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Abstract

The online fashion industry is growing fast and with it, the need for advanced sys-

tems able to automatically solve different tasks in an accurate way. With the rapid

advance of digital technologies, Deep Learning has played an important role in Compu-

tational Aesthetics, an interdisciplinary area that tries to bridge fine art, design, and

computer science. Specifically, Computational Aesthetics aims to automatize human

aesthetic judgments with computational methods. Understanding the appearance of

clothes automatically is one of those. Deep Learning meets fashion in many tasks, such

as classification (recognize different categories of clothes, describe clothes by semantic

attributes), recommendation (understand the preferences of e-commerce customers),

retrieval (find the desired clothes or similar ones in a huge catalog), generation (gen-

erate/edit clothes) and forecasting (predict sales of clothing items). In this thesis, we

focus on applications of computer vision in fashion, and we discuss how Computational

Aesthetics helps solve them accurately.

First, we introduce a new way to represent textures, based on a new paradigm

that focuses on atomic components called texels, elements that are repeated within

the pattern. Through simple statistics of texels, we generate a new descriptor made

of interpretable and fine-grained aesthetic attributes, that plugged into both image

retrieval and interactive image search systems, improves performances. We demonstrate

the advantages of working on texels on ElBa dataset, introduced in this thesis. The

dataset is composed of synthetic images of element-based textures, exploring a wide

variety of colors, spatial patterns, and shapes.

In the second part of the thesis, we present a novel framework for the video-to-shop

problem: find a clothing item portrayed in a video, within a huge catalog of shop images.

This challenge is a natural extension of the widely explored street-to-shop problem,

where the query item is a single image instead of a video. By extending to the time

dimension, we are able to extract more information from the video, thanks also to an

attention mechanism that focuses on the most salient frames. The framework is trained

with a newly designed procedure, that does not require bounding box annotations, and

still yields performances higher than existing approaches that require them. The model

is trained on MovingFashion, a novel dataset collected from e-commerce and social

networks, that we present in this thesis. This allows users to find in an online shop

the desired clothing item worn in a video from a fashion influencer or from an ordinary

person.

13
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In the third part, we discuss a new challenge: New Fashion Product Performance

Forecasting. The goal of this problem is to forecast the future of a new clothing prod-

uct in terms of sales or popularity. We contribute to this problem, introducing VI-

SUELLE, the first public dataset build upon sales data of a real fast fashion company.

This dataset provides a benchmark for forecasting models and in this thesis, for a

novel transformer-based architecture, dubbed GTM-Transformer. Compared to stan-

dard forecasting tasks, where the past observations are available, new products lack this

information. In this thesis, we propose two different insights to fill this missing past.

The first is using Google Trends as an exogenous signal, never used in practice in a new

product forecasting setting. The second is POP signal, created following a new data-

centric pipeline based on capturing the aesthetical similarity of the new product image

with respect to the fashionable and unfashionable images with the same characteristics,

uploaded on the web in the past. We demonstrate that both exogenous signals are of

benefit for accurate performance estimation, especially POP signal that provides the

best results.

The contributions introduced and shared in this thesis have many implications for

fashion companies that aim to maximize profits while reducing waste, and for users that

make e-commerces the main platforms for their purchases.



Chapter 1

Introduction

In recent years, the world of e-commerce has seen a considerable increase, accentuated

even more by the arrival of the COVID pandemic [13]. One of the most affected mar-

kets was the fashion industry, with marketplaces such as Amazon, Zalando, or Asos.

With the exponential growth of these markets, there is also the need to develop intel-

ligent systems capable of improving the user’s shopping experience through retrieval,

recommendation, or virtual try-on systems. On the other hand, another objective is

to predict the performance of clothing products, supporting brands in organizing and

planning sales, with the aim of reducing waste while maximizing revenue. Artificial

intelligence and Deep Learning have advanced the development of specialized systems

that are increasingly able to meet these issues.

An interdisciplinary field that plays an important role in automatically understand-

ing perceptual properties and the attractiveness of clothing images is that of Com-

putational Aesthetics. Computational Aesthetics (CA) is defined as “the research of

computational methods that can make applicable aesthetic decisions in a similar fashion

as humans can” [106]. For the sake of this thesis, the goal of CA ranges from identifying

aesthetic factors of texture images (e.g.:semantic attributes), to automatically finding

out the human preference within a catalog, or predicting the fashionability of clothing

images.

In this thesis, we discuss how Computational Aesthetics together with Deep Learn-

ing techniques help to propose solutions for some of the existing artificial intelligence

challenges in fashion (FashionAI), discussed below.

First, we tackle the problem of automatically describing textures with perceptual and

semantic attributes, a fundamendal component of clothes, introducing a novel frame-

work able to generate a widely informative representation of element-based textures.

These representations may be used as relative attributes [117] to improve the existing

image search frameworks, which are often sequential and time-consuming. In this way,

huge catalogs of images (e.g.: textures), present in the private databases of fabric com-

panies or e-commerce platforms (Fig. 1.1), can be indexed and explored efficiently and

effectively [72].

15
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Figure 1.1: On the left, textures sampled from a shop that sells personalized shirts. On

the right some of the textures available in a shop that directly sells patterned fabrics.

Both of these are examples of shops that has a catalog of textures that a user has to

search through.

Second, we consider the task of video-to-shop: starting from a video that depicts the

desired clothing item, the system has to find out that particular garment in a gallery of

images. It is a natural extension of the widely studied street-to-shop problem [48, 87, 42],

where the starting data is a single image instead of a video. In fact, the existing

approaches deal with single images instead of composition of frames, leading to worse

performances. Other video-to-shop approaches require a lot of annotation data [23],

such as bounding boxes for each frame of videos, that comprise a large amount of effort

and costs. For this reason, we introduce a novel dataset and a new box-free video-

to-shop framework, trained with weak annotation, easily and automatically gathered

during dataset collection.

Last, we focus on the challenge of predicting the performance of new clothing prod-

ucts. Estimating product sales or product popularity is a crucial challenge for fashion

companies [36]: a good forecast carried out prior to the target season will be helpful

in selecting the right amount of items to be ordered, reducing losses, and increasing

earnings. The existing forecasting methods [4, 3] follow the standard setup: predict the

future given past observations. In this scenario, where the clothing item has been never

seen in the market, past observations are not available. In order to face this challenge,

we propose an innovative insight and solution, introducing a new deep-learning model

that predicts clothing sales using different kinds of exogenous signals, to replace the ab-

sent past observation signals, created starting from aesthetic properties of the product

image.
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1.1 Texture Description

Every day, when we look at any object, we capture three aesthetic factors: color, shape,

and texture. For this reason, texture analysis is one of the widely explored fields in

computer vision and graphic, with many releases of datasets, which cover different

materials [56, 19, 98, 125, 158], such as wood or fabric. In addition to the material,

texture can be categorized by classes instead. In DTD [26], the authors separate the

textures in 47 different labels, based on visual attributes (banded, dotted, zigzagged,

etc. . . ), that define more perceptive characteristics than material.

Standard techniques for textures analysis are based on local features, that capture

fine-grained characteristics locally, in spatial regions, within the image. These are then

aggregated forming a single high-informative descriptor [118, 166, 160, 27, 82]. The

major weakness of these types of techniques is that they produce not-interpretable

features. The state-of-the-art in texture analysis [118] on DTD Dataset is a descriptor

built upon the concept of histogram layer, a neural network that locally models the

distribution of features, creating a sequence of histograms, aggregated together by the

network itself. The final descriptor is a vector of neural network features. Another

example is the descriptor defined in [27], made of about 64K values, build upon a

Fisher Vector aggregation of local convolutional features. These features are powerful,

but not interpretable. One of the proposed methods to obtain interpretable descriptor

is described in the same paper [27], by using the classification score for each class. This

representation is less powerful but is related to a specific property (e.g. high banded

and dotted scores mean that the textures are formed by both bands and dots).

Texture analysis is fundamental also for the fashion domain, where clothes have

often the same shape but have different motifs and colors. Being able to describe

textures in a proper way with interpretable descriptors, is important to give precise

semantic content-based information that allows users to explore catalogs fastly, finding

the preferred item to buy [133] or taking inspiration from it [72]. Attribute-based

texture features [101, 14, 26, 83] are explicitly suited to give textures semantic yet

discriminative descriptions. The 47 perceptually-driven texture attributes defined in

Describable Texture Dataset (DTD) [26] is the most known, together with Tamura

attributes [142]. It is worth noting a limitation of these attributes: they describe the

properties of a texture image as it was a whole atomic entity. In Fig. 1.2a, dotted (left)

and banded (right) attributes are considered. However, the images are strongly different:

on the left, the number and the size of dots are clearly different, while on the right the

thickness of bands changes dramatically. In Fig. 1.2b, we show an example where both

the clothes have the same attribute (checkered), but with a visible change of squares’

dimensions. In all cases, it is evident that we need attributes that are able to capture

finer expressivity, focused on recognizable elements, dubbed texels [2], that organized

according to specific spatial disposition, formed a particular type of textures called

Element-based textures [62, 93, 92, 90](Fig. 1.2a-b). They differ from whose textures

defined merely at a micro scale, i.e., focusing on materials and material properties (see

Fig. 1.2c).
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(a) (b) (c)

Figure 1.2: (a) Examples of element-based textures in the DTD [26]: dotted (left) and

banded (right) classes are examples where texels are dots and bands, respectively; (b)

Zalando shows for each clothing a particular on the texture; (c) examples of DTD [26]

textures which are not element-based: (marbled on top and porous on bottom); here is

hard to find clearly nameable local entities.

To extract the above-mentioned attributes, in this thesis, we present Texel-Att, a fine-

grained, attribute-based texture representation and classification framework for element-

based textures. Texel-Att is structured as a pipeline that starts detecting the single

texels, assigning them individual attributes. Subsequently, texels are grouped depending

on the belonging class (circle, line, or polygon), and groups of texels receive layout

attributes. Individual and layout attributes form the Texel-Att final descriptor of the

texture, that can be used for classification and retrieval.

The detection core of Texel-Att is built upon Mask-RCNN [53] architecture, whose

role is detecting Texels. The framework is trained and tested on a novel Element-

Based texture dataset, ElBa. ElBa is composed of 30K procedurally-generated realistic

renderings, where texels have different primitive shapes, colors, and layout distribution.

The resulting attributes make it possible to describe textures with very a high level of

detail and interpretabilty.

Working on this project led to another work: the first completely agnostic multi-

class object counting approach called SIMCO [43](SIMilarity-based object COunting).

The framework is built on Mask-RCNN [53] architecture, with the addition of a new

branch called Similarity Head. The model is trained on ElBa and in particular, the new

branch is trained with triplet loss, in order to embed similar shapes (type, color, and

size) close to each other and far from different ones. Since each object is considered as

a natural expansion of primitive shape, many objects can be detected by the system.

The embedding is used in a clustering procedure to divide objects into groups and count

them. The model is evaluated on RepTile [124], a dataset of real images captured in

the wild. SIMCO reaches the state-of-the-art on the dataset and paves the way for

different and completely class-agnostic applications, presented in the paper. Despite

SIMCO works on repeated objects, it is not directly related to fashion, and then it is

not presented in the thesis.

In chapter 3, we deeply explained Texel-Att framework and show experiments.

In detail we prove that:
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• texels can be detected with high precision on ElBa, and even on textures in the

wild;

• Texel-Att is better at ranking textures by their attributes, compared to other

possible approaches;

• our attributes are able to discriminate easily between classes of texture that state-

of-the-art descriptors are not able to distinguish;

• our attributes can be plugged into an interactive search system, making it faster

than using other existing attribute representations;

• the attributes are more robust under difficult conditions (illumination changes,

noise, and low resolution) compared to existing descriptors in the task of image

retrieval.

1.2 Video-to-Shop

Retrieving clothes that are worn in social media videos is the latest frontier of e-fashion,

referred to as “video-to-shop” in the computer vision literature. The aim is to match a

social video (Instagram, TikTok) containing one or more given clothing item(s), against

an image gallery (Fig. 1.3), potentially an e-commerce database. This procedure fits

perfectly the key concept of Computational Aesthetics, as it replaces the human action

of deciding when a desired garment shown in a video, in aesthetic terms, is the same

or very similar to one in the e-commerce catalog. Understanding where the outfit of

a celebrity, social influencer, or an ordinary person can be purchased, turn videos into

priceless commercials, in a market where over a billion hours of video are uploaded and

viewed on a daily basis [35], for around 3 hours per day [71, 113, 114]. The number of

global users that will stream video regularly is estimated to reach 4.5 billion over the

next five years [134], displaying the potential of video over static, generic images as a

general marketing tool [34].

Video-to-shop is an extension of the street-to-shop problem, where the probe data

is a single image [48]. On one hand, video-to-shop allows an increase of the available

information by adding additional frames as probes. On the other hand, this information

could be noisy due to challenging illumination, drastic zooming, human poses, missing

data, and multiple people (dis)appearing in the video. Another issue is that a video-

to-shop system needs training data with millions of bounding box annotations, linking

each box with a shop item [23, 167].

We introduce MovingFashion, the very first publicly available video-to-shop dataset,

composed of ∼15K different video sequences, each one related with at least one shop im-

age. Even if some video-to-shop methods in the literature [23] have their code available,

their training data are not, so MovingFashion is intended to fill this gap, representing

a solid benchmark for the community.

The videos of MovingFashion are obtained from the fashion e-shop Net-A-Porter

(10132 videos) and the social media platforms Instagram and TikTok (4723 videos),
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Figure 1.3: Sketch of the video-to-shop problem. The input is a video that portrays a

clothing item to find in a gallery. The result is a sequence of shop images sorted by

their similarity with the input item.

and contain hundreds of frames per shop item, partitioned into a Regular and Hard

setup.

Another contribution is the SElf-Attention Multiframe (SEAM) Match-RCNN, a

video-to-shop baseline that individuates products and extracts features in a “street”

video sequence by adopting a feature collection and aggregation mechanism, and then

matching the products over a “shop” image gallery. SEAM Match-RCNN extends the

popular Match-RCNN [42], state-of-the-art in the street-to-shop challenge, by applying

image-to-video domain adaptation with the use of a novel Multi-frame Matching Head.

Technically, a pretraining on the image domain of the Match-RCNN enables it to

provide initial pseudo-labels for a video sequence, individuating bounding boxes of a par-

ticular product. The training on the target domain exploits our Multi-frame Matching

Head, which aggregates features by means of a non-local block [152] between different

frames, which in turn applies a temporal self-attention mechanism [39] and a scoring

function. In this way, an aggregation based on the attention score is used to create a

single descriptor for a clothing item. In practice, SEAM Match-RCNN allows training

on video data where only the pairs <street video,shop image> are available, without

annotated ground-truth bounding boxes. This policy permits to alleviate an intense an-

notation effort, which in the case of MovingFashion would have required drawing ∼18M

bounding boxes. In the experiments, SEAM Match-RCNN gives the best performances

on MovingFashion, against multiple baselines and state-of-the-art techniques. Actually,

few frames (10) of a social video are enough to individuate the correct product within

the first 5 retrieved items with an accuracy of 80%, making SEAM Match-RCNN a

proof of concept for a potential product in e-fashion.

In addition, our approach can be applied to multiple, unrelated street images of

the same product, as it does not imply any temporal continuity between frames. This

enlarges the range of applicability of the system. For example, on the popular DeepFash-

ion2 dataset, some products have few multiple unrelated street images; by isolating these

images in a subset (which we called Multi DeepFashion2) we define another scenario

where SEAM Match-RCNN also overcomes all of the competitors in the state-of-the-art.

In chapter 4, we describe MovingFashion, SEAM Match-RCNN, the training and

the inference procedures. We also show the power of the approach with a wide range

of experiments. SEAM Match-RCNN provides a top-5 accuracy of 80% on the Moving-

Fashion dataset, compared to the 73% of the LSTM + binary tree-based AsymNet, the
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available state-of-the-art video-to-shop approach [23]. It also overcomes all of the other

different comparative approaches and baselines.

Additional experiments are carried out on a subset of DeepFashion2 which we in-

dividuated, comprised of 11114 products where few independent takes are available for

a shop item, which allows further exploration of our SEAM Match-RCNN via ablation

studies and qualitative results, that in turn demonstrate the high interpretability of the

proposed approach.

1.3 New Fashion Product Performance Forecasting

Forecasting the performance of fashion products is a typical forecasting application [25,

12]: driven by economic and financial reasons, the ability to anticipate the needs and

behavior of customers can make a big difference for commercial activity, especially when

large volumes of goods need to be managed.

Unfortunately, standard forecasting approaches require information on the past per-

formance to provide a prediction of the future [4, 61, 75] and this information is available

for evergreen products only (e.g., blue shirts), not for new ones (see Fig. 1.4a). In fact,

fashion professionals are the only ones that can help, starting from photos or realistic

renderings, which we call probe images, comparing them with trends as they surface

and finally inferring their success [123]1.
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Figure 1.4: a) A standard forecasting setup, where an evergreen item has past ob-

servations to exploit, e.g., # sales; b) New Fashion Product Performance Forecasting

(NFPPF) problem, where no past observations are available and exogenous data must

be considered.

The challenge of automatizing New Fashion Product Performance Forecasting (NF-

PPF) has started attracting attention in computer vision and machine learning [132, 36]:

by exploiting no previous knowledge but the clothing attributes [132] or image data [36],

zero-shot learning is essentially applied, under the rationale that new products will per-

form comparably to similar, older products.

1Commercial examples of this process are Trendstop https://www.trendstop.com/ and its “Trend

Platform Membership” service or WGSN https://www.wgsn.com/en/, with their study on the Shinkong

Textile.

https://www.trendstop.com/
https://www.wgsn.com/en/
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Another direction consists in using textual attributes associated with clothing im-

ages to query external sources, by checking the compatibility of the new product with

emerging trends, producing exogenous signals.

To face the challenge of New Fashion Product Performance Forecasting, we first in-

troduce a non-autoregressive transformer model dubbed GTM Transformer, which tries

to estimate the performance behavior, by modeling the performance of new products

based on information coming from several domains (modes): the product image and the

textual descriptors of category, color and fabric which are exclusively embedded into

the decoder. The above-mentioned exogenous signals are fed into the encoder. This

last component is a crucial part of GTM-Transformer, since it introduces external in-

formation on item popularity into the reasoning. Intuitively, it models what people are

interested in and proves important for forecasting performance.

Secondly, we introduce the first public dataset for new fashion product sales fore-

casting. VISUELLE is a repository built upon the data of a real fast fashion company,

Nunalie2 and is composed of 5577 new products and about 45M sales related to fash-

ion seasons from 2016-2019. Each product in VISUELLE is equipped with multimodal

information: its image, textual metadata and sales after the first release date. We use

VISUELLE to compare GTM-Transformer with the few and recent alternatives in the

state-of-the-art of new product sales forecasting.

In this thesis, we discuss the use of two different types of exogenous signals.

The first is extracted from the Google Trends API. While it has been already shown

that Google Trends signals can be used to predict diverse types of economic activ-

ities [156, 18, 52, 49, 47, 10], such as real estate sales to inflation expectations, its

adoption to clothing sales forecasting has only been suggested in [128] but never tried

in practice, especially in a new product forecasting setting. Technically, we demon-

strate that Google Trends are valuable when encoded appropriately. Thanks to the

Cross-Attention weights of our model, we find that the most useful information is sys-

tematically located around the end of the previous year’s same fashion season, i.e., seven

to ten months before the product is planned for exposure.

The second embraces the saying “an image is worth a thousand words”, comparing

the probe image of a new product directly with images uploaded on the web in the past,

driven by text tags, providing what we dub “POtential Performance” (POP) signal.

In detail, we propose a data-centric [103] solution for the NFPPF problem, based on

a cross-modal query expansion. The input is a single probe image of the product to

be analyzed, or a photorealistic rendering3, which can be available 5-6 months before

the season’s start date [1]. The approach first extracts some textual tags from the

probe or directly considers the associated technical sheet. The tag set is expanded with

some positive and negative tags, which are used to perform a time-dependent query on

the web, that is, collecting images of fashionable and unfashionable items related to

the probe, which have been uploaded during certain Kpast intervals in the past. All

2http://www.nunalie.it.
3Many excellent tools are available nowadays, such as https://www.tg3ds.com/

3d-fashion-design-tools.

http://www.nunalie.it .
https://www.tg3ds.com/3d-fashion-design-tools
https://www.tg3ds.com/3d-fashion-design-tools
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these images are used to train a binary classifier to capture what is fashionable VS

unfashionable. Since webly images have noisy labels, a confident learning [111] strategy

is designed to prune noisy images and obtain a robust model. Subsequently, in the

signal forming step, clean positive images are projected in an embedding space by the

learned model, and compared against the (projected) initial probe image, providing the

Kpast-long POP signal. The POP signal indicates how performing the probe could have

been if it were available earlier in the past, and how this performance evolved in time.

After its formation, the POP signal can be used as an exogenous observation signal to

forecast the performance of a new product. The approach should be cast in the field of

data-centric artificial intelligence (DCAI) [103], since it automates the creation of high-

quality training data for improved performance on a given classifier. It is also worth

notice that the core of the pipeline, based on capturing what is aesthetically fashionable

VS aesthetically unfashionable, is a typical computational aesthetic task.

The POP signal has also been customized to deal with fashion styles (i.e., ensembles

of clothing items) on the Fashion Forward benchmark [4]. Fashion Forward calculates

a time series for any given style, allowing for standard forecasting.

In chapter 5 we describe the whole contribution introduced in this section, from the

GTM-Transformer architecture to the pipeline followed creatin POP signal. Moreover,

we present several experiments both with GoogleTrends and POP signals, with an

accurate discussion of the results.

1.4 Contributions

In this thesis, we illustrate new datasets, techniques and frameworks able to face fashion

domain challenges like clothing texture analysis, retrieval from video and forecasting

of new fashion product performance. The industry of e-fashion is experiencing strong

growth, and it is important to support companies and consumers with advanced systems.

For this reason, the contributions in this thesis have an important industrial impact,

paving the way for potential real application. Besides the industrial factors, we propose

solutions that can provide interesting insights also for other different fields of Computer

Vision, having so a scientific impact as well.

The main contributions of the thesis can be summarized as follow:

• We introduce a new way to represent texture, based on a new paradigm that fo-

cuses on the atomic components called Texels. From these elements we extract a

set of attributes that are versatile as they can be used in multiple applications,

including interactive search by comparison on attributes and image retrieval under

strong degradation of the images. The pipeline used for feature extraction starts

from the detection of texture repeated elements (texels) instead of dealing with

raw pixels. This enables a higher-level representation, for which we show the effec-

tiveness through extensive experiments that also include a user study and demos

of different applications such as interactive image search and image retrieval. We

introduce the ElBa synthetic dataset that we use for training the texel detector.
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Experiments are performed on synthetic data and real data.

• We design an architecture to face the video-to-shop problem, a natural extension

of the more studied street-to-shop problem. We contribute by releasing Moving-

Fashion, the first publicly available dataset, together with SEAM Match-RCNN

framework, which achieves state-of-the-art on multiple benchmarks. The idea is

to perform clothes detection on a video sequence, and perform tracking to build

sequences of detections from which features are extracted. Then, through the

attention mechanism, a single descriptor is computed t to represent the whole

sequence, discarding noisy detections and focusing on a diverse and high-quality

set of frames. The proposed approach also offers an interesting insight as it is

trained with weakly labeled data, avoiding a lot of effort in bounding-box anno-

tations. The contributions introduced here, allow us to make a big leap forward

compared to single image retrieval, very relevant nowadays, as social media, with

promoting videos uploaded by an influencer, plays an important role in fashion

advertisements.

• We propose a novel way to face the challenge of forecasting performance of new

fashion products. We publish VISUELLE, the first dataset build upon data of

a real fashion company. The dataset provides a benchmark for a novel non-

autoregressive transformer model dubbed GTM Transformer, based on the stan-

dard encoder-decoder architecture. Besides the data and the novel architecture,

we provide some interesting insights about how to replace the missed past ob-

servations that, for this particular scenario, are not available. We discuss how

to use Google Trends as exogenous signals to fill the missed past, and we define

a data-centric approach to create high-quality and expressive exogenous signals,

based on esthetically fashionable and unfashionable images, uploaded on the web.

The exogenous signals are fed into the encoder part of the framework, while the

decoder takes as input information related to the new product (images, text tags

and release date). The different contributions introduced here have a considerable

impact in supporting companies during the process of bringing a new product to

market, with a strong reduction in wasted money.

1.5 Outline

The thesis is organized as follows. In the next chapter, we analyze the related literature

for each covered topic. In the chapter 3 we focus on attribute-based texture description,

introducing and explaining Texel-Att, the framework based on Texels, the texture re-

peated elements (Sec. 3.1). In the same section we give more details about ElBa dataset.

In section 3.3 we demonstrate the capability and the effectiveness of Texel-Att attributes

with multiple experiments. We evaluate the detection and shape classification accuracy

in section 3.3.1 and 3.3.2 respectively. Next, in section 3.3.3, we report the attribute

ranking accuracy. Finally, we made use our descriptor for the task of interactive image
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search in section 3.3.4 (where we validate its effectiveness with a user study) and for

image retrieval in section 3.3.5.

In chapter 4 we present SEAM Match-RCNN. This architecture is trained on Mov-

ingFashion, the first publicly available Video-to-Shop dataset, described in section 4.1,

showing statistics and detailed data processing. We then explain SEAM Match-RCNN

in section 4.2, discussing the architecture and both training and inference procedures.

To demonstrate its capabilities, in section 4.3 we test SEAM Match-RCNN on multiple

benchmarks: MovingFashion in section 4.3.1 and MultiDeepFashion2 in section 4.3.2.

Then we perform qualitative analysis of the attention mechanism in section 4.3.3 and

of the retrieval results in section 4.3.4.

In chapter 5 we introduce and discuss the problem of New Fashion Product Performance

Forecasting (NFPPF). We start sharing information about how VISUELLE dataset, the

first dataset build upon data of a real fashion company has been built (Sec. 5.1). We

start talking about exogenous signals in section 5.2, explaining how we use them to solve

the problem of missing past observations. In section 5.3 we describe the data-centric

pipeline followed to create the POP signal. In section 5.4 we show the GTM-Transformer

architecture, explaining each of its components. In order to demonstrate the strengths

of the architecture proposed, together with the correct insight of using exogenous signals

to fill the missing past information, in sections 5.5.1 and 5.5.2, we show a wide range

of experiments. In particular, in section 5.5.1 we report the performances of sales fore-

casting on VISUELLE using Google Trends as the exogenous signal, under two different

setups. In the same section, we also conduce different ablative studies to investigate

the contribution of each single input modality. In section 5.5.2 we show the results

using POP signal, emphasizing that focusing on data instead of on model, achieve best

results. In the same section, we ablate the different choices made in the pipeline design

to create the signal. Moreover, in section 5.5.3, as a further contribution, we show how

POP signal is able to deal with the Popularity Prediction of Fashion Styles task on the

Fashion Forward benchmark.

Finally, in chapter 6, we discuss the overall impact of this thesis, considering also pos-

sible future works for all the challenges addressed.
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1.6 Publications

Part of this thesis has been published in conference proceedings and submitted as journal

contributions. The authors’ list order of the papers reflects the contribution each person

carried to the results. * means equal contribution.

• “Texel-Att: Representing and Classifying Element-based Textures by Attributes”,

Marco Godi*, Christian Joppi*, Fabio Pellacini, Andrea Giachetti, Marco Cristani.

Oral at British Machine Vision Conference (BMVC) 2019. Presented in chapter 3.

• “Texture Retrieval in the Wild through detection-based attributes”, Christian

Joppi*, Marco Godi*, Fabio Pellacini, Andrea Giachetti, Marco Cristani. Oral at

International Conference on Image Analysis and Processing (ICIAP) 2019. Pre-

sented in chapter 3.

• “SIMCO: SIMilarity-based object COunting”, Marco Godi*, Christian Joppi*,

Andrea Giachetti, Marco Cristani. Poster at International Conference on Pattern

Recognition (ICPR) 2020.

• “MovingFashion: a Benchmark for the Video-to-Shop Challenge”, Marco Godi*,

Christian Joppi*, Geri Skenderi*, Marco Cristani. Oral and Poster at Winter

Conference on Applications of Computer Vision (WACV) 2022. Presented in

chapter 4.

• “Well Googled is Half Done: Multimodal Forecasting of New Fashion Product

Sales with Image-based Google Trends”, Geri Skenderi*, Christian Joppi*, Matteo

Denitto, Marco Cristani. Submitted to Pattern Recongnition Journal (2021).

Presented in chapter 5.

• “POP: Mining POtential Performance of new fashion products via webly cross-

modal query expansion”, Christian Joppi, Geri Skenderi, Marco Cristani. Sub-

mitted to European Conference on Computer Vision (ECCV 2022). Presented in

chapter 5.



Chapter 2

State Of The Art

With the rise of Deep Learning techniques, the interest of the Computer Vision commu-

nity in the fashion domain increased [22]. Earlier works focused on traditional problems

such as clothing detection and classification [163, 162, 165, 129, 87, 169, 42, 67], land-

marks detection [87, 42, 88], clothing attribute recognition [87, 88, 50, 150] and style

classification [131, 70, 141, 57, 95]. ([22] for an extensive survey on computer vision

and fashion). Thanks to the ability of Neural Network to learn more abstract concepts,

more high-level tasks have been explored, such as content-based image retrieval [85, 48,

87, 42, 59, 151, 96, 73, 69, 79, 23], recommendation [137, 153, 136, 84, 32, 58, 65], virtual

try-on [51, 149, 170, 105] and forecasting [4, 3, 36, 130, 161].

In the next sections, we analyze the state-of-the-art for each topic covered in the

thesis.

2.1 Texture Description

Texture is an essential cue which characterizes materials and objects [145, 99, 81]

and more important for the sake of the thesis, it is a fondamental part in describing

clothes [15]. Considering its importance, e-commerce websites often provide a close-

up image of the texture of a piece of clothing, as seen in Fig 2.1. Element-based

textures [62, 93, 92, 90] are textures formed by nameable recognizable elements, also

dubbed texels [2], organized according to specific spatial distributions (see Fig. 1.1a,b).

They differ from those textures whose main characteristics are defined merely at a micro

scale, i.e., focusing on materials properties (see Fig. 1.1c). Element-based textures are

of particular importance in the field of fashion, with thousands of products stored in

vast catalogs or websites that the user has to explore. In the defined scenario, describ-

ing textures and their compositional structure with interpretable and information-rich

features, is of primary importance, in order to give a precise semantic content-based

description. Texture can be represented by different types of features [81], such as bag

of words (BoW)-based [76], CNN-based [41] and attribute-based [26, 142]. Despite the

different ways to describe textures, attribute-based representation grew in interest in

27
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the last years, due to its success in image search applications: thanks to attributes

like striped, dotted, banded, etc., addressing precise types of textures has become pos-

sible in an effective and human-interpretable way, avoiding to rely to numerical-only

codes like LBP [115, 97], SIFT [119] or recent approach based on neural network fea-

tures [118, 166, 160, 27]. However, the existing attribute-based texture representation

methods lack in the representation of details, representing the texture as an atomic

entity. The proposed solution exploits the logic of texels to create a high-detailed de-

scriptor, made by the Texel-Att framework.

Figure 2.1: Examples of an online fashion shop. On the left of each example, images

and video provided for that particular item. Among different viewpoints, a zoomed shot

of the texture is selected.

2.2 From Street to Video-to-Shop

Street-to-shop task can be defined as a retrieval problem, where, given a picture of

a person wearing clothes, the aim is to find the corresponding garments in a set of

product images. It is a challenging problem that can be dealt at image level [85, 87]

or at instance level [42, 48]. The difference is that at the instance level the garment is

first detected and then the retrieval is performed on the chosen detection, instead of

that on the whole image. The main concept of the existing approaches, both image or

instance level, is to build a descriptor of the street image that is as close as possible to

the corresponding shop item. This is usually done in two different ways: by classifying

whether two items are a match or not [48], or employing triplet loss [87]. Street-to-shop

approaches employed single street images [42, 48, 87], paving the way for video-to-shop

methods [23, 167]. AsymNet [23] aggregates frames by exploiting temporal continuity;
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Dataset #Videos #Trajectories #Shops #Pairs Publicly Available

AsymNet [23] 526 26k 85k 39k 7

DPRNet [167] 818 5k 21k n.a. 7

MovingFashion 15k 15k 14k 15k 3

Table 2.1: Comparison of Video-2-shop datasets. n.a. stands for not available.

it combines an LSTM and a binary tree, with each component requiring a separate

training procedure. On the contrary, our SEAM Match-RCNN uses self-attention to

learn a descriptor from a bunch of heterogeneous images, where temporal continuity

is not required. DPRNet [167] manages the video-to-shop problem by treating it as

street-to-shop, with a network that detects and tracks garments in the video, selecting

automatically the frame with the highest quality (in terms of occlusions, blurring, etc).

That detection is finally fed into an image-to-image retrieval module. SEAM Match-

RCNN does not perform this kind of tracking, which could be prohibitive on social

videos that have strong heterogeneous variations on a few frames.

Video-to-shop approaches share similarities with video person Re-ID [80], where the

goal is to match a video snippet of a person’s silhouette against a gallery of image

identities taken from a different camera. Two recent approaches that do not make as-

sumptions about the content of the data (such as employing pose estimation or human

parsing like in [157, 140]). State-of-the-art approaches are VKD [120], NVAN [80] and

MGH [164]. VKD proposes to learn using diverse views of the same target with a

teacher-student framework, where the teacher educates a student who observes fewer

views. NVAN is based on a non-local block self-attention module, embedded into the

backbone CNN at multiple feature levels to incorporate both spatial and temporal char-

acteristics of the pedestrian videos into the representation. Multi-Granular Hypergraph

(MGH) is a novel graph-based framework that uses graph networks to cope with this

problem.

Several datasets have been proposed for the task of street-to-shop. WTBI [48] and

DARN [59] are collected from online shopping websites and they use metadata to extract

category labels, making them noisy. The DeepFashion [87], CCP [165], ModaNet [169]

and DeepFashion2 [42] datasets have higher quality labels as they are manually anno-

tate.

Unfortunately, no video-to-shop datasets are publicly available. The above-quoted

[23] and [167] use proprietary datasets, which have been not made open to the scientific

community. We compare these datasets and their reported characteristics with our

MovingFashion dataset in Table 2.1. It is visible that the datasets from AsymNet

and DPRNet have a moderate number of sequences (526 and 818, respectively), while

MovingFashion contains almost thirty times that amount (15K). In order to create

more query data, DPRNet and AsymNet sample multiple sequences from the videos

(generating 26K and 5K sub-trajectories, respectively). AsymNet contains 39K exact
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street-shop pairs and 85K diverse shop items, so one may infer shop distractors are

present (shop items not present in the street set) but no details are provided on this.

DPRNet has 21K Shop items, with no mentions about the exact pairs. MovingFashion

has a single item associated with a unique shop image for each video, for a total of 15K

unique (video) street-shop pairs.

The DeepFashion2 dataset (DF2) [42] presents a particular scenario: among the

street-to-shop datasets explicitly suited for single image analysis, DF2 is made for the

street-to-shop challenge, but some shop items are related to more than one street image

(coming from different sources), creating 11K pairings. This provides us with another

experimental setting.

2.3 New Fashion Product Performance Forecasting

The New Fashion Product Performance Forecasting (NFPPF) problem has been deeply

investigated in the fields of quantitative fashion design [122, 7, 66], marketing and social

sciences [128, 40], but is relatively new in the machine learning community. In both [36]

and [132], the main idea is that new products will sell comparably to similar, older

products. In [132], a variety of boosting algorithms (XGBoost, Random Forest) and

Neural Networks (MLP, LSTM) are taken into account, fed with textual attributes re-

lated to category and colors, and merchandising factors such as discounts or promotions.

Notably, they do not make use of image features or exogenous information. The most

related work with ours is [36], where the authors use an autoregressive RNN model that

takes past sales, auxiliary signals like the release date and discounts, textual embeddings

of product attributes, and the product image as input. The model uses soft-attention to

understand which of the modalities is the most important to the sales. The model then

embeds and combines all these attended features into a feature vector which is fed to a

GRU [24] decoder and used to forecast the item sales. In contrast to our work, [36] do

not make use of a “true exogenous” signal such as the Google Trends, the model is based

on internal information available in the data. Additionally, the autoregressive nature of

RNNs creates prediction curves that have a very common shape across products. Unfor-

tunately, the dataset and the code are proprietary and were not released. With respect

to the state-of-the-art, we focus on the additional direction of checking the past to look

for predictive exogenous signals. In particular, we exploit two different signals. First,

Google Trends, querying textual attributes related to the item to be forecast and embed

the resulting trend into the encoder of the GTM-Transformer architecture. Second, we

follow the idea of looking back to webly data as well but using web images to represent

fashionable items, obtaining a richer exogenous signal. Predicting the success of new

fashion styles has never been taken into account, with past works [4, 89, 94] focusing

on the standard forecasting setup.
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2.3.1 Datasets for fashion forecasting

Publicly available datasets to forecast fashion data take into account diverse appli-

cations, dissimilar from new product forecasting. The “Clothing, shoes and jewelry”

dataset has been used in [108, 4] to forecast fashion styles, that is aggregates of prod-

ucts of multiple brands, in terms of popularity on Instagram. In our case the problem

is different, since we are focusing on single products and not on groups of products, so

we have definitely less data to reason on. In addition, we are considering genuine sales

data, and not popularity trends. This makes our research more impactful on an indus-

trial level. The Fashion Instagram Trends [94] adds geographical information to forecast

trends in specific places. In our case, Nunalie has shops in two adjacent countries, Italy

and Switzerland, and geographical information related to single cities is available in

VISUELLE, which for simplicity have not been considered.

2.3.2 Data-centric AI.

Data-Centric AI [103] (DCAI) shifts the attention from the models to the data used to

train and evaluate them. It is a topic whose importance is constantly growing in many

AI communities [6, 112, 107]1, with important effects on CV & ML. In general, DCAI

investigates methodologies for accelerating open-source dataset creation, in particular

from low-quality resources. Consequently, it is tightly coupled with learning on noisy

data, which aims at producing consistent and low noise data samples, or removing

labeling noise or inconsistencies from existing data [111, 135, 154]. Our methodology is

data-centric, since it automates the creation of training data from web resources while

removing labeling noise. Notably, it represents a novelty in the DCAI panorama, since

it creates time-dependent training data, i.e., signals which are valid for a particular time

interval, as it is required by NFPPF and in general by forecasting tasks.

1https://datacentricai.org/.

https://datacentricai.org/
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Chapter 3

Texel-based Texture

Description

In this chapter, we introduce Texel-Att, a fine-grained, attribute-based representation

and classification framework for element-based textures. The pipeline’s framework starts

individuating texels, describing them with individual attributes; subsequently, texels are

clustered by shape class and characterized through layout attributes. The set of indi-

vidual and layout attributes makes the Texel-Att representation. This representation

can be used for classification, retrieval or plugged into an interactive image search sys-

tem. It is worth noting that Texel-Att descriptor has no pre-defined dimensionality,

as it depends on how many and which attributes one does use. In this thesis, we use

a pre-established set just to illustrate the general framework. We evaluate Texel-Att

on the first Element-Based texture dataset, ElBa. ElBa is composed of procedurally-

generated realistic renderings, where we vary in a continuous way element shapes and

colors and their distribution, to generate 30K texture images with different local symme-

try, stationarity, and density of (3M) localized texels, whose attributes are thus known

by construction.

3.1 Texel-Att Framework

In Fig. 3.1 a block diagram of the Texel-Att descriptor creation pipeline is shown. Briefly

speaking, a customized region proposal method processes input images, extracting texels

that subsequently are assigned with individual attributes, i.e., labelled according to spe-

cific texel categories, and characterized with properties related to appearance and size.

Individually labeled texels are then grouped, filtered (discarding non-repeated texels)

and layout attributes describing the spatial layout of groups are estimated. Individual

and layout attributes form the composite Texel-Att descriptor. In the following, each

processing block is detailed.

33
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TEXEL DETECTOR
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Figure 3.1: Block diagram of the formation of the Texel-Att element-based texture

descriptor. On the bottom of each plate, the specific choices made in this thesis, which

can be varied.

Texel Detector. The texel detection is built on the Mask-RCNN [53] model, which

localizes and classifies objects providing bounding boxes and segmentation masks. We

learn the model on the training partition of the ElBa dataset, allowing to detect and

classify as lines, circles, polygons potentially each texel in a given image (see Sec. 3.2).

The message here is that the texels, whose detection a few years ago was quite compli-

cated and limited to specific scenarios (i.e., lattices [46, 86]), are now easily addressable

in whatsoever displacement.

Individual description of texels. Each detected texel is characterized with aes-

thetic attributes related to shape properties and human perception, and in particular:

(i) the label provided by the Mask-RCNN, indicating its shape;

(ii) main color given by a color naming procedure [146] (with 11 possible colors);

(iii) element orientation, if any;

(iv) element size, estimated as the area of the region mask.

Textures can be characterized by statistics computed on these features (averages or

histograms, see in the following). It is worth specifying that different individual features

and statistics could be adopted; in fact here we are not looking for “the best” set of

features, but we are showing the portability and effectiveness of the general framework.

Texel Grouping. The goal is to cluster texels with the same appearance, to capture

choral spatial characteristics via layout attributes. Here we simply group texels accord-

ing to the assigned class labels (circle, line or polygon). Only groups including at least

10 texels are kept, the other detections are removed.

Layout description of texels. To describe spatial patterns of each texel group, we

measured attributes related to the spatial distribution of the texels’ centroids. Among

the huge literature in statistics on spatial points patterns’ analysis to evaluate random-

ness, symmetry, regularity and more [31, 148, 8], we selected a simple yet general set of

measurements. They are:
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Individual Attributes

Attribute Name Dimensionality

Label Histogram 3

Color 11

Orientation Histogram 3

Size 1

z

Total 18

Layout Attributes

Attribute Name Dimensionality

Density 1

Homogeneity 1

Vector Orientation 3

Local Symmetry 1

Translation Symmetry 1

Background Color 11

Total 18

Table 3.1: Dimensionality of descriptor attributes. On the left, the attributes computed

from the individual characterization of texels; on the right, attributes computed from

statistics resulting from the spatial layout. The total dimensionality of the descriptor

is 36.

(i) Point density, e.g. the number of texels per area unit (for circles and polygons)

or line density, e.g. the number of lines/bands along the direction perpendicular

to their principal orientation (for lines);

(ii) Quadratic counts-based homogeneity evaluation [64]: it amounts to divide the

original image into 100 patches and perform a χ2 test to evaluate the hypothesis

of average point density in the sub-parts. Also in this case for lines, we estimated

a similar 1D feature on the projection.

(iii) Point pair statistics [168]: we estimate the point pair vectors for all the texel

centers and then use them to estimate the histogram of vectors orientation.

(iv) Local symmetry : for circles and polygons we considered the centroids’ grid and

measured average reflective self-similarity of 4-points neighborhoods of points after

their reflection around the central point. The distance function used is the average

point distance, normalized by neighborhood size.

(v) Translational symmetry : given the spatial distribution of the centroids of the de-

tected dots and polygons, we characterize their average center-reflective and trans-

lational symmetry as follows. For the average reflective symmetry, we consider

for each centroid a 4-points neighborhood, reflect the points of the neighborhood

with respect to the center and estimate the distance from the closest centroid grid

point. The average center-reflective symmetry score is

S(R) =
1

N

N∑
i=1

4∑
j=1

∣∣∣ ~Ri(~nij)− ~ci
∣∣∣

where N is the total number of centroids in the group, ~ci is a centroid, Ri is the

reflection around centroid i, ~nij is the j − th nearest neighbor of the centroid i

(Fig. 3.2 left).
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Figure 3.2: Symmetry scores are evaluated as an average of local self-similarity of ele-

ments’ centroid patterns after translation of 4-point neighborhoods of point pairs vectors

included in the neighborhood (left) and after reflection with respect to the central point

(right).

For the average translational symmetry, we consider for each centroid a 4-points

neighborhood, translate the points of the neighborhood of all the ~tj vectors joining

it with the neighbors and estimate the distance from the closest centroid grid point.

The average translational symmetry score is

S(T ) =
1

4N

N∑
i=1

4∑
j=1

4∑
k=1

∣∣~nik − ~ci + ~tj
∣∣

Where N is the total number of centroids in the group, ~ci is a centroid, Ri is the

reflection around centroid i, ~nij is the j − th nearest neighbor of the centroid i

(Fig. 3.2 right). Symmetry descriptors are computed on 1D projections for line

texels.

The complete pattern descriptor is finally built joining texel attributes, spatial pattern

attributes and the color attributes of the background. The dimensionality for each of

these attributes is reported in Tab. 3.1. 1-dimensional attributes are averages of all the

extracted values, while multi-dimensional ones are histograms. The Texel-Att descriptor

is composed by concatenating the attributes and Z-normalizing each one of them.

3.2 Textures Datasets

While element-based textures are common and relevant to many practical applications

(see Fig. 1.1), no public database focused on this texture domain is available. Existing

databases as the DTD [26] include some examples of these textures (Fig. 1.1(a)), but

these are mixed with other texture types. For these reasons, we build ElBa, the first

dataset of element-based textures, and E-DTD, the element-based portion of the DTD

dataset.
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Figure 3.3: Images from the ElBa dataset.

3.2.1 ElBa dataset

ElBa includes synthetic photo-realistic images, like those shown in Fig. 3.3. The ad-

vantages of dealing with synthetic textures are the precise annotations for texels by

construction, and the possibility to train adequately a deep classifier, since training

with synthetic data is a common practice [144, 11]. In particular, we propose a para-

metric synthesis model where we vary both texel individual (addressing the single texel)

and layout attributes (describing how groups of texels are mutually displaced).

As for individual attributes, we vary texel shape, size and orientation and color

as follows. For the shape, inspired by the 2D shape ontology of [109], we consider

general regular entities as circles, lines, polygons (squares, triangles, rectangles) since

they can be thought of as approximations of more complicated shapes and because

they encompass a large variety of geometric textiles. Size and orientation are varied

linearly over a bounded domain. Colors are chosen from harmonized color palettes

to better represent realistic use of colors. Texels are placed in 2D space based on a

variety of layouts that can be described succinctly using symmetries. We consider both

linear and grid-based layouts where the layout attributes are defined by one or two

non-orthonormal vectors that define the translation between texels in the plane. This

simple description represents several tiling of the plane and their corresponding patterns.

We consider both regular and randomized distributions, where the randomization is

performed by jittering the regular grid. By using jittering, we create a continuum

between regular and non-regular distributions, and by varying the jitters per-texel we

can change the stationarity.

Importantly, we take into account distributions of more than one element type ar-

bitrarily combined in the plane. For example, we can create dotted+striped patterns.

Each texel type has its own spatial layout attributes effectively creating arbitrary multi-

class element textures (Fig. 3.3).

We generate the images of ElBa using state-of-the-art computer graphics tools. We
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Figure 3.4: Examples of E-DTD annotations: ground truth green bounding boxes

overlayed to images of the classes lined, dotted, honeycombed, respectively.

use Substance Designer for pattern generation 1. Substance gives high-quality pattern

synthesis, easy control and high-quality output including pattern antialiasing. High

frequency patterns simulating realistic materials are added to the generated images.

This procedure led to a rough total of 30K of diverse textures rendered at a resolution

of 1024 × 1024. The texture design process automatically provides ground-truth data

for our analysis including texels masks, texels bounding boxes, and spatial distribution

attributes. In total this amounts to around 3M annotated texels. It is very important to

note that, differently from the other datasets used in the texture analysis domain, ElBa

does not come with a rigid partition into classes: semantic labels that define relevant

classification tasks like those used in our tests (Sec. 3.3.2) can be derived by texels’

attributes or by experiments with subjects.

The complete dataset is split in a training part (90%), used to train the network

model and a test part (10%), used to validate the classification and recovery experiments.

3.2.2 E-DTD dataset

To demonstrate our approach on real images, we created the Element-based DTD (E-

DTD) as follows. From the DTD, we extracted textures that are element-based, i.e.

characterized by a distribution or recognizable repeated texels with limited perspective

distortions. We manually annotated the bounding boxes of each texel. E-DTD includes

1440 images belonging to 12 of the original DTD classes: Banded, Chequered, Dotted,

Grid, Honeycombed, Lined, Meshed, Perforated, Polka-dotted, Studded, Waffled. These

classes have been selected by 7 experts (3 graphic designers and 2 fashion experts and

2 computer scientists) with all of them agreeing on their inclusions. DTD classes with

partial consensus have not been inserted into E-DTD. The annotation of texels was

carried out by Mechanical Turk, borrowed from the three-phase ImageNet crowdsourcing

annotation protocol [139]. The protocol consists of (1) a drawing phase, (2) a quality

verification phase, where a second worker validates the goodness of the bounding boxes

and (3) a coverage verification phase where a third worker verifies whether all object

instances have bounding boxes. The annotation process produced around 900K texels

annotations, some of which are shown in Fig. 3.4. It is important to note the very diverse

types of bounding boxes, from very long and thin (addressing line texels) 745× 5 pixels

bounding boxes to very small 5× 5 pixels bounding boxes (on tiny circles).

1https://www.allegorithmic.com/

https://www.allegorithmic.com/


3.3. EXPERIMENTS 39

3.3 Experiments

Experiments focus on five aspects:

1) detection of texels, where we show that finding texels is nowadays possible, with

a Mask-RCNN trained on ElBa;

2) classification, where we point out the failure of state-of-the-art descriptors in dis-

tinguishing textures which are clearly diverse against our Texel-Att that instead

is succeeding;

3) ranking, where we demonstrate that Texel-Att representation ranks texture w.r.t.

expressive yet fine-grained attributes;

4) image search, where the Texel-Att attributes are exploited for accelerate human-

in-the-loop image search [72] onto large image corpora.

5) retrieval, where we highlight the effectiveness of Texel-Att in retrieval under sim-

ulated real-world conditions.

3.3.1 Detection of texels

Dataset mAP AP50 AP75

E-DTD 0.53 0.63 0.40

ElBa 0.91 0.92 0.90

Table 3.2: Detection per-image av-

erage precision (see text) on E-DTD

and ElBa datasets.

Detection performances have been computed on

the testing partition of ElBa and on the whole

E-DTD. The Mask-RCNN model used in these

experiments has been trained on the training par-

tition of ElBa. Fig. 3.10 reports some Texel-Att

detection qualitative results, while Tab. 3.2 re-

ports per-image average precision (AP): in prac-

tice, AP is computed for each image, and aver-

aged over all the images, since we are interested

in capturing how much all of the texels of a single

image are detected, since it is crucial for computing the Texel-Att attributes afterwards.

E-DTD dataset gives lower results, since it contains images with dramatic perspective

deformation (see Fig. 3.10(a)), which was not a factor in the ElBa training data. De-

spite this, the next experiments show that such detection performance is enough to

estimate attributes with high accuracy. Mask-RCNN trained on COCO gives dramati-

cally low results (mAP = 1.75e-6), due to the completely different scenario, not reported

in Tab. 3.2 for clarity. One may ask how Texel-Att detection works on a texture which is

not element-based, like Fig. 1.2d. Few tests showed that the confidence of the detections,

in that case, is definitely lower than in the element-based case.

3.3.2 Classification

On texel classification into circles, polygons, lines categories, Mask-RCNN scores a

99.85% of accuracy on almost 550K of correctly detected (IoU>0.5) texels. Class labels
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Figure 3.5: Detection results on ElBa dataset. Green color is used for the correct

detections, blue for false negative detections and red for the false positive detections.

Figure 3.6: First column: Banded; Second column: Chequered; Third Column: Dotted.

Green color is used for the correct detections, blue for false negative detections and red

for the false positive detections.
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Figure 3.7: First column: Grid; Second column: Honeycombed; Third Column: Lined.

Green color is used for the correct detections, blue for false negative detections and red

for the false positive detections.

are used to organize texels into groups, as described in Sec. 3.1. Groups are described

with layout attributes, and this completes the Texel-Att description. The Texel-Att de-

scription allows to communicate about visual aspects of a texture that are apparent yet

unreached by the current literature. Three simple experiments on binary classification

demonstrate the expressivity of Texel-Att, each one focusing on 200 ElBa images having

strongly different attributes, that is single-color VS bi-color circles, regularly VS ran-

domly positioned circles and lines with uniform or non-uniform width (see Fig. 3.11).

Cross-validated 5-fold experiments compare the 36-dimensional Texel-Att description

(see Tab. 3.1) against CNN+FV (65536-dimensional) and the Tamura [142] classic tex-

ture description. All of the three descriptors are fed into linear SVMs. Accuracies are

shown in Tab. 3.3.Texel-Att obtains the best results as it captures higher visual seman-

tics, i.e., the texels and how they are mutually related. FVs and Tamura features are

not able to capture objects and spatial layout, focusing on filter outputs or directly on

pixel values.

On E-DTD, Texel-Att description individuates strongly different textures within

the same class, ideally defining further, finer-grained level of classes it can separate.

For example the dotted and banded classes (see Fig. 1.2) are now further specified and

classified considering big or small dots, regular or irregular bands.
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Figure 3.8: First column: Meshed; Second column: Perforated; Third Column: Polka-

Dotted. Green color is used for the correct detections, blue for false negative detections

and red for the false positive detections.

Classes Tamura [142] FV-CNN [27] Texel-Att

Line uniformity 70.60 66.80 85.30

Circle positioning 54.86 53.01 97.33

Circle coloring 50.19 52.94 93.42

Table 3.3: Classification accuracy in three different binary tasks with three different

approaches.

3.3.3 Ranking

Other than capturing fundamental properties of textures (for example, having regularly

VS randomly placed texels, see the previous section), Texel-Att attribute values can be

used to rank textures. Attributes that can be ranked are the basis for human-in-the-

loop search strategies [72], so it is crucial that the ranking is reliable. Ideally, with the

ground-truth texel detection the ranking via Texel-Att attributes will be perfect. In this

experiment we evaluate how our detection step corrupts the ranking, and whether the

ranking can be better estimated with learning based strategies, avoiding the detection

step.

For simplicity, we consider here partial ranking; an attribute that induces partial

ranking is said relative [117]; formally, given a set of images I={i, j} and an ideal Texel-
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Figure 3.9: First column: Studded; Second column: Waffled; Third Column: Woven.

Green color is used for the correct detections, blue for false negative and red for the

false positive detections.

Att attribute a (i.e., computed on the ground-truth texel detection) , there exists a

partial order relation r∗a such that i > j ⇐⇒ r∗a(i) > r∗a(j) ∧ |r∗a(i)− r∗a(j)| > γa.

The goal of this experiment is to estimate a function ra(i) as close as possible to r∗a.

Following the protocol of [117] the ranking accuracy of the function ra is defined as the

percentage of pairs correctly ordered by the ra function over all the possible pairs in the

set of images.

Two are the strategies we compare to estimate ra: the first is the Texel-Att pipeline,

which measures the attribute on top of the texel detections. The second is the relative

attribute estimation of [117] using the FV-CNN [27] descriptor as input. For this second

strategy we can assume xi as the feature vector in Rn for the image i. In this case ra is

estimated by a ranking SVM, following the guidelines in [117]. We assume ra = wT
a xi so

that the output of the modeling is the unknown vector w. The model is trained using

the set of ordered pairs of images Oa = {(i, j)} where (i, j) ∈ Oa ⇒ i � j and the set

of un-ordered pairs of images Sa = {(i, j)} where (i, j) ∈ Sa ⇒ i ∼ j.
We perform this experiment on the ElBa dataset (using the partitioning defined in

Sec. 3.2) and the E-DTD dataset (randomly choosing 90% of the images as training set

and the rest as testing set). We consider one attribute at a time. Ground truth r∗a (i.e.

ordered and un-ordered pairs) are computed from the ground truth detections also used

in Section 3.3.1. The ranking accuracy across all attributes is shown in Tab. 3.4. It can

be clearly seen that computing explicitly texel detection (i.e., following the Texel-Att

pipeline) is the best strategy to rank textures according to the proposed attributes.
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Figure 3.10: Texel-Att detection qualitative results

on both E-DTD (left) and ElBa (right) datasets. In

green the correct detections, in red the false posi-

tives (19 in the first, 0 in the second) and in blue

the false negatives (35 in the first, 3 in the second).

The AP(IoU=.50) are 0.81 and 0.99, respectively.

Figure 3.11: Images from

the ElBa dataset, in columns:

mono-colored regular and ran-

dom circles, bi-colored regular

and random circles, uniform and

non-uniform lines.

E-DTD

Attributes Rank SVM [117] Texel-Att

% of Circle Texels 90.40 100.00

% of Line Texels 89.66 100.00

% of Polygon Texels 86.61 100.00

Background Color 66.74 90.71

Area 65.52 85.71

Density 90.55 95.14

Texel Orientation 66.32 69.16

Texel Color 66.74 94.66

Homogeneity 79.91 90.29

Local Symmetry 54.72 64.29

Translational Symmetry 50.82 59.57

Translation Histogram 57.47 68.81

Mean 67.56 81.68

ElBa

Attributes Rank SVM [117] Texel-Att

% of Circle Texels 72.71 98.86

% of Line Texels 81.56 98.43

% of Polygon Texels 71.66 98.14

Background Color 63.02 93.08

Area 70.16 93.86

Density 81.86 96.86

Texel Orientation 63.47 83.67

Texel Color 62.91 99.49

Homogeneity 77.06 96.86

Local Symmetry 71.06 81.71

Translational Symmetry 63.57 87.14

Translation Histogram 68.95 73.95

Mean 65.95 84.55

Table 3.4: Ranking accuracy of relative attributes on E-DTD (left) and ElBa (right)

datasets.

3.3.4 Texture Interactive Search

In this experiment we follow the Whittlesearch (WH) feedback scheme [72] to search a

texture among a large repository. It can be considered a coarse-to-fine user-initiated and

iterative search, with each iteration at time t = 1, . . . , T presenting on a GUI the target

image, simulating the user’s envisioned picture, and a reference set Tt of n = 8 images

the user has to interact with by giving a feedback. At each iteration, top-ranked images

are shown, until the target is ranked in the top n images, or the maximum iteration

T = 10 is completed. The WH scheme enriches traditional binary relevance feedback

mechanism [72] by allowing the user to whittle away specific irrelevant portions of the

visual feature space, pinpointing how different one image in Tt is w.r.t. the target by

using relative comparisons (“more”, “equally”, “less”), on a provided set of attributes.

To prove that introducing Texel-Att attributes is beneficial to better describe textures,

we set up a task of Interactive Image Search following the non-Active WhittleSearch
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Figure 3.12: From texture with the smallest average texels’ area (left) to the texture

with the biggest one (right).

Figure 3.13: From texture with the vertical orientation (left) to the texture with the

horizontal one (right).

variant [72], using our 36 attributes (see Table 3.1) estimated on top of the detection

step. We compare with the attributes extracted from ground-truth annotations to un-

derstand how much a more accurate estimation leads to a better performance. We also

compare with the 47 DTD attributes [26] employed here in their relative form (i.e., each

attribute has a ranking function indicating how much it is expressed in the image) [117]

and the 6 Tamura [142] attributes (coarseness, contrast, directionality, linelikeness, reg-

ularity, roughness). In particular we compare with three different variants: the 47 DTD

attributes, the 6 Tamura attributes and the 47+6 DTD+Tamura attributes. The last

combination is the most appealing, since the DTD attributes indicate the content of a

Figure 3.14: From texture with the most regular layout disposition (left) to the texture

with the least regular one (right).
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Figure 3.15: From texture with the smallest average texels’ area (left) to the texture

with the biggest one (right).

Figure 3.16: From texture with the vertical orientation (left) to the texture with the

horizontal one (right).

texture (i.e., dots) and the Tamura attributes models low-level characteristics similar

in spirit to ours (e.g., regularity) but computed on the pixels and not on texels. For all

of these, each user is presented with a randomly chosen target image from the database

(in this case, the ElBa dataset presented in Section 3.2) . The goal is to navigate the

database until the target image is found (i.e. it becomes one of the top n most relevant

images in the database). A total of 50 unacquainted users participated in the study

(mean age: 24, std: 1), after having performed a brief individual training session on

the use of the interface. Each user had three trials and performances are averaged.

Users were partitioned equally among the five approaches taken into consideration in

Figure 3.17: From texture with the most regular layout disposition (left) to the texture

with the least regular one (right).
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Figure 3.18: From texture with the smallest average texels’ area (left) to the texture

with the biggest one (right).

Figure 3.19: From texture with the vertical orientation (left) to the texture with the

horizontal one (right).

this experiment.

Following [72], performance is measured using the percentile rank of the target image

(i.e. the fraction of the database images ranked below the target) after a fixed number

of interaction steps. The closer to 100%, the better the result. We also compute Search

Accuracy: by considering 40 images as the size of a typical image search page [72],

a texture is considered as “found” by the search if it is ranked among the first 40

images. Keeping this in mind we find that on the E-DTD dataset we are able to

individuate within 10 iterations the desired texture in the 90% of cases while using

the most performing variant’s (DTD+Tamura) attributes accuracy drops down to 71%.

Figure 3.20: From texture with the most regular layout disposition (left) to the texture

with the least regular one (right).
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Figure 3.21: Texture Interactive Search (TIS) Percentile Rank and Search Accuracy

results on ElBa (first row) and E-DTD (last row). On the x axis the number of feedback

iterations. On the y axis the Percentile Rank index/Search accuracy score.
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On the ElBa dataset, which is much more challenging on this task due to the larger

size of the pool of images and the finer grained nature of the textures, we are able to

reach 44% accuracy, while the DTD+Tamura attributes reach only 15%. The plot in

Fig. 3.21 shows that Texel-Att has the best performance at any iteration. In addition,

a good performance is preserved even in the case of predicted attributes, confirming the

robustness of the approach against imperfect texel detection. Finally, on average we are

able to individuate the desired texture more often with our approach than with other

techniques.

3.3.5 Texture Retrieval

In this experiment, we highlight the effectiveness of Texel-Att in a retrieval task un-

der simulated real-world conditions. The pipeline is as follows: a query image (e.g. a

picture of a textured captured by a user) is processed by the Texel detector, allowing

for the computation of individual and layout attributes and thus obtaining a descrip-

tor. A standard distance function (such as cosine distance) is computed between every

database image and the query image. The database set is then sorted according to the

distance and the resulting ranking can be shown to the user for browsing. We compare

our approach with both state-of-the-art texture descriptor FV-CNN [26] and Tamura

attribute-based descriptor [142]. The database set for this retrieval experiment is the

whole test partition of the ElBa dataset (composed of ∼3000 images). To simulate the

real challenging conditions, we generated 6 variants of each image, down-sampling at

one of 3 different resolutions (100x100, 200x200, 300x300) and up-sampling them back

to the original image size (1024x1024). Then we apply one of the following distortions:

• impulsive noise with a pixel’s probability of 0.2 over all the image;

• radial lighting effect, increasing the brightness on a random point on the image

and gradually decreasing it more in each pixel the farther from the chosen point

it is.

Some examples of these images are shown in Fig. 3.23. It can be seen that distorted

images simulate pictures that could be captured by users wishing to employ a retrieval

application. The lighting effect simulates the flash of a camera while impulsive noise

simulates general defects in the image acquisition process.

We consider each of the 6 variants as query set and we test each one separately.

Given a distorted image from the query set, the task is to retrieve the corresponding

original one from the database set. The position of the correct match in the computed

ranking is recorded. This process is repeated for every image in a query set.

To distance functions used for ranking is chosen according to the descriptor; for each

descriptor we selected the best performing distance function between all of the ones

available in the MATLAB software [100]. More specifically, for the FV-CNN descriptor

and our descriptor we employ the cosine distance while for the Tamura descriptor the

cityblock distance function performs best.
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Distortions Tamura [142] FV-CNN [27] Texel-Att

Down-Sampling (100x100) and

Impulsive Noise (p=0.2) 0.1380 0.3304 0.6618

Down-Sampling (200x200) and

Impulsive Noise (p=0.2) 0.2103 0.4811 0.8011

Down-Sampling (300x300) and

Impulsive Noise (p=0.2) 0.2284 0.5640 0.8560

Down-Sampling (100x100) and

Radial Lighting Effect 0.1611 0.4394 0.6356

Down-Sampling (200x200) and

Radial Lighting Effect 0.1728 0.8001 0.8746

Down-Sampling (300x300) and

Radial Lighting Effect 0.2708 0.8855 0.9376

Table 3.5: AUC (Area Under Curve) for each distortion variant. Texel-Att performs

better on every one of them. The related CMC are shown in Fig. 3.22.
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Figure 3.22: CMC curves on the retrieval experiments. Different plot for different

variants of distortion: (a) 100x100 down-sampling and impulsive noise (b) 200x200

down-sampling and impulsive noise (c) 300x300 down-sampling and impulsive noise

(d) 100x100 down-sampling and radial lighting effect. (e) 200x200 down-sampling and

radial lighting effect. (f) 300x300 down-sampling and radial lighting effect. On the x

axis the rank score (first 200 positions). On the y axis the recognition rate.
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Table 3.5 shows the results of this experiment in all of the 6 variants previously

described. In each case Texel-Att reaches the best results in terms of AUC: Area Under

Curve index related to CMC (Cumulative Matching Characteristics) curves shown in

the plots in Fig 3.22. We show only the first 200 positions for the CMC curve rank as

we consider higher ranking positions less useful for a retrieval application (a user will

rarely check results beyond 200 images).

Figure 3.23: Three examples of distortions. For each one the biggest image is the

original pattern. On the right, the first row depicts the radial lighting effect while the

second one the impulsive noise distortion. The column are organized from the 100x100

down-sampling to 300x300 down-sampling.
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Chapter 4

Video-To-Shop Retrieval

In this chapter, we present MovingFashion and SEAM Match-RCNN, respectively a

novel dataset and a new framework for the video-to-shop problem: find the clothes

worn in a video within a gallery of shop images. It is worth notice that the aim of

this task is to automatize the sequential search process made by a human, in finding

the garment that they like, worn by influencer in an Instagram story. It is a striking

example of what the Computational Aesthetic want to deal with.

MovingFashion dataset contains 14866 videos and their corresponding shop images,

partitioned in two different setups, Regular and Hard. The first is collected from the

e-commerce website Net-A-Porter, taken under a controlled scenario. The latter is built

with videos in the wild, taken from social networks such as Instagram and TikTok. Com-

pare with Regular partition, it represents a harder scenario, with occlusions, different

lightning, and other challenging conditions.

SElf Attention Multi-frame Match-RCNN (SEAM Match-RCNN) exploits a fea-

ture tracking and aggregation mechanism obtained by a non-local block temporal self-

attention mechanism, mounted on the top of the Match-RNN architecture. The archi-

tecture is trained by domain adaptation, avoiding the need for tons of bounding-box

annotations.

We compare SEAM Match-RCNN on MovingFashion and on the multi-frame street

data excerpt of DeepFashion2, against multiple baselines and state-of-the-art techniques,

achieving the new state-of-the-art on all the two datasets. On average, given a TikTok

video from the Hard partition, we are able to individuate the correct garment within the

first 5 retrieved items in a 1300+ elements gallery with an accuracy of 80%, representing

an important proof of concept for a potential industrial application in e-fashion.

4.1 MovingFashion dataset

MovingFashion has 5.854M annotated frames, organized into 15045 video-shop matching

pairs, i.e., each video is associated with a distinct shop image. In particular, there are

14.8K unique videos, among which some sequences (190 videos) have more than one

53
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Figure 4.1: MovingFashion dataset samples. The top row contains a “Regular” se-

quence, the bottom row a “Hard” sequence.

associated shop item (e.g., a t-shirt and trousers). The length of the videos is detailed

in Fig. 4.2b, while the frame rate amounts to about 30FPS. Shop items are divided in

classes, following the DeepFashion2 [42] taxonomy. The list of classes and the number

of occurrences for each class in the dataset is reported in Fig. 4.2a.

4.1.1 Data sources

MovingFashion is formed by two subsets: Regular and Hard.

Regular MovingFashion: Regular MovingFashion consists of 10132 videos down-

loaded from the e-commerce website Net-A-Porter 1: in the street video a single person

is wearing the shop item in an indoor scenario (which can vary), and the corresponding

shop image consists in the shop item captured over a plain background. This is the

canonical shop image we have used in our experiments. Additionally, we have collected:

a front shop image captured in the same background of the street video and worn by

the same model in a frontal pose; a rear view image and a detail of the fabric. These

last three were not used in the experiments. An example of Regular MovingFashion is

showed in Fig. 4.1a. All of the videos in Net-A-Porter have been designed to promote

a clothing item, which made the data collection process simpler. Cleaning was neces-

sary only to remove classes not compliant with the taxonomy of DeepFashion2 [42], in

particular shoes (deserving of a specific fashion taxonomy) and jewelry (due to the lack

of a shared and widely accepted aesthetical taxonomy). For the remaining classes, the

association to the specific DF2 taxonomy was direct.

Hard MovingFashion: Hard MovingFashion consists of 4723 videos from the social

platforms Instagram and TikTok. In this case, shop images have been obtained either

1https://www.net-a-porter.com

https://www.net-a-porter.com
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Figure 4.2: MovingFashion statistics; a) Cardinality of each clothing item class; b)

Histogram of the number of frames for the street sequences.

by downloading images associated to the video as multiple images of the Instagram post

or as part of the video itself (the spatial layout of some raw videos was organized in two

halves, one being a still picture of the “shop” item, the other with the “street” video).

Hard MovingFashion represents the hardest challenge, since all of the critical conditions

listed in the introduction are present here, as also visible in Fig. 4.1b.

Instagram and TikTok videos required a lot of work, starting with the search for

the street videos and their shop counterparts using the available API, up to the careful

scraping of hashtags and profiles. In order to to download the data, the Instaloader2

tool was employed. We manually selected a list of hashtags and profiles with a lot of

content, i.e. a lot of videos paired with fashion products for sale. Through the use of the

tool, we downloaded posts containing videos only based on the previously mentioned

hashtags and profiles. The layout of these videos was standard for the vast majority of

them: the frame was divided vertically in two parts, one with just a still picture of the

shop product and one with the video itself.

We manually annotated these videos by following these steps:

• We checked that the product actually appears in the video, since in some cases

the item never appears or appears very briefly in the frame; sometimes the item

is in a different color than the one in the shop image.

• We drew a bounding box around the area of the shop item(s), taking care to

include as few other items as possible.

• We drew another bounding box around the area of the video.

Using these annotations we crop the street videos and shop images. This results in

pairings, where in some cases we have more than one shop item associated with a street

video.

2https://instaloader.github.io/

https://instaloader.github.io/


56 CHAPTER 4. VIDEO-TO-SHOP RETRIEVAL

Next, we dealt with duplicates of shop products. In some cases the same product is

showcased in multiple videos by different users, but fortunately, the shop image used in

such videos is the same. We leveraged this fact to perform a duplicate search for all the

shop images. Products that were found to be duplicates were merged, creating pairings

where for one shop product multiple videos are associated. To perform this search,

for each product we searched for duplicates using a pre-existing tool3 that employs

Perceptual Hash. However we found out that in order to have a very high recall, this

process also includes a lot of false positives. To perform a more thorough search, we tried

an Image Registration technique using the RANSAC algorithm between each shop image

and the duplicate candidates found using the tool. We tried to estimate a Similarity

Transform, to account for translations and scaling (as is the case for these images). We

then put a threshold on average pixel difference to separate between duplicates and non

duplicates. Since no Python libraries that implement RANSAC are available, it was

performed using a custom script.

To make sure that MovingFashion respects the privacy of social media users, we

have rendered any face in the videos blurred using a publicly available, face blurring

tool4.

After collection and preprocessing, we split the data into a training and a testing

partition, taking care of applying the same split for each single class. We perform a

90/10 train/test split for each partition before merging. Bounding boxes are extracted

using a clothing detector. We then utilize the training data to train our SEAM Match-

RCNN following the unsupervised procedure shown in Sec. 4.2.4. Since video sequences

contain more than one item, to evaluate SEAM Match-RCNN and all the compara-

tive approaches we create a tracklet containing the correct item for each street video

sequence. In order to create them:

• Our SEAM Match-RCNN is trained on the data using only video-image pairing

annotations. This results in a model where the Single-frame Matching Head can

be effectively used for precisely tracking each item.

• We use the trained model to build a set of tracklets for each video.

• We manually go over each video and select the tracklets that contain the paired

shop item, merging them if they are disjointed (this happens when an item is

occluded completely or disappears from the frame and two separate tracklets are

built).

The resulting tracklets are then saved. While for our approach, no tracklet annota-

tions are used during training, they are used for all the comparative approaches. They

are considered as equivalent to ours (the detector and the tracker are the same). It

can be argued that they are actually better than ours as they are produced after the

last epoch of training, while for our approach we start with a tracker that has not been

trained yet. For the Person Re-ID approaches, the annotations are used to crop out

3https://github.com/umbertogriffo/fast-near-duplicate-image-search
4https://github.com/ORB-HD/deface

https://github.com/umbertogriffo/fast-near-duplicate-image-search
https://github.com/ORB-HD/deface
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Figure 4.3: Architecture of our SEAM Match-RCNN system. Images are first processed

by the Match-RCNN to extract bounding boxes and convolutional features. After track-

ing a clothing item across frames, its features are further processed by the Multi-frame

Matching Head producing a final matching score between the street video sequence and

the shop image.

part of the image according to the extracted bounding box. All of the comparative

approaches shown in Sec. 4.3 use these ground truth tracklets for training and testing.

4.2 SEAM Match-RCNN Framework

SEAM Match-RCNN takes as input a sequence of street images i1...iN , and compares it

with the gallery of K shop images providing a list of matching scores as output. Once

the model has learned, the retrieval happens by means of three procedures:

1. Tracklet creation;

2. Feature aggregation;

3. Video-to-shop matching.

Going through these steps will allow us to present the structure of the network,

detailed in Fig. 4.3.

4.2.1 Tracklet creation

On the input video sequence we need to locate a set of consecutive detections which refer

to the same object, dubbed here tracklet. Since multiple objects might be on the video,

multiple tracklets are expected. The module that deals with this is the Match-RCNN,

which is composed of three functions:

1. A clothing detector which provides convolutional features ci,t,k with i indicating

the i-th tracklet, t indicating the frame, k the k-th detection in that frame;

2. A 256-d feature extractor fi,t,k = f(ci,t,k) ∈ R256 which performs embedding of

the convolutional features;
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3. A matching score function m(fi,t,k, fi,t′,k′) ∈ [0, 1], comparing different embed-

dings.

f and m together form the Single-frame Matching Head.

The tracklet extraction procedure is performed in an iterative fashion, following a

two-step process:

1. Determining the pivot bounding box: This represents the most confident detection

fi,tbest,kbest
in the sequence and acts as the central reference based on which the

tracklet will be built.

2. Performing propagation based on the pivot : By comparing the embedding of the

pivot fi,tbest,kbest
with all of the detections in every frame, the tracklet i can be

built. In particular, a detection joins the tracklet if its matching score (matching

function m of the Single-Frame Matching Head) is above a certain threshold, to

avoid considering frames where the item is not visible.

Once the tracklet i is built, its detections are removed, and another tracklet focusing

on a different item can be built.

4.2.2 Feature aggregation

The next step is aggregating the information of a tracklet and condensing it into a single

multi-frame descriptor. The module that deals with the feature aggregation procedure

is the Multi-frame Matching Head and it is composed of the following functions

and modules:

1. A 256-d feature extractor f̃i,t = f̃(ci,t) ∈ R256 operating on the bounding box at

time t of the tracklet i, i.e., ci,t.

2. A non-local block [152] module which applies self-attention, enriching {f̃i,t}t with

information coming from all the other bounding boxes related to the object tracklet

i.

3. An attention module g : RN×256 7→ RN that for each detection in a tracklet com-

putes an importance score wt such that
∑

t wt = 1.

4. An aggregation module, which fuses {f̃i,t}t into a joint descriptor f̃i by a weighted

average over the attention scores {wt}: h(x) = g(NLB(x)) · x, x ∈ RN×256.

5. A matching score function m̃(f̃j , f̃i) ∈ [0, 1], which compares the aggregated de-

scriptor of street sequence i (h({f̃i,t}t) as f̃i) with the the shop descriptor of image

j (f̃j).

The aggregation procedure starts with the feature extractor f̃ , which creates the

initial descriptors for each box in a sequence. Then, self-attention is computed by the

non-local block module and afterwards the attention module calculates the attention

weights for each descriptor. The aggregation module puts all of the above together,

producing the single multi-frame descriptor f̃i. Note that we discard temporal continuity

by design. Social network videos usually have dramatic zooms, very fast pose dynamics
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and occlusions; moreover, elaborated videos may have shot changes which can fragment

temporal continuity.

4.2.3 Video-to-shop matching

Following the feature aggregation procedure described above, we obtain a single multi-

frame descriptor f̃i of the street tracklet i. In this final procedure, the matching score

function m̃ of the Multi-frame Matching Head is used to match the aggregated multi-

frame description with the single 5 shop descriptor of image j, f̃j (which can be con-

sidered as a tracklet composed by a single frame), under the assumption that a single

item is portrayed in the shop image. We use the matching function m̃ on all the images

in the shop gallery, producing in this way a list of matching scores between the street

tracklet and all the images in the shop gallery, sorted in descending order, creating thus

a ranking.

4.2.4 Model Training

To avoid the need of bounding boxes annotations, a time-consuming procedure especially

for videos, SEAM Match-RCNN is trained by domain adaptation, through two phases:

pretraining on the source image domain and training on the target video domain.

Pretraining on Source domain. The Match-RCNN part of SEAM Match-RCNN

(detector and Single-frame Matching Head) is pretrained on an image street-to-shop

dataset (e.g. DeepFashion2).

The purpose of this phase is to train a model that is able to estimate bounding

boxes and matching scores in the target domain (even with noisy predictions due to the

domain gap). Such predictions are used to generate tracklets and pseudo-labels to train

the Multi-frame Matching Head.

Training on Target domain. The training procedure estimates the parameters for

the Multi-frame Matching Head of the SEAM Match-RCNN, whose structure is de-

tailed in Sec. 4.2.2, and fine-tunes the Single-frame Matching Head, while the detector’s

weights are frozen. The weights of the features extractor f̃ and matching score function

m̃ are initialized copying those of f and m from the pretrained Single-frame Matching

Head. Conversely, the attention modules of h are randomly initialized. During training,

image and street video sequence pairs (thanks to the MovingFashion pairing annota-

tions) are sampled, which are leveraged in the tracking procedure (Sec. 4.2.1): the pivot

selection is done by selecting the detection that matches the shop product the most

in the whole video if the matching score inferred from the matching function m of the

Single-frame Matching Head is over a certain threshold. The propagation step remains

the same as in Sec. 4.2.1.

5In principle, this model can be easily extended to deal with multiple frames in the case of a “shop”

sequence. We did not consider this variant though, because usually clothing items are represented by

a single image in e-commerce.
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With this training tracking procedure a tracklet is built such that, with a certain

confidence, it contains the correct shop item due to the pivot selection starting from

the ground truth shop image. This is considered as a positive match during training

(i.e. we set 1 as a pseudo-label for the tracklet). For what concerns the Single-frame

Matching Head fine-tuning, each detection that composes the tracklet is considered as

positive match as well.

The tracklet is then passed as input to the Multi-frame Matching head, which com-

putes a singular multi-frame descriptor f̃i thanks to the aggregation procedure described

in Sec. 4.2.2. In the end, this singular multi-frame descriptor f̃i is compared with the

corresponding shop descriptor f̃j (obtained by using the feature extractor f̃j = f(cj))

utilizing the matching score function m̃. This produces a matching score in the range

[0, 1].

Training is done by Stochastic Gradient Descent using Cross-Entropy loss for the

classification of street videos and shop images as positive/negative matches. Positive

pairings are built using the aforementioned procedure. All of the other combinations be-

tween tracklets and shop image descriptors are considered negative pairings (i.e. pseudo-

label of 0) for the Single-frame Matching Head and the Multi-frame Matching Head.

We train the model on a single NVIDIA Titan RTX for 50 epochs. The total time

of training is about 40 hours. On the same GPU, inference for a single image takes

50ms. For a sequence of 10 frames it takes about a second to compute detections, build

tracklets and compute aggregated descriptors.

4.3 Video-To-Shop Experiments

For the retrieval performance evaluation, we follow the testing protocol of DeepFash-

ion2 [42] for evaluating a street image probe against a shop image gallery, with some

modifications in order to cope with videos. In DeepFashion2, a street image generates

multiple detections: each street detection can generate a proper matching with some

shop image, if it overlaps by a threshold with the corresponding ground truth street

bounding box and if its item class is correct, otherwise the matching score is 0.

On MovingFashion, we compute detections on every street image and we build track-

lets using the tracking procedure detailed in Sec. 4.2.1. Then, we compute the average

IoU between each street tracklet and the ground truth tracklet. The one with the highest

average IoU is chosen and used as a query.

In order to guarantee fairness in experiments, all baselines and comparative methods

have been pretrained on two different street-to-shop datasets: DeepFashion2 and Exact

Street2Shop [48]; the former has 873K probe-gallery pairs, while the latter 39K pairs

only. Detailed results are reported for the first case, since performances were higher,

while in the second case we show the main retrieval results, where our SEAM Match-

RCNN remains the best performing approach.
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Method MovingFashion Regular-MovingFashion Hard-MovingFashion

T-1 T-5 T-10 T-20 T-1 T-5 T-10 T-20 T-1 T-5 T-10 T-20

Max Confidence [42] 0.29 0.59 0.72 0.83 0.31 0.63 0.76 0.86 0.21 0.46 0.60 0.71

Max Matching [23] 0.26 0.60 0.74 0.85 0.29 0.65 0.79 0.88 0.17 0.44 0.58 0.73

NVAN (2019) [80] 0.38 0.62 0.70 0.80 0.47 0.73 0.81 0.90 0.11 0.28 0.37 0.48

VKD (2020) [120] 0.40 0.49 0.58 0.65 0.49 0.59 0.68 0.75 0.13 0.20 0.27 0.34

AsymNet (2017) [23] 0.42 0.73 0.86 0.92 0.49 0.81 0.93 0.96 0.22 0.47 0.65 0.74

AsymNet [AVG] 0.39 0.66 0.83 0.90 0.46 0.78 0.90 0.96 0.19 0.44 0.62 0.73

AsymNet [MAX] 0.40 0.71 0.81 0.90 0.47 0.80 0.91 0.95 0.20 0.42 0.61 0.73

Average Match-RCNN [23] 0.39 0.73 0.84 0.91 0.43 0.79 0.88 0.94 0.24 0.56 0.70 0.81

SEAM Match-RCNN 0.37 0.73 0.86 0.93 0.42 0.78 0.90 0.95 0.21 0.57 0.75 0.85

w/o NLB, g

SEAM Match-RCNN 0.41 0.73 0.83 0.91 0.47 0.79 0.89 0.95 0.21 0.54 0.66 0.79

w/o NLB

SEAM Match-RCNN 0.49 0.80 0.89 0.94 0.55 0.86 0.94 0.97 0.30 0.62 0.76 0.87

Table 4.1: Video-to-Shop retrieval results on MovingFashion. Note: T-K means Top-K

Accuracy.

Method T-1 T-5 T-10 T-20

NVAN [80] 0.07 0.20 0.29 0.42

VKD [120] 0.16 0.24 0.31 0.38

MGH [164] 0.15 0.23 0.30 0.41

AsymNet [23] 0.09 0.26 0.37 0.49

SEAM Match-RCNN 0.21 0.41 0.53 0.62

Table 4.2: Top-K accuracy on MovingFashion, pretraining on S2S [48]

4.3.1 Experiments on MovingFashion

We compare our technique with three types of approaches:

Multi-frame baselines. They are extensions of single-frame techniques to multi-

frame. The Max Confidence [42] keeps the most confident detection in a tracklet and

uses it for Single-frame Matching, employing a Match-RCNN. The Max Matching is

inspired from [23] and considers the max matching score between the tracklet’s street

frames and each shop image. These two baselines are actually working with a single

image, which is selected by looking at the entire pool of frames in a tracklet. They are

also useful to validate the performance boost that comes when using multiple frames

instead of single ones.

The Average Distance is inspired by [23] and consists in averaging single-image

matching scores of the tracklet street frames and each shop image. The SEAM Match-

RCNN w/o NLB,g is obtained by averaging descriptors (and not matching scores)

together by average pooling, removing in practice the NLB self-attention block and the

attention scoring function g from the SEAM Match-RCNN (see the scheme in Fig. 4.3).

Finally, SEAM Match-RCNN w/o NLB keeps the attention score, without the self-

attention. These last three are proper multi-frame baselines, in the sense that they

merge information coming from multiple frames.
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a.

b.

Figure 4.4: Failure cases results of SEAM Match-RCNN for the MovingFashion dataset.

On the left, we show 3 frames sampled from the 10 frames used for aggregation. On the

right the shop images retrieved with the corresponding rank. The correct matches are

with a green border.

Video Re-Identification approaches. Video Re-Id approaches share similarities

with Video-to-shop, in that they look for the best way to aggregate multi-frame infor-

mation to match a person in a disjoint multi-camera setting. In practice, we consider

each shop clothing item the equivalent of a Person Re-Identification Identity. The main

differences between video-to-shop and Person Re-ID are that in our case less informa-

tion is available in terms of pixels, since face and hair need to be discarded, focusing

only on the clothing.

Here we consider the SoA approaches of NVAN [80], VKD [120] and MGH [164]6.

Video-to-shop approaches. We consider the AsymNet [23] approach7, and its mod-

ifications AsymNet[AVG] and AsymNet[MAX], in which the aggregations are made re-

spectively by the average and the max of the similarity score nodes’ outputs instead of

using the fusion nodes binary tree. Asymnet exploits temporal continuity, yet it does

not reach our results.

We set the sequence length to T = 10 for both training and testing, picking the

frames using the Restricted Random Sampling strategy [78], thus ensuring coverage of

the entire sequence length. To analyze variability in the results, we analyze the testing

samples by sub-sampling them into pool of 800, 20 times, averaging the rankings.

Table 4.1 reports the results. Three facts become apparent:

1. As expected, single-frame approaches (Max Confidence, Max Matching) are defi-

nitely inferior (<15% on average) than multi-frame approaches;

2. The considered re-identification approaches, apart from top-1 scores, are inferior

to genuine video-to-shop methods;

3. Our SEAM Match-RCNN surpasses all the competitors, including AsymNet, which

gives a better aggregation than the AVG-distance in its [AVG] version and the

MAX-distance in its [MAX] version.

6At the moment of writing, the MGH approach is state-of-the-art in the MARS Video Person Re-

Identification dataset, followed closely by VKD and NVAN.
7The code is available at https://github.com/kyusbok/Video2ShopExactMatching.

https://github.com/kyusbok/Video2ShopExactMatching
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#20
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a.

b.

Figure 4.5: Qualitative retrieval results of SEAM Match-RCNN for the MovingFashion

dataset. On the left, we show 3 frames sampled from the 10 frames used for aggrega-

tion. On the right the shop images retrieved with the corresponding rank. The correct

matches are with a green border, otherwise red.

By looking at the ablative versions of SEAM Match-RCNN, one can note that the

self-attention gives the strongest performance boost, followed by the attention layer.

Their cooperation, i.e., the complete SEAM Match-RCNN, reaches the highest score.

By looking at the results within the Regular and Hard MovingFashion partitions,

it is quite easy to note the general decrease in performance when it comes to the hard

partition. To understand the performance qualitatively, Fig. 4.5 shows retrieval results

from Regular (Fig. 4.5a) and Hard (Fig. 4.5b). Actually, even if Regular is apparently

harder due to many shop alternatives which differ by fine grained results (see the flared

jeans), the dramatic changes of poses and backgrounds of the Hard partition play a

stronger role.

Failure cases arise when the original video has discriminant parts of the clothing

item covered for most of the sequence, for instance the logo of the light blue sweatshirt

(Fig. 4.4a). In this case, self-attention overlooks such important details. Complex visual

patterns like the hard-rock band logo (Fig. 4.4b), seem to be not well characterized,

meaning that the best match is attributed considering the shape of the logo rather than

its content (the “Metallica” logo has the same shape of the probe logo).

In Table 4.3, we show the results of Single-frame baselines built on top of the Match-

RCNN (the main building block of our SEAM Match-RCNN). In particular, SFM-1qrt

uses the frame at the first quartile of all the available frames of that sequence, SFM-

median uses the median frame and so on. SFM stands for Single-frame match and is a

short term for Match-RCNN.

The correspondent baselines are shown, adopting the Deep Kronecker-Product Match-

ing (KPM) [127] and the Easy Positive Triplet Mining approach (EPHN) [159]. The

rationale of this choice was to focus on Single-frame Re-Identification approaches and

compare them to the Match-RCNN. This was done to enlarge the spectrum of possible

comparative approaches, which have open-source code available. The idea of considering

Re-ID approaches against street-to-shop techniques was also presented in the DPRNet
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Method MovingFashion Regular-MovingFashion Hard-MovingFashion

T-1 T-5 T-10 T-20 T-1 T-5 T-10 T-20 T-1 T-5 T-10 T-20

SFM-First 0.20 0.43 0.52 0.63 0.21 0.44 0.53 0.64 0.16 0.41 0.52 0.62

SFM-1qrt 0.25 0.53 0.66 0.77 0.29 0.58 0.71 0.82 0.15 0.37 0.51 0.63

SFM-Median 0.23 0.48 0.61 0.75 0.26 0.53 0.66 0.79 0.17 0.33 0.47 0.65

SFM-3qrt 0.21 0.47 0.60 0.72 0.24 0.53 0.66 0.77 0.13 0.29 0.42 0.57

SFM-Last 0.11 0.31 0.41 0.53 0.14 0.35 0.46 0.58 0.05 0.18 0.27 0.36

EPHN-First (2020) [159] 0.15 0.34 0.44 0.53 0.16 0.36 0.46 0.55 0.11 0.27 0.37 0.47

EPHN-1qrt 0.24 0.45 0.55 0.65 0.28 0.51 0.62 0.72 0.13 0.24 0.32 0.42

EPHN-Median 0.27 0.49 0.58 0.66 0.32 0.57 0.67 0.74 0.10 0.24 0.32 0.42

EPHN-3qrt 0.24 0.47 0.55 0.65 0.29 0.55 0.64 0.74 0.09 0.21 0.29 0.40

EPHN-Last 0.17 0.33 0.41 0.49 0.20 0.39 0.47 0.56 0.07 0.15 0.19 0.27

KPM-First (2019) [127] 0.19 0.40 0.51 0.61 0.22 0.45 0.56 0.67 0.09 0.26 0.33 0.45

KPM-1qrt 0.27 0.48 0.60 0.71 0.32 0.56 0.69 0.80 0.12 0.24 0.33 0.45

KPM-Median 0.24 0.48 0.59 0.69 0.27 0.55 0.67 0.78 0.12 0.25 0.35 0.43

KPM-3qrt 0.23 0.46 0.56 0.69 0.27 0.53 0.65 0.76 0.10 0.22 0.28 0.39

KPM-Last 0.16 0.35 0.45 0.55 0.20 0.41 0.53 0.65 0.05 0.14 0.19 0.23

SEAM Match-RCNN 0.49 0.80 0.89 0.94 0.55 0.86 0.94 0.97 0.30 0.62 0.76 0.87

Table 4.3: SEAM Match-RCNN retrieval results on MovingFashion compared with

Single-frame approaches. Note: T-K means Top-K Accuracy.

Method MovingFashion Regular-MovingFashion Hard-MovingFashion

T-1 T-5 T-10 T-20 T-1 T-5 T-10 T-20 T-1 T-5 T-10 T-20

Max Confidence 0.29 0.59 0.72 0.83 0.31 0.63 0.76 0.86 0.21 0.46 0.60 0.71

Max Matching 0.26 0.60 0.74 0.85 0.29 0.65 0.79 0.89 0.17 0.44 0.58 0.74

Average Match-RCNN [23] 0.39 0.73 0.84 0.91 0.43 0.79 0.88 0.94 0.24 0.56 0.70 0.81

Average Descriptor 0.37 0.72 0.86 0.93 0.42 0.78 0.90 0.95 0.21 0.57 0.75 0.85

EPHN-MaxConf (2020) [159] 0.22 0.43 0.55 0.65 0.26 0.50 0.61 0.71 0.10 0.22 0.34 0.44

EPHN-MaxMatching 0.35 0.59 0.67 0.74 0.42 0.68 0.76 0.81 0.14 0.32 0.41 0.52

EPHN-AvgMatching 0.31 0.55 0.64 0.73 0.37 0.64 0.73 0.81 0.11 0.28 0.37 0.48

EPHN-AvgDescriptor 0.22 0.43 0.52 0.61 0.26 0.49 0.58 0.68 0.10 0.24 0.33 0.43

KPM-MaxConf (2019) [127] 0.25 0.47 0.57 0.68 0.30 0.54 0.65 0.77 0.11 0.25 0.32 0.43

KPM-MaxMatching 0.30 0.54 0.66 0.75 0.36 0.61 0.73 0.82 0.13 0.32 0.42 0.53

KPM-AvgMatching 0.34 0.58 0.68 0.77 0.40 0.68 0.78 0.86 0.15 0.28 0.38 0.48

KPM-AvgDescriptor 0.34 0.58 0.69 0.77 0.40 0.68 0.78 0.86 0.15 0.28 0.38 0.48

SEAM Match-RCNN 0.49 0.80 0.89 0.94 0.55 0.86 0.94 0.97 0.30 0.62 0.76 0.87

Table 4.4: SEAM Match-RCNN retrieval results on MovingFashion compared with

Multi-frame approaches. Note: T-K means Top-K Accuracy.
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Categories NVAN VKD MGH AsymNet SEAM

[80] [120] [164] [23] M-RCNN

Short Sleeve Shirt 0.46 0.20 0.39 0.35 0.43

Long Sleeve Shirt 0.38 0.44 0.41 0.45 0.44

Short Sleeve Outwear 0.34 0.23 0.33 0.35 0.42

Long Sleeve Outwear 0.40 0.43 0.42 0.36 0.46

Vest 0.42 0.10 0.24 0.27 0.31

Sling 0.30 0.16 0.33 0.32 0.36

Shorts 0.19 0.27 0.22 0.25 0.39

Trousers 0.37 0.28 0.35 0.45 0.39

Skirt 0.40 0.52 0.47 0.39 0.56

Short Sleeve Dress 0.34 0.54 0.35 0.45 0.73

Long Sleeve Dress 0.37 0.63 0.36 0.57 0.68

Vest Dress 0.39 0.49 0.37 0.42 0.64

Sling Dress 0.42 0.39 .42 .32 0.69

All Classes 0.38 0.40 0.40 0.42 0.49

Table 4.5: Top-1 retrieval accuracy on MovingFashion for the 14 different item classes.

paper [167].

The inferiority of these baselines with respect of the Multi-frame of Table 4.1, and

in particular with SEAM Match-RCNN, is evident and fully understandable.

Notably, in almost all of the MovingFashion partitions (apart the regular one with

EPHN), the ·-1qrt baseline gives the higher results, which seems to be in accord with

the best practices in social media video editing, that is, that videos have to deliver their

main message within approximately 6 seconds [44].

As additional Multi-frame approaches, Table 4.4 shows Max Confidence, Max Match-

ing and Average Matching scores when considering the KPM [127] and the EPHN [159]

as Single-frame method ingredients, in the same way that Match-RCNN was used to

calculate Max Confidence, Max Matching and Average Matching from Table 4.1.

Even in this case, SEAM Match-RCNN gives the best performance, showing an

overall superiority of Match-RCNN as a Single-frame tool to aggregate visual clothing

information.

The results w.r.t the single clothing classes of MovingFashion are reported in Ta-

ble 4.5, where it is possible to observe our advantage in all but three classes. Interest-

ingly, we found that the simpler the clothing in terms of texture, the lower the retrieval

performance. This is reasonable, since texture adds discriminative details, and this is

why classes with simpler texture like vest, sling, shorts and trousers performed worse.

We computed textureness by gray-level co-occurrence matrix contrast; quantitatively

speaking, textureness and top-1 accuracy in retrieval are found to be correlated (Spear-

man φ = 0.72, p− value ≤ 0.05).

Another experiment regards the length of the sequences. Fig. 4.6 reports, with the

associated error bars, the performance of SEAM Match-RCNN when increasing the

number of frames from 1 to 20. As expected, the curves for both partitions, at both

the top-1 and top-20 are increasing, with the “Hard” partition showing a plateau after

10 frames, while the “Regular” partition seem to benefit systematically. The reason

could be that “Hard” sequences are dramatically noisy, and adding more frames will
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Figure 4.6: Plot of the SEAM Match-RCNN retrieval accuracy (y-axis) using different

numbers of frames (x-axis) for aggregation. Error bars represent standard deviation of

the accuracy.

Method 5 Frames 10 Frames 20 Frames

NVAN [80] 0.35 0.38 0.39

VKD [120] 0.36 0.40 0.43

MGH [164] 0.36 0.38 0.40

AsymNet [23] 0.37 0.42 0.44

SEAM Match-RCNN 0.43 0.49 0.52

Table 4.6: Top-1 accuracy on MovingFashion, with different number of frames.

augment the clutter we need to deal with, while the “Regular” ones benefit because

of the fine grained details which characterize the partition. Comparative performances

when varying the sequence’s length against other approaches are in Tab. 4.6. Notably,

Asymnet [23] does not reach our results even when doubling the number of input frames.

4.3.2 Experiments on unrelated sets of images

MovingFashion has street videos which depict clothing items in a variety of scenarios:

indoor, outdoor, etc. We are interested in bringing this variety to the extreme, answering

the following question: how does SEAM Match-RCNN behave when the street video

sequence is formed by a few totally unrelated frames?

In order to perform these experiments, we build Multi-DeepFashion2 from Deep-

Fashion2 using the pairings between shop images and street sequences composed of

multiple corresponding street images (Fig. 4.7).

The total pairings amount to 11K, each one composed of an image sequence (6

frames on average) sampled from different sources, along with the corresponding shop

image.

Results are in Tab. 4.7. Please note that, in order to be consistent with the 10-frames

street sequence length we generate random repetitions for all the approaches given the
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Figure 4.7: Three street images and their paired shop image taken from MultiDeep-

Fashion2.

smaller set of diverse images. The numbers indicate a decrease in general performance

(less distinctive frames, more shop items); even in this case, we perform better than

AsymNet. The ground truth versions (where ground truth bounding boxes are used for

training and testing instead of detections) give an upper bound both for SEAM Match-

RCNN and Asymnet, providing a limited 2% boost on average. This bears witness to

a consistent resistance to detection irregularities and confirms our superiority.

We also investigate other multi-frame policies (Max Confidence, Matching, Avg

Matching and Descriptor), since single-frame policies do not have much sense, as the

single-frames are not part of a single sequence. Even in this case, SEAM Match-RCNN

is the best alternative (Table 4.7).

Method T-1 T-5 T-10 T-20

Max-Confidence 0.19 0.44 0.54 0.66

Max Matching [23] 0.14 0.45 0.61 0.75

Average Match-RCNN [23] 0.22 0.49 0.63 0.74

Average Descriptor 0.20 0.48 0.60 0.71

NVAN (2019) [80] 0.22 0.37 0.43 0.49

VKD (2020) [120] 0.21 0.27 0.33 0.38

MGH (2020) [164] 0.22 0.34 0.39 0.45

EPHN-MaxConf (2020) [159] 0.11 0.19 0.24 0.29

EPHN-MaxMatching 0.11 0.21 0.26 0.33

EPHN-AvgMatching 0.16 0.29 0.34 0.41

EPHN-AvgDescriptor 0.12 0.22 0.27 0.33

KPM-MaxConf (2019) [127] 0.09 0.20 0.25 0.30

KPM-MaxMatching 0.08 0.16 0.21 0.28

KPM-AvgMatching 0.10 0.20 0.25 0.32

KPM-AvgDescriptor 0.13 0.25 0.33 0.40

AsymNet [GT] [23] 0.21 0.50 0.62 0.74

AsymNet (2017) [23] 0.18 0.43 0.57 0.70

AsymNet [AVG] 0.16 0.41 0.54 0.68

AsymNet [MAX] 0.15 0.42 0.56 0.70

Average Distance [23] 0.22 0.49 0.63 0.74

SEAM Match-RCNN w/o NLB, g 0.20 0.47 0.60 0.71

SEAM Match-RCNN [GT] 0.30 0.58 0.67 0.76

SEAM Match-RCNN 0.28 0.54 0.66 0.76

Table 4.7: Video-to-Shop retrieval results on MultiDeepFashion2. Note: T-K means

Top-K Accuracy.
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Figure 4.8: Mean attention score every 5 percentiles of the video length. For each video

we sampled 21 equally spaced frames. On the left we report the average attention (y-

axis) and frame-timing information (x-axis labels) for the whole MovingFashion dataset.

On the right for the Regular and Hard subsets. We show error bands for the standard

deviation.

4.3.3 Experiments on the attention mechanism

The ablation studies of Table 4.1 clearly show that the attention layers play a crucial role

for the SEAM Match-RCNN performance. Here we explain their role qualitatively and

quantitatively. In Fig. 4.9 we report the attention values obtained after the application

of the attention layer g to the output of the self-attention layer NLB of Sec. 4.2.2,

i.e., g(NLB(x)). On row a), one can note that the attention is high when the heart

logo is visible (0.31, 0.23 in the first two frames) and it goes down when it vanishes,

despite the light blue shirt (last frame) being very similar area-wise. This means that

the mechanism considers the heart logo as important for retrieval. On the second row

b), the effect of an occlusion in the attention score (last frame). On the third row

c), a white top with a logo gives a stable attention score (around 0.28). We manually

cover the logo in the third frame, causing a clear decrease in the attention, uniformly

increasing the ones highlighting the logo.

Finally, driven by best practices in social video editing [44], which state that a video

message has to deliver its main content in the first 6 seconds to trigger the observers’

attention, we calculate the attention every 5 percentiles on all the MovingFashion se-

quences, producing the curves in Fig. 4.8a) (on the whole MovingFashion dataset) and

on the separate partitions Fig. 4.8b. Surprisingly, the data confirms this rule, showing

a clear (Fig. 4.8a) peak around the first quartile (definitely within 6 seconds), then a

decrease and a later increase with a local maximum on the fourth quartile. The same

holds for the two separate partitions (Fig. 4.8b)), with less emphasis on the “Hard

partition”. The reason lies in the nature of the Net-A-Porter videos, which in many

cases show the entire clothing item in the beginning of the sequence, with the model

that moves subsequently, zooming up to critical detail (the belt for the shorts) towards

the end (second peak). On the “Hard” partition, the attention for the clothing items

is higher in the beginning, since the actors present their outfit and then exhibit their
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Figure 4.9: Qualitative observations on the attention behaviour. On the left, for each

video sequence we show the detection bounding boxes and the computed attention score.

On the right the paired shop item.

performance (dancing, gymnastics etc.), concluding in both the cases with uninteresting

details clothing wise.

4.3.4 Qualitative Results

As additional qualitative results, on Fig. 4.10 results of SEAM Match-RCNN for the

Hard-MovingFashion dataset are shown. Two types of considerations can be drawn:

the first one is the variability of the videos, which here can be appreciated with more

examples. Second, the retrieval results on the right display that SEAM Match-RCNN

is capable of finding similar images, among a shop gallery that in some cases contains

highly similar items (see for example the light gray trousers).

On Fig. 4.11 results of SEAM Match-RCNN for the Regular-MovingFashion dataset

are shown. Here, on street frames which exhibit more regularities, the shop items are

vice versa more insidious than the TikTok ones, since they exhibit a lower variability,

see for example the black female dresses of row 6. The same rationale holds for the white

shirts and the black paints. Finally, on Fig. 4.12 retrieval results on MultiDeepFashion2

are shown. Looking at the retrieval results, one can notice that shop items are way

less regular/neutral than the ones on the MovingFashion (which anyway represent a

more genuine excerpt of an e-commerce website): at the same time, street frames are

often zoomed captures of the object of interest, in general offering a retrieval challenge

different than the one on MovingFashion. The strong results obtained by SEAM Match-

RCNN prove its versatility in working on a broader set of scenarios.
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Figure 4.10: Qualitative retrieval results of SEAM Match-RCNN for the Hard-

MovingFashion dataset. On the left, we show 3 frames sampled from the 10 frames

used for aggregation. On the right the shop images retrieved starting from the closest

match (left). The correct matches are represented with a green border.
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Figure 4.11: Qualitative retrieval results of SEAM Match-RCNN for the Regular-

MovingFashion dataset. On the left, we show 3 frames sampled from the 10 frames

used for aggregation. On the right the shop images retrieved starting from the closest

match (left). The correct matches are represented with a green border.
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Figure 4.12: Qualitative retrieval results of SEAM Match-RCNN for the MultiDeep-

Fashion2 dataset. On the left, we show 3 frames sampled from the 10 frames used for

aggregation. On the right the shop images retrieved starting from the closest match

(left). The correct matches are represented with a green border.



Chapter 5

New Fashion Product

Performance Forecasting

In this chapter, we tackle a challenge that has started attracting attention in computer

vision and machine learning: New Fashion Product Performance Forecasting (NFPPF).

This challenge aims at predicting the success of a brand-new clothing probe with no

available past observations. The success is assessed through various performance indices

such as the number of sales or popularity. To tackle this issue, we first introduce

VISUELLE, the first publicly available dataset for the task of new fashion product sales

forecasting, containing the sales of 5577 new products sold between 2016-2019, derived

from genuine historical data of Nunalie, an Italian fast-fashion company. Our dataset is

equipped with images of products, metadata and related sales. By exploiting clothing

attributes or image data, zero-shot learning is essentially applied, under the rationale

that new products will perform comparably to aesthetically similar, older products. The

second contribution is GTM-Transformer, whose encoder works on the representation of

the exogenous time series, while the decoder forecasts the sales using the Google Trends

encoding, and the available visual and metadata information. The model works in a

non-autoregressive manner, avoiding the compounding effect of the first-step errors.

To fill the missing past observations we introduce two different exogenous signals.

The former is Google Trends signals, from which the framework takes its name (Google

Trends Multimodal Transformer), investigating the effectiveness of systematically query-

ing the Google Trends API through textual translations of aesthetic aspects, generating

exogenous knowledge. The latter embraces the saying an image is worth a thousand

words, comparing the probe image of a new product directly with images uploaded on

the web in the past and indexed from Google Images. This signal is built following a

data-centric pipeline that starts expanding textual tags associated with a probe image

so as to query fashionable or unfashionable images related to it, which have been up-

loaded on the web in the recent past. A binary classifier is robustly trained on these web

images by confident learning, to capture what was fashionable at that time, and how

much the probe image is conforming. Such compliance produces the POtential Perfor-

73
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Figure 5.1: Examples of Images Per Category

mance (POP) time series. It is important to emphasize that, being able to distinguish

fashionable VS unfashionable images, is a typical computational aesthetic task.

We compare GTM-Transformer on VISUELLE against different approaches, en-

capsulating both Google Trends and POP signals as exogenous time-series. These

experiments prove that our framework is more accurate in terms of both percentage

and absolute error, especially with the addition of exogenous knowledge that boosts

the performance. In particular, POP ameliorates the sales curve prediction of all the

state-of-the-art NFPPF models and is also predictive for the popularity of new styles

(ensembles of clothing items) on the Fashion Forward benchmark.

5.1 VISUELLE dataset

VISUELLE describes the sales between October 2016 and December 2019 of 5577 prod-

ucts in 100 shops of Nunalie1, an Italian fast-fashion company funded in 2003. The sales

of 2020 and 2021 are also available, but ignored here because of the COVID pandemic.

Only sales of 2021 is used in an additional experiments, to stress out the framework on

an extremly difficult scenario. For each product, multimodal information is available,

which will be detailed in the following subsections, giving more emphasis to sales data,

Google Trends and POP signals.

1www.nunalie.it

www.nunalie.it
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Figure 5.2: Cardinalities of the dataset per categories (a), color (b) and fabric (c)

5.1.1 Image data

Each product is associated with an RGB image, of resolution which varies from 256 to

1193 (width) and from 256 to 1172 (height) with median values 575 (w) 722 (h) . Images

have been captured in a controlled environment, in order to avoid color inaccuracies and

potential biases in the predictions [110]. Each image portrays the clothing item on a

white background, with no person wearing it. Additionally, a binary foreground mask

is provided.

5.1.2 Text data

Each product has multiple associated tags, which have been extracted with diverse

procedures detailed in the following, and carefully validated by the Nunalie team.

The first tag is the category, taken from a vocabulary of 27 categories, visualized

in Fig. 5.2a; the cardinality of the products shows large variability among categories

overall, due to the fact that some categories (e.g. long sleeves) cost less and ensure

higher earnings. The “color” tag represents the most dominant color, and is extracted

from the images with a proprietary pixel clustering algorithm, keeping the color with

the most belonging pixels, and validated for each product by two human operators that

must agree on it. The final vocabulary is made of 10 elements. The cardinality per

color is reported in Fig. 5.2b. The fabric tag describes the material from which clothes

are made, and comes directly from the technical sheets of the fashion items. This tag

comes from a vocabulary of 58 elements, visualized in Fig. 5.2c; A product is sold

during a particular season, and within a season, released on the market at a precise day.

This temporal information is recorded as a text string. Holidays and sales periods are

supplementary information which we plan to deliver for a second version of the dataset.
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Figure 5.3: 25-percentile density plots of the SS18 and SS19 seasons.

5.1.3 Sales data

The sales time series have a weekly frequency and contain 12 observations each, which

corresponds to the permanence of an item in the shops during a fashion season (Autumn-

Winter, AW and Spring-Summer, SS). Fig. 5.3 contains a log-density plot of the sales

of all the products, merging together different categories, across corresponding seasons

(SS18 and SS19 were used for clarity). This is useful to show that there are general

“mean curves” where the sales peak occurs after a week and that as the weeks go by, the

sales are characterized by a higher variability. An increase of the sales during the years

is visible, showing that the company seems to perform well. Notably, from the release

moment until 6 weeks, no external action is done by the company owners (discounts,

pre/sales, additional supplying) and they had never sold out products, so we can state

that the signal variability is given by the product attractiveness.

5.2 Google Trends

Extracting Google Trends to discover the popularity of textual term describing visual

data poses a paradox: the more specific the text, the least informative the signal (due

to sparsity), and vice-versa. We collect, for each product, a Google Trends time-series

for each of its three associated attributes: color, category, fabric. The trends are down-

loaded starting from the release date and going back 52 weeks, essentially anticipating

the release of each single item by one year. Each signal gives percentages, reaching 1

(100%) in the moment in time when the particular attribute had the maximum search

volume on Google, depending on the search interval.

Fig.5.4 contains examples of Google Trends in the interval 2016-2019. As visible, the

nature of these signals is highly variable, spanning from highly structured to more noisy.

To make the Google Trends signal more reliable, we follow the “multiple sampling”



5.3. POP SIGNAL 77

2016 2017 2018 2019
date

20

30

40

50

60

70

80

90

100
Color: Black

2016 2017 2018 2019
date

65

70

75

80

85

90

95

100
Fabric: Cotton

2016 2017 2018 2019
date

0

20

40

60

80

100
Category: Medium coat

Figure 5.4: Examples of Google Trends time-series spanning multiple years.

strategy discussed in [102]. Google normalizes the search results of a query by the total

searches of the location and time range chosen by the user. Then, the resulting numbers

are scaled from 0 to 100, in order to represent the relative popularity. The problem is

of course, because of the high amount of search queries that Google processes each day,

the query results are always a sub-sample of the “true” ones and this sample may not

always be the same. So to avoid sampling bias, we download each Google Trend 10

times and use the mean to create a more representative signal.

5.3 POP Signal

POP Signal is built following a completely novel pipeline. The input of the pipeline is

the probe image z(t), where z represents the new clothing item and t the observation

time, which is the date from when we begin looking into the past. The output is the POP

signal S
(t)
z = s

(t−Kpast)
z , . . . , s

(t−k)
z , . . . , s

(t−1)
z , defined for Kpast time steps preceding t,

where k = 1, . . . ,Kpast and s
(t−k)
z ∈ R. In this thesis, we describe the observation

times in terms of weeks and set Kpast = 52. This means we look one year before the

observation time t, since market analysis for fashion products typically begins nearly a

year in advance [138]. The next sections will sequentially detail the general pipeline of

our approach, reported in Fig. 5.5.
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Figure 5.5: Schematic pipeline of our approach; we start with a probe image and obtain

the POtential Performance (POP) signal at the end. Along this pipeline, we sequentially

process information in different modalities, thereby creating a cross-modal signal.

5.3.1 Image Tagging

The first operation is the extraction of textual tags {a(j)
z }j=1,...,J associated to z. These

tags should represent the clothing item with sufficient generality, capturing at least
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categorical information (e.g “long sleeve”) and a dominant color (e.g “yellow”). Em-

pirically, we found these types of tags to work well with our approach. Category and

color can be automatically extracted with high accuracy[87]; at the same time, these

are tags usually contained in the technical data sheet accompanying the product which

we exploit here, as discussed in Sec. 5.5.2, to avoid early errors that might compromise

the downstream pipeline.

az:{“yellow”, “long sleeve”}

z(t)

(+)az ={“fashionable”,“yellow”,“long sleeve”}
at time interval [t-k-W, t-k],  kϵ1,…,Kpast

(-)az ={“unfashionable”,“yellow”,“long sleeve”}
at time interval [t-k-W, t-k],  kϵ1,…,Kpast

[t- Kpast -W, t- Kpast]                                                                                                                            [t-W, t] [t- Kpast -W, t- Kpast]                                                                                                                      [t-W, t]

(+)x1

(+)x2

(+)x3
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(+)x5
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Figure 5.6: Pipeline insights on Time-dependent Query Expansion (Sec. 5.3.2), Image

Web Search (Sec. 5.3.3) and Learning From Noisy Labels (Sec. 5.3.4) steps. This figure

reports a real world excerpt of the download and processing of N=2600 images (N =

2(M ×Kpast), M = 25, Kpast=52).

5.3.2 Time-dependent Query Expansion

The second operation (detailed in Fig. 5.6 on a real example) performs two different

textual query expansions, generating positive expansions, {a(j)
z }j=1,...,J ∪ J (+) where

the additional J (+) tags indicate attractive clothing items, and conversely for negative

expansions. In this thesis, we found the tags J (+) = “fashionable” and J (−) = “un-

fashionable” to be the most effective for positive and negative expansions, respectively.

Alternatives as “best seller” and “unattractive” were considered, returning similar re-

sults.

Each expansion, either positive or negative, is associated to a particular k = 1, ...,Kpast

for the time interval [t−k−W, t−k], where W is a temporal window we wish to consider

for the image search, also expressed in weeks. In our experiments we set W = 4, which

translates to having a sliding window of size 4 and stride of 1 over the temporal axis.

This allows the pool of downloaded images to disclose what are newly indexed items in

relation to previous time steps, developing a temporal locality in the data pool. The

precise value of W was chosen after an empirical evaluation over the range 1, ..., 12.
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5.3.3 Image Web Search

A given expanded textual query along with a time interval is fed into a web API re-

quest to gather M representative fashionable and unfashionable images (+){xi}(t−k)
i=1,...,M ;

(−){xi}(t−k)
i=1,...,M that have been uploaded in the interval [t − k − W, t − k], for k =

1, . . . ,Kpast. In particular, we adopt Google Images search, selecting the first M = 25

images returned, assuming the ordering of Google Images perfectly mirrors a genuine

image relevance [68]. After the image web search phase, M × Kpast fashionable and

unfashionable images are collected respectively (as shown in Fig. 5.6). These images

are then used to train a binary classifier θ, aimed at distinguishing fashionable from un-

fashionable images. Webly learning and supervision based on Google Images has been

constantly considered in computer vision throughout the years, especially for image clas-

sification and object detection [37, 21, 77]. POP goes one step further, merging visual

and textual search while adding a time-dependent query expansion to create more dis-

criminative image sets. Nevertheless, the labels assigned to the images from the query

expansions might be noisy, therefore we apply a confident learning method.

5.3.4 Learning From Noisy Labels

In the following, we adapt the confident learning (CL) methodology specifically for

our binary problem. For a broader overview, readers may refer to [111]. Let X =

{xi, ỹi}1...N be our set of N = 2(M × Kpast) images with associated observed noisy

binary labels ỹi ∈ {“fashionable”, “unfashionable”}. CL assumes that a true, latent

label y∗i ∈ {“fashionable”, “unfashionable”} exists for every sample. CL requires two

inputs: 1) the out-of-sample N × 2 matrix P̂ of predicted probabilities where P̂i,h =

p̂(ỹi = h; xi, θ) with θ a generic (binary) classifier initially trained on X; 2) the set of

noisy labels {ỹi}. Subsequently, a robust 2 × 2 confusion matrix, called the confident

joint matrix Cỹ,y∗ , is computed2:

Cỹ,y∗(h, l) = |X̂ỹ=h,y∗=l|,with

X̂ỹ=h,y∗=l =

{
x ∈ Xỹ=h : p̂(ỹ = l; x, θ) ≥ tl

}
(5.1)

where tl is a threshold that represents the expected self confidence value for each class:

tl =
1

|Xỹ=l|
∑

x∈Xỹ=l

p̂(ỹ = l;x, θ) (5.2)

In practice, Cỹ,y∗ counts only those elements which have been confidently classified in

a particular class, where the term “confident” means with a probability that is higher

than the average probability of an element belonging to that class. In simpler words,

if samples labeled as belonging to class h tend to have higher probabilities because the

model is over-confident about class h, then th will be proportionally larger. It also worth

2We drop the index i for clarity.
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noting that Eq. 5.1 corresponds to a simplified version of the general building procedure

of the confident joint matrix Cỹ,y∗ of [111], which nonetheless in our case is perfectly

fine since we deal with binary classification and no label collision may happen, i.e., the

fact that a noisy label can correspond to a more than a single alternative class.

On this robust confusion matrix, we estimate label errors from the off diagonal ele-

ments of Cỹ,y∗(h, l). This is shown to be highly performing and theoretically grounded

in [111]. Wrongly labeled images are therefore pruned (indicated by the red boxes in

Fig. 5.6), obtaining the cleaned fashionable and unfashionable images (+){x′i}
(t−k)

i=1,...,M ′(t−k) ;

(−){x′i}
(t−k)

i=1,...,M ′′(t−k) , where M ′(t−k) and M ′′(t−k) indicate that we can have a different

number of positive and negative images, respectively, related to each t − k time step,

due to the noisy sample elimination. The classifier is retrained on the cleaned data,

obtaining a robust trained model θ′. This procedure purely data-centric and model

agnostic; the specific θ used in this work is described in Sec. 5.5.2.

5.3.5 Signal Forming

The POP signal S
(t)
z = s

(t−Kpast)
z , . . . , s

(t−k)
z , . . . , s

(t−1)
z , is computed by considering the

cleaned fashionable images (+){x′i}
(t−k)

i=1,...,M(t−k) , the robust model θ′, and the image z,

as follows:

s(t−k)
z =

1

M (t−k)

M(t−k)∑
i=1

〈θ′
(

(+)x′i
(t−k)

)
· θ′ (z)〉

‖ θ′
(

(+)x′i
(t−k)

)
‖‖ θ′ (z) ‖

(5.3)

where θ′ (z) indicates the extracted features of z from θ′, and 〈·〉 indicates the scalar

product. In practice, the signal value s
(t−k)
z is the average cosine similarity between the

embedding of the probe image z and each webly image x′
i(t−k) , computed over M (t−k)

downloaded images.

5.4 GTM-Transformer

The structure of the proposed model is depicted in Fig. 5.7: GTM-Transformer is based

on the Transformer model [147], yet we deviate from the canonical form by considering a

non-autoregressive variant [45], motivated by two reasons: i) to avoid the compounding

of errors caused by wrong initial predictions; ii) to generate the forecasted time series in

one go, without any recurrence mechanism, allowing for faster training and inference.

In particular, GTM-Transformer learns different representations for each input type

and then projects such representations in a novel latent space to non-autoregressively

forecast the sales. The different components of the model are explained in detail below:

The transformer encoder takes as input the exogenous time series of the product,

3 series for Google Trends (one for each attribute), 1 serie for POP signals. The series

are projected into a higher dimensional space RD enriched with a positional encoding.

This signal is then processed by the standard encoder block of [147], by applying Scaled

Dot-product Self-Attention. We employ masking which enforces localized Attention on

the time series [121]. The encoder outputs ψt ∈ RD: a representation of the exogenous
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Exogenous Signals

52 x N

Figure 5.7: GTM-Transformer architecture. The encoder processes the exogenous series.

The decoder takes as input a multimodal embedding created from the Feature Fusion

Network and attends to the encoder’s output. The output of the transformer model is

then passed through a dense layer, to generate the sales forecasts.

time series enriched with information about which portions of itself are more important.

This information is then fed to the decoder, acting as a type of prior knowledge on the

popularity of the product.

The image embedding module uses a ResNet-50 model [54] pre-trained on Ima-

geNet [29] to extract 2D convolutional features φiresnet
∈ RCxWxH (where C = 2048 is

the number of final feature channels, W represents the image width and H the image

height). Finally, Average Pooling with a square kernel of size 1 is applied, followed by

a Dense layer, creating a compact representation of the image φi ∈ RE .

The text embedding module consists of a BERT model [30] pre-trained on a large

corpus comprising the Toronto Book Corpus and Wikipedia. This module takes as input

the textual tags, i.e color, category, fabric and produces an embedding φtbert ∈ R768 of

the words. BERT adopts particular, reserved tokens when trained like [CLS] and [SEP].

Because this module is not fine-tuned, after the tokenization process, we discard the

embeddings for these reserved tokens. By exploiting a pre-trained model, our model can

obtain a representation for any textual tag that it might have never seen before, while

also obtaining additional context from the textual information. The module averages

the embeddings for each attribute and then uses a Dense layer to create a compact

representation of the text φt ∈ RE .
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The temporal features embedding module, is a feed-forward network that

creates a joint embedding of the temporal features available for each product: the day

of the week, the week of the year, the month and the year. An individual embedding

φj ∈ RE is created for each one of these features. Afterwards, these embeddings are

concatenated and merged together through a dense layer, creating a final representation

φtemp ∈ RE of all these temporal features.

The feature fusion network is another feed-forward network that merges the

separate multimodal embeddings together, creating a learned representation ψf =

f(φi, φt, φtemp), ψf ∈ RD where f(φi, φt, φtemp) = Wd2 ∗RELU(Wd1 ∗ [φi;φt;φtemp]) +

Bd2.

The transformer decoder is the component which performs the forecasting. Al-

ternatively to the decoder block of [147], we remove the Self-Attention segment, since

the input coming from the feature fusion network is a single representation and not

a sequence. The input is fed to the Multi-Head Cross-Attention attention segment as

the query, producing a product embedding ψp ∈ RD containing information about the

exogenous trends of the solar year before the product’s release date. Therefore, ψp is

a compact representation of four different modalities: [ψt, φi, φt, φtemp]. After passing

through the decoder’s feed-forward segment, a dense layer projects ψp into Rhorizon in

order to produce the desired forecasts based on the specified forecast horizon.

Summarizing, GTM-Transformer works by feeding to the decoder the exogenous

embedding (produced by the encoder) and the multimodal embedding (produced by

the Feature Fusion Network) to generate the forecasts.

5.5 Task 1: New Fashion Product Sales Curve Pre-

diction

In this section we discuss the experiments carrierd on the first task different task: “New

Fashion Product Sales Curve Prediction”. The prediction of sales curves for a probe

clothing item z provides as output a time seriesO
(st)
z = o

(st+1)
z , . . . , o

(st+k)
z , . . . , o

(st+Kfut)
z

of how many pieces of z will be sold in a given season, starting at a particular time step

st (the start of the season), for the next Kfut time steps.

Experimental Protocol

On VISUELLE we define an experimental protocol that simulates how a fast fashion

company deals with new products, focusing on two particular moments: i) the first order

setup, which is when the company orders the first stock of products to be distributed in

the shops, usually two months before the starting season; ii) the release setup, which is

right before the start of the season, and is useful to obtain the best forecast by using all

of the exogenous information at hand, so to have a preliminary idea of when to do the

stock replenishment. For these two moments we use 28 and 52 timesteps long exogenous

signals, respectively.
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As forecast horizon, we consider 6 weeks, as it is the period where no interventions

are made by the company, such as reordering or retirements of products (if they perform

very poorly). In any case, all models classifiers have been trained assuming a 12-week

prediction, and shorter horizons have been taken into account for the evaluation. This

procedure maximized the performances of all the approaches. Nonetheless results at

different horizons will be shown here as for our approach. To perform the experiments,

we divide the data into a training and testing partition, where the testing products are

composed of the 497 most recent products. The rest of the dataset (5080 products) is

used for training.

We utilize the Weighted Absolute Percentage Error [60] as the primary error measure.

It expresses the forecasting accuracy as a ratio:

WAPE =

∑T
t=1 |yt − ŷt|∑T

t=1 yt
(5.4)

where T is the forecasting horizon. WAPE is always nonnegative, and a lower value

indicates a more accurate model. Even though it is a percentage-based metric, it is not

bounded by 100.

For a more articulated understanding of our approach, we compute the Mean Abso-

lute Error (MAE), also known as Mean Average Devation (MAD):

MAE =

∑T
t=1 |yt − ŷt|

T
(5.5)

MAE describes the mean quantity by which the forecast misses the values on their

respective scale.

Forecasting bias [17] is another aspect to take into account, measuring systematic

over- or underestimation of the forecast w.r.t. the correct value. Even if a slight forecast

bias might not have a notable effect on store replenishment, it can lead to over- or under-

supply at the central warehouse. To measure the forecasting bias, we adopt the tracking

signal (TS) measure [17, 104]:

TS =

∑T
t=1 yt − ŷt
MAE

(5.6)

which is basically the signed difference between actual and prediction value, divided by

the MAE. The sign of the tracking signal communicates if we have an overestimation

(if negative) or an underestimation (if positive). The closer to zero, the more unbiased

the forecast. In the literature, a forecasting approach is considered to be consistently

biased if the tracking error is above 3.75 or below -3.75 [17, 104].

Finally, we focus on the capability in providing a forecasting curve which resembles

the ground truth, as a way to highlight whether the model has properly captured the

actual signal dynamics. To this end, we exploit the Edit distance with Real Penalty

(ERP) [20] which borrows from the classical Edit Distance (ED). ED works on discrete

sequences, counting the number of edit operations (insert, delete, replace) that are

necessary to transform one series into the other. ERP uses the following algorithm: if
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the Euclidean distance between prediction ŷt and yt is smaller than a penalty ε, they

are considered equal (d=0) and if not they are considered different (d=1). Summing

over differences along the time axis gives the final distance. Because we are dealing

with continuous values, a threshold ε=0.03 is used to decide if values are assumed to be

different. ERP is a dissimilarity ∈ R+, so the closer to 0 the better.

Comparative results

Comparing GTM-Transformer with other approaches in the literature requires partic-

ular care, since we are the first to exploit Google Trends and to create a data-centric

signal as exogenous variables to forecast sales for new products. For this reason, to-

gether with considering state-of-the-art alternatives in their original form, we adapt

them by injecting Google Trends and POP wherever this modification is natural, for

example on models which already do process exogenous data. All the code, including

the one for the competitors will be made publicly available, for the sake of fairness. To

ease the reading, the name of the approaches will be followed by a square parenthesis

indicating the type of information exploited within: T for textual data (category, color,

fabric and release date), I for image data, G for exogenous signals. Additionally, the

name of the approaches which have been augmented with the exogenous signals will be

followed by a “+G”. More in the detail, we consider:

kNN models. These non-parametric methods methods are proposed in [36], and fol-

low a common guideline for fast fashion companies: sales of new products will be similar

to older, similar products they have already commercialized [143]. The idea is to define

a similarity metric between products and then forecast the sales of the new product by

averaging the sales of the k most similar products that have sold before. Let P be set

of all products and let d(xpi
, xpj

),∀x ∈ P be the distance between any two products.

We can then obtain the set of k nearest neighbors to a product K = {x1..xk|P, d}. We

can then estimate the sales of the a product xp using a weighted average the sales of

its neighbors
∑K

k=1
d(xp,xk)∑K

k=1 d(xp,xk)
yk, where y is the sales time series. The three KNN

alternatives proposed in [36] are all considered here, which depend on the data they

consider to capture the similarity: i) between product attributes (color + category +

fabric), Attribute KNN ; ii) Between product images (Image KNN ); iii) Between the

product attributes and images Attribute + Image KNN. In our experiments, we use the

cosine distance and set k = 11. These models are used only without exogenous signals

since possible modification would be not natural.

Gradient Boosting [38]. This fundamental technique has been used in time series

forecasting either as solitary models [55] and recently as components of more elaborate

architectures [63]. Gradient Boosting is an ensemble model which aggregate the results

from multiple Decision Trees, where we assume Gradient Boosted Trees. Decision Trees

are simple, tree-like diagrams for decision making. Gradient Boosted Trees build trees

one after the other, such that each new tree helps correct the errors made by the previous
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one. This is done by fitting the trees on the negative of the gradient of a particular loss

function (similarly to Backpropagation through SGD in Neural Networks). We use 500

trees and set least squares as the optimization problem. When using this model, the

additional features, both exogenous and not, are concatenated together and fed to the

model.

Multimodal Encoder-Decoder RNNs. It is proposed as most advanced techniques

in [36]. The idea is to perform sequence learning in a two-step process, where an Encoder

module takes the available information and produces a learned feature representation

of the various modalities. This is then fed to an GRU[24] network that acts a Decoder,

which autoregressively performs the forecasting. The authors augment their architec-

ture with Bahdanau Attention[9], using the last produced decoder hidden state to learn,

at each prediction step, which one of the various modalities provides more important

information to the forecast. In particular, we consider the two best performing tech-

niques from the original paper, that is the Concat Multimodal RNN, which which learns

joint embeddings derived by concatenating embeddings of individual input modalities

and the Cross-Attention RNN, which learns multimodal attention weights and tempo-

ral attention weights to create an improved joint embedding. Both these architectures

natively accomodate the use of Google Trends, so we feed the trends in the exogenous

data module as depicted in [36].

We train all the neural networks for 200 epochs with a batch size of 128 and MSE

(Mean Squared Error) loss function, using the AdaFactor [126] optimizer, on an NVIDIA

Titan RTX GPU.

5.5.1 New Fashion Product Sales Curve Prediction: Google

Trends

In this section we discuss the experiments with Google Trends, starting with a pre-

liminary study on how Google Trends correlate with the sales. Next, we analyze the

first results about how our approach does perform against 9 comparative approaches

covering the emerging literature of the new product sales forecasting. Subsequently,

an ablation study investigates the role of the different modalities we take into account,

namely textual data, image data and the Google Trends (see Sec. 5.1). The analysis of

the performance on the single categories is showed in the next section, while the analysis

on different time horizons completes the series of experiments in the last section.

Correlation analysis with Google Trends

The goal is to check the strength and direction of monotonic association between the

sales time series and the Google Trends, motivating their use in our framework. As

a preprocessing step, we test the time series for stationarity using the Kwiatkowski-

Phillips-Schmidt-Shin (KPSS) test [74], to make sure that the potential correlations

will not be simply due to the dependency on time, resulting in spurious correlations [5].
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First Order Setup, G.Trends: 28 weeks

Method Input WAPE MAE(25%;75%) TS ERP

Attribute KNN [36] [T] 59,8 32,7(18;39) -0,88 0,40

ImageKNN [36] [I] 62,2 34,0(19;42) -1,09 0,43

Attribute + Image KNN [36] [T+I] 61,3 33,5(19;39) -1,10 0,41

Gradient Boosting [38] [T+I] 64,1 35,0(21;41) -1,58 0,43

Gradient Boosting+G [38] [T+I+G] 64,3 35,1(21;41) -1,71 0,43

Concat Multimodal RNN [36] [T+I] 63,3 34,4(18;44) -0,67 0,42

Concat Multimodal RNN+G [36] [T+I+G] 64,1 34,8(18;43) -0,21 0,43

Cross-Attention RNN [36] [T+I] 59,5 32,3(16;39) -0,32 0,38

Cross-Attention RNN+G [36] [T+I+G] 58,7 31,9(16;39) -0,88 0,38

GTM-Transformer [T+I+G] 56,8 31,0(15;38) 0,90 0,35

GTM-Transformer** [T+I+G+Extra] 54,4 29,7(14;36) 0,44 0,31

Table 5.1: Results on VISUELLE with first order setup. Forecasting horizon = 6 weeks.

34% of sales time series are found to be non-stationary and are not considered for the

analysis.

For each product, we utilize its associated 52-week Google Trends, based on the

textual attributes. We calculate the Spearman correlation coefficient against the 12-

week sales, using a sliding window protocol with window length w = 12 and stride of

one step. Even though the small sample size does not encourage the use of correlation

analysis [28], we wish to investigate the distribution of significant correlations and in

particular if they are located on specific periods of the trends. In other words, we are

more interested in where the correlations are located across the trends, rather than their

values.

The results give statistically significant ρ correlation coefficient in 86% of the total

cases. On this selection, the strongest correlations were found to be positive, with 19%

of all coefficients in the range [0.75,1]. The lags that contain the strongest correlations

are contained mostly (54% of the cases) in the range [-42,-32].

These findings are quite interesting, since they state that the period which is most

correlated to the sales is seven to ten months before the product’s release date, which

corresponds loosely to the end of the same fashion season from the previous year. This

preliminary analysis provides further motivation for the use of the Google Trends and

is later confirmed by the cross-attention weights of GTM-Transformer in Sec. 5.5.1.

Results on New Fashion Product Sales Curve Prediction

Tables 5.2 and 5.1 reports the results, where the following facts can be pointed out:

• The use of Google Trends boosts the performance of all the models, except Concat

Multimodal, where the Google Trends have been simply concatenated as static

data.

• Our GTM-Transformer gives the best results in both setups (first order and release

setup), with the best MAE and WAPE and the second best Tracking Signal,

displaying a good balance between over and underestimation; also, we have the

best ERP, which indicates that the shapes of our forecasting curves better resemble

the actual sales (as also seen in Fig. 5.8).
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Release Setup, G.Trends: 52 weeks

Method Input WAPE MAE(25%;75%) TS ERP

Attribute KNN [36] [T] 59,8 32,7(18;39) -0,88 0,40

ImageKNN [36] [I] 62,2 34,0(19;42) -1,09 0,43

Attribute + Image KNN [36] [T+I] 61,3 33,5(19;39) -1,10 0,41

Gradient Boosting [38] [T+I] 64,1 35,0(21;41) -1,58 0,43

Gradient Boosting+G [38] [T+I+G] 63,5 34,7(20;41) -1,55 0,42

Concat Multimodal RNN [36] [T+I] 63,3 34,4(18;44) -0,67 0,42

Concat Multimodal RNN+G [36] [T+I+G] 65,9 35,8(19;45) -0,41 0,44

Cross-Attention RNN [36] [T+I] 59,5 32,3(16;39) -0,32 0,38

Cross-Attention RNN+G [36] [T+I+G] 59,0 32,1(17;38) -0,18 0,38

GTM-Transformer [T+I+G] 55,2 30,2(15;36) 0,41 0,33

GTM-Transformer** [T+I+G+Extra] 54,2 29,6(14;35) 0,56 0,33

Table 5.2: Results on VISUELLE with release setup. Forecasting horizon = 6 weeks.

• The tracking signal indicates persistent forecasting bias if its value is above (below)

3.75 [17, 104]. Not one of the methods used has this problem, including our GTM-

Transformer. This shows that even though the models have gotten much more

complex, we are still able to maintain a strong balance between positive and

negative errors. GTM-Transformer remains balanced even with 28-week Google

Trends.

• Using shorter Google Trends (28-week, Table 5.1) gives performances which in

general are just slightly worse, proving once again their usefulness. An explanation

for this can be inferred when looking at the attention weights, which are explored

in Sec. 5.5.1

To explore the generalization of the model to additional types of visual attributes, we

consider the tags from Fashion IQs [155]: they represent a widely-known approach

to describe fashion items for automated retrieval purposes. We apply the attribute

extraction code directly to our data, focusing on the “shape” attribute, which describes

fine-grained aspects of the structure of the product (v-neck, hem, . . . ). We discard the

other types of attributes, since they consistently overlap with ours (such as the “fabric”

attribute) or do not fit very well with VISUELLE, because in Fashion IQ clothes are worn

by models. After the attribute extraction, we download the related Google Trends as

described in Sec. 5.1. We dub this model in Tables 5.2 and 5.1 as GTM-Transformer**.

Interestingly, adding complementary information boosts further the model, promoting

once again the use of the Google Trends.

Additional insight can be inferred by some qualitative results, showing two 12-week

predictions (Fig. 5.8): Attribute KNN gives reasonable estimates, trying to capture the

scarce performance of the first 6 weeks portrayed in the second plot. Gradient Boosting

overestimates both the cases, offering a graphical demonstration of its high tracking

signal TS=-1.58 (Table 5.1). The RNN-based approaches Concat Multimodal+G, Cross

Attention RNN+G seems to have a very regular slope, irrespective of the real structure

of the sale signal: this is likely due to the nature of the autoregressive approach, which

has learned the general sale curve dynamics and struggles with trajectories which deviate

from it. With the GTM-Transformer the role of the Google Trends appears to be clear,
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Figure 5.8: Qualitative Results
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being capable of giving more structure to the final forecast (above), lowering down the

forecasting thus predicting a scarce performance (below).

Ablation study

Ablative results refer to the 6-week forecasting horizon, using the full 52-week Google

Trends, and are reported in Tab. 5.3.

GTM 6 Weeks

ablations WAPE MAE (25%;75%) TS ERP

[I] 56,4 30,8(16;36) -0,34 0,36

[T] 62,6 34,2(19;43) -1,42 0,43

[G] 58,2 31,8(17;37) -0,89 0,38

[I+T] 56,7 30,9(16;38) -0,32 0,37

[T+G] 56,8 31,0(14;38) 1,63 0,33

[I+G] 55,7 30,4(13;32) 1,45 0,30

[T+I+G] 55,2 30,2(15;36) 0,41 0,33

[AR] 59,6 32,5(14;36) 1,18 0,32

Table 5.3: 6 weeks ablative results on VISUELLE with release setup.

The first ablation is our model without the Google Trends, so removing the encoder

module in Fig. 5.7 (row [T+I]). The much higher WAPE highlights the net role of the

exogenous data, and is one of the main results of our study. It is worth noting that the

performances are better than all of the approaches using the same kind of information

(see Tab. 5.2), proving the good design of our architecture. The two-modality combos

text + Google Trends ([T+G]) and image + Google Trends ([I+G]) give WAPE scores

both around 57%, demonstrating that text and images carry complementary information

which the complete GTM-Transformer is capable of combining and exploiting. Single

modalities ablations instead demonstrate that the image alone [I] has the best perfor-

mance, and this obviously states that it is the appearance of the product which allows

for the most discrimination. Surprisingly, Google Trends [G] alone gives the second best

results, while text attributes [T] alone gives the worst results, indicating once again the

net value of this exogenous signal.

Finally, the [AR] row indicates the complete model, but in its autoregressive version:

the performance is 4.4% worse than our GTM-Transformer, showing the benefit of the

non-autoregressive design.

Single category analysis

Is interesting to check how GTM-Transformer performs on different categories. Fig-

ure 5.9 contains the separate WAPEs, where the marker size represents the cardinality

of the category (Fig. 5.2a). The results confirm the fact that performances are more sta-

ble for categories with a large number of products such as “Long sleeve” or “Culottes”,

as the amount of data available for training over these products is larger.
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Figure 5.9: Category Results

Varying the forecasting horizon

In this section we demonstrate the effect of the forecasting horizon on the performance.

Figure 5.10 contains the WAPE for 1, 2, 4, 6, 8 and 12 week forecasts. GTM-Transformer

remains the best performing approach for all horizons, on pair at 2 weeks with Cross-

Attention RNN+G. Most of the slopes show a minimum error at 6 weeks, except the

Gradient Boosting which shows the second best performance at 1 week. The first 6 weeks

performance varies greatly, with Attribute + Image KNN performing the worst. After

6 weeks, all the approaches have a decrease in the performance, which is natural, since

the sale signal becomes more dependent on external choices (replenishments, discounts)

we are not modeling here.

Model interpretability: unveiling the Google Trends

To understand the role of Google Trends in GTM-Transformer we exploit the inter-

pretability of the Attention mechanism. To this sake we calculate where in the Google

Trend the decoder assigns the highest Cross-Attention weight, to find if there are any

systematical tendencies as to where the model looks at when making the prediction.

Table 5.4 contains the results, where it can be seen that the initial period of the Google

Trend seems to be the most crucial, as also hinted by the correlation analysis in section

5.5.1.
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Figure 5.10: Different forecasting horizon results

Lag -52 − -42 -42 − -32 -32 − -22 -22 − -12 -12 − -0

#Highest W 145 231 42 46 33

Table 5.4: Points of the Google Trends time series with the highest Cross-attention

weights

A very practical use of our model: the first-order problem

Accurate new product forecasting is highly desirable for many reasons, as explained

in the introduction: understand tendency in the sales, deciding when to replenish the

warehouses, and how many products per reference to buy before the season starts. This

is known as the first-order problem [33], and it can be accurately simulated with the

real data of VISUELLE. The goal is to order a number of products that matches the

sum of future sales until the sixth week, without exceeding or underestimating. During

the first six weeks then, sales will help with more predictive power in suggesting how to

behave with the remaining weeks, for example deciding whether to order again or not.

A general protocol to deal with the first order problem is to consider the sum of

the sold products of the same period in the previous correspondent season, adding a

percentage which mirrors the expected growth, and make the first order. In our case,

the policy adopted by the company is to increase the orders for a product of a particular

category, color and fabric by 60% of the previous average sum of sold products in the

first six weeks for those attributes. We call this the 60% policy. For example, if we

want to do the first order for SS19 season of a new white cotton cardigan, we take the

average of sold white cotton cardigans of the previous SS18 and add the 60%.

To compute the first order error, we simply calculate the integral of the forecasting
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Method 6 Weeks

MAE US $ discr. ↓
60% Policy 313,6 4.390.540 $
Attribute KNN [36] 271,0 3.770.886 $
ImageKNN [36] 279,7 3.892.271 $
Attribute + Image KNN [36] 271,9 3.783.854 $
Gradient Boosting+G [38] 297,2 4.135.547 $
Concat Multimodal+G [36] 359,7 5.035.494 $
Cross-Attention RNN+G [36] 271,5 3.800.938 $

GTM-Transformer 262,3 3.625.163 $

Table 5.5: First-order results on VISUELLE.

and ground truth curves for the first 6 weeks and compare them with each other, for

each considered approach, including the 60% policy. To evaluate the performance, we

compute the mean of all the absolute errors over all products. This tells us by how

much, on average, the model is mistaken about the total sold amount and therefore the

quantity of the first order. To show the real impact of such a problem, in Table 5.5 we

report also the monetary discrepancy in US dollars, assuming that each reference has

a cost of $28 (the average cost of a fast fashion product). In a market of around 13M

dollars, the 60% policy is clearly ineffective, and all the forecasting approaches lower

the discrepancy considerably, with GTM-Transformer lowering it the most.

5.5.2 New Fashion Product Sales Curve Prediction: POP Signal

In this section we show the experiments with POP signal. In line with the general

requirements of DCAI [103], we show how our pipeline for creating training data for a

specific model ψ solving a given task γ will give better performances than alternative

pipelines. In this section, we extensively evaluate our approach with POP Signal on

different classifiers on “new fashion product sales curve prediction task”, showing also

ablative studies.

The binary classifier θ for learning on noisy data (see Sec. 5.3.4) is based on a

ResNet50 [54], pre-trained on ImageNet [29], with 2 additional fully connected layers.

During the confident learning procedure, we train its last 6conv+2fc layers for 50 epochs

with a batch size of 64, using cross-entropy loss, following a 5-fold cross validation

protocol. AdamW [91] has been used as optimizer with lr = 1e− 4.

The GTM-Transformer is trained with the same setup described in Sec.5.5.

As comparative models, we consider 5 algorithms (from the oldest to newest): Gra-

dient Boosting for forecasting [63], Concat Multi-Modal RNN [36] (Concat MM RNN

in the tables), Residual Multi-Modal RNN [36] (Residual MM RNN ), Cross-Attention

RNN [36] (X-Attention RNN )3 and our GTM Transformer (GTM Transf.).

3considering the code in https://github.com/HumaticsLAB/AttentionBasedMultiModalRNN

https://github.com/HumaticsLAB/AttentionBasedMultiModalRNN
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First Order Setup (Kbest = 28 weeks)

Exogenous Gradient Concat Residual X-Attention GTM

Signal Boosting MM RNN MM RNN RNN Transformer

[63] 2020 [36] 2020 [36] 2020 [36] 2020

W M ERP W M ERP W M ERP W M ERP W M ERP

No

Signal
64.10 35.02 0.43 63.31 34.41 0.42 64.26 34.92 0.44 59.49 32.33 0.38 56.62 30.93 0.37

Google

Trends
64.29 35.12 0.43 64.11 34.84 0.43 68.11 37.02 0.47 58.70 31.90 0.38 56.83 31.05 0.35

POP

Signal
63.75 34.83 0.42 58.09 31.73 0.39 58.88 32.16 0.39 57.78 31.56 0.38 53.41 29.18 0.32

Table 5.6: Results on VISUELLE with first order setup; “W” stands for WAPE, “M”

for MAE. Lower is better for all metrics.

Release Setup (Kbest = 52 weeks)

Exogenous Gradient Concat Residual X-Attention GTM

Signal Boosting MM RNN MM RNN RNN Transformer

[63] 2020 [36] 2020 [36] 2020 [36] 2020

W M ERP W M ERP W M ERP W M ERP W M ERP

No

Signal
64.10 35.02 0.43 63.31 34.41 0.42 64.26 34.92 0.44 59.49 32.33 0.38 56.62 30.93 0.37

Google

Trends
63.52 34.70 0.42 65.87 35.80 0.44 68.46 37.21 0.48 59.02 32.08 0.38 55.24 30.18 0.33

POP

Signal
63.38 34.62 0.42 57.43 31.37 0.36 58.38 31.89 0.39 57.36 31.33 0.36 52.39 28.62 0.29

Table 5.7: Results on VISUELLE with release setup; “W” stands for WAPE, “M” for

MAE. Lower is better for all metrics.

Results on New Fashion Product Sales Curve Prediction

The results are shown in Table 5.6 for the first order setup and in Table 5.7 for the

release setup. As reference, we also report results without Google Trends or POP, to

show the net value of the two different exogenous training signals.

For the experiments with Google Trends (Sec. 5.5.1) we also include approaches not

coping with exogenous signal, whose results are reported here as reference, related to the

best no-exogenous approach (Attribute KNN ), with the following performances: WAPE

of 59.8, MAE of 32.7 and ERP of 0.40.

As visible, for all the algorithms and the two setups, the POP signal boosts the

performances considering all the metrics, notably reaching the absolute best with GTM

Transformer. On average, in the first order setup, we improve by 3.42% over the Google

Trends and by 3.21% over no exogenous signals. In the release setup we improve by

2.85% over the Google Trends and by 4.23% over no exogenous signals. These results

demonstrate that the Google Trends attain lower forecasting performance when they are

shorter while our POP signal leads to consistent improvement. These boosts have an

important economical impact, as discussed in Sec. 5.5.4. Briefly speaking, considering

the average item cost of Nunalie (28 US dollars), the fast-fashion brand whose data was

used to construct VISUELLE, 1% more WAPE translates to more than 86K US dollars

lost.

In Fig. 5.12 we show the WAPE per category. It is possible to note that in most of

the cases we perform better than the other training alternatives, yet some particular
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Figure 5.11: WAPE for different forecasting horizons and exogenous signals, using GTM-

Transformer on the VISUELLE dataset. After six weeks there is a long enough history to

model tendencies in the sales without considering product discounts or replenishments,

unlike longer horizons. This is also reflected in the WAPE values, which keep increasing

for forecasting horizons longer than six weeks. POP improves the forecasts for any

horizon.
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Figure 5.12: Forecasting WAPE results per clothing category; the larger the blob, the

higher the # of items in that category; the color below each category name indicates

the type of training setup which gives the best WAPE.
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categories display limitations of our approach. These limitations are qualitatively shown

in Fig. 5.13 and discussed later. Qualitative results on VISUELLE are shown in Fig 5.14.

Fashionable
Green 
Shorts

Unfashionable
Green
Shorts

Fashionable
Blue 

Long Dress

Unfashionable
Blue 

Long Dress

Fashionable
Red 

Solid Colours

Unfashionable
Red 

Solid Colours

Fashionable
Grey 

Doll Dress

Unfashionable
Grey 

Doll Dress

Figure 5.13: Examples of VISUELLE items (seasons SS17, SS18, SS19 and AI19, re-

spectively) and the correspondent fashionable/unfashionable images from the web. As

discussed in Sec. 5.5.4, some web images are misleading, due to some questionable cat-

egory names of the VISUELLE dataset (“solid colours”, “doll dress”).

Alternative versions and ablative studies

Here we focus on alternative and ablated versions of our proposed pipeline, focusing

on the specific modules which are illustrated in Fig. 5.5. The results are all shown in

Table 5.8.

Time dependent query expansion.

• No expansion: we query images with the original tags collected in the Image Tag-

ging phase, without generating positive or negative expansions. By doing this, we

are essentially searching based on the “color + category” query string. This has an

impact on the learning step too, since no positive or negative classes are available

to learn, therefore we use our backbone ResNet50 to extract image features. For

each image z observed at t the web images {xi}(t−k)
i=1,...,M that have been uploaded

in the interval [t − k −W, t − k], for k = 1, . . . ,Kpast are collected. The signal

forming Eq. 5.3 changes accordingly, using all the M downloaded images;
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Figure 5.14: Qualitative results on VISUELLE, considering all the 12 time-steps. In

all the cases POP outperforms the competitors. In the bottom plot, we show a failure

case where the product is discounted in its final week of sales.
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Time Dependent Query Expansion

Release Setup First Order Setup

Strategy W M W M

No Expansion 53.12 29.02 54.47 29.77

Misaligned past 53.02 28.96 53.63 29.30

Learning With Noisy Labels

Release Setup First Order Setup

Strategy W M W M

No Learning 53.03 28.97 53.83 29.41

No Robust Learning 52.81 28.85 53.59 29.28

Symmetric Cross Entropy [154] 52.63 28.75 53.58 29.27

SELFIE [135] 52.56 28.71 53.51 29.23

Signal Forming

Release Setup First Order Setup

Strategy W M W M

Negative 52.68 28.78 53.90 29.44

Positive and Negative 52.97 28.94 54.35 29.69

POP 52.39 28.62 53.41 29.18

Table 5.8: Alternative versions of our pipeline (Fig. 5.5) on both the release Setup and

first order setup; “W” stands for WAPE, “M” for MAE. Lower is better for all metrics.
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• Misaligned past: we modify the query expansions by looking one year earlier than

the “correct” past; given the observation time t of the probe z(t), instead of looking

backwards from t− 1 weeks to t−Kpast, we go from t− 1−Kpast to t− 2 ·Kpast.

With respect to all the alternative versions in this study, the No expansion ablation

gives the worst result. Even though Google Images provides images ranked by their

PageRank index [116] and this guarantees in some sense to collect nice clothing images,

POP provides an improvement of 0.73% and 1.06% WAPE for the first order setup and

release setup, respectively. The Misaligned past provides slightly better results, but

still performs worse than POP by 0.63% and 0.22% WAPE for the first order setup and

release setup, respectively. This confirms that fashion has an evolution which, year after

year, does change, and we need a proper synchronization.

Learning with noisy data. We consider alternative strategies to accomplish this

phase:

• No learning : A predefined image classification network is used to compute the

distance among embeddings of the probe image with the positive, downloaded

images. This is equivalent to ablating the “Learning from Noisy Data” phase

of Fig. 5.5. It will highlight the importance of dealing with distances among

embeddings which are specifically learned against distances coming from a general

purpose network. We utilise the backbone of our binary classifier specified in

Sec. 5.3.4;

• No robust learning : All of the downloaded positive and negative images are used

to learn our binary classifier without pruning noisy data by confident learning;

• Symmetric cross entropy [154]: SCE is a robust classification loss; it adds to

the standard cross entropy loss a reverse cross entropy term which assumes the

predicted labels as ground truth, and the original labels as possibly faulty. In

practice, it penalizes noisy labels, without removing any associated training data;

• SELFIE [135]: the key idea is to correct the label of noisy refurnishable samples

with high precision, with the help of clean data which is defined as those sam-

ples within a mini-batch creating a small loss. Repeated training runs (dubbed

“restarts”) allow to use more training data, i.e., noisy samples which have been

corrected in their labels. In particular, we use 3 restarts, after which 1.1% of both

fashionable and unfashionable items have been removed from the training data.

The results in Table 5.8 show slightly different performances, promoting the general

idea of learning from webly data. Nonetheless, no learning gives the worse performance,

indicating that a fine tuning on the web data is beneficial (53.03 and 53.83 WAPE); when

learning is done on the web data, there is some increase (52.81 and 53.59 WAPE); when

learning is robust to noisy data, with SCE, performances are better (52.63 and 53.58

WAPE); removing some outliers with SELFIE gives a further help (52.56 and 53.51

WAPE). Confident learning remains the best solution, with 52.39 and 53.41 WAPE,

removing the 0.8% and 1.1% of fashionable and unfashionable items respectively.
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Signal forming. We change the way the POP signal is created, given the embeddings

of the cleaned images by CL, and the embedding of the probe z by the robust model θ′.

• Negative; it indicates the average distance of z with the pruned unfashionable

images (−){x′i}
(t−k)

i=1,...,M(t−k) , substituting the positive ones in Eq. 5.3;

• Positive and Negative; here we fed into the forecasting approach two signals, the

original POP and the Negative one.

The results show that the Negative approach gives some boost, probably accounting

for how much the probe has to be dissimilar to unfashionable items. On the other

hand Positive and Negative shows a decrease, probably because the two signals are

complementary.

Qualitative results

In this section we report a qualitative analysis of the POP signal, in addition to the

Fig. 5.6. These results give additional insight on the significance of our time-dependent,

data-centric approach. In Fig. 5.15 and Fig. 5.16 we report two examples of the (auto-

matically) downloaded images used for the formation of the POP signal. In both figures,

the probe images from which we extract the textual attributes to index the search are

depicted. The analysis for each figure is reported in the corresponding caption. We also

report in the figures some pruned images by the confident learning step, marked by a

red cross.

In Tab. 5.8 various ablation studies on POP. The obtained results suggest that

exploiting (un)fashionable images not related to the date of delivery on the market gives

worse results in terms of forecasting. Fig. 5.17 qualitatively demonstrates why this is

the case. As it is visible, what made a garment of a particular type and color fashionable

in 2017 (Fig. 5.17, top) does not correspond to the same visual elements that can be

found in 2019 (Fig. 5.17, bottom). More specifically, throughout the spring/summer

season of 2017, the green kimonos tend to be heavily associated with white patterns

and the color white in general. In 2019, the kimonos are almost all in different shades

of green or even dark green.
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…

«Fashionable» Grey Long Sleeve

t-Kpast t

2018-11-06 2019-11-05

…

«Unfashionable» Grey Long Sleeve

t-Kpast t

2018-11-06 2019-11-05

Figure 5.15: Examples of images downloaded for the query ‘Grey Long Sleeves” (after

pruning by confident learning). One may note that mismatching images are very few,

intended as those images which are not containing any ”Grey Long Sleeves”. An example

would be the green sleeve + blue jeans in the bottom row. It is worth noting how

most of the fashionable items have no printed logos, texture or tight sleeves. On the

contrary,“Unfashionable Grey Long Sleeves” have big logo on them, with a winter theme,

and many colors accompanying a gray background. In some cases, the gray color actually

covers a small portion of the clothing item. Pruned images are marked with a red cross.



5.5. NFPPF EXPERIMENTS 101

…

«Fashionable» Violet Long Sleeve

t-Kpast t

2016-09-02 2017-09-01

…

«Unfashionable» Violet Long Sleeve

t-Kpast t

2016-09-02 2017-09-01

Figure 5.16: Examples of images downloaded for the query ‘Violet Long Sleeve” (after

pruning by confident learning). The “Fashionable Violet Long Sleeve” items seem to

have a darker tone in most cases. Very long sleeves fade into dresses, indicating the

length of the garment as an important aspect for making it fashionable. Curiously, “Un-

fashionable Violet Long Sleeve” contain brighter colors, short garments (like pyjamas)

with writings or printed images. Pruned images are marked with a red cross.
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«Fashionable» Green Kimono Dress (over the years)

t-Kpast t

2019-09-122018-09-13

2017-10-012016-10-02

Figure 5.17: Examples of Fashionable downloaded images for particular time-depended

queries. In this particular case, for the query ”green kimono dress”, it can be seen

how the notion of fashionability can have significant variations over time. Notably,

green kimonos in 2017, as seen in the latter half of the first figure, tend to be heavily

associated with white patterns and the color white in general. In 2019, this trend

appears to be dying out, with the kimonos being of different shades of green or even

dark green.
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5.5.3 Task 2: Popularity Prediction Of Fashion Styles

In this section we discuss the experiments carrierd on the first task different task: “Popu-

larity Prediction Of Fashion Styles”. The style popularity prediction task [4] is different

from product sales forecasting in that it considers a measurement based on multiple

clothing items, which form a style. In this case, the style is defined as a latent property

of a set of images, which share some common attributes and therefore visual features.

Concretely, in Fashion Forward (FF) [4], the authors apply Non-negative Matrix factor-

ization in order to extract K styles from the attribute extraction features [87] of all the

product images. The matrix to be factorized is A ∈ RM×N , indicating the confidence

that each of the N images contains each of the M visual attributes. A can be factorized

into two matrices with non-negative entries, as follows:

A ≈WH,W ∈ RM×K and H ∈ RK×N (5.7)

The popularity signal yt for a style k is built by considering the sales of all the items

{z} at time t, weighted by their membership p(k|z), which can be obtained by row-wise

normalizing H. For all the details of this procedure, we refer to the original paper [4].

To extend this problem to a NFPPF setup, we have to imagine we are evaluating

the performance of a fresh new style, therefore the purpose of POP is to replace the

original style popularity series and be used directly as the only input to the forecasting

model. To this end, as textual tags we consider for each style k in FF the 2 textual

attributes [87] (extracted from W) with the highest confidence scores as textual tags,

and use them to drive the time dependent query expansion. FF provides the only

dataset for style forecasting where both images and product metadata are available,

and where it is required to predict a popularity score on a yearly basis. The data ranges

from [2008−2013], but since Google Images returns little to no images for queries before

2010, the range [2010−2013] is used in our experiments. Therefore we set Kpast = 208,

meaning that we investigate 4 years into the past. In this way we can create weekly

series for each year and use the average as the value representing the popularity for that

year. As probe image to create our POP signal, we consider the top 10 images {z} that

represent a style (based on their membership weight p(k|z)). Each image will lead to a

POP signal, which we average together to obtain the POP style signal. This process is

repeated for all the dataset partitions presented in FF.

To remain faithful to the original work, we adopt their most performing statistical

forecasting techniques [61], which are divided into three major groups:

1. Naive. These methods infer by utilizing general information from the training

data. Mean forecasts the future as the mean of past observations, while Last as

the last observed value. Drift is the same as Last, but the forecasts change over

time based on the global trend of the series;

2. Autoregressive. These methods forecast using the past observations in a lin-

ear regression framework. The AutoRegressive (AR) model forecasts purely as

described above, while the AutoRegressive Integrated Moving Average (ARIMA)
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Global Average

Signals Mean Last Drift AR ARIMA SES

MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE

Oracle 0.136 0.170 0.093 0.114 0.174 0.222 0.271 0.403 0.136 0.167 0.094 0.116

GoogleTrends 0.846 1.000 0.846 1.000 0.846 1.000 0.846 1.000 0.846 1.000 0.846 1.000

POP 0.152 0.192 0.116 0.144 0.182 0.229 0.281 0.418 0.235 0.293 0.125 0.156

Dresses

Signals Mean Last Drift AR ARIMA SES

MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE

Oracle 0.155 0.197 0.130 0.158 0.203 0.263 0.307 0.409 0.173 0.209 0.129 0.157

GoogleTrends 0.849 1.000 0.849 1.000 0.849 1.000 0.849 1.000 0.849 1.000 0.849 1.000

POP 0.119 0.157 0.108 0.127 0.173 0.216 0.229 0.334 0.162 0.193 0.109 0.130

Shirts

Signals Mean Last Drift AR ARIMA SES

MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE

Oracle 0.122 0.149 0.075 0.097 0.148 0.190 0.301 0.371 0.126 0.159 0.080 0.103

GoogleTrends 0.840 1.000 0.840 1.000 0.840 1.000 0.840 1.000 0.840 1.000 0.840 1.000

POP 0.144 0.175 0.109 0.152 0.166 0.215 0.274 0.336 0.139 0.189 0.111 0.151

Tops&Tees

Signals Mean Last Drift AR ARIMA SES

MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE

Oracle 0.132 0.165 0.074 0.087 0.172 0.212 0.206 0.429 0.108 0.133 0.073 0.087

GoogleTrends 0.848 1.000 0.848 1.000 0.848 1.000 0.848 1.000 0.848 1.000 0.848 1.000

POP 0.193 0.245 0.131 0.153 0.206 0.257 0.341 0.585 0.405 0.497 0.156 0.186

Table 5.9: Results across all the Fashion Forward [4] datasets.

models adds the additional information of integration for time series stationarity,

and a moving average component [16];

3. SES. Stands for simple exponential smoothing, a method that forecasts using

weighted averages of previous observations, where the weights decrease exponen-

tially as observations come from further in the past.

Following the protocol of [4], the goal is to train the models on all but the last timesteps,

and test the models on the last one. We are also interested in verifying how similar the

generated POP series is to the ground-truth style popularity series, essentially testing

if it could be used as a replacement, solving the NFPPF setup. We utilise the mean

absolute percentage error (MAPE) and the mean absolute error (MAE) to evaluate the

forecasting accuracy, as in [4]. In order to provide a comparison for both cases, we show

the results using Google Trends as the substitute popularity time series. Note that

to obtain fair and comparable results, we rescale all the signal values (both POP and

ground-truth FF series) in the range [0,1] using min-max normalization. The globally

averaged results and per partition results are shown in Table 5.9, where Oracle refers

to the original ground-truth style popularity series forecast.

As demonstrated in Table 5.9, POP acts as a natural substitute to the ground-truth

style popularity time series. As a matter of fact using POP allows for a better forecast
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Figure 5.18: Qualitative results for the forecasting performed on six different styles from

FF represented by the four images shown besides the plots. In the two topmost rows,

POP and the ground-truth signals are substantially similar, while on the bottom row

two relatively similar series are displayed, along with a forecasting failure case in the

bottom-right plot.

of the future popularity than the ground truth signal itself in the Dresses partition.

The qualitative results in Fig. 5.18 verify this claim, showing how structurally similar

the potential performance generated series and the ground-truth FF series are. As

further proof of their similarity, the ERP (if the full length series are similar in form

i.e., if one can replace the other) between POP and FF popularity signals are 0.31,

0.23, 0.23 for the Dresses, Shirts and Tops&Tees partitions respectively, for an average

of 0.26 over all three datasets. On the other hand, Google Trends are not able to convey

such similarities, partially because searching only with textual tags might not provide

meaningful series.

5.5.4 Discussion

Overall, learning trend signals driven by cross-modal queries outperform Google Trends,

where the image is simply used for textual attribute extraction. It is also worth noting

that the tag data which we use are the same, making the comparison completely fair.
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These tags are coming from the technical sheet of the probe image, which is given by

default in the fashion supply chain. Our cross-modal pipeline, in all of its variations

shown in Sec. 5.5.2 and Tab. 5.8 achieves the best performance when compared not

only to another signal, such as the Google Trends, but also to other robust learning ap-

proaches. As further proof of the capabilities of POP, it has proven to be beneficial also

in a challenging scenario like the current one, under the COVID pandemic: on sales in

2021, the forecasting accuracy reaches a 69.11 WAPE and 31.83 MAE. The experiments

on the Fashion Forward datasets show that our approach is portable to different fashion

domains: in Fashion Forward clothes are worn by models, in VISUELLE clothes are

shown without models.

Limitations.

A potential limitation of our pipeline is that the Image Tagging phase is assumed as

flawless since we are sticking with the technical sheet accompanying the probe image to

extract the color and category tags. The results per category (Fig. 5.12) display how

possibly mislabeled categories, or categories labeled in a general manner like (“solid

colours”,“doll dress”) may bring to misleading web images. As visible in Fig. 5.13, the

related images from the web, both fashionable and not, are completely useless, since

the tag of the category itself is misleading. This happened because we decide to use

the category tag given by the VISUELLE dataset; it is clear that in such cases a robust

automated category extraction could potentially bring better results.

Ethical Aspects And Societal Impact.

Ethical implications could in principle arise from the web image search: observed images

can contain copyrighted images. At the same time, just as a normal user will use Google

Images to gather an opinion of what could be a trend in fashion, so do we, albeit

automatically. In particular, we do not need to personally look at the web images (apart

from the ones reported in the thesis for explanatory purposes), since the POP signal is

just a numerical time series. As for the societal impact, our approach is highly beneficial

for fast fashion, which is the third most polluting industry in the world. The problem

is that many clothing items remain unsold as stock, while lacking refurnishment for

highly desired items causes the reactivation of the supply chain, causing more pollution.

Having a precise estimation of sales or popularity has a role in amelioration the situation,

and our pipeline can play a leading part. To put this discussion in quantitative terms,

our signal, fed into the best performing forecasting model on the VISUELLE scenario,

allows to spare 21% w.r.t. ordinary guidelines for new fashion products, reducing a loss

of $4.390.400 US dollars to $3.491.600 US dollars, assuming a general price of 28$ per

piece for all products, independently on the category.



Chapter 6

Conclusions

Fashion is a fast-growing industry, accentuated by the rapid spread of online markets.

With this advancement, there is a corresponding, ever-increasing mass of multimedia

data (images, videos and text). This huge amount of valuable information can be

exploited to build advanced systems that can deal with such data for a variety of tasks,

helping users and industries alike. The main purpose of these systems is to automatize

the human processes, that require too much manual effort. All these processes are

often based on aesthetic judgments, such as choosing the most similar garment within

a gallery of images, describing clothes or patches thereof by attributes, discriminating

fashionable against unfashionable clothes. Automatizing the human aesthetic decision

is the key concept of the interdisciplinary field called Computational Aesthetics. In this

thesis we address some of the existing open challenges, discussing how Computational

Aesthetics and Deep Learning help in proposing solutions to cope with them.

6.1 Texel-based Texture Descriptor

In this thesis we present a new way to aesthetically describe textures, adopting attributes

that focus on texels. The proposed framework, Texel-Att, can successfully describe and

classify patterns that are not well-handled by the existing texture analysis approaches, as

demonstrated by the experimental results, supported also by two new datasets, ElBa and

E-DTD. In addition, Texel-Att is shown to be highly effective for image search, paving

the way to fashion and graphic design applications. The current implementation has

much room for improvement, being trained with few texel types (circles, lines, polygons)

and 2D patterns with limited distortions. In fact, the modular design of the framework

makes it easy to customize to handle different kinds of element-based textures, as it is

just a matter of changing the detector and group different texel types, and changing the

invariance properties of the layout attributes to handle larger distortions.

We show the effectiveness of Texel-Att in different applications, such as retrieval

and interactive image search. For the first task, we prove that Texel-Att outperforms

all the competitors in finding patterns inside large databases even under simulated real-
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world factors such as poor resolution, noise and lighting conditions. Next, we show

the potential of Texel-Att in an interactive image search system. We integrate it into

the WhittleSearch framework, where we demonstrate through a user study its much

higher performance in searching in a huge catalog of textures thanks to the relative

attribute formulation. By describing texel related attributes we are able to perform

very fine-grained searches that are simply unfeasible with existing texture attribute

representations. This is of real importance in an industry where there are many products

that can be similar at a first glance but different in the details (e.g. a dotted texture

with small dots or big dots).

Texel-Att has many strengths, but it can certainly be improved in future works.

More in detail, detections of texels suffers from a limited variety of shapes, currently

defined by primitives like circle, line and polygons. A more flexible detector that is able

to find repeated patterns not necessarily related to a specific primitive could enable the

analysis of a wider variety of textures. Moreover, it is currently not able to deal with

3D deformation, since the layout of the pattern changes completely. Another point of

potential improvement is the definition of the attributes. They are computed using

well-known statistical measures, but they could also be learned from data to maximize

the expressiveness of the attribute set.

6.2 Video-to-Shop Retrieval

One of the most important applications for e-fashion is that of retrieval. It enables

users to search the desired garment inside a gallery starting from a taken photo or a

recorded video (query item) in a fast way. This action replaces both the human process

of manually scrolling each page of the website and the human decision in defining when

the gallery item is aesthetically the same or a similar one to the one sought and desired.

Moreover, this retrieval is useful also for industries: they could analyze social network

pictures to find out which brand or which collection is trending, providing very valuable

marketing data.

In this thesis, we introduce SEAM-Match-RCNN, trained on the new MovingFash-

ion dataset, and show that video-to-shop matching can be performed on videos in the

wild, such as TikToks, possibly unveiling fashion trends directly from social platforms

and consequently attracting big fashion players. To fill the gap of publicly available

benchmarks, we created MovingFashion, a dataset composed of 15K videos and their

corresponding shop images, collected from both e-commerce websites and social net-

works.

SEAM Match-RCNN, which relies on an attention mechanism, achieves better results

with respect to all the available competitors, displaying a natural improvement wrt the

classical single-image setup. Interestingly, the attention modules’ values seem to be in

accord with the best practices in social media video editing, that is, that videos have

to deliver their main message within approximately 6 seconds [44]. It is within the

2-6sec interval where the attention score gives the highest value for most of the videos
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and it is within that same interval that the images most effective for recognition are

contained. As a counter-proof, this interval identifies also the sequence frames which

are most successful to match the shop image.

This setup can be attractive for many scenarios, for example:

1. a casual user can match a video snippet of a nice outfit he/she has captured with

a gallery of products (e.g. Zalando, Amazon, etc.);

2. a fast fashion company can measure the similarity of clothing items contained in

a viral video, or fashion show, with the items of its catalog, deciding which item

to promote the most;

3. Youtube videos can be automatically processed by video sharing platforms to build

valuable statistics of popular outfits and discover emerging trends;

In addition, this architecture can also be exploited for other tasks such as attribute

prediction, extending it from an image-based problem to a video-based one, with poten-

tially high-performance improvement of existing methods.

Failure cases in SEAM Match-RCNN arise when discriminant details are covered or

missing in most of the video sequence. In those cases, self-attention doesn’t properly

focus on them as they are not consistently present in the sequence. Also, performance

on complex textural patterns, such as writing, is low. Fine-grained details are ignored

in favor of the general shape and color of that pattern. This causes failure when in the

gallery there are multiple similar clothes with different prints on them.

6.3 New Fashion Product Performance Forecasting

Forecasting the performance of new clothing items is a crucial challenge for fashion com-

panies. A good forecast in terms of predicted sales, or product popularity, carried out

prior to the target season will be helpful in selecting the right amount of items to be put

on the market, optimizing the entire supply chain. Unfortunately, standard forecasting

approaches require information on the past performance to provide a prediction of the

future and this information is available for evergreen products only, not for new ones.

The solutions for New Fashion Product Performance Forecasting challenge work

on the logic that new products will perform comparably to older, aesthetically similar

products (a solid yellow t-shirt put on the market from spring-summer 2019 will sell

similarly to a solid yellow t-shirt sold in spring-summer 2018). This is how professionals

work to estimate sales of new products.

In this thesis, we address the challenge of automatizing the New Fashion Product

Performance Forecasting task, up to now made by professionals. We collect VISUELLE,

a novel dataset build upon genuine data of an Italian fashion company, made of 5577

new products sold between 2016-2019. It is equipped with images of the products

together with metadata and related sales. The dataset provides a new benchmark

for the New Fashion Product Performance Forecasting challenge and in particular for
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GTM-Transformer, a novel non-autoregressive transformer model based on the standard

encoder-decoder architecture. The encoder works on the representation of exogenous

time series, used to fill the missing past performance observations, whilst the decoder

forecasts the sales using the encoded exogenous signals and the available visual and

metadata information related to the new product, for which we want to estimate the

performance.

To fill the missing past information, we adopt two different exogenous signals. The

first is Google Trends, directly collected from the corresponding API and never used in

practice in a new product forecasting setting. The second, dubbed “POtential Perfor-

mance” (POP) signal, is made with a new interesting data-centric pipeline, based on

capturing the aesthetical similarity of the probe image against fashionable and unfash-

ionable images, uploaded on the web in the past. Metaphorically, the pipeline performs

somewhat of a “time travel”: it sends a fashion probe image in the past, before its

launch in the market. This past is modeled by highly ranked web images, queried by

using general textual tags related to the probe. The probe similarity with the past is

then shown to be a good predictor for future performance.

We show that both Google Trends and POP signals are beneficial to forecasting and

help augment the model’s reasoning, even in presence of attributes that are automat-

ically extracted from the raw product image. Moreover, the signals have been proved

to be informative even in the case of challenging scenarios such as sales of 2021, where

the CODIV pandemic introduced a hard to manage variable in forecasting sales. All of

this was possible thanks to a multimodal framework based on the Transformer, made

non-autoregressive in order to deal with the high dynamics that sales data exhibit, by

effectively ingesting the exogenous data. In particular, POP signal outperforms Google

Trends, demonstrating that focusing on how to collect and process data, instead of

focusing on models is more important.

Moreover, POP has proved to be informative also for the Popularity Prediction of

Fashion Styles task on the FashionForward benchmark.

Despite the capabilities demonstrated by several experiments, the New Fashion Prod-

uct Performance Forecasting problem still leaves many doors open in the field of research.

In particular, failure cases arise when the model is not able to deal with external vari-

ables such as human interventions in terms of discounts and rearrangements of stock.

As future work, we plan to introduce such external factors in VISUELLE, also extending

the architecture in order to manage them.

Other failure cases occur when trying to estimate the performance of products with

rarely seen tags, since in a real scenario, new categories of garments may be introduced

in the catalog at any time. In such a case, exploiting the semantic relation between

different clothing categories could represent a possible solution, similarly to zero-shot

or few-shot learning models.

Regarding exogenous signals, the principal limitations are due to the choice of the

tag set. By querying the Google Trends API, the choice and the order of the tags

is really important, since a wrong combination of them leads to the collection of not
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meaningful or empty series. In this thesis, we have chosen to use the tags detailed in

the technical sheet instead of extracting them automatically from images. As discussed

in Sec. 5.5.4, many times, products are labeled confusingly, generating tags that are too

general or unusable (e.g. “solid colours”). This issue causes the collection of signals or

images that are not representative for our task. A possible solution is the use of a robust

attribute predictor, extracting tags automatically following a meaningful taxonomy.
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