining elements to create value. Big data and cloud/cyber technologies are both
presented as crucial elements, providing both the source of the information and platform
for Industrial AI. Complementary, domain knowledge is essential for understanding the
problem and focusing the application of Industrial AI to solve it, despite also being
one of the most overlooked aspects in this domain. It provides the necessary system
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comprehension so that the right data can be collected with adequate quality and ensures
that the physical meanings of the studied parameters, their associations to the physical
characteristics of a system or process and their variations can be taken into account in the
appropriate context. Lastly, evidence relates to the data patterns and labels gathered over
time, allowing models to be improved, become more accurate and robust as time passes.

An overview of the current Industrial AI ecosystem, encompassing its needs, challenges,
enabling technologies and main methodologies can be found in Figure 3.19:

Figure 3.19: Industrial AI ecosystem (Lee, Davari, Singh, & Pandhare, 2018)

Focusing particularly on the main current challenges faced in this domain, three can be
highlighted as being highly prioritized in current research and industry efforts, namely
machine-to-machine interactions, data quality and cyber-security.

Machine-to-machine interactions impact AI algorithms in the sense that these are suscep-
tible to small variations in their data stemming from variations from machine to machine,
or even in the same one over time. Furthermore, it is important to ensure that AI solutions
do not interfere or conflict with the operation of other systems, being as minimally invasive
as possible.

This also relates to the second point of data quality, as learning from improper or inaccurate
data sets can severely impact the performance of the AI models and produce flawed results.

Last but not least, the recent increase in connectivity with the advent of cloud and IoT-
based solutions makes smart manufacturing systems vulnerable to cyber attacks. As an
emerging issue, it is generally considered that the industry is yet to be fully prepared to
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face these security threats (Tuptuk & Hailes, 2018).

3.5 Predictive Manufacturing Systems (PMS)

Predictive Manufacturing Systems can be defined as a paradigm whose goal is to empower
machines and systems with self-aware capabilities (Lee et al., 2013), enabling them to for
instance estimate their own condition, detect the presence of defects or anomalies, forecast
future production events or even perform self-maintenance.

In the present section, a brief overview of existing approaches and applications is provided
based on the results from Section 3.1, framing afterwards the relation to the current work
in the form of existing gaps and research opportunities.

3.5.1 Existing Applications and Approaches

As discussed in Section 3.1, over the last few years, significant efforts have been put into
the research of the various facets of predictive manufacturing in Industry 4.0. In (Lee,
Bagheri, & Kao, 2014) the authors overview the recent advances and trends regarding
CPPS and big data analysis, identifying self-predictiveness and self-awareness as key
characteristics to gain insight into Industry 4.0 factories. Also, the authors mention that
several sources of information in current prognostics methods remain untapped, such as
peer-to-peer evaluation and historical life-cycle information from identical assets. Insightful
discussions and guidelines regarding solutions for PMS can also be found in the current
literature (Canito, Fernandes, & Pra, 2017) (Siafara, Kholerdi, Bratukhin, Taherinejad, &
Wendt, 2017), with some common denominators including the employment of CPPS for
virtualization, ML models for data analysis (e.g. early fault detection, quality control),
decentralization and self-adjustment. However, the discussions are often on the conceptual
or architectural level, with a lack of deployable implementations or results.

Regardless, the growing importance of PMS in the current information age is evident
from its multitude of research venues. In (Lechevalier, Narayanan, & Rachuri, 2015), the
authors survey several articles pertaining to the applications of PMS and propose to group
them into four main application fields, namely system control (J. Li & Shi, 2007), quality
control (Penya, Bringas, & Zabala, 2008), fault diagnosis (Chan & McNaught, 2008), and
predictive maintenance (K. Wang, 2016). Other recent examples include an architecture
for predictive maintenance as a service based on the cloud computing paradigm (Terrissa,
Meraghni, Bouzidi, & Zerhouni, 2016), the prediction of power consumption levels in
machining processes through BDA (Shin, Woo, & Rachuri, 2014) and a distributed multi-
agent oriented framework for failure prediction from real-time sensor data (R. S. Peres,
Rocha, & Barata, 2017).

Some frameworks for the application of predictive analytics in manufacturing environments
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have also been proposed. In (K. Wang, 2016), a CPPS-based framework for intelligent
predictive maintenance is presented, using mostly the processing and feature extraction
of real-time signal information as enablers of fault diagnosis and prognosis. (Ge, 2018)
presents a distributed framework for the prediction and diagnosis of key performance indices
in plant-wide industrial processes. One key aspect is the division of the entire process into
several smaller blocks, later enabling data to be extracted more efficiently whilst greatly
reducing its dimensionality. A fog computing-based framework for data-driven machine
health and process monitoring in CPPS is introduced in (D. Wu, Jennings, Terpenny, Gao,
& Kumara, 2017), highlighting the importance of scalable, high-performance approaches
and the usage of cloud-based ML algorithms for predictive analytics. (Zhong et al., 2017)
introduce a BDA framework for radio-frequency identification-enabled shop-floor logistics,
which presents a considerable challenge in terms of complexity not only due to the large
amount of assets involved, but also the intrinsic dynamic logic of the logistics domain.

3.5.2 Relation to Current Work

The main challenges, and coincidentally the main gaps, in PMS research stem from the
fact that most of the work found in current literature is based on a set of assumptions
regarding system behaviour that do not always hold true in real manufacturing scenarios.

One such a case relates to the necessity of having in depth knowledge of the way the
system behaves beforehand, akin to the application of model-driven approaches. In reality,
a-priori knowledge regarding system behaviour is not always available, which makes it often
difficult to apply model-based predictive solutions. In this sense data-driven approaches
can tackle this problem, but require large volumes of data which in turn demand higher
computation power. Consequently, distributed and cloud-based implementations can assist
in overcoming this pitfall, providing the necessary computational efficiency and making
the system scalable.

However, besides this knowledge-centric gap, real systems often require changes and adapta-
tions during execution in response to a quickly varying market demand. Current solutions
are mostly based on the assumption that these systems remain the same and are incapable
of providing the required degree of flexibility, thus further research is needed to support
on-line adaptation and reconfigurability. One concept of particular interest in this regard is
the capacity to implement the plug & produce paradigm, not only on a hardware level (e.g.
plugging and unplugging physical assets during execution with minimal downtime) but also
on a software level (e.g. change/adapt deployed ML models or data acquisition mechanisms
in runtime in a manner that is transparent to the underlying system), hence implying a
modular approach for the design of intelligent predictive manufacturing solutions.

Furthermore, despite the fact that some architectures and frameworks can be found in
the literature, they are commonly application specific, being overly focused on a specific
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problem. There is no reference for a generic implementation capable of tackling a broad
array of challenges in predictive manufacturing whilst requiring minimal changes to the
overall solution.

Overall, in the context of Industry 4.0 systems, new solutions should be flexible to cope with
topological (i.e. Plug-and-Produce) or requirement changes on the shop-floor, as well as
scalable and high-performing in order to deal with the growing volumes of data. Moreover,
it can be said that there is still a clear need to further combine real-time streams of data
from the shop-floor with historical data at both the resource and system levels, as well as
closing the loop to autonomously act on the results of the predictive analytics (i.e. self-
maintenance). These solutions should also be highly adaptable, being capable of changing
even after deployment by learning from newly generated knowledge (Lee, Kao, & Yang,
2014), adapting at both the analysis and action fronts. This implies a continuous adaptation
and dynamic improvement of their self-adjustment mechanisms during execution, avoiding
unnecessary downtime for redeployment and additional programming effort on the deployed
system. Finally, the generalization of the solutions should also be taken into account, so
that they can be easily migrated and applied to wide array of manufacturing scenarios
and domains.
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The IDARTS Framework

The present chapter entails the full description of the proposed IDARTS framework for
the development of generic PMS, which aims to answer the research questions put forward
in Chapter 2.

To this end, first and foremost an overview of the field of Requirements Engineering (RE)
is provided, along with some supporting concepts to ease the reader into the specification
of the requirements for IDARTS and its PMS. Afterwards, the general design of the
framework is presented, followed by a mapping of this design onto the RAMI4.0 reference
model. Finally a more detailed description of each of IDARTS modules is provided along
with their relation to the requirements that were previously established.

In summary, the aimed contribution of the present chapter is twofold, consisting more
specifically of:

• A comprehensive list of the goals and both functional and non-functional requirements
that should drive the design and implementation of generic and intelligent PMS.

• The proposition of a predictive manufacturing framework, to be used as the foun-
dation for the implementation of systems of this nature through the thorough for-
malization of its fundamental constituting principles and modules, as well as of the
communications, data flow and necessary interfaces between them;

Therefore, based on these two main contributions, the goal for the coming chapters is
not only to achieve the implementation of an intelligent PMS (to be later addressed in
Chapter 5) which can be applied to different scenarios, such as quality control or predictive

57



CHAPTER 4. THE IDARTS FRAMEWORK

Figure 4.1: The requirements engineering process.

maintenance, but also to provide a formalized framework that can be used by others as
the guideline for the implementation of such systems, as well as contributing to the state
of the art and research developments in the field of predictive manufacturing.

4.1 Requirements Engineering

As a discipline, RE plays a pivotal role in understanding, designing and developing CPPS
systems and, by extension, modern PMS as well. Borrowing one possible definition from
software engineering, it can be seen as an iterative, cooperative and incremental process
of discovery, analysis, specification and validation of the functionalities and constraints
related to the operation and development of such systems (Sommerville, 2011), which is
further illustrated in Figure 4.1.

Moreover, it is also crucial to provide a clear definition of requirement in the context of
the present work, as the term is often used loosely in the literature with different meanings
and degrees of detail attached to it. Within this context, the definition provided in the
(ISO/IEC/IEEE, 2017) standard has been adopted, as formalized in Definition 4.1.

Definition 4.1 (Requirement). 1. Statement that translates or expresses a need and its
associated constraints and conditions. 2. Condition or capability that must be met or
possessed by a system, system component, product, or service to satisfy an agreement,
standard, specification, or other formally imposed documents 3. Provision that contains
criteria to be fulfilled 4. A condition or capability that must be present in a product, service,
or result to satisfy a contract or other formally imposed specification (ISO/IEC/IEEE,
2017).

Going in more depth, requirements can be further categorized into Functional Requirement
(FR) and Non-Functional Requirement (NFR). FRs deal with the services and functions
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that a given system should perform, as referenced in Definition 4.2.

Definition 4.2 (Functional Requirement). 1. Statement that identifies what results a prod-
uct or process shall produce 2. Requirement that specifies a function that a system or
system component shall perform (ISO/IEC/IEEE, 2017).

Contrastingly, NFRs are constraints on the functions offered by the system, which can
include time constraints, constraints on the development process or those imposed by
standards (Sommerville, 2011), as reflected in Definition 4.3. These often apply to the
system as a whole, rather than on individual components or functionalities.

Definition 4.3 (Non-Functional Requirement). 1. Software requirement that describes not
what the software will do but how the software will do it (ISO/IEC/IEEE, 2017).

Nevertheless, one cannot distinguish between the different categories of requirements as
easily as these definitions seem to imply. While a given requirement concerned for instance
with real-time constraints may appear to be a mere non-functional requirement, once
developed in further detail it may generate others which are clearly functional. An example
could be the need to include real-time data acquisition functionalities in the system. This
illustrates that requirements are not necessarily independent and often generate or constrain
other requirements, thus not only specifying the services or features that are required, but
also the necessary functionality to ensure their proper delivery.

4.1.1 IDARTS’ Goals and Requirement Sources

Before the requirements for the system and its respective processes can be analyzed, it is
necessary to create the foundation that will support this activity. This consists in clearly
defining the context and the boundaries of the system to be developed, defining goals and
identifying requirement sources such as stakeholders, systems in operation (i.e. similar
or legacy) and documentation. Once these activities are completed one can move onto
the elicitation process and the analysis of the requirements that follows it (Rupp & die
SOPHISTen, 2014). With that being said, in this case it is hardly possible to record all
requirement sources during the initial goal identification without a subsequent analysis of
the existing systems in which an IDARTS implementation would be deployed, meaning
that a continuous update of this list is to be expected.

In RE it is common for stakeholders to confuse the concepts of requirements and goals.
Goals are high-level objectives of a business, organization or system, while requirements
pertain to how a given goal should be achieved by a proposed system. In addition, goals
should adhere to certain quality criteria to be considered within this scope. More concretely,
a goal should be testable in order to enable its verification, feasible and unambiguous.
Moreover, it should be solution independent, so as to not exclude possible optimal solutions,
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as well as include restrictive constraints to narrow down the focus of potential solutions
to the problem at hand. With this in mind, a structured form of documenting the goals
and their respective constraints was used based on a simple template. This encompasses
the goal statement, followed by foreseen stakeholders with respect to the aforementioned
goal and its constraints. The full list can be found below:

• Goal-01 – Improve the utilization of latent data in the system to generate new infor-
mation.

– Stakeholders: Management, maintenance and quality control personnel;

– Constraints: Should accommodate existing data (e.g. unutilized stored data)
as well as new data sources (i.e. addition of sensors or smart devices).

• Goal-02 – Predict future states of the system.

– Stakeholders: Management, maintenance and quality control personnel;

– Constraints: Should respond in real-time as new data becomes available.

To ensure the constraint is unambiguous, the standard definition for real-time is
provided in Definition 4.4.

Definition 4.4 (Real-time). 1. Problem, system, or application that is concurrent
and has timing constraints whereby incoming events must be processed within a given
timeframe 2. Pertaining to a system or mode of operation in which computation is
performed during the actual time that an external process occurs, in order that the
computation results can be used to control, monitor, or respond in a timely manner
to the external process (ISO/IEC/IEEE, 2017).

In this sense, it is expected that the processing of incoming data and the generation of
predictions should be performed in a manner that complies with the time constraints
of the particular scenario in which the solution is deployed.

• Goal-03 – Adapt to changes/disturbances in the production environment.

– Stakeholders: Developers;

– Constraints: Should not require additional programming effort or significant
downtime.

• Goal-04 – Achieve interoperability between the system’s data sources and components.

– Stakeholders: Developers; Systems in operation;

– Constraints: Should contemplate the integration of legacy devices.

• Goal-05 – Applicable to different production environments.
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– Stakeholders: Developers; Systems in operation;

– Constraints: Should not depend on underlying communication technologies/pro-
tocols and require minimal migration effort.

• Goal-06 – Act based on predictive data to improve key performance indicators of the
manufacturing system.

– Stakeholders: Developers; Systems in operation; Maintenance personnel;

– Constraints: Should be flexible to either trigger for instance warnings and alarms
proactively or directly act on the system when applicable; Should not negatively
impact said key performance indicators.

Finally, besides the aforementioned stakeholders, other requirement sources were taken
into consideration for the elicitation and specification of IDARTS’s requirements. Firstly,
one of the considered sources consisted in informal conversations and meetings during the
developments of the FP7 PRIME (A. D. Rocha et al., 2016), H2020 PERFoRM (R. S. Peres,
Rocha, & Barata, 2017) and H2020 GO0D MAN (R. S. Peres, Barata, Leitao, & Garcia,
2019) projects. As presented in Chapter 1, these projects encompassed the development of
CPPS with varying degrees of focus regarding the application of predictive solutions and
with different purposes regarding their application (reconfiguration, monitoring, forecasting,
quality control).

These occasions proved to be a valuable opportunities to discuss the development of PMS
not only with other researchers, but also with people participating directly in the day-to-
day activities of their respective industrial end-users, including assembly line operators,
maintenance technicians and statistical process control engineers. This provides further
insight into the actual industrial needs pertaining to PMS beyond those experienced from
a research or development point of view.

On top of these discussions, two additional requirement sources were taken into account,
namely existing documentation for each of these projects regarding their respective RE
process, along with first-hand experience with the varied systems in operation considered
in each of this endeavours. The latter provides further insight into the inner-workings of
current systems and the opportunities for further extensions and improvements in regards
to the application of PMS.

4.1.2 IDARTS’ Elicitation and Analysis of Requirements

With the foundation laid out in Section 4.1.1, the requirements elicitation and analysis
process can be carried out according to the process model shown in Figure 4.2.

The process activities are as follows. Requirements Discovery refers to the process of
interacting with stakeholders and other requirement sources in order to discover their
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Figure 4.2: The requirements elicitation and analysis process. Adapted from (Sommerville,
2011)

requirements. Classification and Organization takes the unstructured collection of re-
quirements, groups those that are related and organizes them into clusters. Requirements
Prioritization and Negotiation aims to prioritize requirements and solve common conflicts
stemming from the involvement of multiple stakeholders through negotiation. Finally the
Requirements Specification deals with the generation of formal or informal requirements
documents which serve as input for the following round of this iterative process.

There are several auxiliary methods that can be used in this elicitation process, centred
either around individuals (e.g. interviews, surveys), groups of people (e.g. group dynamics)
or artefacts (e.g. system archaeology, reuse). Among these, artefact-based techniques are
particularly well-suited in situations where large and complex legacy systems need to be
taken into account, as it is often the case in the manufacturing industry. Frequently
possible stakeholders who possess deep domain knowledge are not easily available or have
already left the organization, meaning that this knowledge must be extracted from the
system itself, its documentation or from past experiences embedded in other successful
systems.

The employment of such techniques makes it possible to understand, to an arbitrary level
of detail, not only how an existing system behaves, but also which parts can be improved
upon. Moreover, it can also contribute to an increase in productivity and shortened
development times, as engineers aren’t required to reinvent the wheel every time, since
some requirements have already been elicited and quality tested resulting in less effort
being required for revisions and corrections. However, artefact-based techniques (and reuse
in particular) are not risk-free, as it is often difficult to find the right candidates for reuse,
the quality of old requirements might not be as high as it ought to be and if done without

62



4.1. REQUIREMENTS ENGINEERING

proper quality control, problems can be carried over from previous systems.

To mitigate this, the elicitation and analysis process described in this section was per-
formed using an adaptation of the rule-oriented reuse technique described in (Rupp &
die SOPHISTen, 2014), focusing both functional and non-functional requirements. These
technique aims to filter possible reuse candidates originating from the requirement sources
listed in Section 4.1.1 according to a given set of characteristics, meaning that candidates
are more well-suited:

• ...the higher their specification level is;

• ...the more independently they are embedded into a process;

• ...the more abstract and technology independent they are.

As a general rule of thumb, a candidate that does not conform to a particular rule is not
automatically deemed unfit, yet the more characteristics it fails to meet the higher the
risk and effort required to reuse it. The list of requirements resulting from this process
can be found below.

IDARTS Non-Functional Requirements

From the application of the aforementioned process, a list of NFR was derived for the design
and implementation of generic PMS. As previously mentioned, these are requirements
related not with the functionalities and services offered by the system, but instead with
how they should be carried out. To promote the unambiguity and traceability of these
requirements, definitions from the (ISO/IEC/IEEE, 2017) standard are provided wherever
applicable and each requirement is traced back to its related goals defined in Section 4.1.1.

• NFR-01 (Adaptability) – The PMS should be adaptable to cope with changes in the
underlying system’s hardware, functionality or needs;

NFR-01 asserts that the system should not be rigid in order to deal with changes
in the manufacturing system, being directly related to Goals 01 and 03. As an
example, this entails that if the operation of a physical resource changes and it starts
producing new data values, or new resources are dynamically added to the system,
the PMS should be able to autonomously encompass them in its data collection and
storage cycle. Another example in a different context could be the need to adjust the
thresholds concerning the normal operational conditions of a given resource, in which
case the PMS should cope with such an adaptation with minimal effort. NFR-01 is
thus related with the concepts of adaptability and adaptation data, as specified in
Definitions 4.5 and 4.6.
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Definition 4.5 (Adaptability). Degree to which a product or system can effectively and
efficiently be adapted for different or evolving hardware, software or other operational
or usage environments (ISO/IEC/IEEE, 2017).

Definition 4.6 (Adaptation Data). Data used to adapt a program to a given instal-
lation site or to given conditions in its operational environment. (ISO/IEC/IEEE,
2017).

• NFR-02 (Interoperability) – The PMS’ components should be interoperable and easily
integrated by means of common interfaces and data representations;

PMS can easily become large and complex systems of systems, with different com-
ponents spanning various stakeholders. To facilitate the integration, deployment,
operation and management of such systems, it is important that proper common
interfaces and data representations are specified and adopted by each of the system’s
actors. Within this context, the following definition of interoperability is considered:

Definition 4.7 (Interoperability). Degree to which two or more systems, products
or components can exchange information and use the information that has been
exchanged. (ISO/IEC/IEEE, 2017).

• NFR-03 (Non-invasiveness) – The PMS shall interact with the manufacturing system
without negatively impacting its performance and/or creating permanent dependencies
between each other;

Adapting the definition of a minimally invasive CPS from (A. Rocha, 2018), a PMS
should provide intelligent predictive capabilities to the manufacturing system without
requiring profound changes in the native system or negatively impacting its operation.
PMS should be designed and implemented in a decoupled way so as to not create
permanent dependencies on the manufacturing system.

• NFR-04 (Reliability) – The PMS should ensure its reliability with respect to data
delivery, process execution and work completeness;

Reliability can be defined as:

Definition 4.8 (Reliability). Degree to which a system, product or component per-
forms specified functions under specified conditions for a specified period of time.
(ISO/IEC/IEEE, 2017).

In this context the PMS should provide stakeholders with some reliability mechanisms
to ensure it operates as expected for as long as possible with minimal external
intervention.
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• NFR-05 (Modularity) – The PMS should be modular in its design to enable the
composition of its functionality through the combination of different independent
modules;

NFR-05 exacerbates the importance of ensuring that each of the functionalities offered
by the PMS (later detailed in the list of FR) is encapsulated in its own independent
module. This makes it so modules can be effortlessly swapped, added or removed
in response to the stakeholders’ needs and expectations for the system. Making
the modules decoupled from one another, interacting via common communication
interfaces result in changes in a single element having little to no impact on the
remaining modules, as formalized in Definition 4.9.

Definition 4.9 (Modularity). Degree to which a system or computer program is com-
posed of discrete components such that a change to one component has minimal
impact on other components (ISO/IEC/IEEE, 2017).

• NFR-06 (Real-time) – The PMS should react to new data-driven events in a manner
that complies with the system’s time constraints;

Relating directly to Goal-02 and Definition 4.4, the PMS shall abide by the time
constraints imposed by the native manufacturing system and its stakeholders’ needs.

• NFR-07 (Predictability) – The PMS’ predictions and forecasts should be describable
using qualitative or quantitative parameters;

NFR-07 enforces a degree of accountability to the PMS, as it should be possible to
clearly describe the system’s predictive behaviour to stakeholders using metrics such
as accuracy, recall or precision.

• NFR-08 (Scalability) – The PMS should be scalable to handle a large variety of
system configuration sizes;

Scalability is a key aspect of modern CPS-based solutions, due to the growing
complexity of manufacturing systems. Due to this, the PMS should be capable of
scaling up or down to mirror the needs of the underlying manufacturing system, be it
from a topology standpoint or from that of the system’s performance and throughput.
These include for instance the number of assets to be virtualized in the shop-floor, as
well as the volume, velocity and variety of data to be extracted and analysed. This
reinforces a critical point, which is the need to connect, harmonize and transform
heterogeneous data received from different sources (Gandomi & Haider, 2015) which
will be further fleshed out in the FR specification.

• NFR-09 (Technology Independence) – The PMS should be independent from the
communication technologies employed by the underlying manufacturing system;

In order to increase its applicability to a wide array of potential native systems (in
alignment with Goal-05), as well as to facilitate the industrial deployment integration
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of IDARTS-based PMS, it is crucial that such solutions are designed and implemented
without relying on specific communication technological standards and protocols to
exchange information with the native system.

• NFR-10 (Usability) – The PMS should be easily understood and/or used by its in-
tended users;

Typically conveying the results from the application of such a solution to the spectrum
of different stakeholders across the manufacturing value chain can be challenging,
particularly since it involves dealing with a different people from a multitude of social,
cultural and most of all technological backgrounds. As such, is it important that
the PMS should be easily interacted with by its users, with key information being
conveyed in a manner that doesn’t require deep knowledge of the predictive system’s
inner workings.

An additional NFR could be related to the concept of flexibility as it is described in
Definition 4.10, meaning that due to the generic nature of its design, IDARTS could
potentially be used outside the scope of manufacturing environments, including for instance
the application fields of precision agriculture or smart grids. However, this can be seen
as an excitement feature from a RE point of view and as such is outside the scope of this
work.

Definition 4.10 (Flexibility). Ease with which a system or component can be modified for
use in applications or environments other than those for which it was specifically designed
(ISO/IEC/IEEE, 2017).

Additionally, each of these NFRs can be traced back to the goals initially defined in 4.1.1,
as verified in Table 4.2. All of the NFRs are associated with at least one of the goals,
verifying their traceability while ensuring they are in fact needed, two key characteristics
used for validation in RE.

Table 4.1: Traceability regarding Non-Functional Requirements

G-01 G-02 G-03 G-04 G-05 G-06

NFR-01 • •
NFR-02 • • •
NFR-03 •
NFR-04 •
NFR-05 • •
NFR-06 •
NFR-07 •
NFR-08 • •
NFR-09 • • •
NFR-10 • •
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IDARTS Functional Requirements

Complementary to the NFR specification, a list of FRs for the IDARTS framework is also
proposed. As previously defined, these entail the specification of the actual functionalities
and services to be provided to stakeholders by the PMS. This list is presented with two
different levels of grouped requirements, pertaining to the granularity of the specification.

• FR-01 – The PMS should collect and store data generated by the manufacturing
system;

– FR-01-01 – The PMS module responsible for data collection should transform
raw data into a common representation format shared among the PMS’ remain-
ing modules;

• FR-02 – The PMS should pre-process data generated by the manufacturing system
on the edge-computing level;

– FR-02-01 – The PMS module responsible for data collection should be capable
of generating new higher-level information about the manufacturing system;

• FR-03 – The PMS should predict future states of the manufacturing system based on
incoming data;

• FR-04 – The PMS should enact a predictive response regarding the newly generated
knowledge based on reasoning rules;

– FR-04-01 – The PMS should not control the manufacturing system directly at
the field-level;

– FR-04-02 – The PMS should affect the manufacturing system directly through
reconfiguration when applicable/desired;

– FR-04-03 – The PMS shall interface with the users to notify of potential im-
provements/problems and inform of any direct actions taken;

This response can be either a self-adaptive one, where the PMS adapts or reconfigures
the manufacturing system directly, or a more passive one, where the PMS generates
an alarm or new ticket for the maintenance team.

• FR-05 – The PMS should adapt to changes and/or disturbances in the manufacturing
system without requiring additional programming effort;

– FR-05-01 – The PMS module responsible for data collection should adapt and
reflect changes in the data sources of the manufacturing system to an arbitrary
level of granularity;
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– FR-05-02 – The PMS module responsible for predictive analytics should provide
the means for its internal mechanisms to be modified/updated in runtime without
incurring in downtimes exceeding the manufacturing systems time constraints;

Similarly, each of these FRs can also be traced back to the goals initially defined in 4.1.1,
as verified in Table 4.2.

Table 4.2: Traceability regarding Functional Requirements

G-01 G-02 G-03 G-04 G-05 G-06

FR-01 • •
FR-01-01 • •
FR-02 • • • •
FR-02-01 •
FR-03 • •
FR-04 •
FR-04-01 •
FR-04-02 •
FR-04-03 •
FR-05 •
FR-05-01 •
FR-05-02 •

One caveat regarding the functionalities encapsulated by the aforementioned FRs is that
due to the modular nature of the PMS related with NFR (Modularity), it is possible
that some of these requirements are fulfilled by legacy systems and therefore might not
require an instantiation of all the different PMS components. A practical example would
be the case in which a manufacturer already collects and stores all the field-level data in a
real-time database and thus is not interested in replacing or duplicating such functionality.
This aspect, allied with NFR (Invasiveness), facilitates the integration and deployment in
existing manufacturing systems while promoting the industrial adoption of such a solution.

In addition to this, these requirements should be seen as an initial high-level directive for
the design and implementation of PMS. Further refinement at finer degrees of granularity
should be carried out on a use case basis depending on the particular needs and desires of
its stakeholders.

To finalize, Table 4.3 presents a summary of the requirements defined in this section as
a way to facilitate their comprehension and future reference in regards to the coming
chapters of this document.
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Table 4.3: Summary of the requirements defined for Predictive Manufacturing Systems

Type Number Short Description
Non-Functional 1 Adaptability

2 Interoperability
3 Non-Invasiveness
4 Reliability
5 Modularity
6 Real-time
7 Predictability
8 Scalability
9 Tech. Independence
10 Usability

Functional 01 Data Collection
01-01 Common Representation
02 Pre-processing
02-01 Knowledge Generation
03 Prediction
04 Predictive Response
04-01 No Direct Control
04-02 Reconfiguration
04-03 User Interface
05 Adaptation
05-01 New Data Sources
05-02 New Updated Mechanisms

4.2 Framework Design and Mapping to Industry 4.0 Context

IDARTS targets not only the acquisition of data at different granularity levels, but also
the realization of context-aware data analysis and evaluation based on both real-time
and historical data. This analysis outputs predictive data, which in this context can be
defined as probable future values or states forecast based on models representing a given
process, with prediction referring to the act of making statements about data that is yet
to be observed (Kanjanatarakul, Denœux, & Sriboonchitta, 2016). Predictive data can
then be used to trigger the system’s self-adjustment mechanisms (e.g. reconfiguration)
or alert operators in the shop-floor, thus assisting in returning a deviating or unstable
manufacturing system to normal operation conditions, before critical breakdown events
occur. To this end, IDARTS’ foundations lay on top of three core principles, namely:

• The Integration of the Physical and Software Elements – Through the application
of a CPPS, IDARTS’ real-time computation module should be capable of extracting
data from the shop-floor and reason on it in order to assess possible deviations,
acting accordingly. This should assist in preventing the propagation of anomalies
downstream and returning the system to its normal operation conditions, either via
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Figure 4.3: The proposed conceptual architecture for the IDARTS framework targeting
intelligent predictive manufacturing systems

self-adjustment mechanisms or alerts to trigger human intervention.

• Seamless Data Exchange between Heterogeneous Components – The employment of
a common data representation and exchange format in crucial to ensure the interop-
erability of the heterogeneous components comprising an IDARTS-based platform.

• Knowledge Management and Data Analytics – Despite the exponential growth in
the volume and velocity at which data is generated in manufacturing environments
(e.g. embedded sensors), a large portion of it remains untapped. IDARTS’ approach
aims to translate this data into a business advantage by employing advanced data
analysis and knowledge management methods on semantically enriched data acquired
by the CPPS. The generated knowledge can be then used to improve the CPPS’
reasoning system and the real-time analysis, hence further mitigating the occurrence
of breakdown events during production. The approach encompasses the combina-
tion of real-time and historical data throughout the entire production, allowing the
adaptation of the analysis and monitoring algorithms after deployment for a truly
adaptable and flexible approach to predictive manufacturing.

An overview of the IDARTS framework can be seen in Figure 4.3. This framework can be
used as the basis for the implementation of an intelligent and adaptive PMS.

As it can be observed, the framework encompasses three core modules, namely a CPPS
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Figure 4.4: IDARTS-RAMI4.0 mapping - Architectural Layers

responsible for the system virtualization, data acquisition and decision-making support, a
runtime data analysis component and a knowledge management module, which handles
the higher-level data analytics processes based on historical data and provides necessary
adjustments to the CPPS’ reasoning module.

Furthermore, the IDARTS framework is fully aligned with RAMI4.0 and can be mapped on
its representation. An interesting exercise for these types of mappings is to further break
down the different dimensions into more in-depth table views of each layer. This is however
a fairly challenging exercise, considering that in current literature several interpretations
of each dimensions and their representations can be found, in addition to the fact the
Industry 4.0 paradigm and consequently RAMI4.0 are still evolving and maturing. This
will certainly become clearer over time, as more detailed reports and further work is put
into the development of each dimension and their respective standards. As an example,
at the time of writing IEC 62890 – Life-cycle management for systems and products used
in industrial-process measurement, control and automation has been under development
since 2013 and is not available to the public until its release, predicted to be in early 2020.

Within IDARTS, each machine learning model also has its own life cycle, from its concep-
tion to deployment and upkeep, meaning that it is important to consider the bottom-up
flow of information triggered by shop-floor events, but also the opposite originating from
the business side. To provide a better understanding of this aspect, Figure 4.5 illustrates
the evolution of a model across the different dimensions of the reference architecture.

On the business level ML engineers handle the interactions to build concrete models
oriented towards the business goals (e.g. reduce scrap rate via early defect prediction).
This is facilitated by the capabilities offered by the functional layer, such as data analytics
and ML modelling, as well as data stored in the information layer. During this design
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Figure 4.5: Framing IDARTS ML model creation and deployment within the three dimen-
sions of RAMI 4.0

cycle the model can be considered a type as it is being developed, tested and validated.
Afterwards, it can be persisted in the information layer and deployed to a corresponding
smart device in the shop-floor, at which point it becomes an instance. Assuming the model
is running at the edge level, this deployment entails an event is triggered at the information
layer, which in turn can be passed through the communication layer via an event/message
broker using a common representation format, finally through its virtual interface in the
integration layer and finally reaching its destination, effectively becoming an asset itself.

4.3 Cyber-Physical Production System Component

The CPPS Component is composed of three main elements, namely the CPPS itself, the
Plant Topology information and the Dynamic Rules Store. As the name suggests, the
CPPS acts as the core element at the shop-floor level, playing the role of the centrepiece
that glues the different constituents of the framework together, integrating both production
and quality control processes.

The Plant Topology data should be an integral part of the system’s data model, representing
its existing resources, their organizational structure and other relevant information such as
connection interfaces and existing data sources. Through it, the CPPS can be instantiated
in a way that is capable of virtualizing each of the system’s elements and initiate the data
acquisition process. This System Virtualization creates a logical one-to-one relationship
between each element of the shop-floor and its cyber representation, enabling a non-invasive
application of the framework’s capabilities. It also represents a way to break down the
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Figure 4.6: CPPS rule-based reasoning flows

system into smaller, more manageable building blocks and thus reducing the complexity
of the problem.

This data acquisition process is responsible for feeding new incoming data from the shop-
floor not only to the reasoning module, but also to the Real-time Data Analysis (RDA)
component and to an historical data store to be used by the Knowledge Management
layer. To do so, this system needs to be both flexible and adaptable in order to deal with
unforeseen disturbances at the shop-floor level in a robust and efficient manner.

Also, the communication with the shop-floor needs to be specified in a generic way, thus al-
lowing the consideration of different requirements from potentially heterogeneous use cases.
For instance, a specific case might present time constraints in the order of weeks or days,
while another might require data to be collected and analysed in near real-time, allowing
only the consideration of relatively small delays in the communication and processing and
therefore requiring different approaches.

Finally, the CPPS is also responsible for the local processing of the collected data. This
is done in two stages, the first of which deals with the pre-processing of raw shop-floor
data and generation of more complex knowledge. The other refers to being capable of
reasoning and following through with rule-based decision-making processes, providing an
earlier identification of faults, potential deviations or other critical events. The basis of
this behaviour is depicted in Figure 4.6, in which the arrows indicate the general data flow
throughout the process.

These rules are contained in a Dynamic Rule Store, and should be modelled using the
system’s common data representation format. The store can be updated dynamically

73



CHAPTER 4. THE IDARTS FRAMEWORK

during runtime by the Knowledge Management layer, if either as a result of the data
analysis performed on the historical data it is found that certain changes are required
to improve overall quality control, or if the CPPS requests an update from Knowledge
Management due to having insufficient or outdated rules.

4.4 Real-time Data Analysis Component

Concerning the runtime domain, the RDA Component encompasses the elements necessary
to perform the analysis of relevant production-related data during the system’s execution.

The first of these consists in the Data Stream Buffer, which should act as a robust data
queue capable of handling high volumes of data while ensuring its reliable delivery. Through
it streams of data collected by the CPPS can be then passed on to the Data Stream
Processing. This, in turn, is responsible for the actual data analysis, focusing on the early
detection of deviating patterns and trends that might lead to breakdown or failure events
on the shop-floor. Hence, due to this capacity for predictive analysis in runtime, the RDA
component acts a key-enabler of condition- based maintenance, allowing manufacturers
to schedule maintenance operations before a failure actually occurs, thus diminishing the
direct impact on production.

The output of this module should then be visually represented in order to facilitate its
comprehension by human operators, as well as being passed back to the CPPS so that
its runtime decision-making component can trigger a self-adjustment response or suggest
possible maintenance actions that might be required to return the system to its normal
operation conditions.

A set of guidelines for the design and implementation of real-time stream analysis solutions
is provided in (Stonebraker, Çetintemel, & Zdonik, 2005), which were adapted to fit the
scope of the IDARTS framework. Even so, these should be considered on a use case basis,
depending on each specific context.

Guideline 1: Moving Data

In order to achieve low latency (as low as required by the use case), IDARTS implementa-
tions should be capable of performing message processing without having costly storage
operations in the critical processing path. In most cases it is not necessary to perform
such time-intensive operations before message processing takes places, instead messages
should be processed "in-stream".

Another potential issue is that of passive systems, since these need to be ordered before initi-
ating the processing, thus incurring in additional overhead and latency. As such processing
implementations should be active and avoid this pitfall by incorporating data/event-driven
processing capabilities.
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Guideline 2: Handling Stream Imperfections

Another important aspect for real-time stream processing is the built-in capacity to deal
with stream imperfections in a resilient manner.

This imperfections can include delays, missing messages or out-of-order data. For this
reason, it is important to include for instance some form of message time out in any
real-time application that includes blocking operations.

Guideline 3: Generating Predictable Outcomes

IDARTS implementations should ensure that data processing occurs in a predictable and
reliable manner so that its results can be deterministic and repeatable, in compliance with
NFR-04.

This is also important from a a fault tolerance and recovery standpoint, since in the event
of system failure and recovery it is crucial that reprocessing the same input data should
yield the same outcome regardless of its time of execution.

Guideline 4: Integrating Historical and Streaming Data

The fourth guideline deals with the system’s capacity to efficiently store, access and modify
historical information, as well as combine it with live streaming data when applicable.

To ensure a seamless integration, the system should adopt a common representation format
when dealing with either type of data.

Guideline 5: Data Safety and Availability

To avoid disruptions in real-time processing, particularly when dealing with mission-critical
information, it is important to ensure that the necessary fail-safe mechanisms are put in
place to guarantee that applications are up and available, and that the integrity of the
data is always maintained regardless of any possible failures.

Guideline 6: Partitioning and Scaling Applications

With the current availability of low-cost computing clusters, it is becoming increasingly
important to enable the scaling of real-time processing applications through distributed
operation over multiple processors or machines (if deemed necessary as the volume of
input data or the complexity of the its processing increases), without requiring developers
to write low-level code. Ideally, load-balancing should be handled automatically in a
transparent manner based on demand, without requiring additional programming effort
by the developers or system users.
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4.5 Knowledge Management Component

Contrastingly, the Knowledge Management Component operates outside of the constraints
imposed by the real-time execution and monitoring of the production system. It consists
in combination of a Historical Data Store and three processing modules, namely Data
Analytics, Semantic Contextualization and Adaptation.

Each of these modules is responsible for a different step of the knowledge management
pipeline. While the Data Analytics component refers to the actual data analysis process,
Semantic Contextualization deals with capturing domain-expert knowledge and enriching
the results with meaningful, easily understandable context. This is extremely important
because it assists not only human operators, but also the CPPS in interpreting the analysis
results. Lastly, the Adaptation component handles the management and refinement of the
decision-making rules and runtime analysis processes.

While the analysis performed at runtime focuses solely on the constantly incoming streams
of raw data, the one done at the higher-level additionally takes into account historical
data, not only raw but also the more complex knowledge generated by the CPPS. This
makes it possible to generate new knowledge from correlations and patterns that might
be harder or impossible to discover in the RDA alone. This can then be used to update
the rules that govern the CPPS’ reasoning mechanisms or models used in the RDA, either
periodically or on request, therefore improving the overall quality of the manufacturing
processes.

In the remainder of this section a review of different types of models that can be employed
in this component is provided, followed by a brief description of relevant evaluation metrics
for the assessment of the performance of the various models.

4.5.1 Machine Learning Algorithms

In this section different ML algorithms are discussed, serving as a reference for possible
models to be used in the realization of the Knowledge Management component. When
relevant, parallels to Python’s Scikit-Learn library specifications are drawn (Pedregosa
et al., 2012), as it is later used for the implementation detailed in Chapter 5.

Gaussian Naive Bayes

The Gaussian Naive Bayes (GNB) method is a supervised learning algorithm based on
the Bayes’ theorem with the naive assumption of conditional independence between the
various pairs of features given the value of the target variable. The GaussianNB class from
scikit-learn implements GNB for classification, with the likelihood of the features assumed
to be Gaussian:
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(4.1)

where the parameters σy and µy are estimated using maximum likelihood.

Some practical applications of GNB include text prediction, document classification and
spam filtering. It requires a relatively small amount of training data to estimate the
necessary parameters, can be quite fast in comparison to more complex methods and is
easy to implement, being often used as a baseline (Rennie, Shih, Teevan, & Karger, 2003).
However, while its naive assumptions can make such efficiency possible, they can also
adversely affect the quality of the results in several real world applications, such as the
use case at hand, in which the feature pairs are unlikely to be independent.

K-Nearest Neighbours

K-Nearest Neighbours (KNN) is a type of instance-based learning algorithm, meaning it
does not construct a general internal model, but instead stores instances of the training
data with computation being deferred until classification. Over the years it has seen
several applications in both statistical estimation and pattern recognition including for
instance the classification of heart disease to provide a decision-support system for clinicians
(Deekshatulu, Chandra, et al., 2013). Conceptually, such an approach can be carried over
to the use case at hand, as we are effectively attempting to identify a condition in the cars,
and furthermore, being one of the simplest machine learning algorithms for classification
it is at least a good candidate to serve as a baseline.

For KNN, the input consists in the k closest training examples in the feature space, with
the output being a class membership attributed by a simple majority vote of the nearest
neighbours based on some distance metric such as the Euclidean distance.

XGBoost

XGBoost (Chen & Guestrin, 2016) stands for eXtreme Gradient Boosting and is an opti-
mized implementation of gradient boosted trees, designed to be highly efficient and flexible.
It is a non-linear algorithm which typically works well with numerical features and requires
relatively less feature engineering and hyperparameter tuning to yield good results.

Generally, such methods can be prone to overfitting, as they constantly involve fitting a
model on the gradient. To mitigate this, one can optimize for the number of trees until
the out of sample error starts increasing once more.

XGBoost models are frequently used to solve Kaggle challenges across several domains, with
real world applications including for instance the identification of complex relationships
between variables for rare failure prediction in manufacturing processes (Hebert, 2016).
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Random Forest

In the context of classification problems, RF is an ensemble learning method that operates
by constructing several decision trees at training time and outputting the class that is the
mode of the classes of the individual trees. While a single decision tree can easily run
into overfitting problems, being also sensitive to small variations in the data, due to their
nature RFs are more robust to such challenges.

Support Vector Machine

The SVM algorithm constructs hyperplanes in infinite-dimensional spaces to achieve clas-
sification. Intuitively, a good separation is achieved by the hyperplane that has the largest
distance to the nearest training-data point of any class (so-called functional margin), since
in general the larger the margin the lower the generalization error of the classifier.

While this is a fairly formal approach to the classification problem, one disadvantage
mentioned in the scikit-learn documentation for the SVC implementation is that fit time
complexity is more than quadratic with the number of samples, making it hard to scale
for data sets with more than a couple of 10000 samples. While this is not the case for this
particular case study, it is something to keep in mind when comparing to other approaches.

4.5.2 Evaluation Metrics

Accuracy

Accuracy can be used as a statistical measure of how well a binary classifier identifies or
excludes a condition. It is the proportion of true results among all the observed cases. The
formula for quantifying binary accuracy is:

Accuracy = tp+ tn

tp+ fp+ fp+ fn
. (4.2)

where tp, tn, fp and fn refer to true positives, true negatives, false positives and false
negatives, respectively.

However, while high accuracy is typically regarded as a good indicator of performance,
accuracy alone can be very misleading, particularly for imbalanced cases. Also as a metric
for comparison the same holds true, as two models can yield the same accuracy results
while performing differently with respect to the types of correct or incorrect predictions
they provide.

Recall

To assist with the aforementioned challenge, one other metric that can be calculated is
recall. Recall represents the proportion of true positives that was identified correctly, thus
being a suitable metric to use for model selection when there is a high cost associated with
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false negatives. It can be calculated as follows:

Recall = tp

tp+ fn
. (4.3)

Precision

To complement this, precision is then the proportion of the values identified as positives
that was actually correct. As such, it is an adequate measure to use when the cost
associated with false positives is high, being calculated as indicated in 4.4.

Precision= tp

tp+ fp
. (4.4)

F1 Score

For cases in which a balance between precision and recall is preferable, and particularly
when there is an uneven class distribution, the F1 score is often used as the evaluation
metric. It is the harmonic average of the precision and recall, with 1 and 0 being its best
and worst values, respectively, as given by the formula:

F1 = 2 · Precision ·Recall
Precision+Recall

. (4.5)

Area Under the Receiver Operating Characteristics

Area Under the Curve (AUC) - Receiver Operating Characteristics (ROC) curve is a
performance measurement for classification problem at various thresholds settings. ROC
is a probability curve and AUC represents degree or measure of separability. It provides
an indication of how well a model is capable of distinguishing between classes. More
specifically for this case study, the higher the AUC, the better the model is at predicting
cars that are OK as OK, and cars that are NOK as NOK.

The ROC curve is plotted with True Positive Rate (TPR) against the False Positive Rate
(FPR) where TPR is on y-axis and FPR is on the x-axis.
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Implementing IDARTS

In the present chapter a possible realization of the IDARTS framework is presented, aiming
to serve as an illustrative example for future implementations of PMS using this framework
as the foundation, encompassing each of the modules defined in the previous chapter.
Nevertheless, it is worth noting that different implementations are possible, so long as the
goals and requirements (both functional and non-functional) for each of the modules are
respected.

As mentioned in Section 4.3, the CPPS needs to be capable of extracting data from the
shop-floor during execution in a flexible and robust manner. To this end, a Multiagent
System (MAS) can be implemented using the Java Agent Development framework (JADE)
(Bellifemine, Caire, & Greenwood, 2007) based on the monitoring approach developed
in (A. D. Rocha, Barata, & Orio, 2015), previously validated in an automotive industry
cell under the FP7 PRIME project (A. D. Rocha et al., 2016). JADE provides a robust
infrastructure which supports the agents’ core behavioural logic and communication, as
well a wide array of auxiliary tools to further facilitate the development process.

The MAS-based CPPS abstracts both components (e.g. robots, conveyors, sensors) and
subsystems (e.g. cells, workstations), taking care of the acquisition of their respective data
as well as its pre-processing, preparing it to be further analysed by the other framework
modules. The adoption of MAS technology confers additional flexibility and robustness
to the CPPS, allowing it to quickly adapt to changes in the shop-floor as imposed by the
framework’s requirements. The MAS’ support for pluggability, combined with the frame-
work’s modular design, will allow for the components it abstracts to be plugged/unplugged
in runtime without requiring additional reprogramming effort in the overall system. The
implementation of the RDA module should be split into two components, namely a data
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message queue based on Apache Kafka, and a stream processing network developed in
Apache Storm. This development approach builds on the work and guidelines laid out in
(R. S. Peres, Rocha, & Barata, 2017) with the instantiation of the Kafka broker and the
implementation of the Storm topology. Hence, the following implementation structure is
proposed as depicted in Figure 5.1.

Figure 5.1: Proposal for the implementation of the IDARTS modules (Solid line: Data,
Dashed line: Model Updates) (R. S. Peres, Rocha, Leitao, & Barata, 2018)

Upon collecting or generating new data, the CPPS will publish it to Kafka (1), which acts
as a reliable, highly-scalable, high-throughput real time data broker. These characteristics
are compliant with NFR-04, NFR-06 and NFR-08 previously defined in Section 4.1.2. This
broker handles all the communications between the distributed modules of the IDARTS
framework, enabling the seamless exchange of data between them in a common format,
as imposed by NFR-02. Once data has been published to a Kafka topic, it can be easily
consumed by the Storm topology via a Kafka Spout (2). In Apache Storm, spouts represent
data stream sources, typically reading tuples from external sources and emitting them into
the topology, in this case triggering the processing of shop-floor data. Once this process
is concluded, the result is once more published to Kafka (3) and made available to be
ultimately consumed by the CPPS (4), enabling the emergence of a predictive response
(i.e. through self-adaptation or human interaction).

Finally, the Knowledge Management tool focuses on empowering the RDA with additional
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flexibility, by providing the means to adapt the way data analysis is performed in run-time,
without requiring any stoppages or re-redeployment of the running system.

In brief, a generic pilot implementation based on the glsIDARTS framework is proposed,
focused on the aspects of data analysis and real-time supervision of manufacturing systems.
Being aligned with the Industry 4.0 vision, it aims to take advantage of the ongoing data
explosion, presenting a scalable and flexible solution for predictive manufacturing, being as
minimally invasive as possible. Its efficacy is however dependent on the availability, volume
and quality of the data from the underlying production system. The pilot implementation
is thus the main contribution of this chapter, supported in the following key characteristics:

• Capacity to support a plug-and-produce paradigm in the context of predictive man-
ufacturing through dynamic system virtualization via a MAS-based CPPS, coping
with changes and disturbances at the shop-floor.

• Integration of real-time and historical data at both the component and system lev-
els, enabling the adaptation of the real-time analysis and rule-based supervision
algorithms after deployment;

• Support for context-aware self-adaptation coupled with human-machine interac-
tion, allowing the system to either adjust its operation parameters through self-
reconfiguration, or suggest corrective actions to an operator in order to return to
normal production conditions and product quality.

The coming sections will further detail the implementation aspects concerning each of the
aforementioned IDARTS components.

5.1 Multiagent System (CPPS Component)

In this section an overview of the agent-based CPPS architecture and implementation is
presented, along with a full description of its agent types and respective interactions. The
proposed architecture is composed by three generic types of agents. Each type is responsible
for abstracting different parts of the manufacturing system. The main goal of the proposed
architecture is to perform virtualization and supervision at different granularity levels in
any kind of system configuration. In Figure 5.2 a global overview of the entire multi-
agent environment is presented with all possible deployed types of agents and external
connections, such as connections to collect or to send data to external environments.

As it is possible to understand from this representation, the proposed reference architecture
is composed by three different generic agents, namely the Component Monitoring Agent,
the Subsystem Monitoring Agent and the Deployment Agent:
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Figure 5.2: CPPS Multi-Agent System Overview (R. S. Peres, Rocha, Leitao, & Barata,
2018)

• Component Monitoring Agent (CMA) – The CMA represents the lowest level entity
in the architecture. Each CMA abstracts a physical resource such as a robot, conveyor
belt, tool, etc, summarizing a cyber-physical device which composes part of the
production line. This agent periodically collects raw data from the physical device
using the Hardware Communication Library to interface the respective physical
resource. This library is specific for each resource and makes the raw data available
for the CMA. After the collection of the raw data, the CMA can pre-processes the
data to retrieve important information from the component’s performance, such as
transition times and action times. To allow this, each CMA contains a list of rules
that describe possible events that can be retrieved from the raw data provided by
the component. These rules are loaded in the beginning of the agent’s execution,
using the Event Description Library to access the repository (XML file, database,
etc) and respective rules. Additionally, each CMA is also responsible for enacting a
local predictive data-driven response based on the analysis from the other modules
corresponding to its physical resource using the two-way communication from the
Hardware Communication Library;

• Subsystem Monitoring Agent (SMA) – When a set of resources work together to
perform higher level capabilities in the line it is crucial to have higher level virtual-
ization running at the same level as well, having in fact the same granularity as the
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aggregation of capabilities performed by this set of components. Hence, the SMA
is responsible for abstracting a certain set of cyber-physical components which can
cooperate in order to offer higher-level capabilities. In sum each SMA abstracts a
subsystem in the line (station, workgroup, etc). The SMA receives raw data from
a computational device, such as a computer or a PLC containing data referent to
the abstracted subsystem, and receives pre-processed data from the CMA which
subscribed this SMA. All the cyber-physical devices that can cooperate must sub-
scribe the same SMA. Similarly to the CMA, the SMA has inherent rules used to
pre-process the data received from the computational device and from CMAs. This
type of agent implements the Data Acquisition Library and the Event Description
Library as in the CMA’s case to allow the same capabilities in the SMA. In this case
the raw data received from the Data Acquisition Library belongs to the subsystem
and not to a cyber-physical component (Ex. Cycle time of the station, emergency
stop, etc);

• Deployment Agent (DA) - The final agent class is the Deployment Agent, which
is the centrepiece of the plug and produce functionality which promotes seamless
adaptation and scalability to the native system’s capacity needs. The DA instantiates
a Hardware Detection Library (HDL), through which it cyclically checks the system’s
topology in order to launch/remove CMAs and SMAs accordingly. More specifically,
once a any physical resource is plugged or unplugged within the system, the DA
manages the corresponding virtual representation in the multi-agent platform as
needed, either by launching or killing the associated agents.

This categorization of the agents builds upon a first iteration (R. S. Peres, Rocha, Coelho,
& Barata, 2017) in which an additional type of agent, the Output Coordinator Agent, was
included. This agent type was responsible for handling all the output of information from
the MAS to external modules such as data analytics. In the current implementation, this
functionality was embedded into each agent abstracting manufacturing resources, being
thus responsible for the entire data flow regarding their respective individual resource. As
such, even if a particular agent fails to operate properly unexpectedly, only the data flow
pertaining to its particular resource is affected, instead of potentially impacting the whole
system.

It is also important to note that these libraries mentioned for each of the agents are imple-
mentations of the generic common interfaces adopted by the framework. This approach
makes it so all other implementation details are decoupled from the native system’s logic,
meaning that only the particular instantiation of the interfaces needs to be adopted for
each use case as a parametrization.

Moreover, in this way the proposed architecture can take advantage of recent IT develop-
ments, such as cloud computing as a service with large amounts of computational capacity,

85



CHAPTER 5. IMPLEMENTING IDARTS

to reduce the computational load required on the field-level to perform these predictive
tasks. Data acquisition, pre-processing and adaptation can be performed at the edge, while
more intensive computational tasks can be relayed to the cloud. This approach has two
big effects:

• Improvement of system performance – By reducing the supervision load inside the
controllers, the control system has more hardware capacity available. With this the
control system improves its performance and consequently the performance of the
entire system;

• Increasing the possibilities of predictive supervision – Using an external entity, such
as a remote server or a data centre with a huge computational capacity, the amount
of data that can be processed and the number of variables and combinations that
can be modelled and analysed is increased, resulting in a better and more accurate
supervision.

The existence of a historical database is imperative because industries constantly need to
consult historical data to understand unexpected behaviours and the system’s performance.
This data can be used either by the external entity or by other entities such as a Human
Machine Interface. The usage of an external remote entity, running in powerful machines
with the capacity to store any amount of data provided by the system, allows it the capacity
to model and retrieve more information from raw and pre-processed data. During execution
the external entity is capable of continuously computing all received data, modelling the
system’s behaviour and triggering events that can result in important alerts, avoiding line
stoppages and allowing the operators to perform preventive and predictive maintenance.

After this introduction to the MAS-based CPPS component, it is appropriate to take a
closer look into the main interactions between the agents, necessary to carry out their
responsibilities within the larger PMS. More specifically, these include the addition and
removal of resources, the acquisition and processing of manufacturing data and finally the
execution of a predictive response, as detailed in the following sub-sections.

It should be noted that all JADE agents are compliant with the Foundation for Intelligent
Physical Agents (FIPA) specification (Bellifemine, Poggi, & Rimassa, 1999), so all the
communications among the agents were implemented according to the standards defined
by FIPA. The communications between the agents are typically based on two protocols:
the FIPA Request Protocol (FIPA, 2002) and the Contract Net Protocol (FIPA, 2000).
The FIPA Request Protocol is used to make point-to-point communication between two
agents requesting to perform a specific task, while in the Contract Net Protocol case,
a negotiation is performed in order to understand which responder agent is the most
appropriate to perform the required task, after which the task is requested by the initiator
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and performed by the responder agent. In the current implementation, since there is no
need for negotiation in the agents’ interactions only the former was used.

5.1.1 Adding and Removing Resources

The addition and removal of physical resources to/from the manufacturing environment
(and by extension of its corresponding agents) its closely tied with the PMS’ capacity to
adapt and scale up or down to reflect the needs of the underlying manufacturing system.

In this sense, the DA carries out most of the key functionality by calling a library imple-
menting the IHardwareDetection interface, shown in the snippet from Listing 5.1:

Listing 5.1: DA generic interface.
1 public interface IHardwareDetection {
2 ArrayList <String > getPluggedResources ();}

This library’s method is called periodically on a cyclic behaviour which enables the DA to
get a list of currently plugged resources and compare it the one it maintains internally. If
an addition is detected, the interaction detailed in the sequence diagram from Figure 5.3
is started.

Figure 5.3: Interactions between the CPPS’ agents during the deployment of new CMAs.

Once a CMA is launched with proper parametrization provided by the DA, it immediately
registers itself in JADE’s Directory Facilitator, which acts similarly to an yellow pages
service, followed by loading its necessary configurations and instantiating and initializing
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the respective libraries, namely regarding the IDataCollection, IDataDescription and
IDataOutput interfaces as shown in the code snippet from Listing 5.2.

Listing 5.2: CMA generic interfaces.
1 public interface IDataCollection {
2 public void initializeHWConnection ( String compName ,
3 ArrayList < MonitoredSystemData > dataList , Agent agent );
4 public void closeHWConnection ();
5 public MonitoredSystemValue readHardwareValue ( String idTag );
6 }
7 public interface IDataDescription {
8 public MonitoringDataDescription getDataDescription ( String entity );
9 }

10 public interface IDataOutput {
11 public void initialize ( String resourceID , String endpointAddress );
12 public void sendOutput ( MonitoredSystemValue v);
13 }

Lastly, if deemed necessary in its topology information, it communicates with the SMA
responsible for abstracting the particular subsystem in which the resource was plugged
into to register itself onto that same subsystem’s list of resources.

Mirroring this process, if the DA detects that a resource has been unplugged when com-
puting the differences between the resource lists, it initiates the process of removing the
corresponding agent from the MAS platform. The set of interactions associated with this
process is shown in the sequence diagram from Figure 5.4.

Figure 5.4: Interactions between the CPPS’ agents during the removal of unplugged CMAs.

In this case, once the removal is detected, the DA requests the corresponding CMA to
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remove itself from the platform. In turn, the CMA needs to ensure that if he is part of a
subsystem, he should then request the parent SMA to remove it from the subsystem’s list
of resources. The inform message signalling the successful conclusion of this operation is
only sent back to the DA once the subsystem’s information is also update to ensure that
consistency is kept within the platform.

5.1.2 Acquiring and Processing Manufacturing Data

This section presents the proposed solution for the problem of data extraction. Data
extraction is usually viewed as a problem mainly concerning system integration, consisting
on the retrieval of available data provided by a system’s data sources (e.g. PLCs and
other devices that can provide and store data related to the system’s execution). This
process usually leads to the acquisition of raw data which requires further processing in
order for it to be useful in regards to the description of the system or its analysis. For
instance, the bits stored in a controller’s memory which describe a state indicated by
sensors and actuators can be an example of such a case. In some systems the controllers
might contain values that can be used for monitoring and to describe the system in a way
that is understandable for the system’s operators, such as times or counters, but the usage
of this data might not be easy due to the difficulty associated to collecting this data from
an industrial machine and display it in a common user friendly visual interface.

A common case of raw data that can be processed to retrieve useful values is data related
to transitions. Transition times describe the time that resources need to change from a
certain state to another. Figure 5.5 presents an example of a Transition time extraction in
which the transition is performed by a clamp, where the first state represents the immediate
state before starting the transition, the second one the transition itself and the last one
the state immediately after the transition is performed when the sensors indicate that the
clamp is on the final position. The Transition time, in this case, reflects the time needed
by a clamp to close, meaning the time passed since that clamp starts the movement from
the initial state until it achieves the final state.

Figure 5.5: Visual representation of the transition time timespan.

Transition times are values that can be very interesting to monitor, since generally an
increase in this value probably indicates that maintenance is required for the corresponding
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resource. Monitoring trends and deviations in such values makes it possible to recognize
abnormal behavior and avoid stoppages on the line due to potential problems with its
physical resources. Another example that can be extracted by processing raw data is the
Action time. Action time represents the delay verified since the input is given until the
resource starts the execution of a given action. This value indicates the responsiveness
of each component, as illustrated in Figure 5.6, pertaining to the extraction of the action
time for the previous example.

Figure 5.6: Visual representation of the action time timespan.

In this case, the extraction of the Action time is based on inputs and outputs that describe
each state. The initial state is defined as the moment when the input is triggered and the
clamp is in the home position, and the final state is the moment when the clamp starts
the movement leaving the home position. In essence, the Action time is the time since the
input is triggered until the real response of the resource.

To summarize, this data acquisition and pre-processing step is thus a key enabling factor for
the operation of a PMS. It is necessary that the agents abstracting the physical resources
are capable of discerning the data that is ready to be used and that which needs some
form of pre-processing in order to be useful for the other system actors to understand the
system’s behavior and model, improve and visualize it.

Event Description

Each agent possesses its own Knowledge Base (KB) capable of storing the rules and
descriptions that define their associated monitoring data. For this purpose, the EDL
should contain methods to allow the CMAs and HLCMAs to access an external data
source (e.g. a DB or an XML file) in order for them to learn information regarding the
data they will be monitoring, more specifically which values they should extract, how often
they should be extracted (polling rate) and all the rules concerning the conditions that
define possible events that need to be computed by the agents themselves (pre-processing).

In order for the agents to recognize all the possible events and values related to their
abstracted component or subsystem, it is necessary for each of them to have a knowledge
base capable of storing the rules and descriptions that define their associated monitoring
data. Therefore, each CMA and SMA loads a library which implements IDataDescription
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(see 5.2) to retrieve said rules from an external source, such as an XML file or a database, so
long as it is not immutable. This should provide the agents with all information regarding
the data they will be monitoring, more specifically which values they should extract, how
often they should be extracted (polling rate) and all the rules concerning the conditions that
define possible events that need to be computed by the agents themselves (pre-processing).
Basically, an event description contains a list of all states verified during the execution of
the event, as illustrated in the snippet from Listing 5.3.

Listing 5.3: Snippet from data descriptions in markup language.
1 <Component id="Line.UR5_1" name="UR5_1">
2 <Data >
3 <State id="cycle" type=" xs:boolean " source ="opc. workgroup1 "
4 sourceParam =" UR5_1_ParamCycle "/>
5 <State id=" moving " type=" xs:boolean " source ="opc. workgroup1 "
6 sourceParam =" UR5_1_ParamMoving "/>
7 <Timespan id=" gripperForceSensor " source ="opc. workgroup1 "
8 sourceParam =" RG2_leftForceSensor "/>
9 <Timespan id=" cycle_time " source ="agent">

10 <TimespanMapping >
11 <StartConditions >
12 <StateValue id="cycle" value="true"/>
13 </ StartConditions >
14 <EndConditions >
15 <StateValue id="cycle" value="false"/>
16 </ EndConditions >
17 </ TimespanMapping >
18 </ Timespan >
19 </Data >
20 </ Component >

In this case, by reading this configuration the CMA/SMA knows that for its resource there
are two states, cycle and moving, and two numerical values to be extracted from an OPC
server. In this case the latter pertain to timespan measurements, with one originating
directly from the controller (indicated by "source=opc.workgroup1") and the other having
to be computed by the agent based on the cycle state (indicated by "source=agent").

Runtime Execution

The main MAS execution cycle can be divided in three main phases as described in the
sequence diagram from Figure 5.7. These phases encompass the collection of raw data, its
pre-processing to generate new information and finally the relaying of the aforementioned
data to the remaining system’s actors through the message broker, with these being in
this case being Kafka and the Storm data-stream analysis topology.

During the execution each CMA and SMA collects data from the hardware through its
data acquisition library. These agents contain a circular buffer where the recent states
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Figure 5.7: Interactions between the CPPS’ agents during the data acquisition process.

are stored and where it is possible to consult the recent past states in order to extract
performed events according to the existent event description rules. The states and events
collected by each of these agents is then relayed to the external entities according to the
agents’ data output library, which in this case consists in a Kafka producer. This producer
emits newly collected or generated data to a Kafka topic, which can then be consumed by
the Storm topology. A snippet from the implementation of IDataOutput illustrating this
can be found in Listing 5.4.

Listing 5.4: Snippet from the implementation of IDataOutput.
1 @Override
2 public void sendOutput ( MonitoredSystemValue v) {
3 producer .send(new ProducerRecord <>( DATA_TOPIC ,
4 v. getSourceID (), v. getValue () + ";"
5 + v. getSourceTimeStamp () + ""));
6 if (( elapsedTimeSinceMetrics <0) ||
7 ( System . currentTimeMillis ()- elapsedTimeSinceMetrics )>10 _000) {
8 getProducerMetrics ();
9 }

10 }

The collected and pre-processed data is also sent to the agent located on the layer imme-
diately above the current agent’s layer, basically meaning that the data is also sent to a
higher level node of the tree allowing the higher level agents to use the data provided by
the lower level ones. Consequently with this kind of approach different insights can be
obtained which would not have been available otherwise using the data provided by the
lower layers. This process can be seen as a form of data and information fusion, as defined
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Figure 5.8: Knowledge inference example regarding a clamp’s current state.

in (Khaleghi, Khamis, Karray, & Razavi, 2013), which pertains to the transformation of
data from different sources and even different points in time into a representation that can
support human or automated decision making effectively.

This data fusion is performed by the data processing algorithm implemented by each agent
as a OneShotBehaviour (a type of agent behaviour that gets executed only once, in this
instance every time a new data point is collected). This process is the cornerstone that
enables the proposed architecture to provide more useful data to the external processing
entities, permitting them to perform the analysis of relevant trends and tendencies in the
extracted data’s values.

The inference process consists initially in computing the raw data values according to a
certain rule set stored in each agent’s respective knowledge base, as shown in Figure 5.8.

However, as more complex states are inferred they can also be used to compute new data
values, as described above using a clamp’s current state as an example. The general
workings of the full algorithm are portrayed in Figure 5.9.

As previously stated, during the CMA’s and SMA’s initialization process all the information
regarding what kind of events can be computed and the rules that define them is loaded
onto each agent’s knowledge base. The agent then waits until new monitored data is
received, regardless of it coming from the agent’s own data extraction or its children’s,
starting the main processing cycle upon its arrival.

The processing cycle consists in a series of procedures that for each possible value to be
computed, allow the CMA/SMA to decide whether the collected data present in its circular
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Figure 5.9: Data Processing Algorithm Flow Chart. Represents the process flow for the
generation of new knowledge for each agent.
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buffer in that given moment is enough to compute said value, according to the conditions
defined in the monitored data description contained in its knowledge base.

While the processing of some data types, for instance states, is done in a fairly straightfor-
ward manner by simply checking if all conditions that define the referenced data type are
met, the same does not apply to timespans.

In the former’s case, only a single set of conditions must be met in order for a given state
to be computed. Therefore all that is required is for the agent to iterate over the entire
set of conditions, checking if for each and every one of them there is a value stored in the
circular buffer that satisfies it. If all conditions are met, the new inferred state itself is
then stored in the circular buffer and propagated to the upper layers of the monitoring
tree.

However, in the latter’s case, two different sets of conditions must be met in order for
a timespan to be calculated, namely those that define the beginning and the end of the
relevant period of time. For this reason, the agent starts by checking if all the ending
conditions are met, similarly to how a new state is processed. If they are, it stores the
latest timestamp among the values that verify that set of conditions, moving on to repeat
the process for the starting conditions. However, if at either stage the conditions are not
verified the computed value is discarded and the agent starts the cycle anew for the next
possible computed value.

If all the conditions are satisfied then the CMA/SMA computes the timespan by calculating
the difference between the timestamps associated with the starting and ending conditions
sets, storing it in its circular buffer and sending it up the monitoring tree.

5.1.3 Enacting a Predictive Response

The implementation of the CPPS’ adaptation behavior is heavily supported by the auto-
mated interpretation of the analysis’ results which is performed at the later stages of the
stream-analysis topology (further detailed in Section 4.4). The basic idea behind it is that
the monitoring agent periodically polls Kafka through a consumer to check if there are
newly published analysis results. As it will be seen later on during the description of the
Storm topology, these results include the corresponding action that should be carried out
by the agent through the implementation of the IDataResponse interface from Listing 5.5.

Listing 5.5: Generic interface for enacting predictive responses.
1 public interface IDataResponse {
2 public void initializeConnection ( String resource , Agent agent );
3 public void closeConnection ();
4 public boolean enactResponse ( String address , String value , String action );
5 }
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On top of these, the action the agent should carry out through the generic enactResponse
method depends on the use case being considered. If the goal is to enact a self-adaptive
response, then the method should be implemented in a way that allows it to directly affect
parameters or configurations for the physical resources. Otherwise, it should interact with
the system’s users through some human-machine interface to provide warnings, alerts or
to issue for instance maintenance requests directly.

5.2 Storm Topology (RDA Component)

The topology’s actual processing is performed by its bolts, each containing its own specific
logic. The proposed topology is multi-layered, with each bolt performing a specific task
on the incoming tuples, as it can be seen in the pipeline represented in Figure 5.10.

Figure 5.10: Apache Storm Real-time data processing topology

First and foremost, tuples are filtered by the Split Stream bolt according to their respective
topic of origin, as they can be related to either data or updates to the running system.
Tuples are then aggregated in window slots of a given size and emitted to the Data Analysis
Bolt (DAB), enabling a sliding window approach.

The DAB is responsible for the actual processing task, using ML models to generate
predictions for the shop-floor resources based on the incoming real-time data (e.g. likelihood
of failure within a certain number of cycles). These models can vary from resource to
resource, and can be provided in Predictive Model Markup Language (PMML) (Guazzelli,
Zeller, Lin, & Williams, 2009) by either their respective agent during deployment, or by
the Knowledge Management tool as an update in runtime, being then stored in memory
by each of the bolt’s workers. The basic procedure involved in the execution step of each
DAB is detailed in Algorithm 1.

Once the processing is concluded, the results are relayed to the Context Bolt (CB), which
enriches them with their significance in the physical world so that the CPPS can later
on interpret them and act accordingly. Depending on the adopted approach, this can
mean for instance triggering self-reconfiguration, scheduling predictive maintenance or
simply alerting an operator by providing said context via a human-machine interface. This
procedure is shown in Algorithm 2.
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Algorithm 1 Data Analysis Bolt basic execution algorithm
1: procedure execute(Tuple tuple)
2: if sourceStream= UPDATE_PMML_STREAM_ID then
3: Update the corresponding model
4: Emit to log stream the update status
5: else if sourceStream=DATA_STREAM_ID then
6: Get resource name from tuple
7: Find reference to corresponding model
8: if model , null and tuple.numOfInputs≥model.numOfInputs then
9: Feed input to the model

10: Emit result to default stream
11: end if
12: end if
13: Ack the tuple
14: end procedure

Algorithm 2 Context Bolt basic execution algorithm
1: procedure execute(Tuple tuple)
2: if sourceStream= UPDATE_CONTEXT_STREAM_ID then
3: Deserialize model context from the tuple
4: Update internal context map
5: Emit to log stream the update status
6: else if sourceStream=DATA_STREAM_ID then
7: Load the respective context from the context map
8: Enrich output with the corresponding semantic context
9: Emit result

10: end if
11: Ack the tuple
12: end procedure

Finally, the enriched results are sent to the Logger Bolt to be stored. These can be simply
logged to the local disk, or ultimately stored in a database like MongoDB or Cassandra,
being then available to be used by the Knowledge Management tool to further analyse
and improve the runtime process.

Another advantage of adopting Apache Storm for the implementation of the real-time
data analysis component is its support for monitoring and maintenance of the topology
itself. Storm provides a user interface that enables developers to monitor its execution for
bottlenecks, execution speeds and data rates, as it can be observed in Figure 5.11.

The color of nodes indicates whether a bolt is exceeding cluster capacity, with red denoting
a data bottleneck and green indicating components operating within capacity. Data flow
is also represented by the connections between components, with thicker lines pertaining
to larger data flows. From the example above, taken during the PMS execution for the
tests which will be later presented in Section 6.1, it can be seen that the largest flow of
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Figure 5.11: Storm UI topology monitoring visualization.

data corresponds to the regular data stream, while the model update stream presents
much lower traffic since the updates are considerably less frequently than the rate at which
new data is generated. Also, the capacity of the network is not being exceeded with no
considerable bottlenecks as shown by the green colouring of the nodes, with the blue one
being used to represent the entry point of the topology, in this case the Kafka spout.

5.3 Offline Data Analysis and Engineering (KM Component)

Firstly, ML models can be implemented for instance in Python using the Scikit-Learn
library (Pedregosa et al., 2012). The models are created offline, trained using historical
data and then serialized into PMML. This constitutes the application-specific stage of the
solution, however, the usage of PMML ensures that developers are not restrained to using
Python-based models, as long as they can be serialized to the adopted format. Generally
speaking, this process follows the steps detailed in Algorithm 3.

Algorithm 3 Knowledge Management general model creation and serialization algorithm
1: procedure train_model
2: Load data set
3: Split data into training and testing sets
4: Pre-process both sets equally . Imputting missing values, normalization, etc
5: Train machine learning model
6: Test machine learning model
7: Create PMML pipeline
8: Serialize pipeline to PMML file
9: end procedure
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This streamlined process representation can be seen as an over-simplification, as often it
can deviate at certain stages depending on the task as hand. More specifically, there can
be for instance additional steps for feature selection, cross-validation or hyper-parameter
tuning to name a few examples. Moreover there can be additional steps regarding data
exploration, prototyping and baseline modelling, but the goal here is to provide the reader
with a general view of the typical process.

Afterwards, the resulting model description is then loaded by a Java-based application,
which also allows the user to input additional model information such as the model ID,
the resource or resources it is related to, and its context. This context can be used to
capture domain knowledge and enriching model outputs with their meaning in the physical
world, allowing the CPPS to autonomously interpret the results of the RDA later on. A
prototypical implementation of this application is shown in Figure 5.12.

Figure 5.12: IDARTS knowledge management prototype graphical user interface.

In this example, through the application a series of parameters are specified regarding the
context for the model with id "K-MeansModel", namely that it pertains to resource "RA1",
the relative path to its PMML file instance and that it accepts two input parameters.
Last but not least, the context that allows the MAS-based CPPS to enact the predictive
response is also provided, in this case meaning that if the output from this classification
is 0 it means the resource is in NORMAL operating condition and no action is needed,
1 should trigger a WARNING and 2 signals that the resource has failed and required
immediate action, each with the respective action/message associated to it.

All this information is then serialized and pushed to a dedicated Kafka topic to be consumed
by the running Storm topology, with a format similar to what is displayed in Listing 5.6.
One key difference is that the path to the PMML model is replaced by the markup code
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detailing the actual model to be used, which is then parsed within the Storm topology.

Listing 5.6: Update message to be sent from KM through Kafka.
1 RA -1#K- MeansModel #" models /K- MeansModel .pmml"#2#K- MeansModel ##{0=[ NORMAL #
2 Resource is in normal operation condition .] ,1=[ WARNING # Resource is likely
3 to fail .] ,2=[ FAILURE # Resource is in failure mode .]}

Once there, the Split Stream bolt takes care of dividing the message into the updates to be
processed by the DAB and the Context Bolt, thus effectively adapting the runtime system
without requiring any additional effort or considerable downtime.
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Results and Validation

Chapter 6 focuses on the description of the application of IDARTS-based implementations
of PMS to different use cases and experiments. To this extent, the results from the
application of these implementations to three distinct scenarios are discussed with respect
to the goals and requirements defined in Chapter 4.

The first scenario relates to a laboratory experiment for machine failure prediction focusing
on the verification of the core IDARTS requirements. This was conducted in a set-up
in which the execution of the MAS-based CPPS, the communication broker and stream
processing were distributed in a local cluster of four machines.

Following this, a quality control scenario is presented as part of the H2020 GO0D MAN
project. This scenario targeted a different implementation of a PMS targeting the ZDM
paradigm in three industrial use cases having adopted as a basis the IDARTS framework
(GO0D MAN Project (ID:723764), 2017). Each of the use cases is representative of a
different type of production, with highly-customised products within professional appli-
ances, serial production in the automotive assembly and batch production in turned and
machined metal components.

Lastly, a variation of the aforementioned automotive use case is presented, putting a
higher emphasis on the data-driven predictive modelling and showcasing how easily the
IDARTS modules can be swapped depending on the needs of the use case at hand using
an adaptation of the implementation proposed in Chapter 5.
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Figure 6.1: IDARTS Testing 4-Node Cluster

6.1 Laboratory Cluster Deployment

This section details the steps taken during the testing and validation of the initial imple-
mentation of the IDARTS framework proposed in Chapter 5. The tests were conducted
with the goal of verifying the NFRs identified in the specification of the framework, with
a larger emphasis on the aspects of scalability, adaptability reliability and real-time con-
straints. The testing environment consisted in the four-node cluster shown in Fig. 6,
consisting on four machines running Core i7-4770 processors with 12GB of memory each.

One machine was dedicated to running Zookeeper (a dependency of both Kafka and Storm),
the Kafka server and Storm Nimbus, which is responsible for assigning tasks and monitoring
other nodes. Two others act as Storm supervisor nodes. These are the nodes that host and
govern several worker processes to complete the tasks previously assigned by the Nimbus
node. Finally, the remaining machines were allocated to the hosting of the agents running
in each test (evenly divided between each of the three machines).

Regarding the CPPS, the agents were instantiated with a dummy hardware communication
interface, which for each agent simulated the generation of data from its respective emulated
resource. This was achieved by developing a small Java graphical application which enabled
the user to plug and unplug virtual resources that, once plugged, generated a new random
value between 100 and 200 every 100 milliseconds. Additionally, every time a new value
was generated the resource had a three percent chance to enter failure mode, which forced
it to generate data of increasingly larger values in small increments for 30 cycles.

For each resource a CMA was deployed, collecting all its data and publishing it to a Kafka
topic. This topic was consumed by the Kafka Spout in the Storm topology in order to
enable the processing of the emulated shop-floor data. Once this process was concluded,
the result was once more published to Kafka and made available to be consumed by the
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Table 6.1: Apache Storm Topology Metrics

#Agents Bolt Capacity Execution Latency (ms)
75 Split Stream 0.026 0.145

Window Agg. 0.034 0.062
Data Analysis 0.032 0.059
Context 0.016 0.023

150 Split Stream 0.034 0.146
Window Agg. 0.055 0.077
Data Analysis 0.048 0.060
Context 0.048 0.035

300 Split Stream 0.100 0.224
Window Agg. 0.207 0.123
Data Analysis 0.189 0.119
Context 0.181 0.067

CPPS one more.

For the scalability tests, three different deployment configurations were used, each doubling
the number of resources/agents deployed in the previous one and running for 30 minutes.
A summary of the data collected during these runs can be seen in Table 6.1.

The metrics observed in Table 6.1 are capacity and execution latency, extracted using
Storm’s UI daemon. The former is referent to the processing capacity of the bolts deployed
in the Storm topology. The closer the value is to “1.0”, the closer the bolt is to be running
as fast as it can. This is useful to verify if the parallelism of the topology needs to be
adjusted. The latter refers to how long each tuple takes on average (in milliseconds)
to be executed by the respective bolt. The Logger Bolt was excluded because during
testing it was only quickly logging the model updates, thus its metrics were very close to
zero and not relevant for comparison. An additional metric that was extracted was the
complete topology latency, meaning the time it takes each tuple, on average, to be fully
processed and acknowledged by the entire topology. Its values were 11.452ms, 13.441ms
and 16.222ms, for 75, 150 and 300 agents respectively.

On the other hand, the second data flow, represented by the dashed line, pertains to the
Knowledge Management updates used to demonstrate the flexibility of the initial imple-
mentation regarding the analysis process. The data generated by the virtual resources was
used to train two different ML models beforehand, more specifically K-Means Clustering
and Logistic Regression classifiers. An example of the output from the latter can be seen
in Fig. 6.2.

As it can be observed, the model outputs the probability of failure within a given number
of cycles. For testing purposes, the training data was labelled based on a 5-cycle period,
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Figure 6.2: Example of the output from the Logistic Regression Model

and it was considered that a probability above 60% would result in a model classification
of “1” as a representation of impending resource failure.

Upon deployment, every agent is initialized being associated with the aforementioned
model, passing this information to the Storm topology via Kafka. During runtime, this
configuration was then changed by the Knowledge Management tool, individually shifting
certain resources to the clustering model instead. This process is initiated once the user
has finished introducing all the information pertaining to the new model in the Java
application. The serialized update is published to a Kafka topic, being then consumed
by the Kafka Spout and emitted into the Storm topology. Internally, it is then split into
the model and context updates, and sent to the respective bolts. The latency associated
with these updates was measured over 100 iterations, consisting in the average timespan
in milliseconds between the user publishing the update to Kafka, and each bolt completely
updating its internal execution process accordingly.

Finally, the pluggability (associated with both scalability and adaptability) was tested
using the deployment tool mentioned in the beginning of this section. For this purpose,
timestamps were extracted from two specific moments for both the plugging and unplugging
of resources/agents. Once when pressing the button to launch/remove a new resource,
mimicking the detection of a new/removed shop-floor asset by the Deployment Agent, and
then again when the respective agent is deployed and ready to start publishing data, or
when it is removed from the agent platform. The results are summarized in Table 6.2,
representing the average latency measured when unplugging and plugging randomly chosen
agents 100 times during execution, one at a time, with arbitrary intervals in between each
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Table 6.2: CPPS Pluggability Test Results

#Agents Plug Latency (ms) Unplug Latency (ms)
75 248.889 3.556
150 252.000 5.050
300 249.560 11.300

Figure 6.3: Apache Storm Topology’s Average Capacity and Execution Latency

action and with a varying number of active agents for each run.

Regarding the first set of tests pertaining to the scalability of the solution, the imple-
mentation was deployed on a four-node cluster and tested with varying data throughput
rates. This rate started at around 750, then 1500, and finally 3000 data points per second,
corresponding to 75, 150 and 300 virtual resources/agents, respectively. The comparison
of the results for the RDA module can be seen in Fig. 6.3.

As it can be observed, even with 300 concurrent resources/agents each tuple was spending
slightly less than 0.2 millisecond at most per bolt. The average capacity of each bolt
increases significantly for the last set of the test, but is still considerably less than “1.0”
meaning that the bolts are not being forced to run faster than they can, which would result
in unwanted queueing and delays. Regardless, once the capacity reaches higher values as
the system scales further, this issue can be tackled by increasing the parallelism of the
topology.

Regarding the knowledge management flow, the latency associated with each update to
the running system was also measured under different throughput rates. The goal was to
verify the impact that increasing volumes of data could have in the system’s capacity to
adapt the RDA process.

The results for the average update latency can be visualized in Figure 6.4, along with a
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comparison with the overall complete latency for the tuples pertaining to the shop-floor
data stream.

Figure 6.4: Shop-floor Data and Model Update Latency

The latency associated with the knowledge management updates is shown to increase as
the system scales, albeit very slightly. These results show that not only is the Knowledge
Management tool capable of adapting the RDA during execution, but also that the system’s
scale has very little impact in the performance of this updates. As far as the complete
latency for the data stream is concerned, the overall impact of the system’s scale is also
relatively small in comparison. This is considering that while the scale doubles for each
run, the latency only increases by a factor of around 1.174 and 1.217 between each of them.

This can be attributed not only to the increase in the processing time, but also in the
increased network load and respective associated delays. Lastly, for the pluggability tests
the latency was measured between the moment a new/removed resource is detected and
the instant the agent is fully initialized/removed from the platform. The comparison of
the results is illustrated in Fig. 6.5.

It is interesting to note the difference between the results for unplugging and plugging
events. At first glance, it might seem that the results suggest the agent platform simply
takes a lot longer to handle the deployment of new agents. However, this difference lies
mainly in the monitoring agent’s ramp-up time, since the measurement is taken only after
it has fully completed its setup process, which includes initializing its data collection and
output communication libraries.
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Figure 6.5: Pluggability Latency

6.2 Multi-stage Quality Control Scenario

The first large scale scenario for the application of the IDARTS framework is focused on
the aspect of multi-stage quality control (see Definition 6.1), having been encompassed
within the scope of the H2020 GO0D MAN Project. This scenario is an example of an
application of IDARTS and its principles in three different real-world use cases, in spite of
following a different route in regards to the way IDARTS was implemented.

GO0D MAN targets the development of a cyber environment capable of integrating both
process and quality control in multi-stage production to achieve zero defect manufacturing.
To do so, an agent-based CPPS is proposed to integrate the shopfloor components with
higher-level functionalities, such as services to provide big data analytics and knowledge
management.

Definition 6.1 (Quality Control). 1. Set of activities designed to evaluate the quality of
developed or manufactured products 2. Monitoring service performance or product quality,
recording results, and recommending necessary changes (ISO/IEC/IEEE, 2017).

In order to provide such an intelligent platform capable of targeting Zero-Defect Manu-
facturing even in existing legacy systems, GO0D MAN focuses on the combination of the
latest ICT advancements encompassed in the concept of Industry 4.0, including both Edge
and Cloud Computing, the Internet of Things and Big Data Analytics.

To this end, the IDARTS framework was adopted with the purpose of guiding both
the architecture design and implementation stages of the GO0D MAN ZDM approach
throughout the project’s life cycle. Due to the lack of hard real-time constraints within the
project’s requirements, there was no need to adopt a real-time data analysis component.
Due to the modular nature of IDARTS’ components, the framework could be employed
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Figure 6.6: H2020 GO0D MAN adaptation of the IDARTS Framework (GO0D MAN
Project (ID:723764), 2017)

simply using its remaining components without requiring any additional change. An
overview of the complete adaptation of the IDARTS framework and the interactions
between its elements can be seen in Figure 6.6.

Within the scope of the project, the key contributions that the framework provided were:

• The Integration of the Physical and Software Elements – Through the application of
a CPPS, GO0D MAN’s real-time computation layer should be capable of extracting
data from the shop-floor and reason on it in order to assess possible deviations and act
accordingly, thus preventing the propagation of defects downstream in a multi-stage
manufacturing environment.

• Seamless Data Exchange between Heterogeneous Components – The employment of
a common data representation and exchange format in crucial to ensure the interop-
erability of the heterogeneous components comprising the GO0D MAN platform.

• Knowledge Management and Data Analytics – Despite the exponential growth in the
volume and velocity at which data is generated in manufacturing environments (e.g.
embedded sensors), a large portion of it remains untapped. GO0D MAN’s approach
aims to translate this data into a business advantage by employing advanced data
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Figure 6.7: The GO0D MAN Architecture for ZDM (GO0D MAN Project (ID:723764),
2018)

analysis and knowledge management methods on semantically enriched data acquired
by the CPS. Generated knowledge can be then used to improve the CPPS’ reasoning
system, hence further mitigating the occurrence and propagation of defects during
production.

From this, the GO0D MAN distributed system architecture was designed, comprising three
main levels of action. At the field level, smart inspection tools are deployed within the
multistage production environment to collect additional data and send it to the cyber-level
in a common data representation format adopted by all of the PMS’ actors (R. Peres, Rocha,
Matos, & Barata, 2018). At the edge-computing level a MAS-based CPPS is employed to
serve as an intelligent "virtual glue"that connects the different system elements. This MAS
abstracts the multistage production system and the smart inspection tools, collecting event
data and process them according to a set of reasoning rules. Lastly, the MAS also passes
these data to the cloud data and knowledge management component, which is responsible
for the actual data analysis, the capturing of domain expert knowledge and the refinement
of the reasoning rules used by the MAS. These layers are reflected in the architecture
representation provided in Figure 6.7.
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To verify this implementation’s fulfillment of the requirements specified in Section 4.1.2,
each of these requirements was mapped to the GO0D MAN’s architecture layers, as
illustrated in Table 6.3.

Table 6.3: Verification and mapping of the IDARTS requirements in the GO0D MAN
implementation. Legend: • - verified; ◦ - partially verified; × - not applicable.

QCs MAS KM QCs MAS KM

NFR-01 • ◦ ◦ FR-01 • •
NFR-02 • • • FR-01-01 • •
NFR-03 • • • FR-02 • •
NFR-04 FR-02-01 •
NFR-05 • • • FR-03 •
NFR-06 • • • FR-04 • •
NFR-07 × × • FR-04-01 • • •
NFR-08 • • • FR-04-02 •
NFR-09 • • • FR-04-03 •
NFR-10 • • ◦ FR-05 ◦ ◦

FR-05-01 ◦
FR-05-02 ◦

From the observation of Table 6.3, it can be concluded that while most of the requirements
are completely fulfilled, there are still some gaps to fill which suggest some requirements
(from both the functional and non-functional sides of the table) are harder to be fulfilled
when migrating these types of solutions from a laboratory or prototype level implemen-
tation, such as the one discussed in Section 6.1. Particularly, as far as non-functional
requirements are concerned, this relates mostly to the aspects of adaptability (NFR-01),
reliability (NFR-04) and usability (NFR-010).

Regarding adaptability, from a data analytics standpoint it can be considerably challenging
to ensure that data-driven models are always capable of coping with any changes at the
shop-floor level, especially if we’re imposing that no additional programming or modeling
effort should be required. One way to partially tackle this, which was in fact adopted in
this implementation, is to schedule periodic updates to the models deployed to production,
thus ensuring they remain relevant and operational as time passes. This does not, however,
guarantee that the data analytics approach is robust when faced with the addition or
removal of several different data sources, as even if it remains operational it certainly isn’t
guaranteed that it is utilizing the data to its full potential without reworking the analysis
and modeling process.

Now concerning the topic of reliability, this is also considerably difficult to guarantee while
also respecting the requirement of non-invasiveness, as typically the necessary infrastructure
simply isn’t in place and ready to be used. This can be tackled by adopting technologies
with built-in reliability mechanisms (such as Apache Kafka) to handle the transport of
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data, but these are often still fairly complex and require considerable effort to maintain in
a production environment.

Last but not least, the subject of usability is critical when discussing the industrial adoption
of these solutions. They need to be easy to use and also able to convey information in
a way which is readily understood by people coming from a wide array of educational
and technical backgrounds. While parts of the solution can easily act as a black box
while carrying out their respective duties (e.g. the MAS’ data acquisition), the Knowledge
Management layer in particular needs to convey the results from the data analytics module
in a way that aids the production managers and the operators, instead of adding more
complexity to their already complex processes.

6.2.1 Volkswagen AutoEuropa Use Case

The Volkswagen AutoEuropa (VWAE) use case consists is an automotive production
plant for the Volkswagen group, responsible for manufacturing several models, such as the
Alhambra, Scirocco, Sharan and T-Roc, with the latter being the focus of the use case at
hand.

The VWAE production line comprises four main areas, more specifically the Press Shop,
the Body Shop, the Paint Shop and Final Assembly. For the purposes of this use case,
only two of these areas will be considered, namely the Body Shop, responsible for the
manufacturing of the vehicle’s body in white, and the Final Assembly area, responsible for
assembling the final components onto the painted vehicle, including for instance the rear
and tailgate lights. The Final Assembly also includes quality inspection concerning the
assembled parts and if necessary the correction of the assembly operations, either through
human operators fitting the car along the line, or ultimately through repairs at a repair
station.

The assembly of the tailgate is of particular interest for the use case, since this process is
completely manually performed by an operator. Another point of interest is the assembly
and the alignment of both tailgate and rear lights performed in the Assembly area. In this
area, an inspection of the product is executed in terms of its gap and flush measurements,
which is also made manually by an operator.

Based on these points, the Body Shop and Final Assembly areas are considered as particu-
larly suitable candidates for improvement via the application of a PMS solution focusing on
controlling the characteristics that affect the gap and flush measurements of the product.
To this end, an instantiation of a generic MAS-based CPPS was deployed as illustrated in
Figure 6.8.

As it can be seen, there are four main sources of data from different production stages
and areas, namely two in the Body Shop and two in the final Assembly area. Regarding
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Figure 6.8: Instantiation of the GO0D MAN PMS for VWAE. Adapted from (GO0D
MAN Project (ID:723764), 2019a).

the former, these are generated by a Perceptron inspection stations which have been
integrated as legacy systems, abstracted by the MAS-based CPPS. The Assembly are
is covered by the deployment of hand-held Smart Inspection Tool (SIT) which can be
used by the line operators to quickly collect measurement data, being then relayed to and
aggregated by the MAS. In turn, the MAS sends these data to the data analytics and
Knowledge Management (KM) components, whose responsibilities relate to finding possible
correlations and predictive modeling, as well as visualization and capturing domain-expert
knowledge, respectively. Combined, these can then be used to adapt the rules used by the
MAS to enable the early detection of anomalies in the use case’s multi-stage production
environment.

For this use case, the following agents were be deployed:

• 1 Product Type Agent representing the car model being produced in the factory
plant (note that the product variants are reflected in parameterized process plans).
This PTA manages the process plan of this car model and is responsible for launching
Product Agents according to the production orders coming from the Manufacturing
Execution System; thus, for each car that starts the production, one Product Agent
is launched.
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• As many Product Agents as the number of cars being produced simultaneously in
the factory plant. Each Product Agent is responsible for managing the production
execution of the car along the line, namely, collecting and storing the production
data, and monitoring the evolution of the car’s production.

• 5 Resource Agents, two associated each inspection station from the Body Shop and
the remaining three associated to SITs in the Assembly inspection area.

• 1 Independent Meta Agent that is responsible for several tasks, such as the aggrega-
tion of the collected data, triggering of the big data analysis aiming to obtain new
knowledge and propagation of the new rules generated by the KM to their respective
agents.

The data collected by these agents is sent to the data analytics component via a REST API,
following a common data representation implemented using AutomationML as described
in (R. Peres et al., 2018), which is used for all communications with the MAS. With this,
clustering models are used to find outliers in the data set using the historical data collected
over time, updating the deployed models on a daily basis using a scheduled job.

The results from the previous step are then passed onto the KM component which provides
the functionality regarding the visualization of the analysis results, enabling quality control
experts to interpret the data and enrich it with their domain knowledge through a web-
based interface, generating new rules or adapting existing ones.

Lastly, the rule updates are then stored in a rule knowledge base using once more a REST
API, which also automatically handles their transformation onto the common format
accepted by the MAS-based CPPS. These are then passed back to the MAS through
the Independent Meta Agent, who is then responsible for distributing them onto the
appropriate agents responsible for abstracting the rule’s respective entity, be it a product
type or a resource.

6.2.2 Zannini Use Case

The Zannini use case consists in a multi-stage batch production process of high precision
turned components for automotive applications, particularly focusing the production of
sleeves for hydraulic electro-valves used in car engines.

The production process is characterized by a high volume of parts (reaching several hundred
thousand of work-pieces per year) which are managed in batches of a pre-determined size
(e.g. one thousand pieces per batch), passing through several production stages with a lead
time that can vary between a minimum of one week up to a few weeks. Each individual
production stage involves a different machine with a particular takt time, with the quality
of the final product depending upon the accumulated quality results of each individual
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operation. More concretely, the stages contemplated in this use case involve turning,
deburring, honing and final check operations.

These characteristics imply that that the individual produced metal parts are not uniquely
identified, so quality inspection results from different stages can be compared only on a
batch level and not on a single product level. Another interesting aspect of this use case
that attests the implementation’s ease in terms of its migration is the fact that all the
elements instantiated for this use case were first tested in Zannini’s facilities in Italy and
later on replicated and deployed for production in Poland. The instantiation of the PMS
for this use case is described in Figure 6.9, with two SITs deployed at the field level, the
MAS-based CPPS running in a local server and the data analytics and KM running at the
cloud level.

Figure 6.9: Instantiation of the GO0DMAN Architecture for the Zannini use case. Adapted
from (GO0D MAN Project (ID:723764), 2019b).

From the observation of Figure 6.9 it can be concluded that there are four main sources
of data related to different stages of the production, namely two stations associated with
turning, one with honing and one pertaining to the final quality check. Based on this, the
MAS was deployed as follows (each agent’s responsibilities were omitted as they are the
same as described in Section 6.2.1):

• 1 Product Type Agent representing the valve sleeve model;
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• 1 Product Agent for each batch being produced, since there is no product traceability
at the individual level;

• 1 Independent Meta Agent;

• 6 Resource Agents, four associated with turning (related with axis current, spindle
load and speed in ZAN1, geometrical characteristics such as internal and external
diameters and length in ZAN2), one for the honing (associated with the detection
of burrs after the honing process) and one for the final dimensional check.

All of the different data is extracted and aggregated by the MAS-based CPPS, which
similarly to the previous use case is responsible for passing it along to the data analytics
and KM components.

For this use case the dataset corresponds to the process parameters per batch, consisting of
around 1000 products each. For the first stage 22 parameters were analysed, 3 parameters
for the second stage (being more specifically the overall length, the internal diameter and
the external diameter) and 2 parameters for the fourth stage. The data analytics approach
that was employed is unsupervised, thus not relying on the involvement of domain experts.

To this end, statistical quality control techniques were applied to detect possible anomalies
in past data via outlier detection. Since these techniques rely only on the available data, it
is possible to detect outliers without specific knowledge of the specification and tolerance
values for the use case.

From the outlier threshold obtained via this method, it is possible to then use this knowledge
to monitor deviating parameters online and avoid the propagation of defects downstream.
These values can also be later matched to the use case’s own specifications and tolerances
to further filter anomalies from simple outliers.

Regarding the KM component, the deployment was made to a private server which enables
the visualization of the data analytics results as well as the calculation of different Key
Performance Indicator (KPI)s such as the capability index. Other functionalities include
the generation of the rules related to the thresholds resulting from the data analytics and
a process view to describe the corresponding task flow.

6.2.3 Electrolux Use Case

The last of the three GO0DMAN use cases is part of the Vallenoncello plant from Electrolux
Professional in Italy, a producer of large equipment for professional kitchens. Regarding
this use case, the assembly line producing a particular line of ovens was chosen as the
focus, being organized in a lean manufacturing concept characterized by multistage single
piece flow, low volume with mixed models and intensive operator labor.
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In general terms, this line encompasses several pre-assembly stages for varied components,
which are then provided and assembled in the main assembly line. At the end of this part a
final functional and quality test is carried out which checks every single feature of the oven
being produced. The instantiation of the PMS enables the inclusion of preliminary on-line
quality checks between the different stages supporting the reduction of the number of ovens
which are not right on first pass, which serves as an indicator of the overall capability of
the whole process. This instantiation can be found in Figure 6.10.

Figure 6.10: Instantiation of the GO0D MAN Architecture for the Electrolux use case.
Adapted from (GO0D MAN Project (ID:723764), 2019c).

As it can be observed, in this use case there are several heterogeneous sources of data,
considerably higher than those of the instantiations contemplated in Sections 6.2.1 and
6.2.2. These include various production stages within the multi-stage line, such as welding,
screwing, assembly visual checks, motor-fan vibration tests, gap and flush measurements
on the oven doors, steam and hot air leakage test and the final quality check.

With the exception of the motor-fan vibration, door seal leakage and the gap and flush tests
which are performed by SITs, the remaining data sources entail the integration of several
legacy systems in order to enable the whole PMS functionality. Akin to the remaining
use cases, all these data is collected and aggregated by the MAS-based CPPS running at
a local server, which then relays it to the remaining components on the cloud-level. The
agents were instantiated for this line as follows (please refer to Section 6.2.1 regarding each
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agent’s responsibilities):

• 1 Product Type Agent for each oven model;

• 1 Product Agent for each individual oven being produced;

• 1 Independent Meta Agent;

• 8 Resource Agents, one for each of the production and inspection resources.

The data analytics approach for this use case follows a similar approach to that of Zannini.
The dataset contains measurements from the final inspection stage, corresponding to 1395
products, each uniquely identified by a bar code and a part number.

For this stage 101 have been analysed, first in terms of their internal correlations and then
in regards to the detection of outliers in the multivariate space. Due to a high number of
missing values in several of the parameters, 46 of them had to be excluded from the study.

Once again the data analytics approach is unsupervised, following the application of
statistical quality control techniques to possible detect anomalies in past data.

Similarly to the previous use case, from the outlier threshold obtained via this method once
can monitor deviating parameters online and avoid the propagation of defects downstream.

As a step further, it is also important to figure out the root cause of these outliers. As
a first approach to this, the frequency with which each parameter was outside of a given
statistical threshold can serve as an indicator for which parameters should be stabilized
in order to improve the stability of the entire process.

6.2.4 Assessment of the GO0D MAN Use Case Instantiations

As far as the GO0D MAN use case instantiations are concerned, the aspects pertaining to
data collection and pre-processing are assured by the CPPS comprising the MAS, the SIT
and the legacy systems.

Furthermore, the adaptation rules originating from the KM and employed by the MAS are
also successfully deployed with the assistance of the rule server which serves as a mediator
between the two components. As a consequence, the instantiations show successful results
in terms of the solutions capacity to identify outliers and contribute to the mitigation of
defect propagation downstream.

However, the short-comings identified in Section 6.2 regarding the verification of the
requirements are also evident, in addition to the lack of truly predictive analytics in the
context of the multistage analysis. While at this point in time these instantiations show
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promising results at the single stage scope, there is still considerable work to be done
to realize the full predictive potential of the proposed architecture in the context of a
multistage system.

Furthermore, while the adoption of mainly unsupervised approaches grants an additional
degree of independence to developers (as there is no explicit dependence on domain expert
knowledge), as discussed in Section 3.4 the inclusion of domain experts in Industrial AI
approaches can contribute to the interpretation of parameters, processes and in realizing
the full potential of such solutions.

Given these points, Section 6.3 proposes an additional scenario as an extension of the
VWAE use case, independent from the GO0D MAN project and focused on the predictive
aspect of the solution through a supervised approach.

6.3 Mitigating Defect Propagation in the Automotive Industry

The VWAE use case is particularly interesting from a data analysis standpoint due to
the complexity of its multi-stage process. This section presents an extended scenario
contemplating the VWAE automotive bodyshop, focusing concretely on the assembly of
the tailgate onto the car’s frame, as well as the corresponding pre-alignment tasks carried
out by human operators. This application appears as the result of a direct contact VWAE,
with its analysis and implementation being independent from the GO0D MAN project
described in Section 6.2. The overview of this scenario can be observed in Figure 6.11.

Figure 6.11: Layout for the multi-stage defect propagation scenario.

The core challenge of this scenario is the identification of correlations between the mea-
surements taken by the Perceptron system in the framing stage, with the gap and flush
quality control performed at the finish line Perceptron after the tailgate is assembled. In
the former, the relative X, Y and Z positions of the car’s frame are compared to those of
the design, with deviations being recorded by the Perceptron system into a local database.
The latter takes place after the pre-alignment of the recently assembled tailgate, which is
performed by human operators, and as mentioned takes gap and flush measurements and
also stores them into a local database.
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Figure 6.12: Possible deployment architecture based on the IDARTS framework (R. S.
Peres, Rocha, Leitao, & Barata, 2018). Legend: DI - Data Ingestion; DP - Data Prepro-
cessing; P - Prediction; E- Evaluation; H - Historical database; 1 - Prediction request; 1
(dashed) - Store ground truth; 2 (dashed) - Request mode evaluation; 3 (dashed) - Request
updated model.

The inclusion of the human in the loop performing corrective alignment actions (fitting)
adds a considerable amount of variation to the process, making it fairly to detect direct
correlations between the numerical values collected in the framing stage and those of the
finish line. In turn, small deviations in the frame alignment are propagated downstream
through all the stages in between and can have a considerable impact in the gap and flush
measurements resulting from the assembly of the tailgate.

Hence, the main goal here is to develop a solution that is capable of predicting whether
or not a given car will be within the quality tolerance values at the finish line based on
the frame measurements taken considerably earlier in the framing Perceptron station. For
this purpose the PMS was instantiated as shown in Figure 6.12, based on an adaptation
of the implementation described in Chapter 5.

The core difference here stems for the use case’s time constraints, as real-time in this
case is within the minute range as opposed to very tight time constraints in the order of
a few milliseconds, as one would encounter in field-level control applications. Therefore
an implementation of the real-time data analysis using Apache Storm could introduce an
additional layer of unjustified complexity, having then been replaced by a Flask server
which exposes the deployed model’s functionality through a REST API.
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For such an instantiation, the MAS can be used to implement the CPPS that abstracts
the Multistage Manufacturing Process (MMP) with one agent associated to the framing
stage (S1) and another to the final one (S4). While the framing agent can request quality
predictions from the server hosting the deployed classifier and alert operators as defects
are identified, the other can check for the ground truth associated with the measurements
taken at the end of the line. These values can be stored in a historical database, with the
agent either periodically requesting a re-evaluation of the model to trigger a re-fit if the
performance goes below a given threshold, or having the model be periodically updated
using the static model as a starting point, for models that support such a functionality.
This can be more efficient than the first approach, as it reuses the existing state instead
of discarding it, only updating it on the most recent historical data.

The usage of a MAS also enables the system to adapt to other changes in run-time,
including for instance the addition or removal of elements from the line during production
without requiring additional programming effort or downtime. This means that for instance
handheld smart inspection tools can be added in to provide additional measurements for
the stages in between with the system being able to automatically enact a self-organized
response and accommodate such devices and new data into the existing solution.

To provide the reader with a different perspective from that of the previous sections, the
remaining subsections of this chapter will bear a greater emphasis on the aspect of the
data analytics and predictive modeling which empowers the data-driven side of the PMS.

6.3.1 Characterization of the data set

The data set encompassed a total of 18148 unique cars with 29 dimensional features from the
framing inspection station. Considering that the raw data generated from the Perceptron
stations was originally unlabelled, in order to turn this into a supervised learning problem
the first step was to label the data from the Finish Line station.

To achieve this, interviews with domain experts from the bodyshop were conducted in
order to extract the tolerances for each of features from this station. Based on this, each
sample was attributed a binary label based on whether or not any feature was outside of
the tolerance boundaries, more specifically each car sample is labelled as ’OK’ or ’NOK’
according to a domain expert’s assessment based on the gap and flush measurements at the
last station, with 11331 and 6545 samples belonging to each class, respectively. Considering
that the order of cars can change between the two stages, samples from each station could
not be matched simply by the timestamps, having instead been aligned using the cars’
serial numbers. Finally, with this the framing dataset was labelled based on the ground
truth regarding the presence of defects later on in the finish line station (typically within
a time window of 90 minutes). An example excerpt of this dataset (with anonymized
features) can be found in Table 6.4.

120



6.3. MITIGATING DEFECT PROPAGATION IN THE AUTOMOTIVE
INDUSTRY

Table 6.4: Bodyshop Framing Dataset Example

F1 F2 ... F45 DEFECT
0.841178 0.482368 ... 0.576703 0
0.822833 0.276967 ... 0.335001 0
0.799453 0.357920 ... 0.551354 1

Out of these 29 features, 10 present over 85% entries of missing values, resulting in only
19 features being used in the analysis.

Furthermore, to address the class imbalance, random under-sampling was performed on
the data, generating a balanced data set with 12012 samples. Considering that the chosen
sampling technique might result in some information loss, synthetic minority over-sampling
was also tested as an alternative (after the train-test split) but provided significantly worse
results.

Finally, 119 observations in the balanced data set still presented missing values, either
due to the car still being on its way along the line between the two inspection stations,
or due to some measuring or communication disturbance. Since these were relatively rare
occurrences the samples with one or more missing values were discarded, although in
future work it might be interesting to study the impact of different imputation techniques
instead.

The absolute linear correlation matrix for the resulting data set can be found in Figure
6.13. As it can be observed, most features present low linear correlation coefficients with
the target, suggesting that if there is in fact a relationship between the features and the
car’s quality downstream, non-linear classifiers might be more adequate for the case at
hand. Also, there is some evidence of multicollinearity, with cases of high correlation
between some of the features, which is to be expected given that the data set pertains to
several dimensional characteristics of the car which are expected to be correlated.

To facilitate the visualization of the data set, PCA was applied to reduce the feature space
to only three dimensions in order to make it possible to visualize it in 3D space. The
resulting plot is shown in Figure 6.14.

Roughly 81% of total variance is captured in the first three components resulting from
the application of PCA, however the results seem to suggest that based on the features
available in the data set a reasonable class separation can be achieved. The following
section provides an overview of the different algorithms employed to this effect in this
study, as well as of the corresponding methods and implementation.
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Figure 6.13: Matrix of the absolute correlations between the different features based on
the Spearman coefficient.

6.3.2 Algorithms for Defect Classification

The implementation of the models contemplated in this study followed a fairly straightfor-
ward methodology, using Python 3.6 and the scikit-learn module (Pedregosa et al., 2012)
for all models except XGBoost (Chen & Guestrin, 2016).

Firstly, the data set was split into train and test sets. Afterwards, given that several
features present skewed distributions with both positive and negative values, Yeo-Johnson
transform was applied to reduce the shift followed by standardization to center and scale
each feature individually using the RobustScaler from scikit-learn’s preprocessing module.
This was used instead of a standard scaler due to it being more robust to outliers in the
data. Both the power transform and scaler were fitted only to the train set to avoid test set
contamination. An example of the result from this preprocessing step for F12 is illustrated
in Figure 6.15.
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Figure 6.14: Visualization using PCA to reduce the dimensionality of the data set. Data
points are colored based on the target variable.

Figure 6.15: Result from the application of the Yeo-Johnson transform and robust scaler
to F12. Raw distribution is presented on the left, transformed values are presented on the
right.
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Table 6.5: Baseline model results.

Model Accuracy Training (s) Prediction (s)
Random Forest 87.873 0.148 0.006

SVC (RBF Kernel) 85.325 2.076 0.470

XGBoost 84.331 0.301 0.007

K-Nearest Neighbours 77.962 0.008 0.371

Logistic Regression 57.936 0.073 0.001

Naive Bayes 56.178 0.004 0.001

After this preprocessing step, several models were trained to establish a baseline with
5-fold cross validation being performed on the top scoring models. Following this, the
best models from this step were selected for hyperparameter tuning and finally tested on a
separate holdout set, consisting of cars collected over the three days after the last sample
from the original data set.

6.3.3 Data Analysis Results

At first, several models were implemented without any hyperparameter tuning to create a
baseline. The model training was performed on a machine with an Intel Core i7-9700K,
2x8GB 4000MHz DDR4 memory and an NVIDIA GeForce RTX 2070. The results are
summarized in Table 6.5.

As hypothesized during the exploratory data analysis from Section 6.3.1, the two linear
models, Logistic Regression and Naive Bayes, performed significantly worse than the worst
performing non-linear classifier, suggesting a stronger non-linear relationship between the
features and the target. Based on this, 5-fold cross validation was performed on the four
non-linear classifiers in order to obtain a more realistic measure of accuracy and avoid
overfitting on the training data. The results from the cross validation step can be found
in Figure 6.16.

From the observation of Figure 6.16, it can be said that the baseline RF model performed
better on average across all metrics except for recall, for which XGBoost was considerably
superior. The XGBoost and SVM models performed slightly worse, with KNN performing
considerably worse overall. One particularity to take into account in this MMP is the
possibility of the feature distributions to change over time. This can happen for several
reasons and is further discussed in Section 7.3, but to tackle this challenge, an approach
could be to monitor the accuracy of the deployed model and retrain it if it drops below
a certain threshold. This means that more computationally expensive models that take
longer to train and perform cross validation on, like SVM, might not be adequate for such
a scenario.
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Figure 6.16: Test results from 5-Fold Cross Validation. Results are divided by accuracy,
precision, recall, f1 and roc_auc scores.

Table 6.6: Parameters for each model resulting from the tuning through randomized
search optimizing for roc_auc. Tuning was performed on 100 iterations with 5-fold cross
validation.

Model Parameters
XGBoost colsample_bytree: 0.970, gamma: 6.079, learning_rate: 0.202,

max_depth: 11, min_child_weight: 11.507, n_estimators: 59,
reg_alpha: 0.232, subsample: 0.962

Random Forest n_estimators: 500, min_samples_split: 2, min_samples_leaf: 1,
max_features: auto, max_depth: 50

SVC C=10, gamma=0.01, kernel=’rbf’

Based on this, hyperparameter tuning through randomized search was performed on the
three best models, which were then compared on the test set based on the same evaluation
metrics used for cross validation. The tuned parameters can be found in 6.6, where
any omitted parameters are assumed to take the default values from their respective
implementations.

The results are summarized in Table 6.7. Additionally, the corresponding ROC curves can
be found in Figure 6.17, in which the dashed diagonal line defines the reference point for
which the models have no capacity to distinguish between classes.

The results are extremely close, especially for the two ensemble models, with XGBoost
being superior in three out of the five evaluation metrics, if only by a slight margin when
compared to the values scored by the Random Forest model. The SVC model appears to
not have generalized as well as the others as evidenced by its lower capacity to separate the
target classes in the ROC curve, albeit with marginal differences and while still yielding
fairly improved results over those of its baseline counterpart.
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Table 6.7: Tuned model results. Models are evaluated based on the same metrics used for
the baseline models’ cross validation.

Model Accuracy Recall Precision F1 ROC AUC
XGBoost 0.928 0.979 0.888 0.931 0.972

Random Forest 0.925 0.981 0.883 0.929 0.977

SVC 0.914 0.977 0.868 0.919 0.969

Figure 6.17: ROC curves for each of the models compared in this study. ROC is a
probability curve and AUC represents a measure of separability between classes.

Finally, each model was tested on a new holdout data set, originating from measurements
taken from 1000 cars over the three days following the last entry of the original data set
(8 samples were discarded due to missing values). The resulting confusion matrices are
depicted in Figure 6.18. The results suggest that the models were capable of generalizing
well, being able to accurately predict the occurrence of defects in real car samples outside
of the original data and thus provide important support in the earlier identification of
deviations in the assembly line.

Assuming a 95% confidence level, for both the XGBoost and RF models the classification
error is given as:

44/992± 1.96 ·

√
0.0443 · (1− 0.0443)

992 → 0.0443± 0.0128 (6.1)

Based on Equation 6.1, there is a 95% likelihood that the confidence interval [0.0315,0.0571],

126



6.3. MITIGATING DEFECT PROPAGATION IN THE AUTOMOTIVE
INDUSTRY

Figure 6.18: Confusion matrices for the holdout validation. The tuned XGBoost model
achieved perfect recall on cars predicted over the three days after the last sample from the
original data set.

or between 3.15% and 5.71%, covers the true classification error of the model.

Once more, to verify this implementation’s fulfilment of the requirements specified in
Section 4.1.2, each of these requirements was mapped to the implemented components
shown in Figure 6.12, as illustrated in Table 6.8.

Table 6.8: Verification and mapping of the IDARTS requirements in the pilot implementa-
tion. Legend: • - verified; ◦ - partially verified; × - not applicable.

CPPS RDA KM CPPS RDA KM

NFR-01 • • × FR-01 • × ×
NFR-02 • • • FR-01-01 • × ×
NFR-03 • • • FR-02 • × ×
NFR-04 ◦ ◦ ◦ FR-02-01 • × ×
NFR-05 • • • FR-03 × • ×
NFR-06 • • • FR-04 • • ×
NFR-07 × • • FR-04-01 • • •
NFR-08 • • • FR-04-02 • × ×
NFR-09 • • • FR-04-03 × × •
NFR-10 • • ◦ FR-05 • • ×

FR-05-01 • • ×
FR-05-02 × • •

It can be seen that generally all requirements are satisfyingly fulfilled, however, some
common challenges can be drawn from the mappings of the different demonstrations,
especially concerning difficulty associated with NFR-04 which deals with reliability.

In this last implementation some reliability mechanisms can be integrated into the different
communication actors (i.e. repeating failed prediction/model update requests in case of
failure until a time-out), meaning the MAS behaviours, the Flask application serving the
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models for real-time predictive analytics and the KM application. However, this doesn’t
necessarily ensure the service is reliably available, as much as it increases the likelihood of
it being robust in case of sporadic temporary communication errors for instance.

As a counterpoint, the Kafka based implementation for the data exchange part of the system
can easily fulfil this requirement with its embedded support for reliability mechanisms such
as "at least once"and "exactly once"modalities for ensuring message delivery. Naturally,
this comes at the expense of the additional complexity brought by the need to deploy and
manage Zookeeper and Kafka clusters, thus a trade-off point should be decided upon based
on the requirements of the use case at hand.
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Discussion and Conclusions

After this journey through the design, implementation and demonstration of the IDARTS
framework for the development of PMS, the last chapter of this document aims to provide
a venue for the discussion of first and foremost the contributions achieved throughout
this process, then of the validation of each of the hypotheses put forward in Chapter 2 to
answer the research questions, and finally of existing limitations, opportunities and the
future outlook regarding this research effort.

Ultimately, this dissertation aims to support the development and promote the adoption of
PMS through the design of a generic reference framework to serve as a guideline for future
implementation efforts in the field. Such systems can assist manufacturers in making the
most out of the increasingly large volumes of data being generated every day in modern
manufacturing environments.

To this end, an in-depth literature review conducted through a combination of machine
learning techniques and empirical knowledge was presented, providing the means to unearth
current emergent trends regarding the topic of predictive manufacturing in the context of
smart factory environments, as well as current gaps and opportunities for further research
(Contribution 1).

Afterwards, following a consensus-based design science research methodology, sets of goals,
as well as functional and non-functional requirements were derived in order to guide the
design of PMS, providing the main orientation, system constraints and the functionalities
required to see them through (Contribution 2). The specification of this requirements fol-
lowed a set of good practices to ensure that quality characteristics of the requirements were
taken into account, particularly regarding their traceability concerning the aforementioned
system goals.
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With the requirement specification concluded, the IDARTS framework was designed and
specified in Chapter 4, proposing what is, to the extent of the author’s knowledge based on
the literature review, a previously non-existent common guideline for the development of
PMS (Contribution 3). Furthermore, to assist in the comprehension and realization of the
framework, a pilot implementation is also described for each of the framework’s components
(Contribution 4), which was then mapped to the previously established requirements.

Lastly, three different scenarios are presented for the demonstration of the framework at
work, comprising a total of five test cases (Contribution 5), one serving as a proof of
concept at a laboratory level regarding the implementation presented in Chapter 5, with
the remaining four pertaining to real-world applications of varied implementations of the
IDARTS framework.

7.1 Confirmation of the Hypotheses

The first research question formulated at the beginning of this research process was for-
malized as follows:

RQ1: In which way can the core components and principles of a Predictive Manufacturing
System be identified, in the context of enabling it to provide a business advantage to
manufacturers, while coping with the current market requirements of flexibility and agility?

Consequently, in an effort to provide verifiable potential answer to this research challenge
the following hypothesis was formulated:

H1: If a baseline is established based on the current PMS literature, followed by a refined
survey of current applications of PMS in the context of smart factory environments, suffi-
cient information will be acquired to thoroughly identify common and critical requirements
and components that should be encompassed in modern PMS.

Concerning this first hypothesis, it can be concluded from the results of Section 4.1.2
that through the thorough literature review and the identification of relevant requirement
sources for the artefact-based elicitation, it was possible to identify the key requirements
concerning the constraints to be imposed on a PMS (set of NFRs) and the functional
components necessary to achieve the predictive goals of the system (set of FRs).

From this first point the second research question and respective hypothesis were formu-
lated, focusing on the formalization and realization of the framework:

RQ2: How can we define a generic framework to guide the full realization of an intelligent,
proactive and connected PMS solution for smart factory environments?

H2: If the common ground between existing narrow approaches is studied, it will be possible
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to formalize a generic PMS framework based on the combination of recent advancements
in regards to Cyber-Physical Production Systems, data analytics and data management.
From this framework implementations of PMS can be generated to be employed in varied
application fields.

In relation to this second hypothesis, from the design process described in Chapter 4 it
can be verified that it was possible to produce an innovative artefact in the form of the full
specification of the generic IDARTS framework, encompassing as hypothesised the combi-
nation of the elements of a CPPS, data analytics and knowledge management. Moreover,
in Chapter 6 the application of different IDARTS implementations were demonstrated in
five heterogeneous use cases, spanning a varied array of environments and showcasing the
generic nature of the framework’s design.

7.2 Peer-Reviewed Scientific Contributions for Knowledge
Transfer

Several scientific publications in international conferences and journals were generated
from the work comprised in this thesis and its related research activities. A summary of
these results can be seen in Table 7.1.

Table 7.1: Scientific Publications

Conference Papers Journal Articles Book Chapters
6 3 2

List of Conference Publications:

All the conference publications listed below are from international, IEEE sponsored peer-
review conferences indexed mostly to the Web of Science or Scopus.

• Rocha, A. D., Peres, R. S., Flores, L., & Barata, J. (2015, December). A multiagent
based knowledge extraction framework to support plug and produce capabilities
in manufacturing monitoring systems. In 2015 10th International Symposium on
Mechatronics and its Applications (ISMA) (pp. 1-5). IEEE. (A. D. Rocha et al.,
2016)

• Peres, R. S., Parreira-Rocha, M., Rocha, A. D., Barbosa, J., Leitão, P., & Barata, J.
(2016, October). Selection of a data exchange format for industry 4.0 manufacturing
systems. In Iecon 2016-42nd annual conference of the ieee industrial electronics
society (pp. 5723-5728). IEEE. (R. S. Peres et al., 2016)

• Peres, R. S., Rocha, A. D., Coelho, A., & Oliveira, J. B. (2016, October). A
highly flexible, distributed data analysis framework for industry 4.0 manufacturing
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systems. In International Workshop on Service Orientation in Holonic and Multi-
Agent Manufacturing (pp. 373-381). Springer, Cham. (R. S. Peres, Rocha, et al.,
2017)

• Peres, R. S., Rocha, A. D., & Barata, J. (2017, May). Dynamic Simulation for
MAS-based Data Acquisition and Pre-processing in Manufacturing using V-REP. In
Doctoral Conference on Computing, Electrical and Industrial Systems (pp. 125-134).
Springer, Cham. (R. S. Peres, Rocha, & Barata, 2017)

• Peres, R., Rocha, A. D., Matos, J. P., & Barata, J. (2018, July). GO0DMAN Data
Model-Interoperability in Multistage Zero Defect Manufacturing. In 2018 IEEE 16th
International Conference on Industrial Informatics (INDIN) (pp. 815-821). IEEE.
(R. Peres et al., 2018)

• Rocha, A. D., Peres, R. S., Barata, J., Barbosa, J., & Leitão, P. (2018, September).
Improvement of Multistage Quality Control through the Integration of Decision
Modeling and Cyber-Physical Production Systems. In 2018 International Conference
on Intelligent Systems (IS) (pp. 479-484). IEEE. (A. D. Rocha, Peres, Barata,
Barbosa, & Leitão, 2018)

List of Journal Publications:

The articles listed below were published in Q1 journals according to the Scimago Journal
Ranking, with the exception of the second item in the list which was published on Procedia
Manufacturing (Q2).

• Peres, R. S., Rocha, A., Leitão, P., Barata, J. (2018). IDARTS: Towards intelligent
data analysis and real-time supervision for industry 4.0. Computers in Industry, vol.
101 pp. 138-146 (R. S. Peres, Rocha, Leitao, & Barata, 2018);

• Angione, G., Barbosa, J., Gosewehr, F., Leitão, P., Massa, D, Matos, J., Peres, R.
S., Wermann, J. (2017). Integration and Deployment of a Distributed and Pluggable
Industrial Architecture for the PERFoRM project. Procedia Manufacturing, (June),
896-904. (Angione et al., 2017).

• Peres, R. S., Barata, J., Leitao, P., & Garcia, G. (2019). Multistage Quality Control
Using Machine Learning in the Automotive Industry. IEEE Access, vol. 7 (R. S.
Peres, Barata, et al., 2019).

List of Book Chapter Publications:

• Architectural Elements: PERFoRM Data Model, Chapter 4 in Digitalized and Har-
monized Industrial Production Systems: The PERFoRM Approach (R. S. Peres,
Rocha, Barata, & Colombo, 2019);
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• Use Case: Electric Vehicles, Chapter 12 in Digitalized and Harmonized Industrial
Production Systems: The PERFoRM Approach (Introzzi et al., 2019).

7.3 Limitations, Opportunities and Future Outlook

One possible barrier to the success of such a predictive solution in the long term is the
possibility of drastic changes in the underlying distributions of the data being fed to the
predictive models. An example of this could be regarding the automotive use case in
Section 6.3 referring to the dimensional characteristics of the cars. This can happen for
instance due to a change in the materials’ suppliers or the replacement of parts in the
stations before the first stage considered in this study. This is typically known as Concept
Drift, referring to the change in relationships between the input and output data of the
underlying problem over time (Žliobaitė, Pechenizkiy, & Gama, 2016). This phenomenon
can invalidate the deployed models and cause them to perform poorly, having been the
centre of considerable research efforts over the last few years.

A possible solution in the occurrence of this case during production would be through
online monitoring and/or training of the models using for instance an architecture similar
to the one showcased in (R. S. Peres et al., 2018) leveraging the core functionalities of
the IDARTS framework, as illustrated in Figure 6.12. However, it can represent a pitfall
for implementations which do not consider this before-hand, thus also making it a very
important point for more intuitive improvement in future research.

On a different note, an important aspect that is outside the scope of this thesis is that
of security. In the current information age cyber-security is taking an increasingly larger
role in modern Industry 4.0 systems, with considerable effort being put into the research
and development of security mechanisms to ensure the privacy and integrity of manufac-
turing data. While this aspect is partially embedded in some of the technologies used for
the implementation proposed in Chapter 5, with the advent and increasing adoption of
technologies such as blockchain further research should be conducted in order to ensure
this crucial aspect within the context of PMS.

Regarding the inference mechanisms, while for the pilot implementation the simple infer-
ence regarding states and timespans serves the purpose of providing a guideline for future
implementations, implementing it in Java from scratch makes it fairly difficult to maintain
and update in runtime as the system becomes more complex. As such, exploring possibil-
ities with embedded rule engines such as CLIPS, Drools and Jess can be an interesting
effort to improve this part of the PMS.

As a closing note for future research building on the results from this dissertation, partic-
ularly those with a bigger emphasis on applied research, it will be extremely valuable to
revisit the RE process described in Chapter 4 and go over new iterations of the proposed
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methodology involving industrial stakeholders in order to further refine and improve the
requirements for the design and implementation of successful PMS.

134



Bibliography

Angione, G., Barbosa, J., Gosewehr, F., Leitão, P., Massa, D., Matos, J., . . . Wermann,
J. (2017). Integration and Deployment of a Distributed and Pluggable Industrial
Architecture for the PERFoRM Project. Procedia Manufacturing, 11 (June), 896–904.
doi:10.1016/j.promfg.2017.07.193

Babiceanu, R. F., & Seker, R. (2016). Big Data and virtualization for manufacturing cyber-
physical systems: A survey of the current status and future outlook. Computers in
Industry, 81, 128–137. doi:10.1016/j.compind.2016.02.004

Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An Open Source Software for
Exploring and Manipulating Networks. Third International AAAI Conference on
Weblogs and Social Media, 361–362. doi:10.1136/qshc.2004.010033

Bellifemine, F., Caire, G., & Greenwood, D. (2007). Developing Multi-Agent Systems with
JADE. John Wiley & Sons, Ltd.

Bellifemine, F., Poggi, A., & Rimassa, G. (1999). JADE–A FIPA-compliant agent frame-
work. Proceedings of PAAM, 97–108. doi:10.1145/375735.376120

Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008 (10), 1–12. doi:10 .1088/1742- 5468/2008/10/P10008. arXiv:
0803.0476

Bouma, G. (2009). Normalized ( Pointwise ) Mutual Information in Collocation Extraction.
Proceedings of German Society for Computational Linguistics (GSCL 2009), 31–40.

Breiman, L. (2001). Random forests. Machine learning, 45 (1), 5–32.
Brettel, M., Friederichsen, N., Keller, M., & Rosenberg, M. (2014). How Virtualization,

Decentralization and Network Building Change the Manufacturing Landscape: An
Industry 4.0 Perspective. International Journal of Information and Communication
Engineering, 8 (1), 37–44. doi:10.1016/j.procir.2015.02.213. arXiv: arXiv:1011.
1669v3

Bumblauskas, D., Gemmill, D., Igou, A., & Anzengruber, J. (2017). Smart Maintenance
Decision Support Systems (SMDSS) based on corporate big data analytics. Expert
Systems with Applications, 90, 303–317. doi:10.1016/j.eswa.2017.08.025

Canito, A., Fernandes, M., & Pra, I. (2017). An Architecture for Proactive Maintenance
in the Machinery Industry. In 8th international symposium on ambient intelligence
(isaml 2017) (Vol. 615, ISAmI ). doi:10.1007/978-3-319-61118-1

135

https://dx.doi.org/10.1016/j.promfg.2017.07.193
https://dx.doi.org/10.1016/j.compind.2016.02.004
https://dx.doi.org/10.1136/qshc.2004.010033
https://dx.doi.org/10.1145/375735.376120
https://dx.doi.org/10.1088/1742-5468/2008/10/P10008
https://arxiv.org/abs/0803.0476
https://dx.doi.org/10.1016/j.procir.2015.02.213
https://arxiv.org/abs/arXiv:1011.1669v3
https://arxiv.org/abs/arXiv:1011.1669v3
https://dx.doi.org/10.1016/j.eswa.2017.08.025
https://dx.doi.org/10.1007/978-3-319-61118-1


BIBLIOGRAPHY

Chan, A., & McNaught, K. R. (2008). Using Bayesian networks to improve fault diag-
nosis during manufacturing tests of mobile telephone infrastructure. Journal of the
Operational Research Society, 59 (4), 423–430. doi:10.1057/palgrave.jors.2602388

Chang, C.-C., & Lin, C.-J. (2011). Libsvm: A library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2 (3), 27.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). Smote: Synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16, 321–
357.

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings
of the 22nd acm sigkdd international conference on knowledge discovery and data
mining (pp. 785–794). ACM.

Consortium, I. I. (2015). Industrial internet reference architecture.
Cupek, R., Ziebinski, A., Zonenberg, D., & Drewniak, M. (2018). Determination of

the machine energy consumption profiles in the mass-customised manufacturing.
International Journal of Computer Integrated Manufacturing, 31 (6), 537–561. doi:10.
1080/0951192X.2017.1339914

Deekshatulu, B., Chandra, P. et al. (2013). Classification of heart disease using k-nearest
neighbor and genetic algorithm. Procedia Technology, 10, 85–94.

Deloitte. (2014). Industry 4.0–challenges and solutions for the digital transformation and
use of exponential technologies.

Deng, C., Guo, R., Liu, C., Zhong, R. Y., & Xu, X. (2018). Data cleansing for energy-
saving: a case of Cyber-Physical Machine Tools health monitoring system. Interna-
tional Journal of Production Research, 56 (1-2), 1000–1015. doi:10.1080/00207543.
2017.1394596

FIPA. (2000). FIPA Contract Net Interaction Protocol Specification. Retrieved from
http://www.fipa.org/specs/fipa00029/

FIPA. (2002). FIPA Request Interaction Protocol Specification. Retrieved from http:
//www.fipa.org/specs/fipa00026/SC00026H.pdf

Flath, C. M., & Stein, N. (2018). Towards a data science toolbox for industrial analytics
applications. Computers in Industry, 94, 16–25. doi:10.1016/j.compind.2017.09.003

Frei, R., Barata, J., & Onori, M. (2007). Evolvable Production Systems Context and
Implications. In Ieee international symposium on industrial electronics, 2007. isie
2007 (pp. 3233–3238). doi:10.1109/ISIE.2007.4375132

Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods,
and analytics. International Journal of Information Management, 35 (2), 137–144.
doi:10.1016/j.ijinfomgt.2014.10.007

Gao, R., Wang, L., Teti, R., Dornfeld, D., Kumara, S., Mori, M., & Helu, M. (2015). Cloud-
enabled prognosis for manufacturing. CIRP Annals - Manufacturing Technology,
64 (2), 749–772. doi:10.1016/j.cirp.2015.05.011. arXiv: 0208024 [gr-qc]

136

https://dx.doi.org/10.1057/palgrave.jors.2602388
https://dx.doi.org/10.1080/0951192X.2017.1339914
https://dx.doi.org/10.1080/0951192X.2017.1339914
https://dx.doi.org/10.1080/00207543.2017.1394596
https://dx.doi.org/10.1080/00207543.2017.1394596
http://www.fipa.org/specs/fipa00029/
http://www.fipa.org/specs/fipa00026/SC00026H.pdf
http://www.fipa.org/specs/fipa00026/SC00026H.pdf
https://dx.doi.org/10.1016/j.compind.2017.09.003
https://dx.doi.org/10.1109/ISIE.2007.4375132
https://dx.doi.org/10.1016/j.ijinfomgt.2014.10.007
https://dx.doi.org/10.1016/j.cirp.2015.05.011
https://arxiv.org/abs/0208024


BIBLIOGRAPHY

Ge, Z. (2018). Distributed predictive modeling framework for prediction and diagnosis
of key performance index in plant-wide processes. Journal of Process Control, 65,
107–117. doi:10.1016/j.jprocont.2017.08.010

Gilchrist, A. (2016). Introducing Industry 4.0. In Industry 4.0 (pp. 195–215). Apress.
GO0D MAN Project (ID:723764). (2017). Deliverable 2.1 - Multi-Agent Architecture

Specification. Retrieved from http://go0dman-project.eu/wp-content/uploads/2016/
10/GO0D-MAN-Deliverable-2.1.pdf

GO0D MAN Project (ID:723764). (2018). Deliverable 2.3 - Multi-Agent Infrastructure.
Retrieved from http://go0dman-project.eu/wp-content/uploads/2018/05/GO0D-
MAN-Deliverable-2.3.pdf

GO0D MAN Project (ID:723764). (2019a). Deliverable 6.1 - VWAE Use Case Prototype.
GO0D MAN Project (ID:723764). (2019b). Deliverable 7.1 - Zannini Use Case Prototype.
GO0D MAN Project (ID:723764). (2019c). Deliverable 8.1 - Electrolux Use Case Prototype.
Golkarnarenji, G., Naebe, M., Badii, K., Milani, A. S., Jazar, R. N., & Khayyam, H.

(2018). Support vector regression modelling and optimization of energy consumption
in carbon fiber production line. Computers and Chemical Engineering, 109, 276–288.
doi:10.1016/j.compchemeng.2017.11.020

Guazzelli, A., Zeller, M., Lin, W., & Williams, G. (2009). PMML: An open standard
for sharing models. The R Journal, 1 (1), 60–65. doi:doi=10.1.1.538.9778. arXiv:
1011.1669

Guo, W., & Banerjee, A. G. (2017). Identification of key features using topological
data analysis for accurate prediction of manufacturing system outputs. Journal of
Manufacturing Systems, 43, 225–234. doi:10.1016/j.jmsy.2017.02.015

H.Gomaa, W., & A. Fahmy, A. (2013). A Survey of Text Similarity Approaches. Inter-
national Journal of Computer Applications, 68 (13), 13–18. doi:10.5120/11638-7118.
arXiv: arXiv:1011.1669v3

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009).
The weka data mining software: An update. ACM SIGKDD explorations newsletter,
11 (1), 10–18.

Hazen, B. T., Boone, C. A., Ezell, J. D., & Jones-Farmer, L. A. (2014). Data quality for
data science, predictive analytics, and big data in supply chain management: An
introduction to the problem and suggestions for research and applications. Interna-
tional Journal of Production Economics, 154, 72–80.

He, Y., Gu, C., Chen, Z., & Han, X. (2017). Integrated predictive maintenance strategy for
manufacturing systems by combining quality control and mission reliability analysis.
International Journal of Production Research, 55 (19), 5841–5862. doi:10 . 1080/
00207543.2017.1346843

Hebert, J. (2016). Predicting rare failure events using classification trees on large scale
manufacturing data with complex interactions. In 2016 ieee international conference
on big data (big data) (pp. 2024–2028). IEEE.

137

https://dx.doi.org/10.1016/j.jprocont.2017.08.010
http://go0dman-project.eu/wp-content/uploads/2016/10/GO0D-MAN-Deliverable-2.1.pdf
http://go0dman-project.eu/wp-content/uploads/2016/10/GO0D-MAN-Deliverable-2.1.pdf
http://go0dman-project.eu/wp-content/uploads/2018/05/GO0D-MAN-Deliverable-2.3.pdf
http://go0dman-project.eu/wp-content/uploads/2018/05/GO0D-MAN-Deliverable-2.3.pdf
https://dx.doi.org/10.1016/j.compchemeng.2017.11.020
https://dx.doi.org/doi=10.1.1.538.9778
https://arxiv.org/abs/1011.1669
https://dx.doi.org/10.1016/j.jmsy.2017.02.015
https://dx.doi.org/10.5120/11638-7118
https://arxiv.org/abs/arXiv:1011.1669v3
https://dx.doi.org/10.1080/00207543.2017.1346843
https://dx.doi.org/10.1080/00207543.2017.1346843


BIBLIOGRAPHY

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information
systems research. MIS quarterly, 28 (1), 75–105.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with
neural networks. science, 313 (5786), 504–507.

Industrial Internet Consortium. (2019). The Industrial Internet of Things Volume G1: Ref-
erence Architecture (tech. rep. No. June). Retrieved from https://www.iiconsortium.
org/pdf/IIRA-v1.9.pdf

International Electrotechnical Commission. (n.d.-a). IEC 61512 Batch Control Parts 1-4.
International Electrotechnical Commission. (n.d.-b). IEC 62264 Enterprise-control system

integration Parts 1-5.
Introzzi, R., Perlo, P., Grosso, M., Pozzato, S., Biasiotto, M., Penserini, D., . . . Gepp,

M. (2019). Use case: Electric vehicles. In A. W. Colombo, M. Gepp, J. Barata,
P. Leitao, J. Barbosa, & J. Wermann (Eds.), Digitalized and harmonized industrial
production systems: The perform approach (Chap. 12). CRC Press.

ISO/IEC/IEEE. (2017). Iso/iec/ieee international standard - systems and software
engineering–vocabulary. ISO/IEC/IEEE 24765:2017(E), 1–541. doi:10.1109/IEEESTD.
2017.8016712

Jardine, A. K., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and
prognostics implementing condition-based maintenance. Mechanical systems and
signal processing, 20 (7), 1483–1510.

Jia, F., Lei, Y., Lin, J., Zhou, X., & Lu, N. (2016). Deep neural networks: A promising
tool for fault characteristic mining and intelligent diagnosis of rotating machinery
with massive data. Mechanical Systems and Signal Processing, 72, 303–315.

Jimenez, J. F., Bekrar, A., Trentesaux, D., & Leitão, P. (2016). A switching mechanism
framework for optimal coupling of predictive scheduling and reactive control in manu-
facturing hybrid control architectures. International Journal of Production Research,
54 (23), 7027–7042. doi:10.1080/00207543.2016.1177237

Kagermann, H., Helbig, J., Hellinger, A., & Wahlster, W. (2013). Recommendations
for Implementing the strategic initiative INDUSTRIE 4.0: securing the future of
German manufacturing industry; final report of the Industrie 4.0 working group.

Kang, P., Lee, H.-j., Cho, S., Kim, D., Park, J., Park, C.-K., & Doh, S. (2009). A
virtual metrology system for semiconductor manufacturing. Expert Systems with
Applications, 36 (10), 12554–12561.

Kanjanatarakul, O., Denœux, T., & Sriboonchitta, S. (2016). Prediction of future obser-
vations using belief functions: A likelihood-based approach. International Journal
of Approximate Reasoning, 72, 71–94. doi:10.1016/j.ijar.2015.12.004

Kant, G., & Sangwan, K. S. (2014). Prediction and optimization of machining parameters
for minimizing power consumption and surface roughness in machining. Journal of
Cleaner Production, 83, 151–164. doi:10.1016/j.jclepro.2014.07.073

Khaleghi, B., Khamis, A., Karray, F. O., & Razavi, S. N. (2013). Multisensor data fusion:
A review of the state-of-the-art. Information fusion, 14 (1), 28–44.

138

https://www.iiconsortium.org/pdf/IIRA-v1.9.pdf
https://www.iiconsortium.org/pdf/IIRA-v1.9.pdf
https://dx.doi.org/10.1109/IEEESTD.2017.8016712
https://dx.doi.org/10.1109/IEEESTD.2017.8016712
https://dx.doi.org/10.1080/00207543.2016.1177237
https://dx.doi.org/10.1016/j.ijar.2015.12.004
https://dx.doi.org/10.1016/j.jclepro.2014.07.073


BIBLIOGRAPHY

Khan, A. A., Moyne, J. R., & Tilbury, D. M. (2007). An approach for factory-wide control
utilizing virtual metrology. IEEE Transactions on semiconductor Manufacturing,
20 (4), 364–375.

Kolar, M., Vyroubal, J., & Smolik, J. (2016). Analytical approach to establishment of
predictive models of power consumption of machine tools’ auxiliary units. Journal
of Cleaner Production, 137, 361–369. doi:10.1016/j.jclepro.2016.07.092

Lao, L., Ellis, M., Durand, H., & Christofides, P. D. (2015). Real-Time Preventive
Sensor Maintenance Using Robust Moving Horizon Estimation and Economic Model
Predictive Control. AIChE Journal, 61 (504). doi:10.1002/aic. arXiv: 0201037v1
[arXiv:physics]

Lechevalier, D., Narayanan, A., & Rachuri, S. (2015). Towards a domain-specific frame-
work for predictive analytics in manufacturing. Proceedings - 2014 IEEE Interna-
tional Conference on Big Data, IEEE Big Data 2014, (February 2015), 987–995.
doi:10.1109/BigData.2014.7004332

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521 (7553), 436.
Lee, J., Bagheri, B., & Kao, H. A. (2015). A Cyber-Physical Systems architecture

for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23.
doi:10.1016/j.mfglet.2014.12.001. arXiv: 1503.07717

Lee, J., Bagheri, B., & Kao, H.-A. (2014). Recent Advances and Trends of Cyber-Physical
Systems and Big Data Analytics in Industrial Informatics. Int. Conference on
Industrial Informatics (INDIN) 2014, (November 2015). doi:10.13140/2.1.1464.1920

Lee, J., Davari, H., Singh, J., & Pandhare, V. (2018). Industrial artificial intelligence for
industry 4.0-based manufacturing systems. Manufacturing letters, 18, 20–23.

Lee, J., Kao, H. A., & Yang, S. (2014). Service innovation and smart analytics for Industry
4.0 and big data environment. Procedia CIRP, 16, 3–8. doi:10.1016/j.procir.2014.02.
001

Lee, J., Lapira, E., Bagheri, B., & Kao, H.-a. (2013). Recent advances and trends in
predictive manufacturing systems in big data environment. Manufacturing Letters,
1 (1), 38–41. doi:10.1016/j.mfglet.2013.09.005

Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., & Siegel, D. (2014). Prognostics and
health management design for rotary machinery systems - Reviews, methodology and
applications. Mechanical Systems and Signal Processing, 42 (1-2), 314–334. doi:10.
1016/j.ymssp.2013.06.004

Leitão, P., Colombo, A. W., & Karnouskos, S. (2016). Industrial automation based
on cyber-physical systems technologies: Prototype implementations and challenges.
Computers in Industry, 81, 11–25.

Leitao, P., Karnouskos, S., Ribeiro, L., Lee, J., Strasser, T., & Colombo, A. W. (2016).
Smart agents in industrial cyber–physical systems. Proceedings of the IEEE, 104 (5),
1086–1101. Retrieved from http://ieeexplore.ieee.org/abstract/document/7437398/

139

https://dx.doi.org/10.1016/j.jclepro.2016.07.092
https://dx.doi.org/10.1002/aic
https://arxiv.org/abs/0201037v1
https://arxiv.org/abs/0201037v1
https://dx.doi.org/10.1109/BigData.2014.7004332
https://dx.doi.org/10.1016/j.mfglet.2014.12.001
https://arxiv.org/abs/1503.07717
https://dx.doi.org/10.13140/2.1.1464.1920
https://dx.doi.org/10.1016/j.procir.2014.02.001
https://dx.doi.org/10.1016/j.procir.2014.02.001
https://dx.doi.org/10.1016/j.mfglet.2013.09.005
https://dx.doi.org/10.1016/j.ymssp.2013.06.004
https://dx.doi.org/10.1016/j.ymssp.2013.06.004
http://ieeexplore.ieee.org/abstract/document/7437398/


BIBLIOGRAPHY

Leitão, P., & Restivo, F. (2006). ADACOR: A holonic architecture for agile and adaptive
manufacturing control. Computers in Industry, 57, 121–130. doi:10.1016/j.compind.
2005.05.005

Li, J., & Shi, J. (2007). Knowledge discovery from observational data for process control
using causal Bayesian networks. IIE Transactions, 39 (6), 681–690. doi:10.1080/
07408170600899532

Li, P., Jia, X., Feng, J., Davari, H., Qiao, G., Hwang, Y., & Lee, J. (2018). Prognosability
study of ball screw degradation using systematic methodology. Mechanical Systems
and Signal Processing, 109, 45–57. doi:10.1016/j.ymssp.2018.02.046

Liu, Q., Dong, M., & Chen, F. F. (2018). Single-machine-based joint optimization of
predictive maintenance planning and production scheduling. Robotics and Computer-
Integrated Manufacturing, 51 (November 2017), 238–247. doi:10.1016/j.rcim.2018.01.
002

Loyer, J. L., Henriques, E., Fontul, M., & Wiseall, S. (2016). Comparison of Machine
Learning methods applied to the estimation of manufacturing cost of jet engine
components. International Journal of Production Economics, 178, 109–119. doi:10.
1016/j.ijpe.2016.05.006

Lu, B., & Zhou, X. (2017). Opportunistic preventive maintenance scheduling for serial-
parallel multistage manufacturing systems with multiple streams of deterioration.
Reliability Engineering and System Safety, 168 (May), 116–127. doi:10.1016/j.ress.
2017.05.017

Ma, J., Kwak, M., & Kim, H. M. (2014). Demand trend mining for predictive life cycle
design. Journal of Cleaner Production, 68, 189–199. doi:10.1016/j.jclepro.2014.01.
026

Mobley, R. K. (2002). An Introduction to Predictive Maintenance (2nd Editio). Elsevier.
Mullarkey, M. T., Hevner, A. R., Gill, T. G., & Dutta, K. (2019). Citizen data scientist:

A design science research method for the conduct of data science projects. In Inter-
national conference on design science research in information systems and technology
(pp. 191–205). Springer.

Nagorny, K., Colombo, A. W., & Schmidtmann, U. (2012). A service- and multi-agent-
oriented manufacturing automation architecture: An IEC 62264 level 2 compliant
implementation. Computers in Industry, 63 (OCTOBER), 813–823. doi:10.1016/j.
compind.2012.08.003

Onori, M., Lohse, N., Barata, J., & Hanisch, C. (2013). The IDEAS Project: Plug &
Produce at Shop-Floor Level. Assembly Automation, 32 (2), 124–134.

Pandiyan, V., Caesarendra, W., Tjahjowidodo, T., & Tan, H. H. (2018). In-process tool
condition monitoring in compliant abrasive belt grinding process using support vector
machine and genetic algorithm. Journal of Manufacturing Processes, 31, 199–213.
doi:10.1016/j.jmapro.2017.11.014

140

https://dx.doi.org/10.1016/j.compind.2005.05.005
https://dx.doi.org/10.1016/j.compind.2005.05.005
https://dx.doi.org/10.1080/07408170600899532
https://dx.doi.org/10.1080/07408170600899532
https://dx.doi.org/10.1016/j.ymssp.2018.02.046
https://dx.doi.org/10.1016/j.rcim.2018.01.002
https://dx.doi.org/10.1016/j.rcim.2018.01.002
https://dx.doi.org/10.1016/j.ijpe.2016.05.006
https://dx.doi.org/10.1016/j.ijpe.2016.05.006
https://dx.doi.org/10.1016/j.ress.2017.05.017
https://dx.doi.org/10.1016/j.ress.2017.05.017
https://dx.doi.org/10.1016/j.jclepro.2014.01.026
https://dx.doi.org/10.1016/j.jclepro.2014.01.026
https://dx.doi.org/10.1016/j.compind.2012.08.003
https://dx.doi.org/10.1016/j.compind.2012.08.003
https://dx.doi.org/10.1016/j.jmapro.2017.11.014


BIBLIOGRAPHY

Patcha, A., & Park, J. M. (2007). An overview of anomaly detection techniques: Existing
solutions and latest technological trends. Computer Networks, 51 (12), 3448–3470.
doi:10.1016/j.comnet.2007.02.001

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . .
Duchesnay, É. (2012). Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research, 12, 2825–2830. doi:10.1007/s13398-014-0173-7.2. arXiv:
1201.0490

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science
research methodology for information systems research. Journal of management
information systems, 24 (3), 45–77.

Peng, H., & Van Houtum, G. J. (2016). Joint optimization of condition-based maintenance
and production lot-sizing. European Journal of Operational Research, 253 (1), 94–107.
doi:10.1016/j.ejor.2016.02.027

Peng, Y., Dong, M., & Zuo, M. J. (2010). Current status of machine prognostics in
condition-based maintenance: A review. The International Journal of Advanced
Manufacturing Technology, 50 (1-4), 297–313.

Penya, Y. K., Bringas, P. G., & Zabala, A. (2008). Advanced fault prediction in high-
precision foundry production. IEEE International Conference on Industrial Infor-
matics (INDIN), 1672–1677. doi:10.1109/INDIN.2008.4618372

Peres, R. S., Barata, J., Leitao, P., & Garcia, G. (2019). Multistage quality control using
machine learning in the automotive industry. IEEE Access, 7. doi:10.1109/ACCESS.
2019.2923405

Peres, R. S., Parreira-Rocha, M., Rocha, A. D., Barbosa, J., Leitao, P., & Barata, J.
(2016). Selection of a data exchange format for industry 4.0 manufacturing systems.
IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society,
5723–5728. doi:10.1109/IECON.2016.7793750

Peres, R. S., Rocha, A. D., & Barata, J. (2017). Dynamic Simulation for MAS-Based Data
Acquisition and Pre-processing in Manufacturing Using V-REP. In Technological
innovation for smart systems. doceis 2017 (March, pp. 125–134). doi:10.1007/978-
3-319-56077-9

Peres, R. S., Rocha, A. D., Barata, J., & Colombo, A. W. (2019). Architectural elements:
Perform data model. In A. W. Colombo, M. Gepp, J. Barata, P. Leitao, J. Barbosa,
& J. Wermann (Eds.), Digitalized and harmonized industrial production systems:
The perform approach (Chap. 4). CRC Press.

Peres, R. S., Rocha, A. D., Leitao, P., & Barata, J. (2018). IDARTS–Towards intelligent
data analysis and real-time supervision for industry 4.0. Computers in Industry, 101,
138–146.

Peres, R. S., Rocha, A., Coelho, A., & Barata, J. (2017). A Highly Flexible , Distributed
Data Analysis Framework for Industry 4 . 0 Manufacturing Systems. In T. Borangiu,
D. Trentesaux, A. Thomas, P. Leitão, & J. Barata (Eds.), Service orientation in

141

https://dx.doi.org/10.1016/j.comnet.2007.02.001
https://dx.doi.org/10.1007/s13398-014-0173-7.2
https://arxiv.org/abs/1201.0490
https://dx.doi.org/10.1016/j.ejor.2016.02.027
https://dx.doi.org/10.1109/INDIN.2008.4618372
https://dx.doi.org/10.1109/ACCESS.2019.2923405
https://dx.doi.org/10.1109/ACCESS.2019.2923405
https://dx.doi.org/10.1109/IECON.2016.7793750
https://dx.doi.org/10.1007/978-3-319-56077-9
https://dx.doi.org/10.1007/978-3-319-56077-9


BIBLIOGRAPHY

holonic and multi-agent manufacturing. sohoma 2017 (March, pp. 373–381). doi:10.
1007/978-3-319-51100-9

Peres, R., Rocha, A. D., Matos, J. P., & Barata, J. (2018). Go0dman data model-
interoperability in multistage zero defect manufacturing. In 2018 ieee 16th interna-
tional conference on industrial informatics (indin) (pp. 815–821). IEEE.

Plattform Industrie 4.0. (2015). Status Report: Reference Architecture Model Industrie 4.0
(RAMI4.0) (tech. rep. No. July). VDI/VDE. Retrieved from https://www.zvei.org/
fileadmin/user_upload/Presse_und_Medien/Publikationen/2016/januar/GMA_
Status_Report__Reference_Archtitecture_Model_Industrie_4.0__RAMI_4.0_
/GMA-Status-Report-RAMI-40-July-2015.pdf

Qi, Q., & Tao, F. (2018). Digital Twin and Big Data Towards Smart Manufacturing and
Industry 4.0: 360 Degree Comparison. IEEE Access, 6, 3585–3593. doi:10.1109/
ACCESS.2018.2793265

Rennie, J. D., Shih, L., Teevan, J., & Karger, D. R. (2003). Tackling the poor assumptions
of naive bayes text classifiers. In Proceedings of the 20th international conference on
machine learning (icml-03) (pp. 616–623).

Ribeiro, L. (2017). Cyber-physical production systems’ design challenges. In 2017
ieee 26th international symposium on industrial electronics (isie) (pp. 1189–1194).
doi:10.1109/ISIE.2017.8001414

Rocha, A. (2018). Increase the adoption of agent-based cyber-physical production systems
through the design of minimally invasive solutions.

Rocha, A. D., Barata, D., & Orio, G. D. (2015). Technological Innovation for Cloud-
Based Engineering Systems. IFIP Advances in Information and Communication
Technology, 450, 101–110. doi:10.1007/978-3-319-16766-4

Rocha, A. D., Barata, D., Orio, G. D., Santos, T., & Barata, J. (2015). PRIME as
a Generic Agent Based Framework to Support Pluggability and Reconfigurability
Using Different Technologies. In Technological innovation for cloud-based engineering
systems (Chap. Technologi, pp. 101–110).

Rocha, A. D., Peres, R. S., Barata, J., Barbosa, J., & Leitão, P. (2018). Improvement of
multistage quality control through the integration of decision modeling and cyber-
physical production systems. In 2018 international conference on intelligent systems
(is) (pp. 479–484). IEEE.

Rocha, A. D., Peres, R. S., Flores, L., & Barata, J. (2016). A multiagent based knowledge
extraction framework to support plug and produce capabilities in manufacturing
monitoring systems. ISMA 2015 - 10th International Symposium on Mechatronics
and its Applications. doi:10.1109/ISMA.2015.7373494

Rupp, C., & die SOPHISTen. (2014). Requirements-engineering und-management: Aus
der praxis von klassisch bis agil. doi:10.3139/9783446443136

Saha, B., Goebel, K., & Christophersen, J. (2009). Comparison of prognostic algorithms
for estimating remaining useful life of batteries. Transactions of the Institute of
Measurement and Control, 31 (3-4), 293–308.

142

https://dx.doi.org/10.1007/978-3-319-51100-9
https://dx.doi.org/10.1007/978-3-319-51100-9
https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2016/januar/GMA_Status_Report__Reference_Archtitecture_Model_Industrie_4.0__RAMI_4.0_/GMA-Status-Report-RAMI-40-July-2015.pdf
https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2016/januar/GMA_Status_Report__Reference_Archtitecture_Model_Industrie_4.0__RAMI_4.0_/GMA-Status-Report-RAMI-40-July-2015.pdf
https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2016/januar/GMA_Status_Report__Reference_Archtitecture_Model_Industrie_4.0__RAMI_4.0_/GMA-Status-Report-RAMI-40-July-2015.pdf
https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2016/januar/GMA_Status_Report__Reference_Archtitecture_Model_Industrie_4.0__RAMI_4.0_/GMA-Status-Report-RAMI-40-July-2015.pdf
https://dx.doi.org/10.1109/ACCESS.2018.2793265
https://dx.doi.org/10.1109/ACCESS.2018.2793265
https://dx.doi.org/10.1109/ISIE.2017.8001414
https://dx.doi.org/10.1007/978-3-319-16766-4
https://dx.doi.org/10.1109/ISMA.2015.7373494
https://dx.doi.org/10.3139/9783446443136


BIBLIOGRAPHY

Sahebjamnia, N., Tavakkoli-Moghaddam, R., & Ghorbani, N. (2016). Designing a fuzzy
Q-learning multi-agent quality control system for a continuous chemical production
line - A case study. Computers and Industrial Engineering, 93, 215–226. doi:10.
1016/j.cie.2016.01.004

Santos, M. Y., Oliveira e Sá, J., Andrade, C., Vale Lima, F., Costa, E., Costa, C., . . .
Galvão, J. (2017). A Big Data system supporting Bosch Braga Industry 4.0 strategy.
International Journal of Information Management, 37 (6), 750–760. doi:10.1016/j.
ijinfomgt.2017.07.012

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks,
61, 85–117.

SCImago, G. (2007). SJR-SCImago journal & country rank. Consejo Superior de In-
vestigaciones Cientificas (CSIC), University of Granada, Extremadura, Carlos III
(Madrid) and Alcalá de Henares.

Shin, S.-J., Woo, J., & Rachuri, S. (2014). Predictive Analytics Model for Power Consump-
tion in Manufacturing. Procedia CIRP, 15, 153–158. doi:10.1016/j.procir.2014.06.036

Shrouf, F., Ordieres, J., & Miragliotta, G. (2014). Smart factories in Industry 4.0: A
review of the concept and of energy management approached in production based on
the Internet of Things paradigm. In 2014 ieee international conference on industrial
engineering and engineering management (pp. 697–701). doi:10.1109/IEEM.2014.
7058728

Si, X.-S., Wang, W., Hu, C.-H., Chen, M.-Y., & Zhou, D.-H. (2013). A wiener-process-
based degradation model with a recursive filter algorithm for remaining useful life
estimation. Mechanical Systems and Signal Processing, 35 (1-2), 219–237.

Siafara, L. C., Kholerdi, H. A., Bratukhin, A., Taherinejad, N., & Wendt, A. (2017).
SAMBA : A Self-Aware Health Monitoring Architecture for Distributed Industrial
Systems. In Industrial electronics society, iecon 2017-43rd annual conference of the
ieee (pp. 3512–3517). IEEE.

Sick, B. (2002). On-line and indirect tool wear monitoring in turning with artificial neural
networks: A review of more than a decade of research. Mechanical systems and
signal processing, 16 (4), 487–546.

Sommerville, I. (2011). Software engineering 9th edition. ISBN-10, 137035152.
Stock, T., & Seliger, G. (2016). Opportunities of Sustainable Manufacturing in Industry

4.0. Procedia CIRP. 13th Global Conference on Sustainable Manufacturing – Decou-
pling Growth from Resource Use, 40, 536–541. doi:10.1016/j.procir.2016.01.129

Stonebraker, M., Çetintemel, U., & Zdonik, S. (2005). The 8 requirements of real-time
stream processing. ACM SIGMOD Record, 34 (4), 42–47. doi:10.1145/1107499.
1107504

Susto, G. A., Pampuri, S., Schirru, A., Beghi, A., & De Nicolao, G. (2015). Multi-step
virtual metrology for semiconductor manufacturing: A multilevel and regularization
methods-based approach. Computers & Operations Research, 53, 328–337.

143

https://dx.doi.org/10.1016/j.cie.2016.01.004
https://dx.doi.org/10.1016/j.cie.2016.01.004
https://dx.doi.org/10.1016/j.ijinfomgt.2017.07.012
https://dx.doi.org/10.1016/j.ijinfomgt.2017.07.012
https://dx.doi.org/10.1016/j.procir.2014.06.036
https://dx.doi.org/10.1109/IEEM.2014.7058728
https://dx.doi.org/10.1109/IEEM.2014.7058728
https://dx.doi.org/10.1016/j.procir.2016.01.129
https://dx.doi.org/10.1145/1107499.1107504
https://dx.doi.org/10.1145/1107499.1107504


BIBLIOGRAPHY

Susto, G. A., Schirru, A., Pampuri, S., McLoone, S., & Beghi, A. (2015). Machine learning
for predictive maintenance: A multiple classifier approach. IEEE Transactions on
Industrial Informatics, 11 (3), 812–820. doi:10.1109/TII.2014.2349359

Tao, F., & Zhang, M. (2017). Digital Twin Shop-Floor: A New Shop-Floor Paradigm
Towards Smart Manufacturing. IEEE Access, 5, 20418–20427. doi:10.1109/ACCESS.
2017.2756069

Terrissa, L. S., Meraghni, S., Bouzidi, Z., & Zerhouni, N. (2016). A New Approach of
PHM as a Service in Cloud Computing. 2016 4th IEEE International Colloquium
on Information Science and Technology (CiSt). Proceedings, 610–14. doi:10.1109/
CIST.2016.7804958

Tuptuk, N., & Hailes, S. (2018). Security of smart manufacturing systems. Journal of
Manufacturing Systems, 47, 93–106. doi:https://doi.org/10.1016/j.jmsy.2018.04.007

Upasani, K., Bakshi, M., Pandhare, V., & Lad, B. K. (2017). Distributed maintenance
planning in manufacturing industries. Computers and Industrial Engineering, 108,
1–14. doi:10.1016/j.cie.2017.03.027

Waller, M. A., & Fawcett, S. E. (2013). Data science, predictive analytics, and big data:
A revolution that will transform supply chain design and management. Journal of
Business Logistics, 34 (2), 77–84.

Wan, J., Tang, S., Li, D., Wang, S., Liu, C., Abbas, H., & Vasilakos, A. V. (2017).
A Manufacturing Big Data Solution for Active Preventive Maintenance. IEEE
Transactions on Industrial Informatics, 13 (4), 251–295. doi:10.1201/b15906-13

Wang, G., Gunasekaran, A., Ngai, E. W., & Papadopoulos, T. (2016). Big data analytics
in logistics and supply chain management: Certain investigations for research and
applications. International Journal of Production Economics, 176, 98–110. doi:10.
1016/j.ijpe.2016.03.014

Wang, J., Sun, Y., Zhang, W., Thomas, I., Duan, S., & Shi, Y. (2016). Large Scale
Online Multi-Task Learning and Decision-Making for Flexible Manufacturing. IEEE
Transactions on Industrial Informatics, PP(99), 1. doi:10.1109/TII.2016.2549919

Wang, J., Zhang, L., Duan, L., & Gao, R. X. (2017). A new paradigm of cloud-based
predictive maintenance for intelligent manufacturing. Journal of Intelligent Manu-
facturing, 28 (5), 1125–1137. doi:10.1007/s10845-015-1066-0

Wang, K. (2016). Intelligent Predictive Maintenance ( IPdM ) system – Industry 4.0
scenario. WIT Transactions on Engineering Sciences, 113, 259–268. doi:10.2495/
IWAMA150301

Wang, L., Törngren, M., & Onori, M. (2015). Current status and advancement of cyber-
physical systems in manufacturing. Journal of Manufacturing Systems, 37, 517–
527.

Wang, P., & Gao, R. X. (2015). Adaptive resampling-based particle filtering for tool life
prediction. Journal of Manufacturing Systems, 37, 528–534.

144

https://dx.doi.org/10.1109/TII.2014.2349359
https://dx.doi.org/10.1109/ACCESS.2017.2756069
https://dx.doi.org/10.1109/ACCESS.2017.2756069
https://dx.doi.org/10.1109/CIST.2016.7804958
https://dx.doi.org/10.1109/CIST.2016.7804958
https://dx.doi.org/https://doi.org/10.1016/j.jmsy.2018.04.007
https://dx.doi.org/10.1016/j.cie.2017.03.027
https://dx.doi.org/10.1201/b15906-13
https://dx.doi.org/10.1016/j.ijpe.2016.03.014
https://dx.doi.org/10.1016/j.ijpe.2016.03.014
https://dx.doi.org/10.1109/TII.2016.2549919
https://dx.doi.org/10.1007/s10845-015-1066-0
https://dx.doi.org/10.2495/IWAMA150301
https://dx.doi.org/10.2495/IWAMA150301


BIBLIOGRAPHY

Wang, S., Wan, J., Zhang, D., Li, D., & Zhang, C. (2016). Towards smart factory for
industry 4.0: A self-organized multi-agent system with big data based feedback and
coordination. Computer Networks, 101, 158–168. doi:10.1016/j.comnet.2015.12.017

Wang, X., Wang, H., & Qi, C. (2016). Multi-agent reinforcement learning based main-
tenance policy for a resource constrained flow line system. Journal of Intelligent
Manufacturing, 27 (2), 325–333. doi:10.1007/s10845-013-0864-5

Willett, P. (2006). The Porter stemming algorithm: then and now. Program, 40 (3),
219–223.

Wu, D., Jennings, C., Terpenny, J., Gao, R. X., & Kumara, S. (2017). A Comparative
Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Pre-
diction Using Random Forests. Journal of Manufacturing Science and Engineering,
139 (7), 071018. doi:10.1115/1.4036350

Wu, D., Jennings, C., Terpenny, J., Kumara, S., & Gao, R. (2017). Cloud-Based Parallel
Machine Learning for Prognostics and Health Management: A Tool Wear Prediction
Case Study. Journal of Manufacturing Science and Engineering, (March). doi:10.
1115/1.4038002

Wu, D., Liu, S., Zhang, L., Terpenny, J., Gao, R. X., Kurfess, T., & Guzzo, J. A. (2017).
A fog computing-based framework for process monitoring and prognosis in cyber-
manufacturing. Journal of Manufacturing Systems, 43, 25–34. doi:10.1016/j.jmsy.
2017.02.011

Wu, D., Rosen, D. W., Wang, L., & Schaefer, D. (2015). Cloud-based design and manufac-
turing: A new paradigm in digital manufacturing and design innovation. Computer-
Aided Design, 59, 1–14.

Xia, T., Jin, X., Xi, L., Zhang, Y., & Ni, J. (2015). Operating load based real-time rolling
grey forecasting for machine health prognosis in dynamic maintenance schedule.
Journal of Intelligent Manufacturing, 26 (2), 269–280. doi:10.1007/s10845-013-0780-
8

Xu, X. (2012). From cloud computing to cloud manufacturing. Robotics and Computer-
Integrated Manufacturing, 28 (1), 75–86. doi:10.1016/j.rcim.2011.07.002

Yan, H., Wan, J., Zhang, C., Tang, S., Hua, Q., & Wang, Z. (2018). Industrial Big Data
Analytics for Prediction of Remaining Useful Life Based on Deep Learning. IEEE
Access, PP(99), 1. doi:10.1109ACCESS.2018.2809681

Yasin, H., Mohammad Yasin, M., & Mohammad Yasin, F. (2011). Automated Multiple
Related Documents Summarization via Jaccards Coefficient. International Journal
of Computer Applications, 12 (3), 12–15. doi:10.5120/1762-2415

Zhang, S., Dubay, R., & Charest, M. (2015). A principal component analysis model-based
predictive controller for controlling part warpage in plastic injection molding. Expert
Systems with Applications, 42 (6), 2919–2927. doi:10.1016/j.eswa.2014.11.030

Zhong, R. Y., Xu, C., Chen, C., & Huang, G. Q. (2017). Big Data Analytics for Phys-
ical Internet-based intelligent manufacturing shop floors. International Journal of
Production Research, 55 (9), 2610–2621. doi:10.1080/00207543.2015.1086037

145

https://dx.doi.org/10.1016/j.comnet.2015.12.017
https://dx.doi.org/10.1007/s10845-013-0864-5
https://dx.doi.org/10.1115/1.4036350
https://dx.doi.org/10.1115/1.4038002
https://dx.doi.org/10.1115/1.4038002
https://dx.doi.org/10.1016/j.jmsy.2017.02.011
https://dx.doi.org/10.1016/j.jmsy.2017.02.011
https://dx.doi.org/10.1007/s10845-013-0780-8
https://dx.doi.org/10.1007/s10845-013-0780-8
https://dx.doi.org/10.1016/j.rcim.2011.07.002
https://dx.doi.org/10.1109ACCESS.2018.2809681
https://dx.doi.org/10.5120/1762-2415
https://dx.doi.org/10.1016/j.eswa.2014.11.030
https://dx.doi.org/10.1080/00207543.2015.1086037


BIBLIOGRAPHY
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