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 ABSTRACT 

 

With the growing use of biometric authentication systems in the past years, spoof fingerprint 

detection has become increasingly important. In this work, we implemented and compared various 

techniques for software-based fingerprint liveness detection. We use as feature extractors 

Convolutional Networks with random weights, which are applied for the first time for this task, and 

Local Binary Patterns. The techniques were used in conjunction with dimensionality reduction through 

Principal Component Analysis (PCA) and a Support Vector Machine (SVM) classifier. Dataset 

Augmentation was successfully used to increase classifier’s performance. We tested a variety of 

preprocessing operations such as frequency filtering, contrast equalization, and region of interest 

filtering. An automatic and extensive search for the best combination of preprocessing operations, 

architectures and hyper-parameters was made, thanks to the fast computers available as cloud 

services. The experiments were made on the datasets used in The Liveness Detection Competition of 

years 2009, 2011 and 2013 that comprise almost 50,000 real and fake fingerprints’ images. Our best 

method achieves an overall rate of 95.2% of correctly classified samples - an improvement of 59% in 

test error when compared with the best previously published results. 

 

 

 

 

RESUMO 

 

Com o uso crescente de sistemas de autenticação por biometria nos últimos anos, a detecção de 

impressões digitais falsas tem se tornado cada vez mais importante. Neste trabalho, nós 

implementamos e comparamos várias técnicas baseadas em software para detecção de vivacidade de 

impressões digitais. Utilizamos como extratores de características as redes convolucionais, que foram 

usadas pela primeira vez nesta área, e Local Binary Patterns (LBP). As técnicas foram usadas em 

conjunto com redução de dimensionalidade através da Análise de Componentes Principais (PCA) e um 

classificador Support Vector Machine (SVM). O aumento artificial de dados foi usado de forma bem 

sucedida para melhorar o desempenho do classificador. Testamos uma variedade de operações de pré-

processamento, tais como filtragem em frequência, equalização de contraste e filtragem da região de 

interesse.  Graças aos computadores de alto desempenho disponíveis como serviços em nuvem, foi 

possível realizar uma busca extensa e automática para encontrar a melhor combinação de operações de 

pré-processamento, arquiteturas e hiper-parâmetros. Os experimentos foram realizados nos conjuntos 

de dados usados nas competições Liveness Detection nos anos de 2009, 2011 e 2013, que juntos somam 

quase 50.000 imagens de impressões digitais falsas e verdadeiras. Nosso melhor método atinge uma 

taxa média de amostras classificadas corretamente de 95,2%, o que representa uma melhora de 59% na 

taxa de erro quando comparado com os melhores resultados publicados anteriormente. 
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1. Introduction 
 

Biometric systems have become increasingly important in the past years. The basic aim of biometrics is 

to discriminate automatically between subjects in a reliable way and according to some target 

application based on one or more signals derived from physical or behavioral traits, such as fingerprint, 

face, iris, voice, hand, or written signature. Biometric technology presents several advantages over 

classical security methods based on either some information (PIN, Password, etc.) or physical device 

(key, card, etc.). Of all biometric systems, fingerprint recognition systems are the most popular and are 

extensively being used. However, providing to the sensor a fake physical biometric can be an easy way 

to overtake the system’s security. Fingerprints, in particular, can be spoofed from common materials, 

such as gelatin, silicone, and wood glue [1]. Its creation can be divided into two categories:  

- Without cooperation: The casts are created from latent fingerprints only.  

- With cooperation: the user presses his finger onto a cast for creating his fingerprint impression, 

which normally produces better quality spoof fingerprints. 

A safe fingerprint system must distinguish correctly a fake from an authentic finger. Additionally, 

it is desirable that it should be able to differentiate real from fake fingerprints when new and, therefore, 

unseen spoof techniques are presented to the system. A particularly interesting fact is that it is difficult 

for a non-specialist human to distinguish false from real fingerprints. Since humans can recognize 

patterns better than machines (in many cases), it can be concluded that the automatic fingerprint 

liveness detection is not a trivial problem. 

In practical applications, the classification is mostly made online, that is, a decision whether the 

fingerprint is false or real is made right after it is inputted to the system. Therefore, the samples must be 

classified in a short amount of time (typically, less than 5 seconds) in order to provide a pleasant user 

experience, especially in environments where the number of incoming and outgoing users is high, like 

banks and public buildings. 

1.1. Related Work 
 

Different fingerprint liveness detection algorithms have been proposed [2] [3] [4]. They can be roughly 

divided into hardware-based and software-based techniques. 

In the hardware-based approach, some specific device is added to the sensor in order to detect 

particular properties of a living trait such as the blood pressure [5], temperature [6], odor [7], or 

perspiration [8] [9] [10]. A method proposed in [11] tries to solve the problem using skin distortion, 

which involves pressing and moving a finger on the scanner surface to create a skin distortion. The 

distortion produced due to the movement of an elastic real skin is large compared to that produced by 

the movement of a rigid spoof finger. A method for detecting fake fingers by measuring electrical 

characteristics of different layers of the skin was proposed in [12]. They have used different 

characteristics of the skin like stratum corneum impedance, viable skin impedance, dispersive behavior 

of skin layers in the measured frequency range and anisotropy in stratum corneum for liveness 

detection. Some of these methods are slow as they need finger to be placed on the scanner surface for a 

couple of seconds so that information such as perspiration or temperature is available. 
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In the software-based approach, fake traits are detected once the sample has been acquired with a 

standard sensor. The features used to distinguish between real and fake fingers are extracted from the 

fingerprint image, and not from the finger itself. 

The advantages of the software-based techniques is that the sensor do not have to be replaced as 

spoof techniques evolve and they also reduce the cost of a biometric system, as no additional hardware 

is needed, except for the fact that more computational power could be required to process the images in 

real-time. On the opposite side, the use of additional information not present in still images acquired 

from a standard sensor is one of the advantages of the hardware techniques. 

There are software-based techniques in which the features used in the classifier are based on 

specific fingerprint measurements, such as ridge-based [13] [14] and Fourier transform-based [15] 

features, and there are implementations that the features are extracted using general extractors, such as 

wavelets or Local Binary Patterns (LBP). 

In [13], a variety of quality measurements, such as ridge strength, continuity and clarity, are 

extracted from the fingerprint image using statistical measurements of the local angles, power spectrum 

and pixels intensities. A feature selection is then performed in the validation phase and a Linear 

Discriminant Analysis (LDA) classifier is used to make the final prediction. The results show 90% 

overall accuracy in two standardized benchmarks. 

In [16], wavelets are used as feature vectors. Real and spoof fingerprints have significant 

differences in inter-ridge distances and ridge frequencies also. Wavelet analysis provides multi-

resolution and orientation representation of a fingerprint image via subbands. Due to multi-resolution 

property of wavelets, minute textural differences in real and spoof fingerprints are analyzed in the 

wavelet domain. Additionally, the wavelet detail subbands carry high frequency information, which is 

very significant for texture characterization. However, the method has some drawbacks: the images 

used were the first image immediately upon placement on the fingerprint scanner. It is not known if this 

would be applicable to “any” fingerprint image since some devices wait until full development of the 

image before matching (~1 second). Also, because the method is based on detection of perspiration 

along the fingerprints, wiping the clothes before scanning may be necessary. 

A combination of techniques, such as different classifiers (k-NN, SVM and Adaboost) fused 

using the “Majority Vote Rule” and trained with different feature extractors (LBP and wavelets) is used 

in [17]. The authors observe that the performance of both LBP histogram features and wavelet energy 

features is approximately the same and that the performance of a hybrid classifier is slightly better than 

the performance of individual classifiers. 

A multi-scale variant for LBPs reported in [18] achieves good results in fingerprint liveness 

detection benchmarks. Since the original LBP operator is able to capture only small spatial support 

areas, the texture of fingerprint images could be too complex to be completely reflected by it. Besides, 

the LBP feature is sensitive to noise [19]. Thus, the multi-scale LBP operator (MSLBP) is introduced 

by applying multiple LBP filters with different radius and combining the histograms of each resulting 

LBP image into a single feature vector. With the increase in the LBP scale, the large distances between 

samples make the LBP codes unreliable. Hence, the MSLBP operator is combined with a set of 

Gaussian low-pass filters. A SVM classifier is then trained to make the final prediction. 

Since there is no way to know in advance the materials and techniques of the fake fingerprints 

used by the attackers, it is necessary to study the inter-operability of the training classifiers across 
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different materials of fake fingerprints. That is to say, the authors in [18] tried to detect the spoof 

fingerprint images made of a specific type of material without training the spoof images made of the 

same material. They reported an averaged error rate of 22%, being much higher than the 7.5% error 

rate achieved when using the standard training and testing sets. Therefore, the proposed algorithm 

might have a poor performance in practical applications, as new techniques for spoof fingerprints 

emerge continuously. 

The paper also presents the inter-operability performance of the trained classifiers across 

different devices, also called “Cross-device”. The error rate is about 40-50%, mainly caused by the 

huge difference among the images acquired by distinct sensors, according to the authors. Therefore, it 

was difficult for the classifier trained by the images collected by one sensor to distinguish the live 

images from the spoof images acquired by another sensor. 

In some applications, like fingerprint liveness, image degradations may limit the applicability of 

the texture information. One class of degradation is blur due to motion or lack of focus. Because image 

deblurring is very difficult and introduces new artifacts, it is desirable to be able to analyze texture in a 

way that is insensitive to blur. Reference [20] tries to solve the problem through Local Phase 

Quantization (LPQ) as features from the fingerprint images. The descriptor utilizes quantized phase of 

the discrete Fourier transform (DFT) computed locally in a window for every image position. The 

phases of the four low-frequency coefficients are decorrelated and uniformly quantized in an eight-

dimensional space. A histogram of the resulting code words is created and used as a feature in texture 

classification. Ideally, the low-frequency phase components are shown to be invariant to centrally 

symmetric blur. Although this ideal invariance is not completely achieved due to the finite window 

size, the method is still highly insensitive to blur. Because only phase information is used, the method 

is also invariant to uniform illumination changes. 

Thus, the authors argued that the effectiveness of LPQ lies in its ability to represent all spectrum 

characteristics of images in a very compact feature representation, thus avoiding redundant or blurred 

information. Since different fingerprint orientations may arise on a sensor surface, they adopted the 

rotation invariant extension of LPQ. The results show that LBP and LPQ have similar performance and 

preliminary experiments show that there exist complementarity among them, but it needs further 

studies. 

Reference [21] tries to combine the qualities of both LBP and LPQ through a local image 

descriptor called Binarized Statistical Image Features (BSIF). The idea behind BSIF is to automatically 

learn a fixed set of filters from a small set of natural images, instead of using hand-crafted filters such 

as LBP or LPQ. To characterize the texture properties within each fingerprint sub-region, the 

histograms of pixels employing BSIF code values are then used. The value of each element (i.e. bit) in 

the BSIF binary code string is computed by binarizing the response of a linear filter with a threshold at 

zero. Each bit is associated with a different filter and the desired length of the bit string determines the 

number of filters used. The set of filters is learnt by independent component analysis (ICA), which 

maximizes the statistical independence of the filter responses.  

The results are promising, but, since the experiments were made using predefined filters learned 

from only 13 natural images, the performance could be improved if the filters were learned from a 

larger set of images acquired from particular sensors.  

 



4 

 

1.2. Proposed Method 
 

We approach the problem by experimenting two general feature extractors: Convolutional 

Networks, which are, to our knowledge, used for the first time for this task, and Local Binary Patterns, 

which had a good performance in previous works. Convolutional Networks are a promising technique 

as they provide the state-of-the-art results in many computer vision tasks. In contrast to all techniques 

described so far, it uses multiple layers of local descriptors (obtained from a convolution of filter banks 

and down-sampling operations), which outputs a feature vector whose dimensions can represent large 

patches of the input image. Therefore, these feature vectors are able to represent more complex 

structures of the image than the single layer techniques. 

Moreover, a variety of preprocessing techniques such as contrast normalization, image reduction, 

frequency filtering and Region Of Interest (ROI) extraction are tested, as apparently the efficacy of 

these methods were not explored in past publications. We also used a technique known as Dataset 

Augmentation to prevent overfitting and to increase the classifier’s robustness to small translations. On 

the top of the pipelines, two classifiers were compared in order to verify their contribution to the 

overall system’s performance: Support Vector Machines (SVM) with linear and Gaussian kernels, and 

k-Nearest Neighbors (k-NN). 

An extensive search for the best combination of preprocessing operations, architectures and 

hyper-parameters was made during the validation phase, thanks to the fast computers available as cloud 

services like Amazon’s Elastic Compute Cloud (EC2). 

There are few works in the field that use standardized benchmarks, such as Liveness Detection 

Competition (LivDet) or Biometric Recognition Group (ATVs) database [22], to report results. This is 

mainly because these benchmarks were created just recently. In this work, the experiments were 

executed in the eleven datasets of the Liveness Detection Competition of the years 2009, 2011 and, 

2013 and the results were compared with the state-of-the-art techniques. 

The dissertation is organized as follows: in chapter 2 we present the basic concepts, 

methodology, datasets used in the experiments, an overview of the elements that compose the 

classification pipelines, followed by a more detailed explanation of each element and implementation 

particularities, such as code optimizations; in chapter 3 we describe the experiments conducted; in 

chapters 4 and 5 the results and conclusions are presented, respectively. 
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2. Methodology 

2.1. Basic Concepts 
 

Some basic concepts necessary to understand this dissertation are reviewed in this section, starting 

from Figure 1 that shows common definitions for a fingerprint image: 

Region of Interest: region of the image where the fingerprint lies.  

Background: region of the image where there is no fingerprint, that is, region where there is no 

relevant information for classification. 

Dirtiness on the sensor: dirtiness deposited on the sensor each time a finger is pressed against the 

glass cap. It accumulates mainly in the edges of the glass cap. 

Ridge: The skin on the palmar surface of the hands and feet forms ridges, so-called papillary ridges, in 

patterns that are unique to each individual and which do not change over time. 

Ridge Distance: distance between two adjacent ridges. 

Valleys: region between ridges.  

Micropores: Also called pores, they are sweat glands irregularly spaced on the ridges. There are no 

pores between the ridges, though sweat tends to spill into them. The thick epidermis of the palms and 

soles causes the sweat glands to become spirally coiled. 
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Figure 1 – Some fingerprint image definitions. 

 

Next, some concepts from computer vision and machine learning are described: 

 

Histogram: An image histogram is a representation of the tonal (intensities values) distribution in 

a digital image. It computes the number of pixels for each tonal value, which are referred as “bins”. By 

looking at the histogram for a specific image a viewer will be able to judge the entire tonal distribution 

at a glance. Histograms are commonly used to represent the features of the images in machine learning 

algorithms. 

Convolution: It is a linear filter characterized by its point spread function g . The equation of a 

convolution of image f with a filter g is: 

                ∑ ∑                 

 

    

 

    

 (1) 

 

Center of Mass (also called image mean): For a bi-dimensional image of size M-by-N, the center of 

mass (       ) can be calculated as: 

     
∑ ∑     

   
   

   
   

∑ ∑    
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where     is the pixel value at (   ) coordinates.  

Standard deviation: The standard deviation (         ) of a bi-dimensional image can be calculated 

as: 
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Morphological Opening: In mathematical morphology, opening is the dilation of the erosion of 

a set A by a structuring element B: 

     (   )     (6) 

where   and   denote erosion and dilation, respectively. Opening removes small objects from the 

foreground (usually taken as the dark pixels) of an image, placing them in the background.  Opening 

can be used to find things into which a specific structuring element can fit (edges, corners, etc.). One 

can think of B sweeping around the inside of the boundary of A, so that it does not extend beyond the 

boundary, and shaping the A boundary around the boundary of the element. [23] 

Supervised Learning: it is the machine learning task of inferring a function from labeled training data. 

The training data consist of a set of training examples. In supervised learning, each example is 

a pair consisting of an input vector (typically attributes of an object) and a desired output value (also 

called the supervisory signal). A supervised learning algorithm analyzes the training data and produces 

an inferred function, which can be used for mapping new examples. An optimal scenario will allow for 

the algorithm to correctly determine the class labels for unseen instances. This requires the learning 

algorithm to generalize from the training data to unseen situations in a "reasonable" way. [24] 

 

Unsupervised Learning [25]: Unsupervised learning studies how systems can learn to represent 

particular input patterns in a way that reflects the statistical structure of the overall collection of input 

patterns. 

By contrast with supervised learning, there are no explicit target outputs or environmental evaluations 

associated with each input; rather the unsupervised learner brings to bear prior biases as to what aspects 

of the structure of the input should be captured in the output. In other terms, the problem 

of unsupervised learning is that of trying to find hidden structure in unlabeled data. Since the examples 

given to the learner are unlabeled, there is no error or reward signal to directly evaluate a potential 

solution.  

 

Feature Extraction/Dimensionality Reduction [26]: dimensionality reduction or dimension 

reduction is the process of reducing the number of random variables under consideration and it is 
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normally used in conjunction with the terms feature selection and feature extraction. Feature extraction 

creates new features from functions of the original features, whereas feature selection returns a subset 

of the features. When the input data to an algorithm is too large to be processed and it is suspected to be 

notoriously redundant then the input data will be transformed into a reduced representation set of 

features (also named features vector). Transforming the input data into the set of features is 

called feature extraction. If the features extracted are carefully chosen it is expected that the features 

set will extract the relevant information from the input data in order to perform the desired task using 

this reduced representation instead of the full size input.  

Overfitting [27]: It occurs when a statistical model describes random error or noise together with the 

underlying relationship. Overfitting generally occurs when a model is excessively complex, such as 

having too many parameters relative to the number of observations. A model which has been overfit 

will generally have poor predictive performance, as it can exaggerate minor fluctuations in the data. 

The possibility of overfitting exists because the criterion used for training the model is not the same as 

the criterion used to judge the efficacy of a model. In particular, a model is typically trained by 

maximizing its performance on some set of training data. However, its efficacy is determined not by its 

performance on the training data but by its ability to perform well on unseen data. Overfitting occurs 

when a model begins to interpolate training data rather than learning to generalize from trend. As an 

extreme example, if the number of parameters is the same as or greater than the number of 

observations, a simple model or learning process can perfectly predict the training data simply by 

interpolating the training data in its entirety, but such a model will typically fail drastically when 

making predictions about new or unseen data, since the simple model has not learned to generalize at 

all.  

Curse of Dimensionality [28]: It refers to various phenomena that arise when analyzing data in high-

dimensional spaces (often with hundreds or thousands of dimensions) that do not occur in low-

dimensional settings such as the three-dimensional physical space of everyday experience. When the 

dimensionality increases, the volume of the space increases so fast that the available data become 

sparse. This sparsity is problematic for any method that requires statistical significance. In order to 

obtain a statistically sound and reliable result, the amount of data needed to support the result often 

grows exponentially with the dimensionality. Also, organizing and searching data often relies on 

detecting areas where objects form groups with similar properties; in high dimensional data, however, 

all objects appear to be sparse and dissimilar in many ways, which prevents common data organization 

strategies from being efficient. In the specific case of a binary (two-classes) classifier, it refers to when 

there are much more dimensions than training samples that the classifier is not able to generalize due to 

large amount of possible separation hypersurfaces.  

Cross-Validation [29]: it is a model validation technique for assessing how the results of 

a statistical analysis will generalize to an independent data set. It is mainly used in settings where the 

goal is prediction or classification, and one wants to estimate how accurately a predictive model will 

perform in practice. It is worth highlighting that in a prediction problem, a model is usually given a 

dataset of known data on which training is run (training dataset), and a dataset of unknown data (or first 

seen data) against which the model is tested (testing dataset). The goal of cross validation is to define a 

dataset to "test" the model in the training phase (i.e., the validation dataset), in order to limit problems 

http://en.wikipedia.org/wiki/High-dimensional_space
http://en.wikipedia.org/wiki/High-dimensional_space
http://en.wikipedia.org/wiki/Three-dimensional_space
http://en.wikipedia.org/wiki/Physical_space
http://en.wikipedia.org/wiki/Volume
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like overfitting, give an insight on how the model will generalize to an independent data set (i.e., an 

unknown dataset, for instance from a real problem), etc.  

 

2.2. Datasets 
  

We used datasets provided by the Livness Detection Competition of the years 2009 [30], 2011 [31], 

and 2013 [32]. The competition is organized by the Department of Electrical and Electronic 

Engineering of the University of Cagliari, in cooperation with the Department of Electrical and 

Computer Engineering of the Clarkson University, and it is open to all academic and industrial 

institutions. It features two distinct parts; Part 1: Algorithms and Part 2: Systems, with separate 

protocols for each part. Since the main focus of this work is software techniques, only Part 1 will be 

described. 

Table 1 shows the image size and number of samples for training and testing of each dataset. In 

all datasets, the real/fake fingerprint ratio is 1/1. The sizes of the images vary from sensor to sensor, 

ranging from 240x320 to 700x800 pixels. Figure 2 and Figure 3 show some image samples used in the 

competitions of years 2013 and 2009, respectively.  

Livdet 2009 dataset comprises almost 18,000 images from real and fake fingerprints acquired 

from 3 different sensors: Biometrika FX2000, Crossmatch Verifier 300 LC, and Identix DFR 2100. 

Fake fingerprints were obtained from three different materials: Gelatin, Play Doh, and Silicone. One 

third of the dataset is used for training and the remaining for testing. 

LivDet 2011 dataset comprises 16,000 images acquired from 4 different sensors: Biometrika 

FX2000, Digital 4000B, Italdata ET10, and Sagem MSO300, each having 2000 images from fake and 

real fingerprints. Half of the dataset is used for training and the other half for testing. Fake fingerprints 

were obtained from four different materials: Gelatin, Wood Glue, Eco Flex, and Silgum.  

LivDet 2013 dataset comprises 16,000 images acquired from 4 different sensors: Biometrika 

FX2000, Crossmatch L SCAN GUARDIAN, Italdata ET10, and Swipe, each having approximately 

2,000 images from fake and real fingerprints. Almost half of the dataset is used for training and the 

other half for testing. Fake fingerprints were obtained from five different materials: Gelatin, Latex, Eco 

Flex, Wood Glue, and Modasil. 

Additionally, we performed the experiments in a private dataset kindly provided by Griaule 

Biometrics (http://www.griaulebiometrics.com) that comprises approximately 1000 training images and 

1000 testing images acquired from Futronic FS-88 Spoofs sensor. The spoof/real fingerprint ratio is 1 

in both training and testing sets. Fake fingerprints were obtained from four different materials: Gelatin, 

Silicone, Latex, and Wood Glue. We will refer to this dataset throughout this work as “Griaule” 

dataset. 
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Table 1 - Datasets details: Image sizes and number of training and testing samples for each sensor. 

Competition/ 

Year 

Sensor Model Image Size Samples for 

Training 

Samples for 

Testing 

LivDet 2009 

 

Biometrika FX2000 372x312 1040 2960 

Crossmatch Verifier 300 LC 640x480 2000 6000 

Identix DFR2100 720x720 1500 4500 

LivDet 2011 

 

Biometrika FX2000 372x312 2000 2000 

Digital 4000B 355x391 2000 2000 

Italdata ET10 640x480 2000 2000 

Sagem MSO300 352x384 2000 2000 

LivDet 2013 

Crossmatch L SCAN GUARDIAN 800x750 2250 2250 

Swipe N/A 208x1500 2000 2153 

Italdata ET10 640x480 2000 2000 

Biometrika FX2000 372x312 2200 2000 
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Figure 2 – Examples of fake fingerprints acquired with 4 sensors from LivDet 2013. From Crossmatch (a) body 

double, (b) latex, (c) wood glue, from Biometrika (d) gelatine, (e) latex, (f) wood glue, from Italdata (g) gelatine, 

(h) latex, (i) wood glue, from Swipe (j) body double, (k) latex, (l) wood glue. 
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Figure 3 - Typical examples of real and fake fingerprint images that can be found in the LivDet2009 database 

used in the experiments. 
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2.3. Processing Flow 
 

Figure 4 shows an overview of the pipeline used to train the classifiers, which can be broadly divided 

into four phases: 

1- Preprocessing; 

2- Feature Extraction where two techniques were tried: Local Binary Patterns and Convolutional 

Networks; 

3- Dimensionality Reduction and Data Normalization; 

4- Classification where two classifiers were tried: k-Nearest Neighbors (k-NN) and Support Vector 

Machine (SVM) with Linear and Gaussian kernels. 

Since testing all possible combinations of operations has a prohibitory computational cost, we selected 

a sub-set of these for our experiments, which will be listed in chapter 3.   

For training and testing, we followed the same protocol used in LivDet competitions, that is, a 

fixed set of images is used for training and validation (for hyper-parameter selection) and the remaining 

for testing. 

The implementation details of each phase will be explained in the following sub-sections. 

 

 

Figure 4: Overview of the processing flow 

 

2.4. Preprocessing 
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Five preprocessing operations were carried out: Image Reduction using different ratios, Region of 

Interest (ROI) extraction, Contrast Equalization, High-pass filter, and Low-pass filter. The execution or 

non-execution of each operation in the final model is decided at validation time, that is, the 

combination of preprocessing operations that had the lowest validation error were included in the final 

model. 

 

Image Reduction 

Due to the large size of some images (800 x 750 pixels for Crossmatch sensor, for example) and the 

small amount of samples for training (approximately 2000 for each dataset), the classification system 

may not be able to extract the important information. This problem is known as the Curse of 

Dimensionality, already explained in section 2. Thus, the experiments were also performed in images 

resized (using bilinear interpolation) to 50% and 25% of its original size, and the best reduction ratio 

was chosen using cross-validation.  

 

Frequency Filtering 

We inspected how noise removal through a Gaussian low-pass filtering could improve results. We also 

tested the hypothesis that the relevant information to distinguish between false and real fingerprints is 

mostly in the high frequency components of the image by applying a Gaussian high-pass filter before 

extracting the features. The low-pass filter is implemented as the convolution of the input image by a 

Gaussian kernel and the high-pass filter is implemented as the subtraction of the original image by the 

low-pass filtered image. In our experiments, either high pass or low-pass filter was applied (never both) 

and the Gaussian kernels have a standard deviation of 3 pixels and size of 13x13 pixels. Figure 5 shows 

the effect of both filters when applied to samples acquired from four types of sensors. 

 

(a) 
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(b) 

   

(c) 

   

Figure 5 – Original (left), low-pass filtered (middle) and high-pass filtered (right) images. Each row represents 

an image from a specific dataset: (a) – Crossmatch 2013, (b) – Sagem 2011, (c) – Digital 2011 and (d) – Identix 

2009. 

 

Region of Interest (ROI) 

Many fingerprints from some datasets, like Crossmatch sensor from LivDet 2013 competition, are not 

centered and the background represents a large part of the image. In order to try to input to our 

classification system the largest area that comprises foreground/fingerprints, we created a simple ROI 

using the following steps: 

1. Apply morphological closing operation to highlight the region where the fingerprint lies. We used a 

box of size 21x21 as the structuring element, which is greater than the maximum ridges distances even 

in the largest images (that normally have greater ridge distances). This ensures that the fingerprint will 

become a continuous object after the operation. 

2. Negate image, so the foreground/fingerprint will have greater values than the background. 

3. Find the center of mass and the standard deviation of the negated image from step 2. 

4. Get the Region of Interest: a rectangle centered in the center of mass, whose width and height are 

three times the standard deviations calculated in the previous step. 

Figure 6 illustrates the sequence of operations described above for a sample fingerprint image. 
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Original Morphological Opening Crop based on 

image’s center of 

mass and standard 

deviation 

Figure 6 - Sequence of operations to extract the Region of Interest of a fingerprint image. 

 

Contrast Equalization 

We verified if histogram equalization could improve our classifier performance by using a technique 

called Contrast Limited Adaptive Histogram Equalization (CLAHE) [33], which is a variant of 

Adaptive Histogram Equalization (AHE) [34]. AHE computes several histograms, each corresponding 

to a distinct section of the image, and uses them to redistribute the lightness values of the image. It is, 

therefore, suitable for improving the local contrast of an image and bringing out more details.  In our 

implementation, each pixel is transformed based on the histogram of region of a disk with a diameter of 

30 pixels surrounding the center pixel. AHE has a tendency to overamplify noise in relatively 

homogeneous regions of an image. CLAHE prevents this by limiting the amplification by clipping the 

histogram at a predefined value before computing the neighborhood cumulative distribution function 

(CDF). Figure 7 shows the original and CLAHE filtered images for comparison.  

 

(a) 

  

http://en.wikipedia.org/wiki/Signal_noise
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(b) 

  

(c) 

  

(d) 

  

Figure 7 - Original images (left) and CLAHE filtered images (right). Each row represents an image from a 

different dataset: (a) – Crossmatch 2013, (b) – Sagem 2011, (c) – Digital 2011 and (d) – Identix 2009. 

2.5. Feature Extraction 
 

Two different feature extractors were tested: Convolutional Networks (CN) with random weights and 

Local Binary Patterns (LBP). 
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2.5.1. Convolutional Networks 

Convolutional Networks [35] are the state-of-the-art technique in a variety of image recognition 

benchmarks, such as MNIST [36], CIFAR-10 [36], CIFAR-100 [37], SVHN [36] and ILSVRC2011 

[38], and to the best of our knowledge, this is the first time it is employed in fingerprint liveness 

detection. 

A classical convolutional network is composed of alternating layers of convolution and local 

pooling (i.e. subsampling) [39]. The aim of the first convolutional layer is to extract patterns found 

within local regions of the input images that are common throughout the dataset by convolving a 

template or filter over the input image pixels and outputting this as a feature map c, for each filter in the 

layer. 

By stacking multiple layers, it is intended to create a system that would be able to capture more 

complex structures in the data. However, since the convolution is a linear operation and the 

combination of two or more linear operations is equivalent to a single linear operation, the effort to 

build a multiple layer network would be nullified. To avoid this, a non-linear function f(c) is applied 

element-wise to each feature map c: a = f(c), resulting in a network composed of multiple non-linear 

layers. A range of functions can be used for f(c), with tanh(c) and logistic functions being popular 

choices. In this work, we use a linear rectification  ( )      (   ) as the non-linearity function. In 

general, this has been shown [40] to have significant benefits over tanh() or logistic functions. 

The resulting activations  ( ) are then passed to the pooling layer. This aggregates the information 

within a set of small local regions, R, producing a pooled feature map s (normally of smaller size) as 

output. Denoting the aggregation function as     (), for all feature map c we have: 

        ( (  ))         (7) 

where    is the pooling region j in feature map c and i is the index of each element within it. Among 

the various types of pooling, two are commonly used: average and max. Average pooling outputs the 

average (or the summation) of the activations units in a neighbor region Rj: 

    
 

|  |
∑   

      

  (8) 

Max pooling selects the maximum value of the region Rj: 

       
      

   (9) 

The motivation behind pooling is that the activations in the pooled map s are less sensitive to the 

precise locations of structures within the image than the original feature map c. In a multi-layer model, 

the convolutional layers, which take the pooled maps as input, can thus extract features that are 

increasingly invariant to local transformations of the input image [41] [42]. This is important for 

classification tasks, since these transformations obfuscate the object identity. Achieving invariance to 

changes in position or lighting conditions, robustness to clutter, and compactness of representation, are 

all common goals of pooling. 

Another important characteristic of convolutional networks is its ability to capture larger regions, 

and possible more complex structures, of the input images than the single layer methods like LBP. This 

is achieved by stacking local descriptors (obtained from a convolution of filter banks and down-



19 

 

sampling operations) in multiple layers, which increases the area of input image represented by single 

dimension of the final feature vector. 

 

 

Figure 8 - Illustration of a sequence of operations performed by a single layer convolutional network in a sample 

image. 

 

Figure 8 illustrates the feed-forward pass of a single layer convolutional network. The input 

sample is convoluted with three random filters of size 5x5 (enlarged to make visualization easier), 

generating 3 convoluted images, which are then subjected to a non-linear function max(x,0), followed 

by a max-pooling operation and then subsampled by a factor of 2. 

Figure 9 illustrates a sample sequence of operations for a convolutional network with two layers 

(the non-linear and max-pooling operations are not shown). In the second layer, the outputted images 

from the first layer are convoluted with 9 random filters (only three are displayed), max-pooled, and 

sub-sampled. The outputted images are normally rasterized and concatenated forming a one-

dimensional vector that will be fed in a classifier (not shown in the illustration). 

Our convolutional networks use only random filters weights draw from a Gaussian distribution. 

Although the filter weights can be learned, as described in [43], filters with random weights can 

perform surprisingly well and they have the advantage that they do not need to be learned [44] [45] 

[46], decreasing the pipeline’s training time. 
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Figure 9 – Illustration of a sequence of operations performed by a two layers convolutional network in a sample 

image. 

 

It is a common practice to have a Local Contrast Normalization layer (which is different from the 

Contrast Equalization previously described) between each convolution and pooling layer. The goal of 

this layer is to normalize pixels intensities based on its neighborhood. The operations of subtractive and 

divisive normalization described below are inspired by computational neuroscience models [47] [48] 

[49]. The subtractive normalization operation for a given 3D image patch       can be defined by: 

           ∑               
   

  (10) 

where     is a Gaussian weighting window normalized so that 

 ∑      
   

 (11) 

i refers to the index of the third dimension of the image patch, j and k refer to the two dimensions of the 

image patch, p and q refer to the neighborhood region of the patch defined by j and k. The divisive 

normalization computes 

               (     ) (12) 

where 

     (∑               
 

   )
   

   (in our experiments    ) (13) 
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Figure 10 shows divisive normalization filtering with filter size of 9x9 applied to some fingerprint 

image samples. 

 

(a) 

  

(b) 

  

(c) 
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(d) 

  

Figure 10 – Original (Right) and Divisive Normalized (Left) Images. Each row represents an image from a 

different dataset: (a) – Crossmatch 2013, (b) – Sagem 2011, (c) – Digital 2011 and (d) – Identix 2009. 

 

2.5.2. Local Binary Pattern 

Local Binary Patterns (LBP) are a local texture descriptor that have performed well in various 

computer vision applications, including texture classification and segmentation, image retrieval, 

surface inspection, and face detection [50]. The best current method for fingerprint liveness detection 

[18] uses this technique.  

In its original version, the LBP operator assigns a label to every pixel of an image by 

thresholding each of the 8 neighbors of the 3x3-neighborhood with the center pixel value and 

considering the result as a unique 8-bit code representing the 256 possible neighborhood combinations. 

As the comparison with the neighborhood is done with the central pixel, the LBP is an illumination 

invariant descriptor. The operator can be extended to use neighborhoods of different sizes [19].   

In mathematical terms, the LBP label for the center pixel (x,y) of image f(x,y) is obtained through 

       (   )  ∑  ( (   )   (     ))

   

   

   (14) 

where P represents the number of sampling points, R is the radius of the neighborhood, s(z) is the 

thresholding function and  

  ( )   {
     
     

 (15) 

Normally, the normalized histogram of the LBPs is used as a feature vector for an image or a ROI of an 

image, as the histogram gives the frequency distribution of each particular pattern in the image.  
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Figure 11 – Original image (Left) and LBP filtered image (Right). 

 

Another extension to the original operator is the definition of so-called uniform patterns, which 

can be used to reduce the length of the feature vector and implement a simple rotation-invariant 

descriptor [19]. An LBP is called uniform if the binary pattern contains at most two bitwise transitions 

from 0 to 1 or vice versa when the bit pattern is considered circular. The number of different labels of 

LBP is reduced from 256 to just 10 in the uniform pattern.  

The original rotation-invariant LBP operator based on uniform patterns is achieved by circularly 

rotating each bit pattern to the minimum value. For instance, the bit sequences 10000011, 11100000, 

and 00111000 arise from different rotations of the same local pattern, and they all correspond to the 

normalized sequence 00000111. Figure 12 shows the 58 possible different uniform patterns in the (8, 

R) neighborhood. In the uniform operator, all the patterns from one row are replaced with a single 

label, which results in 9 possible labels. The remaining non-uniform patterns are assigned to the 10
th

 

label. 
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Figure 12 - Fifty-eight different uniform patterns in the (8, R) neighborhood. Source: [51].  

 

The normalized histogram of the LBPs (with 256 and 10 bins for non-uniform and uniform 

operators, respectively) is used as a feature vector. The assumption underlying the computation of a 

histogram is that the distribution of patterns matters, but the exact spatial location does not. Thus, the 

advantage of extracting the histogram is the spatial invariance property. To investigate if location 

matters to our problem, we also implemented the method presented in [52], for face recognition,  where 

the LBP filtered images are equally divided in rectangles and their histograms are concatenated to form 

a final feature vector, as exemplified in Figure 13.  

 



25 

 

 

Figure 13 – the LBP filtered images are equally divided in rectangles and their histograms are concatenated to 

form a final feature vector. 

2.6. Feature Normalization, Dimensionality Reduction and Whitening 
 

After the feature extraction phase, each dimension of the dataset is independently normalized to zero 

mean and unit variance. This is normally required because many elements used in the objective 

function of a learning algorithm (such as the RBF kernel of Support Vector Machines) assume that all 

features are centered on zero and have variance in the same order. If a feature has a variance that is 

orders of magnitude larger than others, it might dominate the objective function and make the estimator 

unable to learn from other features as expected. 

The normalized data is then subject to dimension reduction by using Principal Components 

Analysis (PCA),  which is a statistical procedure that uses an orthogonal transformation to convert a set 

of observations of possibly correlated variables into a set of values of linearly uncorrelated variables 

called principal components [53]. The number of principal components is less than or equal to the 

number of original variables. This transformation is defined in such a way that the first principal 

component has the largest possible variance (that is, accounts for as much of the variability in the data 

as possible), and each succeeding component in turn has the highest variance possible under the 

constraint that it is orthogonal to (i.e., uncorrelated with) the preceding components. The PCA can be 

computed by eigenvalue decomposition of a data covariance (or correlation) matrix or singular value 

decomposition (SVD) of a data matrix. We will explain only the latter, as it is the most common 

implementation. The singular value decomposition of an n-by-p data matrix X, where the n rows 

represents the samples and the p columns represents the features, is defined as 

       

where   is a n-by-p rectangular diagonal matrix of positive numbers σ(k), called the singular values 

of X; U is an n-by-n matrix, the columns of which are orthogonal unit vectors of length n called the left 

singular vectors of X; and V is a p-by-p matrix whose columns are orthogonal unit vectors of 

length p and called the right singular vectors of X. By convention, the ordering of the singular vectors 

is determined by high-to-low sorting of singular values, with the highest singular value in the upper left 

index of the   matrix. The principal components score matrix T can be written 
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so each column of T is given by one of the left singular vectors of X multiplied by the corresponding 

singular value. Keeping only the first L principal components, produced by using only the 

first L loading vectors, gives the truncated transformation 

            

where the matrix TL now has n rows but only L columns. By construction, of all the transformed data 

matrices with only L columns, this score matrix maximizes the variance in the original data that has 

been preserved, while minimizing the total squared reconstruction error ‖        
 ‖

 

 
  or ‖  

  ‖ 
  . In other words, the truncation of a matrix T using a truncated singular value decomposition in 

this way produces a matrix that is the nearest possible matrix of rank L to the original matrix. 

In our implementation, we used the Randomized version of PCA [54] [55], which is faster than 

the original PCA because it limits computation to an approximated estimate of the singular vectors kept 

to actually perform the transformation. If we note  

         (   ) 

         (   ) 

the time complexity of Randomized PCA is  (    
             ) instead of  (    

      ) for the 

exact PCA method. The memory footprint of Randomized PCA is also proportional to 

                    instead of     
        for the exact method.  

A decorrelation method called Whitening [56] [57], also known as Sphering, is applied after PCA 

to normalize the variances of the principal components, which has been shown to improve results in 

computer vision classification tasks [58]. It divides the principal components by their standard 

deviations, which yields an identity covariance matrix. Denoting the PCA rotated components by   , 

this means we compute 

     
  

√   (  )
 (16) 

to get whitened components   . This is often useful if the classification model makes assumptions on 

the isotropy of the signal, which is the case for Support Vector Machines with the RBF kernel. 

It may appear unnecessary to normalize the data before rotating and whitening it but we exemplify 

that this conclusion can be wrong: if one of the dimensions is orders of magnitude larger than the 

others, PCA will rotate the un-normalized data in the “wrong” direction, that is, in the direction of the 

dimension that has the greater (un-normalized) variance. After rotation, whitening will simple 

normalize the dimensions, but the data will be still rotated in the wrong direction. 

2.7. Classifiers 
As the final step of the pipeline, a classifier is used. Two classifiers were tested: K-Nearest-Neighbors 

(KNN), for comparison purposes, and Support Vector Machines (SVM), that is suitable to our problem 

because it is an inherently binary (two classes) classifier and it is widely used in large range of machine 

learning problems [59]. Two types of kernels were chosen for the SVM: linear and Gaussian Radial 

Basis Function (RBF) kernels. The linear kernel can be faster but the Gaussian kernel can find better 

separation hyperplanes when the number of features is not high [60], which is the case for the LBP 

pipelines. 

http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.RandomizedPCA.html#sklearn.decomposition.RandomizedPCA
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The C parameter, common to all SVM kernels, was chosen during validation and it trades off 

misclassification of training examples against simplicity of the decision surface. Formally, the standard 

optimization problem for fitting a linear SVM is defined by [61]: 

 
        

 

 
‖ ‖   ∑  

 

   

 

subject to  ( )(   ( )   )                   

(17) 

where n is the number of training samples,   and b are the coefficients that define the separation 

hyperplane, and    are non-negative slack variables that allow points to be on the wrong side of their 

“soft margin”. A low C makes the decision surface smooth, while a high C aims at classifying all 

training examples correctly. If the data are separable, then for sufficiently large C the solution achieves 

the maximal margin separator; if not, the solution achieves the minimum overlap solution with largest 

margin.  

In the Gaussian RBF kernel, the separating surface will be based on a combination of bell-shaped 

surfaces centered at each support vector. The width of each bell-shaped surface will be inversely 

proportional to hyper-parameter γ. More formally, from the dual optimization problem defined by  

 

     ( )  ∑   
 

 
∑  ( ) ( )    〈 

( )  ( )〉

 

     

 

   

 

Subject to                   

∑   
( )   

 

   

 

(18) 

The dot product 〈 ( )  ( )〉 can be substituted by the RBF kernel, defined as 

 〈 ( )  ( )〉      | ( )  ( )|
 

 (19) 

From (19), the value of the RBF kernel decreases with distance and ranges between zero (in the limit) 

and one (when  ( )= ( )). Hence, it has an interpretation of a similarity measure [62]. When   is low, 

the expression above will be close to one even when   ( ) and  ( ) are far apart, meaning that a large 

number of support vectors influence the classification of a new sample. On the other hand, when   is 

high, the expression will be close to one only when  ( ) and  ( ) are close, which characterizes 

overfitting. Another interpretation for   is that it defines how far the influence of a single training 

example reaches, with low values meaning ‘far’ and high values meaning ‘close’. 

A question that may rise is why to use PCA before SVM if the latter is supposed to deal well with 

data in high dimensional space? It was shown in [63] that SVM is invariant to PCA and [64] showed 

that SVM performs better when using PCA as a feature extractor. Supported by these results, we used 

data dimensionality reduction through PCA to speed up SVM’s training time without losing accuracy. 

 

http://en.wikipedia.org/wiki/Similarity_measure
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2.8. Increasing Generalization through Dataset Augmentation  
 

Dataset Augmentation is a technique that consists in artificially creating slightly modified samples 

from the original ones. Using them during training, it is expected that the classifier will become more 

robust against small variations that may be present in the data, forcing it to learn larger (and possible 

more important) structures. It has been successfully used in computer vision benchmarks such as in 

[38], [65], and [66]. 

Our dataset augmentation implementation is similar to the one presented in [38]: from each 

image of the dataset five smaller images with 80% of each dimension of the original images are 

extracted: four patches from each corner and one at the center. For each patch, horizontal reflections 

are created. As a result, we obtain a dataset that is 10 times larger than the original one: 5 times are due 

to translations and 2 times are due to reflections. 

In the training phase, the models of the pipeline are fitted using the samples of the augmented 

dataset. At test time, the input image is derived to ten translated and reflected patches followed by 

prediction for each of them. The prediction of the input image is made by averaging the individual 

predictions on the ten patches. 

Other transformations, like image rotation, can be used to increase the dataset even more. 

However, we chose to use only translation and horizontal reflections in this work, mainly because of 

memory and training time limitations. 

Due to the large amount of time to train the pipelines that use the artificial augmented dataset, 

model selection was first made only in the original dataset and considering a wide range of parameters, 

and then a second validation is performed together with the augmented data using only a subset of 

parameters from the previous validation. 

 

Figure 14 – Illustration of three types of transformations for dataset augmentation: Horizontal Reflections, 

Rotations, and Translations. 

2.9. Performance Metrics 
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The classification results were evaluated by the Average Classification Error (ACE), which is the 

standard metric for evaluation in the LivDet competitions. It is defined as 

     (       )   (20) 

where FPR (False Positive Rate) is the percentage of misclassified live fingerprints and FNR (False 

Negative Rate) is the percentage of misclassified fake fingerprints. 

 

2.10. Implementation Details 
 

The algorithms were implemented in Python and most of the code uses build-in functions from Numpy, 

Scipy, Scikit-Image and Scikit-Learn packages, except for the Convolutional Networks, for which we 

used an efficient package from [67], and the Cross-Validation/Grid-Search algorithm, for which we 

wrote our own code using Numpy. NumPy is a general-purpose array-processing package designed to 

efficiently manipulate large multi-dimensional arrays of arbitrary records. Although Numpy is a python 

extension, its functions are written in C. Thus any algorithm that can be expressed primarily as 

operations on arrays and matrices can run almost as quickly as the equivalent C code. 

2.10.1. Cross-Validation/Grid-Search Algorithm 

 

We wrote an improved Cross-Validation/Grid-Search algorithm for choosing the best combination of 

hyper-parameters, in which each element of pipeline is computed/trained only when its training data is 

changed (the term “element” refers to operations such as preprocessing, feature extraction, 

dimensionality reduction or classification). This modification speeded-up the validation phase in 

approximately 10 times, although the gain can greatly vary as it depends on the computational cost of 

each element of the pipeline and the number of hyper-parameters chosen. The pseudo-code for the 

algorithm is presented in two parts: initialization of variables and call of the recursive function (Figure 

15) and the definition of the recursive function (Figure 16). 

 

 

Figure 15 – Pseudo-code that describes the variable’s initialization and the call of the recursive function in the 

Cross-Validation/Grid-Search algorithm 

  

Begin 

Set Lc as a list of all combinations of the parameters for each element of the pipeline. 

Set ce with the first element of the pipeline. 

Set dtr with the training dataset. 

Call Function run_element(Lc, ce, dtr) and set Lr with the list of tuples (scores, parameters) returned 

by the funtion 

Order the list Lr by score. The parameters set with the lowest score are the best parameter’s 

combination. 

End 
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Figure 16 – Definition of the recursive function in the Cross-Validation/Grid-Search algorithm 

 

Figure 17 illustrates a graph showing how the elements and parameters are reused in our 

improved grid search algorithm. For instance, the rounded Node 3 represents an element Elem 2 trained 

with the transformed data from the parent Node 1, with parameters’    set with values   . The 

algorithm starts by transforming the incoming data (illustrated as green square in the top of the figure) 

by Node 1 (that represents Elem 1 with parameters’    set with values   ) followed by the 

transformation by Node 3 and so on until the last node of the branch, Node i-1, is reached and the score 

is computed. Next, the adjacent node, Node i, can be computed using the data transformed from its 

parent node. Note that a new branch is started only when the last node of the previous branch is 

reached. 

Begin Function run_element (Lc, ce, dtr, dval (optional)): 

For each parameter combination (called as cp) of element ce in the list of parameter’s combinations 

Lc: 

  If ce is the first element of the pipeline: 

 Split the dtr dataset in the training and validation sets based on the cross-validation 

scheme used (e.g., k-fold) and store them as a list of tuples in dsets. 

                      Else: 

 Set dsets with a list that has a single tuple (dtr, dval). 

For each training and validation set (called as cdtr and cdval, respectively) tuple in dsets: 

Transform (or fit and transform if the element supports both operations) cdtr and 

cdval datasets using element ce initialized with parameters cp. 

    If ce is the last element of the pipeline: 

Predict the samples of cdval and computes the score. 

Append the tuple (score, cp) to the list Ls. 

    Else: 

     Set ce with the next element of the pipeline. 

Call run_element(Lc, ce, cdtr, cdval) and append the returned list to Ls. 

 Return Ls 

End Function 
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Figure 17 – A graph showing how the elements and parameters are reused in our improved grid search 

algorithm. 

 

The search for the best hyper-parameters was made using 5x2-Fold [68] cross-validation scheme 

and it works as follows: 

1- Divide the training dataset into 2 blocks, A and B.  

2- Train on block A and evaluate on B. 

3- Train on B and evaluate on A. 

4- Repeat the last 3 steps 5 times, but choosing a different split location to create blocks A and 

B. 

5- Compute the average score for all 10 (5x2) evaluations. 

Although 10-Fold cross-validation is a common choice, we noticed in previous experiments that 

both methods yield similar choices for the hyper-parameters but 5x2-Fold is faster as it uses 50% of the 

validation dataset for training instead of 90% used by the 10-Fold method (assuming that training is 

slower than classifying and that both methods iterate 10 times over the validation dataset). 

As explained before, in the cross-validation schemes like the 5x2 Fold, the dataset is divided in 

training and validation set multiple times, assuring that each sample will belong to the validation set at 

least once. These interactions are computationally expensive, as a new model need to be trained every 

time a different partition of the dataset is used. In our pipelines, the pre-processing and feature 

extraction phases do not need training, that is, the samples can be processed independently and in 

parallel. This resulted in another implementation improvement in Grid Search algorithm: the dataset is 

transformed by these two initial phases before being split in the cross-validation iterations, which 
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avoids repeated transformations that would have to be performed if the standard cross-validation was 

used. 

2.10.2. Using Fast Computers in the Cloud 

An important aspect of this work is that the algorithms were run on cloud service computers, where the 

user can rent virtual computers and pay only for the hours that the machines are running. Among other 

advantages of this kind of service, they offer ready-to-use instances (with Machine Learning packages 

like Scikit-Learn already installed, for example), high availability (commonly greater than 99.9%), and 

computational optimized instances, commonly used for High performance front-end fleets and web-

servers, on-demand batch processing, distributed analytics, and high performance science and 

engineering applications, batch processing, and video encoding. To train the algorithms, we used the 

fastest Amazon EC2 HPC instance available, with 32 cores and 60 GB of RAM, which allowed us to 

run dataset augmented experiments and search for a wide range of parameters in a few hours – 

otherwise it would take weeks to perform them. 
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3. Experiments 
 

Table 2 lists the pipelines used in the experiments. The preprocessing step is omitted but it was 

executed in all pipelines.  The list of hyper-parameters and ranges searched in the validation phase are 

shown in Table 3. 

Table 2 - Summary of the pipelines evaluated in this work. 

 

 

Pipeline Description 

KNN 

Images reduced to 50% or 25% of their original size and then fed into a k-

Nearest-Neighbor classifier. This pipeline is used only for comparison 

purposes. 

PCA+KNN 
Data dimensionality is reduced using PCA and then fed into a KNN 

classifier. 

CN+PCA+ 

LinearSVM 

Features are extracted using Convolutional Networks. The feature vector is 

reduced using PCA and then fed into a SVM classifier using linear kernel. 

CN+PCA+ 

GaussianSVM 

Features are extracted using Convolutional Networks. The feature vector is 

reduced using PCA and then fed into a SVM classifier using (Gaussian) RBF 

kernel. 

LBP+PCA+ 

GaussianSVM 

Features are extracted using LBP. The feature vector is reduced using PCA 

and then fed into a SVM classifier with (Gaussian) RBF kernel. 

AUG+LBP+PCA+ 

GaussianSVM 

Dataset is artificially augmented, and the pipeline follows as in the 

LBP+PCA+GaussianSVM pipeline. 

AUG+CN+PCA+Line

arSVM 

Dataset is artificially augmented, and the pipeline follows as in the 

CN+PCA+LinearSVM pipeline. 

AUG+CN+PCA+ 

GaussianSVM 

Dataset is artificially augmented, and the pipeline follows as in the 

CN+PCA+GaussianSVM pipeline. 



34 

 

Table 3 – List of hyper-parameters and ranges searched in the validation phase 

Pipeline’s Element Hyper-parameter Range 

Preprocessing 

Image Reduction Ratio 
12,5%, 25%, 50%, 100% (original 

size) 

High-pass filtering Apply or Not 

Low-pass filtering Apply or Not 

Region of Interrest Apply or Not 

Contrast Equalization Apply or Not 

Convolutional 

Networks 

Number of Layers 1, 2, 3, 4, 5 

Number of Filters (in each layer) 32, 64, …, 2048 

Divisive Normalization Apply or Not 

Filter Size for Divisive Normalization 5x5, 7x7, …, 15x15 

Filter Size for Convolution 5x5, 7x7, …, 15x15 

Filter Size for Pooling 3x3, 5x5, 7x7, 9x9 

Stride (reduction factor) 2, 3, …, 7 

LBP 

Coding Non-Uniform (standard) or Uniform  

Number of Image’s Divisions 1x1 (no division), 3x3, 5x5, 7x7 

PCA Number of Components 30, 100, 300, 500, 800, 1000, 1300 

GaussianSVM 

Regularization Parameter C 0.1, 1, …, 10
5
 

Kernel coefficient   10
-7

, …, 10
-1

 

LinearSVM Regularization Parameter C 10
-5

, 10
-4

, …, 10
5
 

KNN 

Number of Neighbors 1, 3, 9, 15 

Metric Method Distance or Uniform 
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For CN, max pooling is used, supported by [69], [70], and [71] that show its superiority over 

average pooling. We noticed that for our task, subtractive normalization seems to amplify noise, which 

decreases classification performance. Therefore, we choose to use only divisive normalization.  

Apart from using PCA with Whitening in the dimensionality reduction phase, we performed 

experiments using PCA without Whitening, Linear Discriminant Analysis (LDA), and Independent 

Component Analysis (ICA) in 4 of the 11 datasets. In general, they presented a decrease of 0.5-2% on 

the overall validation accuracy. Additionally, [72] and [73] found that the choice for LDA, ICA or PCA 

depends on the nature of the task. Based on these works and the fact that PCA+Whitening showed the 

best preliminary results, we decided to use only this technique in the experiments. 

Due to the increased amount of time to train the models using augmented datasets, hyper-

parameters’ selection was first made in the original dataset using a wide range of hyper-parameters 

values, and then a second validation was performed in the augmented dataset, but using a subset of 

hyper-parameters from the first validation. When using augmented datasets, it is important not to 

shuffle the samples. That is, images derived from the same image should not be separated in training 

and validation sets because classifier’s generalization capabilities will decrease if similar data occurs in 

training and validation sets. 

We would like to verify how a classifier would perform when unseen samples acquired from 

spoofing materials and individuals during training are presented at test time. For that, Cross-dataset 

experiments were performed, which consist in training a classifier using the dataset of one year of the 

LivDet competition and testing using the dataset of another year of the competition but using the same 

sensor type. For instance, a cross-dataset experiment would consist in training a classifier using 

LivDet2011 dataset for sensor Biometrika and testing it using LivDet2013 dataset for sensor 

Biometrika. 

Since images from the same sensor are similar, it is expected that training independent classifiers 

for each sensor will help the classifier to find better separation hyperplanes. However, in order to test 

the hypothesis that the images share common characteristics for distinguishing fake fingerprints from 

real ones, that is, the important features for classification are independent from the acquisition device, 

Cross-device experiments were conducted, in which a classifier is trained with a dataset acquired with 

one type of sensor but tested with samples acquired with another sensor type. Additionally, we trained 

a single classifier with images from all sensors, excluding the Swipe sensor that produces images that 

are too different from the others. 

In summary, these tests should reflect how well the classifier is able to learn relevant 

characteristics that distinguish real from fake fingerprints when samples acquired from different 

environments are presented.  
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4. Results 
 

The average error in each testing dataset is shown on Table 4. The state-of-the-art (first column) results 

for LivDet 2009, 2011, and 2013 datasets were taken from [30], [18] and [32], respectively. The 

validation errors are shown on Appendix A (Table 8) and the parameters used and scores in the 

validation phase can be found in http://adessowiki.fee.unicamp.br/adesso/wiki/Demo/fingerprint/view/. 

 

Technique 

State-

of-the-

art 

Aug 

LBP 

PCA 

Gaussian-

SVM 

LBP 

PCA 

Gaussian-

SVM 

Aug 

CN 

PCA 

Gaussian-

SVM 

Aug CN 

PCA 

Linear-

SVM 

CN 

PCA 

Gaussian

-SVM 

CN PCA 

Linear-

SVM 

PCA 

KNN 
KNN 

LivDet 

2013 

Crossmatch 31.2 49.45 49.87 3.29 3.64 5.2 3.69 17.27 28.8 

Swipe 14.07 3.34 4.02 7.67 6.87 5.97 5.13 29.12 40.76 

Italdata 3.5 2.3 55.45 2.45 0.45 47.65 49.95 46.3 32.6 

Biometrika 4.7 1.7 25.65 0.8 1.0 2.7 2.7 46.15 50.8 

LivDet 

2011 

Italdata 14.8 12.34 23.68 9.27 15.17 5.09 5.35 34.35 41.99 

Biometrika 7.3 8.85 8.2 8.25 11.75 9.9 13 26 45.45 

Digital 2.5 4.15 3.85 3.65 4.25 1.9 2 11.75 23.3 

Sagem 5.3 7.54 5.56 4.64 6.74 7.86 8.3 14.5 42.54 

Livdet 

2009 

Biometrika 18.1 10.44 50 9.23 6.48 9.49 8.98 46.55 34.15 

Crossmatch 15.2 3.65 6.81 1.78 2.68 3.76 3.83 14.85 14.67 

Identix 10.5 2.64 0.95 0.8 0.68 1.68 1.48 9.65 10.69 

Griaule 2013 n/e 0.33 1.83 3.38 n/e 0.34 n/e n/e n/e 

Average 11.56 9.67 21.28 4.71 5.43 9.20 9.49 26.95 33.25 

Table 4 – Average Error Rate on testing datasets. “n/e” stands for “not executed” 

  

The LBP+PCA+SVM pipeline seems to be highly prone to overfitting, since it has very low 

cross-validation errors (close to 0%) whereas large error rates in the testing datasets of Crossmatch 

2013, Italdata 2013, Biometrika 2013, Italdata 2011 and Biometrika 2009. However, when dataset 

augmentation is used (AUG+LBP+PCA+SVM pipeline), the cross-validation error increases but the 

testing error decreases, except for Crossmatch 2013, which will be discussed latter. This is a good 

indication that dataset augmentation can be used to prevent overfitting.  
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When compared to the state-of-the-art technique in LivDet2011, a multi-scale LBP presented in 

[18], our LBP technique achieves better performance (9.67% error rate against 11.56%). The best 

operator (uniform or non-uniform/original) and number of tiles depend on the dataset.  

Overfitting seems not to be a problem when using Convolutional Networks, except for the 

Italdata 2013 dataset. Overall, CN without the dataset augmentation have a similar performance to LBP 

with dataset augmentation. When using augmented datasets with convolutional networks, we achieved 

a test error rate of 4.75% (averaged from all datasets), which represents a reduction of 58% when 

compared to the best previously published results (11.56% error, on average). 

Support Vector Machines with Gaussian kernel performed slightly better than the Linear Kernel 

(4.71% vs 5.43% on augmented datasets and 9.20% vs 9.49% on non-augmented datasets), but the 

former needs an extra hyper-parameter (γ) to be tuned.  

The best number of layers in the convolutional networks depends on the dataset: it varies from 

two to five layers. The fact that one layer networks were not selected confirms that the deep 

architectures perform better on the task than the shallow ones. On overall, the best convolution shapes 

are 9x9 for the first layers and 5x5 for the last layers. The best pooling shapes are 7x7 for the first 

layers and 5x5 for the last layers. The best quantity of filters was 256 or 512 for the first layers and 

1024 or 2048 for the last layers. Unfortunately, we could not find a relation between architectures and 

dataset characteristics, such as image size and foreground/background ratio, that explain the choices for 

the best parameters. Surprisingly, divisive normalization did not improved results in the validation 

phase, despite its performance gain in natural images tasks reported in papers such as [69].  

On average, the PCA models selected in the validation phase reduced the input vectors to 20% of 

their original dimensions, which represents an explained variance close to 100%. This is an indication 

that the vectors extracted using either CN or LBP still contain redundant information and reducing the 

dimensions using PCA can be advantageous. This statement is confirmed by empirical results: 

pipelines that use PCA have greater accuracy rates than the ones that do not use it. 

For the majority of datasets and models, preprocessing operations (contrast equalization, ROI, 

etc) did not improved accuracy. For contrast equalization, this is not surprising, since both LBP and CN 

are illumination invariant, that is, each pixel is compared only with is local neighbors. Regarding ROI 

extraction, the backgrounds are mostly composed of white pixels or by a regular structure, like the 

trapezoidal background shape in the case of the Digital 4000B sensor, which results in components in 

the final extracted vector that have low variances and are probably discarded by the dimensionality 

reduction and the SVM classifier during training. In addition, the histogram extraction in the LBP 

pipeline and the pooling/sub-sampling operation in the CN offer translation invariance, so objects in 

the image center would not help much.   

The hypothesis that the relevant information for liveness detection lies either in the low-

frequency or in the high-frequency components of the image was not confirmed. Both low-pass and 

high-pass filtering decreased accuracy during validation, which suggests that the structures that 

differentiate false from real fingerprints do not have exclusively low or high frequency components. 

A 50% image size reduction improved validation accuracy in some datasets (Italdata 2013 for 

both LBP and CN pipelines, Identix 2009 for Convets, Italdata 2011, Biometrika 2011, and Crossmatch 

2009 for LBP). Reduction rate of 25% only helped for the Identix 2009 dataset in the LBP pipeline. 

Based on these differences, we conclude that there is not an optimal image size for classification; it 



38 

 

depends not only on the sensor type but also on the dataset and the transformations used. For instance, 

the best model in the LBP pipeline for Biometrika-2013 uses images in their original size while the best 

model for Biometrika-2011 uses reduction ratio of 50%, despite that both datasets were acquired using 

the same sensor type and resolution. 

 

4.1. Cross-dataset and Cross-device Experiments 
 

As explained in chapter 0, we ran three types of experiments involving cross-training: 

1- Cross-dataset: train with one dataset but test with another using the same sensor type;  

2- Cross-device: train with one type of sensor but test with another type; 

3- All-together: train and test a single classifier using all datasets, except for Swipe-2013 whose 

images are too different from the rest.  

We chose to use only datasets Biometrika and Italdata of years of 2011 and 2013 of the LivDet 

competition, since executing all possible dataset combinations would be impractical. The experiments 

used LBP or CN as feature extractors and SVM with Gaussian kernel as classifier.  

The error rates for the Cross-dataset experiments, shown in Table 5, vary from 10% to 50% and 

the training errors (not shown) were all very low (approx. 0%). The pipelines that use dataset 

augmentation have lower error in most of the cases, showing once again the benefits of the technique. 

However, there is a significant drop in performance in all pipelines when compared with error rates 

obtained from the standard training datasets, indicating that the classifiers were not able to generalize 

well to fake fingerprints created using unseen spoof techniques. 

Table 5 - Cross-dataset error rates 

Train 

Dataset 

Test 

Dataset 

Aug 

LBP 

PCA 

Gaussian-

SVM 

LBP 

PCA 

Gaussian-

SVM 

Aug 

CN 

PCA 

Gaussian-

SVM 

CN PCA 

Gaussian-

SVM 

Biometrika 

2011 

Biometrika 

2013 
16.55 20.3 20.4 26.05 

Biometrika 

2013 

Biometrika 

2011 
47.95 48.55 48.0 48.45 

Italdata 

2011 

Italdata 

2013 
10.6 13.0 21.0 50.0 

Italdata 

2013 

Italdata 

2011 
46.08 35.17 46.82 46.03 

 

In the Cross-device experiments, the testing error rates, shown in Table 6, range between 45-50% 

and the training error rates are all close to 0% (not shown), indicating overfitting. Similarly, [18] 

already reported that their multi-resolution LBP technique fail to learn good features when different 

sensors are used for training and testing. 
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Table 6 - Cross-device error rates 

Train 

Dataset 

Test 

Dataset 

Aug 

LBP 

PCA 

Gaussian-

SVM 

LBP 

PCA 

Gaussian-

SVM 

Aug 

CN 

PCA 

Gaussian-

SVM 

CN PCA 

Gaussian-

SVM 

Biometrika 

2013 

Italdata 

2013 
43.7 50.0 47.9 45.3 

Italdata 

2013 

Biometrika 

2013 
48.4 50.0 48.95 52.6 

 

For the third experiment (“All Together”), it can be seen from the results shown in Figure 18 that 

training one classifier using all datasets yields error rates around 10% for both LBP and CN pipelines 

that do not use dataset augmentation. The error rate in training (not shown in the figure), is around 6%. 

Dataset augmentation was not used due to the larger training time, but one should expect lower errors. 

From these results, we can conclude that the effort to design a liveness detection system can be 

considerably reduced if all datasets are used together, as the hyper-parameter fine tuning needs to be 

made for only one classifier. 

 

Figure 18 – Error rates in the testing when training one classifier using all datasets (Together) vs training one 

classifier for each dataset (Separated) 

 

4.2. Crossmatch 2013 dataset and Dataset Visualization 
 

The results for Crossmatch 2013 dataset using LBP present error rates close to zero at validation time 

and around 50% at test time, even when using augmented datasets. It can be noticed from the results of 

the LivDet 2013 competition that this dataset is particularly difficult to generalize, since nine of the 
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eleven participants presented error rates greater than 45%. CN performs very well (3.28%), which 

suggests that the problem occurs mostly when extracting features with LBP.  

(a) 

  

(b) 

  

(c) 

  

Figure 19 - 2D visualization of the Digital-2011 training (left) and testing (right) datasets. The rows (a), (b) and 

(c) represents dimensionality reduction using PCA, LBP+PCA and CN+PCA pipelines, respectively. 

To help better understanding of how the feature extractors contribute to the classification system, 

and especially for the problem with the Crossmatch 2013 dataset, we reduced the images of the 

Biometrika-2009 dataset to 2 dimensions using three different pipelines: PCA, LBP+PCA and 

CN+PCA. The transformed datasets from each pipeline are shown in Figure 19. It can be seen that 

there is no clear separation between the fake and real fingerprints (represented by red and blue dots, 

respectively) in any of the pipelines. 
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(a) 

  

(b) 

  

(c) 

  

Figure 20 - 2D visualization of the Crossmatch-2013 training (left) and testing (right) datasets. The rows (a), (b) 

and (c) represents dimensionality reduction using PCA, LBP+PCA and CN+PCA pipelines, respectively. 

The same steps were repeated for the Crossmatch 2013 training and testing datasets and the 

results are shown in Figure 20. The training data becomes more separable when using one of the 

feature extractors. However, we can see that there is a very low correspondence between training and 
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testing samples when using the LBP+PCA pipeline, especially for the fake (red dots) samples. In 

addition, there is a (rare) clear separation in the training dataset when the features are extracted using 

this pipeline, which can explain why the training errors are so low (~0%) and the testing error are so 

high (~50%) for that particular dataset.  

The results on the Crossmatch 2013 testing dataset are improved to error rates around 20-30% 

when the images of the training set are filtered with low-pass, high-pass or adding Gaussian noise. One 

interpretation for these results is that, when no transformation is applied, the LBP filtering highlights 

some (still unknown) patterns that occurs only in the training dataset and that makes the false and real 

fingerprint very distinguishable. However, those patterns do not occur in the testing set, and the 

classifier fails to differentiate false from real fingerprint images. When the data is transformed by 

smoothing, sharpening, or adding noise, those patterns no longer occur in the training images, and the 

classifier is able to learn other (and possible more relevant) features. 

When a single classifier trained all datasets is used (section 4.1), the testing error rate for the 

Crossmatch 2013 dataset is still around 50%, which indicates that the classifier was not able to 

generalize even when more training samples were used. 

The problem was further investigated by trying to find which extracted features by the LBP+ 

histogram are the most relevant for classification. For that, a decision tree classifier was used as it 

computes the feature’s importance during training. We noticed that 3 out of 10 codes (0, 1 and 9) of the 

uniform coding and 30 out of 255 codes of the non-uniform coding are the main responsible for 

classifier’s predictions. The visual inspection of these patterns in some sample images shows that they 

in fact occur much more frequently in the real fingerprints than in the fake ones. However, there is no 

visual similarity among the neighboring regions that forms these codes, and thus they provide no 

insight into the structure that can differentiate real from fake fingerprints. 

4.3. Average Processing Times and Memory Usage 
 

In real applications, a good fingerprint liveness detection system must be able to classify the images in 

a short amount of time and should have a small memory footprint when the algorithms are required to 

run in embedded devices. Table 7 shows the average processing times and memory usage for some 

pipelines to classify a single image on a single core computer (1.8 GHz). It is worth mentioning that 

those times can be decreased, since our code for the Convolutional Networks is not optimized and there 

are fast hardware implementations [74] [44]. The feature extraction phase (using either LBP or CN) 

represents 70% of the total processing time, on average, and PCA’s rotation table represents more than 

95% of the memory footprint. Removing the PCA from the pipeline can be an alternative for devices 

that have memory limitations, but an increase of 0.5 to 2% in the error rate should be expected. The 

training time of each model for LBP and CN are around 20 minutes and 1.5 hours, respectively. 
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Table 7 - Average processing time per sample in a single core CPU and memory usage. 

 

LBP 

PCA 

GaussianSVM 

AUG 

LBP 

PCA 

GaussianSVM 

CN  

PCA 

GaussianSVM 

AUG 

CN 

PCA 

GaussianSVM 

Avg. classification time (ms) 60 520 570 2540 

Memory Footprint (MB) 52 45 410 385 

Storage space required (MB) 27 24 212 190 
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5. Conclusion 
 

A wide variety of models were implemented and compared for fingerprint liveness detection, from a 

simple k-Nearest Neighbor classifier to more complex pipelines that use feature extractor such as LBP 

and Convolutional Networks with dataset augmentation. 

The Convolutional Networks presented the best performance. However, they are slower to train 

and more complex to design than LBP. LBP with dataset augmentation gave slightly better results than 

the state-of-the-art algorithms: 9.67% error against 11.56%, on average and the Convolution Networks 

achieved an average classification error of 4.71%. When a single classifier is trained using all datasets, 

both techniques perform well. For the LBP pipeline in particular, the error rate is half of the averaged 

error rate obtained with individual classifiers. This suggests that the effort to design a liveness detection 

system can be significantly reduced if different datasets are combined during training of a single 

classifier. However, there is still room for improvement, as the models suffer from a significant drop in 

accuracy in cross-dataset and cross-device experiments, indicating that they were not able to generalize 

when samples that were acquired from different sensor types and unseen spoof techniques are 

presented during testing. 

Preprocessing operations such as Region of Interest extraction and Contrast Equalization did not 

help to improve accuracy, mainly because the feature extractors already offer some robustness against 

illumination and translation variances. PCA and Whitening are necessary, since the data has redundant 

dimensions after the feature extraction phase. 

Dataset augmentation demonstrated to be one of the main contributors to increase accuracy and it 

is simple to implement. We claim that the method should always be considered if one has enough 

computational power. 

We believe that the main contributions for the low error rates obtained were the large models and 

datasets used, like images in their original sizes, augmented datasets, and large number of layers and 

filters in the convolutional networks. With faster computers, we could execute a large number of 

experiments due to lower training/validation iteration times. The emerging high performance cloud 

computing platforms make the building of increasingly large experiments affordable by renting ready-

to-run virtual computer infrastructure. 

5.1. Future Work 
 

Further experiments will include learning the filters’ weights of the convolutional networks, as [69] 

reported that a better performance is achieved when the network is trained. 

Given the promising results provided by the dataset augmentation, more types of image 

transformations should be included, such as artificially creating images with uneven illumination and 

with random noise. In particular, we want to know the limits of the technique: how many times can the 

dataset be artificially augmented with an improvement in performance? 

A combination of convolutional networks and LBP can provide an effective scheme. The former 

offers the ability to represent more complex structures due to the deep architecture while the second is 

able to capture texture patterns, which seems to be important to the fingerprint liveness detection. 
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However, there is still no scheme to merge them, except for the trivial ensemble of two or more 

classifiers trained with the feature extractors separately, which also can be addressed in a future work. 
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Appendix A 
 

Table 8 shows the validation error in each dataset. The tag “n/e” stands for not executed, meaning that 

due to the large amount of time to search for parameters in augmented datasets, we did not execute the 

validation in the pipelines that use this technique. The parameters used in the testing dataset for those 

pipelines were the ones found in validation for the corresponding pipelines that do not use the 

augmentation technique. 

 

 

Aug 
LBP 
PCA  

Gaussian- 

SVM 

LBP 
PCA 

Gaussian- 

SVM 

Aug 
CN 

PCA 
Gaussian-

SVM 

CN 
PCA 

Gaussian-
SVM 

CN 
PCA 

Linear-
SVM 

CN 

Linear-
SVM 

LivDet 
2013 

Crossmatch 0 0 n/e 3.18 2.61 3.61 

Swipe 2.72 2.3 n/e 4.4 4.85 4.59 

Italdata 0.2 0.04 0.36 0.21 0.05 0.12 

Biometrika 0.96 0.1 n/e 1.07 0.69 0.94 

LivDet 
2011 

Italdata 2.88 0.08 2.05 0.11 0.15 0.2 

Biometrika n/e 0.37 n/e 2.17 3.58 3.71 

Digital 15.06 1.01 n/e 1.45 0.98 1.45 

Sagem 14.58 1.13 n/e 2.37 2.13 3.21 

Livdet 
2009 

Biometrika 0 0 0 0 0.02 0 

Crossmatch 1.32 1.87 n/e 0.81 0.7 0.96 

Identix 0.6 0.67 n/e 0.31 1.15 0.96 

 
Average 3.83 0.69 0.18 1.41 1.54 1.80 

Table 8 - Validation Error 

 


