7,289 research outputs found

    Shape-Based Plagiarism Detection for Flowchart Figures in Texts

    Full text link
    Plagiarism detection is well known phenomenon in the academic arena. Copying other people is considered as serious offence that needs to be checked. There are many plagiarism detection systems such as turn-it-in that has been developed to provide this checks. Most, if not all, discard the figures and charts before checking for plagiarism. Discarding the figures and charts results in look holes that people can take advantage. That means people can plagiarized figures and charts easily without the current plagiarism systems detecting it. There are very few papers which talks about flowcharts plagiarism detection. Therefore, there is a need to develop a system that will detect plagiarism in figures and charts. This paper presents a method for detecting flow chart figure plagiarism based on shape-based image processing and multimedia retrieval. The method managed to retrieve flowcharts with ranked similarity according to different matching sets.Comment: 12 page

    Statistical Mechanics of 2+1 Gravity From Riemann Zeta Function and Alexander Polynomial:Exact Results

    Get PDF
    In the recent publication (Journal of Geometry and Physics,33(2000)23-102) we demonstrated that dynamics of 2+1 gravity can be described in terms of train tracks. Train tracks were introduced by Thurston in connection with description of dynamics of surface automorphisms. In this work we provide an example of utilization of general formalism developed earlier. The complete exact solution of the model problem describing equilibrium dynamics of train tracks on the punctured torus is obtained. Being guided by similarities between the dynamics of 2d liquid crystals and 2+1 gravity the partition function for gravity is mapped into that for the Farey spin chain. The Farey spin chain partition function, fortunately, is known exactly and has been thoroughly investigated recently. Accordingly, the transition between the pseudo-Anosov and the periodic dynamic regime (in Thurston's terminology) in the case of gravity is being reinterpreted in terms of phase transitions in the Farey spin chain whose partition function is just a ratio of two Riemann zeta functions. The mapping into the spin chain is facilitated by recognition of a special role of the Alexander polynomial for knots/links in study of dynamics of self homeomorphisms of surfaces. At the end of paper, using some facts from the theory of arithmetic hyperbolic 3-manifolds (initiated by Bianchi in 1892), we develop systematic extension of the obtained results to noncompact Riemannian surfaces of higher genus. Some of the obtained results are also useful for 3+1 gravity. In particular, using the theorem of Margulis, we provide new reasons for the black hole existence in the Universe: black holes make our Universe arithmetic. That is the discrete Lie groups of motion are arithmetic.Comment: 69 pages,11 figures. Journal of Geometry and Physics (in press

    Statistical Mechanics of 2+1 Gravity From Riemann Zeta Function and Alexander Polynomial:Exact Results

    Get PDF
    In the recent publication (Journal of Geometry and Physics,33(2000)23-102) we demonstrated that dynamics of 2+1 gravity can be described in terms of train tracks. Train tracks were introduced by Thurston in connection with description of dynamics of surface automorphisms. In this work we provide an example of utilization of general formalism developed earlier. The complete exact solution of the model problem describing equilibrium dynamics of train tracks on the punctured torus is obtained. Being guided by similarities between the dynamics of 2d liquid crystals and 2+1 gravity the partition function for gravity is mapped into that for the Farey spin chain. The Farey spin chain partition function, fortunately, is known exactly and has been thoroughly investigated recently. Accordingly, the transition between the pseudo-Anosov and the periodic dynamic regime (in Thurston's terminology) in the case of gravity is being reinterpreted in terms of phase transitions in the Farey spin chain whose partition function is just a ratio of two Riemann zeta functions. The mapping into the spin chain is facilitated by recognition of a special role of the Alexander polynomial for knots/links in study of dynamics of self homeomorphisms of surfaces. At the end of paper, using some facts from the theory of arithmetic hyperbolic 3-manifolds (initiated by Bianchi in 1892), we develop systematic extension of the obtained results to noncompact Riemannian surfaces of higher genus. Some of the obtained results are also useful for 3+1 gravity. In particular, using the theorem of Margulis, we provide new reasons for the black hole existence in the Universe: black holes make our Universe arithmetic. That is the discrete Lie groups of motion are arithmetic.Comment: 69 pages,11 figures. Journal of Geometry and Physics (in press

    Semilocal Topological Defects

    Full text link
    Semilocal defects are those formed in field theories with spontaneously broken symmetries, where the vacuum manifold MM is fibred by the action of the gauge group in a non-trivial way. Studied in this paper is the simplest such class of theories, in which M≃S2N−1M\simeq S^{2N-1}, fibred by the action of a local U(1)U(1) symmetry. Despite MM having trivial homotopy groups up to π2N−2\pi_{2N-2}, this theory exhibits a fascinating variety of defects: vortices, or semilocal strings; monopoles (on which the strings terminate); and (when N=2N=2) textures, which may be stabilised by their associated magnetic field to produce a skyrmion.Comment: 28pp, DAMTP-HEP-92-2

    Computational Aesthetics for Fashion

    Get PDF
    The online fashion industry is growing fast and with it, the need for advanced systems able to automatically solve different tasks in an accurate way. With the rapid advance of digital technologies, Deep Learning has played an important role in Computational Aesthetics, an interdisciplinary area that tries to bridge fine art, design, and computer science. Specifically, Computational Aesthetics aims to automatize human aesthetic judgments with computational methods. In this thesis, we focus on three applications of computer vision in fashion, and we discuss how Computational Aesthetics helps solve them accurately

    The negative aftereffect of motion as a function of test stimulus texture

    Full text link
    Thesis (Ph.D.)--Boston UniversityThe purpose of this study was to investigate the relationship between the texture of the test stimulus and the rate of the negative after-effect of motion. An interaction theory based on contour phenomena was proposed to account for the effects of texture. The recent clinical literature has consisted mainly of studies which attempt to use the negative after-effect to diagnose brain damage. These studies have produced equivocal results. Systematic examination of the parameters of the after-effect has been limited by a lack of adequate techniques. Leads furnished by te earlier European literature on the effect have been neglected [TRUNCATED

    Phase Correlations in Cosmic Microwave Background Temperature Maps

    Full text link
    We study the statistical properties of spherical harmonic modes of temperature maps of the cosmic microwave background. Unlike other studies, which focus mainly on properties of the amplitudes of these modes, we look instead at their phases. In particular, we present a simple measure of phase correlation that can be diagnostic of departures from the standard assumption that primordial density fluctuations constitute a statistically homogeneous and isotropic Gaussian random field, which should possess phases that are uniformly random on the unit circle. The method we discuss checks for the uniformity of the distribution of phase angles using a non-parametric descriptor based on the use order statistics, which is known as Kuiper's statistic. The particular advantage of the method we present is that, when coupled to the judicious use of Monte Carlo simulations, it can deliver very interesting results from small data samples. In particular, it is useful for studying the properties of spherical harmonics at low l for which there are only small number of independent values of m and which therefore furnish only a small number of phases for analysis. We apply the method to the COBE-DMR and WMAP sky maps, and find departures from uniformity in both. In the case of WMAP, our results probably reflect Galactic contamination or the known variation of signal-to-noise across the sky rather than primordial non-Gaussianity.Comment: 18 pages, 4 figures, accepted for publication in MNRA

    Recent advances in directional statistics

    Get PDF
    Mainstream statistical methodology is generally applicable to data observed in Euclidean space. There are, however, numerous contexts of considerable scientific interest in which the natural supports for the data under consideration are Riemannian manifolds like the unit circle, torus, sphere and their extensions. Typically, such data can be represented using one or more directions, and directional statistics is the branch of statistics that deals with their analysis. In this paper we provide a review of the many recent developments in the field since the publication of Mardia and Jupp (1999), still the most comprehensive text on directional statistics. Many of those developments have been stimulated by interesting applications in fields as diverse as astronomy, medicine, genetics, neurology, aeronautics, acoustics, image analysis, text mining, environmetrics, and machine learning. We begin by considering developments for the exploratory analysis of directional data before progressing to distributional models, general approaches to inference, hypothesis testing, regression, nonparametric curve estimation, methods for dimension reduction, classification and clustering, and the modelling of time series, spatial and spatio-temporal data. An overview of currently available software for analysing directional data is also provided, and potential future developments discussed.Comment: 61 page
    • 

    corecore