research

Algorithms for Hierarchical Clustering: An Overview, II

Abstract

We survey agglomerative hierarchical clustering algorithms and discuss efficient implementations that are available in R and other software environments. We look at hierarchical self-organizing maps, and mixture models. We review grid-based clustering, focusing on hierarchical density-based approaches. Finally we describe a recently developed very efficient (linear time) hierarchical clustering algorithm, which can also be viewed as a hierarchical grid-based algorithm. This review adds to the earlier version, Murtagh and Contreras (2012)

    Similar works