
i

RODRIGO FRASSETTO NOGUEIRA

“Software Based Fingerprint Liveness Detection”

“Detecção de Vivacidade de Impressões Digitais baseada em

Software”

CAMPINAS

2014

ii

iii

UNIVERSIDADE ESTADUAL DE CAMPINAS

Faculdade de Enganharia Elétrica e Computação

RODRIGO FRASSETTO NOGUEIRA

“Software Based Fingerprint Liveness Detection”

“Detecção de Vivacidade de Impressões Digitais baseada em software”

Dissertation presented to the School of Electrical

and Computer Eng. of the University of Campinas

in partial fulfillment of the requirements for the

degree of Master in Electrical Engineering in the

field of Computer Engineering

Dissertação apresentada à Faculdade de

Engenharia Elétrica e Computação da

Universidade Estadual de Campinas como parte

dos requisitos exigidos para a obtenção do título

de Mestre em Engenharia Elétrica na área de

Engenharia da Computação

Supervisor/Orientador: Roberto de Alencar Lotufo

ESTE EXEMPLAR CORRESPONDE À VERSÃO FINAL

DA DISSERTAÇÃO DEFENDIDA PELO ALUNO

RODRIGO FRASSETTO NOGUEIRA, E ORIENTADA

PELO PROF. DR. ROBERTO DE ALENCAR LOTUFO

CAMPINAS

2011

iv

v

vi

vii

 ABSTRACT

With the growing use of biometric authentication systems in the past years, spoof fingerprint

detection has become increasingly important. In this work, we implemented and compared various

techniques for software-based fingerprint liveness detection. We use as feature extractors

Convolutional Networks with random weights, which are applied for the first time for this task, and

Local Binary Patterns. The techniques were used in conjunction with dimensionality reduction through

Principal Component Analysis (PCA) and a Support Vector Machine (SVM) classifier. Dataset

Augmentation was successfully used to increase classifier’s performance. We tested a variety of

preprocessing operations such as frequency filtering, contrast equalization, and region of interest

filtering. An automatic and extensive search for the best combination of preprocessing operations,

architectures and hyper-parameters was made, thanks to the fast computers available as cloud

services. The experiments were made on the datasets used in The Liveness Detection Competition of

years 2009, 2011 and 2013 that comprise almost 50,000 real and fake fingerprints’ images. Our best

method achieves an overall rate of 95.2% of correctly classified samples - an improvement of 59% in

test error when compared with the best previously published results.

RESUMO

Com o uso crescente de sistemas de autenticação por biometria nos últimos anos, a detecção de

impressões digitais falsas tem se tornado cada vez mais importante. Neste trabalho, nós

implementamos e comparamos várias técnicas baseadas em software para detecção de vivacidade de

impressões digitais. Utilizamos como extratores de características as redes convolucionais, que foram

usadas pela primeira vez nesta área, e Local Binary Patterns (LBP). As técnicas foram usadas em

conjunto com redução de dimensionalidade através da Análise de Componentes Principais (PCA) e um

classificador Support Vector Machine (SVM). O aumento artificial de dados foi usado de forma bem

sucedida para melhorar o desempenho do classificador. Testamos uma variedade de operações de pré-

processamento, tais como filtragem em frequência, equalização de contraste e filtragem da região de

interesse. Graças aos computadores de alto desempenho disponíveis como serviços em nuvem, foi

possível realizar uma busca extensa e automática para encontrar a melhor combinação de operações de

pré-processamento, arquiteturas e hiper-parâmetros. Os experimentos foram realizados nos conjuntos

de dados usados nas competições Liveness Detection nos anos de 2009, 2011 e 2013, que juntos somam

quase 50.000 imagens de impressões digitais falsas e verdadeiras. Nosso melhor método atinge uma

taxa média de amostras classificadas corretamente de 95,2%, o que representa uma melhora de 59% na

taxa de erro quando comparado com os melhores resultados publicados anteriormente.

viii

ix

Contents

1. Introduction ... 1

1.1. Related Work .. 1

1.2. Proposed Method .. 4

2. Methodology .. 5

2.1. Basic Concepts ... 5

2.2. Datasets .. 9

2.3. Processing Flow ... 13

2.4. Preprocessing.. 13

2.5. Feature Extraction .. 17

2.5.1. Convolutional Networks ... 18

2.5.2. Local Binary Pattern ... 22

2.6. Feature Normalization, Dimensionality Reduction and Whitening ... 25

2.7. Classifiers ... 26

2.8. Increasing Generalization through Dataset Augmentation .. 28

2.9. Performance Metrics .. 28

2.10. Implementation Details ... 29

2.10.1. Cross-Validation/Grid-Search Algorithm ... 29

2.10.2. Using Fast Computers in the Cloud .. 32

3. Experiments ... 33

4. Results .. 36

4.1. Cross-dataset and Cross-device Experiments ... 38

4.2. Crossmatch 2013 dataset and Dataset Visualization .. 39

4.3. Average Processing Times and Memory Usage... 42

5. Conclusion.. 44

5.1. Future Work ... 44

References .. 46

Appendix A .. 51

x

1

1. Introduction

Biometric systems have become increasingly important in the past years. The basic aim of biometrics is

to discriminate automatically between subjects in a reliable way and according to some target

application based on one or more signals derived from physical or behavioral traits, such as fingerprint,

face, iris, voice, hand, or written signature. Biometric technology presents several advantages over

classical security methods based on either some information (PIN, Password, etc.) or physical device

(key, card, etc.). Of all biometric systems, fingerprint recognition systems are the most popular and are

extensively being used. However, providing to the sensor a fake physical biometric can be an easy way

to overtake the system’s security. Fingerprints, in particular, can be spoofed from common materials,

such as gelatin, silicone, and wood glue [1]. Its creation can be divided into two categories:

- Without cooperation: The casts are created from latent fingerprints only.

- With cooperation: the user presses his finger onto a cast for creating his fingerprint impression,

which normally produces better quality spoof fingerprints.

A safe fingerprint system must distinguish correctly a fake from an authentic finger. Additionally,

it is desirable that it should be able to differentiate real from fake fingerprints when new and, therefore,

unseen spoof techniques are presented to the system. A particularly interesting fact is that it is difficult

for a non-specialist human to distinguish false from real fingerprints. Since humans can recognize

patterns better than machines (in many cases), it can be concluded that the automatic fingerprint

liveness detection is not a trivial problem.

In practical applications, the classification is mostly made online, that is, a decision whether the

fingerprint is false or real is made right after it is inputted to the system. Therefore, the samples must be

classified in a short amount of time (typically, less than 5 seconds) in order to provide a pleasant user

experience, especially in environments where the number of incoming and outgoing users is high, like

banks and public buildings.

1.1. Related Work

Different fingerprint liveness detection algorithms have been proposed [2] [3] [4]. They can be roughly

divided into hardware-based and software-based techniques.

In the hardware-based approach, some specific device is added to the sensor in order to detect

particular properties of a living trait such as the blood pressure [5], temperature [6], odor [7], or

perspiration [8] [9] [10]. A method proposed in [11] tries to solve the problem using skin distortion,

which involves pressing and moving a finger on the scanner surface to create a skin distortion. The

distortion produced due to the movement of an elastic real skin is large compared to that produced by

the movement of a rigid spoof finger. A method for detecting fake fingers by measuring electrical

characteristics of different layers of the skin was proposed in [12]. They have used different

characteristics of the skin like stratum corneum impedance, viable skin impedance, dispersive behavior

of skin layers in the measured frequency range and anisotropy in stratum corneum for liveness

detection. Some of these methods are slow as they need finger to be placed on the scanner surface for a

couple of seconds so that information such as perspiration or temperature is available.

2

In the software-based approach, fake traits are detected once the sample has been acquired with a

standard sensor. The features used to distinguish between real and fake fingers are extracted from the

fingerprint image, and not from the finger itself.

The advantages of the software-based techniques is that the sensor do not have to be replaced as

spoof techniques evolve and they also reduce the cost of a biometric system, as no additional hardware

is needed, except for the fact that more computational power could be required to process the images in

real-time. On the opposite side, the use of additional information not present in still images acquired

from a standard sensor is one of the advantages of the hardware techniques.

There are software-based techniques in which the features used in the classifier are based on

specific fingerprint measurements, such as ridge-based [13] [14] and Fourier transform-based [15]

features, and there are implementations that the features are extracted using general extractors, such as

wavelets or Local Binary Patterns (LBP).

In [13], a variety of quality measurements, such as ridge strength, continuity and clarity, are

extracted from the fingerprint image using statistical measurements of the local angles, power spectrum

and pixels intensities. A feature selection is then performed in the validation phase and a Linear

Discriminant Analysis (LDA) classifier is used to make the final prediction. The results show 90%

overall accuracy in two standardized benchmarks.

In [16], wavelets are used as feature vectors. Real and spoof fingerprints have significant

differences in inter-ridge distances and ridge frequencies also. Wavelet analysis provides multi-

resolution and orientation representation of a fingerprint image via subbands. Due to multi-resolution

property of wavelets, minute textural differences in real and spoof fingerprints are analyzed in the

wavelet domain. Additionally, the wavelet detail subbands carry high frequency information, which is

very significant for texture characterization. However, the method has some drawbacks: the images

used were the first image immediately upon placement on the fingerprint scanner. It is not known if this

would be applicable to “any” fingerprint image since some devices wait until full development of the

image before matching (~1 second). Also, because the method is based on detection of perspiration

along the fingerprints, wiping the clothes before scanning may be necessary.

A combination of techniques, such as different classifiers (k-NN, SVM and Adaboost) fused

using the “Majority Vote Rule” and trained with different feature extractors (LBP and wavelets) is used

in [17]. The authors observe that the performance of both LBP histogram features and wavelet energy

features is approximately the same and that the performance of a hybrid classifier is slightly better than

the performance of individual classifiers.

A multi-scale variant for LBPs reported in [18] achieves good results in fingerprint liveness

detection benchmarks. Since the original LBP operator is able to capture only small spatial support

areas, the texture of fingerprint images could be too complex to be completely reflected by it. Besides,

the LBP feature is sensitive to noise [19]. Thus, the multi-scale LBP operator (MSLBP) is introduced

by applying multiple LBP filters with different radius and combining the histograms of each resulting

LBP image into a single feature vector. With the increase in the LBP scale, the large distances between

samples make the LBP codes unreliable. Hence, the MSLBP operator is combined with a set of

Gaussian low-pass filters. A SVM classifier is then trained to make the final prediction.

Since there is no way to know in advance the materials and techniques of the fake fingerprints

used by the attackers, it is necessary to study the inter-operability of the training classifiers across

3

different materials of fake fingerprints. That is to say, the authors in [18] tried to detect the spoof

fingerprint images made of a specific type of material without training the spoof images made of the

same material. They reported an averaged error rate of 22%, being much higher than the 7.5% error

rate achieved when using the standard training and testing sets. Therefore, the proposed algorithm

might have a poor performance in practical applications, as new techniques for spoof fingerprints

emerge continuously.

The paper also presents the inter-operability performance of the trained classifiers across

different devices, also called “Cross-device”. The error rate is about 40-50%, mainly caused by the

huge difference among the images acquired by distinct sensors, according to the authors. Therefore, it

was difficult for the classifier trained by the images collected by one sensor to distinguish the live

images from the spoof images acquired by another sensor.

In some applications, like fingerprint liveness, image degradations may limit the applicability of

the texture information. One class of degradation is blur due to motion or lack of focus. Because image

deblurring is very difficult and introduces new artifacts, it is desirable to be able to analyze texture in a

way that is insensitive to blur. Reference [20] tries to solve the problem through Local Phase

Quantization (LPQ) as features from the fingerprint images. The descriptor utilizes quantized phase of

the discrete Fourier transform (DFT) computed locally in a window for every image position. The

phases of the four low-frequency coefficients are decorrelated and uniformly quantized in an eight-

dimensional space. A histogram of the resulting code words is created and used as a feature in texture

classification. Ideally, the low-frequency phase components are shown to be invariant to centrally

symmetric blur. Although this ideal invariance is not completely achieved due to the finite window

size, the method is still highly insensitive to blur. Because only phase information is used, the method

is also invariant to uniform illumination changes.

Thus, the authors argued that the effectiveness of LPQ lies in its ability to represent all spectrum

characteristics of images in a very compact feature representation, thus avoiding redundant or blurred

information. Since different fingerprint orientations may arise on a sensor surface, they adopted the

rotation invariant extension of LPQ. The results show that LBP and LPQ have similar performance and

preliminary experiments show that there exist complementarity among them, but it needs further

studies.

Reference [21] tries to combine the qualities of both LBP and LPQ through a local image

descriptor called Binarized Statistical Image Features (BSIF). The idea behind BSIF is to automatically

learn a fixed set of filters from a small set of natural images, instead of using hand-crafted filters such

as LBP or LPQ. To characterize the texture properties within each fingerprint sub-region, the

histograms of pixels employing BSIF code values are then used. The value of each element (i.e. bit) in

the BSIF binary code string is computed by binarizing the response of a linear filter with a threshold at

zero. Each bit is associated with a different filter and the desired length of the bit string determines the

number of filters used. The set of filters is learnt by independent component analysis (ICA), which

maximizes the statistical independence of the filter responses.

The results are promising, but, since the experiments were made using predefined filters learned

from only 13 natural images, the performance could be improved if the filters were learned from a

larger set of images acquired from particular sensors.

4

1.2. Proposed Method

We approach the problem by experimenting two general feature extractors: Convolutional

Networks, which are, to our knowledge, used for the first time for this task, and Local Binary Patterns,

which had a good performance in previous works. Convolutional Networks are a promising technique

as they provide the state-of-the-art results in many computer vision tasks. In contrast to all techniques

described so far, it uses multiple layers of local descriptors (obtained from a convolution of filter banks

and down-sampling operations), which outputs a feature vector whose dimensions can represent large

patches of the input image. Therefore, these feature vectors are able to represent more complex

structures of the image than the single layer techniques.

Moreover, a variety of preprocessing techniques such as contrast normalization, image reduction,

frequency filtering and Region Of Interest (ROI) extraction are tested, as apparently the efficacy of

these methods were not explored in past publications. We also used a technique known as Dataset

Augmentation to prevent overfitting and to increase the classifier’s robustness to small translations. On

the top of the pipelines, two classifiers were compared in order to verify their contribution to the

overall system’s performance: Support Vector Machines (SVM) with linear and Gaussian kernels, and

k-Nearest Neighbors (k-NN).

An extensive search for the best combination of preprocessing operations, architectures and

hyper-parameters was made during the validation phase, thanks to the fast computers available as cloud

services like Amazon’s Elastic Compute Cloud (EC2).

There are few works in the field that use standardized benchmarks, such as Liveness Detection

Competition (LivDet) or Biometric Recognition Group (ATVs) database [22], to report results. This is

mainly because these benchmarks were created just recently. In this work, the experiments were

executed in the eleven datasets of the Liveness Detection Competition of the years 2009, 2011 and,

2013 and the results were compared with the state-of-the-art techniques.

The dissertation is organized as follows: in chapter 2 we present the basic concepts,

methodology, datasets used in the experiments, an overview of the elements that compose the

classification pipelines, followed by a more detailed explanation of each element and implementation

particularities, such as code optimizations; in chapter 3 we describe the experiments conducted; in

chapters 4 and 5 the results and conclusions are presented, respectively.

5

2. Methodology

2.1. Basic Concepts

Some basic concepts necessary to understand this dissertation are reviewed in this section, starting

from Figure 1 that shows common definitions for a fingerprint image:

Region of Interest: region of the image where the fingerprint lies.

Background: region of the image where there is no fingerprint, that is, region where there is no

relevant information for classification.

Dirtiness on the sensor: dirtiness deposited on the sensor each time a finger is pressed against the

glass cap. It accumulates mainly in the edges of the glass cap.

Ridge: The skin on the palmar surface of the hands and feet forms ridges, so-called papillary ridges, in

patterns that are unique to each individual and which do not change over time.

Ridge Distance: distance between two adjacent ridges.

Valleys: region between ridges.

Micropores: Also called pores, they are sweat glands irregularly spaced on the ridges. There are no

pores between the ridges, though sweat tends to spill into them. The thick epidermis of the palms and

soles causes the sweat glands to become spirally coiled.

6

Figure 1 – Some fingerprint image definitions.

Next, some concepts from computer vision and machine learning are described:

Histogram: An image histogram is a representation of the tonal (intensities values) distribution in

a digital image. It computes the number of pixels for each tonal value, which are referred as “bins”. By

looking at the histogram for a specific image a viewer will be able to judge the entire tonal distribution

at a glance. Histograms are commonly used to represent the features of the images in machine learning

algorithms.

Convolution: It is a linear filter characterized by its point spread function g . The equation of a

convolution of image f with a filter g is:

 ∑ ∑

 (1)

Center of Mass (also called image mean): For a bi-dimensional image of size M-by-N, the center of

mass () can be calculated as:

∑ ∑

∑ ∑

 (2)

7

∑ ∑

∑ ∑

 (3)

where is the pixel value at () coordinates.

Standard deviation: The standard deviation () of a bi-dimensional image can be calculated

as:

 √
∑ ∑ ()

∑ ∑

 (4)

 √
∑ ∑ ()

∑ ∑

 (5)

Morphological Opening: In mathematical morphology, opening is the dilation of the erosion of

a set A by a structuring element B:

 () (6)

where and denote erosion and dilation, respectively. Opening removes small objects from the

foreground (usually taken as the dark pixels) of an image, placing them in the background. Opening

can be used to find things into which a specific structuring element can fit (edges, corners, etc.). One

can think of B sweeping around the inside of the boundary of A, so that it does not extend beyond the

boundary, and shaping the A boundary around the boundary of the element. [23]

Supervised Learning: it is the machine learning task of inferring a function from labeled training data.

The training data consist of a set of training examples. In supervised learning, each example is

a pair consisting of an input vector (typically attributes of an object) and a desired output value (also

called the supervisory signal). A supervised learning algorithm analyzes the training data and produces

an inferred function, which can be used for mapping new examples. An optimal scenario will allow for

the algorithm to correctly determine the class labels for unseen instances. This requires the learning

algorithm to generalize from the training data to unseen situations in a "reasonable" way. [24]

Unsupervised Learning [25]: Unsupervised learning studies how systems can learn to represent

particular input patterns in a way that reflects the statistical structure of the overall collection of input

patterns.

By contrast with supervised learning, there are no explicit target outputs or environmental evaluations

associated with each input; rather the unsupervised learner brings to bear prior biases as to what aspects

of the structure of the input should be captured in the output. In other terms, the problem

of unsupervised learning is that of trying to find hidden structure in unlabeled data. Since the examples

given to the learner are unlabeled, there is no error or reward signal to directly evaluate a potential

solution.

Feature Extraction/Dimensionality Reduction [26]: dimensionality reduction or dimension

reduction is the process of reducing the number of random variables under consideration and it is

8

normally used in conjunction with the terms feature selection and feature extraction. Feature extraction

creates new features from functions of the original features, whereas feature selection returns a subset

of the features. When the input data to an algorithm is too large to be processed and it is suspected to be

notoriously redundant then the input data will be transformed into a reduced representation set of

features (also named features vector). Transforming the input data into the set of features is

called feature extraction. If the features extracted are carefully chosen it is expected that the features

set will extract the relevant information from the input data in order to perform the desired task using

this reduced representation instead of the full size input.

Overfitting [27]: It occurs when a statistical model describes random error or noise together with the

underlying relationship. Overfitting generally occurs when a model is excessively complex, such as

having too many parameters relative to the number of observations. A model which has been overfit

will generally have poor predictive performance, as it can exaggerate minor fluctuations in the data.

The possibility of overfitting exists because the criterion used for training the model is not the same as

the criterion used to judge the efficacy of a model. In particular, a model is typically trained by

maximizing its performance on some set of training data. However, its efficacy is determined not by its

performance on the training data but by its ability to perform well on unseen data. Overfitting occurs

when a model begins to interpolate training data rather than learning to generalize from trend. As an

extreme example, if the number of parameters is the same as or greater than the number of

observations, a simple model or learning process can perfectly predict the training data simply by

interpolating the training data in its entirety, but such a model will typically fail drastically when

making predictions about new or unseen data, since the simple model has not learned to generalize at

all.

Curse of Dimensionality [28]: It refers to various phenomena that arise when analyzing data in high-

dimensional spaces (often with hundreds or thousands of dimensions) that do not occur in low-

dimensional settings such as the three-dimensional physical space of everyday experience. When the

dimensionality increases, the volume of the space increases so fast that the available data become

sparse. This sparsity is problematic for any method that requires statistical significance. In order to

obtain a statistically sound and reliable result, the amount of data needed to support the result often

grows exponentially with the dimensionality. Also, organizing and searching data often relies on

detecting areas where objects form groups with similar properties; in high dimensional data, however,

all objects appear to be sparse and dissimilar in many ways, which prevents common data organization

strategies from being efficient. In the specific case of a binary (two-classes) classifier, it refers to when

there are much more dimensions than training samples that the classifier is not able to generalize due to

large amount of possible separation hypersurfaces.

Cross-Validation [29]: it is a model validation technique for assessing how the results of

a statistical analysis will generalize to an independent data set. It is mainly used in settings where the

goal is prediction or classification, and one wants to estimate how accurately a predictive model will

perform in practice. It is worth highlighting that in a prediction problem, a model is usually given a

dataset of known data on which training is run (training dataset), and a dataset of unknown data (or first

seen data) against which the model is tested (testing dataset). The goal of cross validation is to define a

dataset to "test" the model in the training phase (i.e., the validation dataset), in order to limit problems

http://en.wikipedia.org/wiki/High-dimensional_space
http://en.wikipedia.org/wiki/High-dimensional_space
http://en.wikipedia.org/wiki/Three-dimensional_space
http://en.wikipedia.org/wiki/Physical_space
http://en.wikipedia.org/wiki/Volume

9

like overfitting, give an insight on how the model will generalize to an independent data set (i.e., an

unknown dataset, for instance from a real problem), etc.

2.2. Datasets

We used datasets provided by the Livness Detection Competition of the years 2009 [30], 2011 [31],

and 2013 [32]. The competition is organized by the Department of Electrical and Electronic

Engineering of the University of Cagliari, in cooperation with the Department of Electrical and

Computer Engineering of the Clarkson University, and it is open to all academic and industrial

institutions. It features two distinct parts; Part 1: Algorithms and Part 2: Systems, with separate

protocols for each part. Since the main focus of this work is software techniques, only Part 1 will be

described.

Table 1 shows the image size and number of samples for training and testing of each dataset. In

all datasets, the real/fake fingerprint ratio is 1/1. The sizes of the images vary from sensor to sensor,

ranging from 240x320 to 700x800 pixels. Figure 2 and Figure 3 show some image samples used in the

competitions of years 2013 and 2009, respectively.

Livdet 2009 dataset comprises almost 18,000 images from real and fake fingerprints acquired

from 3 different sensors: Biometrika FX2000, Crossmatch Verifier 300 LC, and Identix DFR 2100.

Fake fingerprints were obtained from three different materials: Gelatin, Play Doh, and Silicone. One

third of the dataset is used for training and the remaining for testing.

LivDet 2011 dataset comprises 16,000 images acquired from 4 different sensors: Biometrika

FX2000, Digital 4000B, Italdata ET10, and Sagem MSO300, each having 2000 images from fake and

real fingerprints. Half of the dataset is used for training and the other half for testing. Fake fingerprints

were obtained from four different materials: Gelatin, Wood Glue, Eco Flex, and Silgum.

LivDet 2013 dataset comprises 16,000 images acquired from 4 different sensors: Biometrika

FX2000, Crossmatch L SCAN GUARDIAN, Italdata ET10, and Swipe, each having approximately

2,000 images from fake and real fingerprints. Almost half of the dataset is used for training and the

other half for testing. Fake fingerprints were obtained from five different materials: Gelatin, Latex, Eco

Flex, Wood Glue, and Modasil.

Additionally, we performed the experiments in a private dataset kindly provided by Griaule

Biometrics (http://www.griaulebiometrics.com) that comprises approximately 1000 training images and

1000 testing images acquired from Futronic FS-88 Spoofs sensor. The spoof/real fingerprint ratio is 1

in both training and testing sets. Fake fingerprints were obtained from four different materials: Gelatin,

Silicone, Latex, and Wood Glue. We will refer to this dataset throughout this work as “Griaule”

dataset.

10

Table 1 - Datasets details: Image sizes and number of training and testing samples for each sensor.

Competition/

Year

Sensor Model Image Size Samples for

Training

Samples for

Testing

LivDet 2009

Biometrika FX2000 372x312 1040 2960

Crossmatch Verifier 300 LC 640x480 2000 6000

Identix DFR2100 720x720 1500 4500

LivDet 2011

Biometrika FX2000 372x312 2000 2000

Digital 4000B 355x391 2000 2000

Italdata ET10 640x480 2000 2000

Sagem MSO300 352x384 2000 2000

LivDet 2013

Crossmatch L SCAN GUARDIAN 800x750 2250 2250

Swipe N/A 208x1500 2000 2153

Italdata ET10 640x480 2000 2000

Biometrika FX2000 372x312 2200 2000

11

Figure 2 – Examples of fake fingerprints acquired with 4 sensors from LivDet 2013. From Crossmatch (a) body

double, (b) latex, (c) wood glue, from Biometrika (d) gelatine, (e) latex, (f) wood glue, from Italdata (g) gelatine,

(h) latex, (i) wood glue, from Swipe (j) body double, (k) latex, (l) wood glue.

12

Figure 3 - Typical examples of real and fake fingerprint images that can be found in the LivDet2009 database

used in the experiments.

13

2.3. Processing Flow

Figure 4 shows an overview of the pipeline used to train the classifiers, which can be broadly divided

into four phases:

1- Preprocessing;

2- Feature Extraction where two techniques were tried: Local Binary Patterns and Convolutional

Networks;

3- Dimensionality Reduction and Data Normalization;

4- Classification where two classifiers were tried: k-Nearest Neighbors (k-NN) and Support Vector

Machine (SVM) with Linear and Gaussian kernels.

Since testing all possible combinations of operations has a prohibitory computational cost, we selected

a sub-set of these for our experiments, which will be listed in chapter 3.

For training and testing, we followed the same protocol used in LivDet competitions, that is, a

fixed set of images is used for training and validation (for hyper-parameter selection) and the remaining

for testing.

The implementation details of each phase will be explained in the following sub-sections.

Figure 4: Overview of the processing flow

2.4. Preprocessing

14

Five preprocessing operations were carried out: Image Reduction using different ratios, Region of

Interest (ROI) extraction, Contrast Equalization, High-pass filter, and Low-pass filter. The execution or

non-execution of each operation in the final model is decided at validation time, that is, the

combination of preprocessing operations that had the lowest validation error were included in the final

model.

Image Reduction

Due to the large size of some images (800 x 750 pixels for Crossmatch sensor, for example) and the

small amount of samples for training (approximately 2000 for each dataset), the classification system

may not be able to extract the important information. This problem is known as the Curse of

Dimensionality, already explained in section 2. Thus, the experiments were also performed in images

resized (using bilinear interpolation) to 50% and 25% of its original size, and the best reduction ratio

was chosen using cross-validation.

Frequency Filtering

We inspected how noise removal through a Gaussian low-pass filtering could improve results. We also

tested the hypothesis that the relevant information to distinguish between false and real fingerprints is

mostly in the high frequency components of the image by applying a Gaussian high-pass filter before

extracting the features. The low-pass filter is implemented as the convolution of the input image by a

Gaussian kernel and the high-pass filter is implemented as the subtraction of the original image by the

low-pass filtered image. In our experiments, either high pass or low-pass filter was applied (never both)

and the Gaussian kernels have a standard deviation of 3 pixels and size of 13x13 pixels. Figure 5 shows

the effect of both filters when applied to samples acquired from four types of sensors.

(a)

15

(b)

(c)

Figure 5 – Original (left), low-pass filtered (middle) and high-pass filtered (right) images. Each row represents

an image from a specific dataset: (a) – Crossmatch 2013, (b) – Sagem 2011, (c) – Digital 2011 and (d) – Identix

2009.

Region of Interest (ROI)

Many fingerprints from some datasets, like Crossmatch sensor from LivDet 2013 competition, are not

centered and the background represents a large part of the image. In order to try to input to our

classification system the largest area that comprises foreground/fingerprints, we created a simple ROI

using the following steps:

1. Apply morphological closing operation to highlight the region where the fingerprint lies. We used a

box of size 21x21 as the structuring element, which is greater than the maximum ridges distances even

in the largest images (that normally have greater ridge distances). This ensures that the fingerprint will

become a continuous object after the operation.

2. Negate image, so the foreground/fingerprint will have greater values than the background.

3. Find the center of mass and the standard deviation of the negated image from step 2.

4. Get the Region of Interest: a rectangle centered in the center of mass, whose width and height are

three times the standard deviations calculated in the previous step.

Figure 6 illustrates the sequence of operations described above for a sample fingerprint image.

16

Original Morphological Opening Crop based on

image’s center of

mass and standard

deviation

Figure 6 - Sequence of operations to extract the Region of Interest of a fingerprint image.

Contrast Equalization

We verified if histogram equalization could improve our classifier performance by using a technique

called Contrast Limited Adaptive Histogram Equalization (CLAHE) [33], which is a variant of

Adaptive Histogram Equalization (AHE) [34]. AHE computes several histograms, each corresponding

to a distinct section of the image, and uses them to redistribute the lightness values of the image. It is,

therefore, suitable for improving the local contrast of an image and bringing out more details. In our

implementation, each pixel is transformed based on the histogram of region of a disk with a diameter of

30 pixels surrounding the center pixel. AHE has a tendency to overamplify noise in relatively

homogeneous regions of an image. CLAHE prevents this by limiting the amplification by clipping the

histogram at a predefined value before computing the neighborhood cumulative distribution function

(CDF). Figure 7 shows the original and CLAHE filtered images for comparison.

(a)

http://en.wikipedia.org/wiki/Signal_noise

17

(b)

(c)

(d)

Figure 7 - Original images (left) and CLAHE filtered images (right). Each row represents an image from a

different dataset: (a) – Crossmatch 2013, (b) – Sagem 2011, (c) – Digital 2011 and (d) – Identix 2009.

2.5. Feature Extraction

Two different feature extractors were tested: Convolutional Networks (CN) with random weights and

Local Binary Patterns (LBP).

18

2.5.1. Convolutional Networks

Convolutional Networks [35] are the state-of-the-art technique in a variety of image recognition

benchmarks, such as MNIST [36], CIFAR-10 [36], CIFAR-100 [37], SVHN [36] and ILSVRC2011

[38], and to the best of our knowledge, this is the first time it is employed in fingerprint liveness

detection.

A classical convolutional network is composed of alternating layers of convolution and local

pooling (i.e. subsampling) [39]. The aim of the first convolutional layer is to extract patterns found

within local regions of the input images that are common throughout the dataset by convolving a

template or filter over the input image pixels and outputting this as a feature map c, for each filter in the

layer.

By stacking multiple layers, it is intended to create a system that would be able to capture more

complex structures in the data. However, since the convolution is a linear operation and the

combination of two or more linear operations is equivalent to a single linear operation, the effort to

build a multiple layer network would be nullified. To avoid this, a non-linear function f(c) is applied

element-wise to each feature map c: a = f(c), resulting in a network composed of multiple non-linear

layers. A range of functions can be used for f(c), with tanh(c) and logistic functions being popular

choices. In this work, we use a linear rectification () () as the non-linearity function. In

general, this has been shown [40] to have significant benefits over tanh() or logistic functions.

The resulting activations () are then passed to the pooling layer. This aggregates the information

within a set of small local regions, R, producing a pooled feature map s (normally of smaller size) as

output. Denoting the aggregation function as (), for all feature map c we have:

 (()) (7)

where is the pooling region j in feature map c and i is the index of each element within it. Among

the various types of pooling, two are commonly used: average and max. Average pooling outputs the

average (or the summation) of the activations units in a neighbor region Rj:

| |
∑

 (8)

Max pooling selects the maximum value of the region Rj:

 (9)

The motivation behind pooling is that the activations in the pooled map s are less sensitive to the

precise locations of structures within the image than the original feature map c. In a multi-layer model,

the convolutional layers, which take the pooled maps as input, can thus extract features that are

increasingly invariant to local transformations of the input image [41] [42]. This is important for

classification tasks, since these transformations obfuscate the object identity. Achieving invariance to

changes in position or lighting conditions, robustness to clutter, and compactness of representation, are

all common goals of pooling.

Another important characteristic of convolutional networks is its ability to capture larger regions,

and possible more complex structures, of the input images than the single layer methods like LBP. This

is achieved by stacking local descriptors (obtained from a convolution of filter banks and down-

19

sampling operations) in multiple layers, which increases the area of input image represented by single

dimension of the final feature vector.

Figure 8 - Illustration of a sequence of operations performed by a single layer convolutional network in a sample

image.

Figure 8 illustrates the feed-forward pass of a single layer convolutional network. The input

sample is convoluted with three random filters of size 5x5 (enlarged to make visualization easier),

generating 3 convoluted images, which are then subjected to a non-linear function max(x,0), followed

by a max-pooling operation and then subsampled by a factor of 2.

Figure 9 illustrates a sample sequence of operations for a convolutional network with two layers

(the non-linear and max-pooling operations are not shown). In the second layer, the outputted images

from the first layer are convoluted with 9 random filters (only three are displayed), max-pooled, and

sub-sampled. The outputted images are normally rasterized and concatenated forming a one-

dimensional vector that will be fed in a classifier (not shown in the illustration).

Our convolutional networks use only random filters weights draw from a Gaussian distribution.

Although the filter weights can be learned, as described in [43], filters with random weights can

perform surprisingly well and they have the advantage that they do not need to be learned [44] [45]

[46], decreasing the pipeline’s training time.

20

Figure 9 – Illustration of a sequence of operations performed by a two layers convolutional network in a sample

image.

It is a common practice to have a Local Contrast Normalization layer (which is different from the

Contrast Equalization previously described) between each convolution and pooling layer. The goal of

this layer is to normalize pixels intensities based on its neighborhood. The operations of subtractive and

divisive normalization described below are inspired by computational neuroscience models [47] [48]

[49]. The subtractive normalization operation for a given 3D image patch can be defined by:

 ∑

 (10)

where is a Gaussian weighting window normalized so that

 ∑

 (11)

i refers to the index of the third dimension of the image patch, j and k refer to the two dimensions of the

image patch, p and q refer to the neighborhood region of the patch defined by j and k. The divisive

normalization computes

 () (12)

where

 (∑

)

 (in our experiments) (13)

21

Figure 10 shows divisive normalization filtering with filter size of 9x9 applied to some fingerprint

image samples.

(a)

(b)

(c)

22

(d)

Figure 10 – Original (Right) and Divisive Normalized (Left) Images. Each row represents an image from a

different dataset: (a) – Crossmatch 2013, (b) – Sagem 2011, (c) – Digital 2011 and (d) – Identix 2009.

2.5.2. Local Binary Pattern

Local Binary Patterns (LBP) are a local texture descriptor that have performed well in various

computer vision applications, including texture classification and segmentation, image retrieval,

surface inspection, and face detection [50]. The best current method for fingerprint liveness detection

[18] uses this technique.

In its original version, the LBP operator assigns a label to every pixel of an image by

thresholding each of the 8 neighbors of the 3x3-neighborhood with the center pixel value and

considering the result as a unique 8-bit code representing the 256 possible neighborhood combinations.

As the comparison with the neighborhood is done with the central pixel, the LBP is an illumination

invariant descriptor. The operator can be extended to use neighborhoods of different sizes [19].

In mathematical terms, the LBP label for the center pixel (x,y) of image f(x,y) is obtained through

 () ∑ (() ())

 (14)

where P represents the number of sampling points, R is the radius of the neighborhood, s(z) is the

thresholding function and

 () {

 (15)

Normally, the normalized histogram of the LBPs is used as a feature vector for an image or a ROI of an

image, as the histogram gives the frequency distribution of each particular pattern in the image.

23

Figure 11 – Original image (Left) and LBP filtered image (Right).

Another extension to the original operator is the definition of so-called uniform patterns, which

can be used to reduce the length of the feature vector and implement a simple rotation-invariant

descriptor [19]. An LBP is called uniform if the binary pattern contains at most two bitwise transitions

from 0 to 1 or vice versa when the bit pattern is considered circular. The number of different labels of

LBP is reduced from 256 to just 10 in the uniform pattern.

The original rotation-invariant LBP operator based on uniform patterns is achieved by circularly

rotating each bit pattern to the minimum value. For instance, the bit sequences 10000011, 11100000,

and 00111000 arise from different rotations of the same local pattern, and they all correspond to the

normalized sequence 00000111. Figure 12 shows the 58 possible different uniform patterns in the (8,

R) neighborhood. In the uniform operator, all the patterns from one row are replaced with a single

label, which results in 9 possible labels. The remaining non-uniform patterns are assigned to the 10
th

label.

24

Figure 12 - Fifty-eight different uniform patterns in the (8, R) neighborhood. Source: [51].

The normalized histogram of the LBPs (with 256 and 10 bins for non-uniform and uniform

operators, respectively) is used as a feature vector. The assumption underlying the computation of a

histogram is that the distribution of patterns matters, but the exact spatial location does not. Thus, the

advantage of extracting the histogram is the spatial invariance property. To investigate if location

matters to our problem, we also implemented the method presented in [52], for face recognition, where

the LBP filtered images are equally divided in rectangles and their histograms are concatenated to form

a final feature vector, as exemplified in Figure 13.

25

Figure 13 – the LBP filtered images are equally divided in rectangles and their histograms are concatenated to

form a final feature vector.

2.6. Feature Normalization, Dimensionality Reduction and Whitening

After the feature extraction phase, each dimension of the dataset is independently normalized to zero

mean and unit variance. This is normally required because many elements used in the objective

function of a learning algorithm (such as the RBF kernel of Support Vector Machines) assume that all

features are centered on zero and have variance in the same order. If a feature has a variance that is

orders of magnitude larger than others, it might dominate the objective function and make the estimator

unable to learn from other features as expected.

The normalized data is then subject to dimension reduction by using Principal Components

Analysis (PCA), which is a statistical procedure that uses an orthogonal transformation to convert a set

of observations of possibly correlated variables into a set of values of linearly uncorrelated variables

called principal components [53]. The number of principal components is less than or equal to the

number of original variables. This transformation is defined in such a way that the first principal

component has the largest possible variance (that is, accounts for as much of the variability in the data

as possible), and each succeeding component in turn has the highest variance possible under the

constraint that it is orthogonal to (i.e., uncorrelated with) the preceding components. The PCA can be

computed by eigenvalue decomposition of a data covariance (or correlation) matrix or singular value

decomposition (SVD) of a data matrix. We will explain only the latter, as it is the most common

implementation. The singular value decomposition of an n-by-p data matrix X, where the n rows

represents the samples and the p columns represents the features, is defined as

where is a n-by-p rectangular diagonal matrix of positive numbers σ(k), called the singular values

of X; U is an n-by-n matrix, the columns of which are orthogonal unit vectors of length n called the left

singular vectors of X; and V is a p-by-p matrix whose columns are orthogonal unit vectors of

length p and called the right singular vectors of X. By convention, the ordering of the singular vectors

is determined by high-to-low sorting of singular values, with the highest singular value in the upper left

index of the matrix. The principal components score matrix T can be written

26

so each column of T is given by one of the left singular vectors of X multiplied by the corresponding

singular value. Keeping only the first L principal components, produced by using only the

first L loading vectors, gives the truncated transformation

where the matrix TL now has n rows but only L columns. By construction, of all the transformed data

matrices with only L columns, this score matrix maximizes the variance in the original data that has

been preserved, while minimizing the total squared reconstruction error ‖
 ‖

 or ‖

 ‖
 . In other words, the truncation of a matrix T using a truncated singular value decomposition in

this way produces a matrix that is the nearest possible matrix of rank L to the original matrix.

In our implementation, we used the Randomized version of PCA [54] [55], which is faster than

the original PCA because it limits computation to an approximated estimate of the singular vectors kept

to actually perform the transformation. If we note

 ()

 ()

the time complexity of Randomized PCA is (
) instead of (

) for the

exact PCA method. The memory footprint of Randomized PCA is also proportional to

 instead of
 for the exact method.

A decorrelation method called Whitening [56] [57], also known as Sphering, is applied after PCA

to normalize the variances of the principal components, which has been shown to improve results in

computer vision classification tasks [58]. It divides the principal components by their standard

deviations, which yields an identity covariance matrix. Denoting the PCA rotated components by ,

this means we compute

√ ()
 (16)

to get whitened components . This is often useful if the classification model makes assumptions on

the isotropy of the signal, which is the case for Support Vector Machines with the RBF kernel.

It may appear unnecessary to normalize the data before rotating and whitening it but we exemplify

that this conclusion can be wrong: if one of the dimensions is orders of magnitude larger than the

others, PCA will rotate the un-normalized data in the “wrong” direction, that is, in the direction of the

dimension that has the greater (un-normalized) variance. After rotation, whitening will simple

normalize the dimensions, but the data will be still rotated in the wrong direction.

2.7. Classifiers
As the final step of the pipeline, a classifier is used. Two classifiers were tested: K-Nearest-Neighbors

(KNN), for comparison purposes, and Support Vector Machines (SVM), that is suitable to our problem

because it is an inherently binary (two classes) classifier and it is widely used in large range of machine

learning problems [59]. Two types of kernels were chosen for the SVM: linear and Gaussian Radial

Basis Function (RBF) kernels. The linear kernel can be faster but the Gaussian kernel can find better

separation hyperplanes when the number of features is not high [60], which is the case for the LBP

pipelines.

http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.RandomizedPCA.html#sklearn.decomposition.RandomizedPCA

27

The C parameter, common to all SVM kernels, was chosen during validation and it trades off

misclassification of training examples against simplicity of the decision surface. Formally, the standard

optimization problem for fitting a linear SVM is defined by [61]:

‖ ‖ ∑

subject to ()(())

(17)

where n is the number of training samples, and b are the coefficients that define the separation

hyperplane, and are non-negative slack variables that allow points to be on the wrong side of their

“soft margin”. A low C makes the decision surface smooth, while a high C aims at classifying all

training examples correctly. If the data are separable, then for sufficiently large C the solution achieves

the maximal margin separator; if not, the solution achieves the minimum overlap solution with largest

margin.

In the Gaussian RBF kernel, the separating surface will be based on a combination of bell-shaped

surfaces centered at each support vector. The width of each bell-shaped surface will be inversely

proportional to hyper-parameter γ. More formally, from the dual optimization problem defined by

 () ∑

∑ () () 〈

() ()〉

Subject to

∑
()

(18)

The dot product 〈 () ()〉 can be substituted by the RBF kernel, defined as

 〈 () ()〉 | () ()|

 (19)

From (19), the value of the RBF kernel decreases with distance and ranges between zero (in the limit)

and one (when ()= ()). Hence, it has an interpretation of a similarity measure [62]. When is low,

the expression above will be close to one even when () and () are far apart, meaning that a large

number of support vectors influence the classification of a new sample. On the other hand, when is

high, the expression will be close to one only when () and () are close, which characterizes

overfitting. Another interpretation for is that it defines how far the influence of a single training

example reaches, with low values meaning ‘far’ and high values meaning ‘close’.

A question that may rise is why to use PCA before SVM if the latter is supposed to deal well with

data in high dimensional space? It was shown in [63] that SVM is invariant to PCA and [64] showed

that SVM performs better when using PCA as a feature extractor. Supported by these results, we used

data dimensionality reduction through PCA to speed up SVM’s training time without losing accuracy.

http://en.wikipedia.org/wiki/Similarity_measure

28

2.8. Increasing Generalization through Dataset Augmentation

Dataset Augmentation is a technique that consists in artificially creating slightly modified samples

from the original ones. Using them during training, it is expected that the classifier will become more

robust against small variations that may be present in the data, forcing it to learn larger (and possible

more important) structures. It has been successfully used in computer vision benchmarks such as in

[38], [65], and [66].

Our dataset augmentation implementation is similar to the one presented in [38]: from each

image of the dataset five smaller images with 80% of each dimension of the original images are

extracted: four patches from each corner and one at the center. For each patch, horizontal reflections

are created. As a result, we obtain a dataset that is 10 times larger than the original one: 5 times are due

to translations and 2 times are due to reflections.

In the training phase, the models of the pipeline are fitted using the samples of the augmented

dataset. At test time, the input image is derived to ten translated and reflected patches followed by

prediction for each of them. The prediction of the input image is made by averaging the individual

predictions on the ten patches.

Other transformations, like image rotation, can be used to increase the dataset even more.

However, we chose to use only translation and horizontal reflections in this work, mainly because of

memory and training time limitations.

Due to the large amount of time to train the pipelines that use the artificial augmented dataset,

model selection was first made only in the original dataset and considering a wide range of parameters,

and then a second validation is performed together with the augmented data using only a subset of

parameters from the previous validation.

Figure 14 – Illustration of three types of transformations for dataset augmentation: Horizontal Reflections,

Rotations, and Translations.

2.9. Performance Metrics

29

The classification results were evaluated by the Average Classification Error (ACE), which is the

standard metric for evaluation in the LivDet competitions. It is defined as

 () (20)

where FPR (False Positive Rate) is the percentage of misclassified live fingerprints and FNR (False

Negative Rate) is the percentage of misclassified fake fingerprints.

2.10. Implementation Details

The algorithms were implemented in Python and most of the code uses build-in functions from Numpy,

Scipy, Scikit-Image and Scikit-Learn packages, except for the Convolutional Networks, for which we

used an efficient package from [67], and the Cross-Validation/Grid-Search algorithm, for which we

wrote our own code using Numpy. NumPy is a general-purpose array-processing package designed to

efficiently manipulate large multi-dimensional arrays of arbitrary records. Although Numpy is a python

extension, its functions are written in C. Thus any algorithm that can be expressed primarily as

operations on arrays and matrices can run almost as quickly as the equivalent C code.

2.10.1. Cross-Validation/Grid-Search Algorithm

We wrote an improved Cross-Validation/Grid-Search algorithm for choosing the best combination of

hyper-parameters, in which each element of pipeline is computed/trained only when its training data is

changed (the term “element” refers to operations such as preprocessing, feature extraction,

dimensionality reduction or classification). This modification speeded-up the validation phase in

approximately 10 times, although the gain can greatly vary as it depends on the computational cost of

each element of the pipeline and the number of hyper-parameters chosen. The pseudo-code for the

algorithm is presented in two parts: initialization of variables and call of the recursive function (Figure

15) and the definition of the recursive function (Figure 16).

Figure 15 – Pseudo-code that describes the variable’s initialization and the call of the recursive function in the

Cross-Validation/Grid-Search algorithm

Begin

Set Lc as a list of all combinations of the parameters for each element of the pipeline.

Set ce with the first element of the pipeline.

Set dtr with the training dataset.

Call Function run_element(Lc, ce, dtr) and set Lr with the list of tuples (scores, parameters) returned

by the funtion

Order the list Lr by score. The parameters set with the lowest score are the best parameter’s

combination.

End

30

Figure 16 – Definition of the recursive function in the Cross-Validation/Grid-Search algorithm

Figure 17 illustrates a graph showing how the elements and parameters are reused in our

improved grid search algorithm. For instance, the rounded Node 3 represents an element Elem 2 trained

with the transformed data from the parent Node 1, with parameters’ set with values . The

algorithm starts by transforming the incoming data (illustrated as green square in the top of the figure)

by Node 1 (that represents Elem 1 with parameters’ set with values) followed by the

transformation by Node 3 and so on until the last node of the branch, Node i-1, is reached and the score

is computed. Next, the adjacent node, Node i, can be computed using the data transformed from its

parent node. Note that a new branch is started only when the last node of the previous branch is

reached.

Begin Function run_element (Lc, ce, dtr, dval (optional)):

For each parameter combination (called as cp) of element ce in the list of parameter’s combinations

Lc:

 If ce is the first element of the pipeline:

 Split the dtr dataset in the training and validation sets based on the cross-validation

scheme used (e.g., k-fold) and store them as a list of tuples in dsets.

 Else:

 Set dsets with a list that has a single tuple (dtr, dval).

For each training and validation set (called as cdtr and cdval, respectively) tuple in dsets:

Transform (or fit and transform if the element supports both operations) cdtr and

cdval datasets using element ce initialized with parameters cp.

 If ce is the last element of the pipeline:

Predict the samples of cdval and computes the score.

Append the tuple (score, cp) to the list Ls.

 Else:

 Set ce with the next element of the pipeline.

Call run_element(Lc, ce, cdtr, cdval) and append the returned list to Ls.

 Return Ls

End Function

31

Figure 17 – A graph showing how the elements and parameters are reused in our improved grid search

algorithm.

The search for the best hyper-parameters was made using 5x2-Fold [68] cross-validation scheme

and it works as follows:

1- Divide the training dataset into 2 blocks, A and B.

2- Train on block A and evaluate on B.

3- Train on B and evaluate on A.

4- Repeat the last 3 steps 5 times, but choosing a different split location to create blocks A and

B.

5- Compute the average score for all 10 (5x2) evaluations.

Although 10-Fold cross-validation is a common choice, we noticed in previous experiments that

both methods yield similar choices for the hyper-parameters but 5x2-Fold is faster as it uses 50% of the

validation dataset for training instead of 90% used by the 10-Fold method (assuming that training is

slower than classifying and that both methods iterate 10 times over the validation dataset).

As explained before, in the cross-validation schemes like the 5x2 Fold, the dataset is divided in

training and validation set multiple times, assuring that each sample will belong to the validation set at

least once. These interactions are computationally expensive, as a new model need to be trained every

time a different partition of the dataset is used. In our pipelines, the pre-processing and feature

extraction phases do not need training, that is, the samples can be processed independently and in

parallel. This resulted in another implementation improvement in Grid Search algorithm: the dataset is

transformed by these two initial phases before being split in the cross-validation iterations, which

32

avoids repeated transformations that would have to be performed if the standard cross-validation was

used.

2.10.2. Using Fast Computers in the Cloud

An important aspect of this work is that the algorithms were run on cloud service computers, where the

user can rent virtual computers and pay only for the hours that the machines are running. Among other

advantages of this kind of service, they offer ready-to-use instances (with Machine Learning packages

like Scikit-Learn already installed, for example), high availability (commonly greater than 99.9%), and

computational optimized instances, commonly used for High performance front-end fleets and web-

servers, on-demand batch processing, distributed analytics, and high performance science and

engineering applications, batch processing, and video encoding. To train the algorithms, we used the

fastest Amazon EC2 HPC instance available, with 32 cores and 60 GB of RAM, which allowed us to

run dataset augmented experiments and search for a wide range of parameters in a few hours –

otherwise it would take weeks to perform them.

33

3. Experiments

Table 2 lists the pipelines used in the experiments. The preprocessing step is omitted but it was

executed in all pipelines. The list of hyper-parameters and ranges searched in the validation phase are

shown in Table 3.

Table 2 - Summary of the pipelines evaluated in this work.

Pipeline Description

KNN

Images reduced to 50% or 25% of their original size and then fed into a k-

Nearest-Neighbor classifier. This pipeline is used only for comparison

purposes.

PCA+KNN
Data dimensionality is reduced using PCA and then fed into a KNN

classifier.

CN+PCA+

LinearSVM

Features are extracted using Convolutional Networks. The feature vector is

reduced using PCA and then fed into a SVM classifier using linear kernel.

CN+PCA+

GaussianSVM

Features are extracted using Convolutional Networks. The feature vector is

reduced using PCA and then fed into a SVM classifier using (Gaussian) RBF

kernel.

LBP+PCA+

GaussianSVM

Features are extracted using LBP. The feature vector is reduced using PCA

and then fed into a SVM classifier with (Gaussian) RBF kernel.

AUG+LBP+PCA+

GaussianSVM

Dataset is artificially augmented, and the pipeline follows as in the

LBP+PCA+GaussianSVM pipeline.

AUG+CN+PCA+Line

arSVM

Dataset is artificially augmented, and the pipeline follows as in the

CN+PCA+LinearSVM pipeline.

AUG+CN+PCA+

GaussianSVM

Dataset is artificially augmented, and the pipeline follows as in the

CN+PCA+GaussianSVM pipeline.

34

Table 3 – List of hyper-parameters and ranges searched in the validation phase

Pipeline’s Element Hyper-parameter Range

Preprocessing

Image Reduction Ratio
12,5%, 25%, 50%, 100% (original

size)

High-pass filtering Apply or Not

Low-pass filtering Apply or Not

Region of Interrest Apply or Not

Contrast Equalization Apply or Not

Convolutional

Networks

Number of Layers 1, 2, 3, 4, 5

Number of Filters (in each layer) 32, 64, …, 2048

Divisive Normalization Apply or Not

Filter Size for Divisive Normalization 5x5, 7x7, …, 15x15

Filter Size for Convolution 5x5, 7x7, …, 15x15

Filter Size for Pooling 3x3, 5x5, 7x7, 9x9

Stride (reduction factor) 2, 3, …, 7

LBP

Coding Non-Uniform (standard) or Uniform

Number of Image’s Divisions 1x1 (no division), 3x3, 5x5, 7x7

PCA Number of Components 30, 100, 300, 500, 800, 1000, 1300

GaussianSVM

Regularization Parameter C 0.1, 1, …, 10
5

Kernel coefficient 10
-7

, …, 10
-1

LinearSVM Regularization Parameter C 10
-5

, 10
-4

, …, 10
5

KNN

Number of Neighbors 1, 3, 9, 15

Metric Method Distance or Uniform

35

For CN, max pooling is used, supported by [69], [70], and [71] that show its superiority over

average pooling. We noticed that for our task, subtractive normalization seems to amplify noise, which

decreases classification performance. Therefore, we choose to use only divisive normalization.

Apart from using PCA with Whitening in the dimensionality reduction phase, we performed

experiments using PCA without Whitening, Linear Discriminant Analysis (LDA), and Independent

Component Analysis (ICA) in 4 of the 11 datasets. In general, they presented a decrease of 0.5-2% on

the overall validation accuracy. Additionally, [72] and [73] found that the choice for LDA, ICA or PCA

depends on the nature of the task. Based on these works and the fact that PCA+Whitening showed the

best preliminary results, we decided to use only this technique in the experiments.

Due to the increased amount of time to train the models using augmented datasets, hyper-

parameters’ selection was first made in the original dataset using a wide range of hyper-parameters

values, and then a second validation was performed in the augmented dataset, but using a subset of

hyper-parameters from the first validation. When using augmented datasets, it is important not to

shuffle the samples. That is, images derived from the same image should not be separated in training

and validation sets because classifier’s generalization capabilities will decrease if similar data occurs in

training and validation sets.

We would like to verify how a classifier would perform when unseen samples acquired from

spoofing materials and individuals during training are presented at test time. For that, Cross-dataset

experiments were performed, which consist in training a classifier using the dataset of one year of the

LivDet competition and testing using the dataset of another year of the competition but using the same

sensor type. For instance, a cross-dataset experiment would consist in training a classifier using

LivDet2011 dataset for sensor Biometrika and testing it using LivDet2013 dataset for sensor

Biometrika.

Since images from the same sensor are similar, it is expected that training independent classifiers

for each sensor will help the classifier to find better separation hyperplanes. However, in order to test

the hypothesis that the images share common characteristics for distinguishing fake fingerprints from

real ones, that is, the important features for classification are independent from the acquisition device,

Cross-device experiments were conducted, in which a classifier is trained with a dataset acquired with

one type of sensor but tested with samples acquired with another sensor type. Additionally, we trained

a single classifier with images from all sensors, excluding the Swipe sensor that produces images that

are too different from the others.

In summary, these tests should reflect how well the classifier is able to learn relevant

characteristics that distinguish real from fake fingerprints when samples acquired from different

environments are presented.

36

4. Results

The average error in each testing dataset is shown on Table 4. The state-of-the-art (first column) results

for LivDet 2009, 2011, and 2013 datasets were taken from [30], [18] and [32], respectively. The

validation errors are shown on Appendix A (Table 8) and the parameters used and scores in the

validation phase can be found in http://adessowiki.fee.unicamp.br/adesso/wiki/Demo/fingerprint/view/.

Technique

State-

of-the-

art

Aug

LBP

PCA

Gaussian-

SVM

LBP

PCA

Gaussian-

SVM

Aug

CN

PCA

Gaussian-

SVM

Aug CN

PCA

Linear-

SVM

CN

PCA

Gaussian

-SVM

CN PCA

Linear-

SVM

PCA

KNN
KNN

LivDet

2013

Crossmatch 31.2 49.45 49.87 3.29 3.64 5.2 3.69 17.27 28.8

Swipe 14.07 3.34 4.02 7.67 6.87 5.97 5.13 29.12 40.76

Italdata 3.5 2.3 55.45 2.45 0.45 47.65 49.95 46.3 32.6

Biometrika 4.7 1.7 25.65 0.8 1.0 2.7 2.7 46.15 50.8

LivDet

2011

Italdata 14.8 12.34 23.68 9.27 15.17 5.09 5.35 34.35 41.99

Biometrika 7.3 8.85 8.2 8.25 11.75 9.9 13 26 45.45

Digital 2.5 4.15 3.85 3.65 4.25 1.9 2 11.75 23.3

Sagem 5.3 7.54 5.56 4.64 6.74 7.86 8.3 14.5 42.54

Livdet

2009

Biometrika 18.1 10.44 50 9.23 6.48 9.49 8.98 46.55 34.15

Crossmatch 15.2 3.65 6.81 1.78 2.68 3.76 3.83 14.85 14.67

Identix 10.5 2.64 0.95 0.8 0.68 1.68 1.48 9.65 10.69

Griaule 2013 n/e 0.33 1.83 3.38 n/e 0.34 n/e n/e n/e

Average 11.56 9.67 21.28 4.71 5.43 9.20 9.49 26.95 33.25

Table 4 – Average Error Rate on testing datasets. “n/e” stands for “not executed”

The LBP+PCA+SVM pipeline seems to be highly prone to overfitting, since it has very low

cross-validation errors (close to 0%) whereas large error rates in the testing datasets of Crossmatch

2013, Italdata 2013, Biometrika 2013, Italdata 2011 and Biometrika 2009. However, when dataset

augmentation is used (AUG+LBP+PCA+SVM pipeline), the cross-validation error increases but the

testing error decreases, except for Crossmatch 2013, which will be discussed latter. This is a good

indication that dataset augmentation can be used to prevent overfitting.

37

When compared to the state-of-the-art technique in LivDet2011, a multi-scale LBP presented in

[18], our LBP technique achieves better performance (9.67% error rate against 11.56%). The best

operator (uniform or non-uniform/original) and number of tiles depend on the dataset.

Overfitting seems not to be a problem when using Convolutional Networks, except for the

Italdata 2013 dataset. Overall, CN without the dataset augmentation have a similar performance to LBP

with dataset augmentation. When using augmented datasets with convolutional networks, we achieved

a test error rate of 4.75% (averaged from all datasets), which represents a reduction of 58% when

compared to the best previously published results (11.56% error, on average).

Support Vector Machines with Gaussian kernel performed slightly better than the Linear Kernel

(4.71% vs 5.43% on augmented datasets and 9.20% vs 9.49% on non-augmented datasets), but the

former needs an extra hyper-parameter (γ) to be tuned.

The best number of layers in the convolutional networks depends on the dataset: it varies from

two to five layers. The fact that one layer networks were not selected confirms that the deep

architectures perform better on the task than the shallow ones. On overall, the best convolution shapes

are 9x9 for the first layers and 5x5 for the last layers. The best pooling shapes are 7x7 for the first

layers and 5x5 for the last layers. The best quantity of filters was 256 or 512 for the first layers and

1024 or 2048 for the last layers. Unfortunately, we could not find a relation between architectures and

dataset characteristics, such as image size and foreground/background ratio, that explain the choices for

the best parameters. Surprisingly, divisive normalization did not improved results in the validation

phase, despite its performance gain in natural images tasks reported in papers such as [69].

On average, the PCA models selected in the validation phase reduced the input vectors to 20% of

their original dimensions, which represents an explained variance close to 100%. This is an indication

that the vectors extracted using either CN or LBP still contain redundant information and reducing the

dimensions using PCA can be advantageous. This statement is confirmed by empirical results:

pipelines that use PCA have greater accuracy rates than the ones that do not use it.

For the majority of datasets and models, preprocessing operations (contrast equalization, ROI,

etc) did not improved accuracy. For contrast equalization, this is not surprising, since both LBP and CN

are illumination invariant, that is, each pixel is compared only with is local neighbors. Regarding ROI

extraction, the backgrounds are mostly composed of white pixels or by a regular structure, like the

trapezoidal background shape in the case of the Digital 4000B sensor, which results in components in

the final extracted vector that have low variances and are probably discarded by the dimensionality

reduction and the SVM classifier during training. In addition, the histogram extraction in the LBP

pipeline and the pooling/sub-sampling operation in the CN offer translation invariance, so objects in

the image center would not help much.

The hypothesis that the relevant information for liveness detection lies either in the low-

frequency or in the high-frequency components of the image was not confirmed. Both low-pass and

high-pass filtering decreased accuracy during validation, which suggests that the structures that

differentiate false from real fingerprints do not have exclusively low or high frequency components.

A 50% image size reduction improved validation accuracy in some datasets (Italdata 2013 for

both LBP and CN pipelines, Identix 2009 for Convets, Italdata 2011, Biometrika 2011, and Crossmatch

2009 for LBP). Reduction rate of 25% only helped for the Identix 2009 dataset in the LBP pipeline.

Based on these differences, we conclude that there is not an optimal image size for classification; it

38

depends not only on the sensor type but also on the dataset and the transformations used. For instance,

the best model in the LBP pipeline for Biometrika-2013 uses images in their original size while the best

model for Biometrika-2011 uses reduction ratio of 50%, despite that both datasets were acquired using

the same sensor type and resolution.

4.1. Cross-dataset and Cross-device Experiments

As explained in chapter 0, we ran three types of experiments involving cross-training:

1- Cross-dataset: train with one dataset but test with another using the same sensor type;

2- Cross-device: train with one type of sensor but test with another type;

3- All-together: train and test a single classifier using all datasets, except for Swipe-2013 whose

images are too different from the rest.

We chose to use only datasets Biometrika and Italdata of years of 2011 and 2013 of the LivDet

competition, since executing all possible dataset combinations would be impractical. The experiments

used LBP or CN as feature extractors and SVM with Gaussian kernel as classifier.

The error rates for the Cross-dataset experiments, shown in Table 5, vary from 10% to 50% and

the training errors (not shown) were all very low (approx. 0%). The pipelines that use dataset

augmentation have lower error in most of the cases, showing once again the benefits of the technique.

However, there is a significant drop in performance in all pipelines when compared with error rates

obtained from the standard training datasets, indicating that the classifiers were not able to generalize

well to fake fingerprints created using unseen spoof techniques.

Table 5 - Cross-dataset error rates

Train

Dataset

Test

Dataset

Aug

LBP

PCA

Gaussian-

SVM

LBP

PCA

Gaussian-

SVM

Aug

CN

PCA

Gaussian-

SVM

CN PCA

Gaussian-

SVM

Biometrika

2011

Biometrika

2013
16.55 20.3 20.4 26.05

Biometrika

2013

Biometrika

2011
47.95 48.55 48.0 48.45

Italdata

2011

Italdata

2013
10.6 13.0 21.0 50.0

Italdata

2013

Italdata

2011
46.08 35.17 46.82 46.03

In the Cross-device experiments, the testing error rates, shown in Table 6, range between 45-50%

and the training error rates are all close to 0% (not shown), indicating overfitting. Similarly, [18]

already reported that their multi-resolution LBP technique fail to learn good features when different

sensors are used for training and testing.

39

Table 6 - Cross-device error rates

Train

Dataset

Test

Dataset

Aug

LBP

PCA

Gaussian-

SVM

LBP

PCA

Gaussian-

SVM

Aug

CN

PCA

Gaussian-

SVM

CN PCA

Gaussian-

SVM

Biometrika

2013

Italdata

2013
43.7 50.0 47.9 45.3

Italdata

2013

Biometrika

2013
48.4 50.0 48.95 52.6

For the third experiment (“All Together”), it can be seen from the results shown in Figure 18 that

training one classifier using all datasets yields error rates around 10% for both LBP and CN pipelines

that do not use dataset augmentation. The error rate in training (not shown in the figure), is around 6%.

Dataset augmentation was not used due to the larger training time, but one should expect lower errors.

From these results, we can conclude that the effort to design a liveness detection system can be

considerably reduced if all datasets are used together, as the hyper-parameter fine tuning needs to be

made for only one classifier.

Figure 18 – Error rates in the testing when training one classifier using all datasets (Together) vs training one

classifier for each dataset (Separated)

4.2. Crossmatch 2013 dataset and Dataset Visualization

The results for Crossmatch 2013 dataset using LBP present error rates close to zero at validation time

and around 50% at test time, even when using augmented datasets. It can be noticed from the results of

the LivDet 2013 competition that this dataset is particularly difficult to generalize, since nine of the

11.54
10.16 9.69

21.28

0

5

10

15

20

25

CN+PCA+SVM LBP+PCA+SVM

A
ve

ra
ge

 C
la

ss
if

ic
at

io
n

 E
rr

o
r

(A
C

E)

Together

Separated

40

eleven participants presented error rates greater than 45%. CN performs very well (3.28%), which

suggests that the problem occurs mostly when extracting features with LBP.

(a)

(b)

(c)

Figure 19 - 2D visualization of the Digital-2011 training (left) and testing (right) datasets. The rows (a), (b) and

(c) represents dimensionality reduction using PCA, LBP+PCA and CN+PCA pipelines, respectively.

To help better understanding of how the feature extractors contribute to the classification system,

and especially for the problem with the Crossmatch 2013 dataset, we reduced the images of the

Biometrika-2009 dataset to 2 dimensions using three different pipelines: PCA, LBP+PCA and

CN+PCA. The transformed datasets from each pipeline are shown in Figure 19. It can be seen that

there is no clear separation between the fake and real fingerprints (represented by red and blue dots,

respectively) in any of the pipelines.

41

(a)

(b)

(c)

Figure 20 - 2D visualization of the Crossmatch-2013 training (left) and testing (right) datasets. The rows (a), (b)

and (c) represents dimensionality reduction using PCA, LBP+PCA and CN+PCA pipelines, respectively.

The same steps were repeated for the Crossmatch 2013 training and testing datasets and the

results are shown in Figure 20. The training data becomes more separable when using one of the

feature extractors. However, we can see that there is a very low correspondence between training and

42

testing samples when using the LBP+PCA pipeline, especially for the fake (red dots) samples. In

addition, there is a (rare) clear separation in the training dataset when the features are extracted using

this pipeline, which can explain why the training errors are so low (~0%) and the testing error are so

high (~50%) for that particular dataset.

The results on the Crossmatch 2013 testing dataset are improved to error rates around 20-30%

when the images of the training set are filtered with low-pass, high-pass or adding Gaussian noise. One

interpretation for these results is that, when no transformation is applied, the LBP filtering highlights

some (still unknown) patterns that occurs only in the training dataset and that makes the false and real

fingerprint very distinguishable. However, those patterns do not occur in the testing set, and the

classifier fails to differentiate false from real fingerprint images. When the data is transformed by

smoothing, sharpening, or adding noise, those patterns no longer occur in the training images, and the

classifier is able to learn other (and possible more relevant) features.

When a single classifier trained all datasets is used (section 4.1), the testing error rate for the

Crossmatch 2013 dataset is still around 50%, which indicates that the classifier was not able to

generalize even when more training samples were used.

The problem was further investigated by trying to find which extracted features by the LBP+

histogram are the most relevant for classification. For that, a decision tree classifier was used as it

computes the feature’s importance during training. We noticed that 3 out of 10 codes (0, 1 and 9) of the

uniform coding and 30 out of 255 codes of the non-uniform coding are the main responsible for

classifier’s predictions. The visual inspection of these patterns in some sample images shows that they

in fact occur much more frequently in the real fingerprints than in the fake ones. However, there is no

visual similarity among the neighboring regions that forms these codes, and thus they provide no

insight into the structure that can differentiate real from fake fingerprints.

4.3. Average Processing Times and Memory Usage

In real applications, a good fingerprint liveness detection system must be able to classify the images in

a short amount of time and should have a small memory footprint when the algorithms are required to

run in embedded devices. Table 7 shows the average processing times and memory usage for some

pipelines to classify a single image on a single core computer (1.8 GHz). It is worth mentioning that

those times can be decreased, since our code for the Convolutional Networks is not optimized and there

are fast hardware implementations [74] [44]. The feature extraction phase (using either LBP or CN)

represents 70% of the total processing time, on average, and PCA’s rotation table represents more than

95% of the memory footprint. Removing the PCA from the pipeline can be an alternative for devices

that have memory limitations, but an increase of 0.5 to 2% in the error rate should be expected. The

training time of each model for LBP and CN are around 20 minutes and 1.5 hours, respectively.

43

Table 7 - Average processing time per sample in a single core CPU and memory usage.

LBP

PCA

GaussianSVM

AUG

LBP

PCA

GaussianSVM

CN

PCA

GaussianSVM

AUG

CN

PCA

GaussianSVM

Avg. classification time (ms) 60 520 570 2540

Memory Footprint (MB) 52 45 410 385

Storage space required (MB) 27 24 212 190

44

5. Conclusion

A wide variety of models were implemented and compared for fingerprint liveness detection, from a

simple k-Nearest Neighbor classifier to more complex pipelines that use feature extractor such as LBP

and Convolutional Networks with dataset augmentation.

The Convolutional Networks presented the best performance. However, they are slower to train

and more complex to design than LBP. LBP with dataset augmentation gave slightly better results than

the state-of-the-art algorithms: 9.67% error against 11.56%, on average and the Convolution Networks

achieved an average classification error of 4.71%. When a single classifier is trained using all datasets,

both techniques perform well. For the LBP pipeline in particular, the error rate is half of the averaged

error rate obtained with individual classifiers. This suggests that the effort to design a liveness detection

system can be significantly reduced if different datasets are combined during training of a single

classifier. However, there is still room for improvement, as the models suffer from a significant drop in

accuracy in cross-dataset and cross-device experiments, indicating that they were not able to generalize

when samples that were acquired from different sensor types and unseen spoof techniques are

presented during testing.

Preprocessing operations such as Region of Interest extraction and Contrast Equalization did not

help to improve accuracy, mainly because the feature extractors already offer some robustness against

illumination and translation variances. PCA and Whitening are necessary, since the data has redundant

dimensions after the feature extraction phase.

Dataset augmentation demonstrated to be one of the main contributors to increase accuracy and it

is simple to implement. We claim that the method should always be considered if one has enough

computational power.

We believe that the main contributions for the low error rates obtained were the large models and

datasets used, like images in their original sizes, augmented datasets, and large number of layers and

filters in the convolutional networks. With faster computers, we could execute a large number of

experiments due to lower training/validation iteration times. The emerging high performance cloud

computing platforms make the building of increasingly large experiments affordable by renting ready-

to-run virtual computer infrastructure.

5.1. Future Work

Further experiments will include learning the filters’ weights of the convolutional networks, as [69]

reported that a better performance is achieved when the network is trained.

Given the promising results provided by the dataset augmentation, more types of image

transformations should be included, such as artificially creating images with uneven illumination and

with random noise. In particular, we want to know the limits of the technique: how many times can the

dataset be artificially augmented with an improvement in performance?

A combination of convolutional networks and LBP can provide an effective scheme. The former

offers the ability to represent more complex structures due to the deep architecture while the second is

able to capture texture patterns, which seems to be important to the fingerprint liveness detection.

45

However, there is still no scheme to merge them, except for the trivial ensemble of two or more

classifiers trained with the feature extractors separately, which also can be addressed in a future work.

46

References

[1] A. Wiehe, T. Søndrol, Olsen, O. K. and F. Skarderud, "Attacking fingerprint sensors," Technical

report, NISLAB Authentication Laboratory, Gjøvik University College, 2004.

[2] Y. Chen and A. Jain, "Fingerprint deformation for spoof detection," Proc. IEEE Biometric

Symposium, pp. 19-21, 2005.

[3] B. Tan and S. Schuckers, "Comparison of ridge-and intensity-based perspiration liveness detection

methods in fingerprint scanners," Defense and Security Symposium International Society for

Optics and Photonics, 2006.

[4] P. Coli, G. L. Marcialis and F. Roli, "Fingerprint silicon replicas: static and dynamic features for

vitality detection using an optical capture device," International Journal of Image and Graphics

8.04, pp. 495-512, 2008.

[5] P. Lapsley, J. Lee, D. Pare and N. Hoffman, "Anti-fraud biometric scanner that accurately detects

blood flow". US Patent 5,737,439, 1998.

[6] M. R. Arneson, B. L. Blan, H. M. Carim and D. W. Osten, "Biometric, personal authentication

system". U.S. Patent 5,719,950, 1998.

[7] D. Baldisserra, A. Franco, D. Maio and D. Maltoni, "Fake fingerprint detection by odor analysis,"

in Advances in Biometrics, Berlin Heidelberg, Springer, 2005, pp. 265-272.

[8] R. Derakhshani, S. Schuckers, L. Hornak and L. O’Gorman, "Determination of vitality from a

non-invasive biomedical measurement for use in fingerprint scanners," Pattern Recognition, vol.

36, no. 2, pp. 383-396, 2003.

[9] S. Parthasaradhi, R. Derakhshani, L. Hornak and S. Schuckers, "Time-series detection of

perspiration as a liveness test in fingerprint scanners," IEEE Transactions on Systems, Man, and

Cybernetics-Part C: Applications and Reviews, vol. 35, no. 3, pp. 335-343, 2005.

[10] S. Schuckers and A. Abhyankar, "Detecting liveness in fingerprint scanners using wavelets: results

of the test dataset," Proceedings of BioAW, pp. 100-110, 2004.

[11] A. Antonelli, R. Cappelli, D. Maio and D. Maltoni, "Fake Finger Detection by Skin Distortion

Analysis," Information Forensics and Security, pp. 360-373, 2006.

[12] O. G. Martinsen, S. Clausen, J. B. Nysæther and S. Grimnes, "Utilizing characteristic electrical

properties of the epidermal skin layers to detect fake fingers in biometric fingerprint systems—A

pilot study," Biomedical Engineering, IEEE Transactions on, vol. 5, no. 54, pp. 891-894, 2007.

[13] J. Galbally, F. Alonso-Fernandez, J. Fierrez and J. Ortega-Garcia, "A high performance fingerprint

liveness detection method based on quality related features," Future Generation Computer

Systems, vol. 28, no. 1, pp. 311-321, 2012.

[14] A. K. Jain, Y. Chen and M. Demirku, "Pores and ridges: high-resolution fingerprint matching

using level 3 features," Pattern Analysis and Machine Intelligence, vol. 29, no. 1, pp. 15-27, 2007.

[15] P. Coli, G. S. Marcialis and F. Roli, "Power spectrum-based fingerprint vitality detection,"

Proceedings of IEEE Workshop on Automatic Identification Advanced Technologies, pp. 169-173,

2007.

[16] Y. S. Moon, J. S. Chen, K. C. Chan, K. So and K. C. Woo, "Wavelet based fingerprint liveness

detection," Electronics Letters, vol. 20, no. 41, pp. 1112-1113, 2005.

[17] S. Nikam and S. Agarwal, "Local binary pattern and wavelet-based spoof fingerprint detection,"

Int. J. Biometrics, vol. 1, no. 2, pp. 141-159, 2008.

47

[18] X. Jia, X. Yang, K. Cao, Y. Zang, N. Zhang, R. Dai and J. Tian, "Multi-scale Local Binary Pattern

with Filters for Spoof Fingerprint Detection," Information Sciences, vol. 268, pp. 91-102, 2013.

[19] T. Ojala, M. Pietikäinen and T. Mäenpää, "Multiresolution gray scale and rotation invariant

texture analysis with local binary patterns," IEEE Trans. Pattern Anal. Mach. Intell, vol. 24, no. 7,

pp. 971-987, Jul 2002.

[20] L. Ghiani, G. L. Marcialis and F. Roli, "Fingerprint Liveness Detection by Local Phase

Quantization," 21st International Conference on. IEEE, 2012.

[21] L. Ghiani, H. A., G. L. Marcialis and F. Roli, "Fingerprint liveness detection using Binarized

Statistical Image Features," In Biometrics: Theory, Applications and Systems (BTAS), 2013 IEEE

Sixth International Conference on, pp. 1-6, September 2013.

[22] [Online]. Available: http://atvs.ii.uam.es/ffp_db.html.

[23] E. R. Dougherty and R. A. Lotufo, Hands-on morphological image processing, Bellingham: SPIE

press, 2003.

[24] M. Mohri, A. Rostamizadeh and A. Talwalkar, Foundations of Machine Learning, The MIT Press,

2012.

[25] M. I. Jordan and C. M. Bishop, "Neural Networks," in Computer Science Handbook, Second

Edition, Chapman & Hall/CRC Press LLC, 2004.

[26] P. Cunningham, "Dimension Reduction," University College Dublin.

[27] E. B.S., Cambridge Dictionary of Statistics, 2002.

[28] R. E. Bellman, Dynamic programming, Princeton University Press, 1957.

[29] S. Geisser, Predictive Inference, New York, NY: Chapman and Hall, 1993.

[30] G. L. Marcialis, A. Lewicke, B. Tan, P. Coli, D. Grimberg, A. Congiu and S. Schuckers, "First

international fingerprint liveness detection competition—livdet 2009.," Image Analysis and

Processing–ICIAP 2009. Springer Berlin Heidelberg, pp. 12-23, 2009.

[31] D. Yambay, L. Ghiani, P. Denti, G. L. Marcialis, F. Roli and S. Schuckers, "LivDet 2011—

Fingerprint liveness detection competition 2011.," Biometrics (ICB), 2012 5th IAPR International

Conference on, pp. 208-215, 2012.

[32] L. Ghiani, D. Yambay, V. Mura, S. Tocco, G. L. Marcialis, F. Roli and S. Schuckcrs, "LivDet

2013 fingerprint liveness detection competition 2013," Biometrics (ICB), 2013 International

Conference on, pp. 1-6, 2013.

[33] J. B. Zimmerman, S. M. Pizer, E. V. Staab, J. R. Perry, W. McCartney and B. C. Brenton, "An

evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement,"

Medical Imaging, IEEE Transactions, pp. 304-312, 1988.

[34] S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer and K. Zuiderveld,

"Adaptive histogram equalization and its variations," Computer vision, graphics, and image

processing, pp. 355-368, 1987.

[35] Y. LeCun, "Generalization and network design strategies," in Connections in Perspective, 1989.

[36] L. Wan, M. Zeiler, S. Zhang, Y. LeCun and R. Fergus, "Regularization of neural networks using

dropconnect," Proceedings of the 30th International Conference on Machine Learning (ICML-13),

pp. 1058-1066, 2013.

[37] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville and Y. Bengio, "Maxout networks,"

arXiv preprint arXiv:1302.4389, 2013.

[38] A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet Classification with Deep Convolutional

Neural Networks," NIPS, vol. 1, no. 2, 2012.

48

[39] Y. LeCun and Y. Bengio, "Convolutional networks for images, speech, and time series," in The

handbook of brain theory and neural networks, 1995, pp. 33-61.

[40] D. Baldisserra, A. Franco, D. Maio and D. Maltoni, "Fake fingerprint detection by odor analysis,"

in Advances in Biometrics, Berlin Heidelberg, Springer, 2005, pp. 265-272.

[41] Y. L. Boureau, J. Ponce and Y. LeCun, "A theoretical analysis of feature pooling in visual

recognition," Proceedings of the 27th International Conference on Machine Learning (ICML-10),

2010.

[42] M. D. Zeiler and R. Fergus, "Stochastic pooling for regularization of deep convolutional neural

networks," arXiv preprint arXiv:1301.3557, 2013.

[43] G. E. Hinton, S. Osindero and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural

computation 18.7, pp. 1527-1554, 2006.

[44] Y. LeCun, K. Kavukcuoglu and C. Farabet, "Convolutional networks and applications in vision,"

In Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on, pp. 253-

256, May 2010.

[45] K. Jarrett, K. Kavukcuoglu, M. Ranzato and Y. LeCun, "What is the best multi-stage architecture

for object recognition?," Computer Vision, 2009 IEEE 12th International Conference on. IEEE,

pp. 2143-2153, 2009.

[46] V. Nair and G. E. Hinton, "Rectified linear units improve restricted Boltzmann machines,"

Proceedings of the 27th International Conference on Machine Learning (ICML-10), 2010.

[47] S. Lyu and E. P. Simoncelli, "Nonlinear image representation using divisive normalization,"

Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE, 2008.

[48] N. Pinto, D. D. Cox and J. J. DiCarlo, "Why is real-world visual object recognition hard?," PLoS

computational biology, vol. 4, no. 1, p. e27, 2008.

[49] S. Lyu, "Divisive Normalization: Justification and Effectiveness as Efficient Coding Transform,"

NIPS, 2010.

[50] A. Hadid, M. Pietikainen and T. Ahonen, "A discriminative feature space for detecting and

recognizing faces," Computer Vision and Pattern Recognition, 2004.

[51] G. Zhao, T. Ahonen, J. Matas and M. Pietikainen, "Rotation-Invariant Image and Video

Description With Local Binary Pattern Features," IEEE Transactions On Image Processing, vol.

21, no. 4, pp. 1465-1477, 2012.

[52] T. Ahonen, A. Hadid and M. Pietikäinen, "Face recognition with local binary patterns," Computer

vision-eccv, pp. 469-481, 2004.

[53] J. Jackson, A User's Guide to Principal Components, Wiley, 1991.

[54] N. Halko, P.-G. Martinsson and J. A. Tropp., "Finding structure with randomness: Probabilistic

algorithms for constructing approximate matrix decompositions.," SIAM review 53.2, pp. 217-288,

2011.

[55] P.-G. Martinsson, V. Rokhlin and M. Tygert, "A randomized algorithm for the decomposition of

matrices.," Applied and Computational Harmonic Analysis 30.1, pp. 47-68, 2011.

[56] A. Hyvärinen, J. Hurri and P. O. Hoyer, "Principal Components and Whitening," in Natural Image

Statistics, London, Springer, 2009, pp. 93-130.

[57] "Whitening," [Online]. Available: http://ufldl.stanford.edu/wiki/index.php/Whitening. [Accessed

08 03 2014].

[58] A. Coates, A. Y. Ng and H. Lee, "An analysis of single-layer networks in unsupervised feature

learning," International Conference on Artificial Intelligence and Statistics, 2011.

49

[59] N. Cristianini and J. Shawe-Taylor, An introduction to support vector machines and other kernel-

based learning methods., Cambridge university press, 2000.

[60] C.-W. Hsu, C.-C. Chang and C.-J. Lin, "A practical guide to support vector classification.," 2003.

[61] C. Cortes and V. Vapnik, "Support-vector networks," Machine learning, vol. 3, no. 20, pp. 273-

297, 1995.

[62] J.-P. Vert, K. Tsuda and B. Schölkopf, "A primer on kernel methods," in Kernel Methods in

Computational Biology, 2004, pp. 35-70.

[63] H. Lei and V. Govindaraju, "Speeding Up Multi-class SVM Evaluation by PCA and Feature

Selection," Feature Selection for Data Mining, p. 72, 2005.

[64] L. J. Cao, K. S. Chua, W. K. Chong, H. P. Lee and Q. M. Gu, "A comparison of PCA, KPCA and

ICA for dimensionality reduction in support vector machine," Neurocomputing 55.1, pp. 321-336,

2003.

[65] D. C. Cireşan, U. Meier, J. Masci, L. M. Gambardella and J. Schmidhuber, "High-performance

neural networks for visual object classification," arXiv:1102.0183, 2011.

[66] D. Ciresan, U. Meier and J. Schmidhuber, "Multi-column Deep Neural Networks for Image

Classification," Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on.,

pp. 3642-3649, June 2012.

[67] G. Chiachia. [Online]. Available: https://github.com/giovanichiachia/convnet-rfw. [Accessed 17

05 2014].

[68] T. G. Dietterich, "Approximate statistical tests for comparing supervised classification learning

algorithms," Neural Computation, vol. 10, no. 7, pp. 1895-1923, 1998.

[69] K. Jarrett, K. Kavukcuoglu, M. Ranzato and Y. LeCun, "What is the best multi-stage architecture

for object recognition?," Computer Vision, 2009 IEEE 12th International Conference on, pp.

2146-2153, 2009.

[70] J. Yang, K. Yu, Y. Gong and T. Huang, "Linear spatial pyramid matching using sparse coding for

image classification," Computer Vision and Pattern Recognition, pp. 1794-1801, 2009.

[71] Y. L. Boureau, F. Bach, Y. LeCun and J. Ponce, "Learning mid-level features for recognition,"

Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pp. 2559-2566,

2010.

[72] B. A. Draper, K. Baek, M. S. Bartlett and J. R. Beveridge, "Recognizing faces with PCA and

ICA," Computer vision and image understanding, vol. 1, no. 91, pp. 115-137, 2003.

[73] K. Delac, M. Grgic and S. Grgic, "Independent comparative study of PCA, ICA, and LDA on the

FERET data set," International Journal of Imaging Systems and Technology, vol. 5, no. 15, pp.

252-260, 2005.

[74] C. Farabet, Y. LeCun, K. Kavukcuoglu, E. Culurciello, B. Martini, P. Akselrod and S. Talay,

"Large-scale FPGA-based convolutional networks," Machine Learning on Very Large Data Sets,

2011.

[75] G. E. Hinton, S. Osindero and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural

computation 18.7, pp. 1527-1554, 2006.

[76] A. Pacut and A. Czajka, "Aliveness detection for iris biometrics," Carnahan Conferences Security

Technology, Proceedings 2006 40th Annual IEEE International, 2006.

[77] K. Baek, B. A. Draper, J. R. Beveridge and K. She, "PCA vs. ICA: A comparison on the FERET

data set," JCIS, pp. 824-827, 2002.

[78] A. M. Martínez and A. C. Kak, "Pca versus lda," Pattern Analysis and Machine Intelligence, IEEE

50

Transactions on, vol. 2, no. 23, pp. 228-233, 2001.

51

Appendix A

Table 8 shows the validation error in each dataset. The tag “n/e” stands for not executed, meaning that

due to the large amount of time to search for parameters in augmented datasets, we did not execute the

validation in the pipelines that use this technique. The parameters used in the testing dataset for those

pipelines were the ones found in validation for the corresponding pipelines that do not use the

augmentation technique.

Aug
LBP
PCA

Gaussian-

SVM

LBP
PCA

Gaussian-

SVM

Aug
CN

PCA
Gaussian-

SVM

CN
PCA

Gaussian-
SVM

CN
PCA

Linear-
SVM

CN

Linear-
SVM

LivDet
2013

Crossmatch 0 0 n/e 3.18 2.61 3.61

Swipe 2.72 2.3 n/e 4.4 4.85 4.59

Italdata 0.2 0.04 0.36 0.21 0.05 0.12

Biometrika 0.96 0.1 n/e 1.07 0.69 0.94

LivDet
2011

Italdata 2.88 0.08 2.05 0.11 0.15 0.2

Biometrika n/e 0.37 n/e 2.17 3.58 3.71

Digital 15.06 1.01 n/e 1.45 0.98 1.45

Sagem 14.58 1.13 n/e 2.37 2.13 3.21

Livdet
2009

Biometrika 0 0 0 0 0.02 0

Crossmatch 1.32 1.87 n/e 0.81 0.7 0.96

Identix 0.6 0.67 n/e 0.31 1.15 0.96

Average 3.83 0.69 0.18 1.41 1.54 1.80

Table 8 - Validation Error

